WorldWideScience

Sample records for neurodegenerative diseases caused

  1. Circadian clock disruption in neurodegenerative diseases: Cause and effect?

    Directory of Open Access Journals (Sweden)

    Erik Steven Musiek

    2015-02-01

    Full Text Available Disturbance of the circadian system, manifested as disrupted daily rhythms of physiologic parameters such as sleep, activity, and hormone secretion, has long been observed as a symptom of several neurodegenerative diseases, including Alzheimer Disease. Circadian abnormalities have generally been considered consequences of the neurodegeneration. Recent evidence suggests, however, that circadian disruption might actually contribute to the neurodegenerative process, and thus might be a modifiable cause of neural injury. Herein we will review the evidence implicating circadian rhythms disturbances and clock gene dysfunction in neurodegeneration, with an emphasis on future research directions and potential therapeutic implications for neurodegenerative diseases.

  2. Modelling studies on neurodegenerative disease-causing triplet ...

    Indian Academy of Sciences (India)

    Unknown

    DM), fragile X syndrome (FraX), Huntington disease. (HD), several spinocerebellar ataxias and Friedreich ataxia have been associated with the expansion of GGC,. CAG or GAA repeats (Pearson and Sinden 1998). Actually,. GGC, CAG and GAA repeats indicate duplex repeat sequences (GGC)n–(GCC)n [also indicated as ...

  3. Meditation and neurodegenerative diseases

    National Research Council Canada - National Science Library

    Newberg, Andrew B; Serruya, Mijail; Wintering, Nancy; Moss, Aleezé Sattar; Reibel, Diane; Monti, Daniel A

    2014-01-01

    .... Meditation techniques present an interesting potential adjuvant treatment for patients with neurodegenerative diseases and have the advantage of being inexpensive, and easy to teach and perform...

  4. RBD and Neurodegenerative Diseases.

    Science.gov (United States)

    Jiang, Haiyang; Huang, Jinsha; Shen, Yan; Guo, Shiyi; Wang, Luxi; Han, Chao; Liu, Ling; Ma, Kai; Xia, Yun; Li, Jie; Xu, Xiaoyun; Xiong, Nian; Wang, Tao

    2017-05-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a sleep disorder characterized by enacting one's dreams during the REM sleep, with most of the dreams being violent or aggressive, so that patients often come to see the doctor complaining hurting themselves or bed partners during sleep. Prevalence of RBD, based on population, is 0.38-2.01 %, but much higher in patients with neurodegenerative diseases, especially synucleinopathies. RBD may herald the emergence of synucleinopathies by decades, such that it may be used as an effective early marker of neurodegenerative diseases. Pharmaceutical treatment of RBD includes clonazepam, melatonin, pramipexole, and some newly reported medications. In this review, we summarized the clinical and PSG features of RBD, the pathophysiology and the therapy of it, focusing on the correlation between neurodegenerative diseases and RBD, in order to emphasize the significance of RBD as an early marker of neurodegenerative diseases.

  5. Sleep and neurodegenerative diseases.

    Science.gov (United States)

    Chokroverty, Sudhansu

    2009-09-01

    Sleep disturbances are common in neurodegenerative diseases. Disturbed sleep can result in fatigue, irritability, morning headaches, impaired motor and cognitive skills, depression, and daytime somnolence. The major sleep complaints include insomnia, hypersomnia, parasomnia, excessive nocturnal motor activity, circadian sleep-wake rhythm disturbance, and respiratory dysrhythmia. The pathogenetic mechanisms of sleep disturbances may be secondary to direct structural alteration of the sleep-wake generating neurons or from several other indirect mechanisms. At the biochemical level, neurodegenerative diseases may be largely classified as tauopathies, alpha-synucleinopathies, and other diseases. Overnight polysomnography (PSG), Multiple Sleep Latency Test, Maintenance of Wakefulness Test, and actigraphy are some important diagnostic laboratory tests in the evaluation of sleep disturbances. Management of sleep disturbances is complex and is based primarily on the nature of the sleep disturbance. The clinical profiles, pathogenetic mechanisms, PSG findings, and management issues are discussed here with reference to some common neurodegenerative diseases. Thieme Medical Publishers.

  6. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  7. Sleep in Neurodegenerative Diseases.

    Science.gov (United States)

    Iranzo, Alex

    2016-03-01

    Disorders of sleep are an integral part of neurodegenerative diseases and include insomnia, sleep-wake cycle disruption, excessive daytime sleepiness that may be manifested as persistent somnolence or sudden onset of sleep episodes, obstructive and central sleep apnea, rapid eye movement sleep behavior disorder, and restless legs syndrome. The origin of these sleep disorders is multifactorial including degeneration of the brain areas that modulate sleep, the symptoms of the disease, and the effect of medications. Treatment of sleep disorders in patients with neurodegenerative diseases should be individualized and includes behavioral therapy, sleep hygiene, bright light therapy, melatonin, hypnotics, waking-promoting agents, and continuous positive airway pressure. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease

    National Research Council Canada - National Science Library

    Geuens, Thomas; De Winter, Vicky; Rajan, Nicholas; Achsel, Tilmann; Mateiu, Ligia; Almeida-Souza, Leonardo; Asselbergh, Bob; Bouhy, Delphine; Auer-Grumbach, Michaela; Bagni, Claudia; Timmerman, Vincent

    2017-01-01

    .... So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis...

  9. Reward processing in neurodegenerative disease

    Science.gov (United States)

    Perry, David C.; Kramer, Joel H.

    2015-01-01

    Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses. PMID:24417286

  10. A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases.

    Science.gov (United States)

    Borza, Liana Rada

    2014-01-01

    Protein aggregates are the defining pathological feature of human neurodegenerative diseases. Studies have revealed that mutant huntingtin, polyglutamine-expanded ataxin-1 and ataxin-3 can cause elevated levels of reactive oxygen species in neuronal cells. It has also been indicated that the normal host prion protein behaves as an antioxidant, while the neurotoxic peptide based on the sequence of the scrapie isoform increases hydrogen peroxide toxicity in neuronal cultures. Additionally, not only can oxidative stress contribute to the aggregation of beta-amyloid and alpha-synuclein, but both beta-amyloid and alpha-synuclein can induce oxidative damage. Furthermore, oxidative stressors have been shown to play a critical role in neurofibrillary pathology leading to tau hyperphosphorylation. In conclusion, the present review supports a cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative disorders.

  11. Sleep disorders in neurodegenerative diseases.

    Science.gov (United States)

    Raggi, A; Ferri, R

    2010-11-01

    The aim of this review is to provide data on sleep disturbances in three categories of neurodegenerative disorders: synucleinopathies, tauopathies, and other diseases (this heterogeneous group includes also spinocerebellar degeneration and amyotrophic lateral sclerosis). Analysing and knowing sleep disorders in neurodegenerative diseases may offer important insights into the pathomechanism of some of these diseases and calls attention to the still insufficiently known 'sleep neurology'. The identification of sleep disorders in some neurodegenerative conditions may make their diagnosis easier and earlier; for example, rapid eye movements sleep behaviour disorder may precede any other clinical manifestation of synucleinopathies by more than 10 years. © 2010 The Author(s). Journal compilation © 2010 EFNS.

  12. Visual Spatial Cognition in Neurodegenerative Disease

    OpenAIRE

    Possin, Katherine L.

    2010-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will...

  13. Depressive symptoms in neurodegenerative diseases

    Science.gov (United States)

    Baquero, Miquel; Martín, Nuria

    2015-01-01

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer’s disease and related conditions like Parkinson’s disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  14. Animal models of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fabiola Mara Ribeiro

    2013-01-01

    Full Text Available The prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD and Parkinson's disease (PD, increases with age, and the number of affected patients is expected to increase worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or at least slow their progression. Animal models contribute to increase the knowledge on the pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is to present the main animal models for AD, PD, and Huntington's disease.

  15. Selenium, selenoproteins and neurodegenerative diseases.

    Science.gov (United States)

    Cardoso, Bárbara Rita; Roberts, Blaine R; Bush, Ashley I; Hare, Dominic J

    2015-08-01

    It is unsurprising that our understanding of the role of selenium in neurological function is somewhat immature, considering its relatively recent discovery as an essential element to human health. Selenocysteine, the 21st amino acid, is the defining feature of the 25 selenoprotein-encoding genes so far discovered within the human genome. The low abundance of these proteins in the brain belies the integral role they play in normal neurological function, from well-characterised antioxidant activity in the periphery to poorly understood mechanisms that modulate mitochondrial function and response to brain pathology. Selenium has been identified as playing a role in several neurodegenerative disorders, including Alzheimer's and Parkinson's disease, though its function as a 'cause or effect' of disease process remains unclear. This review discusses selenium metabolism in detail, specifically with regard to the role it plays within the central nervous system, and examines the most current literature investigating how selenium may be involved in chronic diseases of the central nervous system.

  16. Metal imaging in neurodegenerative diseases

    Science.gov (United States)

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  17. The impact of obesity on neurodegenerative diseases.

    Science.gov (United States)

    Mazon, Janaína Niero; de Mello, Aline Haas; Ferreira, Gabriela Kozuchovski; Rezin, Gislaine Tezza

    2017-08-01

    Neurodegenerative diseases are a growing health concern. The increasing incidences of these disorders have a great impact on the patients' quality of life. Although the mechanisms of neurodegenerative diseases are still far from being clarified, several studies look for new discoveries about their pathophysiology and prevention. Furthermore, evidence has shown a strong correlation between obesity and the development of Alzheimer's disease (AD) and Parkinson's disease (PD). Metabolic changes caused by overweight are related to damage to the central nervous system (CNS), which can lead to neural death, either by apoptosis or cell necrosis, as well as alter the synaptic plasticity of the neuron. This review aims to show the association between neurodegenerative diseases, focusing on AD and PD, and metabolic alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Visual spatial cognition in neurodegenerative disease.

    Science.gov (United States)

    Possin, Katherine L

    2010-12-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up/top-down processing, dorsal/ventral stream processing, and egocentric/allocentric frames of reference.

  19. Engineering enhanced protein disaggregases for neurodegenerative disease

    OpenAIRE

    Jackrel, Meredith E.; Shorter, James

    2015-01-01

    Abstract Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by...

  20. Essential Tremor: A Neurodegenerative Disease?

    Directory of Open Access Journals (Sweden)

    Julian Benito-Leon

    2011-08-01

    Full Text Available Background: Essential tremor (ET is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non‐motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition.Methods: A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic.Results/Discussion: There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells as well as other post‐mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required.

  1. Tau imaging in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Dani, M.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Brooks, D.J. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark)

    2016-06-15

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [{sup 18}F]THK523, [{sup 18}F]THK5117, [{sup 18}F]THK5105 and [{sup 18}F]THK5351, [{sup 18}F]AV1451(T807) and [{sup 11}C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. (orig.)

  2. Lysosomal dysfunction in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Klaudia Tomala

    2017-05-01

    Full Text Available Recent data advocate for the implication of lysosomes in the development of programmed cell death. Lysosomal dysfunction decreased the efficiency of autophagosome/lysosome fusion that leads to vacuolation of cells. Autophagic vacuoles containing damaged organelles and altered proteins are hallmarks in most neurodegenerative disorders. These aggregates consequently disrupt cellular homeostasis causing neuronal cell death due apoptosis or necrosis. Moreover calpain mediated or mutation inducted lysosomal rupture result in release of lysosomal cathepsins into the cytoplasm and inducing neuronal cell death. In this review we emphasize the pathophysiological mechanism connecting disrupting autophagy – lysosomal pathway and lysosomal dysfunction in neuronal cell death called lysosomal cell death.

  3. Chameleon sequences in neurodegenerative diseases.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Chameleon sequences in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bahramali, Golnaz [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of); Salari, Ali [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of)

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  5. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease.

    Science.gov (United States)

    Levesque, Shannon; Surace, Michael J; McDonald, Jacob; Block, Michelle L

    2011-08-24

    Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m³) by inhalation over 6 months. DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m³ significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m³ and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m³) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m³ exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain.

  6. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    McDonald Jacob

    2011-08-01

    Full Text Available Abstract Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m3 by inhalation over 6 months. Results DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m3 significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m3 and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m3 in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m3 exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Conclusions Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may

  7. Metals and neurodegenerative diseases. A systematic review.

    Science.gov (United States)

    Cicero, Calogero Edoardo; Mostile, Giovanni; Vasta, Rosario; Rapisarda, Venerando; Signorelli, Salvatore Santo; Ferrante, Margherita; Zappia, Mario; Nicoletti, Alessandra

    2017-11-01

    Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical presentation such as Amyotrophic Lateral Sclerosis (ALS), Alzheimer Disease (AD) and Parkinson's disease (PD). Genetic mutations have a known causative role, but the majority of cases are likely to be probably caused by a complex gene-environment interaction. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies and it is likely that each metal could be toxic through specific pathways. The possible pathogenic role of different metals has been supported by some epidemiological evidences coming from occupational and ecological studies. In order to assess the possible association between metals and neurodegenerative disorders, several case-control studies have also been carried out evaluating the metals concentration in different biological specimens such as blood/serum/plasma, cerebrospinal fluid (CSF), nail and hair, often reporting conflicting results. This review provides an overview of our current knowledge on the possible association between metals and ALS, AD and PD as main neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sleep-disordered breathing in neurodegenerative diseases.

    Science.gov (United States)

    Gaig, Carles; Iranzo, Alex

    2012-04-01

    Sleep disorders are common in neurodegenerative diseases such as Parkinson's disease (PD), multiple system atrophy (MSA), amyotrophic lateral sclerosis (ALS), hereditary ataxias, and Alzheimer's disease (AD). Type, frequency, and severity of sleep disturbances vary depending on each of these diseases. Cell loss of the brainstem nuclei that modulates respiration, and dysfunction of bulbar and diaphragmatic muscles increase the risk for sleep-disordered breathing (SDB) in MSA and ALS. The most relevant SDB in MSA is stridor, whereas in ALS nocturnal hypoventilation due to diaphragmatic weakness is the most common sleep breathing abnormality. Stridor and nocturnal hypoventilation are associated with reduced survival in MSA and ALS. In contrast, sleep apnea seems not to be more prevalent in PD than in the general population. In some PD patients, however, coincidental obstructive sleep apnea (OSA) can be the cause of excessive daytime sleepiness (EDS). SDB can also occur in some hereditary ataxias, such as stridor in spinocerebellar ataxia type 3 (Machado-Joseph disease). The presence of concomitant OSA in patients with AD can have deleterious effects on nocturnal sleep, may result in EDS, and might aggravate the cognitive deficits inherent to the disease. However, whether OSA is more frequent in patients with AD than in the general population is uncertain. Recognition of SDB in neurodegenerative disease is important because they are associated with significant morbidity and potential effective treatments are available.

  9. Biology of Mitochondria in Neurodegenerative Diseases

    Science.gov (United States)

    Martin, Lee J.

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS. PMID:22482456

  10. Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Saba Sheikh

    2013-01-01

    Full Text Available Neurodegenerative diseases are multifactorial debilitating disorders of the nervous system that affect approximately 30 millionindividuals worldwide. Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis diseases are the consequence of misfolding and dysfunctional trafficking of proteins. Beside that, mitochondrial dysfunction, oxidative stress, and/or environmental factors strongly associated with age have also been implicated in causing neurodegeneration. After years of intensive research, considerable evidence has accumulated that demonstrates an important role of these factors in the etiology of common neurodegenerative diseases. Despite the extensive efforts that have attempted to define the molecular mechanisms underlying neurodegeneration, many aspects of these pathologies remain elusive. However, in order to explore the therapeutic interventions directed towards treatment of neurodegenerative diseases, neuroscientists are now fully exploiting the data obtained from studies of these basic mechanisms that have gone awry. The novelty of these mechanisms represents a challenge to the identification of viable drug targets and biomarkers for early diagnosis of the diseases. In this paper, we are reviewing various aspects associated with the disease and the recent trends that may have an application for the treatment of the neurodegenerative disorders.

  11. Personality and social cognition in neurodegenerative disease.

    Science.gov (United States)

    Shany-Ur, Tal; Rankin, Katherine P

    2011-12-01

    Neurodegenerative diseases often cause focal damage to brain structures mediating social cognition and personality, resulting in altered interpersonal communication and behavior. We review recent research describing this phenomenon in various aspects of social cognition. Corresponding to their pervasive socioemotional deficits, patients with frontotemporal dementia perform poorly on laboratory-based tasks including recognizing emotions, attending to salient information that guides social behavior, representing social knowledge, comprehending others' mental states, and maintaining insight to their own difficulties. Together with poor executive and regulation mechanisms, these social cognition deficits ultimately impact behavior. Patients with logopenic and nonfluent primary progressive aphasia have some deficits recognizing emotional prosody, whereas those with the semantic variant show more widespread deficits in social comprehension. Although Alzheimer's disease patients perform poorly on some social cognition tasks, this typically reflects general cognitive impairment, and their real-life social functioning is less affected than in diseases targeting frontotemporal structures. Studies in motor diseases such as Parkinson's suggest some degradation of emotion recognition and social comprehension, which should be investigated further. We summarize recent findings concerning perception and evaluation of socioemotional information, social knowledge storage and access, advanced information processing mechanisms, and behavioral response selection and regulation across various neurodegenerative diseases.

  12. Coenzyme Q10 effects in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Meredith Spindler

    2009-11-01

    Full Text Available Meredith Spindler1, M Flint Beal1,2, Claire Henchcliffe1,21Department of Neurology, 2Department of Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Coenzyme Q10 (CoQ10 is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.Keywords: coenzyme Q10, neurodegenerative disease, Parkinson’s disease, Huntington’s disease, mitochondrial dysfunction

  13. [Neuropathological diagnosis of neurodegenerative and dementia diseases].

    Science.gov (United States)

    Kretzschmar, H A; Neumann, M

    2000-09-01

    Neurodegenerative and dementing disorders such as Parkinson disease and Alzheimer disease are among the most common diseases of advanced age. Despite progress in the clinical diagnosis of neurodegenerative disorders, definite diagnosis for most of these disorders is still possible only by neuropathological examination of the brain. The neuropathological diagnosis and classification of neurodegenerative disorders has made clear advances in recent years, particularly due to the results of genetic and biochemical studies, resulting in the development of new disease-specific antibodies. Internationally recognized consensus criteria for most neurodegenerative disorders allow a definite and standardized diagnosis to be made. To obtain further knowledge about the etiopathogenesis, particularly with regard to new therapeutic strategies, studies with clinically and neuropathologically well-documented cases are needed. The project "Brain-Net" has therefore been established with the aim of setting up a German Brain and Tissue Bank for Diseases of the Central Nervous System. The project is funded by the Federal Ministry of Education and Research.

  14. Engineering enhanced protein disaggregases for neurodegenerative disease.

    Science.gov (United States)

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.

  15. Indian Herbs for the Treatment of Neurodegenerative Disease.

    Science.gov (United States)

    Mannangatti, Padmanabhan; Naidu, Kamalakkannan Narasimha

    2016-01-01

    Ayurveda, an ancient system of medicine that is indigenous to India, is believed to be the world's oldest comprehensive health-care system and is now one of the most recognized and widely practiced disciplines of alternative medicine in the world. Medicinal herbs have been in use for treating diseases since ancient times in India. Ayurvedic therapies with medicinal herbs and herbomineral products generally provide relief without much adverse effects even after prolonged administration. Neurodegenerative disorders are a major cause of mortality and disability, and increasing life spans represent one of the key challenges of medical research. Ayurvedic medicine describes most neurodegenerative diseases and has defined a number of plants with therapeutic benefits for the treatment of neurodegenerative diseases having antioxidant activities. In this chapter, the role of four important Ayurvedic medicinal plants, viz., Withania somnifera (ashwagandha), Bacopa monnieri (brahmi), Centella asiatica (gotu kola), and Mucuna pruriens (velvet bean), on neurodegenerative diseases are discussed.

  16. REM behaviour disorder and neurodegenerative diseases.

    Science.gov (United States)

    Zanigni, Stefano; Calandra-Buonaura, Giovanna; Grimaldi, Daniela; Cortelli, Pietro

    2011-12-01

    Rapid-eye movement (REM) sleep behaviour disorder (RBD) is an REM sleep parasomnia characterized by enactment of dream content during REM sleep associated with loss of muscle atonia. RBD can be either idiopathic or secondary to drugs or other diseases. The best recognized association is with neurodegenerative diseases, namely alpha-synucleinopathies. RBD may represent the first feature of neurodegeneration and can be considered an early marker of these disorders. This review describes the main clinical, pathogenetic, and therapeutic features of RBD, pointing to its association with neurodegenerative diseases and emphasizing the clinical and prognostic implications. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Pain in Neurodegenerative Disease : Current Knowledge and Future Perspectives

    NARCIS (Netherlands)

    de Tommaso, Marina; Arendt-Nielsen, Lars; Defrin, Ruth; Kunz, Miriam; Pickering, Gisele; Valeriani, Massimiliano

    2016-01-01

    Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD),

  18. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  19. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. The increased frequency of transitions may cause increased sympathetic activity during sleep and thereby increased heart rate, or the increased heart rate could be caused by decreased...

  20. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    William M. Johnson

    2012-10-01

    Full Text Available Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.

  1. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    Science.gov (United States)

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  2. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases.

    Science.gov (United States)

    Southwell, Amber L; Skotte, Niels H; Bennett, C Frank; Hayden, Michael R

    2012-11-01

    The rising median age of our population and the age-dependent risk of neurodegeneration translate to exponentially increasing numbers of afflicted individuals in the coming years. Although symptomatic treatments are available for some neurodegenerative diseases, most are only moderately efficacious and are often associated with significant side effects. The development of small molecule, disease-modifying drugs has been hindered by complex pathogenesis and a failure to clearly define the rate-limiting steps in disease progression. An alternative approach is to directly target the mutant gene product or a defined causative protein. Antisense oligonucleotides (ASOs) - with their diverse functionality, high target specificity, and relative ease of central nervous system (CNS) delivery - are uniquely positioned as potential therapies for neurological diseases. Here we review the development of ASOs for the treatment of inherited neurodegenerative diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Early noninvasive diagnosis of neurodegenerative diseases.

    Science.gov (United States)

    Danev, Stoyan I; St Stoyanov, Drozdstoy

    2010-01-01

    This paper reviews the contemporary trends in the pathobiochemistry of neurodegenerative disorders with respect to their early predictive diagnosis and possible treatment interventions. If we consider the current epidemiological data related to neurodegenerative disorders, medicine is going to face in the near future latent pandemic situations. The introduction puts an emphasis on the emerging importance of one major cluster of neurodegenerative disorders: diseases of the abnormal protein beta-conformation. The cluster includes such significant diseases as Alzheimer, Pick, Huntington, Parkinson disease, as well as the transmissible spongiform encephalopathies (Creuzfeldt-Jakob disease). The pathogenetic mechanisms in the determination of this group of disorders are explored with an emphasis on the impairment of post-synthetic chaperone correction. The central role of a number of such protein products is discussed. In particular the pathobiochemical mechanisms concerning the formation of beta-amyloid, alpha and beta synucleins, scrapie isoform of the prion protein are presented. A new diagnostic principle allowing the early and specific diagnosis of the conformation diseases protein via amplification techniques is presented. These methods compete in sensitivity with the PCR methods and shows promises for effective treatment. In conclusion, beta-pathies are considered a suitable example for the modern concept of cluster and prototype diagnosis in medicine and especially in clinical neurosciences.

  4. Exosomes in the Pathology of Neurodegenerative Diseases.

    Science.gov (United States)

    Howitt, Jason; Hill, Andrew F

    2016-12-23

    More than 30 years ago, two unexpected findings were discovered that challenged conventional thinking in biology. The first was the identification of a misfolded protein with transmissible properties associated with a group of neurodegenerative diseases known as transmissible spongiform encephalopathies. The second was the discovery of a new pathway used for the extracellular release of biomolecules, including extracellular vesicles called exosomes. Two decades later, the convergence of these pathways was shown when exosomes were found to play a significant role in both the transmission and propagation of protein aggregates in disease. Recent research has now revealed that the majority of proteins involved in neurodegenerative diseases are transported in exosomes, and that external stresses due to age-related impairment of protein quality control mechanisms can promote the transcellular flux of these proteins in exosomes. Significantly, exosomes provide an environment that can induce the conformational conversion of native proteins into aggregates that can be transmitted to otherwise aggregate-free cells in the brain. Here we review the current roles of exosomes in the pathology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The role of thiamine in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Irena Bubko

    2015-09-01

    Full Text Available Vitamin B1 (thiamine plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of “reassurance of the spirit”. Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson’s disease, Alzheimer’s disease, Wernicke’s encephalopathy or Wernicke-Korsakoff syndrome and Huntington’s disease.

  6. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  7. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2014-01-01

    Full Text Available An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review.

  8. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Science.gov (United States)

    Damiani, Ernesto; Bosco, Gerardo

    2014-01-01

    An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson's disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review. PMID:25101284

  9. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    Science.gov (United States)

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  10. Sleep disturbance in mental health problems and neurodegenerative disease

    National Research Council Canada - National Science Library

    Anderson, Kirstie N; Bradley, Andrew J

    2013-01-01

    ... and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative...

  11. Sublethal RNA Oxidation as a Mechanism for Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2008-05-01

    Full Text Available Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.

  12. Heat shock protein 90 in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rodina Anna

    2010-06-01

    Full Text Available Abstract Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1, the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.

  13. Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Eng-Tat Ang

    2010-07-01

    Full Text Available Currently, there is still no effective therapy for neurodegenerative diseases (NDD such as Alzheimer’s disease (AD and Parkinson’s disease (PD despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician’s and the scientist’s needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

  14. Neurodegenerative Diseases: Exercising Toward Neurogenesis and Neuroregeneration

    Science.gov (United States)

    Ang, Eng-Tat; Tai, Yee-Kit; Lo, Shun-Qiang; Seet, Raymond; Soong, Tuck-Wah

    2010-01-01

    Currently, there is still no effective therapy for neurodegenerative diseases (NDD) such as Alzheimer's disease (AD) and Parkinson's disease (PD) despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician's and the scientist's needs, and to highlight current research investigating exercise as a therapeutic or preventive measure. PMID:20725635

  15. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases.

    Science.gov (United States)

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2014-01-01

    Neurodegenerative diseases commonly induce irreversible destruction of central nervous system (CNS) neuronal networks, resulting in permanent functional impairments. Effective medications against neurodegenerative diseases are currently lacking. Ashwagandha (roots of Withania somnifera Dunal) is used in traditional Indian medicine (Ayurveda) for general debility, consumption, nervous exhaustion, insomnia, and loss of memory. In this review, we summarize various effects and mechanisms of Ashwagandha extracts and related compounds on in vitro and in vivo models of neurodegenerative diseases such as Alzheimer's disease and spinal cord injury.

  16. Quantitative Interaction Proteomics of Neurodegenerative Disease Proteins

    Directory of Open Access Journals (Sweden)

    Fabian Hosp

    2015-05-01

    Full Text Available Several proteins have been linked to neurodegenerative disorders (NDDs, but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP and Presenilin-1 (PSEN1 for Alzheimer’s disease (AD, Huntingtin (HTT for Huntington’s disease, Parkin (PARK2 for Parkinson’s disease, and Ataxin-1 (ATXN1 for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.

  17. Health benefits of methylxanthines in neurodegenerative diseases.

    Science.gov (United States)

    Oñatibia-Astibia, Ainhoa; Franco, Rafael; Martínez-Pinilla, Eva

    2017-06-01

    Methylxanthines (MTXs) are consumed by almost everybody in almost every area of the world. Caffeine, theophylline and theobromine are the most well-known members of this family of compounds; they are present, inter alia, in coffee, tea, cacao, yerba mate and cola drinks. MTXs are readily absorbed in the gastrointestinal tract and are able to penetrate into the central nervous system, where they exert significant psychostimulant actions, which are more evident in acute intake. Coffee has been paradigmatic, as its use was forbidden in many diseases, however, this negative view has radically changed; evidence shows that MTXs display health benefits in diseases involving cell death in the nervous system. This paper reviews data that appraise the preventive and even therapeutic potential of MTXs in a variety of neurodegenerative diseases. Future perspectives include the use of MTXs to advance the understanding the pathophysiology of, inter alia, Alzheimer's disease (AD) and Parkinson's disease (PD), and the use of the methylxanthine chemical moiety as a basis for the development of new and more efficacious drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Role of Copper in Neurodegenerative Disease

    Science.gov (United States)

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  19. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  20. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology.

    Science.gov (United States)

    Santiago, Jose A; Bottero, Virginie; Potashkin, Judith A

    2017-01-01

    Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases (HD). We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  1. Epigenetics and etiology of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Beata M. Gruber

    2011-08-01

    Full Text Available Determination of specific gene profile expression is essential for morphological and functional differentiation of cells in the human organism. The human genome consists of 25–30 thousands genes but only some of them are expressed in each cell. Epigenetic modifications such as DNA methylation, histone and chromatin modifications or non-coding RNA functions are also responsible for the unique gene expression patterns. It is suggested that transcriptional gene activation is related to hypomethylation and the transcriptionally non-active sequences are hypermethylated. Covalent histone modifications and DNA methylation are correlated and interacting. Chromatin modeling is regulated not only by specific enzymes but also by protein kinases or phosphatases and coactivators, such as CBP. Such interaction makes the “histone code” which with the chromatin proteins determines gene expression patterns as the response to external agents. Evidence of a major role for epigenetic modifications in neurological disease has come from three converging lines of enquiry: high conservation throughout evolution of the histone residues that are the target for epigenetic modifications; association between mutations in epigenetic components and multisystem disease syndrome in the nervous system; and broad efficacy of small-molecule epigenetic modulators, e.g. histone deacetylase inhibitors, in models of neurological diseases incurable up to now, such as Huntington’s disease, (HD, Parkinson’s disease (PD and Alzheimer’s disease (AD. This article is a survey of the literature concerning the characterization of gene expression patterns correlated with some neurodegenerative diseases. The processes of DNA hypomethylation and histone acetylation are emphasized. The histone deacetylases are indicated as the basis for design of potential drugs.

  2. Mitochondrial Iron-Sulfur Cluster Dysfunction In Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Grazia eIsaya

    2014-03-01

    Full Text Available Growing evidence supports a role for mitochondrial iron metabolism in the pathophysiology of neurodegenerative disorders such as Friedreich ataxia and Parkinson disease as well as in the motor and cognitive decline associated with the aging process. Iron-sulfur enzyme deficits and regional iron accumulation have been observed in each of these conditions. In spite of significant etiological, clinical and pathological differences that exist between Friedreich ataxia and Parkinson disease, it is possible that defects in mitochondrial iron-sulfur clusters biogenesis represent a common underlying mechanism leading to abnormal intracellular iron distribution with mitochondrial iron accumulation, OXPHOS deficits and oxidative stress in susceptible cells and specific regions of the nervous system. Moreover, a similar mechanism may contribute to the age-dependent iron accumulation that occurs in certain brain regions such as the globus pallidus and the substantia nigra. Targeting chelatable iron and reactive oxygen species appear as possible therapeutic options for Friedreich ataxia and Parkinson disease, and possibly other age-related neurodegenerative conditions. However, new technology to interrogate iron-sulfur cluster synthesis in humans is needed to (i assess how defects in this pathway contribute to the natural history of neurodegenerative disorders and (ii develop treatments to correct those defects early in the disease process, before they cause irreversible neuronal cell damage.

  3. Obstructive sleep apnea and neurodegenerative diseases: A bidirectional relation

    OpenAIRE

    Christianne Martins Corrêa da Silva Bahia; João Santos Pereira

    2015-01-01

    Sleep disorders are common during the clinical course of the main neurodegenerative diseases. Among these disorders, obstructive sleep apnea has been extensively studied in the last decade and recent knowledge regarding its relationship with the neurodegenerative process points a bidirectional relationship. Neurodegenerative diseases can lead to functional changes in the respiratory system that facilitate the emergence of apnea. On the other hand, obstructive sleep apnea itself can lead to ac...

  4. Obstructive sleep apnea and neurodegenerative diseases: A bidirectional relation

    Directory of Open Access Journals (Sweden)

    Christianne Martins Corrêa da Silva Bahia

    Full Text Available Sleep disorders are common during the clinical course of the main neurodegenerative diseases. Among these disorders, obstructive sleep apnea has been extensively studied in the last decade and recent knowledge regarding its relationship with the neurodegenerative process points a bidirectional relationship. Neurodegenerative diseases can lead to functional changes in the respiratory system that facilitate the emergence of apnea. On the other hand, obstructive sleep apnea itself can lead to acceleration of neuronal death due to intermittent hypoxia. Considering that obstructive sleep apnea is a potentially treatable condition, its early identification and intervention could have a positive impact on the management of patients with neurodegenerative diseases.

  5. Renin-angiotensin system gene expression and neurodegenerative diseases.

    Science.gov (United States)

    Goldstein, Benjamin; Speth, Robert C; Trivedi, Malav

    2016-07-01

    Single nucleotide polymorphisms and altered gene expression of components of the renin-angiotensin system (RAS) are associated with neurodegenerative diseases. Drugs that interact with the RAS have been shown to affect the course of neurodegenerative disease, suggesting that abnormalities in the RAS may contribute to neurodegenerative disease. A meta-analysis of genome-wide association studies and gene expression data for 14 RAS-related proteins was carried out for five neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, narcolepsy, amyotrophic lateral sclerosis and multiple sclerosis. No single nucleotide polymorphisms in any of the 14 RAS-related protein genes were significantly associated with the five neurodegenerative diseases investigated. There was an inverse association between expression of ATP6AP2, which encodes the (pro)renin receptor, and multiple sclerosis, Alzheimer's disease and Parkinson's disease. An association of AGTR, which encodes the AT1 angiotensin II receptor, and Parkinson's disease and Alzheimer's disease was also observed. To date, no single nucleotide polymorphisms in components of the RAS can be definitively linked to the neurodegenerative diseases evaluated in this study. However, altered gene expression of several components of the RAS is associated with several neurodegenerative diseases, which may indicate that the RAS contributes to the pathology of these diseases. © The Author(s) 2016.

  6. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  7. Capgras syndrome and its relationship to neurodegenerative disease.

    Science.gov (United States)

    Josephs, Keith A

    2007-12-01

    Capgras syndrome is characterized by a delusional belief that a person has been replaced by an imposter. It has been described in psychiatric and neurological (neurodegenerative and nonneurodegenerative) diseases. To determine whether the clinical and demographic features of subjects with Capgras syndrome differ when the syndrome is associated with neurodegenerative compared with nonneurodegenerative diseases, and whether features differ across different neurodegenerative diseases. Retrospective study. Tertiary care medical center. Patients Forty-seven subjects with Capgras syndrome. Thirty-eight of the subjects with Capgras syndrome (81%) had a neurodegenerative disease, most commonly Lewy body disease. Capgras syndrome occurred at a younger age of onset in those with a nonneurodegenerative disease (51 vs 72 years) (P Capgras syndrome and Lewy body disease, 100% had visual hallucinations compared with only one of those with Alzheimer disease (14%). Capgras syndrome is more commonly associated with neurodegenerative diseases, especially Lewy body disease, where visual hallucinations always coexist. In the absence of a neurodegenerative disease, the onset of Capgras syndrome occurs at a significantly younger age and can be associated with psychiatric disease, cerebrovascular events, and illicit drug use.

  8. Perspective Insights of Exosomes in Neurodegenerative Diseases: A Critical Appraisal

    Directory of Open Access Journals (Sweden)

    Arif Tasleem Jan

    2017-09-01

    Full Text Available Exosomes are small membranous entities of endocytic origin. Their production by a wide variety of cells in eukaryotes implicates their roles in the execution of essential processes, especially cellular communication. Exosomes are secreted under both physiological and pathophysiological conditions, and their actions on neighboring and distant cells lead to the modulations of cellular behaviors. They also assist in the delivery of disease causing entities, such as prions, α-syn, and tau, and thus, facilitate spread to non-effected regions and accelerate the progressions of neurodegenerative diseases. The characterization of exosomes, provides information on aberrant processes, and thus, exosome analysis has many clinical applications. Because they are associated with the transport of different cellular entities across the blood-brain barrier (BBB, exosomes might be useful for delivering drugs and other therapeutic molecules to brain. Herein, we review roles played by exosomes in different neurodegenerative diseases, and the possibilities of using them as diagnostic biomarkers of disease progression, drug delivery vehicles and in gene therapy.

  9. Perspective Insights of Exosomes in Neurodegenerative Diseases: A Critical Appraisal

    Science.gov (United States)

    Jan, Arif Tasleem; Malik, Mudasir A.; Rahman, Safikur; Yeo, Hye R.; Lee, Eun J.; Abdullah, Tasduq S.; Choi, Inho

    2017-01-01

    Exosomes are small membranous entities of endocytic origin. Their production by a wide variety of cells in eukaryotes implicates their roles in the execution of essential processes, especially cellular communication. Exosomes are secreted under both physiological and pathophysiological conditions, and their actions on neighboring and distant cells lead to the modulations of cellular behaviors. They also assist in the delivery of disease causing entities, such as prions, α-syn, and tau, and thus, facilitate spread to non-effected regions and accelerate the progressions of neurodegenerative diseases. The characterization of exosomes, provides information on aberrant processes, and thus, exosome analysis has many clinical applications. Because they are associated with the transport of different cellular entities across the blood-brain barrier (BBB), exosomes might be useful for delivering drugs and other therapeutic molecules to brain. Herein, we review roles played by exosomes in different neurodegenerative diseases, and the possibilities of using them as diagnostic biomarkers of disease progression, drug delivery vehicles and in gene therapy. PMID:29033828

  10. Transcranial Direct Current Stimulation in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Argye E. Hillis

    2014-04-01

    Full Text Available We review rationale, challenges, study designs, reported results, and future directions in the use of transcranial direct cranial stimulation (tDCS in neurodegenerative disease, focusing on treatment of spelling in primary progressive aphasia (PPA. Rationale Evidence from both animal studies and human studies indicates that anodal and cathodal tDCS over the brain result in a temporary change in membrane potentials, reducing the threshold for long-term potentiation of neurons in the affected area. This may allow unaffected brain regions to assume functions of diseased regions. Challenges Special challenges in treating individuals with progressive conditions include altered goals of treatment and the possibility that participants may accumulate new deficits over the course of the treatment program that interfere with their ability to understand, retain, or cooperate with aspects of the program. The most serious challenge – particularly for single case designs - is that there may be no stable baseline against which to measure change with treatment. Thus, it is essential to demonstrate that treatment results in a statistically significant change in the slope of decline or improvement. Therefore, demonstration of a significant difference between tDCS and control (sham requires either a large number of participants or a large effect size. Designs The choice of a treatment design reflects these limitations. Group studies with a randomized, double-blind, sham control trial design (without cross-over provide the greatest power to detect a difference between intervention and control conditions, with the fewest participants. A cross-over design, in which all participants (from 1 to many receive both active and sham conditions, in randomized order, requires a larger effect size for the active condition relative to the control condition (or little to no maintenance of treatment gains or carry-over effect to show significant differences between treatment

  11. Neurodegenerative diseases : Lessons from genome-wide screens in small model organisms

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Breitling, Rainer; Swertz, Morris A.; Nollen, Ellen A. A.

    2009-01-01

    Various age-related neurodegenerative diseases, including Parkinson's disease, polyglutamine expansion diseases and Alzheimer's disease, are associated with the accumulation of misfolded proteins in aggregates in the brain. How and why these proteins form aggregates and cause disease is still poorly

  12. Early Noninvasive Diagnosis of Neurodegenerative Diseases

    National Research Council Canada - National Science Library

    Danev, Stoyan I; St. Stoyanov, Drozdstoy

    2010-01-01

    ...: diseases of the abnormal protein beta-conformation. The cluster includes such significant diseases as Alzheimer, Pick, Huntington, Parkinson disease, as well as the transmissible spongiform encephalopathies...

  13. In silico studies in drug research against neurodegenerative diseases.

    Science.gov (United States)

    Makhouri, Farahnaz Rezaei; Ghasemi, Jahan B

    2017-08-22

    Neurodegenerative diseases such as Alzheimer's disease (AD), progressive neurodegenerative forms of Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis, spinal cerebellar ataxias, and spinal and bulbar muscular atrophy are described by slow and selective dysfunction and degeneration of neurons and axons in the central nervous system (CNS). Computer-aided or in silico design methods have matured into powerful tools for reducing the number of ligands that should be screened in experimental assays. In the present review, the authors provide a basic background about neurodegenerative diseases and in silico techniques in the drug research. Furthermore, they review the various in silico studies reported against various targets in neurodegenerative diseases, including homology modeling, molecular docking, virtual high-throughput screening, quantitative structure activity relationship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design, support vector machines, and machine learning approaches. Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting of multiple proteins (and therefore etiologies) involved in the development of a disease is recommended in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. NSAIDs and cardiovascular drugs in neurodegenerative and cerebrovascular diseases

    NARCIS (Netherlands)

    M.D.M. Haag (Mendel)

    2009-01-01

    textabstractNeurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and

  15. Gene Therapy-Based Modeling of Neurodegenerative Disorders: Huntington's Disease.

    Science.gov (United States)

    Young, Deborah

    2016-01-01

    Huntington's disease is a fatal neurodegenerative disease characterized by impairments in motor control, and cognitive and psychiatric disturbances. In this chapter, viral vector-mediated approaches used in modeling the key neuropathological features of the disease including the production of abnormal intracellular protein aggregates, neuronal dysfunction and degeneration and motor impairments in rodents are described.

  16. The role of extracellular vesicles in neurodegenerative diseases.

    Science.gov (United States)

    Quek, Camelia; Hill, Andrew F

    2017-02-19

    Extracellular vesicles, including exosomes, are small membranous vesicles released from many biotypes, contributing to the disease progression and spreading. These extracellular vesicles provide an important mode of cell-to-cell communication by delivering proteins, lipids and RNA to target cells. Exosomes are found associated with neurodegenerative diseases, which are characterised by progressive degeneration of neurons and often associated with misfolded protein. The common diseases include Parkinson's disease (PD), Alzheimer's diseases (AD), amyotrophic lateral sclerosis (ALS), and the prion diseases. Of all neurodegenerative diseases, prion diseases are classified as the distinctive group owing to its transmissible and infectious nature of misfolded prion protein. The infectious prion particles have been demonstrated to be present in exosomes to spread prion infectivity within cells. Similarly, misfolded proteins involved in other neurodegenerative diseases such as Amyloid-β and tau in AD, α-synuclein in PD, and superoxide dismutase 1 in ALS have been demonstrated to exploit exosomes for induced spreading of misfolded proteins in a prion-like mechanism. Furthermore, RNA molecules can be taken up by the recipient cells as cargo in exosomes. These RNAs can module the expression of the target genes by repressing or inhibiting protein translation. Here we review the role of exosomes in prion diseases and other common neurodegenerative diseases, and discuss the potential of these vesicles for disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Dolores Limongi

    2016-01-01

    Full Text Available Reactive oxygen species (ROS are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson’s disease (PD, Alzheimer’s disease (AD, and amyotrophic lateral sclerosis (ALS.

  18. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence.

    Science.gov (United States)

    Kolodkin, Alexey; Simeonidis, Evangelos; Balling, Rudi; Westerhoff, Hans V

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be required for therapies to become effective across mankind. On the other hand, diverse combinations of internal and external perturbation factors may cause a similar shift in network functioning. We offer this as an explanation for the multi-factorial nature of most diseases: they are "systems biology diseases," or "network diseases." Here we use neurodegenerative diseases, like Parkinson's disease (PD), as an example to show that due to the inherent complexity of these networks, it is difficult to understand multi-factorial diseases with simply our "naked brain." When describing interactions between biomolecules through mathematical equations and integrating those equations into a mathematical model, we try to reconstruct the emergent properties of the system in silico. The reconstruction of emergence from interactions between huge numbers of macromolecules is one of the aims of systems biology. Systems biology approaches enable us to break through the limitation of the human brain to perceive the extraordinarily large number of interactions, but this also means that we delegate the understanding of reality to the computer. We no longer recognize all those essences in the system's design crucial for important physiological behavior (the so-called "design principles" of the system). In this paper we review evidence that by using more abstract approaches and by experimenting in silico, one may still be able to discover and understand the design principles that govern behavioral

  19. Codon usage biases in Alzheimer's disease and other neurodegenerative diseases.

    Science.gov (United States)

    Yang, Jie; Zhu, Tong-Yang; Jiang, Zheng-Xin; Chen, Cheng; Wang, Yue-Lan; Zhang, Song; Jiang, Xiong-Fei; Wang, Ting-Ting; Wang, Lin; Xia, Wen-Hao; Li, Lei; Chen, Ji-Jun; Wang, Jia-Yue; Wang, Wei-Wei; Zheng, Wei-Juan

    2010-05-01

    Establishing codon usage biases are crucial for understanding the etiology of central nervous system neurodegenerative diseases (CNSNDD) especially Alzheimer's disease (AD) as well as genetic factors. G and C ending codons are strongly biased in the coding sequences of these proteins as a result of genomic GC composition constraints. On the other hand, codons that identified as translationally optimal in the major trend all end in C or G, suggesting translational selection should also be taken into consideration additional to compositional constraints. Furthermore, this investigation reveals that three common codons, CGC (Arg), AGC (Ser), and GGC (Gly), are also critical in affecting codon usage bias. They not only can offer an insight into the codon usage bias of AD and its mechanism, but also may help in the possible cures for these diseases.

  20. Stem Cells for the Treatment of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2010-09-01

    Full Text Available Neurodegenerative diseases are characterized by neurodegenerative changes or apoptosis of neurons involved in networks, leading to permanent paralysis and loss of sensation below the site of the injury. Cell replacement therapy has provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. In recent years, neurons and glial cells have successfully been generated from stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. We review here notable previously published experimental and preclinical studies involving stem cell-based cell for neurodegenerative diseases and discuss the future prospects for stem cell therapy of neurological disorders in the clinical setting. Steady and solid progress in stem cell research in both basic and preclinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.

  1. Eyelid Dysfunction in Neurodegenerative, Neurogenetic, and Neurometabolic Disease

    Directory of Open Access Journals (Sweden)

    Ali G. Hamedani

    2017-07-01

    Full Text Available Eye movement abnormalities are among the earliest clinical manifestations of inherited and acquired neurodegenerative diseases and play an integral role in their diagnosis. Eyelid movement is neuroanatomically linked to eye movement, and thus eyelid dysfunction can also be a distinguishing feature of neurodegenerative disease and complements eye movement abnormalities in helping us to understand their pathophysiology. In this review, we summarize the various eyelid abnormalities that can occur in neurodegenerative, neurogenetic, and neurometabolic diseases. We discuss eyelid disorders, such as ptosis, eyelid retraction, abnormal spontaneous and reflexive blinking, blepharospasm, and eyelid apraxia in the context of the neuroanatomic pathways that are affected. We also review the literature regarding the prevalence of eyelid abnormalities in different neurologic diseases as well as treatment strategies (Table 1.

  2. Investigation of the possible connection of rock and soil geochemistry to the occurrence of high rates of neurodegenerative diseases on Guam and a hypothesis for the cause of the diseases

    Science.gov (United States)

    Miller, William R.; Sanzolone, Richard F.

    2003-01-01

    High incidences of neurodegenerative diseases, mainly dementia, parkinsonism, and amyotrophic lateral sclerosis, occur on the island of Guam (Koerner, 1952; Kurland and Mulder, 1954). The occurrence and description of the diseases and a summary of the investigations can be found in Perl (1997). The diseases have been more prevalent along the southern coast, particularly the small villages of Umatac, Merizo, and Inarajan (Reed and Brody, 1975; Roman, 1996; and Perl, 1997) (fig. 1), and referred to as the southern villages in this report. Tertiary volcanic rocks underlie most of the southern part of the island, including these villages. The northern part of Guam, with lower incidences of the diseases, consists of carbonate rocks. Epidemiological studies beginning in the early 1950’s failed to show the cause to be genetic etiology (Plato and others, 1986; Zhang and others, 1990). In recent studies, the search for pathogenic mechanisms has shifted to environmental factors. Excesses or deficiencies of various elements from dietary sources including drinking water can have an effect on human health. These deficiencies or excesses can usually be attributed to the geochemical composition of the rocks and derived soils that underlie the area. An example is the high concentration of Se in soil associated with the occurrence of selenosis in adults (Mills, 1996). Yase (1972) suggested that the neurodegenerative diseases on Guam may be related to accumulation of trace elements such as manganese and aluminum, both of which may cause neurodegeneration. It has been suggested that a deficiency in calcium and magnesium in the soil and water along with readily available aluminum could be connected to the occurrence of the diseases (Gajdusek, 1982; Yanagihara and others, 1984; Garruto and others, 1989). Some of the studies investigated metal exposure, particularly aluminum and manganese, and deficiencies in calcium and magnesium (Garruto and others, 1984). Aluminum has been shown to

  3. Infectious Agents and Neurodegenerative Diseases: Exploring the Links.

    Science.gov (United States)

    Alam, Mohammad Zubair; Alam, Qamre; Kamal, Mohammad Amjad; Jiman-Fatani, Asif Ahmad; Azhar, Esam I; Khan, Mohammad Azhar; Haque, Absarul

    2017-01-01

    Recent studies have shown that bacterial and viral infections are risk factors for various neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Multiple Sclerosis (MS), Alzheimer's disease (AD), and Lyme disease (LD). However, it is still controversial how the infections play a role in neurological diseases progression. Infections in central nervous system may lead multiple damages in infected and neighboring cells. The infection leads to the activation of inflammatory processes and host immune responses, which acts as defense mechanism and also causes damage to the host neuronal functions and viability. Several bacterial and viral pathogens have been reported for neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in combination with other factors, like aging, metabolic diseases and the genetic makeup of the host. We will focus in this review on the possible link between neurodegeneration and infections particularly Chlamydophila pneumoniae, Borrelia burgdorferi, Mycoplasma etc. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases.

    LENUS (Irish Health Repository)

    Byrne, Susan

    2012-04-01

    A small proportion of cases seen in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS), Parkinson\\'s disease and Alzheimer disease are familial. These familial cases are usually clinically indistinguishable from sporadic cases. Identifying familial cases is important both in terms of clinical guidance for family members and for gene discovery.

  5. Memory in neurodegenerative disease: biological, cognitive, and clinical perspectives

    National Research Council Canada - National Science Library

    Tröster, Alexander I

    1998-01-01

    ... associated with Huntington's disease  .   .   21 3 Neuropathology and memory dysfunction in neurodegenerative disease...

  6. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    Directory of Open Access Journals (Sweden)

    Panchanan Maiti

    2014-01-01

    Full Text Available The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.

  7. Melatonin for Sleep Disorders in Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Trotti, Lynn Marie; Karroum, Elias G

    2016-07-01

    In patients with neurodegenerative diseases, sleep disorders are common; they impair the quality of life for patients and caregivers and are associated with poorer clinical outcomes. Melatonin has circadian, hypnotic, and free radical-scavenging effects, and preclinical data suggest benefits of melatonin on neurodegeneration. However, randomized, controlled trials of melatonin in patients with neurodegenerative diseases have not shown strong effects. Trials in Alzheimer's patients demonstrate a lack of benefit on sleep quantity. Subjective measures of sleep quality are mixed, with possible symptomatic improvements seen only on some measures or at some time points. Benefits on cognition have not been observed across several studies. In Parkinson's patients, there may be minimal benefit on objective sleep measures, but a suggestion of subjective benefit in few, small studies. Effective treatments for the sleep disorders associated with neurodegenerative diseases are urgently needed, but current data are insufficient to establish melatonin as such a treatment.

  8. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    Directory of Open Access Journals (Sweden)

    Alexey eKolodkin

    2012-07-01

    Full Text Available Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction is also an emergent property, emerging from a perturbation of the network. On one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be required for therapies to become effective across mankind. On the other hand, diverse combinations of internal and external perturbation factors may cause a similar shift in network functioning. We offer this as an explanation for the multi-factorial nature of most diseases: they are ‘systems biology diseases’, or ‘network diseases’. Here we focus on neurodegenerative diseases, like Parkinson’s disease, as an example. Because of the inherent complexity of these networks, it is difficult to understand multi-factorial diseases using simply our ‘naked brain’. When describing interactions between biomolecules through mathematical equations and integrating those equations into a mathematical model, we try to reconstruct the emergent properties of the system in silico. The reconstruction of emergence from interactions between huge numbers of macromolecules is one of the aims of systems biology. Systems biology approaches enable us to break through the limitation of the human brain to perceive the extraordinarily large number of interactions, but this also means that we delegate the understanding of reality to the computer. We no longer recognize all those essences in the system’s design crucial for important physiological behavior (the so-called ‘design principles’ of the system. In this paper we review evidence that by using more abstract approaches and by experimenting in silico, one may still be able to discover and understand the design

  9. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases.

    Science.gov (United States)

    Moretti, Morgana; Fraga, Daiane Bittencourt; Rodrigues, Ana Lúcia S

    2017-12-01

    In this review, we summarize the involvement of ascorbic acid in neurodegenerative diseases by presenting available evidence on the behavioral and biochemical effects of this compound in animal models of neurodegeneration as well as the use of ascorbic acid as a therapeutic approach to alleviate neurodegenerative progression in clinical studies. Ascorbate, a reduced form of vitamin C, has gained interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. In the brain, ascorbate exerts neuromodulatory functions and scavenges reactive oxygen species generated during synaptic activity and neuronal metabolism. These are important properties as redox imbalance and abnormal protein aggregation constitute central mechanisms implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, multiple sclerosis, and amyotrophic lateral sclerosis. Indeed, several studies have indicated an association between low serum ascorbate concentrations and neurodegeneration. Moreover, ascorbic acid is a suitable candidate for supplying either antioxidant defense or modulation of neuronal and astrocytic metabolism under neurodegenerative conditions. Ascorbic acid acts mainly by decreasing oxidative stress and reducing the formation of protein aggregates, which may contribute to the reduction of cognitive and/or motor impairments observed in neurodegenerative processes. Although several studies support a possible role of ascorbic acid administration against neurodegeneration, more researches are essential to substantiate the existing results and accelerate the knowledge in this field. © 2017 John Wiley & Sons Ltd.

  10. Chronic sleep disturbance and neural injury: links to neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Abbott SM

    2016-01-01

    Full Text Available Sabra M Abbott,1 Aleksandar Videnovic21Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA; 2Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Abstract: Sleep–wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep–wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, there is also emerging evidence that sleep disturbance itself may contribute to the development and facilitate the progression of several of these disorders. Due to its impact both as an early symptom and as a potential factor contributing to ongoing neurodegeneration, the sleep–wake cycle is an ideal target for further study for potential interventions not only to lessen the burden of these diseases but also to slow their progression. In this review, we will highlight the sleep phenotypes associated with some of the major neurodegenerative disorders, focusing on the circadian disruption associated with Alzheimer’s disease, the rapid eye movement behavior disorder and sleep fragmentation associated with Parkinson’s disease, and the insomnia and circadian dysregulation associated with Huntington’s disease. Keywords: sleep, neurodegeneration, Alzheimer's disease, Parkinson's disease, Huntington's disease

  11. Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Bert A. ‘t Hart

    2014-01-01

    Full Text Available Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment with selective inhibitors of innate immune activity. Here we review the therapeutic potential of apocynin, an essentially nontoxic phenolic compound isolated from the medicinal plant Jatropha multifida. Apocynin is a selective inhibitor of the phagocyte NADPH oxidase Nox2 that can be applied orally and is remarkably effective at low dose.

  12. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Gyun Jee Song

    2017-05-01

    Full Text Available Microglia are the resident innate immune cells of the central nervous system that mediate brain homeostasis maintenance. Microglia-mediated neuroinflammation is a hallmark shared by various neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Numerous studies have shown microglial activation phenotypes to be heterogeneous; however, these microglial phenotypes can largely be categorized as being either M1 or M2 type. Although the specific classification of M1 and M2 functionally polarized microglia remains a topic for debate, the use of functional modulators of microglial phenotypes as potential therapeutic approaches for the treatment of neurodegenerative diseases has garnered considerable attention. This review discusses M1 and M2 microglial phenotypes and their relevance in neurodegenerative disease models, as described in recent literature. The modulation of microglial polarization toward the M2 phenotype may lead to development of future therapeutic and preventive strategies for neuroinflammatory and neurodegenerative diseases. Thus, we focus on recent studies of microglial polarization modulators, with a particular emphasis on the small-molecule compounds and their intracellular target proteins.

  13. Epigenetic programming of neurodegenerative diseases by an adverse environment.

    Science.gov (United States)

    Babenko, Olena; Kovalchuk, Igor; Metz, Gerlinde A

    2012-03-20

    Experience and environment can critically influence the risk and progression of neurodegenerative disorders. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications, readily respond to experience and environmental factors. Here we propose that epigenetic regulation of gene expression and environmental modulation thereof may play a key role in the onset and course of common neurological conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. For example, epigenetic mechanisms may mediate long-term responses to adverse experience, such as stress, to affect disease susceptibility and the course of neurodegenerative events. This review introduces the epigenetic components and their possible role in mediating neuropathological processes in response to stress. We argue that epigenetic modifications will affect neurodegenerative events through altered gene function. The study of epigenetic states in neurodegenerative diseases presents an opportunity to gain new insights into risk factors and pathogenic mechanisms. Moreover, research into epigenetic regulation of disease may revolutionize health care by opening new avenues of personalized, preventive and curative medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cell ageing: a flourishing field for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Dora Brites

    2015-06-01

    Full Text Available Cellular senescence is viewed as an irreversible cell-cycle arrest mechanism involving a complexity of biological progressive processes and the acquisition of diverse cellular phenotypes. Several cell-intrinsic and extrinsic causes (stresses may lead to diverse cellular signaling cascades that include oxidative stress, mitochondrial dysfunction, DNA damage, excessive accumulation of misfolded proteins, impaired microRNA processing and inflammation. Here we review recent advances in the causes and consequences of brain cell ageing, including the senescence of endothelial cells at the central nervous system barriers, as well as of neurons and glial cells. We address what makes ageing an important risk factor for neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and cerebrovascular disease. In particular, we highlight the importance of defects in mitochondrial dynamics, in the cathepsin activity imbalance, in cell-cell communication, in the accumulation of misfolded and unfolded proteins and in the microRNA profiling as having potential impact on cellular ageing processes. Another important aspect is that the absence of specific senescence biomarkers has hampered the characterization of senescent cells in ageing and age-associated diseases. In accordance, the senescence-associated secretory phenotype (SASP or secretome was shown to vary in distinct cell types and upon different stressors, and SASP heterogeneity is believed to create subsets of senenescent cells. In addition to secreted proteins, we then place extracellular vesicles (exosomes and ectosomes as important mediators of intercellular communication with pathophysiological roles in disease spreading, and as emerging targets for therapeutic intervention. We also discuss the application of engineered extracellular vesicles as vehicles for drug delivery. Finally, we summarize current knowledge on methods to rejuvenate senescent cells

  15. Epidemiology of mild traumatic brain injury and neurodegenerative disease

    OpenAIRE

    Gardner, Raquel C.; Yaffe, Kristine

    2015-01-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repet...

  16. Sleep disturbance in mental health problems and neurodegenerative disease.

    Science.gov (United States)

    Anderson, Kirstie N; Bradley, Andrew J

    2013-01-01

    Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour) processes and is vital for normal brain function. This review will outline the normal sleep-wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed.

  17. Chronic sleep disturbance and neural injury: links to neurodegenerative disease.

    Science.gov (United States)

    Abbott, Sabra M; Videnovic, Aleksandar

    2016-01-01

    Sleep-wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep-wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, there is also emerging evidence that sleep disturbance itself may contribute to the development and facilitate the progression of several of these disorders. Due to its impact both as an early symptom and as a potential factor contributing to ongoing neurodegeneration, the sleep-wake cycle is an ideal target for further study for potential interventions not only to lessen the burden of these diseases but also to slow their progression. In this review, we will highlight the sleep phenotypes associated with some of the major neurodegenerative disorders, focusing on the circadian disruption associated with Alzheimer's disease, the rapid eye movement behavior disorder and sleep fragmentation associated with Parkinson's disease, and the insomnia and circadian dysregulation associated with Huntington's disease.

  18. Rescue strategies in Drosophila models of neurodegenerative diseases

    NARCIS (Netherlands)

    Baratashvili, Madina Baratovna

    2016-01-01

    In the past decades advances in medicine have led to an extended life span of the general population, which, as a negative consequence, increased the occurrence of age-related neurodegenerative diseases. The necessity to improve the quality of life together with the urge to decrease the economic

  19. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2015-02-01

    Full Text Available The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS´s regulation and neurological disorders are mediated via modulation of chromatin structure.Epigenetics, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA, nicotinamide adenine dinucleotide (NAD+ and beta hydroxybutyrate (β-HB, regulates some of these epigenetic modifications, linking in a precise way environment with gene expression.This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of

  20. Sleep disturbance in mental health problems and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anderson KN

    2013-05-01

    Full Text Available Kirstie N Anderson1 Andrew J Bradley2,3 1Department of Neurology, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK; 2Eli Lilly and Company Limited, Lilly House, Basingstoke, UK; 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK Abstract: Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. Keywords: sleep, mental health, neurodegenerative disorders, cognition

  1. Circadian clocks and neurodegenerative diseases: time to aggregate?

    Science.gov (United States)

    Hastings, Michael H; Goedert, Michel

    2013-10-01

    The major neurodegenerative diseases are characterised by a disabling loss of the daily pattern of sleep and wakefulness, which may be reflective of a compromise to the underlying circadian clock that times the sleep cycle. At a molecular level, the canonical property of neurodegenerative diseases is aberrant aggregation of otherwise soluble neuronal proteins. They can thus be viewed as disturbances of proteostasis, raising the question whether the two features - altered daily rhythms and molecular aggregation - are related. Recent discoveries have highlighted the fundamental contribution of circadian clocks to the correct ordering of daily cellular metabolic cycles, imposing on peripheral organs such as the liver a strict programme that alternates between anabolic and catabolic states. The discovery that circadian mechanisms are active in local brain regions suggests that they may impinge upon physiological and pathological elements that influence pro-neurodegenerative aggregation. This review explores how introducing the dimension of circadian time and the circadian clock might refine the analysis of aberrant aggregation, thus expanding our perspective on the cell biology common to neurodegenerative diseases. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Predictive gene testing for Huntington disease and other neurodegenerative disorders.

    Science.gov (United States)

    Wedderburn, S; Panegyres, P K; Andrew, S; Goldblatt, J; Liebeck, T; McGrath, F; Wiltshire, M; Pestell, C; Lee, J; Beilby, J

    2013-12-01

    Controversies exist around predictive testing (PT) programmes in neurodegenerative disorders. This study sets out to answer the following questions relating to Huntington disease (HD) and other neurodegenerative disorders: differences between these patients in their PT journeys, why and when individuals withdraw from PT, and decision-making processes regarding reproductive genetic testing. A case series analysis of patients having PT from the multidisciplinary Western Australian centre for PT over the past 20 years was performed using internationally recognised guidelines for predictive gene testing in neurodegenerative disorders. Of 740 at-risk patients, 518 applied for PT: 466 at risk of HD, 52 at risk of other neurodegenerative disorders - spinocerebellar ataxias, hereditary prion disease and familial Alzheimer disease. Thirteen percent withdrew from PT - 80.32% of withdrawals occurred during counselling stages. Major withdrawal reasons related to timing in the patients' lives or unknown as the patient did not disclose the reason. Thirty-eight HD individuals had reproductive genetic testing: 34 initiated prenatal testing (of which eight withdrew from the process) and four initiated pre-implantation genetic diagnosis. There was no recorded or other evidence of major psychological reactions or suicides during PT. People withdrew from PT in relation to life stages and reasons that are unknown. Our findings emphasise the importance of: (i) adherence to internationally recommended guidelines for PT; (ii) the role of the multidisciplinary team in risk minimisation; and (iii) patient selection. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  3. Modifying progression of aging and reducing the risk of neurodegenerative diseases by probiotics and synbiotics.

    Science.gov (United States)

    Lye, Huey Shi; Lee, Yee Teng; Ooi, Shao Yin; Teh, Lai Kuan; Lim, Lay Ngor; Wei, Loo Keat

    2018-03-01

    Aging, which affects most of the multi-cellular organisms, is due to a potentially complex set of mechanisms that collectively cause a time-dependent decline of physiological functions. Aging restrains longevity and leads to neurodegenerative diseases including dementia, Alzheimer's disease and lacunar stroke. Human microbiota is now considered to have a strong impact on the progression of aging. The impact of aging and the risk of neurodegenerative diseases can be reduced by using probiotics, or preferably by combining probiotics and prebiotics, also known as synbiotics, that can drastically modify the composition of gut microbiome.

  4. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis.

    Science.gov (United States)

    Westfall, Susan; Lomis, Nikita; Kahouli, Imen; Dia, Si Yuan; Singh, Surya Pratap; Prakash, Satya

    2017-10-01

    The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.

  5. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    Directory of Open Access Journals (Sweden)

    Godoy, Maria Dantas Costa Lima

    2015-01-01

    Full Text Available Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia.

  6. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases

    OpenAIRE

    Rachel E. Lackie; Rachel E. Lackie; Andrzej Maciejewski; Andrzej Maciejewski; Valeriy G. Ostapchenko; Jose Marques-Lopes; Wing-Yiu Choy; Martin L. Duennwald; Vania F. Prado; Vania F. Prado; Vania F. Prado; Vania F. Prado; Marco A. M. Prado; Marco A. M. Prado; Marco A. M. Prado

    2017-01-01

    The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degrada...

  7. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    Science.gov (United States)

    Pastore, Annalisa

    2012-06-01

    , about 15 years after the original reports, it is clear that amyloids are special structures that occur in nature under several different guises, some good, some evil [3]. The number of diseases associated with misfolding and fibrillogenesis has steadily increased. Examples of fairly common pathologies associated with fibre formation include Alzheimer's disease (currently one of the major threats for human health in our increasingly aging world), Parkinson's disease and several rare, but not less severe, pathologies. On the other hand, it is also clear that amyloid formation is a convenient mechanism for storing peptides and/or proteins in a compact and resistant way. The number of organisms/tissues in which amyloid deposits are found is thus increasing. It is also not too far-fetched to expect that the mechanical properties of amyloids could be used in biotechnology to design new materials. Because of the importance of this topic in so many scientific fields, we have dedicated this special issue of Journal of Physics: Condensed Matter to the topic of protein aggregation and disease. In the following pages we have collected two reviews and five articles that explore new and interesting developments in the field. References [1] Olby R 1994 The Path of the Double Helix: The Discovery of DNA (New York: Dover) [2] Dobson C M 2004 Principles of protein folding, misfolding and aggregation Semin. Cell Dev. Biol. 15 3-16 [3] Hammer N D, Wang X, McGuffie B A, Chapman M R 2008 Amyloids: friend or foe? J. Alzheimers Dis. 13 407-19 Physics and biology of neurodegenerative diseases contents Protein aggregation and misfolding: good or evil?Annalisa Pastore and Pierandrea Temussi Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic toolsM Di Carlo, D Giacomazza and P L San Biagio Entrapment of Aβ1-40 peptide in unstructured aggregatesC Corsale, R Carrotta, M R Mangione, S Vilasi, A Provenzano, G Cavallaro, D Bulone and P L San Biagio Elemental micro

  8. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Marina de Tommaso

    2016-01-01

    Full Text Available Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer’s disease (AD and other dementias, Parkinson’s disease (PD and PD related disorders, motor neuron diseases (MND, Huntington’s disease (HD, spinocerebellar ataxia (SCA, and spinal muscular atrophy (SMA, is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed.

  9. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease.

    Science.gov (United States)

    Wulff, Katharina; Gatti, Silvia; Wettstein, Joseph G; Foster, Russell G

    2010-08-01

    Sleep and circadian rhythm disruption are frequently observed in patients with psychiatric disorders and neurodegenerative disease. The abnormal sleep that is experienced by these patients is largely assumed to be the product of medication or some other influence that is not well defined. However, normal brain function and the generation of sleep are linked by common neurotransmitter systems and regulatory pathways. Disruption of sleep alters sleep-wake timing, destabilizes physiology and promotes a range of pathologies (from cognitive to metabolic defects) that are rarely considered to be associated with abnormal sleep. We propose that brain disorders and abnormal sleep have a common mechanistic origin and that many co-morbid pathologies that are found in brain disease arise from a destabilization of sleep mechanisms. The stabilization of sleep may be a means by which to reduce the symptoms of--and permit early intervention of--psychiatric and neurodegenerative disease.

  10. Searching for MIND: MicroRNAs in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Christian Barbato

    2009-01-01

    Full Text Available In few years our understanding of microRNA (miRNA biogenesis, molecular mechanisms by which miRNAs regulate gene expression, and the functional roles of miRNAs has been expanded. Interestingly, numerous miRNAs are expressed in a spatially and temporally controlled manner in the nervous system, suggesting that their posttrascriptional regulation may be particularly relevant in neural development and function. MiRNA studies in neurobiology showed their involvement in synaptic plasticity and brain diseases. In this review ,correlations between miRNA-mediated gene silencing and Alzheimer's, Parkinson's, and other neurodegenerative diseases will be discussed. Molecular and cellular neurobiological studies of the miRNAs in neurodegeneration represent the exploration of a new Frontier of miRNAs biology and the potential development of new diagnostic tests and genetic therapies for neurodegenerative diseases.

  11. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  12. Protein Modification by Dicarbonyl Molecular Species in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Wesley M. Williams

    2011-01-01

    Full Text Available Neurodegeneration results from abnormalities in cerebral metabolism and energy balance within neurons, astrocytes, microglia, or microvascular endothelial cells of the blood-brain barrier. In Alzheimer's disease, -amyloid is considered the primary contributor to neuropathology and neurodegeneration. It now is believed that certain systemic diseases, such as diabetes mellitus, can contribute to neurodegeneration through the effects of chronic hyperglycemia/insulin resistance resulting in protein glycation, oxidative stress and inflammation within susceptible brain regions. Here, we present an overview of research focusing on the role of protein glycation, oxidative stress, and inflammation in the neurodegenerative process. Of special interest in this paper is the effect of methylglyoxal (MGO, a cytotoxic byproduct of glucose metabolism, elevated in neurodegenerative disease, and diabetes mellitus, on cerebral protein function and oxidative stress. How MGO interacts with amino acid residues within -amyloid, and small peptides within the brain, is also discussed in terms of the affect on protein function.

  13. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  14. Glycation, Glycolysis, and Neurodegenerative Diseases: Is There Any Connection?

    Science.gov (United States)

    Muronetz, V I; Melnikova, A K; Seferbekova, Z N; Barinova, K V; Schmalhausen, E V

    2017-08-01

    This review considers the interrelation between different types of protein glycation, glycolysis, and the development of amyloid neurodegenerative diseases. The primary focus is on the role of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase in changing the concentration of carbonyl compounds - first and foremost, glyceraldehyde-3-phosphate and methylglyoxal. It has been suggested that various modifications of the enzyme - from the oxidation of the sulfhydryl groups of the active site to glycation with sugars - can lead to its inactivation, which causes a direct increase in glyceraldehyde-3-phosphate concentration and an indirect increase in the content of other aldehydes. This "primary inactivation" of glyceraldehyde-3-phosphate dehydrogenase promotes its glycation with aldehydes, including its own substrate, and a further irreversible decrease in its activity. Such a cycle can lead to numerous consequences - from the induction of apoptosis, which is activated by modified forms of the enzyme, to glycation of amyloidogenic proteins by glycolytic aldehydes. Of particular importance during the inhibition of glyceraldehyde-3-phosphate dehydrogenase is an increase in the content of the glycating compound methylglyoxal, which is much more active than reducing sugars (glucose, fructose, and others). In addition, methylglyoxal is formed by two pathways - in the cascade of reactions during glycation and from glycolytic aldehydes. The ability of methylglyoxal to glycate proteins makes it the main participant in this protein modification. We consider the effect of glycation on the pathological transformation of amyloidogenic proteins and peptides - β-amyloid peptide, α-synuclein, and prions. Our primary focus is on the glycation of monomeric forms of these proteins with methylglyoxal, although most works are dedicated to the analysis of the presence of "advanced glycation end products" in the already formed aggregates and fibrils of amyloid proteins. In our

  15. Role of Redox Signaling in Neuroinflammation and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hsi-Lung Hsieh

    2013-01-01

    Full Text Available Reactive oxygen species (ROS, a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS have been detected in patients with neurodegenerative diseases such as Alzheimer’s disease (AD. These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs, cytosolic phospholipase A2 (cPLA2, cyclooxygenase-2 (COX-2, and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases.

  16. The transition metals copper and iron in neurodegenerative diseases.

    Science.gov (United States)

    Rivera-Mancía, Susana; Pérez-Neri, Iván; Ríos, Camilo; Tristán-López, Luis; Rivera-Espinosa, Liliana; Montes, Sergio

    2010-07-30

    Neurodegenerative diseases constitute a worldwide health problem. Metals like iron and copper are essential for life, but they are also involved in several neurodegenerative mechanisms such as protein aggregation, free radical generation and oxidative stress. The role of Fe and Cu, their pathogenic mechanisms and possible therapeutic relevance are discussed regarding four of the most common neurodegenerative diseases, Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. Metal-mediated oxidation by Fenton chemistry is a common feature for all those disorders and takes part of a self-amplifying damaging mechanism, leading to neurodegeneration. The interaction between metals and proteins in the nervous system seems to be a crucial factor for the development or absence of neurodegeneration. The present review also deals with the therapeutic strategies tested, mainly using metal chelating drugs. Metal accumulation within the nervous system observed in those diseases could be the result of compensatory mechanisms to improve metal availability for physiological processes. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Sleep-wake changes and cognition in neurodegenerative disease.

    Science.gov (United States)

    Naismith, Sharon L; Lewis, Simon J G; Rogers, Naomi L

    2011-01-01

    With the increasing aging population, neurodegenerative disorders will become more common in clinical practice. These disorders involve multiple pathophysiological mechanisms that differentially affect cognition, mood, and physical functions. Possibly due to the involvement of common underlying neurobiological circuits, sleep and/or circadian (sleep-wake) changes are also common in this disease group. Of significance, sleep-wake changes are often a prodromal feature and are predictive of cognitive decline, psychiatric symptoms, quality of life, need for institutional care, and caregiver burden. Unfortunately, in neurodegenerative disease, few studies have included detailed polysomnography or neuropsychological assessments although some data indicate that sleep and neurocognitive features are related. Further studies are also required to address the effects of pharmacological and nonpharmacological treatments on cognitive functioning. Such research will hopefully lead to targeted early intervention approaches for cognitive decline in older people. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  19. Widespread Aggregation and Neurodegenerative Diseases Are Associated with Supersaturated Proteins

    Directory of Open Access Journals (Sweden)

    Prajwal Ciryam

    2013-11-01

    Full Text Available The maintenance of protein solubility is a fundamental aspect of cellular homeostasis because protein aggregation is associated with a wide variety of human diseases. Numerous proteins unrelated in sequence and structure, however, can misfold and aggregate, and widespread aggregation can occur in living systems under stress or aging. A crucial question in this context is why only certain proteins appear to aggregate readily in vivo, whereas others do not. We identify here the proteins most vulnerable to aggregation as those whose cellular concentrations are high relative to their solubilities. We find that these supersaturated proteins represent a metastable subproteome involved in pathological aggregation during stress and aging and are overrepresented in biochemical processes associated with neurodegenerative disorders. Consequently, such cellular processes become dysfunctional when the ability to keep intrinsically supersaturated proteins soluble is compromised. Thus, the simultaneous analysis of abundance and solubility can rationalize the diverse cellular pathologies linked to neurodegenerative diseases and aging.

  20. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis.

    Science.gov (United States)

    Jayaraj, Richard L; Rodriguez, Eric A; Wang, Yi; Block, Michelle L

    2017-06-01

    Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.

  1. Pathophysiology of language, speech and emotions in neurodegenerative disease.

    Science.gov (United States)

    Graff-Radford, Jonathan; Jones, David T; Graff-Radford, Neill R

    2014-01-01

    Studying neurodegenerative diseases has greatly expanded our knowledge of language, speech and emotion as these diseases can affect areas not typically seen with stroke or tumor. Newer imaging techniques such as voxel based morphometry), fluorodeoxyglucose (F18) positron emission tomography and functional magnetic resonance imaging have allowed localization of these deficits and a greater understanding of the language network targeted by these progressive neurodegenerative illnesses. This review illustrates these important points by describing five syndromes, using clinical cases and then noting the anatomy, typical pathology, and proposed pathophysiology. The syndromes are Progressive Nonfluent Aphasia, Semantic Dementia, Logopenic Aphasia, Primary Progressive Apraxia of Speech and Dysprosody of Speech. Clinicians recognizing these syndromes using the associated clinico-anatomic patterns will lead to more accurate diagnosis and improved patient counseling and management. Further, patients may be included in appropriate clinical trials when their doctors are aware of the most likely pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Neurodegenerative diseases and widespread aggregation are associated with supersaturated proteins

    Science.gov (United States)

    Ciryam, Prajwal; Tartaglia, Gian Gaetano; Morimoto, Richard I.; Dobson, Christopher M.; Vendruscolo, Michele

    2013-01-01

    Summary The maintenance of protein solubility is a fundamental aspect of protein homeostasis, as aggregation is associated with cytotoxicity and a variety of human diseases. Numerous proteins unrelated in sequence and structure, however, can misfold and aggregate, and widespread aggregation can occur in living systems under stress or ageing. A crucial question in this context is why only certain proteins aggregate in vivo while others do not. We identify here the proteins most vulnerable to aggregation as those whose cellular concentrations are high relative to their solubilities. These supersaturated proteins represent a metastable sub-proteome involved in pathological aggregation during stress and ageing, and are overrepresented in biochemical processes associated with neurodegenerative disorders. Consequently, such cellular processes become dysfunctional when the ability to keep intrinsically supersaturated proteins soluble is compromised. Thus, the simultaneous analysis of abundance and solubility can rationalize the diverse cellular pathologies linked to neurodegenerative diseases and aging. PMID:24183671

  3. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?

    NARCIS (Netherlands)

    de Vries, H.E.; Witte, M.; Hondius, D.; Rozemuller, A.J.M.; Drukarch, B.; Hoozemans, J.J.M.; van Horssen, J.

    2008-01-01

    Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and

  4. Reliability of measuring regional callosal atrophy in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jeroen Van Schependom, MSc Eng, PhD

    2016-01-01

    In summary, we have constructed an algorithm that reliably detects the CC in 3D T1 images in a fully automated way in healthy controls and different neurodegenerative diseases. Although the CC area and the circularity are the most reliable features (ICC > 0.97; the reliability of the thickness profile (ICC > 0.90; excluding the tip is sufficient to warrant its inclusion in future clinical studies.

  5. Myeloid dendritic cells are potential players in human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paola eBossù

    2015-12-01

    Full Text Available Alzheimer’s (AD and Parkinson’s (PD diseases are devastating neurodegenerative disturbances wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs are key immune orchestrators and players of brain immune surveillance: we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers and improve therapeutic approaches for neurodegenerative diseases.

  6. Stem cell treatment for age-related neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Nurković J.

    2015-01-01

    Full Text Available The belief in the inability of neurogenesis, that is the inability to create new neurons after embryonic and early postnatal development of the central nervous system, was rejected in the mid-nineties, when the existence of neurogenesis in restricted areas of CNS adult mammals, including humans, was discovered.Transplantation of stem cells or their derivatives into respective tissues or organs is considered as one of the most promising remedies for many incurable diseases.In this review, we summarized current knowledge and present and future perspectives andchallenges regarding stem cells treatment for Parkinson's and Alzheimer's disease, as the most common age-related neurodegenerative diseases.

  7. Hormone Replacement Therapy and Risk for Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Richelin V. Dye

    2012-01-01

    Full Text Available Over the past two decades, there has been a significant amount of research investigating the risks and benefits of hormone replacement therapy (HRT with regards to neurodegenerative disease. Here, we review basic science studies, randomized clinical trials, and epidemiological studies, and discuss the putative neuroprotective effects of HRT in the context of Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and HIV-associated neurocognitive disorder. Findings to date suggest a reduced risk of Alzheimer’s disease and improved cognitive functioning of postmenopausal women who use 17β-estradiol. With regards to Parkinson’s disease, there is consistent evidence from basic science studies for a neuroprotective effect of 17β-estradiol; however, results of clinical and epidemiological studies are inconclusive at this time, and there is a paucity of research examining the association between HRT and Parkinson’s-related neurocognitive impairment. Even less understood are the effects of HRT on risk for frontotemporal dementia and HIV-associated neurocognitive disorder. Limits to the existing research are discussed, along with proposed future directions for the investigation of HRT and neurodegenerative diseases.

  8. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... some of the phenotype can be observed in-vitro, but these phenotypes, when compared to the patient, correlate extremely well. Many studies have found novel molecular mechanisms involved in the disease and therefore elucidate new potential targets for reversing the phenotype. Future research...

  9. Evidence-based therapy for sleep disorders in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    LIU Ling

    2013-08-01

    Full Text Available Objective To evaluate the effectiveness of the treatments for sleep disorders in neurodegenerative diseases so as to provide the best therapeutic regimens for the evidence-based treatment. Methods Search PubMed, MEDLINE, Cochrane Library, Wanfang Data and China National Knowledge Infrastructure (CNKI databases with "sleep disorder or sleep disturbance", "neurodegenerative diseases", "Parkinson's disease or PD", "Alzheimer's disease or AD", "multiple system atrophy or MSA" as retrieval words. The quality of the articles were evaluated with Jadad Scale. Results A total of 35 articles, including 2 systematic reviews, 5 randomized controlled trials, 13 clinical controlled trials, 13 case series and 2 epidemiological investigation studies were included for evaluation, 13 of which were high grade and 22 were low grade articles. Clinical evidences showed that: 1 advice on sleep hygiene, careful use of dopaminergic drugs and hypnotic sedative agents should be considered for PD. Bright light therapy (BLT may improve circadian rhythm sleep disorders and clonazepam may be effective for rapid eye movement sleep behavior disorder (RBD. However, to date, very few controlled studies are available to make a recommendation for the management of sleep disorders in PD; 2 treatments for sleep disorders in AD include drug therapy (e.g. melatonin, acetylcholinesterase inhibitors, antipsychotic drugs, antidepressants and non-drug therapy (e.g. BLT, behavior therapy, but very limited evidence shows the effectiveness of these treatments; 3 the first line treatment for sleep-related breathing disorder in MSA is nasal continuous positive airway pressure (nCPAP, and clonazepam is effective for RBD in MSA; 4 there is rare evidence related to the treatment of sleep disorders in dementia with Lewy body (DLB and amyotrophic lateral sclerosis (ALS. Conclusion Evidence-based medicine can provide the best clinical evidence on sleep disorders' treatment in neurodegenerative

  10. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    Science.gov (United States)

    Yu-Wai-Man, Patrick

    2016-10-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hueng-Chuen Fan

    2015-12-01

    Full Text Available Neurodegenerative diseases (NDs are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM, and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  12. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging

    Science.gov (United States)

    Mormina, Enricomaria; Petracca, Maria; Bommarito, Giulia; Piaggio, Niccolò; Cocozza, Sirio; Inglese, Matilde

    2017-01-01

    The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique’s advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance. PMID:29104740

  13. Oxidative stress and neurodegenerative diseases: a neurotrophic approach.

    Science.gov (United States)

    Espinet, Carme; Gonzalo, Hugo; Fleitas, Catherine; Menal, Maria Jose; Egea, Joaquim

    2015-01-01

    Neurotrophins are important neurotrophic factors involved in the survival, differentiation and function of a wide variety of neuron populations. A common feature for most neurotrophins is that they are synthesized as precursor proteins (pro-neurotrophins) that upon being processed by proteolysis render the mature active form responsible for most of their trophic functions. However, some of the pro-neurotrophin form of these proteins, such as the precursor form of NGF (pro-NGF), have been shown to induce opposite effects and trigger apoptosis on neurons through the p75NTR receptor. This suggests that the balance between the levels of proneurotrophin and neurotrophin must be tightly controlled. In this context, it has been shown that in conditions of oxidative stress due for instance to aging or the development of some neurodegenerative disease, neurotrophins are oxidatively modified at least by advanced glycation/lipoxidation end products (AGE/ALEs) which makes pro-NGF refractary to be processed. The lack of maturation and the imbalance in favor of the precursor form may change the pattern of active signaling pathways towards cell death, thus exacerbating the deleterious alterations, for instance during the development of neurodegenerative diseases. Besides that, AGE/ALEs also induce the processing of the pro-NGF receptor p75NTR by α- secretase which is followed by the processing by γ -secretase and the release of the intracellular domain of p75NTR (p75NTRICD). Once cleaved, p75NTRICD recruits two intracellular interactors, NRIF and TRAF6, which allows NRIF phosphorylation by JNK. The phosphorylated form of NRIF then translocates to the nucleus and induces the expression of pro-apoptotic proteins. In this chapter we will summarize the mechanisms by which ROS- induce protein modifications, which proteins are susceptible to be modified, how these modifications affect function and signaling and, finally, how they can be related to neurodegenerative diseases.

  14. Resting state brain networks and their implications in neurodegenerative disease

    Science.gov (United States)

    Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong

    2012-10-01

    Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.

  15. REM behaviour disorder detection associated with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sorensen, Gertrud; Zoetmulder, Marielle

    2010-01-01

    Abnormal skeleton muscle activity during REM sleep is characterized as REM Behaviour Disorder (RBD), and may be an early marker for different neurodegenerative diseases. Early detection of RBD is therefore highly important, and in this ongoing study a semi-automatic method for RBD detection......, a computerized algorithm has been attempted implemented. By analysing the REM and non-REM EMG activity, using advanced signal processing tools combined with a statistical classifier, it is possible to discriminate normal and abnormal EMG activity. Due to the small number of patients, the overall performance...

  16. Imaging plus X: multimodal models of neurodegenerative disease.

    Science.gov (United States)

    Oxtoby, Neil P; Alexander, Daniel C

    2017-08-01

    This article argues that the time is approaching for data-driven disease modelling to take centre stage in the study and management of neurodegenerative disease. The snowstorm of data now available to the clinician defies qualitative evaluation; the heterogeneity of data types complicates integration through traditional statistical methods; and the large datasets becoming available remain far from the big-data sizes necessary for fully data-driven machine-learning approaches. The recent emergence of data-driven disease progression models provides a balance between imposed knowledge of disease features and patterns learned from data. The resulting models are both predictive of disease progression in individual patients and informative in terms of revealing underlying biological patterns. Largely inspired by observational models, data-driven disease progression models have emerged in the last few years as a feasible means for understanding the development of neurodegenerative diseases. These models have revealed insights into frontotemporal dementia, Huntington's disease, multiple sclerosis, Parkinson's disease and other conditions. For example, event-based models have revealed finer graded understanding of progression patterns; self-modelling regression and differential equation models have provided data-driven biomarker trajectories; spatiotemporal models have shown that brain shape changes, for example of the hippocampus, can occur before detectable neurodegeneration; and network models have provided some support for prion-like mechanistic hypotheses of disease propagation. The most mature results are in sporadic Alzheimer's disease, in large part because of the availability of the Alzheimer's disease neuroimaging initiative dataset. Results generally support the prevailing amyloid-led hypothetical model of Alzheimer's disease, while revealing finer detail and insight into disease progression. The emerging field of disease progression modelling provides a natural

  17. Multifaceted effects of aluminium in neurodegenerative diseases: A review.

    Science.gov (United States)

    Maya, S; Prakash, T; Madhu, Krishna Das; Goli, Divakar

    2016-10-01

    Aluminium (Al) is the most common metal and widely distributed in our environment. Al was first isolated as an element in 1827, and its use began only after 1886. Al is widely used for industrial applications and consumer products. Apart from these it is also used in cooking utensils and in pharmacological agents, including antacids and antiperspirants from which the element usually enters into the human body. Evidence for the neurotoxicity of Al is described in various studies, but still the exact mechanism of Al toxicity is not known. However, the evidence suggests that the Al can potentiate oxidative stress and inflammatory events and finally leads to cell death. Al is considered as a well-established neurotoxin and have a link between the exposure and development of neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), dementia, Gulf war syndrome and Parkinsonism. Here, we review the detailed possible pathogenesis of Al neurotoxicity. This review summarizes Al induced events likewise oxidative stress, cell mediated toxicity, apoptosis, inflammatory events in the brain, glutamate toxicity, effects on calcium homeostasis, gene expression and Al induced Neurofibrillary tangle (NFT) formation. Apart from these we also discussed animal models that are commonly used for Al induced neurotoxicity and neurodegeneration studies. These models help to find out a better way to treat and prevent the progression in Al induced neurodegenerative diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  19. Adeno-associated viral gene delivery in neurodegenerative disease.

    Science.gov (United States)

    Morgenstern, Peter F; Marongiu, Roberta; Musatov, Sergei A; Kaplitt, Michael G

    2011-01-01

    The advent of viral gene therapy technology has contributed greatly to the study of a variety of medical conditions, and there is increasing promise for clinical translation of gene therapy into human treatments. Adeno-associated viral (AAV) vectors provide one of the more promising approaches to gene delivery, and have been used extensively over the last 20 years. Derived from nonpathogenic parvoviruses, these vectors allow for stable and robust expression of desired transgenes in vitro and in vivo. AAV vectors efficiently and stably transduce neurons, with some strains targeting neurons exclusively in the brain. Thus, AAV vectors are particularly useful for neurodegenerative diseases, which have led to numerous preclinical studies and several human trials of gene therapy in patients with Parkinson's disease, Alzheimer's disease, and pediatric neurogenetic disorders. Here, we describe an efficient and reliable method for the production and purification of AAV serotype 2 vectors for both in vitro and in vivo applications.

  20. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Samantha Giordano

    2014-01-01

    Full Text Available Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1 radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2 radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3 since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

  1. The Big Bluff of Amyotrophic Lateral Sclerosis Diagnosis: The Role of Neurodegenerative Disease Mimics.

    Science.gov (United States)

    Bicchi, Ilaria; Emiliani, Carla; Vescovi, Angelo; Martino, Sabata

    2015-01-01

    Neurodegenerative diseases include a significant number of pathologies affecting the nervous system. Generally, the primary cause of each disease is specific; however, recently, it was shown that they may be correlated at molecular level. This aspect, together with the exhibition of similar symptoms, renders the diagnosis of these disorders difficult. Amyotrophic lateral sclerosis is one of these pathologies. Herein, we report several cases of amyotrophic lateral sclerosis misdiagnosed as a consequence of features that are common to several neurodegenerative diseases, such as Parkinson's, Huntington's and Alzheimer's disease, spinal muscular atrophy, progressive bulbar palsy, spastic paraplegia and frontotemporal dementia, and mostly with the lysosomal storage disorder GM2 gangliosidosis. Overall reports highlight that the differential diagnosis for amyotrophic lateral sclerosis should include correlated mechanisms. © 2015 S. Karger AG, Basel.

  2. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies

    National Research Council Canada - National Science Library

    López González, Irene; Garcia-Esparcia, Paula; Llorens, Franc; Ferrer, Isidre

    2016-01-01

    Polymorphisms in certain inflammatory-related genes have been identified as putative differential risk factors of neurodegenerative diseases with abnormal protein aggregates, such as sporadic Alzheimer's disease (AD...

  3. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Wenbin Wan

    2015-01-01

    Full Text Available Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer’s disease (AD and Parkinson’s disease (PD show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs, which displayed similar pluripotency potential to embryonic stem cells (ESCs. Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options.

  4. Melatonin in Alzheimer's disease and other neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Poeggeler B

    2006-05-01

    Full Text Available Abstract Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Huntington's disease (HD. As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin

  5. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Alana M. Horowitz

    2017-08-01

    Full Text Available Neurodegenerative diseases are a devastating group of conditions that cause progressive loss of neuronal integrity, affecting cognitive and motor functioning in an ever-increasing number of older individuals. Attempts to slow neurodegenerative disease advancement have met with little success in the clinic; however, a new therapeutic approach may stem from classic interventions, such as caloric restriction, exercise, and parabiosis. For decades, researchers have reported that these systemic-level manipulations can promote major functional changes that extend organismal lifespan and healthspan. Only recently, however, have the functional effects of these interventions on the brain begun to be appreciated at a molecular and cellular level. The potential to counteract the effects of aging in the brain, in effect rejuvenating the aged brain, could offer broad therapeutic potential to combat dementia-related neurodegenerative disease in the elderly. In particular, results from heterochronic parabiosis and young plasma administration studies indicate that pro-aging and rejuvenating factors exist in the circulation that can independently promote or reverse age-related phenotypes. The recent demonstration that human umbilical cord blood similarly functions to rejuvenate the aged brain further advances this work to clinical translation. In this review, we focus on these blood-based rejuvenation strategies and their capacity to delay age-related molecular and functional decline in the aging brain. We discuss new findings that extend the beneficial effects of young blood to neurodegenerative disease models. Lastly, we explore the translational potential of blood-based interventions, highlighting current clinical trials aimed at addressing therapeutic applications for the treatment of dementia-related neurodegenerative disease in humans.

  6. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  7. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  8. Adult Neurogenesis and Neurodegenerative Diseases: A Systems Biology Perspective

    Science.gov (United States)

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J.

    2016-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. PMID:26879907

  9. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective.

    Science.gov (United States)

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J

    2017-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Does neuroinflammation fan the flame in neurodegenerative diseases?

    Directory of Open Access Journals (Sweden)

    McAlpine Fiona E

    2009-11-01

    Full Text Available Abstract While peripheral immune access to the central nervous system (CNS is restricted and tightly controlled, the CNS is capable of dynamic immune and inflammatory responses to a variety of insults. Infections, trauma, stroke, toxins and other stimuli are capable of producing an immediate and short lived activation of the innate immune system within the CNS. This acute neuroinflammatory response includes activation of the resident immune cells (microglia resulting in a phagocytic phenotype and the release of inflammatory mediators such as cytokines and chemokines. While an acute insult may trigger oxidative and nitrosative stress, it is typically short-lived and unlikely to be detrimental to long-term neuronal survival. In contrast, chronic neuroinflammation is a long-standing and often self-perpetuating neuroinflammatory response that persists long after an initial injury or insult. Chronic neuroinflammation includes not only long-standing activation of microglia and subsequent sustained release of inflammatory mediators, but also the resulting increased oxidative and nitrosative stress. The sustained release of inflammatory mediators works to perpetuate the inflammatory cycle, activating additional microglia, promoting their proliferation, and resulting in further release of inflammatory factors. Neurodegenerative CNS disorders, including multiple sclerosis (MS, Alzheimer's disease (AD, Parkinson's disease (PD, Huntington's disease (HD, amyotrophic lateral sclerosis (ALS, tauopathies, and age-related macular degeneration (ARMD, are associated with chronic neuroinflammation and elevated levels of several cytokines. Here we review the hallmarks of acute and chronic inflammatory responses in the CNS, the reasons why microglial activation represents a convergence point for diverse stimuli that may promote or compromise neuronal survival, and the epidemiologic, pharmacologic and genetic evidence implicating neuroinflammation in the

  11. Induced Pluripotent Stem Cell Neuronal Models for the Study of Autophagy Pathways in Human Neurodegenerative Disease.

    Science.gov (United States)

    Jiménez-Moreno, Natalia; Stathakos, Petros; Caldwell, Maeve A; Lane, Jon D

    2017-08-11

    Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPSCs, and to subsequently direct their differentiation towards those classes of neurons that are vulnerable to stress, is revealing how genetic mutations cause changes at the molecular level that drive the complex pathogeneses of human neurodegenerative diseases. Autophagy dysregulation is considered to be a major contributor in neural decline during the onset and progression of many human neurodegenerative diseases, meaning that a better understanding of the control of non-selective and selective autophagy pathways (including mitophagy) in disease-affected classes of neurons is needed. To achieve this, it is essential that the methodologies commonly used to study autophagy regulation under basal and stressed conditions in standard cell-line models are accurately applied when using hiPSC-derived neuronal cultures. Here, we discuss the roles and control of autophagy in human stem cells, and how autophagy contributes to neural differentiation in vitro. We also describe how autophagy-monitoring tools can be applied to hiPSC-derived neurons for the study of human neurodegenerative disease in vitro.

  12. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hideyuki eTakeuchi

    2014-09-01

    Full Text Available Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS. Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g. minocycline have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.

  13. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Martin

    2011-01-01

    Full Text Available Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

  14. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders?

    Science.gov (United States)

    Kocot, Joanna; Luchowska-Kocot, Dorota; Kiełczykowska, Małgorzata; Musik, Irena; Kurzepa, Jacek

    2017-06-27

    Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders.

  15. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases.

    Science.gov (United States)

    Irwin, Michael H; Moos, Walter H; Faller, Douglas V; Steliou, Kosta; Pinkert, Carl A

    2016-05-01

    Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Neurodegenerative 'overlap' syndrome: Clinical and pathological features of Parkinson's disease, motor neuron disease, and Alzheimer's disease.

    Science.gov (United States)

    Uitti, R J; Berry, K; Yasuhara, O; Eisen, A; Feldman, H; McGeer, P L; Calne, D B

    1995-07-01

    Parkinson's disease (PD), Alzheimer's disease (AD), and motor neuron disease (MND) share epidemiological, clinical, and pathological features. Few studies have reported comprehensively on individuals who demonstrate a neurodegenerative 'overlap' syndrome, comprising idiopathic parkinsonism, dementia, and motor neuron dysfunction. We describe clinical, electrophysiological, and pathological features in six patients with neurodegenerative 'overlap' syndrome. All had cardinal features of PD (duration 6-26 years), and any mixture of dementia (slowly advancing), fasciculations, hyperreflexia, Babinski signs and mild atrophy and weakness of distal muscles (slowly progressive). EMG often demonstrated a lack of denervation in conjunction with abnormal MEPs (high thresholds). Patients had either 6FD-PET or pathological studies consistent with PD. Pathological studies also demonstrated moderate numbers of neurofibrillary tangles and plaque formation, typically with sparing of motor neurons in the spinal cord. We conclude that neurodegenerative 'overlap' syndrome may represent forme frustes of traditionally accepted diagnostic categories. Patients with parkinsonism, fasciculations, hyperreflexia and mild atrophy are unlikely to demonstrate active denervation on EMG; their prognosis is better than for classical MND. Neurodegenerative overlap syndrome (clinicopathological mixtures of PD, AD, and MND) may develop in some individuals as a reflection of common etiology, pathogenesis or susceptibility.

  17. Memory in neurodegenerative disease: biological, cognitive, and clinical perspectives

    National Research Council Canada - National Science Library

    Tröster, Alexander I

    1998-01-01

    ...  . ,  . , - ,  .    .  36 4 Neurochemical aspects of memory dysfunction in neurodegenerative disease     .  87 5 Structural neuroimaging correlates...

  18. The neuroprotective effects of caffeine in neurodegenerative diseases.

    Science.gov (United States)

    Kolahdouzan, Mahshad; Hamadeh, Mazen J

    2017-04-01

    Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A 2 A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored. © 2017 John Wiley & Sons Ltd.

  19. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping.

    Science.gov (United States)

    Vlasblom, James; Jin, Ke; Kassir, Sandy; Babu, Mohan

    2014-04-04

    Mitochondria are double membraned, dynamic organelles that are required for a large number of cellular processes, and defects in their function have emerged as causative factors for a growing number of human disorders and are highly associated with cancer, metabolic, and neurodegenerative (ND) diseases. Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in ND disease, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. However, high-throughput proteomic and genomic approaches developed in genetically tractable model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene-gene) relationships between diverse types of proteins, including cytosolic and membrane proteins. In this review, we highlight how experimental and computational approaches developed recently by our group and others can be effectively used towards elucidating the mitochondrial interactome in an unbiased and systematic manner to uncover network-based connections. We discuss how the knowledge from the resulting interaction networks can effectively contribute towards the identification of new mitochondrial disease gene candidates, and thus further clarify the role of mitochondrial biology and the complex etiologies of ND disease. Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in neurodegenerative (ND) diseases, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. Large-scale proteomic and genomic approaches developed in model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene

  20. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    G. Natale

    2013-03-01

    Full Text Available Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-to-cell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs; mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs. The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.

  1. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Sahar eAl-Mahdawi

    2014-12-01

    Full Text Available DNA methylation primarily occurs within human cells as a 5-methylcytosine (5mC modification of the cytosine bases in CpG dinucleotides. 5mC has proven to be an important epigenetic mark that is involved in the control of gene transcription for processes such as development and differentiation. However, recent studies have identified an alternative modification, 5-hydroxymethylcytosine (5hmC, which is formed by oxidation of 5mC by ten-eleven translocation (TET enzymes. The overall levels of 5hmC in the mammalian genome are approximately 10% of 5mC levels, although higher levels have been detected in tissues of the central nervous system (CNS. The functions of 5hmC are not yet fully known, but evidence suggests that 5hmC may be both an intermediate product during the removal of 5mC by passive or active demethylation processes and also an epigenetic modification in its own right, regulating chromatin or transcriptional factors involved in processes such as neurodevelopment or environmental stress response. This review highlights our current understanding of the role that 5hmC plays in neurodegenerative diseases, including Alzheimer’s disease (AD, amyotrophic lateral sclerosis (ALS, fragile X-associated tremor/ataxia syndrome (FXTAS, Friedreich ataxia (FRDA, Huntington’s disease (HD, and Parkinson’s disease (PD.

  2. Neurodegenerative diseases, suicide and depressive symptoms in relation to EMF.

    Science.gov (United States)

    Ahlbom, A

    2001-01-01

    In 1979 the first study was published which indicated that environmental exposure to power frequency, electric and magnetic fields (EMF), might increase the risk of chronic disease. This was a study on cancer. However, this research area has gradually evolved and come also to include outcomes other than cancer. The purpose of this paper is to provide a better understanding of the literature on neurodegenerative diseases and on suicide and depressive symptoms in relation to EMF by using a meta-analysis technique. It is concluded that for amyotrophic lateral sclerosis, there are relatively strong data indicating that electric utility work may be associated with an increased risk. However, EMF exposure is only one of several possible explanations to this. For Alzheimer's disease the combined data on an association with EMF are weaker than that for ALS. For suicide an overall assessment yields the conclusion that the support for an association is weak. For depressive symptoms the assessment is more complex, but the overall conclusion is nevertheless that the evidence is relatively weak. For other diseases, such as Parkinson's, there is not enough information for an assessment. Copyright 2001 Wiley-Liss, Inc.

  3. Strategies for molecular imaging dementia and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Bernhard J Schaller

    2008-06-01

    Full Text Available Bernhard J SchallerDepartment of Neurosurgery, University of Paris, Paris, FranceAbstract: Dementia represents a heterogeneous term that has evolved to describe the behavioral syndromes associated with a variety of clinical and neuropathological changes during continuing degenerative disease of the brain. As such, there lacks a clear consensus regarding the neuropsychological and other constituent characteristics associated with various cerebrovascular changes in this disease process. But increasing this knowledge has given more insights into memory deterioration in patients suffering from Alzheimer’s disease and other subtypes of dementia. The author reviews current knowledge of the physiological coupling between cerebral blood flow and metabolism in the light of state-of-the-art-imaging methods and its changes in dementia with special reference to Alzheimer’s disease. Different imaging techniques are discussed with respect to their visualizing effect of biochemical, cellular, and/or structural changes in dementia. The pathophysiology of dementia in advanced age is becoming increasingly understood by revealing the underlying basis of neuropsychological changes with current imaging techniques, genetic and pathological features, which suggests that alterations of (neurovascular regulatory mechanisms may lead to brain dysfunction and disease. The current view is that cerebrovascular deregulation is seen as a contributor to cerebrovascular pathologies, such as stroke, but also to neurodegenerative conditions, such as Alzheimer’s disease. The better understanding of these (pathophysiological mechanisms may open an approach to new interventional strategies in dementia to enhance neurovascular repair and to protect neurovascular coupling.Keywords: imaging, cognitive impairment, Alzheimer’s disease, cerebrovascular disease, neurovascular coupling

  4. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases.

    Science.gov (United States)

    Costa, Silvia Lima; Silva, Victor Diogenes Amaral; Dos Santos Souza, Cleide; Santos, Cleonice Creusa; Paris, Irmgard; Muñoz, Patricia; Segura-Aguilar, Juan

    2016-07-01

    Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.

  5. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases

    Science.gov (United States)

    Lackie, Rachel E.; Maciejewski, Andrzej; Ostapchenko, Valeriy G.; Marques-Lopes, Jose; Choy, Wing-Yiu; Duennwald, Martin L.; Prado, Vania F.; Prado, Marco A. M.

    2017-01-01

    The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the

  6. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Rachel E. Lackie

    2017-05-01

    Full Text Available The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD. Assembles of beta-amyloid (Aβ peptide—either soluble (oligomers or insoluble (plaques and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1, an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC. Extracellular STI1 can prevent Aβ toxic signaling by (i interfering with Aβ binding to PrPC and (ii triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular

  7. Small-Molecule Theranostic Probes: A Promising Future in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Suzana Aulić

    2013-01-01

    Full Text Available Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC. Many lines of evidence suggest that prions (PrPSc act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrPSc may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, and prion disease. Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.

  8. Autophagy and ageing: implications for age-related neurodegenerative diseases.

    Science.gov (United States)

    Carroll, Bernadette; Hewitt, Graeme; Korolchuk, Viktor I

    2013-01-01

    Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our 'ageing' world.

  9. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine

    Directory of Open Access Journals (Sweden)

    Gabor G. Kovacs

    2016-02-01

    Full Text Available Neurodegenerative diseases (NDDs are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43, or fused in sarcoma protein (FUS, molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.

  10. Molecular origin of polyglutamine aggregation in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Expansion of polyglutamine (polyQ tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35-40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel beta-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the beta-helices observed in simulations, all residues adopt beta-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 +/- 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel beta-hairpins in their ground state, in agreement with experiments. The lower stability of mutant beta-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation.

  11. The involvement of microRNAs in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Simona eMaciotta Rolandin

    2013-12-01

    Full Text Available Neurodegenerative diseases (NDDs originate from loss of neurons in the central nervous system and are severely debilitating. They are worldwide spread and their incidence increases with age so that they are supposed to become more common due to extended life expectancy. Since no cure is available they have become a major challenge to neurobiology. The increasing relevance of microRNAs (miRNAs in biology has prompt the scientific society to investigate on their possible involvement in neurodegeneration with the aim to find new therapeutic targets. Indeed the idea of using miRNAs as therapeutic targets is nowadays not far from realization but important issues need to be addressed before moving towards the clinics. With the present review we aim to resume what have been so far disclose on the involvement of miRNAs in NDDs pathogenesis. Furthermore, their expression levels in peripheral tissues of patients affected by NDDs will be here reported in order to evaluate their application as biomarker of disease. Finally the discrepancy, innovation and effectiveness of data collected will be elucidated and discussed.

  12. Recommendations for the Design of Serious Games in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Grégory Ben-Sadoun

    2018-02-01

    Full Text Available The use of Serious Games (SG in the health domain is expanding. In the field of Neurodegenerative Diseases (ND such as Alzheimer’s Disease, SG are currently employed to provide alternative solutions for patients’ treatment, stimulation, and rehabilitation. The design of SG for people with ND implies collaborations between professionals in ND and professionals in SG design. As the field is quite young, professionals specialized in both ND and SG are still rare, and recommendations for the design of SG for people with ND are still missing. This perspective paper aims to provide recommendations in terms of ergonomic choices for the design of SG aiming at stimulating people with ND, starting from the existing SG already tested in this population: “MINWii”, “Kitchen and Cooking”, and “X-Torp”. We propose to rely on nine ergonomic criteria: eight ergonomic criteria inspired by works in the domain of office automation: Compatibility, Guidance, Workload, Adaptability, Consistency, Significance of codes, Explicit control and Error management; and one ergonomic criterion related to videogame: the game rules. Perspectives derived from this proposal are also discussed.

  13. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Disease.

    Science.gov (United States)

    Howell, Michael Joseph; Schenck, Carlos Hugh

    2015-06-01

    The dream enactment of rapid eye movement sleep behavior disorder (RBD) is often the first indication of an impending α-synuclein disorder, such as Parkinson disease, multiple-system atrophy, or dementia with Lewy bodies. To provide an overview of RBD from the onset of dream enactment through the emergence of a parkinsonian disorder. Peer-reviewed articles, including case reports, case series, retrospective reviews, prospective randomized trials, and basic science investigations, were identified in a PubMed search of articles on RBD from January 1, 1986, through July 31, 2014. Under normal conditions, vivid dream mentation combined with skeletal muscle paralysis characterizes rapid eye movement sleep. In RBD, α-synuclein abnormalities in the brainstem disinhibit rapid eye movement sleep motor activity, leading to dream enactment. The behaviors of RBD are often theatrical, with complexity, aggression, and violence; fighting and fleeing actions can be injurious to patients as well as bed partners. Rapid eye movement sleep behavior disorder is distinguished from other parasomnias by clinical features and the demonstration of rapid eye movement sleep without atonia on polysomnography. Consistent with early neurodegeneration, patients with RBD demonstrate subtle motor, cognitive, and autonomic impairments. Approximately 50% of patients with spontaneous RBD will convert to a parkinsonian disorder within a decade. Ultimately, nearly all (81%-90%) patients with RBD develop a neurodegenerative disorder. Among patients with Parkinson disease, RBD predicts a non-tremor-predominant subtype, gait freezing, and an aggressive clinical course. The most commonly cited RBD treatments include low-dose clonazepam or high-dose melatonin taken orally at bedtime. Treatment of RBD can prevent injury to patients and bed partners. Because RBD is a prodromal syndrome of Parkinson disease (or related disorder), it represents a unique opportunity for developing and testing disease

  14. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jean E. Vance

    2012-11-01

    Full Text Available Dysregulation of cholesterol homeostasis in the brain is increasingly being linked to chronic neurodegenerative disorders, including Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD, Niemann-Pick type C (NPC disease and Smith-Lemli Opitz syndrome (SLOS. However, the molecular mechanisms underlying the correlation between altered cholesterol metabolism and the neurological deficits are, for the most part, not clear. NPC disease and SLOS are caused by mutations in genes involved in the biosynthesis or intracellular trafficking of cholesterol, respectively. However, the types of neurological impairments, and the areas of the brain that are most affected, differ between these diseases. Some, but not all, studies indicate that high levels of plasma cholesterol correlate with increased risk of developing AD. Moreover, inheritance of the E4 isoform of apolipoprotein E (APOE, a cholesterol-carrying protein, markedly increases the risk of developing AD. Whether or not treatment of AD with statins is beneficial remains controversial, and any benefit of statin treatment might be due to anti-inflammatory properties of the drug. Cholesterol balance is also altered in HD and PD, although no causal link between dysregulated cholesterol homeostasis and neurodegeneration has been established. Some important considerations for treatment of neurodegenerative diseases are the impermeability of the blood-brain barrier to many therapeutic agents and difficulties in reversing brain damage that has already occurred. This article focuses on how cholesterol balance in the brain is altered in several neurodegenerative diseases, and discusses some commonalities and differences among the diseases.

  15. Autoimmune Aspects of Neurodegenerative and Psychiatric Diseases : A Template for innovative Therapy

    NARCIS (Netherlands)

    de Haan, Peter; Klein, Hans C.; 't Hart, Bert A.

    2017-01-01

    Neurodegenerative and psychiatric diseases (NPDs) are today's most important group of diseases, surpassing both atherosclerotic cardiovascular disease and cancer in morbidity incidence. Although NPDs have a dramatic impact on our society because of their high incidence, mortality, and severe

  16. The role of DNA methylation and histone modifications in neurodegenerative diseases: A systematic review

    NARCIS (Netherlands)

    K.-X. Wen (Ke-Xin); J. Milic (Jelena); El-Khodor, B. (Bassem); K. Dhana (Klodian); J. Nano (Jana); Pulido, T. (Tammy); B. Kraja (Bledar); A. Zaciragic (Asija); W.M. Bramer (Wichor); J. Troup; R. Chowdhury (Rajiv); Arfam Ikram, M.; A. Dehghan (Abbas); T. Muka (Taulant); O.H. Franco (Oscar)

    2016-01-01

    textabstractImportance Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Objective To systematically review studies

  17. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia.

    Science.gov (United States)

    Keiser, Megan S; Kordasiewicz, Holly B; McBride, Jodi L

    2016-04-15

    RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Tool use in neurodegenerative diseases: Planning or technical reasoning?

    Science.gov (United States)

    Baumard, Josselin; Lesourd, Mathieu; Remigereau, Chrystelle; Jarry, Christophe; Etcharry-Bouyx, Frédérique; Chauviré, Valérie; Osiurak, François; Le Gall, Didier

    2017-04-29

    Recent works showed that tool use can be impaired in stroke patients because of either planning or technical reasoning deficits, but these two hypotheses have not yet been compared in the field of neurodegenerative diseases. The aim of this study was to address the relationships between real tool use, mechanical problem-solving, and planning skills in patients with Alzheimer's disease (AD, n = 32), semantic dementia (SD, n = 16), and corticobasal syndrome (CBS, n = 9). Patients were asked to select and use ten common tools, to solve three mechanical problems, and to complete the Tower of London test. Motor function and episodic memory were controlled using the Purdue Pegboard Test and the BEC96 questionnaire, respectively. A data-transformation method was applied to avoid ceiling effects, and single-case analysis was performed based on raw scores and completion time. All groups demonstrated either impaired or slowed tool use. Planning deficits were found only in the AD group. Mechanical problem-solving deficits were observed only in the AD and CBS groups. Performance in the Tower of London test was the best predictor of tool use skills in the AD group, suggesting these patients had general rather than mechanical problem-solving deficits. Episodic memory seemed to play little role in performance. Motor dysfunction tended to be associated with tool use skills in CBS patients, while tool use disorders are interpreted as a consequence of the semantic loss in SD in line with previous works. These findings may encourage caregivers to set up disease-centred interventions. © 2017 The British Psychological Society.

  19. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    OpenAIRE

    Kolodkin, Alexey; Simeonidis, Evangelos; Balling, Rudi; Westerhoff, Hans V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be...

  20. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    OpenAIRE

    Alexey eKolodkin; Alexey eKolodkin; Evangelos eSimeonidis; Evangelos eSimeonidis; Rudi eBalling; Hans eWesterhoff; Hans eWesterhoff; Hans eWesterhoff

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be req...

  1. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence.

    OpenAIRE

    Kolodkin, Alexey; Simeonidis, Evangelos; Balling, Rudi; Westerhoff, Hans V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be...

  2. Understanding complexityin neurodegenerative diseases: in silico reconstructionof emergence

    OpenAIRE

    Kolodkin, A.N.; Simeonides, E.; Balling, R.; Westerhoff, H.V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be...

  3. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lila Carniglia

    2017-01-01

    Full Text Available Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  4. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Ailton Melo

    2011-01-01

    Full Text Available The incidence and prevalence of neurodegenerative diseases (ND increase with life expectancy. This paper reviews the role of oxidative stress (OS in ND and pharmacological attempts to fight against reactive oxygen species (ROS-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.

  5. PENN neurodegenerative disease research - in the spirit of Benjamin Franklin.

    Science.gov (United States)

    Trojanowski, John Q

    2008-01-01

    Benjamin Franklin (1706-1790) was entrepreneur, statesman, supporter of the public good as well as inventor, and his most significant invention was the University of Pennsylvania (PENN). Franklin outlined his plans for a college providing practical and classical instruction to prepare youth for real-world pursuits in his 'Proposals Relating to the Education of Youth in Pensilvania' (1749), and Franklin's spirit of learning to serve society guides PENN to the present day. This is evidenced by the series of articles in this special issue of Neurosignals, describing research conducted by seasoned and newly recruited PENN faculty, addressing consequences of the longevity revolution which defines our epoch at the dawn of this millennium. While aging affects all organ systems, the nervous system is most critical to successful aging. Thus, the articles in this special issue of Neurosignals focus on research at PENN that is designed to prevent or ameliorate aging-related neurodegenerative disorders such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. This research could enhance our chances of aging successfully in the continuing longevity revolution, and the essay here provides context and background on this research.

  6. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases

    Science.gov (United States)

    Alexander, Adanna G.; Marfil, Vanessa; Li, Chris

    2014-01-01

    Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model. PMID:25250042

  7. [The application of Gallyas-Braak stainings in pathologic diagnosis of neurodegenerative diseases].

    Science.gov (United States)

    Wang, Luning; Zhu, Mingwei; Li, Xianghong; Gui, Qiuping

    2002-02-01

    To evaluate the role of Gallyas silver staining in the diagnosis of neurodegenerative diseases. Modified Gallyas-Braak staining method was used to investigate samples of the brain and spinal cord of 22 cases with neurodegenerative disease including Alzheimer's disease (AD), Parkinson's diseas (PD), Pick's disease, diffuse Lewy body disease (DLBD), progressive supranuclear palsy (PSP), diagnosed by clinical and routine pathologic method. 10 cases without clinical symptoms and pathologic abnormalities of the nervous system served as control. As compared with Bodian staining, Gallyas-Braak staining demonstrated clearly neurofibrillary tangles in the hippocampus and the cortex of frontal and temperal lobe in all the cases with Alzheimer's disease, 6 cases with dementia of other causes and 3 normal aged. However, global neurofibrillary tangles in the midbrain and the basal ganglia were found only with Gallyas-Braak staining in 4 cases with both dementia and extrapyramidal features. In addition, tuft-shaped astrocytes were shown with this method in the motor cortex, basal ganglia, midbrain of the above 4 cases and astrocytic plaques in the same area in 2 cases of the 4 cases. In this connexion, pathologic findings in 2 of the 4 cases corresponded to PSP and those of the other two cases fufiled the diagnostic criteria of corticobasal degeneration (CBD) Oligodendroglial cytoplasmic inclusions in the white matter of the brain and the spinal cord were founded in 3 of the 4 cases with multiple system atrophy (MSA). This silver staining demonstrated as well a lot of argyrophilic grains in the neuropil of the temporal lobe and the hippocampus in one case with AD. Gallyas silver staining could better reveal not only Alzheimer-like neurofibrillary tangles but also different glial inclusions in other neurodegenerative diseases such as PSP, CBD and MSA. Consequently, it is of great value in the pathologic diagnosis and study of such degenerative diseases.

  8. Association between environmental exposure to pesticides and neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parron, Tesifon [University of Almeria, Department of Neurosciences and Health Sciences, Almeria (Spain); Andalusian Council of Health at Almeria province, Almeria (Spain); Requena, Mar [Andalusian Council of Health at Almeria province, Almeria (Spain); Hernandez, Antonio F., E-mail: ajerez@ugr.es [University of Granada School of Medicine, Granada (Spain); Alarcon, Raquel [Andalusian Council of Health at Almeria province, Almeria (Spain)

    2011-11-15

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: Black-Right-Pointing-Pointer Environmental exposure to pesticides and neurodegenerative-psychiatric disorders. Black-Right-Pointing-Pointer Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. Black

  9. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases.

    Directory of Open Access Journals (Sweden)

    Johanna Gaiottino

    Full Text Available Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf are cytoskeletal proteins of neurons and their release into cerebrospinal fluid has shown encouraging results as a biomarker for neurodegeneration. This study aimed to validate the quantification of the Nf light chain (NfL in blood samples, as a biofluid source easily accessible for longitudinal studies.We developed and applied a highly sensitive electrochemiluminescence (ECL based immunoassay for quantification of NfL in blood and CSF.Patients with Alzheimer's disease (AD (30.8 pg/ml, n=20, Guillain-Barré-syndrome (GBS (79.4 pg/ml, n=19 or amyotrophic lateral sclerosis (ALS (95.4 pg/ml, n=46 had higher serum NfL values than a control group of neurological patients without evidence of structural CNS damage (control patients, CP (4.4 pg/ml, n=68, p<0.0001 for each comparison, p=0.002 for AD patients and healthy controls (HC (3.3 pg/ml, n=67, p<0.0001. Similar differences were seen in corresponding CSF samples. CSF and serum levels correlated in AD (r=0.48, p=0.033, GBS (r=0.79, p<0.0001 and ALS (r=0.70, p<0.0001, but not in CP (r=0.11, p=0.3739. The sensitivity and specificity of serum NfL for separating ALS from healthy controls was 91.3% and 91.0%.We developed and validated a novel ECL based sandwich immunoassay for the NfL protein in serum (NfL(Umea47:3; levels in ALS were more than 20-fold higher than in controls. Our data supports further longitudinal studies of serum NfL in neurodegenerative diseases as a potential biomarker of on-going disease progression, and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials.

  10. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases12

    Science.gov (United States)

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases. PMID:25593144

  11. Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases?

    Science.gov (United States)

    Galea, Elena; Launay, Nathalie; Portero-Otin, Manuel; Ruiz, Montserrat; Pamplona, Reinald; Aubourg, Patrick; Ferrer, Isidre; Pujol, Aurora

    2012-09-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder expressed as four disease variants characterized by adrenal insufficiency and graded damage in the nervous system. X-ALD is caused by a loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long chain fatty acids (VLCFA) in the organs and plasma, which have potentially toxic effects in CNS and adrenal glands. We have recently shown that treatment with a combination of antioxidants containing α-tocopherol, N-acetyl-cysteine and α-lipoic acid reversed oxidative damage and energetic failure, together with the axonal degeneration and locomotor impairment displayed by Abcd1 null mice, the animal model of X-ALD. This is the first direct demonstration that oxidative stress, which is a hallmark not only of X-ALD, but also of other neurodegenerative processes, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), contributes to axonal damage. The purpose of this review is, first, to discuss the molecular and cellular underpinnings of VLCFA-induced oxidative stress, and how it interacts with energy metabolism and/or inflammation to generate a complex syndrome wherein multiple factors are contributing. Particular attention will be paid to the dysregulation of redox homeostasis by the interplay between peroxisomes and mitochondria. Second, we will extend this analysis to the aforementioned neurodegenerative diseases with the aim of defining differences as well as the existence of a core pathogenic mechanism that would justify the exchange of therapeutic opportunities among these pathologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Understanding complexityin neurodegenerative diseases: in silico reconstructionof emergence

    NARCIS (Netherlands)

    Kolodkin, A.N.; Simeonides, E.; Balling, R.; Westerhoff, H.V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of

  13. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence.

    NARCIS (Netherlands)

    Kolodkin, A.; Simeonidis, E.; Balling, R.; Westerhoff, H.V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of

  14. Quantum dots and prion proteins: is this a new challenge for neurodegenerative diseases imaging?

    Science.gov (United States)

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrP(Sc)), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrP(Sc) detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels.

  15. Selective autophagy: The new player in the fight against neurodegenerative diseases?

    Science.gov (United States)

    Wu, Ming-Yue; Song, Ju-Xian; Wang, Sheng-Fang; Cai, Cui-Zan; Li, Min; Lu, Jia-Hong

    2017-11-16

    Autophagy is the lysosome-mediated bulk degradation of cellular components for material recycling to maintain cellular homeostasis. Autophagy was initially regarded as a nonselective process, however, recent evidence indicates that this process can in fact be highly selective, especially for targeting and degrading organelles, invading pathogens and protein aggregates. Recent studies have revealed an intrinsic connection between selective autophagy and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Given the vital roles of selective autophagy in these neurodegenerative diseases, modulation of this process is emerging as a new therapeutic strategy for neuroprotection. This review introduces the concept of selective autophagy, provides an overview of the pathological connection between selective autophagy and neurodegenerative diseases, and discusses approaches to modulate selective autophagy for therapeutic effects against neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases.

    Science.gov (United States)

    Chin-Chan, Miguel; Navarro-Yepes, Juliana; Quintanilla-Vega, Betzabet

    2015-01-01

    Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.

  17. Proline-rich polypeptides in Alzheimer's disease and neurodegenerative disorders -- therapeutic potential or a mirage?

    Science.gov (United States)

    Gladkevich, A; Bosker, F; Korf, J; Yenkoyan, K; Vahradyan, H; Aghajanov, M

    2007-10-01

    The development of effective and safe drugs for a growing Alzheimer disease population is an increasing need at present. Both experimental and clinical evidence support a beneficial effect of proline-rich polypeptides in a number of neurodegenerative diseases, including Alzheimer disease. Experimental data have shown that proline-rich polypeptides isolated from bovine neurohypophisis possess neuroprotective and neuromodulatory properties in mice with aluminum neurotoxicosis or neuronal damage caused by venoms and toxins. Proline-rich polypeptides from ovine colostrums, so called Colostrinin, have been shown to produce cognitive improvement in an experimental model and in patients with Alzheimer disease. However, the precise mechanism underlying the neuroprotective action of proline-rich polypeptides is not very well established. Moreover, studies pointing at a neuroprotective effect of proline-rich polypeptides from bovine neurohypophisis in humans have not been reported thus far. The authors conclude that more detailed information on the mode of action of proline-rich polypeptides is needed as well as confirmation of their efficacy in broad clinical trials before this approach can really show its potential in the treatment of neurodegenerative disorders.

  18. Infectivity versus Seeding in Neurodegenerative Diseases Sharing a Prion-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Natalia Fernández-Borges

    2013-01-01

    Full Text Available Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term “prion-like” is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's diseases (PD, and amyotrophic lateral sclerosis (ALS have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term “infection” that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as “seeding” or “de novo induction” are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of “disease-causing agents” to include those already accepted as well as other misfolded proteins. In this new scenario, “seeding” would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole “infection” process.

  19. Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting

    DEFF Research Database (Denmark)

    Tong, Tong; Ledig, Christian; Guerrero, Ricardo

    2017-01-01

    for distinguishing the four most common neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobe degeneration, Dementia with Lewy bodies and vascular dementia, as well as patients with subjective memory complaints. Different biomarkers including features from images (volume features, region......Differentiating between different types of neurodegenerative diseases is not only crucial in clinical practice when treatment decisions have to be made, but also has a significant potential for the enrichment of clinical trials. The purpose of this study is to develop a classification framework...

  20. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases

    OpenAIRE

    Chin-Chan, Miguel; Navarro-Yepes, Juliana; Quintanilla-Vega, Betzabet

    2015-01-01

    Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, ...

  1. The ubiquitin proteasome system in glia and its role in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anne H.P. Jansen

    2014-08-01

    Full Text Available The ubiquitin proteasome system (UPS is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal functioning and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS functioning in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell functioning might provide essential information in unraveling mechanisms of neurodegenerative diseases.

  2. Cognitive performance in REM sleep behaviour disorder: a possible early marker of neurodegenerative disease?

    Science.gov (United States)

    Terzaghi, Michele; Sinforiani, Elena; Zucchella, Chiara; Zambrelli, Elena; Pasotti, Chiara; Rustioni, Valter; Manni, Raffaele

    2008-05-01

    Rapid eye movement [REM] sleep behaviour disorder (RBD) may herald neurodegenerative diseases. Neurobiological deficits similar to those identified in neurodegenerative diseases have been reported in idiopathic RBD. Researchers are looking for early markers supporting a possible role of RBD as a harbinger of impending neurodegenerative disease. To examine the neuropsychological functions in idiopathic RBD subjects. Should they be found to present a neuropsychological dysfunction that overlaps that reported in neurodegenerative diseases, it would be possible to consider cognitive deficits as possible early markers of an underlying degenerative process. Twenty-three subjects with idiopathic RBD (21 males, mean age 67.0+/-7.0 years) and a group of healthy controls matched for sex, age and education underwent a neuropsychological battery evaluating different cognitive domains. Considering mean values, poorer performances were observed in the Word Span (pneurodegenerative disease, but until more prolonged long-term follow-up data are available, the true neurobiological significance of cognitive deficits in RBD will remain unknown.

  3. Chronic sleep disturbance and neural injury: links to neurodegenerative disease

    OpenAIRE

    Abbott SM; Videnovic A

    2016-01-01

    Sabra M Abbott,1 Aleksandar Videnovic21Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA; 2Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Abstract: Sleep–wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep–wake abnormalities are ofte...

  4. Is the Modulation of Autophagy the Future in the Treatment of Neurodegenerative Diseases?

    NARCIS (Netherlands)

    Ana Gonzalez-Polo, Rosa; Pizarro-Estrella, Elisa; Yakhine-Diop, Sokhna M. S.; Rodriguez-Arribas, Mario; Gomez-Sanchez, Ruben; Bravo-San Pedro, Jose M.; Fuentes, Jose M.

    2015-01-01

    The pathogenesis of neurodegenerative diseases involves altered activity of proteolytic systems and accumulation of protein aggregates. Autophagy is an intracellular process in which damaged organelles and long-lived proteins are degraded and recycled for maintaining normal cellular homeostasis.

  5. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    Science.gov (United States)

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  6. The role of mitochondrial DNA mutation on neurodegenerative diseases.

    Science.gov (United States)

    Cha, Moon-Yong; Kim, Dong Kyu; Mook-Jung, Inhee

    2015-03-13

    Many researchers have reported that oxidative damage to mitochondrial DNA (mtDNA) is increased in several age-related disorders. Damage to mitochondrial constituents and mtDNA can generate additional mitochondrial dysfunction that may result in greater reactive oxygen species production, triggering a circular chain of events. However, the mechanisms underlying this vicious cycle have yet to be fully investigated. In this review, we summarize the relationship of oxidative stress-induced mitochondrial dysfunction with mtDNA mutation in neurodegenerative disorders.

  7. A Neurodegenerative Disease Sleep Questionnaire: Principal Components Analysis in Parkinson’s Disease

    OpenAIRE

    Scullin, Michael K.; Harrison, Tyler L.; Factor, Stewart A.; Bliwise, Donald L.

    2013-01-01

    Sleep disturbances are common in many neurodegenerative diseases and may include altered sleep duration, fragmented sleep, nocturia, excessive daytime sleepiness, and vivid dreaming experiences, with occasional parasomnias. Although representing the “gold standard,” polysomnography is not always cost-effective or available for measuring sleep disturbance, particularly for screening. Although numerous sleep-related questionnaires exist, many focus on a specific sleep disturbance (e.g., restles...

  8. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    DEFF Research Database (Denmark)

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian

    2016-01-01

    . This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer's disease (AD), Parkinson's disease (PD), Multiple System Atrophy...

  9. Therapeutic approach to pain in neurodegenerative diseases : current evidence and perspectives

    NARCIS (Netherlands)

    de Tommaso, Marina; Kunz, Miriam; Valeriani, Massimiliano

    Introduction: Neurodegenerative diseases are increasing in parallel to the lengthening of survival. The management of Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD-related disorders, and motor neuron diseases (MND), is mainly targeted to motor and cognitive

  10. The progress of cerebrospinal fluid biomarkers in patients with neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    WANG Wei-zhi

    2013-02-01

    Full Text Available Neurodegenerative diseases include a heterogeneous group of diseases with complicated and overlapped clinical phenotypes. It is difficult to diagnose or identify this kind of disease due to insidious onset and chronic and progressive development. Since processes in the brain can be monitored by analysis of cerebrospinal fluid (CSF, abundant research efforts focus on the efficacy of biomarkers in CSF to indicate specific neurodegenerative lesions and to assist the diagnosis process, assessing whether one biomarker or several biomarkers together could be the reliable tools for diagnosis of specific neurodegenerative diseases. This article mainly reviews the research status and supplementary value in diagnosis and differentiation of CSF biomarkers in common degenerative diseases [e.g. multiple sclerosis (MS, Alzheimer's disease (AD, Parkinson's disease (PD, amyotrophic lateral sclerosis (ALS].

  11. A Neurodegenerative Disease Sleep Questionnaire: principal component analysis in Parkinson's disease.

    Science.gov (United States)

    Scullin, Michael K; Harrison, Tyler L; Factor, Stewart A; Bliwise, Donald L

    2014-01-15

    Sleep disturbances are common in many neurodegenerative diseases and may include altered sleep duration, fragmented sleep, nocturia, excessive daytime sleepiness, and vivid dreaming experiences, with occasional parasomnias. Although representing the "gold standard," polysomnography is not always cost-effective or available for measuring sleep disturbance, particularly for screening. Although numerous sleep-related questionnaires exist, many focus on a specific sleep disturbance (e.g., restless legs, REM Behavior Disorder) and do not capture efficiently the variety of sleep issues experienced by such patients. We administered the 12-item Neurodegenerative Disease Sleep Questionnaire (NDSQ) and the Epworth Sleepiness Scale to 145 idiopathic Parkinson's disease patients. Principal component analysis using eigenvalues greater than 1 suggested five separate components: sleep quality (e.g., sleep fragmentation), nocturia, vivid dreams/nightmares, restless legs symptoms, and sleep-disordered breathing. These results demonstrate construct validity of our sleep questionnaire and suggest that the NDSQ may be a useful screening tool for sleep disturbances in at least some types of neurodegenerative disorders. © 2013.

  12. There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases

    Science.gov (United States)

    Paillusson, Sebastien; Stoica, Radu; Gomez-Suaga, Patricia; Lau, Dawn H.W.; Mueller, Sarah; Miller, Tanya; Miller, Christopher C.J.

    2016-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or ‘MAM’). Moreover, several recent studies have shown that disturbances to ER–mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings. PMID:26899735

  13. There's Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Paillusson, Sebastien; Stoica, Radu; Gomez-Suaga, Patricia; Lau, Dawn H W; Mueller, Sarah; Miller, Tanya; Miller, Christopher C J

    2016-03-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Nanoparticles and Colloids as Contributing Factors in Neurodegenerative Disease

    Science.gov (United States)

    Bondy, Stephen C.

    2011-01-01

    This review explores the processes underlying the deleterious effects of the presence of insoluble or colloidal depositions within the central nervous system. These materials are chemically unreactive and can have a prolonged residence in the brain. They can be composed of mineral or proteinaceous materials of intrinsic or exogenous origin. Such nanoparticulates and colloids are associated with a range of slow-progressing neurodegenerative states. The potential common basis of toxicity of these materials is discussed. A shared feature of these disorders involves the appearance of deleterious inflammatory changes in the CNS. This may be due to extended and ineffective immune responses. Another aspect is the presence of excess levels of reactive oxygen species within the brain. In addition with their induction by inflammatory events, these may be further heightened by the presence of redox active transition metals to the large surface area afforded by nanoparticles and amphipathic micelles. PMID:21776226

  15. Is Modulation of Oxidative Stress an Answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Valerio Chiurchiù

    2016-01-01

    Full Text Available The central nervous system is particularly sensitive to oxidative stress due to many reasons, including its high oxygen consumption even under basal conditions, high production of reactive oxygen and nitrogen species from specific neurochemical reactions, and the increased deposition of metal ions in the brain with aging. For this reason, along with inflammation, oxidative stress seems to be one of the main inducers of neurodegeneration, causing excitotoxicity, neuronal loss, and axonal damage, ultimately being now considered a key element in the onset and progression of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and hereditary spastic paraplegia. Thus, the present paper reviews the role of oxidative stress and of its mechanistic insights underlying the pathogenesis of these neurodegenerative diseases, with particular focus on current studies on its modulation as a potential and promising therapeutic strategy.

  16. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    J. Thomas

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia.

  17. The potential of microRNAs as biofluid markers of neurodegenerative diseases – a systematic review

    DEFF Research Database (Denmark)

    Danborg, Pia B; Simonsen, Anja H; Waldemar, Gunhild

    2014-01-01

    MicroRNAs (miRNA) are biological molecules transcribed from non-protein coding regions of the genome, participating in regulating cellular processes. MiRNAs in biofluids may possess neurodegenerative disease biomarker potential for screening tests, differential diagnosis and disease progression...... monitoring. This systematic review clarifies biomarker potential of miRNAs detected in biofluids of neurodegenerative disease patients. Thirty-three and ten miRNAs displayed significant expression between patients with multiple sclerosis and Alzheimer's disease, respectively, compared to healthy controls...

  18. Proline-rich polypeptides in Alzheimer's disease and neurodegenerative disorders - Therapeutic potential or a mirage?

    NARCIS (Netherlands)

    Gladkevich, A.; Bosker, F.; Korf, J.; Yenkoyan, K.; Vahradyan, H.; Aghajanov, M.

    2007-01-01

    The development of effective and safe drugs for a growing Alzheimer disease population is an increasing need at present. Both experimental and clinical evidence support a beneficial effect of proline-rich polypeptides in a number of neurodegenerative diseases, including Alzheimer disease.

  19. PET Imaging of the Peripheral Benzodiazepine Receptor : Monitoring Disease Progression and Therapy Response in Neurodegenerative Disorders

    NARCIS (Netherlands)

    Doorduin, Janine; de Vries, Erik F. J.; Dierckx, Rudi A.; Klein, Hans C.

    2008-01-01

    It is important to gain more insight into neurodegenerative diseases, because these debilitating diseases can not be cured. A common characteristic of many neurological diseases is neuroinflammation, which is accompanied by the presence of activated microglia cells. In activated microglia cells, an

  20. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review.

    Science.gov (United States)

    Wajda, Douglas A; Mirelman, Anat; Hausdorff, Jeffrey M; Sosnoff, Jacob J

    2017-03-01

    Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.

  1. Niemann-Pick C disease gene mutations and age-related neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Michael Zech

    Full Text Available Niemann-Pick type C (NPC disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95% or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD, frontotemporal lobar degeneration (FTLD and progressive supranuclear palsy (PSP, and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563, FTLD (n = 133 and PSP (n = 94, and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1% and seven control subjects (0.8%, but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted.

  2. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases.

    Science.gov (United States)

    Penke, Botond; Fülöp, Lívia; Szűcs, Mária; Frecska, Ede

    2017-05-28

    Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure . The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. Sig-1R agonists have been used in the treatment of different neurodegenerative diseases e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder.

    Science.gov (United States)

    Postuma, R B; Gagnon, J F; Vendette, M; Fantini, M L; Massicotte-Marquez, J; Montplaisir, J

    2009-04-14

    Idiopathic REM sleep behavior disorder (RBD) is a potential preclinical marker for the development of neurodegenerative diseases, particularly Parkinson disease (PD) and Lewy body dementia. However, the long-term risk of developing neurodegeneration in patients with idiopathic RBD has not been established. Obtaining an accurate picture of this risk is essential for counseling patients and for development of potential neuroprotective therapies. We conducted a follow-up study of all patients seen at the sleep disorders laboratory at the Hôpital du Sacré Coeur with a diagnosis of idiopathic RBD. Diagnoses of parkinsonism and dementia were defined according to standard criteria. Survival curves were constructed to estimate the 5-, 10-, and 12-year risk of developing neurodegenerative disease. Of 113 patients, 93 (82%) met inclusion criteria. The mean age of participants was 65.4 years and 75 patients (80.4%) were men. Over the follow-up period, 26/93 patients developed a neurodegenerative disorder. A total of 14 patients developed PD, 7 developed Lewy body dementia, 4 developed dementia that met clinical criteria for AD, and 1 developed multiple system atrophy. The estimated 5-year risk of neurodegenerative disease was 17.7%, the 10-year risk was 40.6%, and the 12-year risk was 52.4%. Although we have found a slightly lower risk than other reports, the risk of developing neurodegenerative disease in idiopathic REM sleep behavior disorder is substantial, with the majority of patients developing Parkinson disease and Lewy body dementia.

  4. Non-coding RNA and pseudogenes in neurodegenerative diseases: “The (un)Usual Suspects”

    OpenAIRE

    Costa, Valerio; Esposito, Roberta; Aprile, Marianna; Ciccodicola, Alfredo

    2012-01-01

    Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair, and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration. Alteration in regulatory networks affecting gene expression contribute to human diseases onset, includi...

  5. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  6. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    OpenAIRE

    Swerdlow, Russell H.

    2011-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.

  7. Research progress on the pathogenesis of rapid eye movement sleep behavior disorder and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hai-yang JIANG

    2017-10-01

    Full Text Available Rapid eye movement sleep behavior disorder (RBD is a sleep disorder characterized by the disappearance of muscle relaxation and enacting one's dreams during rapid eye movement (REM, with most of the dreams being violent or aggressive. Prevalence of RBD, based on population, is 0.38%-2.01%, but it becomes much higher in patients with neurodegenerative diseases, especially α - synucleinopathies. RBD may herald the emergence of α-synucleinopathies by decades, thus it may be used as an effective early marker of neurodegenerative diseases. In this review, we summarized the progress on the pathogenesis of RBD and its relationship with neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2017.10.003

  8. Potential Impact of Geomagnetic Field in Transcranial Magnetic Stimulation for the Treatment of Neurodegenerative Diseases.

    Science.gov (United States)

    Chae, Kwon-Seok; Kim, Yong-Hwan

    2017-01-01

    Throughout the long history of various therapeutic trials of transcranial magnetic stimulation (TMS), some TMS protocols have been reported to be clearly effective in the treatment of neurodegenerative diseases. Despite promising results from repetitive TMS (rTMS) using low frequency electromagnetic fields (EMFs) for neurodegenerative diseases, the low reproducibility has hampered the clinical applications of rTMS. Here, based on the notion of radical pair mechanism explaining magnetoreception in living organisms, we propose a new perspective that rTMS with controlled geomagnetic field (rTMS-GMF) can be an efficient and reproducible therapeutic approach for neurodegenerative diseases. In addition, combined consideration of imprinted GMF and/or EMFs in patients' earlier life may augment the potential efficacy of the rTMS-GMF. The investigation of this approach is intriguing and may have a high impact on the technical suitability and clinical application of the rTMS-GMF in the near future.

  9. Potential Impact of Geomagnetic Field in Transcranial Magnetic Stimulation for the Treatment of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Kwon-Seok Chae

    2017-09-01

    Full Text Available Throughout the long history of various therapeutic trials of transcranial magnetic stimulation (TMS, some TMS protocols have been reported to be clearly effective in the treatment of neurodegenerative diseases. Despite promising results from repetitive TMS (rTMS using low frequency electromagnetic fields (EMFs for neurodegenerative diseases, the low reproducibility has hampered the clinical applications of rTMS. Here, based on the notion of radical pair mechanism explaining magnetoreception in living organisms, we propose a new perspective that rTMS with controlled geomagnetic field (rTMS-GMF can be an efficient and reproducible therapeutic approach for neurodegenerative diseases. In addition, combined consideration of imprinted GMF and/or EMFs in patients’ earlier life may augment the potential efficacy of the rTMS-GMF. The investigation of this approach is intriguing and may have a high impact on the technical suitability and clinical application of the rTMS-GMF in the near future.

  10. [Sleep disorder, a potential early diagnostic marker for psychiatric and neurodegenerative diseases].

    Science.gov (United States)

    Chen, Yan-Mei; Qin, Dong-Dong; Jiang, Hui-Hui; Hu, Xin-Tian; Ma, Yuan-Ye

    2011-02-01

    Sleep/circadian timing depends on several neurotransmitter systems, including 5-HT, NE, DA, Ach, GABA, etc. These neurotransmitter systems play critical roles in mental, emotional and cognitive functions in the brain. Dysfunctions of these systems not only result in sleep disorder, but are also related to many psychiatric and neurodegenerative diseases. Sleep disruption is tightly associated with an increased susceptibility to a broad range of psychiatric and neurodegenerative diseases, such as depression and Parkinson diseases. Non-human primates, especially the rhesus monkey is an excellent biomedical model for human sleep and CNS diseases. Establishing nonhuman primates' model of mental disorders and monitoring the sleep changes during the development of the model will help us to know more about the relationships between sleep disorder and psychiatric and neurodegenerative diseases. Sleep disorder as an early marker for psychiatric and neurodegenerative diseases would permit early intervention of these diseases and draw attention to the potential therapeutic benefits of normalizing sleep rhythms in individuals with brain pathologies.

  11. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease.

    Science.gov (United States)

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Dubois, Evelyn; Hobert, Markus A; Müller vom Hagen, Jennifer; Krüger, Stefanie; Biskup, Saskia; Blauwendraat, Cornelis; Hruscha, Michael; Kaeser, Stephan A; Heutink, Peter; Maetzler, Walter; Synofzik, Matthis

    2016-01-01

    Altered progranulin levels play a major role in neurodegenerative diseases, like Alzheimer's dementia (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), even in the absence of GRN mutations. Increasing progranulin levels could hereby provide a novel treatment strategy. However, knowledge on progranulin regulation in neurodegenerative diseases remains limited. We here demonstrate that cerebrospinal fluid progranulin levels do not correlate with its serum levels in AD, FTD and ALS, indicating a differential regulation of its central and peripheral levels in neurodegeneration. Blood progranulin levels thus do not reliably predict central nervous progranulin levels and their response to future progranulin-increasing therapeutics.

  12. Lack of miRNA misregulation at early pathological stages in Drosophila neurodegenerative disease models

    Directory of Open Access Journals (Sweden)

    Anita eReinhardt

    2012-10-01

    Full Text Available Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year old Europeans or Parkinson disease (PD, 1.4% prevalence for > 55 years old share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence and frontotemporal lobar degeneration (FTLD, 0.02% prevalence, a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs, a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for 7 diseases (PD, 3 FTLD, 3 dominant ataxias that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non coding CAG repeat RNAs (sCAG in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.

  13. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.

    Science.gov (United States)

    Ke, Zhipeng; Zhang, Xinzhuang; Cao, Zeyu; Ding, Yue; Li, Na; Cao, Liang; Wang, Tuanjie; Zhang, Chenfeng; Ding, Gang; Wang, Zhenzhong; Xu, Xiaojie; Xiao, Wei

    2016-03-01

    Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others.

    Science.gov (United States)

    Fernández-Ruiz, Javier; Romero, Julián; Ramos, José A

    2015-01-01

    This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.

  15. Differential diagnosis of neurodegenerative diseases using structural MRI data

    DEFF Research Database (Denmark)

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti

    2016-01-01

    in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric...... of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features...... individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images...

  16. Building an integrated neurodegenerative disease database at an academic health center.

    Science.gov (United States)

    Xie, Sharon X; Baek, Young; Grossman, Murray; Arnold, Steven E; Karlawish, Jason; Siderowf, Andrew; Hurtig, Howard; Elman, Lauren; McCluskey, Leo; Van Deerlin, Vivianna; Lee, Virginia M-Y; Trojanowski, John Q

    2011-07-01

    It is becoming increasingly important to study common and distinct etiologies, clinical and pathological features, and mechanisms related to neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. These comparative studies rely on powerful database tools to quickly generate data sets that match diverse and complementary criteria set by them. In this article, we present a novel integrated neurodegenerative disease (INDD) database, which was developed at the University of Pennsylvania (Penn) with the help of a consortium of Penn investigators. Because the work of these investigators are based on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration, it allowed us to achieve the goal of developing an INDD database for these major neurodegenerative disorders. We used the Microsoft SQL server as a platform, with built-in "backwards" functionality to provide Access as a frontend client to interface with the database. We used PHP Hypertext Preprocessor to create the "frontend" web interface and then used a master lookup table to integrate individual neurodegenerative disease databases. We also present methods of data entry, database security, database backups, and database audit trails for this INDD database. Using the INDD database, we compared the results of a biomarker study with those using an alternative approach by querying individual databases separately. We have demonstrated that the Penn INDD database has the ability to query multiple database tables from a single console with high accuracy and reliability. The INDD database provides a powerful tool for generating data sets in comparative studies on several neurodegenerative diseases. Copyright © 2011 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Phytochemicals That Regulate Neurodegenerative Disease by Targeting Neurotrophins: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Ramu Venkatesan

    2015-01-01

    Full Text Available Alzheimer’s disease (AD, characterized by progressive dementia and deterioration of cognitive function, is an unsolved social and medical problem. Age, nutrition, and toxins are the most common causes of AD. However, currently no credible treatment is available for AD. Traditional herbs and phytochemicals may delay its onset and slow its progression and also allow recovery by targeting multiple pathological causes by antioxidative, anti-inflammatory, and antiamyloidogenic properties. They also regulate mitochondrial stress, apoptotic factors, free radical scavenging system, and neurotrophic factors. Neurotrophins such as BDNF, NGF, NT3, and NT4/5 play a vital role in neuronal and nonneuronal responses to AD. Neurotrophins depletion accelerates the progression of AD and therefore, replacing such neurotrophins may be a potential treatment for neurodegenerative disease. Here, we review the phytochemicals that mediate the signaling pathways involved in neuroprotection specifically neurotrophin-mediated activation of Trk receptors and members of p75NTR superfamily. We focus on representative phenolic derivatives, iridoid glycosides, terpenoids, alkaloids, and steroidal saponins as regulators of neurotrophin-mediated neuroprotection. Although these phytochemicals have attracted attention owing to their in vitro neurotrophin potentiating activity, their in vivo and clinical efficacy trials has yet to be established. Therefore, further research is necessary to prove the neuroprotective effects in preclinical models and in humans.

  18. Non-coding RNA and pseudogenes in neurodegenerative diseases: "The (un)Usual Suspects".

    Science.gov (United States)

    Costa, Valerio; Esposito, Roberta; Aprile, Marianna; Ciccodicola, Alfredo

    2012-01-01

    Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair, and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration. Alteration in regulatory networks affecting gene expression contribute to human diseases onset, including neurodegenerative disorders, and deregulation of non-coding RNAs - particularly microRNAs (miRNAs) - is supposed to have a significant impact. Recently, competitive endogenous RNAs (ceRNAs) - acting as sponges - have been identified in cancer, indicating a new and intricate regulatory network. Given that neurodegenerative disorders and cancer share altered genes and pathways, and considering the emerging role of miRNAs in neurogenesis, we hypothesize ceRNAs may be implicated in neurodegenerative diseases. Here we propose, and computationally predict, such regulatory mechanism may be shared between the diseases. It is predictable that similar regulation occurs in other complex diseases, and further investigation is needed.

  19. Non-coding RNA and pseudogenes in neurodegenerative diseases: "The (unUsual Suspects"

    Directory of Open Access Journals (Sweden)

    Valerio eCosta

    2012-10-01

    Full Text Available Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration.Alteration in regulatory networks affecting gene expression contribute to human diseases' onset, including neurodegenerative disorders, and deregulation of non-coding RNAs - particularly microRNAs - is supposed to have a significant impact.Recently, competitive endogenous RNAs - acting as sponges - have been identified in cancer, indicating a new and intricate regulatory network. Given that neurodegenerative disorders and cancer share altered genes and pathways, and considering the emerging role of microRNAs in neurogenesis, we hypothesize competitive endogenous RNAs may be implicated in neurodegenerative diseases. Here we propose, and computationally predict, such regulatory mechanism may be shared between the diseases. It is predictable that similar regulation occurs in other complex diseases, and further investigation is needed.

  20. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    Science.gov (United States)

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...

  2. Memory in neurodegenerative disease: biological, cognitive, and clinical perspectives

    National Research Council Canada - National Science Library

    Tröster, Alexander I

    1998-01-01

    ... disease: contributions from comparative neuropsychology  -    3 2 Nonprimate animal models of motor and cognitive dysfunction...

  3. [The neuropathology of sleep in human neurodegenerative diseases].

    Science.gov (United States)

    Hauw, J-J; Hausser-Hauw, C; Hasboun, D; Seilhean, D

    2008-01-01

    The neuropathology of human sleep remains an ill-defined issue. The data concerning the main structures of human brain areas involved, or supposed to be implicated, in sleep organisation are reviewed. Five levels of organisation can be schematically recognized: (i) the ascending arousal system, (ii) the non REM and REM systems (iii) regulated by hypothalamic areas, (iv) and the biological clock, (v) modulated by a number of "allostatic" influences. These are briefly described, with emphasis on the location of structures involved in humans, and on the recently revised concepts. Current knowledge on the topography of lesions associated with the main sleep disorders in degenerative diseases is recalled, including REM sleep behavior disorders, restless legs syndrome and periodic leg movements, sleep apneas, insomnia, excessive daily sleepiness, secondary narcolepsy and disturbed sleep-wake rhythms. The lesions of sleep related structures observed in early and late stages of four degenerative diseases are then reviewed. Two synucleinopathies (Lewy lesions associated disorders, including Parkinson's disease and Dementia with Lewy bodies, and Multiple System Atrophy) and two tauopathies (Progressive Supranuclear Palsy and Alzheimer's disease) are dealt with. The distribution of lesions usually found in affected patients fit with that expected from the prevalence of different sleep disorders in these diseases. This confirms the current opinion that these disorders depend on the distribution of lesions rather than on their biochemical nature. Further studies might throw insight on the mechanism of normal and pathological sleep in humans, counterpart of the increasing knowledge provided by animal models. Specially designed prospective clinicopathological studies including peculiar attention to sleep are urgently needed.

  4. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  5. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Graciela Cristina dos Santos

    2009-12-01

    Full Text Available According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10 has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP. The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.De acordo com estudos clínicos e pré-clínicos, o estresse oxidativo e suas conseqüências podem ser a causa, ou, no mínimo, o fator que contribui para grande número de doenças degenerativas. Estas doenças incluem problemas comuns e debilitantes, caracterizados por perda progressiva e irreversível de neurônios em regiões específicas do cérebro. As doenças degenerativas mais comuns são doença de Parkinson, de Hutington, de Alzheimer e esclerose amiotrófica lateral. A Coenzima Q10 (CoQ10 tem sido intensamente estudada desde sua descoberta, em 1957. É um componente da cadeia de transporte eletrônico e participa da respiração aeróbica celular, gerando energia na forma de trifosfato de

  6. Telemedicine multimedia system to support neurodegenerative diseases participatory management.

    Science.gov (United States)

    Menezes Borges, Diogo; Cunha, João Paulo

    2015-01-01

    Parkinson's disease (PD) is a highly prevalent and disabling condition that requires a constant monitoring of patient's condition. Nevertheless, in Portugal appointments with specialist only occur every 6 months and the patient's capability to recall important past events is not always accurate besides often being a misinterpretation of their symptoms. In this paper we present a user-centred process for the design of a multimedia platform for the self-management of PD.

  7. Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease.

    Science.gov (United States)

    Fernández, Maria Victoria; Kim, Jong Hun; Budde, John P; Black, Kathleen; Medvedeva, Alexandra; Saef, Ben; Deming, Yuetiva; Del-Aguila, Jorge; Ibañez, Laura; Dube, Umber; Harari, Oscar; Norton, Joanne; Chasse, Rachel; Morris, John C; Goate, Alison; Cruchaga, Carlos

    2017-11-01

    Alzheimer disease (AD), Frontotemporal lobar degeneration (FTD), Amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD) have a certain degree of clinical, pathological and molecular overlap. Previous studies indicate that causative mutations in AD and FTD/ALS genes can be found in clinical familial AD. We examined the presence of causative and low frequency coding variants in the AD, FTD, ALS and PD Mendelian genes, in over 450 families with clinical history of AD and over 11,710 sporadic cases and cognitive normal participants from North America. Known pathogenic mutations were found in 1.05% of the sporadic cases, in 0.69% of the cognitively normal participants and in 4.22% of the families. A trend towards enrichment, albeit non-significant, was observed for most AD, FTD and PD genes. Only PSEN1 and PINK1 showed consistent association with AD cases when we used ExAC as the control population. These results suggest that current study designs may contain heterogeneity and contamination of the control population, and that current statistical methods for the discovery of novel genes with real pathogenic variants in complex late onset diseases may be inadequate or underpowered to identify genes carrying pathogenic mutations.

  8. Content analysis of neurodegenerative and mental diseases social groups.

    Science.gov (United States)

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; Bargiela-Flórez, Beatriz; López-Coronado, Miguel; Rodrigues, Joel J P C

    2015-12-01

    This article aims to characterize the different types of Facebook and Twitter groups for different mental diseases, their purposes, and their functions. We focused the search on depressive disorders, dementia, and Alzheimer's and Parkinson's diseases and examined the Facebook (www.facebook.com) and Twitter (www.twitter.com) groups. We used four assessment criteria: (1) purpose, (2) type of creator, (3) telehealth content, and (4) free-text responses in surveys and interviews. We observed a total of 357 Parkinson groups, 325 dementia groups, 853 Alzheimer groups, and 1127 depression groups on Facebook and Twitter. Moreover, we analyze the responses provided by different users. The survey and interview responses showed that many people were interested in using social networks to support and help in the fight against these diseases. The results indicate that social networks are acceptable by users in terms of simplicity and utility. People use them for finding support, information, self-help, advocacy and awareness, and for collecting funds. © The Author(s) 2014.

  9. Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials.

    Science.gov (United States)

    Zhang, Wei; Chen, Xue-yan; Su, Su-wen; Jia, Qing-zhong; Ding, Tao; Zhu, Zhong-ning; Zhang, Tong

    2016-01-01

    The purpose of this work is to investigate the efficacy of exogenous melatonin in the treatment of sleep disorders in patients with neurodegenerative disease. We searched Pubmed, the Cochrane Library, and ClinicalTrials.gov, from inception to July 2015. We included randomized clinical trials (RCTs) that compared melatonin with placebo and that had the primary aim of improving sleep in people with neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). We pooled data with the weighted mean difference in sleep outcomes. To assess heterogeneity in results of individual studies, we used Cochran's Q statistic and the I (2) statistic. 9 RCTs were included in this research. We found that the treatment with exogenous melatonin has positive effects on sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) in PD patients (MD: 4.20, 95 % CI: 0.92-7.48; P = 0.01), and by changes in PSQI component 4 in AD patients (MD: 0.67, 95 % CI: 0.04-1.30; P = 0.04), but not on objective sleep outcomes in both AD and PD patients. Treatment with melatonin effectively improved the clinical and neurophysiological aspects of rapid eye movement (REM) sleep behavior disorder (RBD), especially elderly individuals with underlying neurodegenerative disorders. This meta-analysis provided some evidence that melatonin improves sleep quality in patients with AD and PD, and melatonin can be considered as a possible sole or add-on therapy in neurodegenerative disorders patients with RBD.

  10. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease

    NARCIS (Netherlands)

    Waters, Flavie; Collerton, Daniel; Ffytche, Dominic H.; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Laroi, Frank

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding

  11. NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases

    NARCIS (Netherlands)

    Nalls, Mike A.; Bras, Jose; Hernandez, Dena G.; Keller, Margaux F.; Majounie, Elisa; Renton, Alan E.; Saad, Mohamad; Jansen, Iris; Guerreiro, Rita; Lubbe, Steven; Plagnol, Vincent; Gibbs, J. Raphael; Schulte, Claudia; Pankratz, Nathan; Sutherland, Margaret; Bertram, Lars; Lill, Christina M.; DeStefano, Anita L.; Faroud, Tatiana; Eriksson, Nicholas; Tung, Joyce Y.; Edsall, Connor; Nichols, Noah; Brooks, Janet; Arepalli, Sampath; Pliner, Hannah; Letson, Chris; Heutink, Peter; Martinez, Maria; Gasser, Thomas; Traynor, Bryan J.; Wood, Nick; Hardy, John; Singleton, Andrew B.; Sharma, Manu; Sheerin, Una-Marie; Simón-Sánchez, Javier; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Goate, Alison; Gray, Emma; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; O'Sullivan, Sean S.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Wood, Nicholas W.; Brice, Alexis; Pilner, Hannah; Factor, S.; Higgins, D.; Evans, S.; Shill, H.; Stacy, M.; Danielson, J.; Marlor, L.; Williamson, K.; Jankovic, J.; Hunter, C.; Simon, D.; Ryan, P.; Scollins, L.; Saunders-Pullman, R.; Boyar, K.; Costan-Toth, C.; Ohmann, E.; Sudarsky, L.; Joubert, C.; Friedman, J.; Chou, K.; Fernandez, H.; Lannon, M.; Galvez-Jimenez, N.; Podichetty, A.; Thompson, K.; Lewitt, P.; Deangelis, M.; O'Brien, C.; Seeberger, L.; Dingmann, C.; Judd, D.; Marder, K.; Fraser, J.; Harris, J.; Bertoni, J.; Peterson, C.; Rezak, M.; Medalle, G.; Chouinard, S.; Panisset, M.; Hall, J.; Poiffaut, H.; Calabrese, V.; Roberge, P.; Wojcieszek, J.; Belden, J.; Jennings, D.; Marek, K.; Mendick, S.; Reich, S.; Dunlop, B.; Jog, M.; Horn, C.; Uitti, R.; Turk, M.; Ajax, T.; Mannetter, J.; Sethi, K.; Carpenter, J.; Dill, B.; Hatch, L.; Ligon, K.; Narayan, S.; Blindauer, K.; Abou-Samra, K.; Petit, J.; Elmer, L.; Aiken, E.; Davis, K.; Schell, C.; Wilson, S.; Velickovic, M.; Koller, W.; Phipps, S.; Feigin, A.; Gordon, M.; Hamann, J.; Licari, E.; Marotta-Kollarus, M.; Shannon, B.; Winnick, R.; Simuni, T.; Videnovic, A.; Kaczmarek, A.; Williams, K.; Wolff, M.; Rao, J.; Cook, M.; Fernandez, M.; Kostyk, S.; Hubble, J.; Campbell, A.; Reider, C.; Seward, A.; Camicioli, R.; Carter, J.; Nutt, J.; Andrews, P.; Morehouse, S.; Stone, C.; Mendis, T.; Grimes, D.; Alcorn-Costa, C.; Gray, P.; Haas, K.; Vendette, J.; Sutton, J.; Hutchinson, B.; Young, J.; Rajput, A.; Klassen, L.; Shirley, T.; Manyam, B.; Simpson, P.; Whetteckey, J.; Wulbrecht, B.; Truong, D.; Pathak, M.; Frei, K.; Luong, N.; Tra, T.; Tran, A.; Vo, J.; Lang, A.; Kleiner-Fisman, G.; Nieves, A.; Johnston, L.; So, J.; Podskalny, G.; Giffin, L.; Atchison, P.; Allen, C.; Martin, W.; Wieler, M.; Suchowersky, O.; Furtado, S.; Klimek, M.; Hermanowicz, N.; Niswonger, S.; Shults, C.; Fontaine, D.; Aminoff, M.; Christine, C.; Diminno, M.; Hevezi, J.; Dalvi, A.; Kang, U.; Richman, J.; Uy, S.; Sahay, A.; Gartner, M.; Schwieterman, D.; Hall, D.; Leehey, M.; Culver, S.; Derian, T.; Demarcaida, T.; Thurlow, S.; Rodnitzky, R.; Dobson, J.; Lyons, K.; Pahwa, R.; Gales, T.; Thomas, S.; Shulman, L.; Weiner, W.; Dustin, K.; Singer, C.; Zelaya, L.; Tuite, P.; Hagen, V.; Rolandelli, S.; Schacherer, R.; Kosowicz, J.; Gordon, P.; Werner, J.; Serrano, C.; Roque, S.; Kurlan, R.; Berry, D.; Gardiner, I.; Hauser, R.; Sanchez-Ramos, J.; Zesiewicz, T.; Delgado, H.; Price, K.; Rodriguez, P.; Wolfrath, S.; Pfeiffer, R.; Davis, L.; Pfeiffer, B.; Dewey, R.; Hayward, B.; Johnson, A.; Meacham, M.; Estes, B.; Walker, F.; Hunt, V.; O'Neill, C.; Racette, B.; Swisher, L.; Dijamco, Cheri; Drabant, Emily M.; Dorfman, Elizabeth; Hinds, David A.; Mountain, Joanna L.; Wojcicki, Anne; Lill, Christina; Lew, M.; Klein, C.; Golbe, L.; Mark, M. H.; Growdon, J.; Huggins, N.; Wooten, G. F.; Watts, R.; Guttman, M.; Perlmutter, J.; Goldwurm, S.; Pezzoli, G.; Saint-Hilaire, M. H.; Massood, T.; Baker, K.; Itin, I.; Litvan, I.; Nicholson, G.; Corbett, A.; Nance, M.; Drasby, E.; Isaacson, S.; Burn, D.; Chinnery, P.; Pramstaller, P.; Al-hinti, J.; Moller, A.; Ostergaard, K.; Sherman, S.; Roxburgh, R.; Snow, B.; Slevin, J.; Cambi, F.; Kay, D.; Montimurro, J.; Kusel, V.; Samii, A.; Martinez, E.; Yearout, D.; Agarwal, P.; Griffith, A.; Roberts, J. W.; Higgins, D. S.; Molho, Eric; Rosen, Ami; Clark, L. N.; Liu, X.; Lee, J. H.; Cheng, R.; Louis, E. D.; Cote, L. J.; Waters, C.; Ford, B.; Fahn, S.; Vance, Jeffery M.; Beecham, Gary W.; Martin, Eden R.; Nuytemans, Karen; Pericak-Vance, Margaret A.; Haines, Jonathan L.; DeStefano, Anita; Seshadri, Sudha; Choi, Seung Hoan; Frank, Samuel; Bis, Joshua C.; Psaty, Bruce M.; Rice, Kenneth; Longstreth, W. T.; Ton, Thanh G. N.; Jain, Samay; Ikram, M. Arfan; van Duijn, Cornelia M.; Uitterlinden, Andre; Verlinden, Vincent; Koudstaal, Peter J.; Kara, Eleanna; Xiromerisiou, Georgia; Dardiotis, Efthimios; Tsimourtou, Vana; Spanaki, Cleanthe; Plaitakis, Andreas; Bozi, Maria; Stefanis, Leonidas; Vassilatis, Dimitris; Koutsis, Georgios; Panas, Marios; Houlden, Henry; Hadjigeorgiou, Georgios M.; Lunnon, Katie; Lupton, Michelle; Powell, John; Parkkinen, Laura; Ansorge, Olaf

    2015-01-01

    Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and

  12. AUTOMATIC CLASSIFICATION OF STRUCTURAL MRI FOR DIAGNOSIS OF NEURODEGENERATIVE DISEASES

    Directory of Open Access Journals (Sweden)

    Hernández-Tamames Juan Antonio

    2010-12-01

    Full Text Available This paper presents an automatic approach which classifies structural Magnetic Resonance images into pathological or healthy controls. A classification model was trained to find the boundaries that allow to separate the study groups. The method uses the deformation values from a set of regions, automatically identified as relevant, in a process that selects the statistically significant regions of a t-test under the restriction that this significance must be spatially coherent within a neighborhood of 5 voxels. The proposed method was assessed to distinguish healthy controls from schizophrenia patients. Classification results showed accuracy between 74% and 89%, depending on the stage of the disease and number of training samples.

  13. Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification.

    Science.gov (United States)

    Zhu, Xiaofeng; Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2016-03-01

    The high feature-dimension and low sample-size problem is one of the major challenges in the study of computer-aided Alzheimer's disease (AD) diagnosis. To circumvent this problem, feature selection and subspace learning have been playing core roles in the literature. Generally, feature selection methods are preferable in clinical applications due to their ease for interpretation, but subspace learning methods can usually achieve more promising results. In this paper, we combine two different methodological approaches to discriminative feature selection in a unified framework. Specifically, we utilize two subspace learning methods, namely, linear discriminant analysis and locality preserving projection, which have proven their effectiveness in a variety of fields, to select class-discriminative and noise-resistant features. Unlike previous methods in neuroimaging studies that mostly focused on a binary classification, the proposed feature selection method is further applicable for multiclass classification in AD diagnosis. Extensive experiments on the Alzheimer's disease neuroimaging initiative dataset showed the effectiveness of the proposed method over other state-of-the-art methods.

  14. Enhancing attention in neurodegenerative diseases: current therapies and future directions

    Directory of Open Access Journals (Sweden)

    Sharma Kanchan

    2016-01-01

    Full Text Available We all experience at least occasional lapses in attention but in some neurological conditions, loss of attention is pervasive and debilitating. Treating deficits in attention first requires an understanding of the neurobiology of attention, which we now understand to be a set of different cognitive processes. Cholinesterase inhibitors are already established as effective attentional enhancers used in the treatment of certain dementias. Other stimulant agents such as modafanil, amphetamine and methylphenidate have demonstrated limited success in healthy individuals where attention is already optimal and clinical trials in patients with neurological disease are sparse. Dietary and lifestyle changes are gaining increasing prominence, as are experimental treatments such as deep brain stimulation and transcranial magnetic stimulation. As the therapeutic arsenal widens, clinicians will be able to match specific treatments to selective deficits in attention, giving patients a tailored management plan. Here we review common diseases that impair attention and emphasise how an understanding of attentional processing within the brain might lead to improved therapeutic strategies.

  15. The basics of preclinical drug development for neurodegenerative disease indications

    Directory of Open Access Journals (Sweden)

    Spack Edward G

    2009-06-01

    Full Text Available Abstract Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s. Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot

  16. The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2013-01-01

    Full Text Available Leprosy (also known as Hansen’s disease is an infectious peripheral neurological disorder caused by Mycobacterium leprae that even today leaves millions of individuals worldwide with life-long disabilities. The specific mechanisms by which this bacterium induces nerve injury remain largely unknown, mainly owing to ethical and practical limitations in obtaining affected human nerve samples. In addition to humans, nine-banded armadillos (Dasypus novemcinctus are the only other natural host of M. leprae, and they develop a systemically disseminated disease with extensive neurological involvement. M. leprae is an obligate intracellular parasite that cannot be cultivated in vitro. Because of the heavy burdens of bacilli they harbor, nine-banded armadillos have become the organism of choice for propagating large quantities of M. leprae, and they are now advancing as models of leprosy pathogenesis and nerve damage. Although armadillos are exotic laboratory animals, the recently completed whole genome sequence for this animal is enabling researchers to undertake more sophisticated molecular studies and to develop armadillo-specific reagents. These advances will facilitate the use of armadillos in piloting new therapies and diagnostic regimens, and will provide new insights into the oldest known infectious neurodegenerative disorder.

  17. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23

    NARCIS (Netherlands)

    Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Verbeek, Dineke S.; Kuzmin, Alexander; Nyberg, Fred; Krishtal, Oleg; Sakurada, Shinobu; Bakalkin, Georgy

    We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both

  18. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Martin Hofmann-Apitius

    2015-12-01

    Full Text Available Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI; which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations

  19. Modelling studies on neurodegenerative disease-causing triplet ...

    Indian Academy of Sciences (India)

    Further, at high salt condition, Greek key type quadruplex structures are energetically comparable with hairpin dimer and B-DNA type duplex structures. All tetrads in the quadruplex structures are well stacked and provide favourable stacking energy values. Interestingly, in the energy minimized hairpin dimer and Greek key ...

  20. The role of Thyrotropin Releasing Hormone in aging and neurodegenerative diseases

    Science.gov (United States)

    Daimon, Caitlin M.; Chirdon, Patrick; Maudsley, Stuart; Martin, Bronwen

    2013-01-01

    Thyrotropin releasing hormone (TRH) is primarily known as the central regulator of the hypothalamic-pituitary-thyroid (HPT) axis. However, TRH also exerts a variety of central nervous system effects independent from its activity in the HPT axis. With advancing age, decreases in TRH synthesis, expression, and activity have been demonstrated. Associated with this emerging evidence suggests that TRH is implicated in neurodegenerative diseases of aging, including Alzheimer’s disease and Parkinson’s disease. TRH and its synthetic analogs have been recognized as trophic factors in neurons of the diencephalon and spinal cord, and as neuroprotectants against oxidative stress, glutamate toxicity, caspase-induced cell death, DNA fragmentation, and inflammation. In this review, we will provide an overview of some of the roles of TRH, outside of the HPT axis, associated with pathological aging and neurodegeneration and we shall discuss the potential of TRH and TRH analogs for the treatment of neurodegenerative diseases. PMID:24199031

  1. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases

    DEFF Research Database (Denmark)

    van der Stelt, M.; Veldink, G.A.; Vliegenthart, J.F.G.

    2003-01-01

    Endocannabinoids are thought to function as retrograde messengers, which modulate neurotransmitter release by activating presynaptic cannabinoid receptors. Anandamide and 2-arachidonoylglycerol (2-AG) are the two best studied endogenous lipids which can act as endocannabinoids. Together...... with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been...

  2. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Erica L. Gorenberg

    2017-05-01

    DNAJBs to constitute a disaggregase. Hsp110-related disaggregase activity is present at the synapse and is known to protect against aggregation of proteins such as α-synuclein. Congruent with their importance in the nervous system, mutations of these co-chaperones lead to familial neurodegenerative disease. CSPα mutations cause adult neuronal ceroid lipofuscinosis, while auxilin mutations result in early-onset Parkinson's disease, demonstrating their significance in preservation of the nervous system.

  3. The influence of Na+,K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence

    Directory of Open Access Journals (Sweden)

    Paula Fernanda Kinoshita

    2016-06-01

    Full Text Available Decreased Na+,K+-ATPase (NKA activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β and γ, with four distinct isoforms of the catalytic α subunit (α1-4. Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS, the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2, while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP and alternating hemiplegia of childhood (AHC, as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2/3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP and cGMP‐dependent protein kinase (PKG pathway. Glutamate, through nitric oxide synthase (NOS, cGMP and PKG, stimulates brain α2/3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid‐β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.

  4. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Androutsopoulos, Vasilis P. [Center of Toxicology Science and Research, University of Crete, Heraklion, Crete (Greece); Kanavouras, Konstantinos [Laboratory of Neurological Sciences, University of Crete, Heraklion, Crete (Greece); Tsatsakis, Aristidis M., E-mail: aris@med.uoc.gr [Center of Toxicology Science and Research, University of Crete, Heraklion, Crete (Greece)

    2011-11-15

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  5. Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Tetsuro Tago

    2018-01-01

    Full Text Available Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs, which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET. We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.

  6. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  7. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Science.gov (United States)

    Foucault-Fruchard, Laura; Antier, Daniel

    2017-01-01

    Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist. PMID:29089979

  8. Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases.

    Science.gov (United States)

    Phan, Chia-Wei; David, Pamela; Sabaratnam, Vikineswary

    2017-01-01

    There is an exponential increase in dementia in old age at a global level because of increasing life expectancy. The prevalence of neurodegenerative diseases such as dementia and Alzheimer's disease (AD) will continue to rise steadily, and is expected to reach 42 million cases worldwide in 2020. Despite the advancement of medication, the management of these diseases remains largely ineffective. Therefore, it is vital to explore novel nature-based nutraceuticals to mitigate AD and other age-related neurodegenerative disorders. Mushrooms and their extracts appear to hold many health benefits, including immune-modulating effects. A number of edible mushrooms have been shown to contain rare and exotic compounds that exhibit positive effects on brain cells both in vitro and in vivo. In this review, we summarize the scientific information on edible and culinary mushrooms with regard to their antidementia/AD active compounds and/or pharmacological test results. The bioactive components in these mushrooms and the underlying mechanism of their activities are discussed. In short, these mushrooms may be regarded as functional foods for the mitigation of neurodegenerative diseases.

  9. [Retinal imaging of the macula and optic disc in neurodegenerative diseases].

    Science.gov (United States)

    Turski, G N; Schmitz-Valckenberg, S; Holz, F G; Finger, R P

    2017-02-01

    Due to current demographic trends, the prevalence of mild cognitive impairment and dementia is expected to increase considerably. For potential new therapies it is important to identify patients at risk as early as possible. Currently, there is no population-based screening. Therefore, identification of biomarkers that will help screen the population at risk is urgently needed. Thus, a literature review on retinal pathology in neurodegenerative diseases was performed. PubMed was searched for studies published up to August 2016 using the following keywords: "mild cognitive impairment", "dementia", "eye", "ocular biomarkers", "OCT" and "OCT angiography". Relevant publications were selected and summarized qualitatively. Multiple studies using noninvasive in vivo optical coherence tomography (OCT) imaging showed nonspecific retinal pathological changes in patients with neurodegenerative diseases such as mild cognitive impairment, Alzheimer's and Parkinson's disease. Pathological changes in macular volume, optic nerve fiber layer thickness and the ganglion cell complex were observed. However, based on available evidence, no ocular biomarkers for neurodegeneration which could be integrated in routine clinical diagnostics have been identified. The potential use of OCT in the early diagnostic workup and monitoring of progression of neurodegenerative diseases needs to be further explored in longitudinal studies with large cohorts.

  10. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Laura Foucault-Fruchard

    2017-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.

  11. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  12. The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases.

    Science.gov (United States)

    Iranzo, Alex; Santamaria, Joan; Tolosa, Eduard

    2009-12-01

    REM sleep behavior disorder (RBD) is characterized by vigorous movements associated with unpleasant dreams and increased electromyographic activity during REM sleep. Polysomnography with audiovisual recording is needed to confirm the diagnosis of RBD and to exclude other sleep disorders that can mimic its symptoms including obstructive sleep apnea, nocturnal hallucinations and confusional awakenings. RBD may be idiopathic or related to neurodegenerative diseases, particularly multiple system atrophy, Parkinson's disease and dementia with Lewy bodies. RBD may be the first manifestation of these disorders, antedating the onset of parkinsonism, cerebellar syndrome, dysautonomia, and dementia by several years. RBD should thus be considered an integral part of the disease process. When effective, neuroprotective strategies should be considered in subjects with idiopathic RBD. Patients with other neurodegenerative diseases, though, such as spinocerebellar ataxias, may also present with RBD. When clinically required, clonazepam at bedtime is effective in decreasing the intensity of dream-enacting behaviors and unpleasant dreams in both the idiopathic and secondary forms. When part of a neurodegenerative disorder the development of RBD is thought to reflect the location and extent of the underlying lesions involving the REM sleep centers of the brain (e.g., locus subceruleus, amygdala, etc.), leading to a complex multiple neurotransmitter dysfunction that involves GABAergic, glutamatergic and monoaminergic systems. RBD is mediated neither by direct abnormal alpha-synuclein inclusions nor by striatonigral dopaminergic deficiency alone.

  13. Spreading of pathology in neurodegenerative diseases: a focus on human studies

    Science.gov (United States)

    Brettschneider, Johannes; Del Tredici, Kelly; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2015-01-01

    The progression of many neurodegenerative diseases is thought to be driven by the template-directed misfolding, seeded aggregation and cell–cell transmission of characteristic disease-related proteins, leading to the sequential dissemination of pathological protein aggregates. Recent evidence strongly suggests that the anatomical connections made by neurons — in addition to the intrinsic characteristics of neurons, such as morphology and gene expression profile — determine whether they are vulnerable to degeneration in these disorders. Notably, this common pathogenic principle opens up opportunities for pursuing novel targets for therapeutic interventions for these neurodegenerative disorders. We review recent evidence that supports the notion of neuron–neuron protein propagation, with a focus on neuropathological and positron emission tomography imaging studies in humans. PMID:25588378

  14. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Suk-yu Yau

    2014-01-01

    Full Text Available Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain.

  15. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    Science.gov (United States)

    Yau, Suk-yu; Christie, Brian R.; So, Kwok-fai

    2014-01-01

    Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain. PMID:24818140

  16. Ethical Perspectives on Stem Cell-based Cellular Therapies for Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Ebbesen, Mette; Pedersen, Finn Skou; Andersen, Svend

    2012-01-01

    effects, equitable access of patients to clinical trials, and adequate compensation should be paid to research subjects or patients. We clarify that the related ethical principles are respect for autonomy, beneficence, nonmaleficence, and justice and that the ethical theory of the American ethicists Tom L....... Beauchamp and James F. Childress is based on these principles. We show that this theory is useful for analyzing complex ethical cases of biomedicine by using cellular therapy for neurodegenerative diseases as a model system. We go through the three steps in an ethical case analysis using Beauchamp...... and Childress’ principles. We explain that the ethical issues of using stem cells for therapies for neurodegenerative diseases often referred to in the literature are related to the moral status of the blastocyst and the developing embryo. We believe that these are to be seen as potential human life...

  17. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2017-07-01

    Full Text Available Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities.

  18. Well-defined polyglutamates as carriers for the treatment of neurodegenerative diseases

    OpenAIRE

    Duro Castaño, Aroa

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative multiple process of the central nervous system, which currently represents the most common cost of Dementia. The already high incidence of AD is predicted to dramatically increase over the years. In fact, the experts claim that it will become a global epidemy by 2050. Consequently, direct and indirect costs related to AD are doomed to dramatically increase. For instance, only in America, AD related burden will overcome the trillion of dollars by...

  19. Head trauma in sport and neurodegenerative disease: an issue whose time has come?

    Science.gov (United States)

    Pearce, Neil; Gallo, Valentina; McElvenny, Damien

    2015-03-01

    A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease.

    Directory of Open Access Journals (Sweden)

    Marcelina Malinowska

    Full Text Available BACKGROUND: Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. METHODOLOGY/PRINCIPAL FINDINGS: We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. CONCLUSIONS/SIGNIFICANCE: Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases.

  1. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases.

    Science.gov (United States)

    Rice, Claire M; Kemp, Kevin; Wilkins, Alastair; Scolding, Neil J

    2013-10-05

    Multiple sclerosis is a major cause of neurological disability, and particularly occurs in young adults. It is characterised by conspicuous patches of damage throughout the brain and spinal cord, with loss of myelin and myelinating cells (oligodendrocytes), and damage to neurons and axons. Multiple sclerosis is incurable, but stem-cell therapy might offer valuable therapeutic potential. Efforts to develop stem-cell therapies for multiple sclerosis have been conventionally built on the principle of direct implantation of cells to replace oligodendrocytes, and therefore to regenerate myelin. Recent progress in understanding of disease processes in multiple sclerosis include observations that spontaneous myelin repair is far more widespread and successful than was previously believed, that loss of axons and neurons is more closely associated with progressive disability than is myelin loss, and that damage occurs diffusely throughout the CNS in grey and white matter, not just in discrete, isolated patches or lesions. These findings have introduced new and serious challenges that stem-cell therapy needs to overcome; the practical challenges to achieve cell replacement alone are difficult enough, but, to be useful, cell therapy for multiple sclerosis must achieve substantially more than the replacement of lost oligodendrocytes. However, parallel advances in understanding of the reparative properties of stem cells--including their distinct immunomodulatory and neuroprotective properties, interactions with resident or tissue-based stem cells, cell fusion, and neurotrophin elaboration--offer renewed hope for development of cell-based therapies. Additionally, these advances suggest avenues for translation of this approach not only for multiple sclerosis, but also for other common neurological and neurodegenerative diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A knowledge based approach to matching human neurodegenerative disease and animal models

    Directory of Open Access Journals (Sweden)

    Maryann E Martone

    2013-05-01

    Full Text Available Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology and an associated Phenotype Knowledge Base using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework and qualities are drawn from the Phenotype and Trait Ontology. We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal

  3. Mevalonate Cascade and Neurodevelopmental and Neurodegenerative Diseases: Future Targets for Therapeutic Application.

    Science.gov (United States)

    Jiao, Xiaodan; Ashtari, Niloufar; Rahimi-Balaei, Maryam; Chen, Qi Min; Badbezanchi, Ilnaz; Shojaei, Shahla; Marzban, Adel; Mirzaei, Nima; Chung, Seunghyuk; Guan, Teng; Li, Jiasi; Vriend, Jerry; Mehr, Shahram Ejtemaei; Kong, Jiming; Marzban, Hassan

    2017-01-01

    The mevalonate cascade is a key metabolic pathway that regulates a variety of cellular functions and is thereby implicated in the pathophysiology of most brain diseases, including neurodevelopmental and neurodegenerative disorders. Emerging lines of evidence suggest that statins and Rho GTPase inhibitors are efficacious and have advantageous properties in treatment of different pathologic conditions that are relevant to the central nervous system. Beyond the original role of statins in lowering cholesterol synthesis, they have anti-inflammatory, antioxidant and modulatory effects on signaling pathways. Additionally, Rho GTPase inhibitors and statins share the mevalonate pathway as a common target of their therapeutic actions. In this review, we discuss potential mechanisms through which these drugs, via their role in the mevalonate pathway, exert their neuroprotective effects in neurodegenerative and neurodevelopmental disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    Directory of Open Access Journals (Sweden)

    Afroza Khanam Irin

    2015-01-01

    Full Text Available Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL. This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson’s disease (PD and Multiple Sclerosis (MS.

  5. Benefits, pitfalls, and future design of population-based registers in neurodegenerative disease.

    Science.gov (United States)

    Rooney, James P K; Brayne, Carol; Tobin, Katy; Logroscino, Giancarlo; Glymour, M Maria; Hardiman, Orla

    2017-06-13

    Population-based disease registers identify and characterize all cases of disease, including those that might otherwise be neglected. Prospective population-based registers in neurodegeneration are necessary to provide comprehensive data on the whole phenotypic spectrum and can guide planning of health services. With the exception of the rare disease amyotrophic lateral sclerosis, few complete population-based registers exist for neurodegenerative conditions. Incomplete ascertainment, limitations and uncertainty in diagnostic categorization, and failure to recognize sources of bias reduce the accuracy and usefulness of many registers. Common biases include population stratification, the use of prevalent rather than incident cases in earlier years, changes in disease understanding and diagnostic criteria, and changing demographics over time. Future registers are at risk of funding shortfalls and changes to privacy legislation. Notwithstanding, as heterogeneities of clinical phenotype and disease pathogenesis are increasingly recognized in the neurodegenerations, well-designed longitudinal population-based disease registers will be an essential requirement to complete clinical understanding of neurodegenerative diseases. © 2017 American Academy of Neurology.

  6. The Role of Macropinocytosis in the Propagation of Protein Aggregation Associated with Neurodegenerative Diseases.

    Directory of Open Access Journals (Sweden)

    Rafaa eZeineddine

    2015-10-01

    Full Text Available With the onset of the rapidly ageing population, the impact of age related neurodegenerative diseases is becoming a predominant health and economic concern. Neurodegenerative diseases such as Alzheimer’s disease, Creutzfeldt-Jakob disease, Parkinson’s disease, Huntington’s disease, frontotemporal dementia and amyotrophic lateral sclerosis result from the loss of a specific subsets of neurons, which is closely associated with accumulation and deposition of specific protein aggregates. Protein aggregation, or fibril formation, is a well-studied phenomenon that occurs in a nucleation-dependent growth reaction. Recently, there has been a swell of literature implicating protein aggregation and its ability to propagate cell-to-cell in the rapid progression of these diseases. In order for protein aggregation to be kindled in recipient cells it is a requisite that aggregates must be able to be released from one cell and then taken up by others. In this article we will explore the relationship between protein aggregates, their propagation and the role of macropinocytosis in their uptake. We highlight the ability of neurons to undergo stimulated macropinocytosis and identify potential therapeutic targets.

  7. The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases.

    Science.gov (United States)

    Zeineddine, Rafaa; Yerbury, Justin J

    2015-01-01

    With the onset of the rapidly aging population, the impact of age related neurodegenerative diseases is becoming a predominant health and economic concern. Neurodegenerative diseases such as Alzheimer's disease, Creutzfeldt-Jakob disease (CJD), Parkinson's disease, Huntington's disease, frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) result from the loss of a specific subsets of neurons, which is closely associated with accumulation and deposition of specific protein aggregates. Protein aggregation, or fibril formation, is a well-studied phenomenon that occurs in a nucleation-dependent growth reaction. Recently, there has been a swell of literature implicating protein aggregation and its ability to propagate cell-to-cell in the rapid progression of these diseases. In order for protein aggregation to be kindled in recipient cells it is a requisite that aggregates must be able to be released from one cell and then taken up by others. In this article we will explore the relationship between protein aggregates, their propagation and the role of macropinocytosis in their uptake. We highlight the ability of neurons to undergo stimulated macropinocytosis and identify potential therapeutic targets.

  8. Getting miRNA Therapeutics into the Target Cells for Neurodegenerative Diseases: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Ming Ming Wen

    2016-11-01

    Full Text Available Abstract:MiRNAs play important roles in modulating gene expression in varying cellular processes and disease pathogenesis, including neurodegenerative diseases. Several miRNAs are expressed in the brain and control brain development and identified as important biomarkers in the pathogenesis of motor- and neuro-cognitive diseases such as Alzheimer, Huntington's and Parkinson's diseases and amyotrophic lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers and therapeutic targeting potential for many stressful and untreatable progressive neurodegenerative diseases. To modulate these miRNA activities, there are currently two strategies involved; first one is to therapeutically restore the suppressed miRNA level by miRNA mimics (agonist, and the other one is to inhibit miRNA function by using antimiR (antagonist to repress overactive miRNA function. However, RNAi-based therapeutics often faces in vivo instability because naked nucleic acids are subject to enzyme degradation before reaching the target sites. Therefore, an effective, safe and stable bio-responsive delivery system is necessary to protect the nucleic acids from serum degradation and assist their entrance to the cells. Since neuronal cells are non-regenerating, to design engineered miRNAs to be delivered to the CNS for long term gene expression and knockdown is representing an enormous challenge for scientists. This article provides an insight summary on some of the innovative strategies employed to deliver miRNA into target cells. These viral and non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative diseases.

  9. Comprehension of insincere communication in neurodegenerative disease: lies, sarcasm, and theory of mind.

    Science.gov (United States)

    Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott N; Growdon, Matthew E; Jang, Jung Y; Ketelle, Robin S; Miller, Bruce L; Rankin, Katherine P

    2012-01-01

    Comprehension of insincere communication is an important aspect of social cognition requiring visual perspective taking, emotion reading, and understanding others' thoughts, opinions, and intentions. Someone who is lying intends to hide their insincerity from the listener, while a sarcastic speaker wants the listener to recognize they are speaking insincerely. We investigated whether face-to-face testing of comprehending insincere communication would effectively discriminate among neurodegenerative disease patients with different patterns of real-life social deficits. We examined ability to comprehend lies and sarcasm from a third-person perspective, using contextual cues, in 102 patients with one of four neurodegenerative diseases (behavioral variant frontotemporal dementia [bvFTD], Alzheimer's disease [AD], progressive supranuclear palsy [PSP], and vascular cognitive impairment) and 77 healthy older adults (normal controls--NCs). Participants answered questions about videos depicting social interactions involving deceptive, sarcastic, or sincere speech using The Awareness of Social Inference Test. All subjects equally understood sincere remarks, but bvFTD patients displayed impaired comprehension of lies and sarcasm compared with NCs. In other groups, impairment was not disease-specific but was proportionate to general cognitive impairment. Analysis of the task components revealed that only bvFTD patients were impaired on perspective taking and emotion reading elements and that both bvFTD and PSP patients had impaired ability to represent others' opinions and intentions (i.e., theory of mind). Test performance correlated with informants' ratings of subjects' empathy, perspective taking and neuropsychiatric symptoms in everyday life. Comprehending insincere communication is complex and requires multiple cognitive and emotional processes vulnerable across neurodegenerative diseases. However, bvFTD patients show uniquely focal and severe impairments at every level

  10. Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy.

    Science.gov (United States)

    Jungverdorben, Johannes; Till, Andreas; Brüstle, Oliver

    2017-07-01

    The advent of cell reprogramming has enabled the generation of induced pluripotent stem cells (iPSCs) from patient skin fibroblasts or blood cells and their subsequent differentiation into tissue-specific cells, including neurons and glia. This approach can be used to recapitulate disease-specific phenotypes in classical cell culture paradigms and thus represents an invaluable asset for disease modeling and drug validation in the framework of personalized medicine. The autophagy pathway is a ubiquitous eukaryotic degradation and recycling system, which relies on lysosomal degradation of unwanted and potentially cytotoxic components. The relevance of autophagy in the pathogenesis of neurodegenerative diseases is underlined by the observation that disease-linked genetic variants of susceptibility factors frequently result in dysregulation of autophagic-lysosomal pathways. In particular, disrupted autophagy is implied in the accumulation of potentially neurotoxic products such as protein aggregates and their precursors and defective turnover of dysfunctional mitochondria. Here, we review the current state of iPSC-based assessment of autophagic dysfunction in the context of neurodegenerative disease modeling. The collected data show that iPSC technology is capable to reveal even subtle alterations in subcellular homeostatic processes, which form the molecular basis for disease manifestation.

  11. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    Science.gov (United States)

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. Published by Elsevier B.V.

  12. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    Science.gov (United States)

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies. Copyright © 2014 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  13. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Emulation of Physician Tasks in Eye-Tracked Virtual Reality for Remote Diagnosis of Neurodegenerative Disease.

    Science.gov (United States)

    Orlosky, Jason; Itoh, Yuta; Ranchet, Maud; Kiyokawa, Kiyoshi; Morgan, John; Devos, Hannes

    2017-04-01

    For neurodegenerative conditions like Parkinson's disease, early and accurate diagnosis is still a difficult task. Evaluations can be time consuming, patients must often travel to metropolitan areas or different cities to see experts, and misdiagnosis can result in improper treatment. To date, only a handful of assistive or remote methods exist to help physicians evaluate patients with suspected neurological disease in a convenient and consistent way. In this paper, we present a low-cost VR interface designed to support evaluation and diagnosis of neurodegenerative disease and test its use in a clinical setting. Using a commercially available VR display with an infrared camera integrated into the lens, we have constructed a 3D virtual environment designed to emulate common tasks used to evaluate patients, such as fixating on a point, conducting smooth pursuit of an object, or executing saccades. These virtual tasks are designed to elicit eye movements commonly associated with neurodegenerative disease, such as abnormal saccades, square wave jerks, and ocular tremor. Next, we conducted experiments with 9 patients with a diagnosis of Parkinson's disease and 7 healthy controls to test the system's potential to emulate tasks for clinical diagnosis. We then applied eye tracking algorithms and image enhancement to the eye recordings taken during the experiment and conducted a short follow-up study with two physicians for evaluation. Results showed that our VR interface was able to elicit five common types of movements usable for evaluation, physicians were able to confirm three out of four abnormalities, and visualizations were rated as potentially useful for diagnosis.

  15. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  16. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases.

    Science.gov (United States)

    Martins, Ian James

    2015-12-10

    Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  17. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  18. [Processing facial identity and emotional expression in normal aging and neurodegenerative diseases].

    Science.gov (United States)

    Chaby, Laurence; Narme, Pauline

    2009-03-01

    The ability to recognize facial identity and emotional facial expression is central to social relationships. This paper reviews studies concerning face recognition and emotional facial expression during normal aging as well as in neurodegenerative diseases occurring in the elderly. It focuses on Alzheimer's disease, frontotemporal and semantic dementia, and also Parkinson's disease. The results of studies on healthy elderly individuals show subtle alterations in the recognition of facial identity and emotional facial expression from the age of 50 years, and increasing after 70. Studies in neurodegenerative diseases show that - during their initial stages - face recognition and facial expression can be specifically affected. Little has been done to assess these difficulties in clinical practice. They could constitute a useful marker for differential diagnosis, especially for the clinical differentiation of Alzheimer's disease (AD) from frontotemporal dementia (FTD). Social difficulties and some behavioural problems observed in these patients may, at least partly, result from these deficits in face processing. Thus, it is important to specify the possible underlying anatomofunctional substrates of these deficits as well as to plan suitable remediation programs.

  19. Neurodegenerative disease and magnetic field exposure in UK electricity supply workers.

    Science.gov (United States)

    Sorahan, T; Mohammed, N

    2014-09-01

    Previous research has suggested a possible link between neurodegenerative disease and exposure to extremely low-frequency electric and magnetic fields. To investigate whether risks of Alzheimer's, motor neurone or Parkinson's disease are related to occupational exposure to magnetic fields. The mortality experienced by a cohort of 73051 employees of the former Central Electricity Generating Board of England and Wales was investigated for the period 1973-2010. All employees were hired in the period 1952-82, were employed for at least 6 months and had some employment after 1 January 1973. Detailed calculations had been performed by others to enable an assessment to be made of exposures to magnetic fields. Poisson regression was used to calculate relative risks (rate ratios) of developing any of the three diseases under investigation for categories of lifetime, distant (lagged) and recent (lugged) exposure. No statistically significant trends were shown for risks of any of these diseases to increase with estimates of lifetime, recent or distant exposure to magnetic fields. There is no convincing evidence that UK electricity generation and transmission workers have suffered elevated risks from neurodegenerative diseases as a consequence of exposure to magnetic fields. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The central biobank and virtual biobank of BIOMARKAPD: a resource for studies on neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Babette eReijs

    2015-10-01

    Full Text Available AbstractBiobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's Disease (BIOMARKAPD is a European multicenter study, funded by the EU Joint Programme - Neurodegenerative Disease Research (JPND, that aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD and Parkinson’s disease (PD. The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF and blood samples were collected according to the BIOMARKAPD standardized preanalytical procedures (SOP and stored at Integrated BioBank of Luxembourg (IBBL. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI, AD, frontotemporal dementia (FTD, vascular dementia (VaD, multiple system atrophy (MSA, progressive supranuclear palsy (PSP, PD, PD with dementia, and dementia with Lewy bodies (DLB. The virtual biobank contains information on over 8600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank.

  1. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  2. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2013-12-01

    Decline of cognition and increasing risk of neurodegenerative diseases are major problems associated with aging in humans. Of particular importance is how the brain removes potentially toxic biomolecules that accumulate with normal neuronal function. Recently, a biomolecule clearance system using convective flow between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove toxic metabolites in the brain was described. Xie and colleagues now report that in mice the clearance activity of this so-called "glymphatic system" is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly by shrinkage of astroglial cells. Moreover, anesthesia and attenuation of adrenergic signaling can activate the glymphatic system to clear potentially toxic proteins known to contribute to the pathology of Alzheimer disease (AD) such as beta-amyloid (Abeta). Clearance during sleep is as much as two-fold faster than during waking hours. These results support a new hypothesis to answer the age-old question of why sleep is necessary. Glymphatic dysfunction may pay a hitherto unsuspected role in the pathogenesis of neurodegenerative diseases as well as maintenance of cognition. Furthermore, clinical studies suggest that quality and duration of sleep may be predictive of the onset of AD, and that quality sleep may significantly reduce the risk of AD for apolipoprotein E (ApoE) ɛ4 carriers, who have significantly greater chances of developing AD. Further characterization of the glymphatic system in humans may lead to new therapies and methods of prevention of neurodegenerative diseases. A public health initiative to ensure adequate sleep among middle-aged and older people may prove useful in preventing AD, especially in apolipoprotein E (ApoE) ɛ4 carriers.

  3. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Directory of Open Access Journals (Sweden)

    Pamela eMaher

    2015-12-01

    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  4. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    Science.gov (United States)

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  5. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology

    DEFF Research Database (Denmark)

    Shah, Pratik; Cho, Seok Keun; Thulstrup, Peter Waaben

    2017-01-01

    MicroRNAs (miRNAs) are essential small RNA molecules (20–24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for man...... the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases......MicroRNAs (miRNAs) are essential small RNA molecules (20–24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many...... diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters...

  6. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology

    Directory of Open Access Journals (Sweden)

    Pratik Shah

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are essential small RNA molecules (20–24 nt that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs, has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases.

  7. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  8. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Maria H. Madeira

    2017-01-01

    Full Text Available Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  9. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Ambrósio, António F; Santiago, Ana R

    2017-01-01

    Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  10. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.

    Science.gov (United States)

    Son, Mi-Young; Kwak, Jae Eun; Seol, Binna; Lee, Da Yong; Jeon, Hyejin; Cho, Yee Sook

    2015-09-01

    GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Structural disorder and the loss of RNA homeostasis in aging and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Douglas eGray

    2013-08-01

    Full Text Available Whereas many cases of neurodegenerative disease feature the abnormal accumulationof protein, an abundance of recent literature highlights loss of RNA homeostasis as aubiquitous and central feature of pathological states. In some diseases expandedrepeats have been identified in non-coding regions of disease-associated transcripts,calling into question the relevance of protein in the disease mechanism. We review theliterature in support of a hypothesis that intrinsically disordered proteins (proteins thatlack a stable three dimensional conformation are particularly sensitive to an age-relateddecline in maintenance of protein homeostasis. The potential consequences forstructurally disordered RNA binding proteins are explored, including their aggregationinto complexes that could be transmitted through a prion-like mechanism. We proposethat the spread of ribonucleoprotein complexes through the nervous system couldpropagate a neuronal error catastrophe at the level of RNA metabolism.

  12. Using the WHOQOL-DIS to measure quality of life in persons with physical disabilities caused by neurodegenerative disorders.

    Science.gov (United States)

    Lucas-Carrasco, Ramona; Pascual-Sedano, Berta; Galán, Ingrid; Kulisevsky, Jaime; Sastre-Garriga, Jaume; Gómez-Benito, Juana

    2011-01-01

    Neurodegenerative disorders (ND) have a major impact on quality of life (QoL) and place a substantial burden on patients, their families and carers; they are the second leading cause of disability. The objective of this study was to examine QoL in persons with ND. A battery of subjective assessments was used, including the World Health Organization Quality of Life Questionnaire (WHOQOL-BREF) and the World Health Organization Quality of Life - Disability (WHOQOL-DIS). Psychometric properties of the WHOQOL-BREF and WHOQOL-DIS were investigated using classical psychometric methods. Participants (n = 149) were recruited and interviewed at two specialized centers to obtain information on health and disability perceptions, depressive symptoms (Hospital Anxiety and Depression Scale - Depression, HADS-D), Fatigue Assessment Scale (FAS), Satisfaction with Life (SWL), generic QoL (WHOQOL-BREF, WHOQOL-DIS), specific QoL (Multiple Sclerosis Impact Scale, MSIS-29; Parkinson's Disease Questionnaire, PDQ-39) and sociodemographics. Internal consistency was acceptable, except for the WHOQOL-BREF social (0.67). Associations, using Pearson's and Spearman's rho correlations, were confirmed between WHOQOL-BREF and WHOQOL-DIS with MSIS-29, PDQ-39, HADS-D, FAS and SWL. Regarding 'known group' differences, Student's t tests showed that WHOQOL-BREF and WHOQOL-DIS scores significantly discriminated between depressed and nondepressed and those perceiving a more severe impact of the disability on their lives. This study is the first to report on use of the WHOQOL-BREF and WHOQOL-DIS in Spanish persons with ND; they are promising useful tools in assessing persons with ND through the continuum of care, as they include important dimensions commonly omitted from other QoL measures. Copyright © 2010 S. Karger AG, Basel.

  13. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC

    DEFF Research Database (Denmark)

    Tingaud-Sequeira, Angèle; Raldúa, Demetrio; Lavie, Julie

    2017-01-01

    ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid...... knockdown morphants were consistent with human PHARC hallmarks. High abhd12 transcript levels were found in the optic tectum and tract, colocalized with myelin basic protein, and in the spinal cord. Morphants have myelination defects and concomitant functional deficits, characterized by progressive ataxia...

  14. Stem Cells and Other Emerging Agents as Innovative "Drugs" in Neurodegenerative Diseases: Benefits and Limitations.

    Science.gov (United States)

    Nasello, Martina; Schirò, Giuseppe; Crapanzano, Floriana; Balistreri, Carmela Rita

    2017-09-11

    The brain has a limited process of repair/regeneration linked to the restricted and localized activity of neuronal stem cells. Consequently, it shows a reduced capacity to counteract the age-related loss of neural and glial cells and to repair the consequent injuries/lesions of nervous system. This progressively determines nervous dysfunction and onset/progression of neurodegenerative diseases, which represent a serious social (and economic) problem of our populations. Thus, the research of efficient treatments is encouraged. Stem cell therapy might represent a solution. Today, it, indeed, represents the object of intensive research with the hope of using it, in a near future, as effective therapy for these diseases and preventive treatment in susceptible individuals. Here, we report and discuss the data of the recent studies on this field, underling the obstacles and benefits. We also illustrate alternative measures of intervention, which represent another parallel aim for the care of neurodegenerative pathology-affected individuals. Thus, the road for delaying or retarding these diseases appears hard and long, but the advances might be different.

  15. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Science.gov (United States)

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  16. Role of Sigma-1 Receptor in Cocaine Abuse and Neurodegenerative Disease.

    Science.gov (United States)

    Cai, Yu; Yang, Lu; Niu, Fang; Liao, Ke; Buch, Shilpa

    2017-01-01

    Sigma-1 receptors (Sig-1R) are recognized as a unique class of non-G protein-coupled intracellular protein. Sig-1R binds to its ligand such as cocaine , resulting in dissociation of Sig-1R from mitochondrion-associated ER membrane (MAM) to the endoplasmic reticulum (ER), plasma membrane, and nuclear membrane, regulating function of various proteins. Sig-1R has diverse roles in both physiological as well as in pathogenic processes. The disruption of Sig-1R pathways has been implicated as causative mechanism(s) in the development of both neurodegenerative disorders such as Alzheimer disease (AD ), Parkinson disease (PD ), amyotrophic lateral sclerosis (ALS ) and Huntington Disease (HD ) . Additionally, the interaction of cocaine and Sig-1R has more recently been implicated in potentiating the pathogenesis of HIV-associated neurocognitive disorders (HAND) through impairment of blood-brain barrier (BBB), microglial activation and astrogliosis. On the other hand, restoration of Sig-1R homeostasis has been shown to exert neuroprotective effects. In this review, we provide an overview of how Sig-1R plays a role in the pathogenesis of neurodegenerative disorders and cocaine and implications for future development of therapeutic strategies.

  17. Network Analysis of Neurodegenerative Disease Highlights a Role of Toll-Like Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Thanh-Phuong Nguyen

    2014-01-01

    Full Text Available Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs, the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI to model the functional network of NDs. The aim of this work is fourfold: (i reconstruction of a PPI network relating to the NDs, (ii construction of an association network between diseases based on proximity in the disease PPI network, (iii quantification of disease associations, and (iv inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration.

  18. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Science.gov (United States)

    Kyöstilä, Kaisa; Syrjä, Pernilla; Jagannathan, Vidhya; Chandrasekar, Gayathri; Jokinen, Tarja S; Seppälä, Eija H; Becker, Doreen; Drögemüller, Michaela; Dietschi, Elisabeth; Drögemüller, Cord; Lang, Johann; Steffen, Frank; Rohdin, Cecilia; Jäderlund, Karin H; Lappalainen, Anu K; Hahn, Kerstin; Wohlsein, Peter; Baumgärtner, Wolfgang; Henke, Diana; Oevermann, Anna; Kere, Juha; Lohi, Hannes; Leeb, Tosso

    2015-04-01

    Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  19. A Missense Change in the ATG4D Gene Links Aberrant Autophagy to a Neurodegenerative Vacuolar Storage Disease

    Science.gov (United States)

    Kyöstilä, Kaisa; Syrjä, Pernilla; Jagannathan, Vidhya; Chandrasekar, Gayathri; Jokinen, Tarja S.; Seppälä, Eija H.; Becker, Doreen; Drögemüller, Michaela; Dietschi, Elisabeth; Drögemüller, Cord; Lang, Johann; Steffen, Frank; Rohdin, Cecilia; Jäderlund, Karin H.; Lappalainen, Anu K.; Hahn, Kerstin; Wohlsein, Peter; Baumgärtner, Wolfgang; Henke, Diana; Oevermann, Anna; Kere, Juha; Lohi, Hannes; Leeb, Tosso

    2015-01-01

    Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes. PMID:25875846

  20. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  1. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Matthew E R Butchbach

    2016-03-01

    Full Text Available Proximal spinal muscular atrophy (SMA, a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1 on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7 and produce a protein that is both unstable and less than fully functional. Although only 10-20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS and progressive muscular atrophy (PMA. This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases.

  2. Maximizing the Potential of Longitudinal Cohorts for Research in Neurodegenerative Diseases: A Community Perspective

    Directory of Open Access Journals (Sweden)

    Catherine J. Moody

    2017-08-01

    Full Text Available Despite a wealth of activity across the globe in the area of longitudinal population cohorts, surprisingly little information is available on the natural biomedical history of a number of age-related neurodegenerative diseases (ND, and the scope for intervention studies based on these cohorts is only just beginning to be explored. The Joint Programming Initiative on Neurodegenerative Disease Research (JPND recently developed a novel funding mechanism to rapidly mobilize scientists to address these issues from a broad, international community perspective. Ten expert Working Groups, bringing together a diverse range of community members and covering a wide ND landscape [Alzheimer's, Parkinson's, frontotemporal degeneration, amyotrophic lateral sclerosis (ALS, Lewy-body and vascular dementia] were formed to discuss and propose potential approaches to better exploiting and coordinating cohort studies. The purpose of this work is to highlight the novel funding process along with a broad overview of the guidelines and recommendations generated by the ten groups, which include investigations into multiple methodologies such as cognition/functional assessment, biomarkers and biobanking, imaging, health and social outcomes, and pre-symptomatic ND. All of these were published in reports that are now publicly available online.

  3. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rafał eMarciniak

    2014-01-01

    Full Text Available Effect of different meditation practices on various aspects of mental and physical health is receiving growing attention. The present paper reviews evidence about effects of several mediation practices on cognitive functions in the context of aging and neurodegenerative diseases. The effect of meditation in this area is still poorly explored. Seven studies were detected through the databases search which explores the effect of meditation on attention, memory, executive functions and other miscellaneous measures of cognition in a sample of older people and people suffering from neurodegenerative diseases. Overall, reviewed studies suggested a positive effect of meditation techniques, particularly in the area of attention, as well as memory, verbal fluency and cognitive flexibility. These findings are discussed in the context of MRI studies suggesting structural correlates of the effects. Meditation can be a potentially suitable non-pharmacological intervention aimed at the prevention of cognitive decline in the elderly. However, the conclusions of these studies are limited by their methodological flaws and differences of various types of meditation techniques. Further research in this direction could help to verify the validity of the findings and clarify the problematic aspects.

  4. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010.

    Science.gov (United States)

    Forrester, Joseph D; Kugeler, Kiersten J; Perea, Anna E; Pastula, Daniel M; Mead, Paul S

    2015-11-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.

  5. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    Directory of Open Access Journals (Sweden)

    Shayne Anthony Bellingham

    2012-05-01

    Full Text Available Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB. When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD of humans or bovine spongiform encephalopathy (BSE of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP which is associated with Alzheimer's disease (AD. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I (SOD-1 and alpha-synuclein (involved in Amyotrophic Lateral Sclerosis (ALS and Parkinson’s disease respectively are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics and diagnostics for these diseases.

  6. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases.

    Science.gov (United States)

    Shan, Ling; Hofman, Michel A; van Wamelen, Daniel J; Van Someren, Eus J W; Bao, Ai-Min; Swaab Dick, F

    2012-05-01

    Neuronal histamine shows diurnal rhythms in rodents and plays a major role in the maintenance of vigilance. No data are available on its diurnal fluctuation in humans, either in health or in neurodegenerative disorders such as Parkinson disease (PD), Alzheimer disease (AD), or Huntington disease (HD), all of which are characterized by sleep-wake disturbances. Quantitative in situ hybridization was used to study the mRNA expression of histidine decarboxylase (HDC), the key enzyme of histamine production in the tuberomammillary nucleus (TMN) in postmortem human hypothalamic tissue, obtained from 33 controls and 31 patients with a neurodegenerative disease-PD (n = 15), AD (n = 9), and HD (n = 8)-and covering the full 24-h cycle with respect to clock time of death. HDC-mRNA levels in controls were found to be significantly higher during the daytime than at night (e.g., 08:01-20:00 versus 20:01-08:00, P = 0.004). This day-night fluctuation was markedly different in patients with neurodegenerative diseases. The diurnal fluctuation of HDC-mRNA expression in human TMN supports a role for neuronal histamine in regulating day-night rhythms. Future studies should investigate histamine rhythm abnormalities in neurodegenerative disorders. Shan L; Hofman MA; van Wamelen DJ; Van Someren EJW; Bao AM; Swaab DF. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases.

  7. Brain transplants. A new approach to the therapy of neurodegenerative disease.

    Science.gov (United States)

    Tulipan, N

    1988-05-01

    There is now a wealth of experimental evidence to suggest that transplantation to the brain may ameliorate a variety of neurologic and endocrine disorders. Many unanswered questions remain. Chief among these questions are the duration of any salutary effects and the potential long-term risks to the host CNS. Answers to these questions will only come with carefully controlled long-term clinical studies. Given the high incidence and devastating nature of many of these diseases, such studies will have enormous scientific and social impact. Regardless of the outcome, there is the potential for a greater understanding of the pathologic mechanisms underlying neurodegenerative diseases and, thus, the possibility that definitive therapies will be found as a result.

  8. Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting

    DEFF Research Database (Denmark)

    Tong, Tong; Ledig, Christian; Guerrero, Ricardo

    2017-01-01

    for distinguishing the four most common neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobe degeneration, Dementia with Lewy bodies and vascular dementia, as well as patients with subjective memory complaints. Different biomarkers including features from images (volume features, region......-wise grading features) and non-imaging features (CSF measures) were extracted for each subject. In clinical practice, the prevalence of different dementia types is imbalanced, posing challenges for learning an effective classification model. Therefore, we propose the use of the RUSBoost algorithm in order...... to train classifiers and to handle the class imbalance training problem. Furthermore, a multi-class feature selection method based on sparsity is integrated into the proposed framework to improve the classification performance. It also provides a way for investigating the importance of different features...

  9. The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-01-01

    Full Text Available Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.

  10. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies.

    Science.gov (United States)

    Devall, Matthew; Roubroeks, Janou; Mill, Jonathan; Weedon, Michael; Lunnon, Katie

    2016-06-20

    The field of mitochondrial epigenetics has received increased attention in recent years and changes in mitochondrial DNA (mtDNA) methylation has been implicated in a number of diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis. However, current publications have been limited by the use of global or targeted methods of measuring DNA methylation. In this review, we discuss current findings in mitochondrial epigenetics as well as its potential role as a regulator of mitochondria within the brain. Finally, we summarize the current technologies best suited to capturing mtDNA methylation, and how a move towards whole epigenome sequencing of mtDNA may help to advance our current understanding of the field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Retromer's Role in Endosomal Trafficking and Impaired Function in Neurodegenerative Diseases.

    Science.gov (United States)

    Follett, Jordan; Bugarcic, Andrea; Collins, Brett M; Teasdale, Rohan D

    2017-01-01

    The retromer complex is a highly conserved membrane trafficking assembly composed of three proteins - Vps26, Vps29 and Vps35 - that were identified over a decade ago in Saccharomyces cerevisiae (S. cerevisiae). Initially, mammalian retromer was shown to sort transmembrane proteins from the endosome to the trans-Golgi network (TGN), though recent work has identified a critical role for retromer in multiple trafficking pathways, including recycling to the plasma membrane and regulation of cell polarity. In recent years, genetic, cellular, pharmacological and animal model studies have identified retromer and its interacting proteins as being linked to familial forms of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD). Here, this commentary will summarize recently identified point mutations in retromer linked to PD, and explore the molecular functions of retromer that may be relevant to disease progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. What’s on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths

    Directory of Open Access Journals (Sweden)

    David Paul Crabb

    2014-11-01

    Full Text Available Purpose: We test the hypothesis that age-related neurodegenerative eye disease can be detected by examining patterns of eye movement recorded whilst a person naturally watches a movie. Methods: Thirty-two elderly people with healthy vision (median age: 70, interquartile range [IQR] 64 to 75 yrs and 44 patients with a clinical diagnosis of glaucoma (median age: 69, IQR 63 to 77 yrs had standard vision examinations including automated perimetry. Disease severity was measured using a standard clinical measure (visual field mean deviation; MD. All study participants viewed three unmodified TV and film clips on a computer set up incorporating the Eyelink 1000 eyetracker (SR Research, Ontario, Canada. Eye movement scanpaths were plotted using novel methods that first filtered the data and then generated saccade density maps. Maps were then subjected to a feature extraction analysis using kernel principal component analysis (KPCA. Features from the KPCA were then classified using a standard machine based classifier trained and tested by a 10-fold cross validation which was repeated 100 times to estimate the confidence interval (CI of classification sensitivity and specificity. Results: Patients had a range of disease severity from early to advanced (median [IQR] right eye and left eye MD was -7 [-13 to -5] dB and -9 [-15 to -4] dB respectively. Average sensitivity for correctly identifying a glaucoma patient at a fixed specificity of 90% was 79% (95% CI: 58 to 86%. The area under the Receiver Operating Characteristic curve was 0.84 (95% CI: 0.82 to 0.87. Conclusions: Huge data from scanpaths of eye movements recorded whilst people freely watch TV type films can be processed into maps that contain a signature of vision loss. In this proof of principle study we have demonstrated that a group of patients with age-related neurodegenerative eye disease can be reasonably well separated from a group of healthy peers by considering these eye movement

  13. What's on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths.

    Science.gov (United States)

    Crabb, David P; Smith, Nicholas D; Zhu, Haogang

    2014-01-01

    We test the hypothesis that age-related neurodegenerative eye disease can be detected by examining patterns of eye movement recorded whilst a person naturally watches a movie. Thirty-two elderly people with healthy vision (median age: 70, interquartile range [IQR] 64-75 years) and 44 patients with a clinical diagnosis of glaucoma (median age: 69, IQR 63-77 years) had standard vision examinations including automated perimetry. Disease severity was measured using a standard clinical measure (visual field mean deviation; MD). All study participants viewed three unmodified TV and film clips on a computer set up incorporating the Eyelink 1000 eyetracker (SR Research, Ontario, Canada). Eye movement scanpaths were plotted using novel methods that first filtered the data and then generated saccade density maps. Maps were then subjected to a feature extraction analysis using kernel principal component analysis (KPCA). Features from the KPCA were then classified using a standard machine based classifier trained and tested by a 10-fold cross validation which was repeated 100 times to estimate the confidence interval (CI) of classification sensitivity and specificity. Patients had a range of disease severity from early to advanced (median [IQR] right eye and left eye MD was -7 [-13 to -5] dB and -9 [-15 to -4] dB, respectively). Average sensitivity for correctly identifying a glaucoma patient at a fixed specificity of 90% was 79% (95% CI: 58-86%). The area under the Receiver Operating Characteristic curve was 0.84 (95% CI: 0.82-0.87). Huge data from scanpaths of eye movements recorded whilst people freely watch TV type films can be processed into maps that contain a signature of vision loss. In this proof of principle study we have demonstrated that a group of patients with age-related neurodegenerative eye disease can be reasonably well separated from a group of healthy peers by considering these eye movement signatures alone.

  14. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease.

    Science.gov (United States)

    Boeve, B F; Silber, M H; Saper, C B; Ferman, T J; Dickson, D W; Parisi, J E; Benarroch, E E; Ahlskog, J E; Smith, G E; Caselli, R C; Tippman-Peikert, M; Olson, E J; Lin, S-C; Young, T; Wszolek, Z; Schenck, C H; Mahowald, M W; Castillo, P R; Del Tredici, K; Braak, H

    2007-11-01

    REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming. The terminology relating to RBD, and mechanisms underlying REM sleep without atonia and RBD based on data in cat and rat are presented. Neuroimaging data from the few published human cases with RBD associated with structural lesions in the brainstem are presented, in which the dorsal midbrain and pons are implicated. Pharmacological manipulations which alter RBD frequency and severity are reviewed, and the data from human neuropathological studies are presented. An anatomic framework and new schema for the pathophysiology of RBD are proposed based on recent data in rat regarding the putative flip-flop switch for REM sleep control. The structure in man analogous to the subcoeruleus region in cat and sublaterodorsal nucleus in rat is proposed as the nucleus (and its associated efferent and afferent pathways) crucial to RBD pathophysiology. The association of RBD with neurological disease ('secondary RBD') is presented, with emphasis on RBD associated with neurodegenerative disease, particularly the synucleinopathies. The hypothesized pathophysiology of RBD is presented in relation to the Braak staging system for Parkinson's disease, in which the topography and temporal sequence of synuclein pathology in the brain could explain the evolution of parkinsonism and/or dementia well after the onset of RBD. These data suggest that many patients with 'idiopathic' RBD are actually exhibiting an early clinical manifestation of an evolving neurodegenerative disorder. Such patients may be appropriate for future drug therapies that affect synuclein pathophysiology, in which the development of parkinsonism and/or dementia could be delayed or prevented. We suggest that additional clinicopathological studies be performed in patients with dementia or parkinsonism, with and without RBD, as well as in

  15. Computed tomography of neurodegenerative disease in childhood. Serial CT findings and their diagnostic values

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Kenkichi; Nakagawa, Yoshihiro; Hojo, Hiroatsu

    1984-12-01

    Serial computed tomographic scans were performed on seven children with neurodegenerative disorders. In two cases of white-matter diseases (Krabbe's disease and metachromatic leukodystrophy), diffuse, low-density lesions of white matter were visible in the early stage of the diseases. In one case of adrenoleukodystrophy, regional low-density lesions of the white matter around the posterior horns and peculiar high-density strip lesions were visible in the early stage. In two cases of storage-type gray-matter diseases (Tay-Sachs' and infantile Gaucher's disease), there were no abnormalities in the early stage, but diffuse cortical atrophies in the late stage. In one case of Leigh's disease, there were small, low-density lesions of the basal ganglia and multiple low-density lesions of the gray matter in the early stage. In one case of subacute sclerosing panencephalitis, there were no abnormalities in the early stage, but small, low-density lesions of the basal ganglia and diffuse cerebral atrophies in the late stage. Diagnostic values were recognized dominantly in two cases of adrenoleukodystrophy and Leigh's disease. In the other cases, however, serial CT scans were useful in the diagnostic process. (author).

  16. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zewen Liu

    2017-01-01

    Full Text Available Increasing numbers of individuals, particularly the elderly, suffer from neurodegenerative disorders. These diseases are normally characterized by progressive loss of neuron cells and compromised motor or cognitive function. Previous studies have proposed that the overproduction of reactive oxygen species (ROS may have complex roles in promoting the disease development. Research has shown that neuron cells are particularly vulnerable to oxidative damage due to their high polyunsaturated fatty acid content in membranes, high oxygen consumption, and weak antioxidant defense. However, the exact molecular pathogenesis of neurodegeneration related to the disturbance of redox balance remains unclear. Novel antioxidants have shown great potential in mediating disease phenotypes and could be an area of interest for further research. In this review, we provide an updated discussion on the roles of ROS in the pathological mechanisms of Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia, as well as a highlight on the antioxidant-based therapies for alleviating disease severity.

  17. [Late-onset Neurodegenerative Diseases Following Traumatic Brain Injury: Chronic Traumatic Encephalopathy (CTE) and Alzheimer's Disease Secondary to TBI (AD-TBI)].

    Science.gov (United States)

    Takahata, Keisuke; Tabuchi, Hajime; Mimura, Masaru

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease, which is associated with mild repetitive traumatic brain injury (TBI). This long-term and progressive symptom due to TBI was initially called punch-drunk syndrome or dementia pugilistica, since it was believed to be associated with boxing. However, serial neuropathological studies of mild repetitive TBI in the last decade have revealed that CTE occurs not only in boxers but also in a wider population including American football players, wrestlers, and military personnel. CTE has gained large public interest owing to dramatic cases involving retired professional athletes wherein serious behavioral problems and tragic incidents were reported. Unlike mild repetitive TBI, a single episode of severe TBI can cause another type of late-onset neuropsychiatric disease including Alzheimer's disease (AD). Several epidemiological studies have shown that a single episode of severe TBI is one of the major risk factors of AD. Pathologically, both AD and CTE are characterized by abnormal accumulations of hyperphosphorylated tau proteins. However, recent neuropathological studies revealed that CTE demonstrates a unique pattern of tau pathology in neurons and astrocytes, and accumulation of other misfolded proteins such as TDP-43. Currently, no reliable biomarkers of late-onset neurodegenerative diseases following TBI are available, and a definitive diagnosis can be made only via postmortem neuropathological examination. Development in neuroimaging techniques such as tau and amyloid positron emission tomography imaging might not only enable early diagnosis of CTE, but also contribute to the interventions for prevention of late-onset neurodegenerative diseases following TBI. Further studies are necessary to elucidate the mechanisms of neurodegeneration in the living brain of patients with TBI.

  18. Proteomic analysis of the human brain in Huntington's Disease indicates pathogenesis by molecular processes linked to other neurodegenerative diseases and to type-2 diabetes.

    Science.gov (United States)

    Schönberger, Sarah J; Jezdic, Dina; Faull, Richard L M; Cooper, Garth J S

    2013-01-01

    Huntington's disease (HD) is a neurodegenerative disorder in which the aetiological defect is inherited or spontaneous mutation in the HTT gene, which alters the structure of the corresponding huntingtin protein and initiates a pathogenetic cascade that ultimately leads to or causes dementia. Here our main objective was to elucidate further the pathogenic processes that underlie neurodegeneration in HD. By using two-dimensional gel electrophoresis we performed a proteomic case-control study of two brain regions in post-mortem human tissue from seven well-characterized HD patients and eight matched controls. In the middle frontal gyrus we identified twenty-two differentially-expressed proteins whereas by contrast in visual cortex only seven were altered. Twenty of these proteins have not to our knowledge been associated with the pathogenesis of HD before although all functional families implicated have previously been linked to other neurodegenerative diseases. Most of the proteins identified play roles in cell stress responses, apoptosis, metabolic regulation linked to type-2 diabetes, the ubiquitin-proteasome system, or protein trafficking/endocytosis. We propose that HTT mutations lead to or cause functional impairment of these pathways and that simultaneous restoration of their functions by targeted pharmacotherapy could ameliorate the signs and symptoms of HD. These studies provide a unique illustration of the interlinked disease processes that underpin/contribute to the pathogenesis of neurodegeneration in a genetically-mediated disorder of protein structure, and provide a signpost towards the design of new therapeutic interventions.

  19. Brain Atrophy of Secondary REM-Sleep Behavior Disorder in Neurodegenerative Disease.

    Science.gov (United States)

    Kim, Hee-Jin; Im, Hyung Kyun; Kim, Juhan; Han, Jee-Young; de Leon, Mony; Deshpande, Anup; Moon, Won-Jin

    2016-04-05

    Rapid eye movement sleep behavior disorder (RBD) may present as an early manifestation of an evolving neurodegenerative disorder with alpha-synucleinopathy. We investigated that dementia with RBD might show distinctive cortical atrophic patterns. A total of 31 patients with idiopathic Parkinson's disease (IPD), 23 with clinically probable Alzheimer's disease (AD), and 36 healthy controls participated in this study. Patients with AD and IPD were divided into two groups according to results of polysomnography and rated with a validated Korean version of the RBD screening questionnaire (RBDSQ-K), which covers the clinical features of RBD. Voxel-based morphometry was adapted for detection of regional brain atrophy among groups of subjects. Scores on RBDSQ-K were higher in the IPD group (3.54 ± 2.8) than in any other group (AD, 2.94 ± 2.4; healthy controls, 2.31 ± 1.9). Atrophic changes according to RBDSQ-K scores were characteristically in the posterior part of the brain and brain stem, including the hypothalamus and posterior temporal region including the hippocampus and bilateral occipital lobe. AD patients with RBD showed more specialized atrophic patterns distributed in the posterior and inferior parts of the brain including the bilateral temporal and occipital cortices compared to groups without RBD. The IPD group with RBD showed right temporal cortical atrophic changes. The group of patients with neurodegenerative diseases and RBD showed distinctive brain atrophy patterns, especially in the posterior and inferior cortices. These results suggest that patients diagnosed with clinically probable AD or IPD might have mixed pathologies including α-synucleinopathy.

  20. The Trojan horse - neuroinflammatory impact of T cells in neurodegenerative diseases.

    Science.gov (United States)

    Sommer, Annika; Winner, Beate; Prots, Iryna

    2017-10-27

    Neuronal degeneration is a common mechanism of many neurological diseases including Parkinson's disease (PD), Alzheimer's disease (AD), and Multiple Sclerosis (MS). While AD and PD are classical neurodegenerative diseases, the primary pathology in MS is driven by autoimmune inflammation, attacking oligodendrocytes and thereby inducing neurodegeneration. In AD and PD, immune cells are also considered to play an important role in the disease progression. While the role of local central nervous system (CNS) innate immune cells is well described, a potential influence of adaptive immune cells in PD and AD is not yet fully understood.Here, we aim to summarize findings concerning adaptive immune cells in PD pathogenesis and compare them to AD and MS. In the first part, we focus on disease-specific alterations of lymphocytes in the circulating blood. Subsequently, we describe what is known about CNS-infiltrated lymphocytes and mechanisms of their infiltration. Finally, we summarize published data and try to understand the mechanisms of how lymphocytes contribute to neurodegeneration in PD, AD, and MS.Lymphocytes are critically involved in the pathogenesis of MS, and clarifying the role of lymphocytes in PD and AD pathogenesis might lead to an identification of a common signature of lymphocytes in neurodegeneration and thus pave the road towards novel treatment options.

  1. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001?2010

    OpenAIRE

    Forrester, Joseph D; Kugeler, Kiersten J.; Perea, Anna E.; Pastula, Daniel M.; Mead, Paul S.

    2015-01-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were i...

  2. [Organ donation after active euthanasia in a patient with a neurodegenerative disease].

    Science.gov (United States)

    van Dijk, Gert; Giezeman, Ariane; Ultee, Fred; Hamers, Raoul

    2013-01-01

    In countries where active euthanasia by a physician is allowed under law - Belgium and the Netherlands - physicians are sometimes confronted with patients who want to donate organs after active euthanasia has been performed. This combination of procedures has been reported in Belgium, and this article is the first description of such a case in the Netherlands. It concerns a patient with a neurodegenerative disease who donated organs after euthanasia. The combination of two complex and controversial procedures - active euthanasia and organ donation - raises important ethical, legal and practical issues. It is suggested that with a thorough preparation and a strict separation of both procedures, organ donation after active euthanasia can strengthen patient autonomy and increase the number of donated organs.

  3. Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Pauline Gaignard

    2017-12-01

    Full Text Available The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress and brain steroid levels in both young (3-month-old and aged (20-month-old male and female mice.

  4. Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease

    Science.gov (United States)

    He, Qiankun; Wu, Binbin; Price, Jeffrey L.; Zhao, Zhangwu

    2017-01-01

    Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in Drosophila and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in Drosophila and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease. These signaling molecules convey important network connectivity and signaling information for normal circadian function, but PDF and insulin-like peptides can also convey signals that lead to apoptosis, enhanced neurodegeneration and cognitive decline in flies carrying circadian mutations or in a senescent state. PMID:28430154

  5. Reactive near field electromagnetic axonal communication channels and their role in neurodegenerative diseases.

    Science.gov (United States)

    Morgera, Salvatore Domenic

    2015-01-01

    Research focus is on the micron-scale subsystem of the human nervous system known as the axon, or nerve fibre. In studying what has been traditionally treated as an electrochemical subsystem, we find that the axon is both an electrochemical and electromagnetic link in an intricately designed network. This work offers a game changing look at phenomena which enable interaction among millions of fibres tightly packed in bundles and tracts in the human peripheral and central nervous systems, respectively. We maintain that these fibres do not act independently as generally believed, but form intricate spatial and temporal near-field networks. An understanding of these networks will lead to improved diagnostics and therapeutics for neurodegenerative diseases.

  6. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases.

    Science.gov (United States)

    Hung, Sandy S C; Khan, Shahnaz; Lo, Camden Y; Hewitt, Alex W; Wong, Raymond C B

    2017-09-01

    The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neurolinguistic features of spontaneous language production dissociate three forms of neurodegenerative disease: Alzheimer's, Huntington's, and Parkinson's.

    Science.gov (United States)

    Illes, J

    1989-11-01

    An analysis of the temporal (prospective) form (silent and filled hesitations, repetitions, incomplete phrases, context-related comments, interjections), syntactic form, and lexical (retrospective) form (verbal deviations, open and closed class phrases) of spontaneous language production of early and middle stage Alzheimer's, Huntington's, and Parkinson's patients was made. Results showed that the language structure was disrupted in each disease, but in different ways. Temporal interruptions of varying types were frequent in the language of Alzheimer's and Huntington's Disease patients; only long-duration silent hesitations were frequent in Parkinson's language samples. Syntactic complexity was reduced in Huntington's Disease. Verbal paraphasias were found in both the language of Alzheimer's patients, as well as moderately advanced Huntington's patients. Closed class phrases were predominant in the language of Alzheimer's patients and Huntington's patients, and open class phrases in the language of Parkinson's patients. Taken together, the results suggest that (1) there is a unique neurolinguistic profile for spontaneous language production for each neurodegenerative disease, (2) pathology of the neostriatum disrupts syntactic organization, (3) adaptive strategies are used to cope with verbal and speech-motor difficulties, and (4) adaptive strategies fail to be effective with increasing disease severity.

  8. In search of innovative therapeutics for neuropsychiatric disorders: the case of neurodegenerative diseases.

    Science.gov (United States)

    Féger, J; Hirsch, E C

    2015-01-01

    The recent medical literature highlights the lack of new drugs able to prevent or treat neurodegenerative diseases such as Alzheimer disease or Parkinson disease. Yet, the prevalence of these diseases is growing, related to increasing life expectancy, and is leading to a rise in their economic and social cost. At the same time, pharmaceutical companies are reducing or halting their investment in neuropharmacological research. Why have advances in basic neuroscience and our understanding of these diseases not allowed innovative discoveries in drug research? This review will try to explain this failure and suggest possible solutions: develop basic and clinical research but with the emphasis on translational and truly collaborative research; improve preclinical studies by developing more appropriate animal models, using new biomarkers and methodologies such as imaging suitable for clinical trials, providing worthwhile information on the ability of the drug to reach its intended target and induce significant pharmacological changes; build a new system of research management, based on stronger interdisciplinary relations between preclinical and clinical research and including the introduction of international precompetitive research between academic teams, start-up companies and pharmaceutical laboratories; hold early discussions with the regulatory authorities during preclinical studies and at the beginning of clinical trials in order to validate the methodological approaches; involve patients' associations in this new organization of research. These changes should help to ensure the discovery of effective treatments for these pathologies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese dragon's blood.

    Science.gov (United States)

    Li, Ning; Ma, Zhongjun; Li, Mujie; Xing, Yachao; Hou, Yue

    2014-03-28

    Dragon's blood has been used as a famous traditional medicine since ancient times by many cultures. It is a deep red resin, obtained from more than 20 different species of four distinct genera. Red resin of Dracaena cochinchinensis S.C. Chen, known as Chinese dragon's blood or Yunnan dragon's blood, has been shown to promote blood circulation, alleviate inflammation, and to treat stomach ulcers, diarrhea, diabetes, and bleeding. This study investigated an effective approach to identify natural therapeutic agents for neurodegeneration from herbal medicine. The dichloride extract and isolated effective constituents of Chinese dragon's blood showed quinone oxidoreductase 1 (NQO1) inducing activity and anti-inflammatory effect significantly, which are therapy targets of various neurodegenerative diseases. Multiple chromatography and spectra analysis were utilized to afford effective constituents. Then Hepa 1c1c7 and BV-2 cells were employed to assay their NQO1 inducing and anti-inflammatory activities, respectively. Bioactivities guided isolation afforded 21 effective constituents, including two new polymers cochinchinenene E (1), cochinchinenene F (2) and a new steroid dracaenol C (16). The main constituent 3 (weight percent 0.2%), 5 (weight percent 0.017%), 4 (weight percent 0.009%), 9 (weight percent 0.094%), 10 (weight percent 0.017%) and 8 (weight percent 0.006%) are responsible for the anti-inflammatory activities of Chinese dragon's blood. While, new compounds 1, 2 and known compounds 5, 11 showed good NQO1 inducing activities. The brief feature of the activities and structures was discussed accordingly. Overviewing the bioactivities and phytochemical study result, 4'-hydroxy-2,4-dimethoxydihydrochalcone (3) and pterostilbene (5) as effective constituents of Chinese dragon's blood, were found to be potential candidate therapeutic agents for neurodegenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases.

    Science.gov (United States)

    Ahmad, Faraz; Nidadavolu, Prakash; Durgadoss, Lalitha; Ravindranath, Vijayalakshmi

    2014-09-01

    Impaired Akt1 signaling is observed in neurodegenerative diseases, including Parkinson׳s disease (PD). In PD models oxidative modification of Akt1 leads to its dephosphorylation and consequent loss of its kinase activity. To explore the underlying mechanism we exposed Neuro2A cells to cadmium, a pan inhibitor of protein thiol disulfide oxidoreductases, including glutaredoxin 1 (Grx1), or downregulated Grx1, which led to dephosphorylation of Akt1, loss of its kinase activity, and also decreased Akt1 protein levels. Mutation of cysteines to serines at 296 and 310 in Akt1 did not affect its basal kinase activity but abolished cadmium- and Grx1 downregulation-induced reduction in Akt1 kinase activity, indicating their critical role in redox modulation of Akt1 function and turnover. Cadmium-induced decrease in phosphorylated Akt1 correlated with increased association of wild-type (WT) Akt1 with PP2A, which was absent in the C296-310S Akt1 mutant and was also abolished by N-acetylcysteine treatment. Further, increased proteasomal degradation of Akt1 by cadmium was not seen in the C296-310S Akt1 mutant, indicating that oxidation of cysteine residues facilitates degradation of WT Akt1. Moreover, preventing oxidative modification of Akt1 cysteines 296 and 310 by mutating them to serines increased the cell survival effects of Akt1. Thus, in neurodegenerative states such as PD, maintaining the thiol status of cysteines 296 and 310 in Akt1 would be critical for Akt1 kinase activity and for preventing its degradation by proteasomes. Preventing downregulation of Akt signaling not only has long-range consequences for cell survival but could also affect the multiple roles that Akt plays, including in the Akt-mTOR signaling cascade. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies.

    Science.gov (United States)

    López González, Irene; Garcia-Esparcia, Paula; Llorens, Franc; Ferrer, Isidre

    2016-02-04

    Polymorphisms in certain inflammatory-related genes have been identified as putative differential risk factors of neurodegenerative diseases with abnormal protein aggregates, such as sporadic Alzheimer's disease (AD) and sporadic Parkinson's disease (sPD). Gene expression studies of cytokines and mediators of the immune response have been made in post-mortem human brain samples in AD, sPD, sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2, Pick's disease (PiD), progressive supranuclear palsy (PSP) and frontotemporal lobar degeneration linked to mutation P301L in MAPT Frontotemporal lobar degeneration-tau (FTLD-tau). The studies have disclosed variable gene regulation which is: (1) disease-dependent in the frontal cortex area 8 in AD, sPD, sCJD MM1 and VV2, PiD, PSP and FTLD-tau; (2) region-dependent as seen when comparing the entorhinal cortex, orbitofrontal cortex, and frontal cortex area 8 (FC) in AD; the substantia nigra, putamen, FC, and angular gyrus in PD, as well as the FC and cerebellum in sCJD; (3) genotype-dependent as seen considering sCJD MM1 and VV2; and (4) stage-dependent as seen in AD at different stages of disease progression. These observations show that regulation of inflammation is much more complicated and diverse than currently understood, and that new therapeutic approaches must be designed in order to selectively act on specific targets in particular diseases and at different time points of disease progression.

  12. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    Science.gov (United States)

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  13. Molecular mechanisms of the co-deposition of multiple pathological proteins in neurodegenerative diseases.

    Science.gov (United States)

    Nonaka, Takashi; Masuda-Suzukake, Masami; Hasegawa, Masato

    2017-09-25

    Intracellular inclusions composed of abnormal protein aggregates are one of the neuropathological features of neurodegenerative diseases, and the formation of intracellular aggregates is believed to be associated with neurodegeneration leading to the onset of these diseases. In typical or pure cases, characteristic pathologies with one particular protein, such as tau, alpha-synuclein or trans-activation response DNA protein 43 (TDP-43), can be observed in brains of patients. On the other hand, multiple protein pathologies co-exist in many cases, raising the possibility that they may influence each other reciprocally in the pathogenesis and progression of the diseases. However, the molecular mechanisms through which these proteins interact with each other and through which they are co-deposited in brains of patients remain poorly understood. In this review, we focus on the mechanisms of deposition of multiple pathological proteins, such as tau, alpha-synuclein and/or TDP-43, and on co-deposition models of these proteins in vitro and in vivo intended to recapitulate the multiple pathologies found in diseased brains. © 2017 Japanese Society of Neuropathology.

  14. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases.

    Science.gov (United States)

    Weng, Tzu-Yu; Tsai, Shang-Yi Anne; Su, Tsung-Ping

    2017-09-16

    The sigma-1 receptor (Sig-1R) is a chaperone that resides mainly at the mitochondrion-associated endoplasmic reticulum (ER) membrane (called the MAMs) and acts as a dynamic pluripotent modulator in living systems. At the MAM, the Sig-1R is known to play a role in regulating the Ca2+ signaling between ER and mitochondria and in maintaining the structural integrity of the MAM. The MAM serves as bridges between ER and mitochondria regulating multiple functions such as Ca2+ transfer, energy exchange, lipid synthesis and transports, and protein folding that are pivotal to cell survival and defense. Recently, emerging evidences indicate that the MAM is critical in maintaining neuronal homeostasis. Thus, given the specific localization of the Sig-1R at the MAM, we highlight and propose that the direct or indirect regulations of the Sig-1R on mitochondrial functions may relate to neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). In addition, the promising use of Sig-1R ligands to rescue mitochondrial dysfunction-induced neurodegeneration is addressed.

  15. Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview

    Directory of Open Access Journals (Sweden)

    Yenisetti SC

    2016-06-01

    Full Text Available Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Amyotrophic Lateral Sclerosis (ALS. The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.

  16. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J.; Sollberger, Marc; Miller, Bruce L.

    2014-01-01

    Accurate self-awareness is essential for adapting one’s tasks and goals to one’s actual abilities. Patients with neurodegenerative diseases, particularly those with right frontal involvement, often present with poor self-awareness of their functional limitations that may exacerbate their already jeopardized decision-making and behaviour. We studied the structural neuroanatomical basis for impaired self-awareness among patients with neurodegenerative disease and healthy older adults. One hundred and twenty-four participants (78 patients with neurodegenerative diseases including Alzheimer’s disease, behavioural variant frontotemporal dementia, right-temporal frontotemporal dementia, semantic variant and non-fluent variant primary progressive aphasia, and 46 healthy controls) described themselves on the Patient Competency Rating Scale, rating observable functioning across four domains (daily living activities, cognitive, emotional control, interpersonal). All participants underwent structural magnetic resonance imaging. Informants also described subjects’ functioning on the same scale. Self-awareness was measured by comparing self and informant ratings. Group differences in discrepancy scores were analysed using general linear models, controlling for age, sex and disease severity. Compared with controls, patients with behavioural variant frontotemporal dementia overestimated their functioning in all domains, patients with Alzheimer’s disease overestimated cognitive and emotional functioning, patients with right-temporal frontotemporal dementia overestimated interpersonal functioning, and patients with non-fluent aphasia overestimated emotional and interpersonal functioning. Patients with semantic variant aphasia did not overestimate functioning on any domain. To examine the neuroanatomic correlates of impaired self-awareness, discrepancy scores were correlated with brain volume using voxel-based morphometry. To identify the unique neural correlates of

  17. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  18. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases.

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Guo, Xiangyu; Li, Xiao-Jiang

    2015-08-04

    Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very important for validating effective treatments or confirming therapeutic targets. Due to the lack of embryonic stem cell lines from large animals, it has been difficult to use traditional gene targeting technology to establish large animal models of neurodegenerative diseases. Recently, CRISPR/Cas9 was used successfully to genetically modify genomes in various species. Here we discuss the use of CRISPR/Cas9 technology to establish large animal models that can more faithfully mimic human neurodegenerative diseases.

  19. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease.

    Science.gov (United States)

    Kurian, P; Obisesan, T O; Craddock, T J A

    2017-10-01

    Oxidative stress is a pathological hallmark of neurodegenerative tauopathic disorders such as Alzheimer's disease and Parkinson's disease-related dementia, which are characterized by altered forms of the microtubule-associated protein (MAP) tau. MAP tau is a key protein in stabilizing the microtubule architecture that regulates neuron morphology and synaptic strength. When MAP tau is degraded in tauopathic disorders, neuron dysfunction results. The precise role of reactive oxygen species (ROS) in the tauopathic disease process, however, is poorly understood. Classically, mitochondrial dysfunction has been viewed as the major source of oxidative stress and has been shown to precede tau and amyloid pathology in various dementias, but the exact mechanisms are not clear. It is known that the production of ROS by mitochondria can result in ultraweak photon emission (UPE) within cells. While of low intensity, surrounding proteins within the cytosol can still absorb these energetic photons via aromatic amino acids (e.g., tryptophan and tyrosine). One likely absorber of these photons is the microtubule cytoskeleton, as it forms a vast network spanning neurons, is highly co-localized with mitochondria, and shows a high density of aromatic amino acids. Functional microtubule networks may traffic this ROS-generated endogenous photon energy for cellular signaling, or they may serve as dissipaters/conduits of such energy to protect the cell from potentially harmful effects. Experimentally, after in vitro exposure to exogenous photons, microtubules have been shown to reorient and reorganize in a dose-dependent manner with the greatest effect being observed around 280nm, in the tryptophan and tyrosine absorption range. In this paper, recent modeling efforts based on ambient temperature experiment are presented, showing that tubulin polymers can feasibly absorb and channel these photoexcitations via resonance energy transfer, on the order of dendritic length scales and neuronal

  20. Estimating frontal and parietal involvement in cognitive estimation: a study of focal neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Teagan Ann Bisbing

    2015-06-01

    Full Text Available We often estimate an unknown value based on available relevant information, a process known as cognitive estimation. In this study, we assess the cognitive and neuroanatomic basis for quantitative estimation by examining deficits in patients with focal neurodegenerative disease in frontal and parietal cortex. Executive function and number knowledge are key components in cognitive estimation. Prefrontal cortex has been implicated in multilevel reasoning and planning processes, and parietal cortex has been associated with number knowledge required for such estimations. We administered the Biber Cognitive Estimation Test (BCET to assess cognitive estimation in 22 patients with prefrontal disease due to behavioral variant frontotemporal dementia (bvFTD, to 17 patients with parietal disease due to corticobasal syndrome (CBS or posterior cortical atrophy (PCA and 11 patients with mild cognitive impairment (MCI. Both bvFTD and CBS/PCA patients had significantly more difficulty with cognitive estimation than controls. MCI were not impaired on BCET relative to controls. Regression analyses related BCET performance to gray matter atrophy in right lateral prefrontal and orbital frontal cortices in bvFTD, and to atrophy in right inferior parietal cortex, right insula and fusiform cortices in CBS/PCA. These results are consistent with the hypothesis that a frontal-parietal network plays a crucial role in cognitive estimation.

  1. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans

    Science.gov (United States)

    Chernoff, Neil; Hill, D. J.; Diggs, D. L.; Faison, B. D.; Francis, B. M.; Lang, J. R.; Larue, M. M.; Le, T.-T.; Loftin, Keith A.; Lugo, J. N.; Schmid, J. E.; Winnik, W. W.

    2017-01-01

    The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer’s disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.

  2. What Causes Heart Disease?

    Science.gov (United States)

    ... Education Institute) Heart Attack: Interactive Tutorial (MedlinePlus—Patient Education Institute) RELATED NEWS March 13, 2017 | Research Feature NHLBI, nursing sorority team up to fight heart disease in ...

  3. Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit: implications for apoptosis and neurodegenerative disease.

    Science.gov (United States)

    Clayton, Rebecca; Clark, John B; Sharpe, Martyn

    2005-02-01

    Apoptosis may be initiated in neurons via mitochondrial release of the respiratory protein, cytochrome c. The mechanism of cytochrome c release has been studied extensively, but little is known about its dynamics. It has been claimed that release is all-or-none, however, this is not consistent with accumulating evidence of cytosolic mechanisms for 'buffering' cytochrome c. This study has attempted to model an underlying disease pathology, rather than inducing apoptosis directly. The model adopted was diminished activity of the mitochondrial respiratory chain complex I, a recognized feature of Parkinson's disease. Titration of rat brain mitochondrial respiratory function, with the specific complex I inhibitor rotenone, caused proportional release of cytochrome c from isolated synaptic and non-synaptic mitochondria. The mechanism of release was mediated, at least in part, by the mitochondrial outer membrane component Bak and voltage-dependent anion channel rather than non-specific membrane rupture. Furthermore, preliminary data were obtained demonstrating that in primary cortical neurons, titration with rotenone induced cytochrome c release that was subthreshold for the induction of apoptosis. Implications for the therapy of neurodegenerative diseases are discussed.

  4. Genomic Characteristics of Genetic Creutzfeldt-Jakob Disease Patients with V180I Mutation and Associations with Other Neurodegenerative Disorders.

    Science.gov (United States)

    Lee, Sol Moe; Chung, Myungguen; Hyeon, Jae Wook; Jeong, Seok Won; Ju, Young Ran; Kim, Heebal; Lee, Jeongmin; Kim, SangYun; An, Seong Soo A; Cho, Sung Beom; Lee, Yeong Seon; Kim, Su Yeon

    2016-01-01

    Inherited prion diseases (IPDs), including genetic Creutzfeldt-Jakob disease (gCJD), account for 10-15% of cases of prion diseases and are associated with several pathogenic mutations, including P102L, V180I, and E200K, in the prion protein gene (PRNP). The valine to isoleucine substitution at codon 180 (V180I) of PRNP is the most common pathogenic mutation causing gCJD in East Asian patients. In this study, we conducted follow-up analyses to identify candidate factors and their associations with disease onset. Whole-genome sequencing (WGS) data of five gCJD patients with V180I mutation and 145 healthy individuals were used to identify genomic differences. A total of 18,648,850 candidate variants were observed in only the patient group, 29 of them were validated as variants. Four of these validated variants were nonsense mutations, six were observed in genes directly or indirectly related to neurodegenerative disorders (NDs), such as LPA, LRRK2, and FGF20. More than half of validated variants were categorized in Gene Ontology (GO) terms of binding and/or catalytic activity. Moreover, we found differential genome variants in gCJD patients with V180I mutation, including one uniquely surviving 10 years after diagnosis of the disease. Elucidation of the relationships between gCJD and Alzheimer's disease or Parkinson's disease at the genomic level will facilitate further advances in our understanding of the specific mechanisms mediating the pathogenesis of NDs and gold standard therapies for NDs.

  5. Anti-aging herbal medicine--how and why can they be used in aging-associated neurodegenerative diseases?

    Science.gov (United States)

    Ho, Yuen-Shan; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2010-07-01

    Aging is a universal biological process that leads to progressive and deleterious changes in organisms. From ancient time, mankind has already interested in preventing and keeping ourselves young. Anti-aging study is certainly not a new research area. Nowadays, the meaning of anti-aging has been changed from simply prolonging lifespan to increasing health span, which emphasizes more on the quality of life. This is the concept of healthy aging and prevention of pathological aging, which is associated with diseases. Keeping our brain functions as in young age is an important task for neuroscientists to prevent aging-associated neurological disorders, such as Alzheimer's diseases (AD) and Parkinson's disease (PD). The causes of these diseases are not fully understood, but it is believed that these diseases are affected by multiple factors. Neurodegenerative diseases can be cross-linked with a number of aging-associated conditions. Based on this, a holistic approach in anti-aging research seems to be more reasonable. Herbal medicine has a long history in Asian countries. It is believed that many of the medicinal herbs have anti-aging properties. Recent studies have shown that some medicinal herbs are effective in intervention or prevention of aging-associated neurological disorders. In this review, we use wolfberry and ginseng as examples to elaborate the properties of anti-aging herbs. The characteristics of medicinal herbs, especially their applications in different disease stages (prevention and intervention) and multi-targets properties, allow them to be potential anti-aging intervention in prevention and treatment of the aging-associated neurological disorders. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Neuro degenerative diseases: clinical concerns; Les maladies neuro-degeneratives: problemes cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, V. [Hopitaux Universitaires de Geneve (HUG), Unite de Neuroimagerie, Dept. de Psychiatrie (Switzerland)

    2005-04-15

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [{sup 18}F]-deoxyglucose and [{sup 18}F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [{sup 18}F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [{sup 18}F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  7. Controlling futures? Online Genetic Testing and Neurodegenerative Disease : Comment on "Personal Genomic Testing, Genetic Inheritance, and Uncertainty".

    Science.gov (United States)

    Warren, Narelle; Gardner, John

    2017-12-01

    Online personalized genetic testing services offer accessible and convenient options for satisfying personal curiosity about health and obtaining answers about one's genetic provenance. They are especially attractive to healthy people who wish to learn about their future risk of disease, as Paul Mason's (2017) case study of "Jordan" illustrates. In this response, we consider how online genetic testing services are used by people diagnosed with a common neurodegenerative disease, Parkinson's disease, to gain a sense of certainty regarding the future.

  8. Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Clara Herrera-Arozamena

    2016-09-01

    Full Text Available The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs niches might counteract the neuronal loss in Alzheimer’s disease (AD and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT and nuclear erythroid 2-related factor (Nrf2.

  9. Apathy in Neurodegenerative Diseases: Recommendations on the Design of Clinical Trials.

    Science.gov (United States)

    Cummings, Jeffrey; Friedman, Joseph H; Garibaldi, George; Jones, Martin; Macfadden, Wayne; Marsh, Laura; Robert, Philippe H

    2015-09-01

    Apathy is a common feature of neurodegenerative disorders but is difficult to study in a clinical trial setting due to practical and conceptual barriers. Principal challenges include a paucity of data regarding apathy in these disorders, an absence of established diagnostic criteria, the presence of confounding factors (eg, coexisting depression), use of concomitant medications, and an absence of a gold-standard apathy assessment scale. Based on a literature search and ongoing collaboration among the authors, we present recommendations for the design of future clinical trials of apathy, suggesting Alzheimer disease and Parkinson disease as models with relevance across a wider array of neuropsychiatric disorders. Recommendations address clarification of the targeted study population (apathy diagnosis and severity at baseline), confounding factors (mood/cognition, behavior, and treatment), outcome measures, study duration, use of comparators and considerations around environment, and the role of the caregiver and patient assent. This review contributes to the search for an optimal approach to study treatment of apathy in neuropsychiatric disorders. © The Author(s) 2015.

  10. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Science.gov (United States)

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases.

    Science.gov (United States)

    Khalil, Bilal; Morderer, Dmytro; Price, Phillip L; Liu, Feilin; Rossoll, Wilfried

    2018-02-17

    The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). Copyright © 2018. Published by Elsevier B.V.

  12. Relevance of the Anti-Inflammatory Properties of Curcumin in Neurodegenerative Diseases and Depression

    Directory of Open Access Journals (Sweden)

    Yousef Tizabi

    2014-12-01

    Full Text Available This review is an attempt to summarize our current understanding of curcumin’s potential as a neuroprotectant and an antidepressant. This dual property confers a unique advantage to this herbal medication, believed to be devoid of any major side effects, to combat commonly observed co-morbid conditions of a neurodegenerative and a neuropsychiatric disorder. Moreover, in line with the theme of this series, the role of inflammation and stress in these diseases and possible anti-inflammatory effects of curcumin, as well as its interaction with signal transduction proteins as a common denominator in its varied mechanisms of action, are also discussed. Thus, following a brief introduction of curcumin’s pharmacology, we present research suggesting how its anti-inflammatory properties have therapeutic potential in treating a devastating neurological disorder (Parkinson’s disease = PD and a debilitating neuropsychiatric disorder (major depressive disorder = MDD. It is concluded that curcumin, or better yet, an analog with better and longer bioavailability could be of important therapeutic potential in PD and/or major depression.

  13. Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression.

    Science.gov (United States)

    Tizabi, Yousef; Hurley, Laura L; Qualls, Zakiya; Akinfiresoye, Luli

    2014-12-12

    This review is an attempt to summarize our current understanding of curcumin's potential as a neuroprotectant and an antidepressant. This dual property confers a unique advantage to this herbal medication, believed to be devoid of any major side effects, to combat commonly observed co-morbid conditions of a neurodegenerative and a neuropsychiatric disorder. Moreover, in line with the theme of this series, the role of inflammation and stress in these diseases and possible anti-inflammatory effects of curcumin, as well as its interaction with signal transduction proteins as a common denominator in its varied mechanisms of action, are also discussed. Thus, following a brief introduction of curcumin's pharmacology, we present research suggesting how its anti-inflammatory properties have therapeutic potential in treating a devastating neurological disorder (Parkinson's disease = PD) and a debilitating neuropsychiatric disorder (major depressive disorder = MDD). It is concluded that curcumin, or better yet, an analog with better and longer bioavailability could be of important therapeutic potential in PD and/or major depression.

  14. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  15. A Tol2 Gateway-Compatible Toolbox for the Study of the Nervous System and Neurodegenerative Disease.

    Science.gov (United States)

    Don, Emily K; Formella, Isabel; Badrock, Andrew P; Hall, Thomas E; Morsch, Marco; Hortle, Elinor; Hogan, Alison; Chow, Sharron; Gwee, Serene S L; Stoddart, Jack J; Nicholson, Garth; Chung, Roger; Cole, Nicholas J

    2017-02-01

    Currently there is a lack in fundamental understanding of disease progression of most neurodegenerative diseases, and, therefore, treatments and preventative measures are limited. Consequently, there is a great need for adaptable, yet robust model systems to both investigate elementary disease mechanisms and discover effective therapeutics. We have generated a Tol2 Gateway-compatible toolbox to study neurodegenerative disorders in zebrafish, which includes promoters for astrocytes, microglia and motor neurons, multiple fluorophores, and compatibility for the introduction of genes of interest or disease-linked genes. This toolbox will advance the rapid and flexible generation of zebrafish models to discover the biology of the nervous system and the disease processes that lead to neurodegeneration.

  16. Current status of treating neurodegenerative disease with induced pluripotent stem cells.

    Science.gov (United States)

    Pen, A E; Jensen, U B

    2017-01-01

    Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. 4-Hydroxy-2-Nonenal, a Reactive Product of Lipid Peroxidation, and Neurodegenerative Diseases: A Toxic Combination Illuminated by Redox Proteomics Studies

    Science.gov (United States)

    Coccia, Raffaella; Butterfield, D. Allan

    2012-01-01

    Abstract Significance: Among different forms of oxidative stress, lipid peroxidation comprises the interaction of free radicals with polyunsaturated fatty acids, which in turn leads to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. HNE is considered a robust marker of oxidative stress and a toxic compound for several cell types. Proteins are particularly susceptible to modification caused by HNE, and adduct formation plays a critical role in multiple cellular processes. Recent Advances: With the outstanding progress of proteomics, the identification of putative biomarkers for neurodegenerative disorders has been the main focus of several studies and will continue to be a difficult task. Critical Issues: The present review focuses on the role of lipid peroxidation, particularly of HNE-induced protein modification, in neurodegenerative diseases. By comparing results obtained in different neurodegenerative diseases, it may be possible to identify both similarities and specific differences in addition to better characterize selective neurodegenerative phenomena associated with protein dysfunction. Results obtained in our laboratory and others support the common deregulation of energy metabolism and mitochondrial function in neurodegeneration. Future Directions: Research towards a better understanding of the molecular mechanisms involved in neurodegeneration together with identification of specific targets of oxidative damage is urgently required. Redox proteomics will contribute to broaden the knowledge in regard to potential biomarkers for disease diagnosis and may also provide insight into damaged metabolic networks and potential targets for modulation of disease progression. Antioxid. Redox Signal. 17, 1590–1609. PMID:22114878

  18. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Ke-Xin Wen

    Full Text Available Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND such as Alzheimer's disease (AD and Parkinson's disease (PD.To systematically review studies investigating epigenetic marks in AD or PD.Eleven bibliographic databases (Embase.com, Medline (Ovid, Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost, Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form.Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes. There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD.Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.

  19. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    Directory of Open Access Journals (Sweden)

    Ralf Gold

    2012-09-01

    Full Text Available Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS. Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2-related factor 2 (Nrf2. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE, an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE.

  20. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Marta Pajares

    2017-04-01

    Full Text Available Neurodegenerative diseases are linked to the accumulation of specific protein aggregates, suggesting an intimate connection between injured brain and loss of proteostasis. Proteostasis refers to all the processes by which cells control the abundance and folding of the proteome thanks to a wide network that integrates the regulation of signaling pathways, gene expression and protein degradation systems. This review attempts to summarize the most relevant findings about the transcriptional modulation of proteostasis exerted by the transcription factor NRF2 (nuclear factor (erythroid-derived 2-like 2. NRF2 has been classically considered as the master regulator of the antioxidant cell response, although it is currently emerging as a key component of the transduction machinery to maintain proteostasis. As we will discuss, NRF2 could be envisioned as a hub that compiles emergency signals derived from misfolded protein accumulation in order to build a coordinated and perdurable transcriptional response. This is achieved by functions of NRF2 related to the control of genes involved in the maintenance of the endoplasmic reticulum physiology, the proteasome and autophagy.

  1. In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases

    Science.gov (United States)

    Eberini, Ivano; Daniele, Simona; Parravicini, Chiara; Sensi, Cristina; Trincavelli, Maria L.; Martini, Claudia; Abbracchio, Maria P.

    2011-08-01

    GPR17, a previously orphan receptor responding to both uracil nucleotides and cysteinyl-leukotrienes, has been proposed as a novel promising target for human neurodegenerative diseases. Here, in order to specifically identify novel potent ligands of GPR17, we first modeled in silico the receptor by using a multiple template approach, in which extracellular loops of the receptor, quite complex to treat, were modeled making reference to the most similar parts of all the class-A GPCRs crystallized so far. A high-throughput virtual screening exploration of GPR17 binding site with more than 130,000 lead-like compounds was then applied, followed by the wet functional and pharmacological validation of the top-scoring chemical structures. This approach revealed successful for the proposed aim, and allowed us to identify five agonists or partial agonists with very diverse chemical structure. None of these compounds could have been expected `a priori' to act on a GPCR, and all of them behaved as much more potent ligands than GPR17 endogenous activators.

  2. NF-κB in innate neuroprotection and age-related neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Annamaria eLanzillotta

    2015-05-01

    Full Text Available NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programming of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation but site specific acetylation on lysine 310 triggers the expression of pro-apoptotic genes.Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN dopaminergic (DA neurons to aging and induces a parkinsonian like pathology in mice. c-rel-/- mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein and iron. Moreover, they develop motor deficits responsive to L-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.

  3. Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases

    Science.gov (United States)

    Haney, Matthew J.; Zhao, Yuling; Harrison, Emily B.; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D.; Klyachko, Natalia L.; Mosley, R. Lee; Gendelman, Howard E.; Kabanov, Alexander V.; Batrakova, Elena V.

    2013-01-01

    The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders. PMID:23620794

  4. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  5. 4 Tesla Whole Body MRI MRSI System for Investigation of Neurodegenerative Diseases

    National Research Council Canada - National Science Library

    Weiner, Michael W

    2004-01-01

    The overall long-term goal of imaging research to be performed with this 4 Tesla Siemens/Bruker MRI system is the development of improved diagnostic methods for accurate detection of neurodegenerative...

  6. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases

    Science.gov (United States)

    Lapchak, Paul A

    2012-01-01

    One of the most promising methods to treat neurodegeneration is noninvasive transcranial near-infrared laser therapy (NILT), which appears to promote acute neuroprotection by stimulating mitochondrial function, thereby increasing cellular energy production. NILT may also promote chronic neuronal function restoration via trophic factor-mediated plasticity changes or possibly neurogenesis. Clearly, NILT is a treatment that confers neuroprotection or neurorestoration using pleiotropic mechanisms. The most advanced application of NILT is for acute ischemic stroke based upon extensive preclinical and clinical studies. In laboratory settings, NILT is also being developed to treat traumatic brain injury, Alzheimer’s disease and Parkinson’s disease. There is some intriguing data in the literature that suggests that NILT may be a method to promote clinical improvement in neurodegenerative diseases where there is a common mechanistic component, mitochondrial dysfunction and energy impairment. This article will analyze and review data supporting the continued development of NILT to treat neurodegenerative diseases. PMID:22145842

  7. Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury

    Science.gov (United States)

    Bakhru, Sasha H.

    The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI. Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years. In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for

  8. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

    Science.gov (United States)

    Palmieri, Michela; Pal, Rituraj; Nelvagal, Hemanth R.; Lotfi, Parisa; Stinnett, Gary R.; Seymour, Michelle L.; Chaudhury, Arindam; Bajaj, Lakshya; Bondar, Vitaliy V.; Bremner, Laura; Saleem, Usama; Tse, Dennis Y.; Sanagasetti, Deepthi; Wu, Samuel M.; Neilson, Joel R.; Pereira, Fred A.; Pautler, Robia G.; Rodney, George G.; Cooper, Jonathan D.; Sardiello, Marco

    2017-01-01

    Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases. PMID:28165011

  9. Neurobiology of sleep disturbances in neurodegenerative disorders.

    Science.gov (United States)

    Gagnon, J-F; Petit, D; Latreille, V; Montplaisir, J

    2008-01-01

    This review presents sleep disturbances and their underlying pathophysiology in three categories of neurodegenerative disorders namely tauopathies, synucleinopathies, and Huntington's disease (HD) and prion-related diseases. Sleep abnormalities are a major and early feature of neurodegenerative disorders, especially for synucleinopathies, HD and prion-related diseases, in which the sleep-related brainstem regions are severely altered and impaired sooner than in most of the tauopathies. In synucleinopathies, HD and prion-related diseases, specific sleep disturbances, different from those observed in tauopathies, are considered as core manifestations of the disease and in some cases, as preclinical signs. For this reason, the evaluation of sleep components in these neurodegenerative disorders may be useful to make a diagnosis and to assess the efficacy of pharmacotherapy. Since sleep disruption may occur early in the course of neurodegeneration, sleep disturbance may serve as groundwork to study the efficacy of neuroprotective agents to prevent or delay the development of a full-blown neurodegenerative disorder. The cause of sleep disturbances in neurodegenerative disorders may be attributed to several factors, including age-related modifications, symptoms of the disease, comorbid conditions and the neurodegenerative process itself.

  10. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders.

    Science.gov (United States)

    Di Domenico, Fabio; Tramutola, Antonella; Butterfield, D Allan

    2017-10-01

    Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Kuru: a half-opened window onto the landscape of neurodegenerative diseases.

    Science.gov (United States)

    Liberski, Paweł P; Brown, Paul

    2004-01-01

    Kuru, the first human neurodegenerative disease classified as a transmissible spongiform encephalopathy (TSE), prion disease or, in the past, as a slow unconventional virus disease, was first reported to Western medicine in 1957 by Gajdusek and Zigas. A complete bibliography of kuru through 1975 has been published by Alpers et al. The solution of the kuru riddle opened a novel field of biomedical sciences and initiated more than a quarter of century of research that has already resulted in two Nobel prizes (to D. Carleton Gajdusek in 1976 and to Stanley B. Prusiner in 1997) and was linked to a third (to Kurt Wüthrich who determined the structure of the prion protein). Kuru research has impacted the concepts of nucleation-polymerization "protein cancers", and "conformational disorders". This paper is dedicated to Dr. Carleton Gajdusek on the occasion of his 80th birthday. "Kuru" in the Fore (Fig. 1) language means to shiver from fever or cold. The Fore used the noun of the kuru-verb to describe the always fatal disease which decimated their children and adult women but rarely men. It has been and still is restricted to natives of the Fore linguistic group at Papua New Guinea's Eastern Highlands and those neighboring linguistic groups which exchange women with Fore people (Auiana, Awa, Usurufa, Kanite, Keiagana, late, Kamano, Kimi; Fig. 2). Neighboring groups into which kuru-affected people did not settle through marriage or adoption, such as the Anga (Kukukuku), and remote lagaria, Kamano and Auiana people, were not affected. It seems that Kuru first appeared at or shortly after the turn of XX century in Uwami village of Keiagana people and spread to the Awande in the North Fore where the Uwami had social contacts. Within 20 years it had spread further into the Kasokana (in 1922 according to Lindebaum) and Miarasa villages of North Fore, and a decade later had reached the South Fore at the Wanikanto and Kamira villages. Kuru became endemic in all villages that it

  12. Oxidative Genome Damage and Its Repair in Neurodegenerative Diseases: Function of Transition Metals as a Double-Edged Sword

    Science.gov (United States)

    Hegde, Muralidhar L.; Hegde, Pavana M.; Rao, K.S.J.; Mitra, Sankar

    2013-01-01

    The neurons in the central nervous system (CNS) with high O2 consumption and prolonged life span are chronically exposed to high levels of reactive oxygen species (ROS). Accumulation of ROS-induced genome damage in the form of oxidized bases and single-strand breaks (SSBs) as well as their defective or reduced repair in the brain has been implicated in the etiology of various neurological disorders including Alzheimer’s/Parkinson’s diseases (AD/PD). Although inactivating mutations in some DNA repair genes have been linked to hereditary neurodegenerative diseases, the underlying mechanisms of repair deficiencies for the sporadic diseases is not understood. The ROS-induced DNA damages are predominantly repaired via highly conserved and regulated base excision/SSB repair (BER/SSBR) pathway. We recently made an interesting discovery that transition metals iron (Fe) and copper (Cu) which accumulate excessively in the brains of AD, PD and other neurodegenerative diseases, act as a ‘double-edged sword’ by inducing genotoxic ROS and inhibiting DNA damage repair at the same time. These metals inhibit the base excision activity of NEIL family DNA glycosylases by oxidizing them, changing their structure, and inhibiting their binding to downstream repair proteins. Metal chelators and reducing agents partially reverse the inhibition, while curcumin with both chelating and reducing activities reverses the inhibition nearly completely. In this review, we have discussed the possible etiological linkage of BER/SSBR defects to neurodegenerative diseases and therapeutic potential of metal chelators in restoring DNA repair capacity. PMID:21441656

  13. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jocelyn M Madeira

    2015-01-01

    Full Text Available Neurodegenerative disorders including Alzheimer′s disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.

  14. [Sleep in neurodegenerative disorders].

    Science.gov (United States)

    Happe, S; Mayer, G

    2006-10-01

    Neurodegenerative disorders are a group of heterogeneous, progressive disorders of varying etiology that affect one or more systems. They occur predominantly at older age, during which the structure and amount of sleep undergo changes. Neurodegenerative processes cause structural changes of the sleep/wake generators in the brainstem which result in disorders such as daytime sleepiness, insomnia, sleep-related movement and breathing disturbances, and disorders of the circadian rhythms. Some sleep disorders manifest years before the onset of neurodegenerative disorders and may serve as predictors. Polysomnography shows sleep fragmentation, tonic or phasic movements of the extremities, alteration of respiratory muscles, reduced slow wave sleep, REM sleep absence or without muscle atonia, increased arousal or wake activity, epileptiform EEG activity, and changes in sleep-related breathing. Very frequently, REM sleep behaviour disorder is associated with neurodegenerative disorders. In this overview we present symptoms, pathophysiology, and polysomnographic findings of sleep disorders in prevalent neurodegenerative disorders.

  15. Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases.

    Science.gov (United States)

    Silverman, Richard B

    2009-03-17

    a one-amino-acid difference between nNOS and eNOS in the second sphere of amino acids; this was the difference that we were searching for from the beginning of this project. With the aid of these crystal structures, we developed a new fragment-based de novo design method called "fragment hopping", which allowed the design of a new class of nonpeptide nNOS-selective inhibitors. These compounds were modified to give low nanomolar, highly dual-selective nNOS inhibitors, which we recently showed are active in a rabbit model for the prevention of neurobehavioral symptoms of cerebral palsy. These compounds could also have general application in other neurodegenerative diseases for which excess NO is responsible.

  16. Transplantation of human fetal tissue for neurodegenerative diseases: validation of a new protocol for microbiological analysis and bacterial decontamination.

    Science.gov (United States)

    Piroth, Tobias; Pauly, Marie-Christin; Schneider, Christian; Wittmer, Annette; Möllers, Sven; Döbrössy, Máté; Winkler, Christian; Nikkhah, Guido

    2014-01-01

    Restorative cell therapy concepts in neurodegenerative diseases are aimed at replacing lost neurons. Despite advances in research on pluripotent stem cells, fetal tissue from routine elective abortions is still regarded as the only safe cell source. Progenitor cells isolated from distinct first-trimester fetal CNS regions have already been used in clinical trials and will be used again in a new multicenter trial funded by the European Union (TRANSEURO). Bacterial contamination of human fetal tissue poses a potential risk of causing infections in the brain of the recipient. Thus, effective methods of microbial decontamination and validation of these methods are required prior to approval of a neurorestorative cell therapy trial. We have developed a protocol consisting of subsequent washing steps at different stages of tissue processing. Efficacy of microbial decontamination was assessed on rat embryonic tissue incubated with high concentrations of defined microbe solutions including representative bacterial and fungal species. Experimental microbial contamination was reduced by several log ranks. Subsequently, we have analyzed the spectrum of microbial contamination and the effect of subsequent washing steps on aborted human fetal tissue; 47.7% of the samples taken during human fetal tissue processing were positive for a microbial contamination, but after washing, no sample exhibited bacterial growth. Our data suggest that human fetal tissue for neural repair can carry microbes of various species, highlighting the need for decontamination procedures. The decontamination protocol described in this report has been shown to be effective as no microbes could be detected at the end of the procedure.

  17. Effectiveness of selective dorsal rhizotomy in 2 patients with progressive spasticity due to neurodegenerative disease

    NARCIS (Netherlands)

    Grunt, Sebastian; van der Knaap, Marjo S.; van Ouwerkerk, Willem J. R.; Strijers, Rob L. M.; Becher, Jules G.; Vermeulen, R. Jeroen

    2008-01-01

    Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders.

  18. [Demographic characteristics of RBD patients at a sleep center--with special emphasis on neurodegenerative diseases as the background condition].

    Science.gov (United States)

    Okura, Mutsumi; Taniguchi, Mitsutaka; Sugita, Hideko; Ohi, Motoharu; Tachibana, Naoko

    2007-11-01

    REM sleep behavior disorder (RBD) is characterized by loss of normal REM sleep skeletal muscle atonia, resulting in complex motor behaviors associated with dream mentation. Reports have been accumulated showing an association of RBD and neurodegenerative diseases. However, in Japan, no data has been available about demographic features of RBD in a large patient population. We describe demographic characteristics of RBD patients presenting to our sleep center with special emphasis on association of RBD and neurodegenerative diseases. The subjects were consecutive 10,745 patients who presented with sleep and/or wake problems at our sleep center from April 1998 to March 2006. Diagnosis of RBD was made based on ICSD-2 criteria. Medical and sleep histories with complementary information from family members, and findings of neurological examination were assessed retrospectively from the notes of RBD patients. Sixty-seven patients (0.6%) were diagnosed as having RBD. There was strong male predominancy (85.1%). The onset of RBD symptoms was at 61.4+/-8.8 years of age. Neurological symptoms and signs were present in twelve (17.9 % of RBD patients) when they firstly came to our sleep center: 4 patients with Parkinson disease, 4 with multiple system atrophy and 1 with probable dementia with Lewy body. Thirteen patients (43.3%) were aware of olfactory impairment when inquired (out of 30 patients). Clonazepam was administered in 29 patients, and 21 (72.4%) responded well. Our study showed the similar demographic characteristics of RBD to what was shown in the previous large case series. Although the association between RBD and neurodegenerative diseases was not so strong in our cases, it may be mainly because our sleep center was not run in the domain of neurology department and we could not vigorously detect the possible coexistence of neurodegenerative disease. The pathogenesis of RBD is still unclear; therefore, neurologists and sleep specialists need to collaborate in

  19. Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages.

    Science.gov (United States)

    Yang, Jing-Yu; Xue, Xue; Tian, Hua; Wang, Xiao-Xiao; Dong, Ying-Xu; Wang, Fang; Zhao, Ya-Nan; Yao, Xue-Chun; Cui, Wei; Wu, Chun-Fu

    2014-12-01

    Alcohol abuse can result in significant alterations to the structure of the brain and ultimately to behavioral dysfunctions. Epidemiological studies have shown that alcoholism is closely associated with impaired memory and judgment. However, the degree of deficit (brain injury) depends on factors such as the age of onset, duration of heavy drinking, continuous versus periodic (binge) drinking and the typical amount consumed per session. In recent years, neuroinflammation has been proposed as one of the alcoholism-induced neuropathological mechanisms, since increased levels of microglial markers are observed in the brains of both post-mortem human alcoholics and various alcohol-treated animals, from newborn or adolescent rodents to adult rodents. Many studies have investigated how microglia modulate alcohol-induced behavioral changes such as cognitive deficits, abnormal locomotor activity, motor impairment and mood disturbance. Importantly, we try to characterize and compare the distinct features in different ethanol (EtOH)-induced neurodegenerative disease (NDD) models. Moreover, mounting evidence indicates that in response to certain environmental toxins, microglia can become over-activated under oxidative stress, releasing pro-inflammatory mediators that cause central nervous system (CNS) disease. The molecular mechanisms involve free radical formation and the release of pro-inflammatory cytokines that are detrimental to neighboring neurons and interfere with the molecules regulating cell-cell interactions. The identification and understanding of the cellular and molecular mechanisms of microglial activation are described, as well as multiple downstream targets, in different alcohol-treated animal models. This review might contribute to the development of treatments and/or therapeutic agents that can reduce or eliminate the deleterious effects of alcohol-induced NDD. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mutation Frequency of Three Neurodegenerative Lysosomal Storage Diseases: From Screening to Treatment?

    Science.gov (United States)

    Duarte, Ana Joana; Ribeiro, Diogo; Oliveira, Pedro; Amaral, Olga

    2017-04-01

    The ascertainment of mutation frequencies in the general population may have impact on the population's wellbeing and respective healthcare services. Furthermore, it may help define which approaches will be more effective for certain patients based on the genetic cause of disease. Determine the frequency of three mutations, known to be a major cause of three distinct Lysosomal Storage Diseases (LSDs). The following pre-requisites were met: each mutation accounted for over 55% of the disease alleles among previously reported unrelated patients, all three diseases were among the most prevalent LSDs in the population under study, they all involved devastating deterioration of the nervous system, lacked curative treatment and may be fatal in childhood or adolescence. The anonymous samples used in this study were representative of the whole population; mutations were tested by PCR based methods, positive results were further confirmed. The diseases studied were Mucopolysaccharidosis type I (Hurler, MIM 607014), Tay Sachs disease variant B1 (TS, MIM 272800) and Metachromatic Leukodystrophy (MLD, MIM 250100); the mutations were, respectively, p.W402X, p.R178C and c.465+1G>A. Increased carrier frequencies were found for Tay Sachs disease variant B1 HEXA p.R178C mutation (1:340) and for the infantile MLD ARSA c.465+1G> A mutation (1:350) denoting higher risk for these sub-types of disease in Portugal and possibly in individuals of Iberian ancestry. Carrier screening in target populations may provide the foundations for more effective approaches to precision medicine. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Intensive training of phonological skills in progressive aphasia: a model of brain plasticity in neurodegenerative disease.

    Science.gov (United States)

    Louis, M; Espesser, R; Rey, V; Daffaure, V; Di Cristo, A; Habib, M

    2001-01-01

    Three patients with a typical syndrome of nonfluent primary progressive aphasia (Mesulam's syndrome) were trained daily with a remediation protocol including auditory exercises specifically designed to involve several aspects of phonological processing, a domain known to be specifically affected in the condition. The speech content of the exercises was based on the temporal theory of phonological processes according to which increasing the duration of formant transition should facilitate phoneme discrimination and phoneomic awareness. Significantly improved performance on the trained tasks was demonstrated in the three patients. Improvement further generalized to other tasks such as nonword repetition and reading. We conclude that such results (1) argue for using intensive focused therapy of language impairment in neurodegenerative disorders, (2) may constitute a good model of brain plasticity in neurodegenerative disorders in general, and (3) support theories of phonological processing emphasizing temporal features of the auditory signal.

  2. Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla.

    Science.gov (United States)

    Markowicz-Piasecka, Magdalena; Sikora, Joanna; Szydłowska, Aleksandra; Skupień, Agata; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M

    2017-12-01

    Type 2 diabetes mellitus (T2DM) is a complex, chronic and progressive metabolic disease, which is characterized by relative insulin deficiency, insulin resistance, and high glucose levels in blood. Esteemed published articles and epidemiological data exhibit an increased risk of developing Alzheimer's disease (AD) in diabetic pateints. Metformin is the most frequently used oral anti-diabetic drug, which apart from hypoglycaemic activity, improves serum lipid profiles, positively influences the process of haemostasis, and possesses anti-inflammatory properties. Recently, scientists have put their efforts in establishing metformin's role in the treatment of neurodegenerative diseases, such as AD, amnestic mild cognitive impairment and Parkinson's disease. Results of several clinical studies confirm that long term use of metformin in diabetic patients contributes to better cognitive function, compared to participants using other anti-diabetic drugs. The exact mechanism of metformin's advantageous activity in AD is not fully understood, but scientists claim that activation of AMPK-dependent pathways in human neural stem cells might be responsible for the neuroprotective activity of metformin. Metformin was also found to markedly decease Beta-secretase 1 (BACE1) protein expression and activity in cell culture models and in vivo, thereby reducing BACE1 cleavage products and the production of Aβ (β-amyloid). Furthermore, there is also some evidence that metformin decreases the activity of acetylcholinesterase (AChE), which is responsible for the degradation of acetylcholine (Ach), a neurotransmitter involved in the process of learning and memory. In regard to the beneficial effects of metformin, its anti-inflammatory and anti-oxidative properties cannot be omitted. Numerous in vitro and in vivo studies have confirmed that metformin ameliorates oxidative damage.

  3. Genetically modified pig models for neurodegenerative disorders.

    Science.gov (United States)

    Holm, Ida E; Alstrup, Aage Kristian Olsen; Luo, Yonglun

    2016-01-01

    Increasing incidence of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease has become one of the most challenging health issues in ageing humans. One approach to combat this is to generate genetically modified animal models of neurodegenerative disorders for studying pathogenesis, prognosis, diagnosis, treatment, and prevention. Owing to the genetic, anatomic, physiologic, pathologic, and neurologic similarities between pigs and humans, genetically modified pig models of neurodegenerative disorders have been attractive large animal models to bridge the gap of preclinical investigations between rodents and humans. In this review, we provide a neuroanatomical overview in pigs and summarize and discuss the generation of genetically modified pig models of neurodegenerative disorders including Alzheimer's diseases, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, and ataxia-telangiectasia. We also highlight how non-invasive bioimaging technologies such as positron emission tomography (PET), computer tomography (CT), and magnetic resonance imaging (MRI), and behavioural testing have been applied to characterize neurodegenerative pig models. We further propose a multiplex genome editing and preterm recloning (MAP) approach by using the rapid growth of the ground-breaking precision genome editing technology CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). With this approach, we hope to shorten the temporal requirement in generating multiple transgenic pigs, increase the survival rate of founder pigs, and generate genetically modified pigs that will more closely resemble the disease-causing mutations and recapitulate pathological features of human conditions. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. New strategies for the treatment of Parkinson's disease hold considerable promise for future management of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Bjarkam, Carsten Reidies; Sørensen, Jens Christian; Sunde, Niels Å

    2001-01-01

    or more. Parkinson's disease ischaracterized by a massive loss of dopaminergicneurons in the substantia nigra, leading tosevere functional disturbance of the neuronalcircuitry in the basal ganglia. A thoroughdescription of basal ganglia circuitry inhealth and disease is presented. We describehow...... the functional disturbances seen inParkinson's disease may be corrected atspecific sites in this circuitry by medicaltreatment or, in advanced stages of Parkinson'sdisease, by neurosurgical methods. The latterinclude lesional surgery, neuraltransplantation and deep brain stimulation,together with future......Neurodegenerative diseases are often consideredincurable with no efficient therapies to modifyor halt the progress of disease, and ultimatelylead to reduced quality of life and to death.Our knowledge of the nervous system in healthand disease has, however, increasedconsiderably during the last...

  5. Assessment of the degree of asymmetry of pathological features in neurodegenerative diseases. What is the significance for brain banks?

    Science.gov (United States)

    King, Andrew; Bodi, Istvan; Nolan, Matthew; Troakes, Claire; Al-Sarraj, Safa

    2015-10-01

    Brain banks allow researchers access to tissue from well-characterised neurodegenerative disease cases. Fixed tissue employed for diagnosis is often not appropriate for research and frozen tissue is therefore made available. Many brain banks use a protocol where half the brain is fixed and half frozen. Recently a study has shown that there can be asymmetry in protein deposition between the hemispheres especially with tau and TDP-43. We aimed to test this hypothesis by prospectively taking bilateral cortical blocks from 30 brains on arrival, and immunostaining to assess the degree of asymmetry. In 6 out 14 cases of AD (Alzheimer's Disease) (Modified Braak Stage V-VI), there was some asymmetrical staining for tau. In 2 cases, there was moderate discrepancy for tau staining between left and right calcarine cortices. However, careful analysis in both these cases revealed discrepancies in tau staining in adjacent regions even on the same side. The α-synuclein staining showed asymmetry in one case only, the Aβ showed only mild asymmetry in 3 cases of AD. The TDP-43 pathology appeared symmetrical in the 2 cases of frontotemporal lobar degeneration with motor neurone disease, but there was asymmetry noted when seen in conjunction with AD. In conclusion, there is the potential for asymmetrical pathology in neurodegenerative diseases and caution should be maintained when freezing half and fixing half of the brain in neurodegenerative diseases. Nevertheless, marked variability in staining can also be identified in adjacent cortical areas so there is no guarantee that an alternative strategy would be superior.

  6. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases.

    Science.gov (United States)

    Youssef, S A; Capucchio, M T; Rofina, J E; Chambers, J K; Uchida, K; Nakayama, H; Head, E

    2016-03-01

    According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases. © The Author(s) 2016.

  7. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  8. Nongenetic causes of Parkinson's disease.

    Science.gov (United States)

    Chade, A R; Kasten, M; Tanner, C M

    2006-01-01

    Study of the nongenetic causes of Parkinson's disease (PD) was encouraged by discovery of a cluster of parkinsonism produced by neurotoxic pyridine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the 1980s. Since that time, epidemiologic investigations have suggested risk factors, though their results do not establish causality. Pesticide exposure has been associated with increased risk in many studies. Other proposed risks include rural residence and certain occupations. Cigarette smoking, use of coffee/caffeine, and non-steroidal antiinflammatory drugs (NSAIDs) all appear to lower risk of PD, while dietary lipid and milk consumption, high caloric intake, and head trauma may increase risk. The cause of PD is likely multifactorial. Underlying genetic susceptibility and combinations of risk and protective factors likely all contribute. The combined research effort by epidemiologists, geneticists, and basic scientists will be needed to clarify the cause(s) of PD.

  9. The Progression of Posterior Cortical Atrophy to Corticobasal Syndrome: Lumping or Splitting Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Maurizio Giorelli

    2014-06-01

    Full Text Available Background: Posterior cortical atrophy is a clinical syndrome that is characterized by the progressive loss of visuospatial integration and is associated with neurodegenerative conditions.Case Report: We describe a 60‐year‐old female with simultanagnosia, oculomotor apraxia, and optic ataxia for which she received an initial clinical diagnosis of posterior cortical atrophy. Three years later, she developed Balint's syndrome, Gerstmann's syndrome, left alien hand syndrome, smooth asymmetric (left rigidity, cortical sensory loss, and spontaneous myoclonic jerks of the left arm, which suggested a final diagnosis of corticobasal syndrome.Discussion: This case report indicates that corticobasal syndrome may present with visuospatial deficits.

  10. The progression of posterior cortical atrophy to corticobasal syndrome: lumping or splitting neurodegenerative diseases?

    Science.gov (United States)

    Giorelli, Maurizio; Losignore, Nunzia Alessandra; Bagnoli, Junia; Difazio, Pasquale; Zimatore, Giovanni Bosco

    2014-01-01

    Posterior cortical atrophy is a clinical syndrome that is characterized by the progressive loss of visuospatial integration and is associated with neurodegenerative conditions. We describe a 60-year-old female with simultanagnosia, oculomotor apraxia, and optic ataxia for which she received an initial clinical diagnosis of posterior cortical atrophy. Three years later, she developed Balint's syndrome, Gerstmann's syndrome, left alien hand syndrome, smooth asymmetric (left) rigidity, cortical sensory loss, and spontaneous myoclonic jerks of the left arm, which suggested a final diagnosis of corticobasal syndrome. This case report indicates that corticobasal syndrome may present with visuospatial deficits.

  11. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots.

    Science.gov (United States)

    Yang, Shao-Hua; Li, Wenjun; Sumien, Nathalie; Forster, Michael; Simpkins, James W; Liu, Ran

    2017-10-01

    Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The Role of Histone Deacetylases in Neurodegenerative Diseases and Small-Molecule Inhibitors as a Potential Therapeutic Approach

    Science.gov (United States)

    Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri

    Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.

  13. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease.

    Directory of Open Access Journals (Sweden)

    Daniel W Neef

    2010-01-01

    Full Text Available Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

  14. Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hidetoshi Kassai

    2014-06-01

    Full Text Available Mammalian target of rapamycin (mTOR has been implicated in human neurological diseases such as tuberous sclerosis complex (TSC, neurodegeneration, and autism. However, little is known about when and how mTOR is involved in the pathogenesis of these diseases, due to a lack of animal models that directly increase mTOR activity. Here, we generated transgenic mice expressing a gain-of-function mutant of mTOR in the forebrain in a temporally controlled manner. Selective activation of mTORC1 in embryonic stages induced cortical atrophy caused by prominent apoptosis of neuronal progenitors, associated with upregulation of HIF-1α. In striking contrast, activation of the mTORC1 pathway in adulthood resulted in cortical hypertrophy with fatal epileptic seizures, recapitulating human TSC. Activated mTORC1 in the adult cortex also promoted rapid accumulation of cytoplasmic inclusions and activation of microglial cells, indicative of progressive neurodegeneration. Our findings demonstrate that mTORC1 plays different roles in developmental and adult stages and contributes to human neurological diseases.

  15. More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Virginia M-Y; Giasson, Benoit I; Trojanowski, John Q

    2004-03-01

    Intracytoplasmic filamentous aggregates, such as neurofibrillary tangles in Alzheimer's disease and Lewy bodies in Parkinson's disease, are composed of the proteins tau and alpha-synuclein, respectively. These pathological inclusions are linked directly to the etiology and mechanisms of disease in a wide spectrum of neurodegenerative disorders, termed 'tauopathies' and 'synucleinopathies'. Emerging evidence indicates that there is frequent overlap of the pathological and clinical features of patients with tauopathies and synucleinopathies, thereby re-enforcing the notion that these disorders might be linked mechanistically. Indeed, several lines of investigation suggest that tau and alpha-synuclein might constitute a unique class of unstructured proteins that assemble predominantly into homopolymeric (rather than heteropolymeric) fibrils, which deposit mainly in separate amyloid inclusions, but occasionally deposit together. Thus, the ability of tau and alpha-synuclein to affect each other directly or indirectly might contribute to the overlap in the clinical and pathological features of tauopathies and synucleinopathies.

  16. Vascular pathology: Cause or effect in Alzheimer disease?

    Science.gov (United States)

    Rius-Pérez, S; Tormos, A M; Pérez, S; Taléns-Visconti, R

    2015-09-15

    Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead to neuronal damage and dementia. Destruction of the organisation of the blood brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context would thus be responsible for any subsequent neuronal damage since these factors promote aggregation of β-amyloid peptide in the brain. The link between neurodegeneration and vascular dysfunction pathways has provided new drug targets and therapeutic approaches that will add to the treatments for AD. It is difficult to determine whether the vascular component in AD is the cause or the effect of the disease, but there is no doubt that vascular pathology has an important relationship with AD. Vascular dysfunction is likely to act synergistically with neurodegenerative changes in a cycle that exacerbates the cognitive impairment found in AD. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2015-07-28

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.

  18. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Sidharth Mehan

    2017-01-01

    Full Text Available Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity, resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  19. Family history of neurodegenerative and vascular diseases in ALS: a population-based study

    NARCIS (Netherlands)

    Huisman, M.H.; Jong, S.W. de; Verwijs, M.C.; Schelhaas, H.J.; Kooi, A.J. van der; Visser, M. de; Veldink, J.H.; Berg, L.H. van den

    2011-01-01

    OBJECTIVE: To determine whether the frequency of Parkinson disease (PD), dementia, and vascular diseases in relatives of patients with amyotrophic lateral sclerosis (ALS) differs from the frequency of those diseases in relatives of controls, providing further information about the association

  20. Sleep-wake disturbances in common neurodegenerative diseases: a closer look at selected aspects of the neural circuitry.

    Science.gov (United States)

    Zhong, George; Naismith, Sharon Linda; Rogers, Naomi Louise; Lewis, Simon John Geoffrey

    2011-08-15

    There is a growing appreciation regarding the relationship between common neurodegenerative diseases, such as Alzheimer's and Parkinson's and sleep-wake disturbances. These clinical features often herald the onset of such conditions and certainly appear to influence disease phenotype and progression. This article reviews some of the pathophysiological processes underlying specific disruptions within the neural circuitry underlying sleep-wake disturbances and explores how clinicopathological relationships commonly manifest. It is proposed that a greater understanding of these relationships should allow insights in to the efficacy of currently available treatments and help in the development of future therapies targeting disruptions within the sleep-wake neural circuitry. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. [Subjectivity, decision and neurodegenerative diseases: reflexions on the role of the clinical psychologist in medical decision making].

    Science.gov (United States)

    Brocq, H; Liarte, A; Soriani, M-H; Desnuelle, C

    2013-01-01

    Should a patient be forced to accept a treatment, especially when suffering from a neurodegenerative disease? We argue that physicians, nurses and care givers should instead accept his or her choice in accordance with the principle that every patient is an autonomous person able to make a choice, even in case of declined cognition. Beside the legal obligation, we suggest a theoretical approach and focus on the practical impacts of the patient's decision. Our objective is to promote the value of ethical doubt and attentive listening to individual opinions, so as to improve the quality of the medical staff's work and reduce patients' distress when affected by fatal diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Structure of an aprataxin-DNA complex with insights into AOA1 neurodegenerative disease

    Energy Technology Data Exchange (ETDEWEB)

    Tumbale, Percy; Appel, C Denise; Kraehenbuehl, Rolf; Robertson, Patrick D; Williams, Jessica S; Krahn, Joe; Ahel, Ivan; Williams, R Scott [NIEHS; (Manchester)

    2012-09-17

    DNA ligases finalize DNA replication and repair through DNA nick-sealing reactions that can abort to generate cytotoxic 5'-adenylation DNA damage. Aprataxin (Aptx) catalyzes direct reversal of 5'-adenylate adducts to protect genome integrity. Here the structure of a Schizosaccharomyces pombe Aptx-DNA-AMP-Zn2+ complex reveals active site and DNA interaction clefts formed by fusing a histidine triad (HIT) nucleotide hydrolase with a DNA minor groove-binding C2HE zinc finger (Znf). An Aptx helical 'wedge' interrogates the base stack for sensing DNA ends or DNA nicks. The HIT-Znf, the wedge and an '[F/Y]PK' pivot motif cooperate to distort terminal DNA base-pairing and direct 5'-adenylate into the active site pocket. Structural and mutational data support a wedge-pivot-cut HIT-Znf catalytic mechanism for 5'-adenylate adduct recognition and removal and suggest that mutations affecting protein folding, the active site pocket and the pivot motif underlie Aptx dysfunction in the neurodegenerative disorder ataxia with oculomotor apraxia 1 (AOA1).

  3. [Cost of therapy for neurodegenerative diseases. Applying an activity-based costing system].

    Science.gov (United States)

    Sánchez-Rebull, María-Victoria; Terceño Gómez, Antonio; Travé Bautista, Angeles

    2013-01-01

    To apply the activity based costing (ABC) model to calculate the cost of therapy for neurodegenerative disorders in order to improve hospital management and allocate resources more efficiently. We used the case study method in the Francolí long-term care day center. We applied all phases of an ABC system to quantify the cost of the activities developed in the center. We identified 60 activities; the information was collected in June 2009. The ABC system allowed us to calculate the average cost per patient with respect to the therapies received. The most costly and commonly applied technique was psycho-stimulation therapy. Focusing on this therapy and on others related to the admissions process could lead to significant cost savings. ABC costing is a viable method for costing activities and therapies in long-term day care centers because it can be adapted to their structure and standard practice. This type of costing allows the costs of each activity and therapy, or combination of therapies, to be determined and aids measures to improve management. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  4. Commonalities in Biological Pathways, Genetics, and Cellular Mechanism between Alzheimer Disease and Other Neurodegenerative Diseases: An In Silico-Updated Overview.

    Science.gov (United States)

    Ahmad, Khurshid; Baig, Mohammad Hassan; Mushtaq, Gohar; Kamal, Mohammad Amjad; Greig, Nigel H; Choi, Inho

    2017-01-01

    Alzheimer's disease (AD) is the most common and well-studied neurodegenerative disease (ND). Biological pathways, pathophysiology and genetics of AD show commonalities with other NDs viz. Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Prion disease and Dentatorubral-pallidoluysian atrophy (DRPLA). Many of the NDs, sharing the common features and molecular mechanisms suggest that pathology may be directly comparable and be implicated in disease prevention and development of highly effective therapies. In this review, a brief description of pathophysiology, clinical symptoms and available treatment of various NDs have been explored with special emphasis on AD. Commonalities in these fatal NDs provide support for therapeutic advancements and enhance the understanding of disease manifestation. The studies concentrating on the commonalities in biological pathways, cellular mechanisms and genetics may provide the scope to researchers to identify few novel common target(s) for disease prevention and development of effective common drugs for multi-neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Kaeko; Nakayama, Keiko; Yamada, Eiji; Inoue, Yuichi [Osaka City University Graduate School of Medicine, Department of Radiology, Osaka (Japan); Kosaka, Satoru; Shimada, Hiroyuki; Miki, Takami [Osaka City University Graduate School of Medicine, Department of Neurology, Osaka (Japan)

    2008-04-15

    We sought to determine whether diffusion-tensor imaging (DTI) can detect in vivo axonal damage in the corticopontocerebellar pathway of patients with adult-onset ataxic neurodegenerative disease. Conventional MRI and DTI were performed on 18 patients with adult-onset ataxic neurodegenerative disease and 28 age-matched control subjects. Fractional anisotropy (FA) and the mean diffusivity (MD) were measured in the ventral, central, and dorsal pons, middle cerebellar peduncle (MCP) and internal capsule to evaluate corticopontocerebellar projection. Changes in FA and MD values were compared between patients and controls. Clinical disability was assessed according to the International Cooperative Ataxia Rating Scale (ICARS). The relationship between DTI measurements and ICARS was studied. Follow-up MRI was performed in five patients approximately 1 year later. FA values were significantly lower in the ventral and central portions of the pons, MCP, and internal capsules than in these areas in control subjects (P < 0.05) with the lower FA values correlating with poorer ICARS (r > -0.57, P < 0.05). MD values were elevated in these areas, but the differences were smaller than for the FA values. No relationship was observed between the MD and ICARS. In the five patients who underwent the follow-up study, there were significant decreases between the initial study and the follow-up DTI study for FA in the MCP and internal capsule (P < 0.05). DTI can demonstrate a degenerated corticopontocerebellar pathway in patients, and FA values can be correlated with ataxia severity. DTI may be a clinically useful tool as a quantitative surrogate marker for monitoring disease progression. (orig.)

  6. Copy number variation analysis of the 17q21.31 region and its role in neurodegenerative diseases.

    Science.gov (United States)

    Cervera-Carles, Laura; Pagonabarraga, Javier; Pascual-Sedano, Berta; Pastor, Pau; Campolongo, Antonia; Fortea, Juan; Blesa, Rafael; Alcolea, Daniel; Morenas-Rodríguez, Estrella; Sala, Isabel; Lleó, Alberto; Kulisevsky, Jaime; Clarimón, Jordi

    2016-03-01

    The H1 haplotype of the 17q21.31 inversion polymorphism has been consistently associated with progressive supranuclear palsy, corticobasal degeneration, and Parkinson's disease in Caucasians. Recently, large polymorphic segmental duplications resulting into complex rearrangements at this locus with a high diversity range in human populations have been revealed. We sought to explore whether the two multi-allelic copy number variants that are present in the H1 clade (with segmental duplications of 300 and 218 kilobases in length) could be responsible for the known H1-related risk of developing these neurodegenerative disorders. A total of 857 Spanish subjects including 330 patients with Parkinson's disease, 96 with progressive supranuclear palsy, 55 with corticobasal degeneration, 51 dementia with Lewy bodies, and 325 neurologically healthy controls, were genotyped for the H1/H2 haplotype. Subsequently, the two copy number variants that are characteristic of the H1 haplotype were evaluated through a high-resolution approach based on droplet digital polymerase chain reaction, in all H1 homozygous subjects. The H1 allele was significantly overrepresented in all diagnostic groups compared with controls (Parkinson's disease, P = 0.0001; progressive supranuclear palsy, P = 1.22 × 10(-6) ; corticobasal degeneration, P = 0.0002; and dementia with Lewy bodies, P = 0.032). However, no dosage differences were found for any of the two copy number variants analyzed. The H1 haplotype is associated with the risk of several neurodegenerative disorders, including dementia with Lewy bodies. However, common structural diversity within the 17q21.31-H1 clade does not explain this genetic association. © 2015 Wiley Periodicals, Inc.

  7. Family history of neurodegenerative and vascular diseases in ALS: a population-based study

    NARCIS (Netherlands)

    Huisman, M. H. B.; de Jong, S. W.; Verwijs, M. C.; Schelhaas, H. J.; van der Kooi, A. J.; de Visser, M.; Veldink, J. H.; van den Berg, L. H.

    2011-01-01

    To determine whether the frequency of Parkinson disease (PD), dementia, and vascular diseases in relatives of patients with amyotrophic lateral sclerosis (ALS) differs from the frequency of those diseases in relatives of controls, providing further information about the association between these

  8. Residential Distance to High-voltage Power Lines and Risk of Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Frei, Patrizia; Poulsen, Aslak Harbo; Mezei, Gabor

    2013-01-01

    period 5-20 years before diagnosis were computed. The risks for developing dementia, Parkinson's disease, multiple sclerosis, and motor neuron disease were not increased in persons living within close vicinity of a power line. The risk of Alzheimer's disease was not increased for ever living within 50 m...

  9. Classical endocrine diseases causing obesity.

    Science.gov (United States)

    Weaver, Jolanta U

    2008-01-01

    Obesity is associated with several endocrine diseases, including common ones such as hypothyroidism and polycystic ovarian syndrome to rare ones such as Cushing's syndrome, central hypothyroidism and hypothalamic disorders. The mechanisms for the development of obesity vary in according to the endocrine condition. Hypothyroidism is associated with accumulation of hyaluronic acid within various tissues, additional fluid retention due to reduced cardiac output and reduced thermogenesis. The pathophysiology of obesity associated with polycystic ovarian syndrome remains complex as obesity itself may simultaneously be the cause and the effect of the syndrome. Net excess of androgen appears to be pivotal in the development of central obesity. In Cushing's syndrome, an interaction with thyroid and growth hormones plays an important role in addition to an increased adipocyte differentiation and adipogenesis. This review also describes remaining rare cases: hypothalamic obesity due to central hypothyroidism and combined hormone deficiencies.

  10. CORRELATION BETWEEN TOXIC SUBSTANCES AND A VARIETY OF DISEASES, MAINLY NEURODEGENERATIVE DISORDERS

    OpenAIRE

    ÇEVİK, Filiz Ekim; ÇEVİK, Esma Cansu; KIRBAŞ, Dursun; AŞICIOĞLU, Faruk

    2017-01-01

    Neurodegenerativedisorders are composed of a group of pathological traits, characterised by aprogressive and irreversible loss of neurons within specific regions of abrain. The most commons are the following: Parkinson's Disease, Huntington'sDisease, Alzheimer's Disease, and Amyotrophic Lateral Sclerosis. In a variablestudies conducted, there has been a correlation found between an exposure tothe elements of daily use, such as aluminum and copper, pesticide-derived heavymetals,...

  11. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases

    Science.gov (United States)

    Ohno, Kinji; Ito, Mikako; Ichihara, Masatoshi; Ito, Masafumi

    2012-01-01

    Effects of molecular hydrogen on various diseases have been documented for 63 disease models and human diseases in the past four and a half years. Most studies have been performed on rodents including two models of Parkinson's disease and three models of Alzheimer's disease. Prominent effects are observed especially in oxidative stress-mediated diseases including neonatal cerebral hypoxia; Parkinson's disease; ischemia/reperfusion of spinal cord, heart, lung, liver, kidney, and intestine; transplantation of lung, heart, kidney, and intestine. Six human diseases have been studied to date: diabetes mellitus type 2, metabolic syndrome, hemodialysis, inflammatory and mitochondrial myopathies, brain stem infarction, and radiation-induced adverse effects. Two enigmas, however, remain to be solved. First, no dose-response effect is observed. Rodents and humans are able to take a small amount of hydrogen by drinking hydrogen-rich water, but marked effects are observed. Second, intestinal bacteria in humans and rodents produce a large amount of hydrogen, but an addition of a small amount of hydrogen exhibits marked effects. Further studies are required to elucidate molecular bases of prominent hydrogen effects and to determine the optimal frequency, amount, and method of hydrogen administration for each human disease. PMID:22720117

  12. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases

    Directory of Open Access Journals (Sweden)

    Kinji Ohno

    2012-01-01

    Full Text Available Effects of molecular hydrogen on various diseases have been documented for 63 disease models and human diseases in the past four and a half years. Most studies have been performed on rodents including two models of Parkinson's disease and three models of Alzheimer's disease. Prominent effects are observed especially in oxidative stress-mediated diseases including neonatal cerebral hypoxia; Parkinson's disease; ischemia/reperfusion of spinal cord, heart, lung, liver, kidney, and intestine; transplantation of lung, heart, kidney, and intestine. Six human diseases have been studied to date: diabetes mellitus type 2, metabolic syndrome, hemodialysis, inflammatory and mitochondrial myopathies, brain stem infarction, and radiation-induced adverse effects. Two enigmas, however, remain to be solved. First, no dose-response effect is observed. Rodents and humans are able to take a small amount of hydrogen by drinking hydrogen-rich water, but marked effects are observed. Second, intestinal bacteria in humans and rodents produce a large amount of hydrogen, but an addition of a small amount of hydrogen exhibits marked effects. Further studies are required to elucidate molecular bases of prominent hydrogen effects and to determine the optimal frequency, amount, and method of hydrogen administration for each human disease.

  13. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds.

    Science.gov (United States)

    Denzer, Isabel; Münch, Gerald; Friedland, Kristina

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are early events in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Mitochondria are important key players in cellular function based on mitochondrial energy production and their major role in cell physiology. Since neurons are highly depending on mitochondrial energy production due to their high energy demand and their reduced glycolytic capacity mitochondrial dysfunction has fatal consequences for neuronal function and survival. The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) is the major regulator of cellular response to oxidative stress. Activation of Nrf2 induces the transcriptional regulation of antioxidant response element (ARE)-dependent expression of a battery of cytoprotective and antioxidant enzymes and proteins. Moreover, activation of Nrf2 protects mitochondria from dysfunction and promotes mitochondrial biogenesis. Therefore, the Nrf2/ARE pathway has become an attractive target for the prevention and treatment of oxidative stress-related neurodegenerative diseases. Small food-derived inducers of the Nrf2/ARE pathway including l-sulforaphane from broccoli and isoliquiritigenin from licorice displayed promising protection of mitochondrial function in models of oxidative stress and neurodegenerative diseases and represent a novel approach to prevent and treat aging-associated neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dietary fat and antioxidant vitamin intake in patients of neurodegenerative disease in a rural region of Jalisco, Mexico.

    Science.gov (United States)

    Navarro-Meza, Mónica; Gabriel-Ortiz, Genaro; Pacheco-Moisés, Fermín P; Cruz-Ramos, José A; López-Espinoza, Antonio

    2014-11-01

    To evaluate and compare the intake of lipids and (A, E, and C) vitamins in patients with and without possible neurodegenerative diseases. Twenty adults with possible Alzheimer's disease or Parkinson's disease and 41 control subjects (50-89 years old) from a rural region were studied. Dietary intake was evaluated with the analysis of macronutrients and micronutrients conducted by a food frequency questionnaire and 24 hours dietary record. Analyses were adjusted for age, sex, body mass index, and energy intake. Through interrogation and use of medical record form of health secretary we obtained information about the sociodemographic characteristics. Multivariate analysis of variance to allow for covariated adjustment was used. Patients had a lower energy intake, vitamin C (P = 0.016), fruits (P vitamin intake in patients was still higher than the recommended. Patients had a higher consumption of cereals (P = 0.017), high-animal fat diet (P = 0.024), and whole milk (P intake of C vitamin, this is due to the consumption of fruits and vegetables. However, patients with possible Alzheimer's or Parkinson's disease had a lower intake of fruits and vegetables, which could be due to type of food to which they have access.

  15. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications.

    Science.gov (United States)

    Stadelmann, Christine

    2011-06-01

    Multiple sclerosis (MS) treatments targeting the inflammatory nature of the disease have become increasingly effective in recent years. However, our efforts at targeting the progressive disease phase have so far been largely unsuccessful. This has led to the hypothesis that disease mechanisms independent of an adaptive immune response contribute to disease progression and closely resemble neurodegeneration. Nonfocal, diffuse changes in the MS brain, especially axonal loss and mitochondrial dysfunction, prove better correlates of disability than total lesion load and have been associated with disease progression. Molecular changes in nondemyelinated MS tissue also suggest that alterations in the MS brain are widespread and consist of pro-inflammatory as well as anti-inflammatory responses. However, local lymphocytic inflammation and microglial activation are salient features of the chronic disease, and T-cell-mediated inflammation contributes to tissue damage. In addition, neuroaxonal cytoskeletal alterations have been associated with disease progression. Our knowledge of the molecular mechanisms leading to neuroaxonal damage and demise in MS is steadily increasing. Experimental therapies targeting neuroaxonal ionic imbalances and energy metabolism in part show promising results. A better understanding of the molecular mechanisms underlying chronic progression will substantially aid the development of new treatment strategies.

  16. Age-Related Sleep Changes and its Implication in Neurodegenerative Diseases.

    Science.gov (United States)

    Lyashenko, Elena A; Poluektov, Michael G; Levin, Oleg S; Pchelina, Polina V

    2016-01-01

    In the article authors discuss the current data on sleep changes with aging focusing on the influence of age-related degenerative changes in orexin-containing and pacemaker brain areas. Pathophysiological mechanisms of sleep disturbances in Parkinson's and Alzheimer's diseases have much in common with normal age neurophysiological changes. Maintenance of the sleep-promoting systems function could positively modify the course of these diseases.

  17. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases.

    Science.gov (United States)

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Montes, Sergio; Rios, Camilo

    2008-09-01

    The understanding of oxidative damage in different neurodegenerative diseases could enhance therapeutic strategies. Our objective was to quantify lipoperoxidation and other oxidative products as well as the activity of antioxidant enzymes and cofactors in cerebrospinal fluid (CSF) samples. We recorded data from all new patients with a diagnosis of either one of the four most frequent neurodegenerative diseases: Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and lateral amyotrophic sclerosis (ALS). The sum of nitrites and nitrates as end products of nitric oxide (NO) were increased in the four degenerative diseases and fluorescent lipoperoxidation products in three (excepting ALS). A decreased Cu/Zn-dependent superoxide dismutase (SOD) activity characterized the four diseases. A significantly decreased ferroxidase activity was found in PD, HD and AD, agreeing with findings of iron deposition in these entities, while free copper was found to be increased in CSF and appeared to be a good biomarker of PD.

  18. Sleep and circadian dysfunction in neurodegenerative disorders: insights from a mouse model of Huntington's disease.

    Science.gov (United States)

    Kuljis, Dika; Schroeder, Analyne M; Kudo, Takashi; Loh, Dawn H; Willison, David L; Colwell, Christopher S

    2012-09-01

    Sleep disorders are common in patients with neurogenerative diseases and manifest early in the disease process. Among a number of possible mechanisms underlying the sleep disturbances, there is evidence that dysfunction in the circadian system is a contributing factor. Focusing on a mouse model of Huntington's disease has enabled us to determine that at the onset of symptoms, spontaneous electrical activity of neurons within the central clock is disrupted even though the molecular clockwork is still functional. These findings suggest that the fundamental deficit contributing to disordered sleep is reduced SCN output. The mechanism underlying this deficit is not yet known, but mitochondrial dysfunction and oxidative stress are likely involved. Disruption of circadian output from the SCN would be expected to have wide ranging impact on the body including SCN regulated brain regions and the heart. In fact, there is a great deal of overlap in the non-motor symptoms experienced by HD patients and the consequences of circadian disruption. This raises the possibility that the disordered sleep and circadian function experienced by HD patients may be an integral part of the disease. Furthermore, we speculate that circadian dysfunction may accelerate the pathology underlying HD. If these hypotheses are correct, we should focus on treating circadian misalignment and sleep disruptions early in disease progression.

  19. Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases.

    Science.gov (United States)

    Cahill, Catherine M; Lahiri, Debomoy K; Huang, Xudong; Rogers, Jack T

    2009-07-01

    Recent studies that alleles in the hemochromatosis gene may accelerate the onset of Alzheimer's disease by five years have validated interest in the model in which metals (particularly iron) accelerate disease course. Biochemical and biophysical measurements demonstrated the presence of elevated levels of neurotoxic copper zinc and iron in the brains of AD patients. Intracellular levels of APP holoprotein were shown to be modulated by iron by a mechanism that is similar to the translation control of the ferritin L- and H mRNAs by iron-responsive element (IRE) RNA stem loops in their 5' untranslated regions (5'UTRs). More recently a putative IRE-like sequence was hypothesized present in the Parkinsons's alpha synuclein (ASYN) transcript (see [A.L. Friedlich, R.E. Tanzi, J.T. Rogers, The 5'-untranslated region of Parkinson's disease alpha-synuclein messenger RNA contains a predicted iron responsive element, Mol. Psychiatry 12 (2007) 222-223. [6

  20. Synucleinopathies in neurodegenerative diseases: Accomplices, an inside job and selective vulnerability.

    Science.gov (United States)

    Azizi, S Ausim; Azizi, Saara-Anne

    2017-12-05

    Pathogenesis of degenerative diseases is complex and multifaceted. The disease phenotypes depend on the location of injury/damage in the brain networks and pathologically are characterized by loss of brain cells. The reason for this loss appears to be an accumulation of misfolded and dysfunctional proteins that trigger apoptotic cell death. The role of alpha-synuclein mutations, its interaction with other proteins and the cellular environment is discussed in the context of selective neuron loss. Copyright © 2017. Published by Elsevier B.V.

  1. Dysregulation of the HPA axis as a core pathophysiology mediating co-morbid depression in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Xin eDu

    2015-03-01

    Full Text Available There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease. These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression, and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioural deficits and/or mood disorders. Dysregulation of the HPA axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, anti-depressant drugs such as the selective serotonin reuptake inhibitors (SSRI have been shown to alter HPA axis activity. In this review, we will summarize the current state of knowledge regarding HPA axis pathology in Alzheimer’s, Parkinson’s and Huntington’s diseases, differentiating between prodromal and later stages of disease progression where possible. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the pre-clinical evidence to better inform prospective, intervention studies.

  2. Haematopoietic Stem Cell Transplantation Arrests the Progression of Neurodegenerative Disease in Late-Onset Tay-Sachs Disease.

    Science.gov (United States)

    Stepien, Karolina M; Lum, Su Han; Edmond Wraith, J; Hendriksz, Christian J; Church, Heather J; Priestman, David; Platt, Frances M; Jones, Simon; Jovanovic, Ana; Wynn, Robert

    2017-12-07

    Tay-Sachs disease is a rare metabolic disease caused by a deficiency of hexosaminidase A that leads to accumulation of GM2 gangliosides predominantly in neural tissue. Late-onset Tay-Sachs disease variant is associated with a higher level of residual HexA activity. Treatment options are limited, and there are a few described cases who have undergone haematopoietic stem cell transplantation (HSCT) with variable outcome.We describe a case of a 23-year-old male patient who presented with a long-standing tremor since 7 years of age. He had gait ataxia, a speech stammer and swallowing problems. His condition had had a static course apart from his tremor that had been gradually deteriorating. Because of the deterioration in his neurological function, the patient had an uneventful, matched-sibling donor bone marrow transplant at the age of 15 years. Eight years post-HSCT, at the age of 23, he retains full donor engraftment, and his white cell beta-HexA of 191 nmol/mg/h is comparable to normal controls (in-assay control = 187). He continues to experience some intentional tremor that is tolerable for daily life and nonprogressive since HSCT. HSCT is a potential treatment option which might arrest neurodegeneration in patients with LOTS.

  3. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.

    Science.gov (United States)

    Kolli, Nivya; Lu, Ming; Maiti, Panchanan; Rossignol, Julien; Dunbar, Gary L

    2018-01-01

    Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The utility of α-synuclein as biofluid marker in neurodegenerative diseases

    DEFF Research Database (Denmark)

    Simonsen, Anja Hviid; Kuiperij, Bea; El-Agnaf, Omar Mukhtar Ali

    2016-01-01

    The discovery of α-synuclein (α-syn) as a major component of Lewy bodies, neuropathological hallmark of Parkinson's disease (PD), dementia with Lewy bodies and of glial inclusions in multiple system atrophy initiated the investigation of α-syn as a biomarker in cerebrospinal fluid (CSF). Due to t...

  5. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Enrica Serretiello

    2015-09-01

    Full Text Available Transglutaminases (TG, E.C. 2.3.2.13 are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2, a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD, one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.

  6. Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome.

    Science.gov (United States)

    Ferrari, Michele; Jain, Isha H; Goldberger, Olga; Rezoagli, Emanuele; Thoonen, Robrecht; Cheng, Kai-Hung; Sosnovik, David E; Scherrer-Crosbie, Marielle; Mootha, Vamsi K; Zapol, Warren M

    2017-05-23

    The most common pediatric mitochondrial disease is Leigh syndrome, an episodic, subacute neurodegeneration that can lead to death within the first few years of life, for which there are no proven general therapies. Mice lacking the complex I subunit, Ndufs4, develop a fatal progressive encephalopathy resembling Leigh syndrome and die at ≈60 d of age. We previously reported that continuously breathing normobaric 11% O 2 from an early age prevents neurological disease and dramatically improves survival in these mice. Here, we report three advances. First, we report updated survival curves and organ pathology in Ndufs4 KO mice exposed to hypoxia or hyperoxia. Whereas normoxia-treated KO mice die from neurodegeneration at about 60 d, hypoxia-treated mice eventually die at about 270 d, likely from cardiac disease, and hyperoxia-treated mice die within days from acute pulmonary edema. Second, we report that more conservative hypoxia regimens, such as continuous normobaric 17% O 2 or intermittent hypoxia, are ineffective in preventing neuropathology. Finally, we show that breathing normobaric 11% O 2 in mice with late-stage encephalopathy reverses their established neurological disease, evidenced by improved behavior, circulating disease biomarkers, and survival rates. Importantly, the pathognomonic MRI brain lesions and neurohistopathologic findings are reversed after 4 wk of hypoxia. Upon return to normoxia, Ndufs4 KO mice die within days. Future work is required to determine if hypoxia can be used to prevent and reverse neurodegeneration in other animal models, and to determine if it can be provided in a safe and practical manner to allow in-hospital human therapeutic trials.

  7. Emulation with Organic Memristive Devices of Impairment of LTP Mechanism in Neurodegenerative Disease Pathology

    Directory of Open Access Journals (Sweden)

    Silvia Battistoni

    2017-01-01

    Full Text Available We explore and demonstrate the extension of the synapse-mimicking properties of memristive devices to a dysfunctional synapse as it occurs in the Alzheimer’s disease (AD pathology. The ability of memristive devices to reproduce synapse properties such as LTP, LTD, and STDP has been already widely demonstrated, and moreover, they were used for developing artificial neuron networks (perceptrons able to simulate the information transmission in a cell network. However, a major progress would be to extend the common sense of neuromorphic device even to the case of dysfunction of natural synapses. Can memristors efficiently simulate them? We provide here evidences of the ability of emulating the dysfunctional synaptic behavior typical of the AD pathology with organic memristive devices considering the effect of the disease not only on a single synapse but also in the case of a neural network, composed by numerous synapses.

  8. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism.

    NARCIS (Netherlands)

    Steinfeld, R.; Grapp, M.; Kraetzner, R.; Dreha-Kulaczewski, S.; Helms, G.; Dechent, P.; Wevers, R.A.; Grosso, S.; Gartner, J.

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited

  9. Video Rating in Neurodegenerative Disease Clinical Trials: The Experience of PRION-1

    Directory of Open Access Journals (Sweden)

    Christopher Carswell

    2012-08-01

    Full Text Available Background/Aims: Large clinical trials including patients with uncommon diseases involve assessors in different geographical locations, resulting in considerable inter-rater variability in assessment scores. As video recordings of examinations, which can be individually rated, may eliminate such variability, we measured the agreement between a single video rater and multiple examining physicians in the context of PRION-1, a clinical trial of the antimalarial drug quinacrine in human prion diseases. Methods: We analysed a 43-component neurocognitive assessment battery, on 101 patients with Creutzfeldt-Jakob disease, focusing on the correlation and agreement between examining physicians and a single video rater. Results: In total, 335 videos of examinations of 101 patients who were video-recorded over the 4-year trial period were assessed. For neurocognitive examination, inter-observer concordance was generally excellent. Highly visual neurological examination domains (e.g. finger-nose-finger assessment of ataxia had good inter-rater correlation, whereas those dependent on non-visual clues (e.g. power or reflexes correlated poorly. Some non-visual neurological domains were surprisingly concordant, such as limb muscle tone. Conclusion: Cognitive assessments and selected neurological domains can be practically and accurately recorded in a clinical trial using video rating. Video recording of examinations is a valuable addition to any trial provided appropriate selection of assessment instruments is used and rigorous training of assessors is undertaken.

  10. Dietary fat and antioxidant vitamin intake in patients of neurodegenerative disease in a rural region of Jalisco, Mexico

    Science.gov (United States)

    Navarro-Meza, Mónica; Gabriel-Ortiz, Genaro; Pacheco-Moisés, Fermín P.; Cruz-Ramos, José A.; López-Espinoza, Antonio

    2014-01-01

    Objective To evaluate and compare the intake of lipids and (A, E, and C) vitamins in patients with and without possible neurodegenerative diseases. Methods Twenty adults with possible Alzheimer's disease or Parkinson's disease and 41 control subjects (50–89 years old) from a rural region were studied. Dietary intake was evaluated with the analysis of macronutrients and micronutrients conducted by a food frequency questionnaire and 24 hours dietary record. Analyses were adjusted for age, sex, body mass index, and energy intake. Through interrogation and use of medical record form of health secretary we obtained information about the sociodemographic characteristics. Multivariate analysis of variance to allow for covariated adjustment was used. Results Patients had a lower energy intake, vitamin C (P = 0.016), fruits (P < 0.001), vegetables (P = 0.037), and oils and fat (P = 0.002), than the controls. Interestingly, the C vitamin intake in patients was still higher than the recommended. Patients had a higher consumption of cereals (P = 0.017), high-animal fat diet (P = 0.024), and whole milk (P < 0.001); 2.4% of the controls smoke and 5% are alcohol consumers. Eighty-five percent of patients and 78% of the controls do not have physical activity. Family history of subjects in this study indicated chronic diseases. Conclusion The subjects included in this study had a high intake of C vitamin, this is due to the consumption of fruits and vegetables. However, patients with possible Alzheimer's or Parkinson's disease had a lower intake of fruits and vegetables, which could be due to type of food to which they have access. PMID:24257159

  11. Designing thiophene-based fluorescent probes for the study of neurodegenerative protein aggregation diseases : From test tube to in vivo experiments

    OpenAIRE

    Åslund, Andreas

    2009-01-01

    Protein aggregation is an event related to numerous neurodegenerative diseases, such as Alzhemier’s disease and prion diseases. However little is known as to how and why the aggregates form and furthermore, the toxic specie may not be the mature fibril but an on route or off route specie towards mature aggregates. During this project molecular probes were synthesized that may shed some light to these questions. The probes are thiophene based and the technique used for detection was mainly flu...

  12. BRAIM: A computer-aided diagnosis system for neurodegenerative diseases and brain lesion monitoring from volumetric analyses.

    Science.gov (United States)

    Morales, Sandra; Bernabeu-Sanz, Angela; López-Mir, Fernando; González, Pablo; Luna, Luis; Naranjo, Valery

    2017-07-01

    This paper presents BRAIM, a computer-aided diagnosis (CAD) system to help clinicians in diagnosing and treatment monitoring of brain diseases from magnetic resonance image processing. BRAIM can be used for early diagnosis of neurodegenerative diseases such as Parkinson, Alzheimer or Multiple Sclerosis and also for brain lesion diagnosis and monitoring. The developed CAD system includes different user-friendly tools for segmenting and determining whole brain and brain structure volumes in an easy and accurate way. Specifically, three types of measurements can be performed: (1) total volume of white, gray matter and cerebrospinal fluid; (2) brain structure volumes (volume of putamen, thalamus, hippocampus and caudate nucleus); and (3) brain lesion volumes. As a proof of concept, some study cases were analyzed with the presented system achieving promising results. In addition to be used to quantify treatment effectiveness in patients with brain lesions, it was demonstrated that BRAIM is able to classify a subject according to the brain volume measurements using as reference a healthy control database created for this purpose. The CAD system presented in this paper simplifies the daily work of clinicians and provides them with objective and quantitative volume data for prospective and retrospective analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Alzheimer's Disease and HLA-A2: Linking Neurodegenerative to Immune Processes through an In Silico Approach

    Science.gov (United States)

    Cifuentes, Ricardo A.; Murillo-Rojas, Juan

    2014-01-01

    There is a controversial relationship between HLA-A2 and Alzheimer's disease (AD). It has been suggested a modifier effect on the risk that depends on genetic loadings. Thus, the aims of this study were to evaluate this relationship and to reveal genes associated with both concepts the HLA-A gene and AD. Consequently, we did first a classical systematic review and a meta-analysis of case-control studies. Next, by means of an in silico approach, we used experimental knowledge of protein-protein interactions to evaluate the top ranked genes shared by both concepts, previously found through text mining. The meta-analysis did not show a significant pooled OR (1.11, 95% CI: 0.98 to 1.24 in Caucasians), in spite of the fact that four of the included studies had a significant OR > 1 and none of them a significant OR < 1. In contrast, the in silico approach retrieved nonrandomly shared genes by both concepts (P = 0.02), which additionally encode truly interacting proteins. The network of proteins encoded by APP, ICAM-1, ITGB2, ITGAL, SELP, SELL, IL2, IL1B, CD4, and CD8A linked immune to neurodegenerative processes and highlighted the potential roles in AD pathogenesis of endothelial regulation, infectious diseases, specific antigen presentation, and HLA-A2 in maintaining synapses. PMID:25197660

  14. Alzheimer’s Disease and HLA-A2: Linking Neurodegenerative to Immune Processes through an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Ricardo A. Cifuentes

    2014-01-01

    Full Text Available There is a controversial relationship between HLA-A2 and Alzheimer’s disease (AD. It has been suggested a modifier effect on the risk that depends on genetic loadings. Thus, the aims of this study were to evaluate this relationship and to reveal genes associated with both concepts the HLA-A gene and AD. Consequently, we did first a classical systematic review and a meta-analysis of case-control studies. Next, by means of an in silico approach, we used experimental knowledge of protein-protein interactions to evaluate the top ranked genes shared by both concepts, previously found through text mining. The meta-analysis did not show a significant pooled OR (1.11, 95% CI: 0.98 to 1.24 in Caucasians, in spite of the fact that four of the included studies had a significant OR > 1 and none of them a significant OR < 1. In contrast, the in silico approach retrieved nonrandomly shared genes by both concepts (P = 0.02, which additionally encode truly interacting proteins. The network of proteins encoded by APP, ICAM-1, ITGB2, ITGAL, SELP, SELL, IL2, IL1B, CD4, and CD8A linked immune to neurodegenerative processes and highlighted the potential roles in AD pathogenesis of endothelial regulation, infectious diseases, specific antigen presentation, and HLA-A2 in maintaining synapses.

  15. In Vivo PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Anna Vuorimaa

    2017-01-01

    Full Text Available Adenosine receptors are G-protein coupled P1 purinergic receptors that are broadly expressed in the peripheral immune system, vasculature, and the central nervous system (CNS. Within the immune system, adenosine 2A (A2A receptor-mediated signaling exerts a suppressive effect on ongoing inflammation. In healthy CNS, A2A receptors are expressed mainly within the neurons of the basal ganglia. Alterations in A2A receptor function and expression have been noted in movement disorders, and in Parkinson’s disease pharmacological A2A receptor antagonism leads to diminished motor symptoms. Although A2A receptors are expressed only at a low level in the healthy CNS outside striatum, pathological challenge or inflammation has been shown to lead to upregulation of A2A receptors in extrastriatal CNS tissue, and this has been successfully quantitated using in vivo positron emission tomography (PET imaging and A2A receptor-binding radioligands. Several radioligands for PET imaging of A2A receptors have been developed in recent years, and A2A receptor-targeting PET imaging may thus provide a potential additional tool to evaluate various aspects of neuroinflammation in vivo. This review article provides a brief overview of A2A receptors in healthy brain and in a selection of most important neurological diseases and describes the recent advances in A2A receptor-targeting PET imaging studies.

  16. Role of Abca7 in mouse behaviours relevant to neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Warren Logge

    Full Text Available ATP-binding cassette transporters of the subfamily A (ABCA are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer's disease. However, Abca7's role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs and Alzheimer's disease (i.e. cognitive domains. Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.

  17. On the Central Role of Brain Connectivity in Neurodegenerative Disease Progression

    Directory of Open Access Journals (Sweden)

    Yasser eIturria Medina

    2015-05-01

    Full Text Available Increased brain connectivity, in all its variants, is often considered an evolutionary advantage by mediating complex sensorimotor function and higher cognitive faculties. Interaction among components at all spatial scales, including genes, proteins, neurons, local neuronal circuits and macroscopic brain regions, are indispensable for such vital functions. However, a growing body of evidence suggests that, from the microscopic to the macroscopic levels, such connections might also be a conduit for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins transmission and neuronal toxicity are prominent connectivity-mediated factors in aging and neurodegeneration. This article offers an overview of connectivity dysfunctions associated with neurodegeneration, with a specific focus on how these may be central to both normal aging and the neuropathologic degenerative progression.

  18. Quantification of muscle activity during sleep for patients with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Hanif, Umaer; Trap, Lotte; Jennum, Poul

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM...... sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages...... to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM...

  19. Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning.

    Science.gov (United States)

    Wang, Zhengxia; Zhu, Xiaofeng; Adeli, Ehsan; Zhu, Yingying; Nie, Feiping; Munsell, Brent; Wu, Guorong

    2017-07-01

    Graph-based transductive learning (GTL) is a powerful machine learning technique that is used when sufficient training data is not available. In particular, conventional GTL approaches first construct a fixed inter-subject relation graph that is based on similarities in voxel intensity values in the feature domain, which can then be used to propagate the known phenotype data (i.e., clinical scores and labels) from the training data to the testing data in the label domain. However, this type of graph is exclusively learned in the feature domain, and primarily due to outliers in the observed features, may not be optimal for label propagation in the label domain. To address this limitation, a progressive GTL (pGTL) method is proposed that gradually finds an intrinsic data representation that more accurately aligns imaging features with the phenotype data. In general, optimal feature-to-phenotype alignment is achieved using an iterative approach that: (1) refines inter-subject relationships observed in the feature domain by using the learned intrinsic data representation in the label domain, (2) updates the intrinsic data representation from the refined inter-subject relationships, and (3) verifies the intrinsic data representation on the training data to guarantee an optimal classification when applied to testing data. Additionally, the iterative approach is extended to multi-modal imaging data to further improve pGTL classification accuracy. Using Alzheimer's disease and Parkinson's disease study data, the classification accuracy of the proposed pGTL method is compared to several state-of-the-art classification methods, and the results show pGTL can more accurately identify subjects, even at different progression stages, in these two study data sets. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Amyloid, cholinesterase, melatonin, and metals and their roles in aging and neurodegenerative diseases.

    Science.gov (United States)

    Lahiri, Debomoy K; Chen, De-Mao; Lahiri, Preeti; Bondy, Steve; Greig, Nigel H

    2005-11-01

    The aging brain shows selective neurochemical changes involving several neural cell populations. Increased brain metal levels have been associated with normal aging and a variety of diseases, including Alzheimer's disease (AD). Melatonin levels are decreased in aging, particularly in AD subjects. The loss of melatonin, which is synthesized by the pineal gland, together with the degeneration of cholinergic neurons of the basal forebrain and the deposition of aggregated proteins, such as the amyloid beta peptides (Abeta), are believed to contribute to the development of cognitive symptoms of dementia. Aging and its variants, such as AD, should be viewed as the result of multiple "hits," including alterations in the levels of Abeta, metals, cholinesterase enzymes, and neuronal gene expression. Herein, we present evidence in support of this theory, based on several studies. We discuss melatonin's neuroprotective function, which plays an important role in aging, prolongation of life span, and health in the aged individual. It interacts with metals and, in some cases, neutralizes their toxic effects. Dietary supplementation of melatonin restores its age-related loss. In mice, an elevated brain melatonin significantly reduced levels of potentially toxic Abeta peptides. Thus, compensation of melatonin loss in aging by dietary supplementation could well be beneficial in terms of reducing metal-induced toxicity, lipid peroxidation, and losses in cholinergic signaling. We propose that certain cholinesterase inhibitors and the NMDA partial antagonist memantine, which are FDA-approved drugs for AD and useful to boost central nervous system functioning, can be made more effective by their combination with melatonin or other neuroprotectants. Herein, we highlight studies elucidating the role of the amyloid pathway, metals, melatonin, and the cholinergic system in the context of aging and AD. Finally, melatonin is present in edible plants and walnuts, and consuming foodstuffs

  1. Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative diseases?

    Science.gov (United States)

    Bradley, Walter G.; Borenstein, Amy R.; Nelson, Lorene M.; Codd, Geoffrey A.; Rosen, Barry H.; Stommel, Elijah W.; Cox, Paul Alan

    2013-01-01

    There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS) is caused by gene-environment interactions. Mutations in genes underlying familial ALS (fALS) have been discovered in only 5–10% of the total population of ALS patients. Relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron death leading to the syndrome of ALS, although exposure to chemicals including lead and pesticides, and to agricultural environments, smoking, certain sports, and trauma have all been identified with an increased risk of ALS. There is a need for research to quantify the relative roles of each of the identified risk factors for ALS. Recent evidence has strengthened the theory that chronic environmental exposure to the neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) produced by cyanobacteria may be an environmental risk factor for ALS. Here we describe methods that may be used to assess exposure to cyanobacteria, and hence potentially to BMAA, namely an epidemiologic questionnaire and direct and indirect methods for estimating the cyanobacterial load in ecosystems. Rigorous epidemiologic studies could determine the risks associated with exposure to cyanobacteria, and if combined with genetic analysis of ALS cases and controls could reveal etiologically important gene-environment interactions in genetically vulnerable individuals.

  2. The Emerging Role of Guanine Exchange Factors in ALS and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Cristian eDroppelmann

    2014-09-01

    Full Text Available Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs, of which two classes: Dbl-related exchange factors and the more recently described Dock family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF in the pathogenesis of amyotrophic lateral sclerosis (ALS. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament (NEFL mRNA 3’UTR to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.

  3. Quantification of muscle activity during sleep for patients with neurodegenerative diseases.

    Science.gov (United States)

    Hanif, Umaer; Trap, Lotte; Jennum, Poul; Zoetmulder, Marielle; Sorensen, Helge B D

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages for the enrolled patients. The three groups examined included patients suffering from iRBD, PD and healthy control subjects (CO). To determine muscle activity, a baseline and threshold were established after pre-processing of the raw surface electromyography (sEMG) signal. The signal was then segmented according to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM sleep, leading to the conclusion that RSWA still is the most distinct characteristic of RBD. Furthermore, the muscle activity of PD patients was comparable to that of controls with only slightly elevated amplitudes.

  4. Detecting sarcasm from paralinguistic cues: anatomic and cognitive correlates in neurodegenerative disease.

    Science.gov (United States)

    Rankin, Katherine P; Salazar, Andrea; Gorno-Tempini, Maria Luisa; Sollberger, Marc; Wilson, Stephen M; Pavlic, Danijela; Stanley, Christine M; Glenn, Shenly; Weiner, Michael W; Miller, Bruce L

    2009-10-01

    While sarcasm can be conveyed solely through contextual cues such as counterfactual or echoic statements, face-to-face sarcastic speech may be characterized by specific paralinguistic features that alert the listener to interpret the utterance as ironic or critical, even in the absence of contextual information. We investigated the neuroanatomy underlying failure to understand sarcasm from dynamic vocal and facial paralinguistic cues. Ninety subjects (20 frontotemporal dementia, 11 semantic dementia [SemD], 4 progressive non-fluent aphasia, 27 Alzheimer's disease, 6 corticobasal degeneration, 9 progressive supranuclear palsy, 13 healthy older controls) were tested using the Social Inference - Minimal subtest of The Awareness of Social Inference Test (TASIT). Subjects watched brief videos depicting sincere or sarcastic communication and answered yes-no questions about the speaker's intended meaning. All groups interpreted Sincere (SIN) items normally, and only the SemD group was impaired on the Simple Sarcasm (SSR) condition. Patients failing the SSR performed more poorly on dynamic emotion recognition tasks and had more neuropsychiatric disturbances, but had better verbal and visuospatial working memory than patients who comprehended sarcasm. Voxel-based morphometry analysis of SSR scores in SPM5 demonstrated that poorer sarcasm comprehension was predicted by smaller volume in bilateral posterior parahippocampi (PHc), temporal poles, and R medial frontal pole (pFWEparalinguistic speech profile as abnormal, leading to interpretive processing by the temporal poles and right medial frontal pole that identifies the social context as sarcastic, and recognizes the speaker's paradoxical intentions.

  5. Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Francisco J. Martinez-Murcia

    2017-11-01

    Full Text Available The rise of neuroimaging in research and clinical practice, together with the development of new machine learning techniques has strongly encouraged the Computer Aided Diagnosis (CAD of different diseases and disorders. However, these algorithms are often tested in proprietary datasets to which the access is limited and, therefore, a direct comparison between CAD procedures is not possible. Furthermore, the sample size is often small for developing accurate machine learning methods. Multi-center initiatives are currently a very useful, although limited, tool in the recruitment of large populations and standardization of CAD evaluation. Conversely, we propose a brain image synthesis procedure intended to generate a new image set that share characteristics with an original one. Our system focuses on nuclear imaging modalities such as PET or SPECT brain images. We analyze the dataset by applying PCA to the original dataset, and then model the distribution of samples in the projected eigenbrain space using a Probability Density Function (PDF estimator. Once the model has been built, we can generate new coordinates on the eigenbrain space belonging to the same class, which can be then projected back to the image space. The system has been evaluated on different functional neuroimaging datasets assessing the: resemblance of the synthetic images with the original ones, the differences between them, their generalization ability and the independence of the synthetic dataset with respect to the original. The synthetic images maintain the differences between groups found at the original dataset, with no significant differences when comparing them to real-world samples. Furthermore, they featured a similar performance and generalization capability to that of the original dataset. These results prove that these images are suitable for standardizing the evaluation of CAD pipelines, and providing data augmentation in machine learning systems -e.g. in deep

  6. Executive dysfunction affects word list recall performance: Evidence from amyotrophic lateral sclerosis and other neurodegenerative diseases.

    Science.gov (United States)

    Consonni, Monica; Rossi, Stefania; Cerami, Chiara; Marcone, Alessandra; Iannaccone, Sandro; Francesco Cappa, Stefano; Perani, Daniela

    2017-03-01

    The Rey Auditory Verbal Learning Test (RAVLT) is widely used in clinical practice to evaluate verbal episodic memory. While there is evidence that RAVLT performance can be influenced by executive dysfunction, the way executive disorders affect the serial position curve (SPC) has not been yet explored. To this aim, we analysed immediate and delayed recall performances of 13 non-demented amyotrophic lateral sclerosis (ALS) patients with a specific mild executive dysfunction (ALSci) and compared their performances to those of 48 healthy controls (HC) and 13 cognitively normal patients with ALS. Moreover, to control for the impact of a severe dysexecutive syndrome and a genuine episodic memory deficit on the SPC, we enrolled 15 patients with a diagnosis of behavioural variant of frontotemporal dementia (bvFTD) and 18 patients with probable Alzheimer's disease (AD). Results documented that, compared to cognitively normal subjects, ALSci patients had a selective mid-list impairment for immediate recall scores. The bvFTD group obtained low performances with a selectively increased forgetting rate for terminal items, whereas the AD group showed a disproportionately large memory loss on the primary and middle part of the SPC for immediate recall scores and were severely impaired in the delayed recall trial. These results suggested that subtle executive dysfunctions might influence the recall of mid-list items, possibly reflecting deficiency in control strategies at retrieval of word lists, whereas severer dysexecutive syndrome might also affect the recall of terminal items possibly due to attention deficit or retroactive interference. © 2015 The British Psychological Society.

  7. Non linear approach to study the dynamics of neurodegenerative diseases by Multifractal Detrended Cross-correlation Analysis-A quantitative assessment on gait disease

    Science.gov (United States)

    Dutta, Srimonti; Ghosh, Dipak; Samanta, Shukla

    2016-04-01

    This paper studies the human gait pattern of normal people and patients suffering from Parkinson's disease using the MFDXA (Multifractal Detrended Cross-correlation Analysis) methodology. The auto correlation and cross correlation of the time series of the total force under the left foot and right foot were studied. The study reveals that the degree of multifractality (W) and degree of correlation (γ) are generally more for normal patients than the diseased set. It is also observed that the values of W and γ are nearly same for left foot and right. It is also observed that the study of autocorrelation alone is not sufficient, cross correlations should also be studied to get a better concept of neurodegenerative diseases.

  8. Improvement of Oxidative and Metabolic Pa