WorldWideScience

Sample records for neurocortical electrical activity

  1. Neurocortical electrical activity tomography in chronic schizophrenics

    Directory of Open Access Journals (Sweden)

    Veiga Heloisa

    2003-01-01

    Full Text Available Functional imaging of brain electrical activity was performed in 25 chronic medicated schizophrenics and 40 controls, analyzing the classical frequency bands (delta, theta, alpha, and beta of 19-channel EEG during resting state to identify brain regions with deviant activity of different functional significances, using LORETA (Low Resolution Tomography and SPM99 (Statistical Parametric Mapping. Patients differed from controls due to an excess of slow activity comprising delta + theta frequency bands (inhibitory pattern located at the right middle frontal gyrus, right inferior frontal gyrus, and right insula, as well as at the bilateral anterior cingulum with a left preponderance. The high temporal resolution of EEG enables the specification of the deviations not only as an excess or a deficit of brain electrical activity, but also as inhibitory (delta, theta, normal (alpha, and excitatory (beta activities. These deviations point out to an impaired functional brain state consisting of inhibited frontal and prefrontal areas that may result in inadequate treatment of externally or internally generated information.

  2. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  3. Electrical measurement of sweat activity.

    Science.gov (United States)

    Tronstad, Christian; Gjein, Gaute E; Grimnes, Sverre; Martinsen, Ørjan G; Krogstad, Anne-Lene; Fosse, Erik

    2008-06-01

    A multichannel logger for long-term measurements of sweat activity is presented. The logger uses skin surface electrodes for unipolar admittance measurements in the stratum corneum. The logger is developed with emphasis on clinical use. The portability of the logger enables recording of sweat activity under circumstances such as daily errands, exercise and sleep. Measurements have been done on 24 healthy volunteers during relaxation and exercise with heart rate monitoring. Recordings of sweat activity during sleep have been done on two healthy subjects. Early results show good agreement with the literature on sweating physiology and electrodermal activity. Results are presented showing measurements related to physical exercise, dermatomes, distribution of sweat glands and sympathetic activity. This study examines the normal sweating patterns for the healthy population, and we present results with the first 24 healthy volunteers. Comparing these results with similar measurements on hyperhidrosis patients will make it possible to find the most useful parameters for diagnosis and treatment evaluation.

  4. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  5. Electrical properties of mechanically activated zinc oxide

    Directory of Open Access Journals (Sweden)

    Vojisavljević K.

    2006-01-01

    Full Text Available Microstructural properties of a commercial zinc oxide powder were modified by mechanical activation in a high-energy vibro-mill. The obtained powders were dry pressed and sintered at 1100°C for 2 h. The electrical properties of grain boundaries of obtained ZnO ceramics were studied using an ac impedance analyzer. For that purpose, the ac electrical response was measured in the temperature range from 23 to 240°C in order to determine the resistance and capacitance of grain boundaries. The activation energies of conduction were obtained using an Arrhenius equation. Donor densities were calculated from Mott-Schottky measurements. The influence of microstructure, types and concentrations of defects on electrical properties was discussed.

  6. The atmospheric electric global circuit. [thunderstorm activity

    Science.gov (United States)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  7. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  8. Magnetism and Electricity Activity "Attracts" Student Interest

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  9. Magnetism and Electricity Activity "Attracts" Student Interest

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  10. MECHANISMS OF BIOELECTRIC ACTIVITY IN ELECTRIC TISSUE

    Science.gov (United States)

    Altamirano, Mario; Coates, Christopher W.; Grundfest, Harry; Nachmansohn, David

    1953-01-01

    1. A preparation is described consisting of one or several layers of innervated cells of the electric organ of Electrophorus electricus. 2. Each plaque is multiply innervated and only at its caudal face. The nerve fibers may derive from two or more different nerve trunks. 3. During activity the innervated face becomes negative relative to the non-innervated. 4. The first electrical response of the cell to an increasing neural volley is graded and has the character of a prepotential. At a critical size of the prepotential the cell discharges with an all-or-nothing spike. 5. Both responses have durations of about 2 msec. 6. A neural volley which does not cause the spike discharge facilitates the discharge of the cell by a second subsequent volley in the same nerve (temporal facilitation). 7. The period of facilitation lasts ca. 900 msec. During the first 100 msec., the facilitation is large enough to cause a spike. In the later portion only the prepotential is facilitated. No electrical concomitant has been detected. 8. Neural volleys reaching the plaque from different trunks interact at the cell to produce a period of facilitation lasting only about 2 msec. This interaction is interpreted as spatial summation. 9. In a population of cells, simultaneous stimulation of 2 nerves causes a smaller discharge than the sum of the two isolated responses (occlusion). 10. Cells denervated for 7 weeks or more can be excited directly, but only by a current flow outward through the caudal face. 11. Weak direct stimulation causes a prepotential in the denervated plaque. On increasing the stimulus the prepotential increases to a critical size when a spike develops. The duration of both responses is about 2 msec. 12. The absolutely refractory period of the denervated cell is about 1.5 msec. and relative refractoriness lasts about 15 msec. 13. Direct stimulation causes slight facilitation lasting as long as 200 msec. 14. Repetitive stimulation of the nerve at low frequencies (2 to 3

  11. Active seat isolation for hybrid electric vehicles

    Science.gov (United States)

    Leo, Donald J.; Malowicki, Mark; Buckley, Stephen J.; Naganathan, Ganapathy

    1999-07-01

    A feasibility study in the use of induced strain actuators for active seal isolation is described. The focus of the work is the isolation of lightweight automotive seats for hybrid-electric vehicles. The feasibility study is based on a numerical analysis of a three-degree-of-freedom vibration model of the seat. Mass and inertia properties are based on measurements from a powered seat that is found in current model year automobiles. Tradeoffs between vertical acceleration of the seat, actuator stroke requirements, and isolation frequency are determined through numerical analysis of the vibration model. Root mean square accelerations and actuator strokes are computed using power spectral densities that model broadband excitation and road excitation that is filtered by the vehicle suspension. Numerical results using the road excitation indicate that factors of two to three reduction in vertical acceleration are achieved when the active isolation frequency is reduced to approximately 1 Hz with damping factors on the order of 10 to 30 percent critical. More significant reductions are achieved in the case of broadband floor excitation. Root mean square actuator strokes for both case are int he range of 0.4 to 50 mm. Root mean square accelerations in the vertical direction are consistent with the levels found in standard comfort curves.

  12. From static electric images to electric flow: towards dynamic perceptual cues in active electroreception.

    Science.gov (United States)

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-01-01

    Active electroreception is an ancestral trait found in many aquatic vertebrates and has evolved independently in two teleost lineages, the Gymnotiformes and the Mormyriformes. Unique to these so-called weakly electric fish is their ability to actively generate electrical currents in the water and sense the electrical properties of the environment. How natural behavior contributes to this sensory system has been of interest to neuroethologists since the pioneering works of Lissmann. Here we report on a mutual modeling and experimental study of the stimuli available during active electrolocation of Gnathonemus petersii (Mormyridae). We show the validity of the model (I) by demonstrating that localized spatial patterns of object induced modulations in the electric field (electric images) are comparable to experimentally mapped 2-dimensional electric images and (II) by replicating earlier key findings showing that a normalized metric of electric image width provides an unambiguous cue for distance estimation. We then show that electric images and the distance metric vary systematically when an object is moved along the trunk. These potential ambiguities with regard to localization lead us to a spatiotemporal analysis of electric images. We introduce a new temporal metric for distance estimation that is based on the normalized spatial properties of electrical images. Finally, based on a survey of exploratory behavior, we show how objects situated at the tail, a region previously neglected, cast global electric images that extend over the whole sensory epithelium of the animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Electrical Vehicles Activities Around the World

    DEFF Research Database (Denmark)

    Schauer, Gerd; Garcia-Valle, Rodrigo

    2013-01-01

    To understand the development of electric vehicles it is helpful to recognize constraints that were overcome during its history and the lessons learned from these constraints. In the earliest history of automobiles electrical cars initially dominated, but were pushed aside by cars with a combustion...... power electronics, preparations for roll-out, and there is discussion of a variety of electric vehicles manufactured by the car industry. Only recently the results in terms of performance, costs of operation and consumer acceptance were disheartening but now incentive schemes, regulatory frameworks, new...... engine. In the 1990s research and demonstrations intensified and built a good basis for actual development of electrical vehicles. Discussion of the results achieved and lessons learned from millions of kilometers of road testing is worthwhile but in addition to technological developments such as light...

  14. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  15. Electrical activity in the human oviduct during the menstrual cycle.

    Science.gov (United States)

    Talo, A; Pulkkinen, M O

    1982-01-15

    Electrical activity in 25 isolated human oviducts on different days of the menstrual cycle was recorded with six simultaneous suction electrodes in at least 18 locations. During the follicular phase, electrical activity consisted of a smooth, single slow spike that lasted 3 to 6 seconds, and on which was superimposed a fast spike(s) in the ampulla immediately after menstruation. The shape of this activity changed at midcycle, first in the ampulla and later in the isthmus, to a burst of potentials; in the ampulla it sometimes changed to a slow wave on which was superimposed a series of fast spikes. The pacemakers were stable and their number few. The electrical activity spread with a velocity of 1 to 3 mm/sec. The probability of spread toward the uterus varied with the location in the oviduct and with the day of the cycle. After menstruation, electrical activity spread in the uterine direction. On cycle day 12, activity spread toward the ampullary-isthmic junction (AIJ) from both ends of the oviduct. On days 14 and 15, it spread a short distance from the ampulla to the isthmus, through the AIJ. On cycle day 18, spread toward the uterus covered the uterine half of the ampulla. AIJ, and the isthmus. Two to 5 days later, no constant features could be detected in the spread. These findings suggest that the human oviduct functions like the oviducts of other mammalian species, with the spread of electrical activity and the transport of ova being related.

  16. Electrically active bioceramics: a review of interfacial responses.

    Science.gov (United States)

    Baxter, F R; Bowen, C R; Turner, I G; Dent, A C E

    2010-06-01

    Electrical potentials in mechanically loaded bone have been implicated as signals in the bone remodeling cycle. Recently, interest has grown in exploiting this phenomenon to develop electrically active ceramics for implantation in hard tissue which may induce improved biological responses. Both polarized hydroxyapatite (HA), whose surface charge is not dependent on loading, and piezoelectric ceramics, which produce electrical potentials under stress, have been studied in order to determine the possible benefits of using electrically active bioceramics as implant materials. The polarization of HA has a positive influence on interfacial responses to the ceramic. In vivo studies of polarized HA have shown polarized samples to induce improvements in bone ingrowth. The majority of piezoelectric ceramics proposed for implant use contain barium titanate (BaTiO(3)). In vivo and in vitro investigations have indicated that such ceramics are biocompatible and, under appropriate mechanical loading, induce improved bone formation around implants. The mechanism by which electrical activity influences biological responses is yet to be clearly defined, but is likely to result from preferential adsorption of proteins and ions onto the polarized surface. Further investigation is warranted into the use of electrically active ceramics as the indications are that they have benefits over existing implant materials.

  17. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  18. Electrical activation of ultralow energy As implants in Si

    Science.gov (United States)

    Whelan, S.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; La Magna, A.; Napolitani, E.

    2001-10-01

    Arsenic implants performed in Si at ultralow energy have been extensively studied with structural, chemical, and electrical analysis. The near-surface damage annealing and its influence on the electrical activation of ultrashallow As in Si as a function of the anneal ambient has been investigated. Double alignment medium energy ion scattering, high resolution transmission electron microscopy, and low energy secondary ion mass spectrometry have been used to assess the dopant behavior and crystal recovery in the near-surface regions. The electrical activation of As in Si has been measured with spreading resistance profiling, four point probe, and van der Pauw methods. Major redistribution of the dopant into the SiO2-Si interface region occurred during crystal regrowth of the damaged Si layer. An inactive meta-stable As solid solution was formed in the near-surface region after amorphous layer regrowth. Electrical activation of the dopant occurred upon dissociation of the As solid solution, when the dopant concentration fell to the steady state level. The As diffusion observed has been shown to be enhanced for short (10 s) anneal times at 1100 °C. When annealing at high temperature in an oxidizing ambient the dopant is retained at a high concentration in the solid and a higher level of electrical activation is observed. Significant outdiffusion of the dopant is observed during high temperature annealing in nonoxidizing conditions which reduced the level of activation.

  19. Enormous enhancement of electric field in active gold nanoshells

    Science.gov (United States)

    Jiang, Shu-Min; Wu, Da-Jian; Wu, Xue-Wei; Liu, Xiao-Jun

    2014-04-01

    The electric field enhancement properties of an active gold nanoshell with gain material inside have been investigated by using Mie theory. As the gain coefficient of the inner core increases to a critical value, a super-resonance appears in the active gold nanoshell, and enormous enhancements of the electric fields can be found near the surface of the particle. With increasing shell thickness, the critical value of the gain coefficient for the super-resonance of the active gold nanoshell first decreases and then increases, and the corresponding surface enhanced Raman scattering (SERS) enhancement factor (G factor) also first increases and then decreases. The optimized active gold nanoshell can be obtained with an extremely high SERS G factor of the order of 1019-1020. Such an optimized active gold nanoshell possesses a high-efficiency SERS effect and may be useful for single-molecule detection.

  20. Relationship between ionospheric electric fields and magnetic activity indices

    Science.gov (United States)

    Shirapov, D. Sh.

    2012-02-01

    The relations between electric fields in the daytime and nighttime sectors of the polar ionosphere and magnetic activity indices of auroral region (AL) and northern polar cap (PCN) are studied. It is found that the above relations do exist and are described by: a) equations U {pc/(1)} (kV) = 27.62 + 21.43PCN with a correlation coefficient R = 0.87 and U {pc/(1)} (kV) = 4.06 + 49.21PCN - 6.24 PCN2 between the difference in the electric potentials across the polar cap in the daytime sector U {pc/(1)} and PCN and b) regression equation U {pc/(2)} (kV) = 23.33 + 0.08|AL| with R = 0.86 between the difference in the electric potentials across the polar cap in the nighttime sector U {pc/(2)} and |AL|. It is shown that: a) it is possible to use the AL and PCN indices for real-time diagnostics of instantaneous values of the electric fields in the daytime and nighttime sectors of the polar ionosphere in the process of a substorm development; b) at the expansion phase of a substorm, due to calibration of PCN values by the values of the solar wind electric field E sw, the PCN index does not feel the contribution of the western electrojet and, accordingly, the contribution of the nighttime ionospheric electric field U {pc/(2)}, governed by the reconnection in the magnetospheric tail.

  1. Remote monitoring of biodynamic activity using electric potential sensors

    Energy Technology Data Exchange (ETDEWEB)

    Harl, C J; Prance, R J; Prance, H [Centre for Physical Electronics and Quantum Technology, Department of Engineering and Design, School of Science and Technology, University of Sussex, Brighton, BN1 9QT (United Kingdom)], E-mail: c.j.harland@sussex.ac.uk

    2008-12-01

    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications.

  2. [Study on dewatering of activated sludge under applied electric field].

    Science.gov (United States)

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  3. Effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Wang ZHANG

    2015-10-01

    Full Text Available Objective To study the effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits, in order to search a safety threshold for clinical electrical stimulation therapy, as to provide the theoretical basis for the design of in vitro pacemaker. Methods New Zealand white rabbits were randomly assigned into 17 groups (6 each. Rabbits in 16 experimental groups were given 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80V electrical stimulation, respectively, with the stimulating site designated at epigastric region. BL -420F biological function experimental system was employed to supply the power and acquire the ECG, with the output pulse electrical stimulation frequency set at 270 times/minute, and the stimulating wave as square wave. A control group was set, in which the stimulating voltage was set to 35V, the stimulant anode was located in the anterior chest area, and the cathode was on the skin surface of back corresponding to the site of the heart, and the rest was the same as in experimental groups. Results No stimulation rhythm was observed in rabbits of those experimental groups with voltage ≤35V, but all stimulation rhythm was observed in rabbits of control group. No arrhythmia occurred in rabbits of those experimental groups with voltage ≤30V, while the heart rate was slowed down after stimulation in rabbits of the experimental groups with voltage ≥45V stimulation. In rabbits receiving stimulation with voltage ≤35V there was no dystropy or light dystropy, but with no visible injury to the local tissues. No visible injury was observed in the rabbits undergoing stimulation with voltage ≤40V. Conclusion Pulse electric stimulation with voltage ≤35V in the epigastric region would not affect the cardiac electrical activity in rabbits, while stimulation with 35V will lead to all pacing rhythm of the heart without affecting the cardiac electrical activity in rabbits

  4. Todd, Faraday, and the electrical basis of brain activity.

    Science.gov (United States)

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy.

  5. Active Electric Imaging: Body-Object Interplay and Object's “Electric Texture”

    Science.gov (United States)

    Caputi, Ángel A.; Aguilera, Pedro A.; Pereira, Ana Carolina

    2011-01-01

    This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this “global effect” of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles (“local effect” or “object's electric texture”). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information. PMID:21876730

  6. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  7. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    Science.gov (United States)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  8. Electric currents and coronal heating in NOAA active region 6952

    Science.gov (United States)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  9. [Correlation of brain electrical activity and motivation in healthy people].

    Science.gov (United States)

    Bogovin, L V; Nakhamchen, D L; Kolosov, V P; Perel'man, Iu M

    2014-01-01

    Motivation dominates in the structure of the personality and is one of the basic notions which explains the dynamics of the behavior. The literature has little data about neurophysiology of motivation. The aim of the research was to study the correlation between the motivational sphere and electrical activity of the brain at the influence of different provocations. 24 healthy people at the age of 26-36 years were examined. The results of motivation tests turned out to be uniform (the motivation to success was of a moderate or high level, there were mean values of readiness to risk and low motivation to achievement and approval). Multiple correlations between different types of motivation and electrical activity of the brain at rest, at hyperventilation with room temperature air and at isocapnic cold air hyperventilation were revealed.

  10. Extracellular electrical activity from the photoreceptors of midge

    Indian Academy of Sciences (India)

    A A Babrekar; G R Kulkarni; B B Nath; P B Vidyasagar

    2004-09-01

    The ontogeny of photosensitivity has been studied in a holometabolous insect, the midge Chironomus ramosus. The life cycle of midges shifts from an aquatic environment to a non-aquatic environment. Extracellular electrical activity of photoreceptor organs was recorded at larval and adult stages. We found an increase in photosensitivity as the larva metamorphosed to the adult stage. This is the first report of changes in photosensitivity during the development of any insect described in an ecological context.

  11. Electrogastrography: A Noninvasive Technique to Evaluate Gastric Electrical Activity

    OpenAIRE

    Claudia P. Sanmiguel; Mintchev, Martin P.; Bowes, Kenneth L.

    1998-01-01

    Electrogastrography (EGG) is the recording of gastric electrical activity (GEA) from the body surface. The cutaneous signal is low in amplitude and consequently must be amplified considerably. The resultant signal is heavily contaminated with noise, and visual analysis alone of an EGG signal is inadequate. Consequently, EGG recordings require special methodology for acquisition, processing and analysis. Essential components of this methodology involve an adequate system of digital filtering, ...

  12. Role of electrical activity of neurons for neuroprotection.

    Science.gov (United States)

    Morimoto, Takeshi

    2012-01-01

    Neurons of the central nervous system (CNS) of adult mammals can be damaged in a variety of ways. Most neurons rapidly die after injury. Even if the injured CNS neurons do not die in a short time, the neurons eventually die because they are not able to regenerate their axons to reconnect with their normal targets. In addition, neurons are normally not replaced. Therefore, much work has been directed toward understanding of the molecular regulation of the CNS degeneration following injury, and different experimental strategies are being used to try to protect the damaged neurons. Following axonal lesion, the neurons not only need to survive but also to reconnect to be functionally relevant, and efforts are directed toward not only survival but also axonal regeneration and proper rewiring of injured neurons. Recent experimental data suggest that electrical activity, endogenous or exogenous, can enhance neuronal survival and regeneration in vitro and in vivo. This chapter reviews the evidence that have been obtained on the role of neuronal electrical activity on neuroprotection. We will develop perspectives toward neuroprotection and regeneration of adult lesioned CNS neurons based on electrical activity-dependent cell survival that may be applicable to various diseases of the CNS. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Improvement of an electrical activation protocol for porcine oocytes.

    Science.gov (United States)

    Zhu, Jie; Telfer, Evelyn E; Fletcher, Judy; Springbett, Anthea; Dobrinsky, John R; De Sousa, Paul A; Wilmut, Ian

    2002-03-01

    Factors influencing pig oocyte activation by electrical stimulation were evaluated by their effect on the development of parthenogenetic embryos to the blastocyst stage to establish an effective activation protocol for pig nuclear transfer. This evaluation included 1) a comparison of the effect of epidermal growth factor and amino acids in maturation medium, 2) an investigation of interactions among oocyte age, applied voltage field strength, electrical pulse number, and pulse duration, and 3) a karyotype analysis of the parthenogenetic blastocysts yielded by an optimized protocol based on an in vitro system of oocyte maturation and embryo culture. In the first study, addition of amino acids in maturation medium was beneficial for the developmental competence of activated oocytes. In the second study, the developmental response of activated oocytes was dependent on interactions between oocyte age at activation and applied voltage field strength, voltage field strength and pulse number, and pulse number and duration. The formation of parthenogenetic blastocysts was optimal when activation was at 44 h of maturation using three 80-microsec consecutive pulses of 1.0 kV/cm DC. Approximately 84% of parthenogenetic blastocysts yielded by this protocol were diploid, implying a potential for further in vivo development.

  14. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Török, T.; Titov, V. S.; Mikić, Z. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Archontis, V. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Linton, M. G. [U.S. Naval Research Lab, 4555 Overlook Avenue, SW Washington, DC 20375 (United States); Dalmasse, K.; Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Kliem, B. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  15. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    that a high density of dislocations provided centres for precipitation of metallic impurities in a substantial part of wafers based on commercially available silicon from the metallurgic route. These precipitates introduce a range of defect levels in the silicon band gap that will degrade the electrical......Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown......-SEM) for structural analysis. Some additional techniques have been implemented in order to fill in missing information. In addition, a part of the study aimed at improving the electrical performance of the material, by removing metallic impurities from active phases, with different gettering techniques. It was found...

  16. Imaging electrical activity of neurons with metamaterial nanosensors

    CERN Document Server

    Beletskiy, Roman V

    2013-01-01

    A technology for recording electrical activity of large neuron populations at arbitrary depth in brain tissues with less than cell spatial and millisecond temporal resolutions was the most craving dream of neuroscientists and a long pursued goal of engineers for decades. Even though many imaging techniques have been devised up to date, none of them is capable to deliver either quantitatively valid data nor able to meet contradictory requirements posed for sensors to be safe, non-invasive and reliably working either within cultured cell populations or during chronic implantations in vivo. In my research project, I design and justify a novel nanobiosensors, capable to detect and optically report the electric fields across cellular membrane and investigate properties of that specially engineered plasmonic nanoantennas. In the following literature survey, I observe the current state of electrophysiology methods and after recalling the basics of fluorescence, discuss benefits and drawbacks of today's voltage sensi...

  17. Control of programmed cell death by distinct electrical activity patterns.

    Science.gov (United States)

    Golbs, Antje; Nimmervoll, Birgit; Sun, Jyh-Jang; Sava, Irina E; Luhmann, Heiko J

    2011-05-01

    Electrical activity and sufficient supply with survival factors play a major role in the control of apoptosis in the developing cortex. Coherent high-frequency neuronal activity, which efficiently releases neurotrophins, is essential for the survival of immature neurons. We studied the influence of neuronal activity on apoptosis in the developing cortex. Dissociated cultures of the newborn mouse cerebral cortex were grown on multielectrode arrays to determine the activity patterns that promote neuronal survival. Cultures were transfected with a plasmid coding for a caspase-3-sensitive fluorescent protein allowing real-time analysis of caspase-3-dependent apoptosis in individual neurons. Elevated extracellular potassium concentrations (5 and 8 mM), application of 4-aminopyridine or the γ-aminobutyric acid-A receptor antagonist Gabazine induced a shift in the frequency distribution of activity toward high-frequency bursts. Under these conditions, a reduction or delay in caspase-3 activation and an overall increase in neuronal survival could be observed. This effect was dependent on the activity of phosphatidylinositol-3 kinase, as blockade of this enzyme abolished the survival-promoting effect of high extracellular potassium concentrations. Our data indicate that increased network activity can prevent apoptosis in developing cortical neurons.

  18. Research progress in nonlinear analysis of heart electric activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nonlinear science research is a hot point in the world. It has deepened our cognition of determinism and randomicity, simplicity and complexity, noise and order and it will profoundly influence the progress of the study of natural science, including life science.Life is the most complex nonlinear system and heart is the core of lifecycle system. In the late more than 20 years, nonlinear research on heart electric activities has made much headway. The commonly used parameters are based on chaos and fractal theory, such as correlation dimension, Lyapunov exponent, Kolmogorov entropy and multifractal singularity spectrum. This paper summarizes the commonly used methods in the nonlinear study of heart electric signal. Then, considering the shortages of the above traditional nonlinear parameters, we mainly introduce the results on short-term heart rate variability (HRV) signal (500 R-R intervals) and HFECG signal (1-2s). Finally, we point out it is worthwhile to put emphasis on the study of the sensitive nonlinearity parameters of short-term heart electric signal and their dynamic character and clinical effectivity.

  19. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  20. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    Science.gov (United States)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  1. Spontaneous electrical activity and behavior in the leech Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    Elizabeth Garcia-Perez

    2007-11-01

    Full Text Available In the absence of external stimuli, animals explore the environment by performing irregular movements, but the neuronal mechanisms underlying this arrhythmic motion are largely unknown. In this paper we studied the relationship between the spontaneous neuronal activity in the leech (Hirudo medicinalis and its behavior. We analyzed the electrical activity of isolated ganglia, chains of two connected ganglia and semi-intact preparations. The spontaneous electrical activity in ganglia was characterized by the occurrence of irregular bursts of spikes with variable duration and size. Properties of these bursts were modified by synaptic inputs arriving from the neighboring ganglia and from the two primitive brains located in the head and tail. In fact, in semi-intact preparations, unusually large bursts of spikes occurring spontaneously were recorded and caused the leech to move even in the absence of any external sensory stimulation. These large bursts appear to act as internal triggers controlling the spontaneous leech behavior and determining the duration of stereotypical motor patterns.

  2. Electrical activity patterns and the functional maturation of the neocortex.

    Science.gov (United States)

    Kilb, Werner; Kirischuk, Sergei; Luhmann, Heiko J

    2011-11-01

    At the earliest developmental stages, sensory neocortical areas in various species reveal distinct patterns of spontaneous neuronal network activity. These activity patterns either propagate over large neocortical areas or synchronize local neuronal ensembles. In vitro and in vivo experiments indicate that these spontaneous activity patterns are generated from neuronal networks in the cerebral cortex, in subcortical structures or in the sensory periphery (retina, cochlea, whiskers). At early stages spontaneous periphery-driven and also sensory evoked activity is relayed to the developing cerebral cortex via the thalamus and the neocortical subplate, which amplifies the afferent sensory input. These early local and large-scale neuronal activity patterns influence a variety of developmental processes during corticogenesis, such as neurogenesis, apoptosis, neuronal migration, differentiation and network formation. The experimental data also indicate that disturbances in early neuronal patterns may have an impact on the development of cortical layers, columns and networks. In this article we review our current knowledge on the origin of early electrical activity patterns in neocortical sensory areas and their functional implications on shaping developing cortical networks.

  3. Analyzing electrical activities of pancreatic β cells using mathematical models.

    Science.gov (United States)

    Cha, Chae Young; Powell, Trevor; Noma, Akinori

    2011-11-01

    Bursts of repetitive action potentials are closely related to the regulation of glucose-induced insulin secretion in pancreatic β cells. Mathematical studies with simple β-cell models have established the central principle that the burst-interburst events are generated by the interaction between fast membrane excitation and slow cytosolic components. Recently, a number of detailed models have been developed to simulate more realistic β cell activity based on expanded findings on biophysical characteristics of cellular components. However, their complex structures hinder our intuitive understanding of the underlying mechanisms, and it is becoming more difficult to dissect the role of a specific component out of the complex network. We have recently developed a new detailed model by incorporating most of ion channels and transporters recorded experimentally (the Cha-Noma model), yet the model satisfies the charge conservation law and reversible responses to physiological stimuli. Here, we review the mechanisms underlying bursting activity by applying mathematical analysis tools to representative simple and detailed models. These analyses include time-based simulation, bifurcation analysis and lead potential analysis. In addition, we introduce a new steady-state I-V (ssI-V) curve analysis. We also discuss differences in electrical signals recorded from isolated single cells or from cells maintaining electrical connections within multi-cell preparations. Towards this end, we perform simulations with our detailed pancreatic β-cell model.

  4. Infrared optical activity: electric field approaches in time domain.

    Science.gov (United States)

    Rhee, Hanju; Choi, Jun-Ho; Cho, Minhaeng

    2010-12-21

    Vibrational circular dichroism (VCD) spectroscopy provides detailed information about the absolute configurations of chiral molecules including biomolecules and synthetic drugs. This method is the infrared (IR) analogue of the more popular electronic CD spectroscopy that uses the ultraviolet and visible ranges of the electromagnetic spectrum. Because conventional electronic CD spectroscopy measures the difference in signal intensity, problems such as weak signal and low time-resolution can limit its utility. To overcome the difficulties associated with that approach, we have recently developed femtosecond IR optical activity (IOA) spectrometry, which directly measures the IOA free-induction-decay (FID), the impulsive chiroptical IR response that occurs over time. In this Account, we review the time-domain electric field measurement and calculation methods used to simultaneously characterize VCD and related vibrational optical rotatory dispersion (VORD) spectra. Although conventional methods measure the electric field intensity, this vibrational technique is based on a direct phase-and-amplitude measurement of the electric field of the chiroptical signal over time. This method uses a cross-polarization analyzer to carry out heterodyned spectral interferometry. The cross-polarization scheme enables us to selectively remove the achiral background signal, which is the dominant noise component present in differential intensity measurement techniques. Because we can detect the IOA FID signal in a phase-amplitude-sensitive manner, we can directly characterize the time-dependent electric dipole/magnetic dipole response function and the complex chiral susceptibility that contain information about the angular oscillations of charged particles. These parameters yield information about the VCD and VORD spectra. In parallel with such experimental developments, we have also calculated the IOA FID signal and the resulting VCD spectrum. These simulations use a quantum mechanical

  5. Acquisitions in the Electricity Sector: Active vs. Passive Owners

    Energy Technology Data Exchange (ETDEWEB)

    Nese, Gjermund

    2002-07-01

    The starting point of this paper is a mixed oligopoly market consisting of n privately owned profit maximizing firms and 1 state-owned welfare maximizing firm. Motivated by the trend of mergers and acquisitions in the liberalized electricity markets, and by the debate about public or private ownership, the paper looks at two cases. In Case 1, the state-owned company acquires an ownership share in one of the private companies. In Case 2, the state-owned company is partially privatised. The paper focuses on differences in generated quantities and social surplus, depending on whether the investors behind the acquisitions are behaving as active or passive owners. One result shows that in the case of partial privatization, passive ownership provides the highest total industry generation, while active ownership induces maximum social surplus. (author)

  6. Noninvasive method to assess the electrical brain activity from rats

    Directory of Open Access Journals (Sweden)

    Rosana Ferrari

    2013-10-01

    Full Text Available This research presents a noninvasive method for the acquisition of brain electrical signal in rat. Was used an electroencephalography (EEG system developed for bovine and adapted to rats. The bipolar electrode system (needle electrodes was glued on the surface of the head of the animal without surgical procedures and the other electrode was glued to the tail, as ground. The EEG activity was sampled at 120Hz for an hour. The accuracy and precision of the EEG measurement was performed using Fourier analysis and signal energy. For this, the digital signal was divided into sections successive of 3 seconds and was decomposed into four frequency bands: delta (0.3 to 4Hz, theta (4-8Hz, alpha (8-12Hz and beta (12-30Hz and energy (µV² of the series of time filtered were calculated. The method allowed the acquisition of non-invasive electrical brain signals in conscious rats and their frequency patterns were in agreement with previous studies that used surgical procedures to acquire EEG in rats. This system showed accuracy and precision and will allow further studies on behavior and to investigate the action of drugs on the central nervous system in rats without surgical procedures.

  7. Metrology in electricity and magnetism: EURAMET activities today and tomorrow

    Science.gov (United States)

    Piquemal, F.; Jeckelmann, B.; Callegaro, L.; Hällström, J.; Janssen, T. J. B. M.; Melcher, J.; Rietveld, G.; Siegner, U.; Wright, P.; Zeier, M.

    2017-10-01

    Metrology dedicated to electricity and magnetism has changed considerably in recent years. It encompasses almost all modern scientific, industrial, and societal challenges, e.g. the revision of the International System of Units, the profound transformation of industry, changes in energy use and generation, health, and environment, as well as nanotechnologies (including graphene and 2D materials) and quantum engineering. Over the same period, driven by the globalization of worldwide trade, the Mutual Recognition Arrangement (referred to as the CIPM MRA) was set up. As a result, the regional metrology organizations (RMOs) of national metrology institutes have grown in significance. EURAMET is the European RMO and has been very prominent in developing a strategic research agenda (SRA) and has established a comprehensive research programme. This paper reviews the highlights of EURAMET in electrical metrology within the European Metrology Research Programme and its main contributions to the CIPM MRA. In 2012 EURAMET undertook an extensive roadmapping exercise for proposed activities for the next decade which will also be discussed in this paper. This work has resulted in a new SRA of the second largest European funding programme: European Metrology Programme for Innovation and Research.

  8. Can Neural Activity Propagate by Endogenous Electrical Field?

    National Research Council Canada - National Science Library

    Qiu, Chen; Shivacharan, Rajat S; Zhang, Mingming; Durand, Dominique M

    2015-01-01

    .... The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments...

  9. Promoting Active Learning in Electrical Engineering Basic Studies

    Directory of Open Access Journals (Sweden)

    Anu Lehtovuori

    2013-05-01

    Full Text Available Active learning, project-based teaching, and student collaboration are current trends in engineering education. Incorporating these have also been the goal of the basic studies development project EPOP started at the Aalto University School of Electrical Engineering in 2011. In the project, two obligatory basic courses in circuit analysis and electromagnetic field theory have been taught using interactive engagement during the spring of 2012. This paper presents the implementation of the teaching, including methods and evaluation with several concrete examples. As a result of the novel teaching, motivation and the engagement of students were at a high level during the whole course and learning results were better than those of the students participating the traditional lecture course.

  10. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  11. B electrical activation in crystalline and preamorphized Ge

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, E. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy); Impellizzeri, G. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)], E-mail: giuliana.impellizzeri@ct.infn.it; Mirabella, S.; Piro, A.M.; Irrera, A.; Grimaldi, M.G. [MATIS CNR-INFM and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2008-12-05

    In this work we compare the B electrical activity in crystalline (c-Ge) and preamorphized Ge (PAI-Ge), in order to elucidate the activation mechanisms involved in the two cases and evidence the possible advantages of an approach over to the other. With this aim, we independently measured the hole fluence and the sheet resistance, thus extracting the carrier mobility, as a function of the implanted B fluence. In particular, we evidenced that it is possible to reproduce the metastability of the PAI process implanting B in c-Ge at very high fluences. However, by properly choosing the implantation conditions in c-Ge, in such a way to disable dynamic annealing during implantation, the activation of B can be raised up to the level attainable in PAI-Ge also for lower B fluences. Finally, the thermal evolution of the formed junction was tested, evidencing a high stability under annealing up to 550 deg. C in both c- and PAI-Ge.

  12. Physical parameters activating electrical signal distortions in polluted soils

    Directory of Open Access Journals (Sweden)

    R. Angelini

    2002-06-01

    Full Text Available Laboratory investigations and field measurements show that the electrical behaviour of polluted soils is strongly non-linear at low frequencies. This phenomenon can be related to the class and the amount of pollutants. To measure this non-linearity, we used only monochromatic voltage waveform as input signal and analysed the current signals at first by means of the classical spectral analysis. In particular, the Total Harmonic Distortion % (THD% and the Harmonic Distortion %(? measure the non-linearity level and identify the frequency interval where the non-linear electrical behaviour is activated. This frequency interval can be related to the pollutant molecular size. Open interpretative problems were the following: 1 phase localization of the signal deformation; 2 «local» amplitude of the applied signal activating the distortion, and 3 numerical fit of the distortion. We employed the wavelet analysis to study the phenomenon. The wavelet technique breaks up a signal into shifted and scaled versions of the original wavelet, which is a waveform of limited duration. These features of the wavelets allow us to obtain current components that can be interpreted on the bases of a real physical meaning. By using the wavelet analysis, we obtained the phase localization of the ‘oscillations’ of the details and consequently the phase and amplitude of the applied signal. The sum of nine details provides a good numerical fit of the distorted signal. Starting from the wavelet analysis, we determined the physical conditions activating each distortion, testing some parameters on experimental data. The parameters that resulted most significant are the phase ? of the distortion activation and the product Vin?t (Vs (where ?t is the time interval corresponding to the said ? and Vin is the integral tension applied to the sample on ?t. The latter parameter is in a very good agreement with field data of Advanced Monochromatic Spectral Induced Polarization (AMSIP

  13. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    Science.gov (United States)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  14. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  15. Significance of High-frequency Electrical Brain Activity.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Akiyama, Tomoyuki; Agari, Takashi; Sasaki, Tatsuya; Shibata, Takashi; Hanaoka, Yoshiyuki; Akiyama, Mari; Endoh, Fumika; Oka, Makio; Date, Isao

    2017-06-01

     Electroencephalogram (EEG) data include broadband electrical brain activity ranging from infra-slow bands (frequency bands (e.g., the approx. 10 Hz alpha rhythm) to high-frequency bands of up to 500 Hz. High-frequency oscillations (HFOs) including ripple and fast ripple oscillations (80-200 Hz and>200 / 250 Hz, respectively) are particularly of note due to their very close relationship to epileptogenicity, with the possibility that they could function as a surrogate biomarker of epileptogenicity. In contrast, physiological high-frequency activity plays an important role in higher brain functions, and the differentiation between pathological / epileptic and physiological HFOs is a critical issue, especially in epilepsy surgery. HFOs were initially recorded with intracranial electrodes in patients with intractable epilepsy as part of a long-term invasive seizure monitoring study. However, fast oscillations (FOs) in the ripple and gamma bands (40-80 Hz) are now noninvasively detected by scalp EEG and magnetoencephalography, and thus the scope of studies on HFOs /FOs is rapidly expanding.

  16. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  17. Evaluation of cerebral electrical activity and cardiac output after patent ductus arteriosus ligation in preterm infants.

    LENUS (Irish Health Repository)

    Leslie, A T F S

    2013-11-01

    To characterize and investigate the relationship between systemic blood flow and pre- and postoperative cerebral electrical activity in preterm neonates undergoing patent ductus arteriosus (PDA) ligation.

  18. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  19. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-01-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  20. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  1. Electrogastrography: A Noninvasive Technique to Evaluate Gastric Electrical Activity

    Directory of Open Access Journals (Sweden)

    Claudia P Sanmiguel

    1998-01-01

    Full Text Available Electrogastrography (EGG is the recording of gastric electrical activity (GEA from the body surface. The cutaneous signal is low in amplitude and consequently must be amplified considerably. The resultant signal is heavily contaminated with noise, and visual analysis alone of an EGG signal is inadequate. Consequently, EGG recordings require special methodology for acquisition, processing and analysis. Essential components of this methodology involve an adequate system of digital filtering, amplification and analysis, along with minimization of the sources of external noise (random motions of the patient, electrode-skin interface impedance, electrode bending, obesity, etc and a quantitative interpretation of the recordings. There is a close relationship between GEA and gastric motility. Although it has been demonstrated that EGG satisfactorily reflects internal GEA frequency, there is not acceptable correlation with gastric contractions or gastric emptying. Many attempts have been made to relate EGG 'abnormalities' with clinical syndromes and diseases; however, the diagnostic and clinical value of EGG is still very much in question.

  2. Inhibition and recovery of continuous electric field application on the activity of anammox biomass.

    Science.gov (United States)

    Qiao, Sen; Yin, Xin; Zhou, Jiti; Furukawa, Kenji

    2014-07-01

    In this study, the effects of electric field on the activity of anammox biomass were investigated. In batch mode, experimental results demonstrated that the nitrogen removal rate enhanced by 25.6 % compared with the control experiment at the electric field of 2 V/cm with application time of 20 min. However, continuous application (24 h) of electric field impacted a mal-effect on anammox biomass during the intensity between 1 and 4 V/cm. After the electric field was removed, the activity of anammox biomass could recover within 2 weeks. This implied that the mal-effect of electric field on anammox biomass was reversible. The decrease of heme c contents and crude enzyme activity demonstrated to be the main reason for the depress of the anammox biomass activity. Transmission electron microscope observation also proved the morphological change of anammox biomass under electric field.

  3. ELECTRIC POTENTIAL AND ACTIVITY OF CHOLINE ESTERASE IN THE ELECTRIC ORGAN OF ELECTROPHORUS ELECTRICUS (LINNAEUS)

    Science.gov (United States)

    Nachmansohn, D.; Coates, C. W.; Cox, R. T.

    1941-01-01

    1. If the concentration of choline esterase is determined at different sections from the head to the caudal end of the electric organ of Electrophorus electricus (Linneaus) S-like curves are obtained. These curves are essentially the same as those which show the number of electric discs per centimeter and the E.M.F. per centimeter. 2. In the organ of Hunter the concentration of the enzyme does not differ from that in the adjacent parts in the main organ. This again coincides with the observations on the number of plates per centimeter in this organ. 3. The concentration of the enzyme was determined in different parts of the brain and the spinal cord and compared with that in a gold fish. The concentrations here are of the same order, but in the spinal cord of the eel the concentration is even lower than in the gold fish. As the cell bodies of the nerves innervating the electric organ in the spinal cord, these results do not lend support to the assumption of a special concentration of the enzyme in these nerves. 4. In the muscles adjacent to the electric organ an enzyme concentration has been found which is of the order of that in the electric tissue itself and much higher than in ordinary striated muscles. 5. The suitability of the organ for the preparation of enzyme solutions has been investigated and compared with that of the organ of Torpedo. PMID:19873260

  4. Optical activity of microemulsion induced by electric field and its tunable behaviors

    Institute of Scientific and Technical Information of China (English)

    赵晓鹏; 赵乾; 向礼琴

    2003-01-01

    It has been shown that optical activity can occur in microemulsion under external electric field and rotation angle can also be tuned by the electric field. A set of microemulsions (water/Span80/transformer oil) with different water concentration were prepared and their optical activity was measured with the changes of applied electric field and θ, the angle between the electric vector of the incident linearly polarized light and the external electric field, using an automatic polarimeter. The experiments indicate that when none of the external electric field, water concentration and θ are zero, there is optical activity in microemulsions. For a given concentration, rotation angle ψ increases with electric field, and it firstly increases, passes through a maximum at C = C0,then monotonically decreases as C increases when electric field keeps constant. The relationship between the rotation angle and θ is also obtained. It is thought that the electric field-induced destroy of spatial symmetry of microemulsion is responsible for the optical activity of microemulsion.

  5. Photo-Doped Active Electrically Controlled Terahertz Modulator

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Liang Zhong; Ting He; Jing-Ling Shen

    2015-01-01

    We demonstrate an electric-controlled terahertz (THz) modulator which can be used to realize amplitude modulation of terahertz waves with slight photo-doping. The THz pulse transmission was efficiently modulated by electrically controlling the monolayer silicon-based device. The modulation depth reached 100% almost when the applied voltage was 7V at an external laser intensity of 0.6W/cm2. The saturation voltage reduced with the increase of the photo-excited intensity. In a THz continuous wave (CW) system, a significant fall in both THz transmission and reflection was also observed with the increase of applied voltage. This reduction in the THz transmission and reflection was induced by the absorption for electron injection. The results show that a high-efficiency and high modulation depth broadband electric-controlled terahertz modulator in a pure Si structure has been realized.

  6. Application of subharmonics for active sound design of electric vehicles.

    Science.gov (United States)

    Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab

    2014-12-01

    The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.

  7. Accumulation of Free Electret Charges in Small-Sized Electrically Active Systems

    Science.gov (United States)

    Shcherbachenko, L. A.; Tsydypov, Sh. B.; Bezrukova, Ya. V.; Karnakov, V. A.; Arskaya, L. I.; Marchuk, S. D.; Chernykh, D. O.; Zhovnitskii, V. A.

    2017-05-01

    The paper focuses on the study of structural features and electret properties of the fine-sized mineral kaolin. Special attention is paid to the mechanism of interphase interaction at the interface of electrically active heterogeneous media that leads to the emergence of internal self-electric field capable of ensuring the current circulation in such systems. The authors consider the possibility of regulating the processes of local change in the polar water structure under the impact of the self-electric field.

  8. Secondary Activation of Commercial Activated Carbon and its Application in Electric Double Layer Capacitor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.

  9. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    Science.gov (United States)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  10. Electric and electrochemical properties of catalytically active oxygen electrode materials

    NARCIS (Netherlands)

    Burggraaf, A.J.; Dijk, van M.P.; Vries, de K.J.

    1986-01-01

    The electrical conductivity has been investigated of some oxygen ion and mixed conducting materials. Electrodes are prepared from thin sputtered layers of these oxides combined with a small Au or Pt strip. The kinetics of the oxygen reaction has been studied for temperatures of 820–1020 K and PO2 va

  11. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  12. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  13. Three-dimensional analysis of object properties during active electrolocation in mormyrid weakly electric fishes (Gnathonemus petersii).

    OpenAIRE

    von der Emde, G.; Schwarz, S.

    2000-01-01

    Weakly electric fishes are nocturnal and orientate in the absence of vision by using their electrical sense. This enables them not only to navigate but also to perceive and recognize objects in complete darkness. They create an electric field around their bodies by producing electric signals with specialized electric organs. Objects within this field alter the electric current at electroreceptor organs, which are distributed over almost the entire body surface. During active electrolocation, ...

  14. Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study

    DEFF Research Database (Denmark)

    Jønsson, Iben; Hagstrøm, Søren; Siggaard, Charlotte

    Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study......Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study...

  15. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum.

    Science.gov (United States)

    Pedraja, Federico; Perrone, Rossana; Silva, Ana; Budelli, Ruben

    2016-10-21

    Agonistic behaviour related to territorial defence is likely to be costly in terms of energy loss and risk of injury. Hence information about the fighting ability of a potential opponent could influence the outcome of the contest. We here study electric images of the territorial and aggressive weakly electric fish Gymnotus omarorum in the context of agonistic behaviour. We show that passive and active electric images may drive the approach towards an opponent. The likelihood of first attacks can be predicted in these fish based on electric image information, suggesting that aggressive interactions may in fact be triggered through the passive electrosensory information.

  16. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    Science.gov (United States)

    Liu, Yang; Sun, Xudong; Török, Tibor; Titov, Viacheslav S.; Leake, James E.

    2017-09-01

    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that the degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

  17. Effect of occlusal splint thickness on electrical masticatory muscle activity during rest and clenching

    National Research Council Canada - National Science Library

    Pita, Murillo Sucena; Ribeiro, Adriana Barbosa; Garcia, Alicio Rosalino; Pedrazzi, Vinicius; Zuim, Paulo Renato Junqueira

    2011-01-01

    .... Based on this premise, the aim of this study was to evaluate the effect of interocclusal splint thicknesses of 3 and 6 millimeters on the electrical activity of the anterior temporal and masseter...

  18. A brief review of JPL's electric propulsion technology activities

    Science.gov (United States)

    Barnett, John W.; Chopra, Ann; Deininger, William D.; Garner, Charles E.; Pivirotto, Thomas J.; Sercel, Joel C.

    1989-01-01

    Near-term objectives and recent technological progress of JPL's electric propulsion program are discussed. Particular attention is given to accomplishments for ion, magnetoplasmadynamic (MPD), electron-cyclotron resonance (ECR), and arcjet thrusters. Xenon ion thruster erosion tests indicate a 15-fold reduction in tantalum baffle erosion when nitrogen is added to the xenon propellant and steady-state cylindrical MPD thruster tests at powers up to 72 kW show distinct self-constricted and diffuse discharge modes. An ECR thruster was operated at up to 7 kW with plasma acceleration at energies up to 7 kW; there was plasma acceleration at energies approaching 100 electron volts.

  19. Enhanced electrical activation in In-implanted Ge by C co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Feng, R., E-mail: ruixing.feng@anu.edu.au; Kremer, F.; Mirzaei, S.; Medling, S. A.; Ridgway, M. C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Sprouster, D. J. [Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Decoster, S.; Pereira, L. M. C. [KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Glover, C. J. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Russo, S. P. [Applied Physics, School Applied Sciences, RMIT University, Melbourne 3001 (Australia)

    2015-11-23

    At high dopant concentrations in Ge, electrically activating all implanted dopants is a major obstacle in the fulfillment of high-performance Ge-channel complementary metal oxide semiconductor devices. In this letter, we demonstrate a significant increase in the electrically-active dopant fraction in In-implanted Ge by co-doping with the isovalent element C. Electrical measurements have been correlated with x-ray absorption spectroscopy and transmission electron microscopy results in addition to density functional theory simulations. With C + In co-doping, the electrically active fraction was doubled and tripled at In concentrations of 0.2 and 0.7 at. %, respectively. This marked improvement was the result of C-In pair formation such that In-induced strain in the Ge lattice was reduced while the precipitation of In and the formation of In-V clusters were both suppressed.

  20. Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron.

    Science.gov (United States)

    Wogram, Emile; Wendt, Stefan; Matyash, Marina; Pivneva, Tatyana; Draguhn, Andreas; Kettenmann, Helmut

    2016-06-01

    Microglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction. Indeed, ultrastructural analysis revealed closely attached plasma membranes of satellite microglia and neurons. However, we found no apparent morphological specializations of the contact, and biocytin injection into satellite microglia showed no dye-coupling with the apposed neurons or any other cell. Likewise, evoked local field potentials or action potentials and postsynaptic potentials of the associated neuron did not lead to any transmembrane currents or non-capacitive changes in the membrane potential of the satellite microglia in the cortex and hippocampus. Both satellite and non-satellite microglia, however, showed spontaneous transient membrane depolarizations that were not correlated with neuronal activity. These events could be divided into fast-rising and slow-rising depolarizations, which showed different characteristics in satellite and non-satellite microglia. Fast-rising and slow-rising potentials differed with regard to voltage dependence. The frequency of these events was not affected by the application of tetrodotoxin, but the fast-rising event frequency decreased after application of GABA. We conclude that microglia show spontaneous electrical activity that is uncorrelated with the activity of adjacent neurons.

  1. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity.

    Science.gov (United States)

    Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J

    2007-03-01

    One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach.

  2. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity

    Institute of Scientific and Technical Information of China (English)

    Leo K Cheng; Rie Komuro; Travis M Austin; Martin L Buist; Andrew J Pullan

    2007-01-01

    One of the major aims of the Tnternational Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health.We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically,we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach.

  3. Investigation of a Bubble Detector based on Active Electrolocation of Weakly Electric Fish

    Science.gov (United States)

    Mohan, M.; Mayekar, K.; Zhou, R.; von der Emde, G.; Bousack, H.

    2013-04-01

    Weakly electric fish employ active electrolocation for navigation and object detection. They emit an electric signal with their electric organ in the tail and sense the electric field with electroreceptors that are distributed over their skin. We adopted this principle to design a bubble detector that can detect gas bubbles in a fluid or, in principle, objects with different electric conductivity than the surrounding fluid. The evaluation of the influence of electrode diameter on detecting a given bubble size showed that the signal increases with electrode diameter. Therefore it appears that this detector will be more appropriate for large sized applications such as bubble columns than small sized applications such as bubble detectors in dialysis.

  4. Biomimetic Sensors: Active Electrolocation of Weakly Electric Fish as a Model for Active Sensing in Technical Systems

    Institute of Scientific and Technical Information of China (English)

    Gerhard von der Emde

    2007-01-01

    Instead of vision, many nocturnal animals use alternative senses for navigation and object detection in their dark environment. For this purpose, weakly electric mormyrid fish employ active electrolocation, during which they discharge a specialized electric organ in their tail which discharges electrical pulses. Each discharge builds up an electrical field around the fish, which is sensed by cutaneous electroreceptor organs that are distributed over most of the body surface of the fish. Nearby objects distort this electrical field and cause a local alteration in current flow in those electroreceptors that are closest to the object. By constantly monitoring responses of its electroreceptor organs, a fish can detect, localize, and identify environmental objects.Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects, we designed technical sensor systems that can solve similar problems of remote object sensing. We applied the principles of active electrolocation to technical systems by building devices that produce electrical current pulses in a conducting medium (water or ionized gases) and simultaneously sense local current density. Depending on the specific task a sensor was designed for devices could (i) detect an object, (ii) localize it in space, (iii) determine its distance, and (iv) measure properties such as material properties, thickness, or material faults. Our systems proved to be relatively insensitive to environmental disturbances such as heat, pressure, or turbidity. They have a wide range of applications including material identification, quality control, non-contact distance measurements, medical applications and many more. Despite their astonishing capacities, our sensors still lag far behind what electric fish are able to achieve during active electrolocation. The understanding of the neural principles governing electric fish sensory physiology and the corresponding optimization of our sensors to solve

  5. Platelet activation using electric pulse stimulation: growth factor profile and clinical implications.

    Science.gov (United States)

    Torres, Andrew S; Caiafa, Antonio; Garner, Allen L; Klopman, Steve; LaPlante, Nicole; Morton, Christine; Conway, Kenneth; Michelson, Alan D; Frelinger, Andrew L; Neculaes, V Bogdan

    2014-09-01

    Autologous platelet gel therapy using platelet-rich plasma has emerged as a promising alternative for chronic wound healing, hemostasis, and wound infection control. A critical step for this therapeutic approach is platelet activation, typically performed using bovine thrombin (BT) and calcium chloride. However, exposure of humans to BT can stimulate antibody formation, potentially resulting in severe hemorrhagic or thrombotic complications. Electric pulse stimulation using nanosecond PEFs (pulse electric fields) is an alternative, nonbiochemical platelet activation method, thereby avoiding exposure to xenogeneic thrombin and associated risks. In this study, we identified specific requirements for a clinically relevant activator instrument by dynamically measuring current, voltage, and electric impedance for platelet-rich plasma samples. From these samples, we investigated the profile of growth factors released from human platelets with electric pulse stimulation versus BT, specifically platelet-derived growth factor, transforming growth factor β, and epidermal growth factor, using commercial enzyme-linked immunosorbent assay kits. Electric pulse stimulation triggers growth factor release from platelet α-granules at the same or higher level compared with BT. Electric pulse stimulation is a fast, inexpensive, easy-to-use platelet activation method for autologous platelet gel therapy.

  6. Association of time of occurrence of electrical heart storms with environmental physical activity.

    Science.gov (United States)

    Stoupel, Eliiyahu; Kusniec, Jairo; Golovchiner, Gregory; Abramson, Evgeny; Kadmon, Udi; Strasberg, Boris

    2014-08-01

    Many publications in recent decades have reported a temporal link between medical events and environmental physical activity. The aim of this study was to analyze the time of occurrence of electrical heart storms against levels of cosmological parameters. The sample included 82 patients (71 male) with ischemic cardiomyopathy treated with an implantable cardioverter defibrillator at a tertiary medical center in 1999-2012 (5,114 days). The time of occurrence of all electrical heart storms, defined as three or more events of ventricular tachycardia or ventricular fibrillation daily, was recorded from the defibrillator devices. Findings were analyzed against data on solar, geomagnetic, and cosmic ray (neutron) activity for the same time period obtained from space institutions in the United States and Russia. Electrical storms occurred in all months of the year, with a slight decrease in July, August, and September. Most events took place on days with lower-than-average levels of solar and geomagnetic activity and higher-than-average levels of cosmic ray (neutron) activity. There was a significant difference in mean daily cosmic ray activity between the whole observation period and the days of electrical storm activity (P = 0.0001). These data extend earlier findings on the association of the timing of cardiac events and space weather parameters to the most dangerous form of cardiac arrhythmia-electric storms. Further studies are needed to delineate the pathogenetic mechanism underlying this association. ©2014 Wiley Periodicals, Inc.

  7. Striatum and globus pallidus control the electrical activity of reticular thalamic nuclei.

    Science.gov (United States)

    Villalobos, Nelson; Oviedo-Chávez, Aldo; Alatorre, Alberto; Ríos, Alain; Barrientos, Rafael; Delgado, Alfonso; Querejeta, Enrique

    2016-08-01

    Through GABAergic fibers, globus pallidus (GP) coordinates basal ganglia global function. Electrical activity of GP neurons depends on their membrane properties and afferent fibers, including GABAergic fibers from striatum. In pathological conditions, abnormal electrical activity of GP neurons is associated with motor deficits. There is a GABAergic pathway from the GP to the reticular thalamic nucleus (RTn) whose contribution to RTn neurons electrical activity has received little attention. This fact called our attention because the RTn controls the overall information flow of thalamic nuclei to cerebral cortex. Here, we study the spontaneous electrical activity of RTn neurons recorded in vivo in anesthetized rats and under pharmacological activation or inhibition of the GP. We found that activation of GP predominantly diminishes the spontaneous RTn neurons firing rate and its inhibition increases their firing rate; however, both activation and inhibition of GP did not modified the burst index (BI) or the coefficient of variation (CV) of RTn neurons. Moreover, stimulation of striatum predominantly diminishes the spiking rate of GP cells and increases the spiking rate in RTn neurons without modifying the BI or CV in reticular neurons. Our data suggest a GP tight control over RTn spiking activity.

  8. 78 FR 7394 - Notification of Proposed Production Activity; GE Appliances; Subzone 29C (Electric Water Heaters...

    Science.gov (United States)

    2013-02-01

    ... Foreign-Trade Zones Board Notification of Proposed Production Activity; GE Appliances; Subzone 29C (Electric Water Heaters), Louisville, KY GE Appliances, operator of Subzone 29C, submitted a notification of proposed production activity for its facility in Louisville, Kentucky. The notification conforming to the...

  9. Intracellular electrical activity in human urinary bladder smooth muscle: the effect of high sucrose medium

    NARCIS (Netherlands)

    A.J. Visser (Anna); R. van Mastrigt (Ron)

    2001-01-01

    textabstractIntroduction: The primary key to pharmacotherapy of bladder instability is in the excitation-contraction coupling of detrusor smooth muscle cells. To study this process, simultaneous recordings of mechanical and electrical activity are required. However, recording of mechanical activity

  10. Electrically assisted cycling: A new mode for meeting physical activity guidelines?

    NARCIS (Netherlands)

    Simons, M.; Es, E. van; Hendriksen, I.

    2009-01-01

    PURPOSE: The purpose of this study was to assess the potential of the electrically assisted bicycle (EAB) as a novel tool for meeting the physical activity guidelines in terms of intensity. METHODS: Twelve habitually active adult subjects were requested to cycle a track of 4.3 km at an intensity the

  11. The effects of high-voltage pulse electric discharges on ion adsorption on activated carbons

    Science.gov (United States)

    Gafurov, M. M.; Sveshnikova, D. A.; Larin, S. V.; Rabadanov, K. Sh.; Shabanova, Z. E.; Yusupova, A. A.; Ramazanov, A. Sh.

    2008-07-01

    The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.

  12. Low-level electrical currents and brain indicators of behavioral activation

    Directory of Open Access Journals (Sweden)

    F. Lolas

    1977-12-01

    Full Text Available Distinguishing between slow brain potential correlates of arousal and activation on the basis of their functional role and temporal involvement during a reaction-time task, data are presented which suggest that weak electrical polarizing currents applied to the head in human subjects modify predominantly activation indicators rather than arousal ones.

  13. Workshop Physics Activity Guide, Module 4: Electricity and Magnetism

    Science.gov (United States)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

  14. An active learning organisation: teaching projects in electrical engineering education

    NARCIS (Netherlands)

    Christensen, H.-P.; Vos, Henk; de Graaff, E.; Lemoult, B.

    2004-01-01

    The introduction of active learning in engineering education is often started by enthusiastic teachers or change agents. They usually encounter resistance from stakeholders such as colleagues, department boards or students. For a successful introduction these stakeholders all have to learn what

  15. Review of ESA Experimental Research Activities for Electric Propulsion

    Science.gov (United States)

    2011-01-01

    Accreditation Council (RvA). Dual ISO 17025 accreditation and ISO 9001 certification processes were obtained in 2004 by the EPL and have been renewed now until...EPL dedicates 80 % of its resources to respond to customers needs and 20% to internal research, hands-on and training . The activities carried out at...endurance tests. • Internal research and hands-on of ESA staff. • Training of ESA personnel. The ESA propulsion Laboratory in the past has hosted

  16. Multi-GPU adaptation of a simulator of heart electric activity

    Directory of Open Access Journals (Sweden)

    Víctor M. García

    2013-12-01

    Full Text Available The simulation of the electrical activity of the heart is calculated by solving a large system of ordinary differential equations; this takes an enormous amount of computation time. In recent years graphics processing unit (GPU are being introduced in the field of high performance computing. These powerful computing devices have attracted research groups requiring simulate the electrical activity of the heart. The research group signing this paper has developed a simulator of cardiac electrical activity that runs on a single GPU. This article describes the adaptation and modification of the simulator to run on multiple GPU. The results confirm that the technique significantly reduces the execution time compared to those obtained with a single GPU, and allows the solution of larger problems.

  17. Cyclical electrical stimulation increases strength and improves activity after stroke: a systematic review

    Directory of Open Access Journals (Sweden)

    Lucas R Nascimento

    2014-03-01

    Full Text Available Question: Does electrical stimulation increase strength after stroke and are any benefits maintained beyond the intervention period or carried over to activity? Design: Systematic review with meta-analysis of randomised or controlled trials. Participants: Adults who have had a stroke. Intervention: Cyclical electrical stimulation applied in order to increase muscle strength. Outcome measures: Strength measures had to be representative of maximum voluntary contraction and were obtained as continuous measures of force or torque, or ordinal measures such as manual muscle tests. Activity was measured using direct measures of performance that produced continuous or ordinal data, or with scales that produced ordinal data. Results: Sixteen trials representing 17 relevant comparisons were included in this systematic review. Effect sizes were calculated as standardised mean differences because various muscles were studied and different outcome measures were used. Overall, electrical stimulation increased strength by a standardised mean difference (SMD of 0.47 (95% CI 0.26 to 0.68 and this effect was maintained beyond the intervention period (SMD 0.33, 95% CI 0.07 to 0.60. Electrical stimulation also improved activity (SMD 0.30, 95% CI 0.05 to 0.56 and this effect was also maintained beyond the intervention period (SMD 0.38, 95% CI 0.09 to 0.66. Conclusion: Cyclical electrical stimulation increases strength and improves activity after stroke. These benefits were maintained beyond the intervention period with a small-to-moderate effect size. The sustained effect on activity suggests that the benefits were incorporated into daily life. Review registration: PROSPERO (CRD42013003895. [Nascimento LR, Michaelsen SM, Ada L, Polese JC, Teixeira-Salmela LF (2014 Cyclical electrical stimulation increases strength and improves activity after stroke: a systematic review. Journal of Physiotherapy 60: 22–30

  18. On the haptic nature of the active electric sense of fish.

    Science.gov (United States)

    Caputi, Angel A; Aguilera, Pedro A; Carolina Pereira, Ana; Rodríguez-Cattáneo, Alejo

    2013-11-06

    Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ventricular oversensing of atrial electrical activity that inhibits VVI pacemaker and causes syncope

    Directory of Open Access Journals (Sweden)

    Elibet Chávez González

    2015-10-01

    Full Text Available Far-field oversensing of atrial electrical activity caused by a VVI pacemaker is a rare phenomenon; however, it may have serious clinical consequences. It has several causes and its timely identification may avoid a possible ventricular asystole. This article reports the case of a 72-year-old male who had a Biotronik Axios SR pacemaker implanted, in VVIR mode, six years ago, due to blocked atrial fibrillation. He suffered syncope due to pacemaker inhibition caused by ventricular oversensing of atrial electrical activity.

  20. Effect of electric field on the activity and quenching structure of liquid Cu-Al alloys

    Institute of Scientific and Technical Information of China (English)

    Fajun Guo; Lingzhen Li; Yanbing Zong; Daqiang Cang; Wen Pan; Jun Zhang

    2005-01-01

    The activity coefficient of Al in molten Cu decreases with the increasing of electric current applied to the liquid alloy of Cu-0.2wt%Al. To investigate the mechanism, the quenching experimental results of the liquid Al-Cu alloy show that there is a remarkable change in structure, in which the solute congregates along the current direction especially for DC current. The mechanism of the activity coefficient change of Al in molten Cu-0.2wt%Al alloy treated by electrical field was discussed. Further, the results also provide an evidence for the short-range-ordered liquid metal.

  1. Mathematical models of electrical activity of the pancreatic β-cell: a physiological review.

    Science.gov (United States)

    Félix-Martínez, Gerardo J; Godínez-Fernández, J Rafael

    2014-01-01

    Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.

  2. [Role of acetylcholine in coordination od spontaneous electrical activity of various areas of the rat uterus].

    Science.gov (United States)

    Kazarian, K V; Unanian, N G; Akopian, R R

    2012-01-01

    Spontaneous electrical activity of myometrium was studied in areas of the uterine corpus, zone of its connection with uterine tube and cervix at intravenous administration of various acetylcholine concentrations. Under these conditions, changes of the frequency and amplitude characteristics of rhythmogenesis were studied both separately and in their combined active state. The presence of 10(-3) M acetylcholine in the animal blood creates the most optimal conditions for synchronization and coordination of activities of all studied uterus areas.

  3. Physical activity when riding an electric assisted bicycle.

    Science.gov (United States)

    Berntsen, Sveinung; Malnes, Lena; Langåker, Aleksander; Bere, Elling

    2017-04-26

    The objectives of the present study were to compare time spent cycling, exercise intensity, and time spent in moderate- (MPA) and vigorous intensity physical activity (VPA) when cycling on an E-bike and a conventional bicycle on two "cycling-to-work" routes with differences in topography, defined as a hilly and a flat route. Eight adults (23-54 years, two women) cycled outdoors on a conventional bicycle and an E-bike, on a flat (8.2 km) and a hilly (7.1 km) route, resulting in 32 journeys. Duration, elevation, and oxygen consumption were recorded using a portable oxygen analyser with GPS. A maximal cardiorespiratory fitness test was performed on a cycle ergometer. Resting metabolic rate was obtained by indirect calorimetry with a canopy hood. The participants spent less time (median (IQR)) cycling on the E-bike compared with the conventional bicycle, on both the hilly (18.8 (4.9) vs. 26.3 (6.4) minutes) and the flat (20.0 (2.9) vs. 23.8 (1.8) minutes) routes. Lower exercise intensity was observed with the E-bike compared with the conventional bicycle, both on the hilly (50 (18) vs. 60 (22) % of maximal oxygen uptake) and the flat (52 (19) vs. 55 (12) % of maximal oxygen uptake) routes. In both cycling modes, most time was spent in MVPA (92-99%). However, fewer minutes were spent in MVPA with the E-bike than the conventional bicycle, for both the hilly (26% lower) and the flat (17% lower) routes. Cycling on the E-bike also resulted in 35 and 15% fewer minutes in vigorous intensity, respectively on the hilly and flat routes. Cycling on the E-bike resulted in lower trip duration and exercise intensity, compared with the conventional bicycle. However, most of the time was spent in MVPA. This suggests that changing the commuting mode from car to E-bike will significantly increase levels of physical activity while commuting.

  4. A novel application of pulsed electric field (PEF) processing for improving glutathione (GSH) antioxidant activity.

    Science.gov (United States)

    Wang, Jia; Wang, Ke; Wang, Ying; Lin, Songyi; Zhao, Ping; Jones, Gregory

    2014-10-15

    Glutathione (GSH) was treated by pulsed electric field (PEF) processing to investigate its effect on antioxidant activity. The antioxidant activity of GSH was evaluated using 2,2-diphenyl-1-picrylhydrazy (DPPH) radical inhibition. A Box-Behnken design (BBD) with three independent variables, which were concentration, electric field intensity and pulse frequency was used to establish the regression equation of second-order response surface. Optimal conditions were as follows: GSH concentration 8.86mg/mL, electric field intensity 9.74kV/cm and pulse frequency 2549.08Hz. The DPPH radical inhibition increased from 81.83% to 97.40%. Near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyse the change of structure and functional groups of GSH.

  5. [The changes of basal brain electric activity in patients with epilepsy after callosotomy].

    Science.gov (United States)

    Beĭn, B N; Dravert, N E; Tatarenko, S A

    2008-01-01

    Short-term and long-term outcomes of basal brain activity were estimated in 20 epileptic patients with a medical history of callosotomy. Patients with malignant courses selected for callosotomy retained the high capacity of cerebral electric activity after surgery. In spite of limitations of bilateral synchronized irradiation of electric discharges in the brain, patients had the high power of cerebral electric genesis. A clinical study revealed the decrease of the number of seizures and their severity in patients who underwent the surgery. Thus, callosotomy plays only a palliative role in epileptic processes. Of primary importance is individual selection of anti-epileptic drugs to support cell mechanisms of epilepsy and improvement of treatment outcomes.

  6. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.

    Science.gov (United States)

    Fried, Stephen D; Bagchi, Sayan; Boxer, Steven G

    2014-12-19

    Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.

  7. Simultaneous Manipulation of Electric and Thermal Fields via Combination of Passive and Active Schemes

    CERN Document Server

    Lan, Chuwen; Zhou, Ji

    2015-01-01

    Increasing attention has been focused on the invisibility cloak due to its novel concept for manipulation of physical field. However, it is usually realized by single scheme (namely passive or active scheme) and limited in a single field. Here, we proposed a general method to achieve simultaneous manipulation of multi-physics field via combination of passive and active schemes. Experimentally, this method was demonstrated by simultaneous manipulation of electric field and thermal field. Firstly, a device was designed to simultaneously behave as electric and thermal invisibility cloak. Secondly, another device was demonstrated to simultaneously behave as electric invisibility cloak and thermal concentrator. The experimental results agree well with the simulated ones, thus confirming the feasibility of our method. Our method can also be extended to the other multi-physics fields, which would create much more freedom to design of new system and might enable new potential application in broad areas.

  8. Combining fluidized activated carbon with weak alternating electric fields for disinfection

    NARCIS (Netherlands)

    Racyte, J.; Sharabati, J.; Paulitsch-Fuchs, A.H.; Yntema, D.R.; Mayer, M.J.J.; Bruning, H.; Rijnaarts, H.H.M.

    2011-01-01

    This study presents fluidized bed electrodes as a new device for disinfection. In the fluidized bed electrodes system, granular activated carbon particles were suspended, and an alternating radio frequency electric field was applied over the suspended bed. Proof-of-principle studies with the

  9. Cylindrical active coated nano-particles excited by electric and magnetic line sources

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Y.; Malureanu, Radu

    2011-01-01

    Cylindrical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be an electric or a magnetic line current, while three different plasmonic...

  10. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    Science.gov (United States)

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  11. Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.

    Science.gov (United States)

    Cubley, H. D.

    1972-01-01

    Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.

  12. Cylindrical active coated nano-particles excited by electric and magnetic line sources

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Y.; Malureanu, Radu

    2011-01-01

    Cylindrical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be an electric or a magnetic line current, while three different plasmonic...

  13. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...

  14. Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles

    NARCIS (Netherlands)

    Thomas, CK; Nelson, G; Than, L; Zijdewind, Inge

    The activation order of motor units during electrically evoked contractions of paralyzed or partially paralyzed thenar muscles was determined in seven subjects with chronic cervical spinal cord injury. The median nerve was stimulated percutaneously with pulses of graded intensity to produce

  15. Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles

    NARCIS (Netherlands)

    Thomas, CK; Nelson, G; Than, L; Zijdewind, Inge

    2002-01-01

    The activation order of motor units during electrically evoked contractions of paralyzed or partially paralyzed thenar muscles was determined in seven subjects with chronic cervical spinal cord injury. The median nerve was stimulated percutaneously with pulses of graded intensity to produce incremen

  16. Impact of Different Electrical Time-Based Activations on NiTi Shape Memory Alloys

    Science.gov (United States)

    Fleczok, Benjamin; Rathmann, Christian; Otibar, Dennis; Weirich, Antonia; Kuhlenkötter, Bernd

    2017-06-01

    The use of NiTi shape-memory alloys (SMA) in actuators bears significant advantages for designing robust, simple and lightweight applications. The SMA effect is based on a phase transformation of the atomic lattice in response to stress, strain and temperature. The resulting crystallographic configurations lead to a complex behavior revealing different electrical and mechanical characteristics. In view of the impact of thermo-mechanical cyclization on the operational lifetime, this paper investigates the influences of different types of electrical activation. For this purpose, six current curves with six samples each are compared to a reference activation with regard to the operational lifetime. The chosen time of activation is 1 second in accordance with an industrially relevant cycle of technical actuators. Based on the results of these investigations, recommendations of the activation type shall be developed for the operational lifetime of NiTi-SMA.

  17. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel)

    OpenAIRE

    Maria Stasiuk; Alicja Janiszewska; Arkadiusz Kozubek

    2014-01-01

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, ...

  18. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez

    2014-01-01

    A major setback for large scale electric vehicle market expansion compared to their internal combustion competitors consists in their high price and low driving range. One way of reducing the cost, dimensions and mass of electric vehicles is to eliminate the dedicated AC/DC converter used...... for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when...

  19. Laser fabrication of electrical feedthroughs in polymer encapsulations for active implantable medical devices.

    Science.gov (United States)

    Gough, Zara; Chaminade, Cedric; Barclay-Monteith, Philip; Kallinen, Annukka; Lei, Wenwen; Ganesan, Rajesh; Grace, John; McKenzie, David R

    2017-01-31

    Hermetic electrical feedthroughs are essential for safe and functional active implantable biomedical devices and for a wide range of other applications such as batteries, supercapacitors, OLEDs and solar cells. Ceramics and metals have previously been the materials of choice for encapsulations, while polymers have advantages of ease of mass production and end user compatibility. We demonstrate a laser sealing technology that gives hermetic, mechanically strong feedthroughs with low electrical resistance in a polyetheretherketone (PEEK) encapsulation. The conductive pathways are wires and sputtered thin films. The water vapor transmission rate through the fabricated encapsulations is comparable to that of PEEK itself.

  20. Evaluation of Atmospheric Electric Field as Increasing Seismic Activity Indicator on the example of Caucasus Region

    CERN Document Server

    Kachakhidze, M K; Kachakhidze, N K

    2012-01-01

    The present paper deals with reliability of a gradient of atmospheric electric field potential as an indicator of seismic activity increase. With this in view, records of atmospheric electric field potential gradients of Caucasus region for 1953-1992 with respect to periods before average and large earthquakes, which took place in the same time interval, were considered. It is worth to pay attention to the fact that the avalanche-like unstable model of fault formation based on theoretical model of self-generated seismo-electromagnetic oscillations of LAI system explains convincingly spectral succession of electromagnetic emission frequency of the periods preceding earthquakes.

  1. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    Science.gov (United States)

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  2. Brain electrical activity mapping in the study of visual development and amblyopia in young children.

    Science.gov (United States)

    Thouvenin, D; Tiberge, M; Arne, J L; Arbus, L

    1995-01-01

    Brain electrical activity mapping (BEAM) allows the study of electrical visual reactivity on a computerized electroencephalogram (EEG). We carried out 150 BEAM studies on 120 infants to evaluate the usefulness and reliability of this noninvasive technique in the assessment of vision in very young children, compared with other methods (clinical testing, preferential looking, and visual evoked potentials). BEAM demonstrated amblyopia at a cortical level and showed specific electrical signs of amblyopia. The visual reactivity was variably affected depending on the type of amblyopia present. In addition, different results of BEAM corresponded to different kinds of visual maturation delay and strabismus in the absence of amblyopia. BEAM appears to be useful in the initial screening and during treatment of deprivation and strabismic amblyopia, especially when other methods have failed to elicit the level of vision.

  3. L(+) lactate dehydrogenase activity from the electric organ of Electrophorus electricus (L.).

    Science.gov (United States)

    Torres-da Matta, J; Nery da Matta, A; Hassón-Voloch, A

    1976-01-01

    Properties of L(+) lactate dehydrogenase (LDH) of Electrophorus electricus (L.) electric organ were studied, comparing the substrates pyruvate and lactate. Electric organ LDH is a soluble enzyme with a pH optimum of 7.4 for pyruvate and 9.0 for lactate. The apparent Km was lower for pyruvate (Km = 2.5 X 10(-4) M) than for lactate (Km = 1.5 X 10(-2) M). With lactate as a substrate at pH 7.4, malonate, oxalate and pyruvate inhibited competitively. For pyruvate as substrate at pH 9.0 malonate inhibited non-competitively and oxalate shiwed uncompetitive inhibition. The different effects of the carboxylic acids on LDH activity suggest different stereospecificities of the two enzyme-coenzyme complexes in the forward and reserve reactions. The reactions of electric organ LDH with substrates and inhibitors are consistent with electrophoretic analysis suggesting that the enzyme is of the M-type.

  4. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  5. On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum Machine in the dark?

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye, which spans sources of nutrients with its protoplasmic network. In a very simple experimental setup we recorded electric potential of the propagating plasmodium. We discovered a complex interplay of short range oscillatory behaviour combined with long range, low frequency oscillations which serve to communicate information between different parts of the plasmodium. The plasmodium's response to changing environmental conditions forms basis patterns of electric activity, which are unique indicators of the following events: plasmodium occupies a site, plasmodium functions normally, plasmodium becomes `agitated' due to drying substrate, plasmodium departs a site, and plasmodium forms sclerotium. Using a collective particle approximation of Physarum polycephalum we found matching correlates of electrical potential in computational simulations by measuring local population flux at the node positions, generating trains of high and low frequ...

  6. Active control of thermoacoustic amplification in a thermo-acousto-electric engine

    Science.gov (United States)

    Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick

    2014-05-01

    In this paper, a new approach is proposed to control the operation of a thermoacoustic Stirling electricity generator. This control basically consists in adding an additional acoustic source to the device, connected through a feedback loop to a reference microphone, a phase-shifter, and an audio amplifier. Experiments are performed to characterize the impact of the feedback loop (and especially that of the controlled phase-shift) on the overall efficiency of the thermal to electric energy conversion performed by the engine. It is demonstrated that this external forcing of thermoacoustic self-sustained oscillations strongly impacts the performance of the engine, and that it is possible under some circumstances to improve the efficiency of the thermo-electric transduction, compared to the one reached without active control. Applicability and further directions of investigation are also discussed.

  7. Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement

    Science.gov (United States)

    Bryant, Robert G. (Inventor); Working, Dennis C. (Inventor)

    2005-01-01

    A fluid-control electro-active device includes a piezo-diaphragm made from a ferroelectric material sandwiched by first and second electrode patterns configured to introduce an electric field into the ferroelectric material when voltage is applied thereto. The electric field originates at a region of the ferroelectric material between the first and second electrode patterns, and extends radially outward from this region of the ferroelectric material and substantially parallel to the plane of the ferroelectric material. The piezo-diaphragm deflects symmetrically about this region in a direction substantially perpendicular to the electric field. An annular region coupled to and extending radially outward from the piezo-diaphragm perimetrically borders the piezo-diaphragm, A housing is connected to the region and at least one fluid flow path with piezo-diaphragm disposed therein.

  8. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Directory of Open Access Journals (Sweden)

    Kazushige Sasaki

    Full Text Available We have previously shown that unloaded shortening velocity (V(0 of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005. In the present study, to investigate the effect of motor unit recruitment pattern on V(0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC. The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95. Regression analysis showed that V(0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2 = 0.52, P<0.001. By contrast, V(0 of electrically activated dorsiflexor muscles remained unchanged (R(2<0.001, P = 0.98 among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.

  9. Electric-field and temperature dependence of the activation energy associated with gate induced drain leakage

    Science.gov (United States)

    Alnuaimi, Aaesha; Nayfeh, Ammar; Koldyaev, Victor

    2013-01-01

    We examined the effect of temperature and electric field on the activation energy (Ea) of gate-induced drain leakage (GIDL) of a MOSFET. The measured GIDL current shows a temperature dependence consistent with a non-tunneling mechanism. In the low-electric-field regime and for temperatures above 55 °C, Ea is about 0.4 eV and drops from 0.4 eV to 0.1 eV as the applied gate voltage goes below VFB in the accumulation direction (decreased for the n-channel MOSFET). This suggests that electron-hole-pair generation at Si/SiO2 interface traps (Dit), enhanced by the electric field (the Poole-Frenkel effect), dominates GIDL in that regime. For temperatures below 55 °C, Ea is less than 0.15 eV for both weak and strong electric fields and displays minimal temperature dependence, indicating inelastic trap-assisted tunneling or phonon-assisted tunneling from a trap. In the very strong-electric-field regime (>1 MV/cm), band-to-band tunneling is the dominant mechanism.

  10. Removal of phenol by activated alumina bed in pulsed high-voltage electric field

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-nan; MA Jun; YANG Shi-dong

    2007-01-01

    A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1 % when air aeration flow rate was 1200 ml/min, and 88.2 % when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.

  11. Characterization of Microporous Activated Carbon Electrodes for Electric Double-layer Capacitors

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-han; LIU Ling; SONG Huai-he

    2004-01-01

    Activated carbons (ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polariz able electrodes of electric double-layer capacitors (EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.

  12. On the Dependence of the Ionospheric E-Region Electric Field of the Solar Activity

    Science.gov (United States)

    Denardini, Clezio Marcos; Schuch, Nelson Jorge; Moro, Juliano; Araujo Resende, Laysa Cristina; Chen, Sony Su; Costa, D. Joaquim

    2016-07-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent (RESCO) radar set at Sao Luis, Brazil (SLZ, 2.3° S, 44.2° W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp <= 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000 and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas, the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlight the more pronounced dependency of the solar flux.

  13. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    Science.gov (United States)

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  14. A pilot study of contralateral homonymous muscle activity simulated electrical stimulation in chronic hemiplegia.

    Science.gov (United States)

    Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen

    2012-01-01

    For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.

  15. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  16. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  17. [Role of oxytocin in activation of spontaneous electrical activity of uterine body and uterine tubes in non-pregnant rats].

    Science.gov (United States)

    Kazarian, K V; Unanian, N G; Meliksetian, I B; Akopian, R R; Saakian, A A

    2011-01-01

    The work studies effects of various doses of oxytocin (0.01, 0.1, 1 and 10 microg/kg) on duration of discharges of spontaneous electrical activity and frequency of spikes in various parts of uterine tubes and of uterine body of non-pregnant rats. Under these conditions, changes in these parameters for ovarian parts of the uterine tubes had similar character unlike those in cervical parts of the tubes and in the middle part of the uterine body, so the latter parts can be grouped together owing to peculiarities of their changes. The longest duration of genesis of electric discharges has been shown for the ovarian part of uterine tubes at a concentration of 10 microg/kg of oxytocin. Morphological experiments revealed that among all studies areas the ovarian parts of uterine tubes were characterized by the highest amount of atypical cells that have the maximally pronounced functional activity.

  18. Changes in the cardiac muscle electric activity as a result of Coronary Artery Bypass Graft operation

    Science.gov (United States)

    Grajek, Magdalena; Krzyminiewski, Ryszard; Kalawski, Ryszard; Kulczak, Mariusz

    2008-01-01

    Many bioelectric signals have a complex internal structure that can be a rich source of information on the tissue or cell processes. The structure of such signals can be analysed in detail by applying digital methods of signal processing. Therefore, of substantial use in diagnosis of the coronary arterial disease is the method of digital enhancement of increasing signal resolution ECG (NURSE-ECG), permitting detection of temporary changes in the electric potentials in the cardiac muscle in the process of depolarisation. Thanks to the application of NURSE-ECG it has become possible to detect relatively small changes in the electric activity of particular fragments of the cardiac muscle undetectable by the standard ECG method, caused by ischemia, the effect of a drug or infarct. The aim of this study was to identify and analyse changes in the electric activity of the cardiac muscle as a result of the Coronary Artery Bypass Graft (CABG) operation. In this study the method of NURSE-ECG has been applied in order to identify and analyse changes in the electric activity of the cardiac muscle as a result of the CABG operation. In the study performed in cooperation of the Institute of Physics Adam Mickiewicz University and the Strus Hospital, Cardiac Surgery Ward, 37 patients with advanced coronary arterial disease were asked to participate. The patients were examined prior to the operation, on the day after the operation and two months after the operation and a year after the operation. The ECG recordings were subjected to a numerical procedure of resolution enhancement by a NURSE-ECG program to reveal the tentative changes in the electric potential of the cardiac muscle on its depolarisation. Results of the study have shown that the NURSE ECG method can be applied to monitor changes in the electric activity of the cardiac muscle occurring as a result of CABG operation. One the second day after the operation in the majority of patients (70%) a rapid decrease of the total

  19. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2015-12-01

    Full Text Available Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB, which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i, which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.

  20. Coherent phonon optics in a chip with an electrically controlled active device.

    Science.gov (United States)

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  1. Passivation of electrically active centers by Hydrogen and Lithium in Semiconductors

    CERN Multimedia

    2002-01-01

    The hyperfine technique of Perturbed Angular Correlation Spectroscopy (PAC) has proven to be excellently suited for the microscopic investigation of impurity complexes in semiconductors. But this method is seriously limited by the small number of chemically different isotopes which are suitable for PAC measurements and represent electrically active centers in semiconductors. This bottleneck can be widely overcome by the ISOLDE facility which provides a great variety of shortliving PAC isotopes. The probe atom $^{111m}$Cd, provided by ISOLDE opened the first successful access to PAC investigations of III-V compounds and enabled also the first PAC experiments on double acceptors in silicon and germamum. \\\\ \\\\ At the new ISOLDE facility our experiments were concentrated on the passivation of electrically active centres by hydrogen and lithium in Si, Ge and III-V compounds. Experiments on $^{111m}$Cd in Ge revealed the formation of two different acceptor hydrogen and two different acceptor lithium complexes respe...

  2. Research on Modeling and Active Steering Control Algorithm for Electric Forklift Steer-by-Wire System

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-11-01

    Full Text Available In this paper, according to the structure characteristics of steer-by-wire (SBW system for the TFC20 electric forklift, steering dynamics model and two degree of freedom vehicle model are deduced for SBW forklift. Aiming at the free design features of the angular transmission characteristics in the SBW system of electric forklift, the theory of active steering control strategy is studied. After analyzing the influence factors of the angular trans mission ratio of the steering system, the ideal angular transmission ratio is proposed, which is based on the yaw rate gain invariance. Also, the control strategy of the yaw rate feedback and the full state feedback is studied. The simulation results show that the above strategy is effective for the active steering control; it can improve the operating stability and the response speed of the forklift.

  3. Effects of prenatal protein malnutrition on the electrical cerebral activity during development.

    Science.gov (United States)

    De Frías, V; Varela, O; Oropeza, J J; Bisiacchi, B; Alvarez, A

    2010-10-04

    Early protein restriction during the prenatal period has significant repercussions on the ontogeny and development of the central nervous system. The present study investigates whether early prenatal protein malnutrition could alter the electrical cerebral activity of the progeny. We used Sprague-Dawley female rats of 200 g randomly divided into three groups: a control group that received a diet with 25% of the protein content (lactalbumin), the experimental group, that received a diet with 6% of the protein content and the rehabilitated group that initially received a diet with 6% of the protein content, then switched to a diet with 25% of the protein content after the weaning period (P20D) up to 60 days of life (P60D). Reduction of the protein content from 25% to 6% of lactalbumin in the diet of pregnant rats produces impairment in the electrical cerebral activity in the progeny at P20D and at P60D. The power spectral analysis for each one of the electroencephalograms revealed that prenatal protein malnutrition in rats produced a significant reduction of the alpha (8-13 Hz) and the beta bands (13-30 Hz) and a significant increase of the theta (4-8 Hz), and delta bands (1-4 Hz), at two different stages of life (P20D and P60D). Similar results were obtained for the rehabilitated group. These results indicate that early malnutrition in life affects the ontogeny of the electrical cerebral activity. This insult probably disrupts the establishment of cortical neural circuits during the critical period of brain development. The rehabilitation period did not revert the impairment in the electrical cerebral activity produced by malnutrition. We used one-way ANOVA analysis, followed by Tukey test (*p<0.001). (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of B+ Flux on the electrical activation of ultra-shallow B+ implants in Ge

    DEFF Research Database (Denmark)

    Yates, B.R.; Darby, B.L.; Petersen, Dirch Hjorth;

    2012-01-01

    The residual implanted dose of ultra-shallow B+ implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23% due to ion backscattering for 2 keV implants in Ge. The electrical characterization of ultra-shallow B......+ implants at 2 keV to a dose of 5.0×1014 cm-2 at beam currents ranging from 0.4 to 6.4 mA has been studied using micro Hall effect measurements after annealing at 400°C for 60 s. It has been shown that the sheet number increases with beam current across the investigated range with electrical activation...... being 76% higher at 6.4 mA as compared to 0.4mA. However, at 6.4 mA, the electrically active fraction remained low at 11.4%. Structural characterization revealed that the implanted region remained crystalline and amorphization is not able to explain the increased activation. The results suggest...

  5. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Science.gov (United States)

    Sasaki, Kazushige; Ishii, Naokata

    2010-09-27

    We have previously shown that unloaded shortening velocity (V(0)) of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005). In the present study, to investigate the effect of motor unit recruitment pattern on V(0) of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer) was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC). The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC) 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0), with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95). Regression analysis showed that V(0) of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2) = 0.52, Pmuscles remained unchanged (R(2)shortening velocity of human skeletal muscle in vivo.

  6. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    Science.gov (United States)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  7. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments.

    Science.gov (United States)

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene

    2015-06-01

    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation.

  8. Electrically active defects in silica-filled epoxy as revealed by light emission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, E; Teyssedre, G; Laurent, C [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Rowe, S; Robiani, S, E-mail: christian.laurent@laplace.univ-tlse.f [Schneider Electric, Direction des Recherches Materiaux, rue Henri Tarze, F-38050 Grenoble (France)

    2009-08-21

    Epoxy resins have long been used as the insulation of electrical systems. They are generally formulated with a dispersion of micro-fillers to improve thermal and mechanical properties. However, there are concerns about the possible influence of these fillers on the electric behaviour, especially on the long term ageing under functional stresses. At the loose interface between matrix and fillers, macro- and micro-voids in the resin can provide weak points that are difficult to detect using conventional spectroscopy. Light emission analysis from the material under electrical stress is an efficient way to reveal such electrically active defects since internal ionizing events would give rise to photon emission. A detailed analysis of the light emitted by silica-filled and unfilled epoxy samples is presented. The photon counting technique, spectral analysis and imaging give a firm basis to discuss the contributing emission processes to the detected signal. They reveal the existence of ionizing events into internal defects. The sensitivity of the optical method is order of magnitudes higher than the sensitivity of conventional partial discharge detection.

  9. Electro-active device using radial electric field piezo-diaphragm for sonic applications

    Science.gov (United States)

    Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor)

    2005-01-01

    An electro-active transducer for sonic applications includes a ferroelectric material sandwiched by first and second electrode patterns to form a piezo-diaphragm coupled to a mounting frame. When the device is used as a sonic actuator, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when voltage is applied to the electrode patterns. When the device is used as a sonic sensor, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when the ferroelectric material experiences deflection in a direction substantially perpendicular thereto. In each case, the electrode patterns are designed to cause the electric field to: i) originate at a region of the ferroelectric material between the first and second electrode patterns, and ii) extend radially outward from the region of the ferroelectric material (at which the electric field originates) and substantially parallel to the plane of the ferroelectric material. The mounting frame perimetrically surrounds the peizo-diaphragm and enables attachment of the piezo-diaphragm to a housing.

  10. System and method for coproduction of activated carbon and steam/electricity

    Science.gov (United States)

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  11. Dynamic Range of Vertebrate Retina Ganglion Cells: Importance of Active Dendrites and Coupling by Electrical Synapses

    Science.gov (United States)

    Publio, Rodrigo; Ceballos, Cesar Celis; Roque, Antonio C.

    2012-01-01

    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions. PMID:23144767

  12. Dynamic range of vertebrate retina ganglion cells: importance of active dendrites and coupling by electrical synapses.

    Science.gov (United States)

    Publio, Rodrigo; Ceballos, Cesar Celis; Roque, Antonio C

    2012-01-01

    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.

  13. The association between myometrial electrical activity and time to delivery in threatened preterm labor.

    Science.gov (United States)

    Aviram, Amir; Hiersch, Liran; Ashwal, Eran; Yogev, Yariv; Hadar, Eran

    2016-09-01

    To assess the association between myometrial electrical activity and time-to-delivery in preterm labor using uterine electromyography. Myometrial electrical activity was measured via the electrical uterine monitor (EUM) device. Data was prospectively collected among women admitted due to suspected preterm labor, prior to 34 weeks of gestation. EUM-Index was defined as the mean electrical activity of the uterine muscle over a period of 10 minutes measured in units of microjoule (μJ, microwatt second). The association between the EUM-Index at admission to time-to-delivery and delivery prior to 34 weeks of gestation was calculated. Overall, 45 women were included in the study. EUM-Index combined with cervical dilatation, demonstrated significant correlation to time-to-delivery (R(2 )= 0.49, p = 0.005), which was strengthened for women presenting prior to 28 weeks of gestation. EUM-Index above the median (>3.05 MJ) was significantly associated with a shorter latency period for delivery (36.0 ± 19.4 vs. 50.2 ± 25.9 days, p = 0.04). For delivery prior to 34 weeks, the EUM-Index showed an AUC = 0.65 (95% CI 0.48-0.82), and a cutoff of 2.5 MJ provided 91.7% sensitivity and 93.3% negative predictive value. EUM-Index at time of admission due to suspected preterm labor is inversely correlated with time-to-delivery and may effectively rule out preterm delivery prior to 34 weeks.

  14. Phenolic lipids affect the activity and conformation of acetylcholinesterase from Electrophorus electricus (Electric eel).

    Science.gov (United States)

    Stasiuk, Maria; Janiszewska, Alicja; Kozubek, Arkadiusz

    2014-04-30

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein.

  15. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel

    Directory of Open Access Journals (Sweden)

    Maria Stasiuk

    2014-04-01

    Full Text Available Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein.

  16. Effect of Tributyrin on Electrical Activity in the Small Intestine during Early Postoperative Period.

    Science.gov (United States)

    Tropskaya, N S; Kislyakova, E A; Popova, T S

    2015-12-01

    The effect of enteral administration of tributyrin on electrical activity in the upper segments of the small intestine was examined in rats on the model of postoperative ileus. This postoperative state is characterized with pronounced and long-term disturbances in generation of migrating myoelectric complex of the small intestine. The enteral administration of tributyrin in the early postoperative period aimed to suppress the non-adrenergic non-cholinergic influences and activation of the cholinergic anti-inflammatory pathways is an effective procedure to normalize the migrating myoelectric complex and therefore the coordinated propulsive peristalsis in the small intestine.

  17. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel)

    Science.gov (United States)

    Stasiuk, Maria; Janiszewska, Alicja; Kozubek, Arkadiusz

    2014-01-01

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein. PMID:24787269

  18. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma

    Science.gov (United States)

    Frelinger, Andrew L.; Gerrits, Anja J.; Garner, Allen L.; Torres, Andrew S.; Caiafa, Antonio; Morton, Christine A.; Berny-Lang, Michelle A.; Carmichael, Sabrina L.; Neculaes, V. Bogdan; Michelson, Alan D.

    2016-01-01

    Background Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. Aims To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. Methods PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. Results PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the

  19. Effects of Pulsed Electric Field (PEF) Treatment on Enhancing Activity and Conformation of α-Amylase.

    Science.gov (United States)

    Tian, Mei-ling; Fang, Ting; Du, Mu-ying; Zhang, Fu-sheng

    2016-04-01

    To explore an efficient, safe, and speedy application of pulsed electric field (PEF) technology for enzymatic modification, effects of PEF treatment on the enzymatic activity, property and kinetic parameters of α-amylase were investigated. Conformational transitions were also studied with the aid of circular dichroism (CD) and fluorescence spectra. The maximum enzymatic activity of α-amylase was obtained under 15 kV/cm electric field intensity and 100 mL/min flow velocity PEF treatment, in which the enzymatic activity increased by 22.13 ± 1.14% compared with control. The activation effect could last for 18 h at 4 °C. PEF treatment could widen the range of optimum temperature for α-amylase, however, it barely exerted any effect on the optimum pH. On the other hand, α-amylase treated by PEF showed an increase of Vmax, t1/2 and ΔG, whereas a decrease of Km and k were observed. Furthermore, it can be observed from fluorescence and CD spectra that PEF treatment had increased the number of amino acid residues, especially that of tryptophan, on α-amylase surface with enhanced α-helices by 34.76% and decreased random coil by 12.04% on α-amylase when compared with that of untreated. These changes in structure had positive effect on enhancing α-amylase activity and property.

  20. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-01

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  1. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    Science.gov (United States)

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  2. Reusable electrical activity of the heart monitoring patch for mobile/ubiquitous healthcare.

    Science.gov (United States)

    Lee, Jeong-Whan; Lee, Kang-Hwi; Lee, Young-Jae; Hong, Lee-Yon; Kim, Dong-Jun; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Myoungho

    2009-02-01

    In order to monitor electrical activity of the heart during daily life, we present an electrode of a medical instrument system which is able to measure the body surface potential difference by minimizing the electrode distance. The designed electrode is composed of concentric circles. It was made from the basis of the Laplacian equation, and implemented on PCB coated with gold. So that it does not cause the uncomfortable feeling of contact and possible skin troubles which are typical shortcoming of the conventional ECG measurement. The suggested method utilized three concentric circles on FR-4 substrate, so new amplifier design regarding measuring of small biological signal, is considered which has the characteristics of asymmetric input impedance since the area of concentric circular ring electrodes is not identical. Thereby, electrical activity of the heart was obtained successfully. However, its signal quality is a little bit degraded and the motion artifact still remains as a major problem as is in conventional electrocardiography measurement. Certainly stable measurement setup was needed to reduce the motion artifact originated from variation in static electricity between skin and electrode interfaces.

  3. A model for the scattering of high-frequency electromagnetic fields from dielectrics exhibiting thermally-activated electrical losses

    Science.gov (United States)

    Hann, Raiford E.

    1991-01-01

    An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.

  4. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  5. Carbon Nanofibers Functionalized with Active Screen Plasma-Deposited Metal Nanoparticles for Electrical Energy Storage Devices.

    Science.gov (United States)

    Corujeira Gallo, Santiago; Li, Xiaoying; Fütterer, Klaus; Charitidis, Constantinos A; Dong, Hanshan

    2017-07-12

    Supercapacitors are energy storage devices with higher energy densities than conventional capacitors but lower than batteries or fuel cells. There is a strong interest in increasing the volumetric and gravimetric capacitance of these devices to meet the growing demands of the electrical and electronic sectors. The capacitance depends largely on the electrode material, and carbon nanofibers (CNFs) have attracted much attention because of their relatively low cost, large surface area, and good electrical conductivity as well as chemical and thermal stability. The deposition of metal nanoparticles on CNFs is a promising way to increase their surface properties and, ultimately, the capacitance of the devices. In this study, nickel and silver nanoparticles were deposited on CNFs using the active screen plasma technology. The CNFs were characterized, and their electrochemical performance was assessed in a three-electrode cell. The results show significant improvements over the untreated CNFs, particularly after functionalization with silver nanoparticles.

  6. Electrical conductivity retention and electrochemical activity of CSA doped graphene/gold nanoparticle@polyaniline composites

    Institute of Scientific and Technical Information of China (English)

    Md. Akherul Islam; M. Ehtisham Khan; Muhammad Mohsin Hossain; Mudassir Hasan

    2016-01-01

    This paper reports the synthesis of CTAB mediated CSA doped PANI and GN/GNP@ PANI composite na-nofibers. The as synthesized composite nanofibers were examined by TEM, SEM, XRD, Raman spectro-scopy;UV–visible diffused reflectance spectroscopy and TGA. The CTAB mediated CSA doped composite nanofibers showed 59% higher DC electrical conductivity at ambient temperature than that of PANI, which might be due to the enhancement in the mobility of the charge carriers and reduction in hopping distance in the composite system. The CTAB mediated CSA doped composite nanofibers compared to PANI was observed to be showing enhanced DC electrical conductivity retention after various cycles of heating, suggesting an enhancement in thermal stability of the composite structure, which could be attributed to the synergistic effect of GN, GNP and PANI. Additionally, the composite nanofibers showed greater electrochemical activity and better capacitive performance and reduced optical bandgap than that of PANI.

  7. Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth.

    Science.gov (United States)

    Erskine, L; McCaig, C D

    1995-10-01

    We have studied the interactions between two nerve guidance cues, which alone induce substantial growth cone turning: endogenous neurotransmitters and small dc electric fields. d-tubocurarine, a nicotinic AChR (acetylcholine receptor) antagonist, inhibited field-induced cathodal orientation of cultured neurites, whereas atropine, a muscarinic AChR blocker, and suramin, a P2-purinoceptor antagonist, markedly enhanced the guidance properties of the applied field. These experiments implicate the activation of growth cone nicotinic AChRs by self-released acetylcholine in the mechanism underpinning electric field-induced neurite orientation and raise the possibility that growth cones release neurotransmitter prior to target interaction in order to assist their own pathfinding. Additionally, they provide the first evidence that coactivation of several neurotransmitter receptors may interact to regulate directed nerve growth. Such interaction in vivo, where guidance signals coexist, would add further levels of control to neurite guidance.

  8. Active compensation of wavefront aberrations by controllable heating of lens with electric film heater matrix.

    Science.gov (United States)

    Chen, Hua; Hou, Lv; Zhou, Xinglin

    2016-08-20

    We present a new apparatus for active compensation of wavefront aberrations by controllable heating of a lens using a film heater matrix. The annular electric film heater matrix, comprising 24 individual heaters, is attached to the periphery of a lens. Utilizing the linear superposition, and wavefront change proportional to the heating energy properties induced by heating, a controllable wavefront can be defined by solving a linear function. The two properties of wavefront change of a lens have been confirmed through a specially designed experiment. The feasibility of the compensation method is validated by compensating the wavefront of a plate lens. The results show that the wavefront of the lens changes from 12.52 to 2.95 nm rms after compensation. With a more precise electric controlling board, better results could be achieved.

  9. Design of a multilevel Active Power Filter for More Electrical Airplane variable frequency systems

    Science.gov (United States)

    Guerreiro, Joel Filipe; Pomilio, Jose Antenor; Busarello, Tiago Davi Curi

    This paper presents the design and simulation of an Aeronautical Active Power Filter (AAPF) for a Variable Speed Variable Frequency (VSVF) advanced aircraft electric power system. The purposes of the AAPF are to mitigate current harmonics, to improve the source power factor and to mitigate the effects of unbalanced loads. Regarding the fact that the Aircraft Electrical Power System (AEPS) frequency may vary between 360 Hz and 900 Hz, and the load dynamics is often modified, an enhanced filtering technique is required. The designed AAPF topology is an asymmetrical multilevel inverter (AMI), which control strategy is based on the Conservative Power Theory (CPT) and synchronized by a Kalman Filter Phase-Locked Loop (KF-PLL). The above configuration renders the AAPF very robust and effective to its purpose. Accurate simulation results on Matlab/Simulink platform verify the feasibility of the proposed AAPF and the high performance of the control strategy during steady-state and dynamic operations.

  10. Electrical conductivity retention and electrochemical activity of CSA doped graphene/gold nanoparticle@ polyaniline composites

    Directory of Open Access Journals (Sweden)

    Md. Akherul Islam

    2016-08-01

    Full Text Available This paper reports the synthesis of CTAB mediated CSA doped PANI and GN/GNP@ PANI composite nanofibers. The as synthesized composite nanofibers were examined by TEM, SEM, XRD, Raman spectroscopy; UV–visible diffused reflectance spectroscopy and TGA. The CTAB mediated CSA doped composite nanofibers showed 59% higher DC electrical conductivity at ambient temperature than that of PANI, which might be due to the enhancement in the mobility of the charge carriers and reduction in hopping distance in the composite system. The CTAB mediated CSA doped composite nanofibers compared to PANI was observed to be showing enhanced DC electrical conductivity retention after various cycles of heating, suggesting an enhancement in thermal stability of the composite structure, which could be attributed to the synergistic effect of GN, GNP and PANI. Additionally, the composite nanofibers showed greater electrochemical activity and better capacitive performance and reduced optical bandgap than that of PANI.

  11. A multi-scale feedback control system model for wound healing electrical activity: therapeutic device/protocol implications.

    Science.gov (United States)

    O'Clock, George D

    2014-01-01

    Regulation, growth and healing in biological systems involve many interconnected and interdependent processes that include chemical and electrical mechanisms of action. Unfortunately, the significant contributions that electrical events provide are often overlooked; resulting in a poor transfer of knowledge from science, to engineering and finally to therapy. Wound site electrical processes can influence cell migration, fluid transport, cellular signaling events, gene expression, cell differentiation and cell proliferation; affecting both form and function at the cell, tissue and organ levels. Wound healing, and its interrelationships with transport, regeneration, and growth, cannot be understood or therapeutically assisted unless both chemical and electrical activities associated with the healing process are addressed.

  12. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    Science.gov (United States)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10-7 m2 s-1 and k  =  2.2 W m-1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  -554 μV K-1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  -570 μV K-1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  13. Mechanisms of electrical activation and conduction in the gastrointestinal system: lessons from cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Gary eTse

    2016-05-01

    Full Text Available The gastrointestinal (GI tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.

  14. EVALUATING DEGREE OF ACTIVE POWER LOSSES REDUCTION IN THE ELECTRIC POWER LINES WITH REACTIVE POWER COMPENSATION

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2016-01-01

    Full Text Available The paper considers evaluation procedure for the degree of active power losses reduction in the power transmission lines under 1 kV and 6–10 kV of the systems of electric power supply of industrial enterprises with compensating installations mounted at the side of the customer. The capacitor installations conform to the applied voltage level and factor in dielectric losses in the capacitors. The voltage at the compensating device terminal changes from 0.95 to 1.05 of the capacitors nominal voltage. The study did not account for reactive power losses in the line, nor did it for its charge capacity, conditioned by relative shortness of the cable lines generally operating in the mains of industrial enterprises. For this reason, the quantities of reactive power being consumed and generated by the transmission line are negligible and do not significantly affect the reactive power flux. The researchers obtain functional relations that allow estimating the degree of power loss reduction in the transmission line factoring in its explicit initial data. They perform mathematical analysis of the obtained functional relations and study the function by means of derivatives. The function extremum points are found as well as the intervals of its increment and decrement. A graphical research of the obtained functional relation is performed. It is ascertained that reduction of the active power losses is contingent on the line and the capacitor-installation engineering factors, the electrical energy consumer reactive load value as well as the voltage applied to the capacitor installation. The functional relations presented in the article can be employed in scoping calculation necessary for decision making on the reactive power compensation in systems of the industrial facilities electric power supply. Their account will allow a more accurate estimate of technical and economic effect of the capacitor bank installation in the electrical mains under 1 kV and 6

  15. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    Science.gov (United States)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  16. Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM

    Science.gov (United States)

    Echim, Marius M.; Moldovan, Iren; Voiculescu, Mirela; Balasis, George; Lichtenberger, Janos; Heilig, Balazs; Kovacs, Peter

    2014-05-01

    We present a project devoted to the scientific exploitation of SWARM multi-point measurements of the magnetic and electric field, of the electron temperature and density in the ionosphere. These data provide unique opportunities to study in-situ and remotely the electromagnetic and plasma variability due to ionospheric forcing from above and below. The project "Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM (EMISSARS)" focus on coordinated studies between SWARM and ground based observatories to survey electromagnetic and ionospheric variability at medium latitudes and look for possible correlations with the seismic activity in central Europe. The project is coordinated by the Institute for Space Sciences (INFLPR-ISS) and the National Institute for Earth Physics (INFP) in Bucharest, Romania. In addition to SWARM data the project benefits from support of dedicated ground based measurements provided by the MEMFIS network coordinated by INFP, the MM100 network of magnetic observatories coordinated by the Geological and Geophysical Institute of Hungary (MFGI) in Budapest. Seismic data are provided by INFP and the European Mediterranean Seismological Center. The mission of the project is to monitor from space and from ground the ionospheric and electromagnetic variability during time intervals prior, during and after seismic activity in (i) the seismic active regions of the central Europe and (ii) in regions unaffected by the seismic activity. The latter will provide reference measurements, free from possible seismogenic signals. The scientific objectives of the project are: (1) Observation of electric, magnetic and ionospheric (electron temperature, density) variability in the ionosphere above or in the close vicinity of seismic active regions, in conjunction with ground based observations from dedicated networks; (2) Investigation of the coupling between the litosphere - atmosphere - ionosphere, during Earthquakes; (3) Quantitative

  17. An analysis of the factors influencing demand-side management activity in the electric utility industry

    Science.gov (United States)

    Bock, Mark Joseph

    Demand-side management (DSM), defined as the "planning, implementation, and monitoring of utility activities designed to encourage consumers to modify their pattern of electricity usage, including the timing and level of electricity demand," is a relatively new concept in the U.S. electric power industry. Nevertheless, in twenty years since it was first introduced, utility expenditures on DSM programs, as well as the number of such programs, have grown rapidly. At first glance, it may seem peculiar that a firm would actively attempt to reduce demand for its primary product. There are two primary explanations as to why a utility might pursue DSM: regulatory mandate, and self-interest. The purpose of this dissertation is to determine the impact these influences have on the amount of DSM undertaken by utilities. This research is important for two reasons. First, it provides insight into whether DSM will continue to exist as competition becomes more prevalent in the industry. Secondly, it is important because no one has taken a comprehensive look at firm-level DSM activity on an industry-wide basis. The primary data set used in this dissertation is the U.S. Department of Energy's Annual Electric Utility Report, Form EIA-861, which represents the most comprehensive data set available for analyzing DSM activity in the U.S. There are four measures of DSM activity in this data set: (1) utility expenditures on DSM programs; (2) energy savings by DSM program participants; and (3) the actual and (4) the potential reductions in peak load resulting from utility DSM measures. Each is used as the dependent variable in an econometric analysis where independent variables include various utility characteristics, regulatory characteristics, and service territory and customer characteristics. In general, the results from the econometric analysis suggest that in 1993, DSM activity was primarily the result of regulatory pressure. All of the evidence suggests that if DSM continues to

  18. Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation.

    Science.gov (United States)

    Ge, Hong-You; Fernández-de-Las-Peñas, César; Yue, Shou-Wei

    2011-03-25

    Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activity at myofascial trigger point originates from the extrafusal motor endplate. The spontaneous electrical activity represents focal muscle fiber contraction and/or muscle cramp potentials depending on trigger point sensitivity. Local pain and tenderness at myofascial trigger points are largely due to nociceptor sensitization with a lesser contribution from non-nociceptor sensitization. Nociceptor and non-nociceptor sensitization at myofascial trigger points may be part of the process of muscle ischemia associated with sustained focal muscle contraction and/or muscle cramps. Referred pain is dependent on the sensitivity of myofascial trigger points. Active myofascial trigger points may play an important role in the transition from localized pain to generalized pain conditions via the enhanced central sensitization, decreased descending inhibition and dysfunctional motor control strategy.

  19. Leptin regulation of inward membrane currents, electrical activity and LH release in isolated bovine gonadotropes.

    Science.gov (United States)

    Domínguez-Mancera, Belisario; Barrientos-Morales, Manuel; Cervantes-Acosta, Patricia; Hernández-Beltrán, Antonio; Rodríguez-Andrade, Araceli; González-Ramírez, Ricardo; Monjaraz, Eduardo; Felix, Ricardo

    2017-09-09

    Leptin, a peptide hormone produced by adipocytes, is recognized as one of the signals involved in the onset of reproductive activity. The leptin receptor has been found in hypothalamic neurons and pituitary gonadotropes, suggesting that the hormone may act at both sites to stimulate the secretion of GnRH and consequently, FSH and LH. In response to a stimulus such as a hypothalamic secretagogue, gonadotropes respond with changes in electrical activity, intracellular Ca(2+) and hormone release. The main aim of this report was to investigate whether leptin promotes a change in the electrical and secretory activities of bovine gonadotropes. After 48 h of treatment with leptin (10 nM) significant changes in the action potential properties were observed in gonadotropes, which included an increase in amplitude, time-to-pike and post-hyperpolarization, as well as a decrease in firing threshold. Likewise, leptin induced a significant (∼1.3-fold) up-regulation of voltage-gated Na(+) channel current density, and a selective increase (∼2.1-fold) in Ca(2+) current density through high voltage-activated channels. Consistent with this, leptin enhanced GnRH-induced secretion of LH measured by ELISA. We suggest that leptin enhances membrane expression of voltage-gated Na(+) and Ca(2+) channels, which results in a modulation of the action potential properties and an increase in hormone release from gonadotropes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation

    Directory of Open Access Journals (Sweden)

    Fernández-de-las-Peñas César

    2011-03-01

    Full Text Available Abstract Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activity at myofascial trigger point originates from the extrafusal motor endplate. The spontaneous electrical activity represents focal muscle fiber contraction and/or muscle cramp potentials depending on trigger point sensitivity. Local pain and tenderness at myofascial trigger points are largely due to nociceptor sensitization with a lesser contribution from non-nociceptor sensitization. Nociceptor and non-nociceptor sensitization at myofascial trigger points may be part of the process of muscle ischemia associated with sustained focal muscle contraction and/or muscle cramps. Referred pain is dependent on the sensitivity of myofascial trigger points. Active myofascial trigger points may play an important role in the transition from localized pain to generalized pain conditions via the enhanced central sensitization, decreased descending inhibition and dysfunctional motor control strategy.

  1. Twelve years of continuous measurements of atmospheric electrical activity in Mexico's Tropical highland

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso Lozada, O. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2004-04-01

    Atmospheric electric activity measurements have been recorded continuously by a punctual lightning system at a tropical highland observatory from 1988 onwards, and were analyzed to obtain lightning statistical confident results for thunderstorms occurrence on the leeward side of the southern mountain ridge of Mexico's Valley. Shown, as examples, are individual profiles of the atmospheric electrical activity, associated with severe storms. The results make clear that the fastest possible sequence of electrical measurements is required to obtain significant and applications oriented data in connection with a whole series of thunderstorms taking into account the mean time variation of the atmospheric electricity measurements at an altitude of 2270 m a.s.l. The seasonal variation indicates that the lightning flash peak currents were found to be larger in summer with less than 10% occurring in the autumn and winter. With rainfall data from a network of 66 stations, we obtained a significant correlation with the lightning frequency. Special attention was undertaken concerning the question of the atmospheric electrical activity and climate at Valley of Mexico. [Spanish] Se midieron ininterrumpidamente las variaciones de la actividad electrica en la atmosfera, de enero de 1988 a diciembre de 1999, en un observatorio de altura (2,250 m s.n.m.), y se analizaron para obtener resultados estadisticos confiables con relacion a la ocurrencia de tormentas en la region sur del Valle de Mexico. Como ejemplos, se muestran los perfiles individuales de la actividad electrica atmosferica asociada con tormentas severas. Los resultados dejan claro que se requiere de la secuencia de medidas electricas lo mas rapida posible para obtener datos significativos y aplicables en relacion con una serie completa de tormentas, considerando la media del tiempo de variacion de las mediciones de la actividad electrica atmosferica a una altitud de 2,270 m s.n.m. La validacion estacional indica que

  2. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation

    Science.gov (United States)

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2015-08-01

    Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new

  3. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals.

    Science.gov (United States)

    Naggar, Isaac; Nakase, Ko; Lazar, Jason; Salciccioli, Louis; Selesnick, Ivan; Stewart, Mark

    2014-07-01

    Vagal inputs control pacemaking and conduction systems in the heart. Anatomical evidence suggests a direct ventricular action, but functional evidence that separates direct and indirect (via the conduction system) vagal actions is less well established. We studied vagus nerve stimulation (VNS) during sinus rhythm and ventricular fibrillation (VF) in pigs and sheep to determine: 1) the range of unilateral and bilateral actions (inotropic and chronotropic) and 2) whether VNS alters left ventricular motion and/or electrical activity during VF, a model of abnormal electrical conduction of the left ventricle that excludes sinus and atrioventricular nodal function. Adult pigs (N=8) and sheep (N=10) were anesthetized with urethane and mechanically ventilated. VNS was performed in animals at 1, 2, 5, 10, 20, 50, and 100Hz for 20s. VF was induced with direct current to the ventricles or occlusion of the left anterior descending coronary artery. In 4 pigs and 3 sheep, left ventricular wall motion was assessed from endocardial excursion in epicardial echocardiography. In sheep and pigs, the best frequency among those tested for VNS during sinus rhythm to produce sustained electrical and mechanical ventricular standstill was 50Hz for unilateral or bilateral stimulation. When applied during VF, bilateral VNS increased the variability of the dominant VF frequency, indicating a direct impact on the excitability of ventricular myocytes, and decreased endocardial excursion by more than 50% during VF. We conclude that the vagus nerve directly modulates left ventricular function independently from its effects on the conduction system.

  4. Modelling of parasitic effects induced by electrically active defects in a SiGe HBT

    Science.gov (United States)

    Lakhdara, M.; Latreche, S.; Gontrand, C.

    2008-07-01

    In this paper, we present a numerical modelling of a NPN SiGe heterojunction bipolar transistor (HBT) realized in an industrial 0.35 μ m BiCMOS process, using our own software simulator “SIBIDIF”, taking into account some electrically active defects in the HBT device. The electric performances of this device can be penalized by the presence of defects inherent to the complex structure shrinking. For our devices, most of these relevant defects are located at the vertical interface between the spacers and the polysilicon emitter, due to the Reactive Ion Etching (RIE) process step. Nevertheless, their localization, as well as theirs effective density or their capture section, have an influence on the electric characteristics of the HBT's. As a check, we find some good agreement between our simulated results and some experimental ones. Our work is focused on the identification of defects responsible for the current fluctuations at the origin of low frequency noise or Random Telegraphic Signals in industrial submicronic BiCMOS technologies. Gummel characteristics are simulated in order to identify generation-recombination or trap assisted tunnelling process in the base current. We have shown that devices having an excess base current present random discrete fluctuations on the base current.

  5. Cytotoxicity, Bactericidal, and Antioxidant Activity of Sodium Alginate Hydrosols Treated with Direct Electric Current

    Directory of Open Access Journals (Sweden)

    Żaneta Król

    2017-03-01

    Full Text Available The aim of the study was to investigate the effect of using direct electric current (DC of 0, 200, and 400 mA for five minutes on the physiochemical properties, cytotoxicity, antibacterial, and antioxidant activity of sodium alginate hydrosols with different sodium chloride concentrations. The pH, oxidation-reduction potential (ORP, electrical conductivity (EC, and available chlorine concentration (ACC were measured. The effect of sodium alginate hydrosols treated with DC on Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Micrococcus luteus, Escherichia coli, Salmonella enteritidis, Yersinia enterocolitica, Pseudomonas fluorescence, and RAW 264.7 and L929 cells was investigated. Subsequently, the antioxidant properties of hydrosols were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH and ferric reducing antioxidant power (FRAP. The results have shown that after applying 400 mA in hydrosol samples with 0.1% and 0.2% NaCl all tested bacteria were inactivated. The ACC concentration of C400 samples with NaCl was equal to 13.95 and 19.71 mg/L, respectively. The cytotoxicity analysis revealed that optimized electric field conditions and the addition of sodium chloride allow for the avoidance of toxicity effects on normal cells without disturbing the antibacterial effects. Due to the presence of oxidizing substances, the DPPH of variants treated with DC was lower than the DPPH of control samples.

  6. Cytotoxicity, Bactericidal, and Antioxidant Activity of Sodium Alginate Hydrosols Treated with Direct Electric Current.

    Science.gov (United States)

    Król, Żaneta; Marycz, Krzysztof; Kulig, Dominika; Marędziak, Monika; Jarmoluk, Andrzej

    2017-03-22

    The aim of the study was to investigate the effect of using direct electric current (DC) of 0, 200, and 400 mA for five minutes on the physiochemical properties, cytotoxicity, antibacterial, and antioxidant activity of sodium alginate hydrosols with different sodium chloride concentrations. The pH, oxidation-reduction potential (ORP), electrical conductivity (EC), and available chlorine concentration (ACC) were measured. The effect of sodium alginate hydrosols treated with DC on Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Micrococcus luteus, Escherichia coli, Salmonella enteritidis, Yersinia enterocolitica, Pseudomonas fluorescence, and RAW 264.7 and L929 cells was investigated. Subsequently, the antioxidant properties of hydrosols were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) and ferric reducing antioxidant power (FRAP). The results have shown that after applying 400 mA in hydrosol samples with 0.1% and 0.2% NaCl all tested bacteria were inactivated. The ACC concentration of C400 samples with NaCl was equal to 13.95 and 19.71 mg/L, respectively. The cytotoxicity analysis revealed that optimized electric field conditions and the addition of sodium chloride allow for the avoidance of toxicity effects on normal cells without disturbing the antibacterial effects. Due to the presence of oxidizing substances, the DPPH of variants treated with DC was lower than the DPPH of control samples.

  7. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping.

    Science.gov (United States)

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A; Rühle, Sven; Anderson, Assaf Y; Zaban, Arie

    2014-05-01

    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm(2), with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells.

  8. Sub-THz thermally activated-electrical conductivity of CdS thin films

    Science.gov (United States)

    Rahman, Rezwanur; Scales, John A.

    2016-08-01

    The electrical conductivity of a CdS thin film controlled by grain structures is essential to enhance its photoconductivity to be able to be fit as a window material in CdS/CdTe heterojunction solar cells. In order to characterize a thin film, electromagnetically, we employed an open cavity resonator with a sub-millimeter Vector Network Analyzer. Our technique is capable of measuring complex dielectric permittivity, ɛ ˜ , of a photovoltaic film as thin as 0.1 μm. We measured the real part of the complex dielectric permittivity, ɛre, and electrical conductivity, σre (derived from the imaginary part, ɛim), of unannealed and annealed CdS films with thicknesses ˜0.15 μm on ˜3 mm thick-borosilicate glass substrates, at room temperature. We obtain the (thermally activated) electrical conductivity between 100 and 312 GHz, which is less in annealed samples than in unannealed ones by ˜2 orders of magnitude. Contrary to our expectations, the carrier concentrations extracted from these data by fitting a Drude model are ˜1016 cm-3 (unannealed) and ˜1014 cm-3 (annealed). We investigate the connection between the grain size and carrier concentration.

  9. The Effect of Water on the Flow of Stress-Activated Electric Currents through Rocks

    Science.gov (United States)

    Jahoda, A. M.; Cyr, G. G.; Dahlgren, R.; Freund, F. T.

    2011-12-01

    When igneous or high-grade metamorphic rocks are subjected to deviatoric stresses, dormant defects in the matrix of common rock-forming minerals become activated. These defects consist of pairs of oxygen anions in the 1- valence state, e.g. peroxy links such as O3Si-OO-SiO3. When a peroxy bond breaks, O3Si-O:O-SiO3, an electron is transferred from a neighboring O2- causing the donor oxygen, now O-, to turn into a defect electron, also known as a positive hole, that can propagate as a highly mobile positive charge through the rocks1. The current outflow is driven by the battery potential that builds up during this process. The question is how this electric current through rocks is affected by water. When positive holes flow into bulk water, they oxidize H2O to H2O2 and are thereby consumed2. This electrochemical reaction is driven by the potential drop across the rock-water interface. However, no such potential drop occurs across water that fills pores inside the rocks along the path of the electronic charge carriers. We present evidence that the presence of water in the pore space does indeed not "kill" the current flow. This observation leads to the conclusion that stress-activated positive hole currents should be able to flow through water-saturated rocks maybe as well as, possibly even better than through dry rocks. 1 Freund, F. T., et al.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth, 2006, 31, 389-396. 2 Balk, M., et al.: Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks, Earth Planet. Sci. Lett. 2009, 283, 87-92

  10. Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect.

    Directory of Open Access Journals (Sweden)

    Ross E Vanderwert

    Full Text Available BACKGROUND: Early psychosocial deprivation has profound effects on brain activity in the young child. Previous reports have shown increased power in slow frequencies of the electroencephalogram (EEG, primarily in the theta band, and decreased power in higher alpha and beta band frequencies in infants and children who have experienced institutional care. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the consequences of removing infants from institutions and placing them into a foster care intervention on brain electrical activity when children were 8 years of age. We found the intervention was successful for increasing high frequency EEG alpha power, with effects being most pronounced for children placed into foster care before 24 months of age. CONCLUSIONS/SIGNIFICANCE: The dependence on age of placement for the effects observed on high frequency EEG alpha power suggests a sensitive period after which brain activity in the face of severe psychosocial deprivation is less amenable to recovery.

  11. Inhibition of spinal cord dorsal horn neuronal activity by electrical stimulation of the cerebellar cortex.

    Science.gov (United States)

    Hagains, Christopher E; Senapati, Arun K; Huntington, Paula J; He, Ji-Wei; Peng, Yuan B

    2011-11-01

    The cerebellum plays a major role in not only modulating motor activity, but also contributing to other functions, including nociception. The intermediate hemisphere of the cerebellum receives sensory input from the limbs. With the extensive connection between the cerebellum to brain-stem structures and cerebral cortex, it is possible that the cerebellum may facilitate the descending system to modulate spinal dorsal horn activity. This study provided the first evidence to support this hypothesis. Thirty-one wide-dynamic-range neurons from the left lumbar and 27 from the right lumbar spinal dorsal horn were recorded in response to graded mechanical stimulation (brush, pressure, and pinch) at the hind paws. Electrical stimulation of the cerebellar cortex of the left intermediate hemisphere significantly reduced spinal cord dorsal horn neuron-evoked responses bilaterally in response to peripheral high-intensity mechanical stimuli. It is concluded that the cerebellum may play a potential antinociceptive role, probably through activating descending inhibitory pathways indirectly.

  12. Reticular activating system of a central pattern generator: premovement electrical potentials.

    Science.gov (United States)

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-10-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators.

  13. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.

    Science.gov (United States)

    Trew, Mark L; Smaill, Bruce H; Bullivant, David P; Hunter, Peter J; Pullan, Andrew J

    2005-12-01

    A generalized finite difference (GFD) method is presented that can be used to solve the bi-domain equations modeling cardiac electrical activity. Classical finite difference methods have been applied by many researchers to the bi-domain equations. However, these methods suffer from the limitation of requiring computational meshes that are structured and orthogonal. Finite element or finite volume methods enable the bi-domain equations to be solved on unstructured meshes, although implementations of such methods do not always cater for meshes with varying element topology. The GFD method solves the bi-domain equations on arbitrary and irregular computational meshes without any need to specify element basis functions. The method is useful as it can be easily applied to activation problems using existing meshes that have originally been created for use by finite element or finite difference methods. In addition, the GFD method employs an innovative approach to enforcing nodal and non-nodal boundary conditions. The GFD method performs effectively for a range of two and three-dimensional test problems and when computing bi-domain electrical activation moving through a fully anisotropic three-dimensional model of canine ventricles.

  14. Rare earth activated sintering of MoSi2 and its electric conductivity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of rare earth on activation sintering of MoSi2 and electric conductivity of the matrix were analyzed on the basis of a method proposed by German and Munir. The results show that the addition of rare earth could refine the powder size and obviously reduce sintering activation energy of MoSi2 which, for rare earth/MoSi2 system, is 83.1  kJ/mol at 1  200~14  00  ℃, about half of that of pure MoSi2. This decreases the sintering temperature of MoSi2 by about 200  ℃at least, and decreases the resistivity of the matrix as well. The mechanism of rare earth activated sintering of MoSi2 is an integrated process mostly ruled by grain boundary diffusion. When the density of materials is identical, the rare earth addition is found to have no noticeable effect on the electric conductivity of MoSi2.

  15. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    Science.gov (United States)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  16. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    Science.gov (United States)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  17. Changes in electrical activity in muscles resulting from chiropractic adjustment: a pilot study.

    Science.gov (United States)

    Shambaugh, P

    1987-12-01

    This study examines the effects of chiropractic adjustment on the muscles of the back. Vertebrae that are hypomobile may be held in that state by the erector spinae muscle group; adjusting such vertebrae should result in less muscle tension. By measuring the change in electrical activity, such relaxation can be observed. Hypomobile vertebrae were found by motion palpation. The patient was then placed prone and surface electrodes were placed over the upper trapezius, upper erector spinae (T3-T5), and lumbar erector spinae (L1-L3) muscle groups on both sides of the body. The patient was adjusted using full spine toggle recoil thrusts, and postadjustment readings were taken. Results from this study show that significant changes in muscle electrical activity occur as a consequence of adjusting. On average, a 25% reduction in muscle activity was observed across the 20 subjects tested, while no significant reductions were observed with the control group of 14 subjects. Significant reductions in side-to-side imbalances were also observed.

  18. Application of electrical propulsion for an active debris removal system: a system engineering approach

    Science.gov (United States)

    Covello, Fabio

    2012-10-01

    One of the main challenge in the design of an active removal system for space debris is the high ΔV required both to approach space debris lying in different orbits and to de-orbit/re-orbit them. Indeed if the system does not target a number of objects during its lifetime the cost of the removal will be far too high to be considered as the basis of an economically viable business case. Using a classical chemical propulsion (CP) system, the ΔV is limited by the mass of propellant that the system can carry. This limitation is greatly reduced if electrical propulsion is considered. Electrical propulsion (EP) systems are indeed characterized by low propellant mass requirements, however this comes at the cost of higher electrical power and, typically, higher complexity and mass of the power supply system. Because of this, the use of EP systems has been, therefore, primarily limited to station keeping maneuvers. However in the recent past, the success of missions using EP as primary propulsion (e.g. GOCE, SMART-1, Artemis, Deep Spcae1, Hayabusa) makes this technology a suitable candidate for providing propulsion for an active debris removal system. This study case will provide the analysis of the possible application of electrical propulsion systems in such a context, presenting a number of possible mission profiles. This paper will start with the description of possible mission concepts and the assessment of the EP technology, comparing near-term propulsion options, that best fits the mission. A more detailed analysis follows with the relevant trade-off to define the characteristics of the final system and its size in terms of mass and power required. A survey of available space qualified EP systems will be performed with the selection of the best candidates to be used and/or developed for an active debris removal system. The results of a similar analysis performed for a classical CP system are then presented and the two options are compared in terms of total cost of

  19. Fuji Electric's activities and engineering for energy conservation; Sho energy eno torikumi to engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, E.; Kubota, S.; Uemura, T. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-07-10

    Environmental preservation is the most important subject for living things to survive. Fuji Electric's activities have been based on energy conservation. In proceeding with energy conservation according to the amendment to the Energy Conservation Act and ISO14001, it is recommended to refer to the engineering know-how which Fuji Electric has experienced and accumulated. It is very important that the activity should be given consideration to the three key factors of measuring systems, electrical equipment, and new energy. (author)

  20. Spatial variability of soil electrical conductivity under the mole rats (Spalax microphthalmus digging activity at the different scales

    Directory of Open Access Journals (Sweden)

    A. V. Zhukov

    2012-07-01

    Full Text Available The soil mounds emerged owing to the mole rats’ digging activity have been shown to be characterised by less electrical conductivity than surrounded soil. This effect is due to the changes of the mounds bulk’s density and moisture. The effect of the mole rats’ digging activity on the soil electrical conductivity has been found not to be restricted by the geometrical border of the mounds. The mounds are surrounded by 1–1.5 m halo of increased soil electrical conductivity. The halo size is increased with the aging of the mound and with the compacting of their aggregation.

  1. Chaotic electrical stimulation of the subthalamic nucleus - mossy fiber sprouting, epileptic seizures, and brain electrical activity in pentylenetetrazol-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Shenggen Chen; Chunhui Che; Huapin Huang; Changyun Liu; Xiaoyun Zhuang; Fang Jiang

    2008-01-01

    BACKGROUND: Previous studies have demonstrated that appropriate interventions can alter brain electrical activity of epileptic patients prior to and during a seizure, leading to maintenance of a highly chaotic state, thereby inhibiting abnormal epileptic discharges, and eventually controlling epileptic seizure. OBJECTIVE: This study was designed to observe the effects of chaotic electrical stimulation to the subthalamic nucleus on mossy fiber sprouting, epileptic seizures, and electrical discharges, and to summarize the most suitable intervention. DESIGN, TIME AND SETTING: This randomized grouping, neuroelectrophysiological study was performed at the Laboratory of Neurology, Union Hospital Affiliated to Fujian Medical University in September 2007.MATERIALS: Fifty-five healthy, male, Sprague Dawley rats were subjected to an epileptic model by an intraperitoneal injection of pentylenetetrazol. The YC-2 programmed electrical stimulator was provided by Chengdu Instrument Factory, China; the video electroencephalographic system (KT-88-2400) and 24-hour active electroencephalographic system were products of Contec Medical System Co., Ltd., China; pentylenetetrazol was purchased from Sigma, USA.METHODS: The present interventional method consisted of electrical stimulation to the subthalamic nucleus with an intensity of 500 μ A, pulse width 0.05 ms, frequency 30 Hz, and a duration of 20 minutes for 14 successive days. Fifty-five rats were divided into 6 groups: (1) pre-stimulation (n = 10), pentylenetetrazol was administered and 30 minutes later, chaotic electrical stimulation was performed; (2) synchronous stimulation (n = 10), rats received pentylenetetrazol and chaotic electrical stimulation concurrently; (3) post-administration stimulation (n = 10), after pentylenetetrazol administration, chaotic electrical stimulation was performed immediately after cessation of a seizure; (4) sham-stimulation (n = 10), following pentylenetetrazol administration, an electrode was

  2. Finite Element Based Solution of Laplace's Equation Applied to Electrical Activity of the Human Body

    Directory of Open Access Journals (Sweden)

    Zainab T. Baqer

    2010-01-01

    Full Text Available Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment. The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies. Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart. This work describes the implementation of the Conjugate Gradient iterative method for the solution of large linear equation systems resulting from the finite element method. A diagonal Jacobi preconditioner is used in order to accelerate the convergence. Gaussian elimination is also implemented and compared with the Precondition Conjugate Gradient (PCG method and with the iterative method. Different types of matrix storage schemes are implemented such as the Compressed Sparse Row (CSR to achieve better performance. In order to demonstrate the validity of the finite element analysis, the technique is adopted to solve Laplace's equation that describes the electrical activity of the human body with Dirichlet and Neumann boundary conditions. An automatic mesh generator is built using C++ programming language. Initially a complete finite element program is built to solve Laplace's equation. The same accuracy is obtained using these methods. The results show that the CSR format reduces computation time compared to the order format. The PCG method is better for the solution of large linear system (sparse matrices than the Gaussian Elimination and back substitution method, while Gaussian elimination is better than iterative method.

  3. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain...

  4. Influence of Different Geometric Representations of the Volume Conductor on Nerve Activation during Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    José Gómez-Tames

    2014-01-01

    Full Text Available Volume conductor models with different geometric representations, such as the parallel layer model (PM, the cylindrical layer model (CM, or the anatomically based model (AM, have been employed during the implementation of bioelectrical models for electrical stimulation (FES. Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1 Does the nerve activation differ between CM and PM? (2 How well do CM and PM approximate an AM? (3 What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance, nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM.

  5. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses

    Science.gov (United States)

    Tabor, Kathryn M.; Bergeron, Sadie A.; Horstick, Eric J.; Jordan, Diana C.; Aho, Vilma; Porkka-Heiskanen, Tarja; Haspel, Gal

    2014-01-01

    Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish. PMID:24848468

  6. Micro-scale fabrication and characterization of a silver-polymer-based electrically activated antibacterial surface

    Energy Technology Data Exchange (ETDEWEB)

    Shirwaiker, Rohan A; Carrion, Hector; Voigt, Robert C [Department of Industrial and Manufacturing Engineering, Pennsylvania State University, 310 Leonhard Building, University Park, PA 16802 (United States); Wysk, Richard A [Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, Raleigh, NC 27695 (United States); Kariyawasam, Subhashinie, E-mail: ras1031@psu.edu [Department of Veterinary and Biomedical Sciences, Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA 16802 (United States)

    2011-03-15

    This paper reports the fabrication methodology and characterization results for an electrically activated silver-polymer-based antibacterial surface with primary applications in preventing indirect contact transmission of infections. The surface consists of a micro-scale grating pattern of alternate silver electrodes and SU-8 partitions with a minimum feature size of 20 {mu}m, and activated by an external voltage. In this study, prototype coupons (15 mm x 15 mm) of the antibacterial surface were fabricated on silicon substrates using two sets of lithographies, and analyzed for their physical characteristics using microscopy and surface profilometry. The prototypes were also electrically analyzed to determine their current-voltage characteristics, and hence silver ion (Ag{sup +}) release concentrations. Finally, they were tested for their antibacterial efficacy against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) using a newly engineered microbiological testing procedure. The antibacterial efficacy testing results show significant reductions in the number of viable organisms of both the species after 45 min of testing with 15 {mu}A system current. Due to the growing incidences of hospital-acquired infections and rising treatment costs, study and application of such alternative antibacterial systems in critical touch-contact and work surfaces (e.g., door push plates, countertops, medical instrument trays) for healthcare environments has become essential.

  7. A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles

    Science.gov (United States)

    Song, Ziyou; Hofmann, Heath; Li, Jianqiu; Han, Xuebing; Zhang, Xiaowu; Ouyang, Minggao

    2015-01-01

    In this paper, four different semi-active hybrid energy storage systems (HESSs), which use both supercapacitors (SCs) and batteries, are compared based on an electric city bus running the China Bus Driving Cycle (CBDC). The SC sizes of the different HESS topologies are optimized by using the dynamic programming (DP) approach, based on a dynamic degradation model of the LiFePO4 battery. The operation costs of different HESSs, including the electricity and the battery degradation costs over a whole CBDC, are minimized in the optimization process. Based on the DP results, near-optimal control strategies of different HESSs for on-line uses are proposed. Finally, the four HESS topologies are comprehensively compared from different aspects, including operation cost, initial cost, and DC bus voltage variation. Simulation results show that all HESS topologies have their merits and drawbacks, and can be used in different applications with different requirements. In addition, about 50% of the operation cost of the energy storage system is reduced by the semi-active HESSs when compared to the battery-only topology. Thus the effectiveness of adopting the SC in the HESS is verified.

  8. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao, E-mail: egnever@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  9. The Evolution of the Electric Current during the Formation and Eruption of Active-region Filaments

    Science.gov (United States)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  10. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    Science.gov (United States)

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.

    2015-12-01

    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  11. [Characteristics of microbial community structure during isolation of electrical active bacteria].

    Science.gov (United States)

    Wang, Min; Zhao, Yang- Guo; Lu, Shan-Shan

    2014-10-01

    To investigate the effect of selective culturing on microorganisms and functional role of electrical active bacteria in biofilm, some exoelectrogens were isolated from microbial fuel cell (MFC) anodic biofilm using Hungate roll-tube technique with iron oxide as indicator. At the same time, the dynamics of the microbial community structure was monitored during the pure culture isolation. The results show that maximum voltages of MFCs feeding with lactic acid, acetic acid and steroid wastewater are 0.57, 0.60 and 0.40 V respectively. The dominant bacteria isolated from seed sludge and anodic films feeding with acetate and lactate belong to phylum Proteobacteria; while steroid wastewater contains relative high diversity of bacteria, i. e. Proteobacteria, Firmicutes and Bacteroidetes. After enriching and culturing, two bacteria were consequently obtained, which shared the highest similarity with Enterobacter ludwigii and Citrobacter freundii respectively. When inoculated in MFC with lactic acid as the substrate, they produced maximum voltage of 0.10 and 0.17 V individually. This study shows that electrical active bacteria can be isolated from the MFC anodic biofilm using anaerobic gradient dilution culture techniques with iron oxide as indicator. Microbial community structure presents markedly shifting during the bacteria isolation owing to its selectivity.

  12. Electricity forecasting on the individual household level enhanced based on activity patterns.

    Science.gov (United States)

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.

  13. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  14. Electrically active defects at AlN/Si interface studied by DLTS and ESR

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, Eddy; Van Hove, Marleen; Leys, Maarten; Favia, Paola; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Borghs, Gustaaf [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, University of Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Nguyen, Ahn Puc Duc; Stesmans, Andre [Department of Physics, University of Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Visalli, Domenica

    2012-10-15

    A combined deep-level transient spectroscopy (DLTS) and electron spin resonance (ESR) study is performed to identify the electrically active defects at the AlN/Si (111) interface. It is shown that the density of deep-level states not only depends on the thermal budget of the epitaxial deposition but also on the strain built up during growth and upon cooling to room temperature (RT). At the same time, diffusion of Si into the 200 nm thick AlN layer produces a thin crystalline Si{sub 3}N{sub 4} interfacial layer, identified by transmission electron microscopy (TEM). This gives rise to so-called dangling bond P{sub b} centres at the Si{sub 3}N{sub 4}/Si (111) interface. In addition, a strong evolution of the electrically active defect clusters in the silicon substrate close to the interface has been observed both in DLTS and ESR. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Micro-scale fabrication and characterization of a silver-polymer-based electrically activated antibacterial surface.

    Science.gov (United States)

    Shirwaiker, Rohan A; Wysk, Richard A; Kariyawasam, Subhashinie; Carrion, Hector; Voigt, Robert C

    2011-03-01

    This paper reports the fabrication methodology and characterization results for an electrically activated silver-polymer-based antibacterial surface with primary applications in preventing indirect contact transmission of infections. The surface consists of a micro-scale grating pattern of alternate silver electrodes and SU-8 partitions with a minimum feature size of 20 µm, and activated by an external voltage. In this study, prototype coupons (15 mm × 15 mm) of the antibacterial surface were fabricated on silicon substrates using two sets of lithographies, and analyzed for their physical characteristics using microscopy and surface profilometry. The prototypes were also electrically analyzed to determine their current-voltage characteristics, and hence silver ion (Ag(+)) release concentrations. Finally, they were tested for their antibacterial efficacy against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) using a newly engineered microbiological testing procedure. The antibacterial efficacy testing results show significant reductions in the number of viable organisms of both the species after 45 min of testing with 15 µA system current. Due to the growing incidences of hospital-acquired infections and rising treatment costs, study and application of such alternative antibacterial systems in critical touch-contact and work surfaces (e.g., door push plates, countertops, medical instrument trays) for healthcare environments has become essential.

  16. A guide to modelling cardiac electrical activity in anatomically detailed ventricles.

    Science.gov (United States)

    Clayton, R H; Panfilov, A V

    2008-01-01

    One of the most recent trends in cardiac electrophysiology is the development of integrative anatomically accurate models of the heart, which include description of cardiac activity from sub-cellular and cellular level to the level of the whole organ. In order to construct this type of model, a researcher needs to collect a wide range of information from books and journal articles on various aspects of biology, physiology, electrophysiology, numerical mathematics and computer programming. The aim of this methodological article is to survey recent developments in integrative modelling of electrical activity in the ventricles of the heart, and to provide a practical guide to the resources and tools that are available for work in this exciting and challenging area.

  17. Experimental Validation of Condition Monitoring for Electrically Activated Shape Memory Alloys for an Unlocking Device

    Science.gov (United States)

    Rathmann, Christian; Theren, Benedict; Fleczok, Benjamin; Kuhlenkötter, Bernd

    2017-06-01

    Shape memory alloys (SMA) belong to the group functional materials which can be activated thermally. Along with a phase transformation, they can remember a previously imprinted shape and have a special resistance behavior. Therefore, they can also be used as a sensor and may be capable of detecting various system states in technical systems. This paper makes a contribution by evaluating the measurability of measured variables by SMA elements. Furthermore, it investigates the technically relevant states of “blockade” and “activation” of electrically activated shape memory actuators. It develops and validates an algorithm which is able to detect a possible “blockade”. Moreover, this work presents a hardware concept for a condition monitoring system of shape memory actuators.

  18. Quantification of cardiac autonomic nervous activities in ambulatory dogs by eliminating cardiac electric activities using cubic smoothing spline.

    Science.gov (United States)

    Lee, Seung Min; Choi, Eue Keun; Chung, Gih Sung; Oh, Seil; Park, Kwang Suk

    2012-02-01

    With the development of an implantable radio transmitter system, direct measurement of cardiac autonomic nervous activities (CANAs) became possible for ambulatory animals for a couple of months. However, measured CANAs include not only CANA but also cardiac electric activity (CEA) that can affect the quantification of CANAs. In this study, we propose a novel CEA removal method using moving standard deviation and cubic smoothing spline. This method consisted of two steps of detecting CEA segments and eliminating CEAs in detected segments. Using implanted devices, we recorded stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA) and superior left ganglionated plexi nerve activity (SLGPNA) directly from four ambulatory dogs. The CEA-removal performance of the proposed method was evaluated and compared with commonly used high-pass filtration (HPF) for various heart rates and CANA amplitudes. Results tested with simulated CEA and simulated true CANA revealed stable and excellent performance of the suggested method compared to the HPF method. The averaged relative error percentages of the proposed method were less than 0.67%, 0.65% and 1.76% for SGNA, VNA and SLGPNA, respectively.

  19. Electrically assisted cycling: a new mode for meeting physical activity guidelines?

    Science.gov (United States)

    Simons, Monique; Van Es, Eline; Hendriksen, Ingrid

    2009-11-01

    The purpose of this study was to assess the potential of the electrically assisted bicycle (EAB) as a novel tool for meeting the physical activity guidelines in terms of intensity. Twelve habitually active adult subjects were requested to cycle a track of 4.3 km at an intensity they would normally choose for commuter cycling, using three different support settings: no support (NO), eco support (ECO), and power support (POW). For estimating the intensity, the oxygen consumption was measured by using a portable gas-analyzing system, and HR was simultaneously measured. The bicycle was equipped with the SRM Training System to measure subjects' power output, pedaling rate, and the cycle velocity. Mean intensity was 6.1 MET for NO, 5.7 MET for ECO, and 5.2 MET for POW. Intensity was significantly lower in POW compared with that in NO. No differences were found between NO and ECO and between ECO and POW. Mean HR was significantly higher in NO compared with that in ECO and POW. The cycling speed with electrical support settings was significantly higher than cycling in the NO condition. Mean power output during cycling was significantly different among all three conditions. Most power outputs were supplied in the NO condition, and the lowest power output was supplied in the POW condition. Intensity during cycling on an EAB, in all three measured conditions, is sufficiently high to contribute to the physical activity guidelines for moderate-intensity health-enhancing physical activity for adults (cutoff, 3 MET). Further study is needed to conclude whether these results still hold when using the EAB in regular daily life and in subjects with other fitness level.

  20. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  1. Focal electrical stimulation as an effective sham control for active rTMS and biofeedback treatments

    Science.gov (United States)

    Sheffer, Christine E; Mennemeier, Mark; Landes, Reid D; Dornhoffer, John; Kimbrell, Timothy; Bickel, Warren; Brackman, Sharon; Chelette, Kenneth C; Brown, Ginger; Vuong, Mai

    2013-01-01

    A valid sham control is important for determining the efficacy and effectiveness of repetitive transcranial magnetic stimulation (rTMS) as an experimental and clinical tool. Given the manner in which rTMS is applied, separately or in combination with self-regulatory approaches, and its intended impact on brain states, a valid sham control of this type may well serve as a meaningful control for biofeedback studies, where efforts to develop a credible control have often been less than ideal. This study examined the effectiveness of focal electrical stimulation of the frontalis muscle as a sham technique for blinding participants to high-frequency rTMS over the dorso-lateral prefrontal cortex (DLPFC) at durations, intensities, and schedules of stimulation similar to many clinical applications. In this within-subjects single blind design, 19 participants made guesses immediately after receiving 54 counterbalanced rTMS sessions (sham, 10Hz, 20Hz); 7 (13%) of the guesses were made for sham, 31 (57%) were made for 10Hz, and 16 (30%) were made for 20Hz. Participants correctly guessed the sham condition 6% (CI: 1%, 32%) of the time, which is less than the odds of chance (i.e., of guessing at random, 33%); correctly guessed the 10Hz condition 66% (CI: 43%, 84%) of the time, which was greater than chance; and correctly guessed the 20Hz condition 41% (CI: 21%, 65%) of the time, which was no different than chance. Focal electrical stimulation therefore can be an effective sham control for high-frequency rTMS of the DLPFC, as well as for active biofeedback interventions. Participants were unaware that electrical stimulation was, in fact, sham rTMS. PMID:23702828

  2. Effects of controlled-frequency moderate electric fields on pectin methylesterase and polygalacturonase activities in tomato homogenate.

    Science.gov (United States)

    Samaranayake, Chaminda P; Sastry, Sudhir K

    2016-05-15

    The effect of controlled-frequency moderate electric field treatments on pectin methylesterase and polygalcturonase activities in tomato homogenate was investigated by subjecting identically treated control and electrically-treated samples to the same temperature history. Additionally, a model was developed for the motion of the enzyme molecules subjected to an electric field. Results show that the application of electric fields at a low field strength (0.4V/cm) constant temperature (65°C) has a statistically significant effect on pectin methylesterase activity, typically at or lower than 60 Hz. At higher frequencies, the effects are negligible. Molecular motion simulations suggest that the efficacy at low frequencies may be due to the amplitude of motion being of the order of the intermolecular distance for water. Higher frequencies result in small overall displacements due to rapid reversals in the direction of motion.

  3. Considerations on the implementation and modeling of an active mass driver with electric torsional servomotor

    Science.gov (United States)

    Ubertini, Filippo; Venanzi, Ilaria; Comanducci, Gabriele

    2015-06-01

    The current trend in full-scale applications of active mass drivers for mitigating buildings' vibrations is to rely on the use of electric servomotors and low friction transmission devices. While similar full-scale applications have been recently documented, there is still the need for deepening the understanding of the behavior of such active mass drivers, especially as it concerns their reliability in the case of extreme loading events. This paper presents some considerations arisen in the physical implementation of a prototype active mass driver system, fabricated by coupling an electric torsional servomotor with a ball screw transmission device, using state-of-the-art electronics and a high speed digital communication protocol between controller and servomotor drive. The prototype actuator is mounted on top of a scaled-down five-story frame structure, subjected to base excitation provided by a sliding table actuated by an electrodynamic shaker. The equations of motion are rigorously derived, at first, by considering the torque of the servomotor as the control input, in agreement with other literature work. Then, they are extended to the case where the servomotor operates under kinematic control, that is, by commanding its angular velocity instead of its torque, including control-structure-interaction effects. Experiments are carried out by employing an inherently stable collocated skyhook control algorithm, proving, on the one hand, the control effectiveness of the device but also revealing, on the other hand, the possibility of closed-loop system instability at high gains. Theoretical interpretation of the results clarifies that the dynamic behavior of the actuator plays a central role in determining its control effectiveness and is responsible for the observed stability issues, operating similarly to time delay effects. Numerical extension to the case of earthquake excitation confirms the control effectiveness of the device and highlights that different

  4. Advances in recording scattered light changes in crustacean nerve with electrical activation

    Energy Technology Data Exchange (ETDEWEB)

    Carter, K. M. (Kathleen M.); Rector, D. M. (David M.); Martinez, A. T. (Anne T.); Guerra, F. M. (Francisco M.); George, J. S. (John S.)

    2002-01-01

    We investigated optical changes associated with crustacean nerve stimulation using birefringent and large angle scattered light. Improved detection schemes disclosed high temporal structure of the optical signals and allowed further investigations of biophysical mechanisms responsible for such changes. Most studies of physiological activity in neuronal tissue use techniques that measure the electrical behavior or ionic permeability of the nerve, such as voltage or ion sensitive dyes injected into cells, or invasive electric recording apparatus. While these techniques provide high resolution, they are detrimental to tissue and do not easily lend themselves to clinical applications in humans. Electrical and chemical components of neural excitation evoke physical responses observed through changes in scattered and absorbed light. This method is suited for in-vivo applications. Intrinsic optical changes have shown themselves to be multifaceted in nature and point to several different physiological processes that occur with different time courses during neural excitation. Fast changes occur concomitantly with electrical events, and slow changes parallel metabolic events including changes in blood flow and oxygenation. Previous experiments with isolated crustacean nerves have been used to study the biophysical mechanisms of fast optical changes. However, they have been confounded by multiple superimposed action potentials which make it difficult to discriminate the temporal signatures of individual optical responses. Often many averages were needed to adequately resolve the signal. More recently, optical signals have been observed in single trials. Initially large angle scattering measurements were used to record these events with much of the signal coming from cellular swelling associated with water influx during activation. By exploiting the birefringent properties derived from the molecular stiucture of nerve membranes, signals appear larger with a greater contrast

  5. Structural composition and anticoagulant activity of dermatan sulfate from the skin of the electric eel, Electrophorus electricus (L.).

    Science.gov (United States)

    Souza, Maisa L S; Dellias, João M M; Melo, Fábio R; Silva, Luiz-Claudio F

    2007-07-01

    We determined the disaccharide composition of dermatan sulfate (DS) purified from the skin of the electric eel Electrophorus electricus. DS obtained from the electric eel was composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. The anticoagulant, antithrombotic and bleeding effects of electric eel skin DS were compared to those of porcine DS and also to those described previously for DS purified from skin of eel, Anguilla japonica. DS from electric eel is a potent anticoagulant due to a high heparin co-factor II (HC II) activity. The electric eel DS has a higher potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the porcine DS. Interestingly, it was recently demonstrated that DS obtained from skin of the eel Anguilla japonica, which possesses a disaccharide composition very similar to that of electric eel skin DS described here, did not show anticoagulant activity. Thus, the anticoagulant activity of electric eel skin DS is not merely a consequence of its charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to different arrangements of the disulfated disaccharide domain for binding to HC II within their polysaccharide chains and that it may be more efficiently arranged along the carbohydrate chain in electric eel skin DS than in the two other types of DS.

  6. Influence of mechanical activation on structural and electrical properties of sintered MgTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Filipović S.

    2009-01-01

    Full Text Available The aim of this work was to analyze the influence of mechanical activation on the MgCO3-TiO2 system. Mixtures of MgCO3-TiO2 were mechanically activated for 15, 30, 60 and 120 minutes in a planetary ball mill and after that sintered at 1100°C for 1h. XRD analyses were performed in order to give information about the phase composition and to determine a variety of microstructure parameters using Scherrer's method. Also, the effect of tribophysical activation and sintering process on microstructure was investigated by scanning electron microscopy. Electrical measurements were performed in order to determine electrical properties of sintered samples. Our conclusions are that the sample activated for 120 min showed the best electrical properties ( ε r=23.86, Q=233, ρ=0.38 and exhibited the best sinterability.

  7. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  8. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus.

    Science.gov (United States)

    Loghavi, Laleh; Sastry, Sudhir K; Yousef, Ahmed E

    2008-01-01

    Moderate electric fields (MEF) have been previously shown to alter the metabolic activity of microbial cells; thus, the effect of frequency and electric field would be of considerable interest. We investigated herein the effects of MEF frequency on microbial growth kinetics and bacteriocin (Lacidin A) production of Lactobacillus acidophilus OSU 133 during fermentation. The following fermentation treatments were compared: conventional (for 40 h), MEF (1 V cm(-1), for 40 h), combination of MEF (1 V cm(-1), for the first 5 h) and conventional (for 35 h) at various frequency levels (45, 60, and 90 Hz) all at 30 degrees C, and control (conventional) fermentation at 37 degrees C. MEF treatments with purely sinusoidal waveforms at all frequencies at 30 degrees C produced a shorter lag phase than conventional fermentation. However, no lag phase reduction was found for a 60 Hz waveform that contained high-frequency harmonics. There was, however, a significant increase in the bacteriocin production under early MEF treatment at 60 Hz with high-frequency harmonics. On the basis of these observations, the fermentation process is accelerated by applying pure sinusoidal MEF at the early stage of growth while a significant increase in the bacteriocin production occurs when sinusoidal field at 60 Hz with harmonics is applied at the early stage of the growth.

  9. Late Quaternary activity along the Scorciabuoi Fault (Southern Italy as inferred from electrical resistivity tomographies

    Directory of Open Access Journals (Sweden)

    A. Loperte

    2007-06-01

    Full Text Available The Scorciabuoi Fault is one of the major tectonic structures affecting the Southern Apennines, Italy. Across its central sector, we performed several electrical resistivity tomographies with different electrode spacing (5 and 10 m and using a multielectrode system with 32 electrodes. All tomographies were acquired with two different arrays, the dipole-dipole and the Wenner-Schlumberger. We also tested the different sensitivity of the two arrays with respect to the specific geological conditions and research goals. Detailed geological mapping and two boreholes were used to calibrate the electrical stratigraphy. In all but one tomography (purposely performed off the fault trace, we could recognise an abrupt subvertical lateral variation of the main sedimentary bodies showing the displacement and sharp thickening of the two youngest alluvial bodies in the hanging-wall block. These features are interpreted as evidence of synsedimentary activity of the Scorciabuoi Fault during Late Pleistocene and possibly as recently as Holocene and allow accurate location of the fault trace within the Sauro alluvial plain.

  10. Feasibility of using RH795 dye for photoacoustic imaging of neuro-electrical activity

    Science.gov (United States)

    Rasheed, Nashaat; Cressman, John R.; Chitnis, Parag V.

    2017-02-01

    Currently, the most researched noninvasive approach for monitoring neuro-electrical activity involves opticalfluorescence imaging, which suffers from limited imaging penetration. We propose an alternative approach, photoacoustic imaging (PAI) of biopotentials, that relies on transient absorption of light by voltage-sensitive probes and subsequent generation/detection of ultrasound. PAI-based voltage imaging approach can offer the same advantages as the fluorescence imaging in terms of sensitivity and molecular specificity, but it also can significantly extend the imaging depth. In this pilot study we are investigating the feasibility of photoacoustically visualizing biopotentials in rat pheochromocytoma (PC12) cells tagged with voltage-sensitive styrylpyridinium dye, RH795. A change in the intramembrane potential was induced in PC12 cells by adding tetraphenylborate (TPB) to the cell culture. A custommade absorption spectrophotometer was used to verify the change in optical absorption of RH795 dye as a result of TPBinduced electrical fields. Absorption spectra recorded before and after the addition of 100 μM TPB exhibited a wavelength shift of the absorption peak (approximately 510 nm to 550 nm) as well as an increase in the overall magnitude of absorption in the wavelength range of 500-1000 nm. The absorption spectral measurements indicated that RH795 is a good candidate as a voltage-sensitive dye for photoacoustically tracking changes in cell-membrane potential.

  11. Solar activity and transformer failures in the Greek national electric grid

    Directory of Open Access Journals (Sweden)

    Zois Ioannis Panayiotis

    2013-11-01

    Full Text Available Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to common belief in PPC Greece, we see that there are considerable both short term (immediate and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows: For the short term effects: During 1989–2010 there were 43 “stormy days” (namely days with for example Ap ≥ 100 and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs. Explicit cases are briefly presented. For the long term effects, again for the same period 1989–2010, we have two main results: The annual number of transformer failures seems to follow the solar activity pattern. Yet the maximum number of transformer failures occurs about half a solar cycle after the maximum of solar activity. There is statistical correlation between solar activity expressed using various newly defined long term solar activity indices and the annual number of transformer failures. These new long term solar activity indices were defined using both local (from the geomagnetic station in Greece and global (planetary averages geomagnetic data. Applying both linear and non-linear statistical regression we compute the regression equations and the corresponding coefficients of determination.

  12. Activation of autophagy in response to nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Ullery, Jody C; Tarango, Melissa; Roth, Caleb C; Ibey, Bennett L

    2015-03-06

    Previous work demonstrated significant changes in cellular membranes following exposure of cells to nanosecond pulsed electric fields (nsPEF), including nanoporation and increases in intracellular calcium concentration. While it is known that nsPEF exposure can cause cell death, how cells repair and survive nsPEF-induced cellular damage is not well understood. In this paper, we investigated whether autophagy is stimulated following nsPEF exposure to repair damaged membranes, proteins, and/or organelles in a pro-survival response. We hypothesized that autophagy is activated to repair nsPEF-induced plasma membrane damage and overwhelming this compensatory mechanism results in cell death. Activation of autophagy and subsequent cell death pathways were assessed measuring toxicity, gene and protein expression of autophagy markers, and by monitoring autophagosome formation and maturation using fluorescent microscopy. Results show that autophagy is activated at subtoxic nsPEF doses, as a compensatory mechanism to repair membrane damage. However, prolonged exposure results in increased cell death and a concomitant decrease in autophagic markers. These results suggest that cells take an active role in membrane repair, through autophagy, following exposure to nsPEF.

  13. Solar and geomagnetic activity effects on mid-latitude F-region electric fields

    Directory of Open Access Journals (Sweden)

    V. V. Kumar

    2008-09-01

    Full Text Available Diurnal patterns of average F-region ionospheric drift (electric field and their dependence on solar and geomagnetic activity have been defined using digital ionosonde Doppler measurements recorded at a southern mid-latitude station (Bundoora 145.1° E, 37.7° S geographic, 49° S magnetic. A unique database consisting of 300 907 drift velocities was compiled, mostly using one specific mode of operation throughout 1632 days of a 5-year interval (1999–2003. The velocity magnitudes were generally larger during the night than day, except during the winter months (June–August, when daytime velocities were enhanced. Of all years, the largest drifts tended to occur during the high speed solar wind streams of 2003. Diurnal patterns in the average quiet time (AE<75 nT meridional drifts (zonal electric field peaked at up to ~6 m s−1 poleward (0.3 mV m−1 eastward at 03:30 LST, reversing in direction at ~08:30 LST, and gradually reaching ~10 m s−1 equatorward at ~13:30 LST. The quiet time zonal drifts (meridional electric fields displayed a clear diurnal pattern with peak eastward flows of ~10 m s−1 (0.52 mV m−1 equatorward at 09:30 LST and peak westward flows around midnight of ~18 m s−1 (0.95 mV m−1 poleward. As the AE index increased, the westward drifts increased in amplitude and they extended over a greater fraction of the day. The perturbation drifts changed in a similar way with decreasing Dst except the daytime equatorward flows strengthened with increasing AE index, whereas they became weak for Dst<−60 nT. The responses in all velocity components to changing solar flux values were small, but net poleward perturbations during the day were associated with large solar flux values (>192×10−22 W m−2 Hz−1. These results help to more fully quantify the response of the mid

  14. Muscle electrical activity during exercises with and without load executed on dry land and in an aquatic environment

    Directory of Open Access Journals (Sweden)

    Indira Nayra Paz Santos

    Full Text Available Introduction Muscle activity in the aquatic environment was investigated using electromyographic analyses. The physical properties of water and the resistance used may influence the response of the muscle during exercise. The objective of this study was to evaluate the electrical activity in water and on the floor during flexion and knee extension exercises with and without load and aimed at understanding the muscular response while performing resistance exercises in water. Methods The sample consisted of 14 volunteers between 18 and 35 years old who were subjected to active exercises involving knee flexion and extension with and without load on the floor and in water. Electromyography was performed during the movement. Results A significant increase was found in the electrical activity of the rectus femoris muscle during exercises on the floor. The biceps femoris muscle showed increased electromyographic activity when resistance was used. A significant increase was found in the electrical activity of the rectus femoris muscle compared with exercises with and without load and the moment of rest in immersion. The electrical activity of the rectus and biceps femoris muscles was reduced in exercises with load and without load in a therapy pool compared with on the floor. Conclusion There was a reduction of the electromyographic activity in the aquatic environment compared with that on the ground, which could be attributed to the effects from hot water. Therefore, it is believed that resistance exercises can be performed early in a therapy pool, which will facilitate the prevention and treatment of musculoskeletal disorders.

  15. 78 FR 28190 - Authorization of Production Activity; Foreign-Trade Subzone 29C; GE Appliances (Electric Water...

    Science.gov (United States)

    2013-05-14

    ... Foreign-Trade Zones Board Authorization of Production Activity; Foreign-Trade Subzone 29C; GE Appliances (Electric Water Heaters); Louisville, Kentucky On January 7, 2013, GE Appliances, operator of Subzone 29C in Louisville, Kentucky, submitted a notification of proposed production activity to the Foreign-Trade Zones...

  16. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    Directory of Open Access Journals (Sweden)

    Shafeer Kalathil

    2016-08-01

    Full Text Available Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs in the presence of solid and hollow palladium (Pd nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  17. Electrically active light-element complexes in silicon crystals grown by cast method

    Science.gov (United States)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  18. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  19. Composition Related Electrical Active Defect States of InGaAs and GaAsN

    Directory of Open Access Journals (Sweden)

    Arpad Kosa

    2017-01-01

    Full Text Available This paper discusses results of electrically active defect states - deep energy level analysis in InGaAs and GaAsN undoped semiconductor structures grown for solar cell applications. Main attention is focused on composition and growth condition dependent impurities and the investigation of their possible origins. For this purpose a widely utilized spectroscopy method, Deep Level Transient Fourier Spectroscopy, was utilized. The most significant responses of each sample labelled as InG2, InG3 and NG1, NG2 were discussed in detail and confirmed by simulations and literature data. The presence of a possible dual conduction type and dual state defect complex, dependent on the In/N composition, is reported. Beneficial characteristics of specific indium and nitrogen concentrations capable of eliminating or reducing certain point defects and dislocations are stated.

  20. Effects of Muscle Electrical Activity on the Transmission of Developing Neuromuscular Junction

    Institute of Scientific and Technical Information of China (English)

    汤云贵; 谢佐平; 毛健; 何展全; 赵南明

    1994-01-01

    Miniature endplate potentials (MEPPS) caused by the spontaneous release of ACh from the growth cone of cholinergic neurons, are recorded by the whole-cell patch-clamp technique on a large number of 1-day cultured myoballs which have contact neurites of co-cultured neurons. Both muscle cell and neuron are dissociated from the 1-day-old (about stage 20) Xenopus embryo. Frequency and/or amplitude of MEPPs can obviously increase after the repetitive high-level depolarization caused by the stimuli on muscle cells. No detectable changes of single ACh receptor channel property are observed by using the single-channel recording technique. These results suggest that the mechanism of the increase of MEPPs after electrical activity of postsynaptic muscle cells probably involve some alteration of presynaptic membrane.

  1. Regulatory barriers for activating flexibility in the Nordic-Baltic electricity market

    DEFF Research Database (Denmark)

    Bergaentzlé, Claire; Skytte, Klaus; Soysal, Emilie Rosenlund

    2017-01-01

    The rapid growth of variable renewable energy (VRE) and the expected decrease of conventional generation capacities will generate more flexibility needs in power systems and require flexibility resources to be activated. Flexibility potentials do exist, whether they refer to installed generation......, load adjustment or to a greater coupling to other energy sectors. In this paper, we identify the framework conditions that influence the provision of VRE-friendly flexibility in the Nordic and Baltic electricity sector, i.e., the market and regulatory settings that act as drivers or barriers...... to flexibility. We find that the most restrictive barriers against flexibility are emitted by public authorities as part of broader policy strategies. Overall, we find that current regulatory and market framework conditions do not hinder flexibility. However, despite that, flexibility remains limited due...

  2. [Anesthetic Management of a Patient who Developed Intraoperative Paroxysmal Supraventricular Tachycardia with Pulseless Electric Activity].

    Science.gov (United States)

    Hakone, Masako; Yamada, Tatsuya; Motoyasu, Akira; Kasuya, Youhei; Yorozu, Tomoko

    2016-06-01

    A 75-year-old woman was scheduled to undergo an ileus operation under general combined with epidural anesthesia. Preoperative electrocardiogram (ECG) showed first-degree atrioventricular block. The patient received no preoperative antiarrhythmic medication. During surgery, paroxysmal supraventricular tachycardia (PSVT) occurred unexpectedly with radial artery pulsation disappearing, indicating pulseless electric activity (PEA). After a five-second episode of PSVT, her sinus rhythm recovered spontaneously. However, the patient had repeated short duration of PSVT with PEA. Continuous infusion of ultra-short-acting β-blocker landiolol successfully terminated the PSVT, and sinus rhythm was restored. Postoperative ECG showed sinus rhythm. This case report indicates that β-blocker can be a drug of choice in patients with PSVT associated with PEA.

  3. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  4. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer

    2016-08-04

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  5. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome.

    Science.gov (United States)

    van den Munckhof, Bart; de Vries, Evelien E; Braun, Kees P J; Boss, H Myrthe; Willemsen, Michèl A; van Royen-Kerkhof, Annet; de Jager, Wilco; Jansen, Floor E

    2016-02-01

    We aimed to study serum cytokine levels in 11 electrical status epilepticus in sleep (ESES) patients and 20 healthy control children. Patients showed significantly higher levels of interleukin (IL)-1α, IL-6, IL-10, chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C motif) ligand (CXCL)8/IL-8 than controls, while macrophage migration inhibitory factor (MIF) and CCL3 were significantly lower. Follow-up analyses in five patients revealed a significant decrease of IL-6 levels after immunomodulating treatment. IL-6 changes were accompanied by clear improvement of electroencephalography (EEG) patterns and neuropsychological evaluation. We hypothesize that IL-6 correlates with disease activity and immunomodulating treatment efficacy.

  6. Profuse activity of blue electrical discharges at the tops of thunderstorms

    Science.gov (United States)

    Chanrion, Olivier; Neubert, Torsten; Mogensen, Andreas; Yair, Yoav; Stendel, Martin; Singh, Rajesh; Siingh, Devendraa

    2017-01-01

    Thunderstorm clouds may reach the lower stratosphere, affecting the exchange of greenhouse gases between the troposphere and stratosphere. This region of the atmosphere is difficult to access experimentally, and our knowledge of the processes taking place here is incomplete. We recently recorded color video footage of thunderstorms over the Bay of Bengal from the International Space Station. The observations show a multitude of blue, kilometer-scale, discharges at the cloud top layer at 18 km altitude and a pulsating blue discharge propagating into the stratosphere reaching 40 km altitude. The emissions are related to the so-called blue jets, blue starters, and possibly pixies. The observations are the first of their kind and give a new perspective on the electrical activity at the top of tropical thunderstorms; further, they underscore that thunderstorm discharges directly perturb the chemistry of the stratosphere with possible implications for the Earth's radiation balance.

  7. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  8. Interest of Monitoring Diaphragmatic Electrical Activity in the Pediatric Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Laurence Ducharme-Crevier

    2013-01-01

    Full Text Available The monitoring of electrical activity of the diaphragm (EAdi is a new minimally invasive bedside technology that was developed for the neurally adjusted ventilatory assist (NAVA mode of ventilation. In addition to its role in NAVA ventilation, this technology provides the clinician with previously unavailable and essential information on diaphragm activity. In this paper, we review the clinical interests of EAdi in the pediatric intensive care setting. Firstly, the monitoring of EAdi allows the clinician to tailor the ventilatory settings on an individual basis, avoiding frequent overassistance leading potentially to diaphragmatic atrophy. Increased inspiratory EAdi levels can also suggest insufficient support, while a strong tonic activity may reflect the patient efforts to increase its lung volume. EAdi monitoring also allows detection of patient-ventilator asynchrony. It can play a role in evaluation of extubation readiness. Finally, EAdi monitoring provides the clinician with better understanding of the ventilatory capacity of patients with acute neuromuscular disease. Further studies are warranted to evaluate the clinical impact of these potential benefits.

  9. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  10. Topographical Subcomponents of Electrical Brain Activity Allow to Identify Semantic Learning.

    Science.gov (United States)

    Skrandies, Wolfgang; Shinoda, Haruo

    2017-03-03

    We investigated the change of event-related brain activity elicited by reading meaningful or meaningless Japanese symbols in 20 healthy German adults. In a learning phase of about 20 min, subjects acquired the meaning of 20 Kanji characters. As control stimuli 20 different Kanji characters were presented. Electrical brain activity was obtained before and after learning, The mean learning performance of all subjects was 92.5% correct responses. EEG was measured simultaneously from 30 channels, artifacts were removed offline, and the data before and after learning were compared. We found five spatial principal components that accounted for 83.8% of the variance. A significant interaction between training time (before/after learning) and stimulus (learning/control) illustrates a significant relation between successful learning and topographical changes of brain activity elicited by Kanji characters. Effects that were induced by learning were seen at short latencies in the order of 100 ms. In addition, we present evidence that differences in the weighted combination of spatial components allow to identify experimental conditions successfully by linear discriminant analysis using topographical ERP data of a single time point. In conclusion, semantic meaning can be aquired rapidly and it is associated with specific changes of ERP components.

  11. ELECTRICITY-FREE PRODUCTION OF ACTIVATED CARBON FROM BIOMASS IN BORNEO TO IMPROVE WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Yasutaka Sasaki,

    2011-11-01

    Full Text Available Activated carbons (ACs were prepared from biomass of Borneo island (wood charcoal, peat, and coconut husk by using an electricity–free furnace, of which the energy source was exclusively wood charcoal. This furnace was comprised of two parts, an inner vessel equipped with water inlet for steam activation and an outer shell as a heating part for the inner vessel. The inside temperature of the inner vessel was able to reach over 1000 oC. Peat and wood charcoal were converted to AC by carbonization followed by steam activation, and the specific BET surface areas of resultant ACs were 889 m2/g and 749 m2/g, respectively. A mobile apparatus for water purification was newly designed and fabricated with the resultant AC, together with a white quartz sand, which is called keranggas in Kalimantan. The CODOH of both polluted creek water by the University of Palangka Raya and Kahayan River water were remarkably decreased by the purification with the designed apparatus from 20.0 mgO/L to 0.93 mgO/L, and 18.2 mgO/L to 0.74 mgO/L, respectively. Thus, the newly designed furnace and purification apparatus were shown to be highly effective tools to produce a promising agent for water purification and to produce clarified water without use of electricity, respectively.

  12. Activity and accomplishments of dish/Stirling electric power system development

    Science.gov (United States)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  13. Fermi-Pasta-Ulam auto recurrence in the description of the electrical activity of the heart.

    Science.gov (United States)

    Novopashin, M A; Shmid, A V; Berezin, A A

    2017-04-01

    The authors proposed and mathematically described model of a new type of the Fermi-Pasta-Ulam recurrence (the FPU auto recurrence) and hypothesized an adequate description of the heart's electrical dynamics within the observed phenomenon. The dynamics of the FPU auto recurrence making appropriate electrical dynamics of the normal functioning of the heart in the form of an electrocardiogram (ECG) was obtained by a computer model study. The model solutions in the form of the FPU auto recurrence - ECG Fourier spectrum were evaluated for resistance to external disturbances in the form of random effects, as well as periodic perturbation at a frequency close to the heart beating rate of about 1Hz. In addition, in order to simulate the dynamics of myocardial infarction model, studied the effect of the surface area of the myocardium on the stability and shape of the auto recurrence - ECG spectrum. It has been found that the intense external disturbing periodic impacts at a frequency of about 1Hz lead to a sharp disturbance spectrum shape FPU auto recurrence - ECG structure. In addition, the decrease in the surface of the myocardium by 50% in the model led to the destruction of structures of the auto recurrence - ECG, which corresponds to the state of atrial myocardium. Research models have revealed a hypothetical basis of coronary heart disease in the form of increasing the energy of high-frequency harmonics spectrum of the auto recurrence by reducing the energy of low-frequency harmonic spectrum of the auto recurrence, which ultimately leads to a sharp decrease in myocardial contractility. In order to test the hypothesis has been studied more than 20,000 ECGs both healthy people and patients with cardiovascular disease. As a result of these studies, it was found that the dynamics of the electrical activity of normal functioning of the heart can be interpreted by the display of the detected by authors the FPU auto recurrence, and coronary heart disease is a violation of

  14. Studies on Electrical Activation of Porcine Oocytes Matured in vitro and Embryo Culture Systems

    Institute of Scientific and Technical Information of China (English)

    WU Zhong-hong; XING Feng-ying; LIU Guo-shi; ZENG Shen-ming; ZHU Shi-en; ZHANG Zhong-cheng; FU Peng-hui

    2002-01-01

    Conditions for electrical parthenogenetic activation of porcine oocytes matured in vitro and in vitro culture systems of porcine embryo were studied. The best results were achieved under the conditions of electrical field strength and the pulse duration at 130Vmm-1/80 μs, with a blastocyst development rate of (20.12 ± 8.18)% (P > 0.05). No significant difference was found between treatments of multiple pulses and a single pulse ( P > 0.05). Parthenogenetic embryos were cultured with different methods and air conditions for 7 days in vitro, blastocyst development rate of embryos with changed culture media [ (26.44 ± 8.35)% ] or changed media with 10% fetal bovine serum (FBS) [ (17.68 ± 5.39)% ] on the fifth day showing no significant difference from that of embryos without change of culture media [ (25.30 ± 7.55) %, P > 0.05 ], while cell numbers of blastocysts from embryos with changed culture media (15.78 ± 5.46 and 14.55 ± 4.81) were significantly lower than number of blastocysts from embryos without change of culture media (18.01 ± 6.79,P < 0.01 ). Blastocyst development rate and blastocyst cell number of embryos cultured in lower O2 (5 % CO2:7%O2:88%N2) also showed no significant difference from those in high O2 (5% CO2 in air) [ (20.78 ± 8.80) % and 17.00 ± 6.12 vs. (25.30 ± 7.55) % and 18.01 ± 6.79, P > 0.05 ]. It is concluded that change of culture media with the same new one or changing over to media with 10% fetal bovine serum (FBS) on the fifth day and low O2 environment are not necessary for porcine embryos development.

  15. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    Science.gov (United States)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  16. Electric field responsive origami structures using electrostriction-based active materials

    Science.gov (United States)

    Ahmed, Saad; Arrojado, Erika; Sigamani, Nirmal; Ounaies, Zoubeida

    2015-04-01

    The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.

  17. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Guo, Tianruo; Yang, Chih-Yu; Abed, Amr Al; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.

    2017-01-01

    Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells. PMID:28209965

  18. A Simplified 3D Model of Whole Heart Electrical Activity and 12-Lead ECG Generation

    Directory of Open Access Journals (Sweden)

    Siniša Sovilj

    2013-01-01

    Full Text Available We present a computationally efficient three-dimensional bidomain model of torso-embedded whole heart electrical activity, with spontaneous initiation of activation in the sinoatrial node, incorporating a specialized conduction system with heterogeneous action potential morphologies throughout the heart. The simplified geometry incorporates the whole heart as a volume source, with heart cavities, lungs, and torso as passive volume conductors. We placed four surface electrodes at the limbs of the torso: , , and and six electrodes on the chest to simulate the Einthoven, Goldberger-augmented and precordial leads of a standard 12-lead system. By placing additional seven electrodes at the appropriate torso positions, we were also able to calculate the vectorcardiogram of the Frank lead system. Themodel was able to simulate realistic electrocardiogram (ECG morphologies for the 12 standard leads, orthogonal , , and leads, as well as the vectorcardiogram under normal and pathological heart states. Thus, simplified and easy replicable 3D cardiac bidomain model offers a compromise between computational load and model complexity and can be used as an investigative tool to adjust cell, tissue, and whole heart properties, such as setting ischemic lesions or regions of myocardial infarction, to readily investigate their effects on whole ECG morphology.

  19. Electrical activity of ON and OFF retinal ganglion cells: a modelling study

    Science.gov (United States)

    Guo, Tianruo; Tsai, David; Morley, John W.; Suaning, Gregg J.; Kameneva, Tatiana; Lovell, Nigel H.; Dokos, Socrates

    2016-04-01

    Objective. Retinal ganglion cells (RGCs) demonstrate a large range of variation in their ionic channel properties and morphologies. Cell-specific properties are responsible for the unique way RGCs process synaptic inputs, as well as artificial electrical signals such as that from a visual prosthesis. A cell-specific computational modelling approach allows us to examine the functional significance of regional membrane channel expression and cell morphology. Approach. In this study, an existing RGC ionic model was extended by including a hyperpolarization activated non-selective cationic current as well as a T-type calcium current identified in recent experimental findings. Biophysically-defined model parameters were simultaneously optimized against multiple experimental recordings from ON and OFF RGCs. Main results. With well-defined cell-specific model parameters and the incorporation of detailed cell morphologies, these models were able to closely reconstruct and predict ON and OFF RGC response properties recorded experimentally. Significance. The resulting models were used to study the contribution of different ion channel properties and spatial structure of neurons to RGC activation. The techniques of this study are generally applicable to other excitable cell models, increasing the utility of theoretical models in accurately predicting the response of real biological neurons.

  20. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    Science.gov (United States)

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  1. Age-related changes in rhythmic electrical activity in the cervical sympathetic trunk in rats and cats.

    Science.gov (United States)

    Maslyukov, P M; Korzina, M B; Emanuilov, A I

    2010-03-01

    Baseline electrical activity in the cervical sympathetic trunk was studied in neonatal rats and cats and at ages 10, 20, and 30 days and two and six months, using spectral analysis. Rats from the neonatal period to the end of the first month of life and cats to 20 days of life showed increases at the amplitudes of electrical oscillations. From birth, all animals showed oscillations in the respiratory and cardiac rhythms. From day 20, frequencies with a cardiac component in rats dominated the power spectrum. The proportion of other frequencies, not associated with the cardiac or respiratory rhythms, was smaller. In cats, unlike the situation in rats, there were no age-related changes in the spectral composition of baseline electrical activity. High-frequency oscillations were recorded in cats from birth.

  2. Echocardiography integrated ACLS protocol versus conventional cardiopulmonary resuscitation in patients with pulseless electrical activity cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Mojtaba Chardoli; Farhad Heidari; Helaleh Rabiee; Mahdi Sharif-Alhoseini; Hamid Shokoohi; Vafa Rahimi-Movaghar

    2012-01-01

    Objective: To examine the utility of bedside echocardiography in detecting the reversible causes of pulseless electrical activity (PEA) cardiac arrest and predicting the resuscitation outcomes.Methods: In this prospective interventional study,patients presenting with PEA cardiac arrest were randomized into two groups.In Group A,ultrasound trained emergency physicians performed echocardiography evaluating cardiac activity,right ventricle dilation,left ventricle function,pericardial effusion/tamponade and ⅣC size along with the advanced cardiac life support (ACLS) protocol.Patients in Group B solely underwent ACLS protocol without applying echocardiography.The presence or absence of mechanical ventricular activity (MVA) and evidences of PEA reversible causes were recorded.The return of spontaneous circulation (ROSC) and death were evaluated in both groups.Results: One hundred patients with the mean age of (58±6.1) years were enrolled in this study.Fifty patients (Group A) had echocardiography detected in parallel with cardiopulmonary resuscitation (CPR).Among them,7 patients (14%) had pericardial effusion,11 (22%) had hypovolemia,and 39 (78%) were revealed the presence of MVA.In the pseudo PEA subgroup (presence of MVA),43% had ROSC (positive predictive value) and in the true PEA subgroup with cardiac standstill (absence of MVA),there was no recorded ROSC (negative predictive value).Among patients in Group B,no reversible etiology was detected.There was no significant difference in resuscitation results between Groups A and B observed (P=0.52).Conclusion: Bedside echocardiography can identify some reversible causes of PEA.However,there are no significant changes in survival outcome between the echo group and those with traditional CPR.

  3. Influence of the Earth s Corotation Field on the Atmospheric Electricity: Latitudinal Variation and Response to the Solar Activity

    Science.gov (United States)

    Dumin, Y.

    Influence of the magnetospheric convection field on the atmospheric electricity is widely studied, both theoretically and experimentally, from the early 1970s. On the other hand, a considerably less attention was paid to the effects of plasmaspheric corotation field, since it was usually believed that the electric field of corotation of the solid Earth is fitted smoothly to the corotation field of plasmasphere, so that no potential difference is formed between them in the lower atmosphere. A conjecture on the important role of corotation field in the global atmospheric-electric circuit was done a few years ago in [P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys., 1996, v.58, p.601] and several subsequent works. Unfortunately, because of using an oversimplified model of plasmasphere (in the form of a spherically-symmetric envelope with isotropic conductivity and rigid-body rotation), no reliable numerical estimates were derived, and no comparison with experimental distributions of the atmospheric electric field could be conducted. The main aim of the present report is to study the corotation effects in the framework of a considerably more realistic analytical model, where conductivity of the plasmasphere is strongly anisotropic, and the magnetic field lines are substantially distorted (stretched to "infinity") in the polar regions. Escape of polarization electric charges along the distorted field lines results in appreciable decrease (by 10-15 V/m) in the average atmospheric electric field at high latitudes. Such phenomenon was experimentally discovered as early as the International Geophysical Year (1957-1958) but was not quantitatively explained by now. Yet another interesting effect following from our model is changing the high-latitude electric field due to variations in the degree of distortion of the magnetic field lines at different levels of the solar activity. These transient changes in the atmospheric electricity should be symmetric about the noon

  4. The Electric Car Challenge.

    Science.gov (United States)

    Diehl, Brian E.

    1997-01-01

    Describes the Electric Car Challenge during which students applied methods of construction to build lightweight, strong vehicles that were powered by electricity. The activity required problem solving, sheet metal work, electricity, design, and construction skills. (JOW)

  5. Electrical Stimulation of the Human Cerebral Cortex by Extracranial Muscle Activity: Effect Quantification With Intracranial EEG and FEM Simulations

    Science.gov (United States)

    Lahr, Jacob; Vorwerk, Johannes; Lucka, Felix; Aertsen, Ad; Wolters, Carsten Hermann; Schulze-Bonhage, Andreas; Ball, Tonio

    2017-01-01

    Objective Electric fields (EF) of approx. 0.2 V/m have been shown to be sufficiently strong to both modulate neuronal activity in the cerebral cortex and have measurable effects on cognitive performance. We hypothesized that the EF caused by the electrical activity of extracranial muscles during natural chewing may reach similar strength in the cerebral cortex and hence might act as an endogenous modality of brain stimulation. Here, we present first steps toward validating this hypothesis. Methods Using a realistic volume conductor head model of an epilepsy patient having undergone intracranial electrode placement and utilizing simultaneous intracranial and extracranial electrical recordings during chewing, we derive predictions about the chewing-related cortical EF strength to be expected in healthy individuals. Results We find that in the region of the temporal poles, the expected EF strength may reach amplitudes in the order of 0.1–1 V/m. Conclusion The cortical EF caused by natural chewing could be large enough to modulate ongoing neural activity in the cerebral cortex and influence cognitive performance. Significance The present study lends first support for the assumption that extracranial muscle activity might represent an endogenous source of electrical brain stimulation. This offers a new potential explanation for the puzzling effects of gum chewing on cognition, which have been repeatedly reported in the literature. PMID:27448334

  6. Effect of pulsed electric fields on the activity of neutral trehalase from beer yeast and RSM analysis.

    Science.gov (United States)

    Ye, Haiqing; Jin, Yan; Lin, Songyi; Liu, Mingyuan; Yang, Yi; Zhang, Meishuo; Zhao, Ping; Jones, Gregory

    2012-06-01

    The trehalase activity plays an important role in extraction of trehalose from beer yeast. In this study, the effect of pulsed electric field processing on neutral trehalase activity in beer yeast was investigated. In order to develop and optimize a pulsed electric field (PEF) mathematical model for activating the neutral trehalase, we have investigated three variables, including electric field intensity (10-50 kV/cm), pulse duration (2-10 μs) and liquid-solid ratio (20-50 ml/g) and subsequently optimized them by response surface methodology (RSM). The experimental data were fitted to a second-order polynomial equation and profiled into the corresponding contour plots. Optimal condition obtained by RSM is as follows: electric field intensity 42.13 kV/cm, liquid-solid ratio 30.12 ml/g and pulse duration 5.46 μs. Under these conditions, with the trehalose decreased 8.879 mg/L, the PEF treatment had great effect on activating neutral trehalase in beer yeast cells.

  7. Sources of Variability in Working Memory in Early Childhood: A Consideration of Age, Temperament, Language, and Brain Electrical Activity

    Science.gov (United States)

    Wolfe, Christy D.; Bell, Martha Ann

    2007-01-01

    This study investigated age-related differences in working memory and inhibitory control (WMIC) in 3 1/2-, 4-, and 4 1/2-year-olds and how these differences were associated with differences in regulatory aspects of temperament, language comprehension, and brain electrical activity. A series of cognitive control tasks was administered to measure…

  8. Electrical Stimulation of the Human Cerebral Cortex by Extracranial Muscle Activity: Effect Quantification With Intracranial EEG and FEM Simulations.

    Science.gov (United States)

    Fiederer, Lukas Dominique Josef; Lahr, Jacob; Vorwerk, Johannes; Lucka, Felix; Aertsen, Ad; Wolters, Carsten Hermann; Schulze-Bonhage, Andreas; Ball, Tonio

    2016-12-01

    Electric fields (EF) of approx. 0.2 V/m have been shown to be sufficiently strong to both modulate neuronal activity in the cerebral cortex and have measurable effects on cognitive performance. We hypothesized that the EF caused by the electrical activity of extracranial muscles during natural chewing may reach similar strength in the cerebral cortex and hence might act as an endogenous modality of brain stimulation. Here, we present first steps toward validating this hypothesis. Using a realistic volume conductor head model of an epilepsy patient having undergone intracranial electrode placement and utilizing simultaneous intracranial and extracranial electrical recordings during chewing, we derive predictions about the chewing-related cortical EF strength to be expected in healthy individuals. We find that in the region of the temporal poles, the expected EF strength may reach amplitudes in the order of 0.1-1 V/m. The cortical EF caused by natural chewing could be large enough to modulate ongoing neural activity in the cerebral cortex and influence cognitive performance. The present study lends first support for the assumption that extracranial muscle activity might represent an endogenous source of electrical brain stimulation. This offers a new potential explanation for the puzzling effects of gum chewing on cognition, which have been repeatedly reported in the literature.

  9. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  10. Investigating the Effectiveness of an Active Learning Based-Interactive Conceptual Instruction (ALBICI) on Electric Field Concept

    Science.gov (United States)

    Samsudin, Achmad; Suhandi, Andi; Rusdiana, Dadi; Kaniawati, Ida; Costu, Bayram

    2016-01-01

    The aim of this study was to develop an Active Learning Based-Interactive Conceptual Instruction (ALBICI) model through PDEODE*E tasks (stands for Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) for promoting conceptual change and investigating its effectiveness of pre-service physics teachers' understanding on electric field…

  11. Heart Rate and the Role of the Active Receiver during Contingent Electric Shock for Severe Self-Injurious Behavior

    Science.gov (United States)

    Duker, Pieter C.; Van den Munckhof, Marcia

    2007-01-01

    Five individuals, who were treated for severe self-injurious behaviors (SIB) with contingent electric shock, participated. Hereby, each occurrence of the target response was followed by a remotely administered aversive consequence. Participants' heart rates were compared at times when the active device of the equipment for the above procedure was…

  12. Heart rate and the role of the active receiver during contingent electric shock for severe self-injurious behavior

    NARCIS (Netherlands)

    Duker, P.C.C.; Munckhof, M.W.J. van den

    2007-01-01

    Five individuals, who were treated for severe self-injurious behaviors with contingent electric shock, participated. Hereby, each occurrence of the target response was followed by a remotely administered aversive consequence. Participants’ heart rates were compared at times when the active device of

  13. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    Science.gov (United States)

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  14. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  15. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2016-06-01

    Full Text Available Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP extracted by pulsed electric field (PEF in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta.

  16. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field.

    Science.gov (United States)

    Liu, Chao; Sun, Yonghai; Mao, Qian; Guo, Xiaolei; Li, Peng; Liu, Yang; Xu, Na

    2016-06-22

    Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and ¹H and (13)C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta.

  17. Shape memory actuators - potentials and specifics of their technical use and electrical activation

    Directory of Open Access Journals (Sweden)

    J. Strittmatter a,b

    2012-12-01

    Full Text Available Due to a martensitic phase change shape memory alloys can revert to their original shape by heating when they undergo an appropriate treatment. Actuator elements with this shape memory effect can show a significant design change combined with a considerable force. Therefore they can be used to solve many technical tasks in the field of actuating elements and mechatronics. These intelligent materials will play an increasing role in the next years, especially within the automotive technology, energy management, power and mechanical engineering as well as medical technology. In order to use the potential of these materials in an optimal way it is necessary to know and understand the extraordinary and unconventional properties of shape memory alloys.This paper will present the commonly used systems of shape memory alloys of today including their performance characteristics and will explain the basics of the shape memory effect in a vivid way. A multitude of application possibilities of shape memory actuators will be presented, in particular the research and development projects that have been carried out at the Konstanz University of Applied Sciences during the last years. In this way a solid state heat engine and an intramedullary nail for bone elongation will be presented as well as various adaptive systems for automotive safety and comfort systems, driven by shape memory elements. Regarding the applications in the automotive field a special focus will be given to different electrical activations to enable very fast contraction times of the shape memory components.

  18. Galphimine-B modifies electrical activity of ventral tegmental area neurons in rats.

    Science.gov (United States)

    Tortoriello, J; Ortega, A; Herrera-Ruíz, M; Trujillo, J; Reyes-Vázquez, C

    1998-05-01

    Galphimine-B (G-B) is a bioactive compound isolated from the plant Galphimia glauca Cav. (Malpighiaceae) with central nervous system depressant properties previously described. In the present study, extracellular spiking activity records in either somatosensorial cortex or ventral tegmental area (VTA) neurons, were performed in rats after i.p. or local administration of G-B. None of the cortical neurons displayed significant changes induced by any of the applied doses. In VTA cells, two patterns of electrical discharge were recorded, bursting (57%) and nonbursting (43%) types. Systemic administration of G-B induced excitatory effects in neurons with a bursting firing pattern and mixed responses on nonbursting units. When this compound was applied locally by microiontophoresis, most of the bursting and nonbursting spiking neurons showed a firing depression and only a few of the nonbursting neurons showed an increment of discharge frequency. These results are important since VTA is a major dopaminergic center responsible for the innervation of the prefrontal cortex, nucleus accumbens and entorhinal region. These areas are targets for the action of antipsychotic drugs.

  19. Electrically active centers formed in silicon during the high-temperature diffusion of boron and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, N. A., E-mail: nick@sobolev.ioffe.ru [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Loshachenko, A. S. [St. Petersburg State University, Fock Research Institute of Physics (Russian Federation); Poloskin, D. S.; Shek, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-02-15

    The parameters of electrically active centers formed during the high-temperature diffusion of boron and aluminum into silicon in various media are studied by the Hall method and capacitance spectroscopy. It is found that the variation in the resistivity of the n base of the structures with p-n junctions fabricated in the study is controlled by the formation of three donor levels Q1, E4, and Q3 with the energies E{sub c} - 0.31, E{sub c} - 0.27, and E{sub c} - 0.16 eV. Diffusion in a chlorine-containing atmosphere introduces only a single level E4, but its concentration is 2.5 times lower, compared with diffusion in air. The values of the ionization energy of the Q3 level, measured under equilibrium (Hall effect) and nonequilibrium (capacitance spectroscopy) conditions, almost coincide. The deepest level E1 with an energy of E{sub c} - 0.54 eV, formed upon diffusion in both media, has no effect on the resistivity in the n base of the structures.

  20. Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection.

    Science.gov (United States)

    Pal, Sudeshna; Alocilja, Evangelyn C

    2010-12-15

    Magnetic polymer nanostructures are a new class of multifunctional nanomaterials that are recently being explored in biosensor devices. In this paper, for the first time we report the novel application of electrically active magnetic (EAM) nanoparticles as concentrator of DNA targets as well as electrochemical transducers for detection of the Bacillus anthracis protective antigen A (pag A) gene. The EAM nanoparticles are synthesized by chemical polymerization and have dimensions of 80-100 nm. The biosensor detection encompasses two sets of DNA probes that are specific to the target gene: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe-DNA target-capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation-reduction signal of the EAM nanoparticles. Preliminary results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at DNA concentrations as low as 0.01 ng/μl.

  1. High Power Density Electric Double Layer Capacitor with Improved Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    杨辉; 姜慧君; 陆天虹

    2003-01-01

    The improvement on commercial activated carbon(AC)through the reactivation under steam in the presence of NiCl2 catalyst leads to the increases of both energy and power densities of electri double layer(dl)capacitors.When AC was treated at 875℃ for 1h,its discharge specific capacitance increasesup to53.67F·g-1,an increase of about 25?compered to the as-received AC.Moreover,a significant increase in high rate capability of electric dl capatior was found after the improvements.Surprsingly,both the treated and untreated AC samples showed simiiar specific surface area and pore size distribution,but some changes in the surface groups and their concentrations after reactivation were verified by X-photoelectron spectra.Thus,it is reasonable to conclude that the decrease in the surface concentration of the carbonyl-containing specles for the improved AC results in an increase of accessibility of the pores to the organic electrolyte ion,causing the enhancements of both the specific capacitance and high rate capability.

  2. Advanced electric-field scanning probe lithography on molecular resist using active cantilever

    Science.gov (United States)

    Kaestner, Marcus; Aydogan, Cemal; Lipowicz, Hubert-Seweryn; Ivanov, Tzvetan; Lenk, Steve; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Atanasov, Ivaylo; Krivoshapkina, Yana; Hofer, Manuel; Holz, Mathias; Rangelow, Ivo W.

    2015-03-01

    The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many novel nanoelectronic, NEMS, optical and bio-nanotechnology-based devices. Based on the thermally actuated, piezoresistive cantilever technology we have developed a first prototype of a scanning probe lithography (SPL) platform able to image, inspect, align and pattern features down to single digit nano regime. The direct, mask-less patterning of molecular resists using active scanning probes represents a promising path circumventing the problems in today's radiation-based lithography. Here, we present examples of practical applications of the previously published electric field based, current-controlled scanning probe lithography on molecular glass resist calixarene by using the developed tabletop SPL system. We demonstrate the application of a step-and-repeat scanning probe lithography scheme including optical as well as AFM based alignment and navigation. In addition, sequential read-write cycle patterning combining positive and negative tone lithography is shown. We are presenting patterning over larger areas (80 x 80 μm) and feature the practical applicability of the lithographic processes.

  3. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field

    Science.gov (United States)

    Liu, Chao; Sun, Yonghai; Mao, Qian; Guo, Xiaolei; Li, Peng; Liu, Yang; Xu, Na

    2016-01-01

    Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta. PMID:27338370

  4. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.

    Science.gov (United States)

    Guermandi, Marco; Cardu, Roberto; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-02-01

    The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only 4 wires connect the electrode to the back-end. The readout circuit is based on a Differential Difference Amplifier and performs single-ended amplification and frequency division multiplexing of the three signals that are sent to the back-end on a single wire which also provides power supply. Since the system's CMRR is a function of each electrode's gain accuracy, an analysis is performed on how this is influenced by mismatches in passive and active components. The circuit is fabricated in 0.35 μm CMOS process and occupies 4 mm(2), the readout circuit consumes 360 μW, the input referred noise for bipolar EEG signal acquisition is 0.56 μVRMS between 0.5 and 100 Hz and almost halves if only EEG signal is acquired.

  5. CLINICAL STUDY OF ISCHEMIC PENUMBRA REGION IN BRAIN ELECTRICAL ACTIVITY MAPPING

    Institute of Scientific and Technical Information of China (English)

    Liu Qingrui; Liu Mingshun; Gu Lanjie; Mei Fengjun

    2000-01-01

    Department of Neurology, Fourth Affiliated Hospital. Hebei Medical University, Shijiazhuang ABSTRACT OBJETIVE To study features and clinical usage of ischemic penumbra region(IPR) in brain electrical activity mapping(BEAM).BACKGROUND To explore the functional improvement index of IPR untraumaticly. METH0DS 69 patients with acute cerebral infarction were divided into two groups according to different therapeutic time window--early treatment group( 32 cases, treatment in 12 hours)and contral group (37 cases, treatment in 12-72 hours).They were analysed in BEAM pre-and post-treatment Results: BEAM showed that the power of infarcted core was decreased and IPR became smaller in slow waves significantly after treatment in early treatment group and this change was in good agreement with improvement of clinical functions and SPECT DISCUSSION The key to treat acute cerebral infarction was to improve functions of IPR as 8oos as possible, BEAM could show the location and size of IPR. CONCLUSION BEAM was one of important index in evaluating the function of IPR.

  6. Emulating the electrical activity of the neuron using a silicon oxide RRAM cell

    Directory of Open Access Journals (Sweden)

    Adnan eMehonic

    2016-02-01

    Full Text Available In recent years, formidable effort has been devoted to exploring the potential of Resistive RAM (RRAM devices to model key features of biological synapses. This is done to strengthen the link between neuro-computing architectures and neuroscience, bearing in mind the extremely low power consumption and immense parallelism of biological systems. Here we demonstrate the feasibility of using the RRAM cell to go further and to model aspects of the electrical activity of the neuron. We focus on the specific operational procedures required for the generation of controlled voltage transients, which resemble spike-like responses. Further, we demonstrate that RRAM devices are capable of integrating input current pulses over time to produce thresholded voltage transients. We show that the frequency of the output transients can be controlled by the input signal, and we relate recent models of the redox-based nanoionic resistive memory cell to two common neuronal models, the Hodgkin-Huxley (HH conductance model and the leaky integrate-and-fire model. We employ a simplified circuit model to phenomenologically describe voltage transient generation.

  7. Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity.

    Science.gov (United States)

    Mollazadeh, M; Murari, K; Cauwenberghs, G; Thakor, N

    2009-12-01

    The intricate coupling between electrical and chemical activity in neural pathways of the central nervous system, and the implication of this coupling in neuropathologies, such as Parkinson's disease, motivates simultaneous monitoring of neurochemical and neuropotential signals. However, to date, neurochemical sensing has been lacking in integrated clinical instrumentation as well as in brain-computer interfaces (BCI). Here, we present an integrated system capable of continuous acquisition of data modalities in awake, behaving subjects. It features one channel each of a configurable neuropotential and a neurochemical acquisition system. The electrophysiological channel is comprised of a 40-dB gain, fully differential amplifier with tunable bandwidth from 140 Hz to 8.2 kHz. The amplifier offers input-referred noise below 2 muV rms for all bandwidth settings. The neurochemical module features a picoampere sensitivity potentiostat with a dynamic range spanning six decades from picoamperes to microamperes. Both systems have independent on-chip, configurable DeltaSigma analog-to-digital converters (ADCs) with programmable digital gain and resolution. The system was also interfaced to a wireless power harvesting and telemetry module capable of powering up the circuits, providing clocks for ADC operation, and telemetering out the data at up to 32 kb/s over 3.5 cm with a bit-error rate of less than 10(-5). Characterization and experimental results from the electrophysiological and neurochemical modules as well as the full system are presented.

  8. Performance Evaluation and Design Considerations of Electrically Activated Drain Extension Tunneling GNRFET: A Quantum Simulation Study

    Science.gov (United States)

    Ghoreishi, Seyed Saleh; Yousefi, Reza; Taghavi, Neda

    2017-07-01

    In this paper, a tunneling graphene nanoribbon field effect transistor with electrically activated drain extension, namely, EA-T-GNRFET, is proposed. The proposed structure includes a side gate at the drain side with a constant voltage and length of 0.4 V and 15 nm, respectively. Simulations are performed based on the non-equilibrium Green's function method coupled with the Poisson equation in the mode space representation. This side gate creates an additional step in potential profile at the drain side, which increases and decreases the width of tunneling barrier and leakage current, respectively. Furthermore, the proposed structure has lower drain induced barrier thinning, lower sub-threshold swing (SS) and higher I ON/I OFF ratio than the conventional structure. Also, other characteristics of the device such as switching delay ( τ ), power delay product (PDP) and unity-gain frequency (f t) are improved in the proposed device. These advantages make EA-T-GNRFET more suitable for digital and analog applications.

  9. Electric current activated/assisted sintering (ECAS: a review of patents 1906–2008

    Directory of Open Access Journals (Sweden)

    Salvatore Grasso, Yoshio Sakka and Giovanni Maizza

    2009-01-01

    Full Text Available The electric current activated/assisted sintering (ECAS is an ever growing class of versatile techniques for sintering particulate materials. Despite the tremendous advances over the last two decades in ECASed materials and products there is a lack of comprehensive reviews on ECAS apparatuses and methods. This paper fills the gap by tracing the progress of ECAS technology from 1906 to 2008 and surveys 642 ECAS patents published over more than a century. It is found that the ECAS technology was pioneered by Bloxam (1906 GB Patent No. 9020 who developed the first resistive sintering apparatus. The patents were searched by keywords or by cross-links and were withdrawn from the Japanese Patent Office (342 patents, the United States Patent and Trademark Office (175 patents, the Chinese State Intellectual Property Office of P.R.C. (69 patents and the World Intellectual Property Organization (12 patents. A subset of 119 (out of 642 ECAS patents on methods and apparatuses was selected and described in detail with respect to their fundamental concepts, physical principles and importance in either present ECAS apparatuses or future ECAS technologies for enhancing efficiency, reliability, repeatability, controllability and productivity. The paper is divided into two parts, the first deals with the basic concepts, features and definitions of basic ECAS and the second analyzes the auxiliary devices/peripherals. The basic ECAS is classified with reference to discharge time (fast and ultrafast ECAS. The fundamental principles and definitions of ECAS are outlined in accordance with the scientific and patent literature.

  10. TOPICAL REVIEW: Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008

    Science.gov (United States)

    Grasso, Salvatore; Sakka, Yoshio; Maizza, Giovanni

    2009-10-01

    The electric current activated/assisted sintering (ECAS) is an ever growing class of versatile techniques for sintering particulate materials. Despite the tremendous advances over the last two decades in ECASed materials and products there is a lack of comprehensive reviews on ECAS apparatuses and methods. This paper fills the gap by tracing the progress of ECAS technology from 1906 to 2008 and surveys 642 ECAS patents published over more than a century. It is found that the ECAS technology was pioneered by Bloxam (1906 GB Patent No. 9020) who developed the first resistive sintering apparatus. The patents were searched by keywords or by cross-links and were withdrawn from the Japanese Patent Office (342 patents), the United States Patent and Trademark Office (175 patents), the Chinese State Intellectual Property Office of P.R.C. (69 patents) and the World Intellectual Property Organization (12 patents). A subset of 119 (out of 642) ECAS patents on methods and apparatuses was selected and described in detail with respect to their fundamental concepts, physical principles and importance in either present ECAS apparatuses or future ECAS technologies for enhancing efficiency, reliability, repeatability, controllability and productivity. The paper is divided into two parts, the first deals with the basic concepts, features and definitions of basic ECAS and the second analyzes the auxiliary devices/peripherals. The basic ECAS is classified with reference to discharge time (fast and ultrafast ECAS). The fundamental principles and definitions of ECAS are outlined in accordance with the scientific and patent literature.

  11. Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan

    OpenAIRE

    Sergio Velázquez; JOSÉ M. MONZÓ; María V. Borrachero; Jordi Payá

    2014-01-01

    The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized...

  12. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures

    OpenAIRE

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-01-01

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perceptio...

  13. ABOUT SOME FEATURES OF TRANSMISSION MODE FOR ACTIVE POWER OF ELECTRICAL LINE

    Directory of Open Access Journals (Sweden)

    Paţiuc V.

    2013-12-01

    Full Text Available This paperwork examines the problem of maximum power transfer to the load of a long line mode change from idle line (XX to short-circuit ( SC. Load line changes from idle mode (IM to its short-circuit (SC . The line length varies from zero up to a length equal to the physical length of the electromagnetic wave. As a method of research it is used the method of the complex amplitudes (MCA. As independent variables were examined her load line length and that the system per unit change in the band plus minus unit to unit , so . It enteritis that for the active character load of the active power input and power output of the line, so functions , and functions that characterize developments efficiency , power factor at the input line and the load power factor when the variable z. For these points to the notion of critical value of the load . It founds the effect of " recession " critical resistance values and functions şi , which is not found for the other functions considered - efficiency and power factor. Load reactive power compensation can help to increase power output only for lines with length smaller than ¼ wave length electromagnitice wave. In non-distortional lines, such effect is not observed. The paper work represents the general data transmission mode the maximum power lines of different lengths to the load, which varies from idle mode (IM to short-circuit (SC regime. These data can be used for preliminary analysis of the efficiency of the electrical lines at variable load.

  14. Characterization of calcium responses and electrical activity in differentiating mouse neural progenitor cells in vitro.

    Science.gov (United States)

    de Groot, Martje W G D M; Dingemans, Milou M L; Rus, Katinka H; de Groot, Aart; Westerink, Remco H S

    2014-02-01

    In vitro methods for developmental neurotoxicity (DNT) testing have the potential to reduce animal use and increase insight into cellular and molecular mechanisms underlying chemical-induced alterations in the development of functional neuronal networks. Mouse neural progenitor cells (mNPCs) differentiate into nervous system-specific cell types and have proven valuable to detect DNT using biochemical and morphological techniques. We therefore investigated a number of functional neuronal parameters in primary mNPCs to explore their applicability for neurophysiological in vitro DNT testing. Immunocytochemistry confirmed that mNPCs express neuronal, glial, and progenitor markers at various differentiation durations (1, 7, 14, and 21 days). Because intracellular calcium ([Ca(2+)]i) plays an essential role in neuronal development and function, we measured stimulus-evoked changes in [Ca(2+)]i at these differentiation durations using the Ca(2+)-responsive dye Fura-2. Increases in [Ca(2+)]i (averages ranging from 65 to 226 nM) were evoked by depolarization, ATP, l-glutamic acid, acetylcholine, and dopamine (up to 87%, 57%, 93%, 28%, and 37% responding cells, respectively) and to a lesser extent by serotonin and gamma-aminobutyric acid (both up to 10% responding cells). Notably, the changes in percentage of responsive cells and their response amplitudes over time indicate changes in the expression and functionality of the respective neurotransmitter receptors and related calcium signaling pathways during in vitro differentiation. The development of functional intercellular signaling pathways was confirmed using multielectrode arrays, demonstrating that mNPCs develop electrical activity within 1-2 weeks of differentiation (55% active wells at 14 days of differentiation; mean spike rate of 1.16 spikes/s/electrode). The combined data demonstrate that mNPCs develop functional neuronal characteristics in vitro, making it a promising model to study chemical-induced effects on the

  15. Ionic dependence of secretory and electrical activity evoked by elevated K+ in a peptidergic neurosecretory system.

    Science.gov (United States)

    Cooke, I M; Haylett, B A

    1984-11-01

    Secretion of the octapeptide erythrophore- (red pigment-) concentrating hormone (ECH, RPCH) and extracellularly monitored electrical activity were followed simultaneously from individual, isolated sinus glands (neurohaemal organs), of the crab Cardisoma carnifex. Following introduction of saline having elevated [K], 100-196 mmol l-1 (5-11 X normal), secretion (bioassayed from 1-min fractions during continuous perfusion) increases from barely detectable (less than 1 fmol min-1) to a peak, average 31 fmol min-1, within 5 min, and immediately subsides. Additional responses are obtainable following a period, greater than 30 min, of normal saline perfusion. Secretory responses to K are Ca-dependent. If Ca is restored (in high K) following perfusion in 0-Ca, high K, only a small secretory response is observed. Addition of Mn (10 mmol l-1, normal Ca) reduces secretion to one-tenth. Increased net uptake of 45Ca of 2.5- to 6-fold is observed in individual sinus glands exposed to 10 X K compared to paired, unstimulated organs. The pattern and Ca-dependence of secretory responses to K are unaffected, but the amount of secretion is augmented in Na-deficient or TTX-containing salines. Intracellular recording confirms that brief (10-40 s) bouts of intense firing recorded extracellularly upon commencing a high K perfusion include repetitive firing by terminals, superimposed on rapid depolarization. Firing ceases as the membrane potential reaches a depolarized value (-18 to -15 mV for [K] 100-176 mmol l-1), which is then maintained until restoration of normal saline, when slow repolarization ensues. In 0-Ca, spontaneous impulse firing is increased, resting potential depolarized by 5 to 15 mV, but the bout of impulse firing and the maintained depolarization in response to K are similar. Thus, mechanisms of secretion of a crustacean peptide neurohormone appear closely similar to those of other systems characterized: responsiveness to elevated K, dependence on Ca, depolarization

  16. Modulation of vagal activity to atria electrical remodeling resulted from rapid atrial pacing

    Institute of Scientific and Technical Information of China (English)

    Shulong Zhang; Yanzong Yang; Yingxue Dong; Lianjun Gao; Donghui Yang; Chunyue Zhao; Hongwei Zhao; Xiaomeng Yin; Jinqiu Liu; Zhihu Lin

    2008-01-01

    Background Atrial electrical remodeling(AER)plays an important role in the pathogenesis and maintenance of atrialfibrillation.However,little is known about modulation of vagal activilty to AER.This study aimed to investigate the relationshipbetween vagal moduation and AER. Methods Twenty four adult mongrel dogs under general anesthesia were randomized into 3groups.Sympathetic activity was blocked by administration of metoprolol in 3 groups.The changes in vagal modulation to atria afterAER were observed in 10 dogs without vagal interruption in group A.The effects of vagal intervention on AER were investigated in 8dogs with administration of atropine in group B.The impact of aggressively vagal activity on AER was studied in 6 dogs with bilateralcervical vag sympathetic trunLks stimulation during AER in group C.Bilateral cervicall vagosympathetic trunks were decentralized.Multipolar catheters wereplaced into high right atria(RA),coronary sinus(CS)and rightventricle(RV).AER was induced by 600 bpmpacing through RA catheter for 30 minutes.Attial effective refractory period(ERP)and vulnerability window (VW)of atrial fibrillationwere measured with and without vagal stimulation before and after AER.Results In group A,ERP decreased significantly at baselineand during vagal stimulation after AER compared with that beforeAER(all P<0.05).In group B,ERP remaind unchanged at baselineand vagal stimulation after AER compared with tbat before AER (all P>0.05).In group C,ERP shortened significantly at baseline andvagal stimulation after AER compared with that before AER(all P<0.05).ERP shortening after AER in Groups A and C increasedsignificantly than that in group B (all P<0.05).Atrial fibrillation could not be induced at baseline(VW close to 0) before and after AERin three groups.VW became widen significantly during vagal stimulation after AER compared with that before AER in Groups A and C(all P<0.05),while VW remained unchanged in group B (VW close to 0).Conclusions

  17. Solar activity and atmospheric tide effect on the polar conductivity and the vertical electric field in the stratosphere at low latitude

    Science.gov (United States)

    Gupta, S. P.

    2004-01-01

    Balloonborne measurements of the polar conductivity and the vertical electric field were carried out over a period of 1984-1994 from Hyderabad, Central India. The conductivity values show positive correlation with solar activity between 20 and 35 km. Between 5 and 20 km the conductivity values show an anti-correlation with solar activity. The vertical electric field does not show solar cycle effect. However, the electric field and the conductivity show a semi-diurnal variation at balloon float altitude.

  18. Pulse electrical arc stimulator based on single-electrode for active exercise in tail-suspension rat

    Institute of Scientific and Technical Information of China (English)

    孙联文; 谢添; 樊瑜波; 张晓薇; 孙瑶; 杨肖

    2008-01-01

    To make rat do active exercise to counteract bone loss in the rat tail-suspension model, a pulse electrical stimulator based on single-electrode with a low-current and a high-voltage was designed. The stimulator was controlled by SCM (single chip micyoco) that could accurately control the stimulation duration and the interval between stimulations, and cease the operation after the recorded number of stimulation had reached the value set by the program. With the help of posture estimation part, the device would operate intelligently by determining whether to stimulate or not, depending on the posture of rat’s limb. Software was developed to make operator control the stimulator using computer, save the experiment data and print the report. In practical experiment, the voltaic arc is generated by the stimulator, and impacted on the rat’s thenar. This induced pain to the rat and the rat would actively contract its hindlimb to evade the pain, so active exercise was carried out. The tail-suspension rats were trained twice every day for 14 d. At the 0 and 14th day, bone mineral density of rat femurs was determined by dual energy X-ray absorptiometry (DXA). The results show that the active exercise stimulated by the pulse electrical arc stimulator can attenuate weightlessness-induced bone loss, and this device is a convenient steady performance electrical stimulator that can surely induce rat’s hindlimb to do active exercise.

  19. Coordination between the electrical activity of developing indirect flight muscles and the firing activity of a population of neurosecretory cells in the silkmoth, Bombyx mori.

    Science.gov (United States)

    Kamimoto, Satoshi; Nohara, Rika; Ichikawa, Toshio

    2006-05-01

    The developing indirect flight muscles of pharate moths are characterized by a rhythmic discharge of a long bout of flight-pattern-like muscle potentials in the absence of contractions. The electrical activity of the dorsal longitudinal flight muscles (DLMs) in the silkmoth, Bombyx mori, was discernible as a cluster of many series of muscle potentials that last for several minutes on day 4 of the pupal period. The duration of the active phases and the period of rhythmic activity gradually increased to a peak value on day 7 or 8 and then declined until the end of the pupal period. Mean duration of the active phases (+/-SD) and the mean period of the rhythmic activity (+/-SD) at the peak were 38.7+/-8.7 min and 74.5+/-7.3 min, respectively. The rhythmic electrical activity of immature DLMs was closely coordinated with the rhythmic (bursting) activity of a population of neurosecretory cells that are known to produce pheromone-biosynthesis activating neuropeptide (PBAN) and its related peptides, which belong to the multifunctional peptide family, pyrokinin/PBAN. The DLMs always became active a few minutes after the neurosecretory cells, and the timing of onset of these two activities appeared to be strictly regulated by a neural mechanism. The implication of the coordinated activity for development and maturation of imaginal tissues, including the flight motor system, and possible functions of the neuropeptides in this development are discussed.

  20. Electricity trading - characteristics, activities and requirements; Stromhandel - Charakteristika, Betaetigungsfelder und Anforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Latkovic, K.; Seiferth, T. [Essen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energiewirtschaft

    1999-03-22

    Competition in the German electricity supply industry increased significantly after a rather slow beginning. Electricity trading plays a crucial role for the forthcoming development of the competition. Newcomers as well as incumbent utilities have begun to build up electricity trading floors and started trading. The following paper gives a survey on characteristics, different functions, chances, and risks as well as entrepreneurial requirements of this `new` element of the electricity supply chain. (orig.) [Deutsch] Nach verhaltenem Beginn hat der Wettbewerb in der deutschen Elektrizitaetswirtschaft spuerbar an Dynamik gewonnen. Eine wesentliche Rolle fuer die bisherige wie auch weitere Entwicklung des Wettbewerbs kommt dabei dem Stromhandel zu. Sowohl neue Anbieter als auch etablierte EVU haben mit dem Aufbau und der Aufnahme von Stromhandelsaktivitaeten begonnen. Die Verfasser geben einen Ueberblick ueber Charakteristika, Teilbereiche, Chancen und Risiken sowie die unternehmerischen Anforderungen dieser `neuen` Stufe der Stromversorgung. (orig.)

  1. Electrical Conductivity of Rocks and Dominant Charge Carriers: The Paradox of Thermally Activated Positive Holes

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper we have focused on fundamental processes that are important for understanding the electrical properties of materials, both single crystal minerals and...

  2. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    Science.gov (United States)

    Chen, Deliang; Savidge, Tor

    2015-08-28

    Fried et al. (Reports, 19 December 2014, p. 1510) demonstrate electric field-dependent acceleration of biological catalysis using ketosteroid isomerase as a prototypic example. These findings were not extended to aqueous solution because water by itself has field fluctuations that are too large and fast to provide a catalytic effect. Given physiological context, when water electrostatic interactions are considered, electric fields play a less important role in the catalysis.

  3. Flatness-based control in successive loops for stabilization of heart's electrical activity

    Science.gov (United States)

    Rigatos, Gerasimos; Melkikh, Alexey

    2016-12-01

    The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.

  4. Impact of pulmonary vein isolation on atrial vagal activity and atrial electrical remodeling

    Institute of Scientific and Technical Information of China (English)

    Yingxue Dong; Shulong Zhang; Lianjun Gao; Hongwei Zhao; Donghui Yang; Yunlong Xia; Yanzong Yang

    2008-01-01

    Objective Mechanisms of pulmonary vein isolation (PVI) for atrial fibrillation remain controversy.This study aimed to investigate the impact of PVI on vagal modulation to atria.Methods Eighteen adult mongrel dogs under general anesthesia were randomly divided into two groups.Bilateral cervical sympathovagal trunks were decentralized and sympathetic effects was blocked by metoprolol administration.Atrial electrical remodeling (AER) was established by rapid right atrial pacing at the rate of 600 bpm for 30 minutes.PVI was performed in group A.Atrial effective refractory period (ERP),vulnerability window (VW) of atrial fibrillation,and sinus rhythm cycle length (SCL) were measured at baseline and during vagal stimulation before and after atrial rapid pacing with and without PVI at fight atrial appendage (RAA),left atrial appendage (LAA),distal coronary sinus (CSd) and proximal coronary sinus (CSp).Results (1) Effects of PVI on vagal modulation:Shortening of SCL during vagal stimulation decreased significantly after PVI compared with that before PVI in group A (P<0.001).Shortening of ERP during vagal stimulation decreaseed significantly after PVI compared with that before PVI (P<0.05).VW of atrial fibrillation during vagal stimulation decreased significantly after PVI compared with that before PVI (P<0.05).(2) Effects of PVI on AER:shortening of ERP before and after atrial rapid pacing increased significantly at baseline and vagal stimulation in group B compared with that in group A (P<0.05).VW during vagal stimulation increased significantly after atrial rapid pacing in group B (P<0.05).Conclusion PVI attenuates the vagal modulation to the atria,thereby decreases the susceptibility to atrial fibrillation mediated by vagal activity.PVI releases AER,which maybe contributes to the vagal denervation.Our study indicates that PVI not only can eradicate triggered foci but also modify substrates for AF.(J Geriatr Cardiol 2008;5:28-32)

  5. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices.

    Science.gov (United States)

    Tattersall, J E; Scott, I R; Wood, S J; Nettell, J J; Bevir, M K; Wang, Z; Somasiri, N P; Chen, X

    2001-06-15

    Slices of rat hippocampus were exposed to 700 MHz continuous wave radiofrequency (RF) fields (25.2-71.0 V m(-1), 5-15 min exposure) in a stripline waveguide. At low field intensities, the predominant effect on the electrically evoked field potential in CA1 was a potentiation of the amplitude of the population spike by up to 20%, but higher intensity fields could produce either increases or decreases of up to 120 and 80%, respectively, in the amplitude of the population spike. To eliminate the possibility of RF-induced artefacts due to the metal stimulating electrode, the effect of RF exposure on spontaneous epileptiform activity induced in CA3 by 4-aminopyridine (50-100 microM) was investigated. Exposure to RF fields (50.0 V m(-1)) reduced or abolished epileptiform bursting in 36% of slices tested. The maximum field intensity used in these experiments, 71.0 V m(-1), was calculated to produce a specific absorption rate (SAR) of between 0.0016 and 0.0044 W kg(-1) in the slices. Measurements with a Luxtron fibreoptic probe confirmed that there was no detectable temperature change (+/- 0.1 degrees C) during a 15 min exposure to this field intensity. Furthermore, imposed temperature changes of up to 1 degrees C failed to mimic the effects of RF exposure. These results suggest that low-intensity RF fields can modulate the excitability of hippocampal tissue in vitro in the absence of gross thermal effects. The changes in excitability may be consistent with reported behavioural effects of RF fields.

  6. Acute and chronic electrical activation of baroreceptor afferents in awake and anesthetized subjects

    Directory of Open Access Journals (Sweden)

    M.T. Durand

    2009-01-01

    Full Text Available Electrical stimulation of baroreceptor afferents was used in the 1960's in several species, including human beings, for the treatment of refractory hypertension. This approach bypasses the site of baroreceptor mechanosensory transduction. Chronic electrical stimulation of arterial baroreceptors, particularly of the carotid sinus nerve (Hering's nerve, was proposed as an ultimate effort to treat refractory hypertension and angina pectoris due to the limited nature of pharmacological therapy available at that time. Nevertheless, this approach was abandoned in the early 1970's due to technical limitations of implantable devices and to the development of better-tolerated antihypertensive medications. More recently, our laboratory developed the technique of electrical stimulation of the aortic depressor nerve in conscious rats, enabling access to hemodynamic responses without the undesirable effect of anesthesia. In addition, electrical stimulation of the aortic depressor nerve allows assessment of the hemodynamic responses and the sympathovagal balance of the heart in hypertensive rats, which exhibit a well-known decrease in baroreflex sensitivity, usually attributed to baroreceptor ending dysfunction. Recently, there has been renewed interest in using electrical stimulation of the carotid sinus, but not the carotid sinus nerve, to lower blood pressure in conscious hypertensive dogs as well as in hypertensive patients. Notably, previous undesirable technical outcomes associated with electrical stimulation of the carotid sinus nerve observed in the 1960's and 1970's have been overcome. Furthermore, promising data have been recently reported from clinical trials that evaluated the efficacy of carotid sinus stimulation in hypertensive patients with drug resistant hypertension.

  7. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    Science.gov (United States)

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Hoang-Linh Nguyen

    2016-03-01

    Full Text Available Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.

  9. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.

    Science.gov (United States)

    Whitmore, Nathan W; Lin, Shih-Chieh

    2016-05-15

    Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23-77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to

  10. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Science.gov (United States)

    Kada, W.; Kambayashi, Y.; Ando, Y.; Onoda, S.; Umezawa, H.; Mokuno, Y.; Shikata, S.; Makino, T.; Koka, M.; Hanaizumi, O.; Kamiya, T.; Ohshima, T.

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  11. Electrical activation of nitrogen heavily implanted 3C-SiC(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fan, E-mail: f.li.1@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Sharma, Yogesh; Shah, Vishal; Jennings, Mike [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Pérez-Tomás, Amador [ICN2 – Institut Catala de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Myronov, Maksym [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Fisher, Craig [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Leadley, David [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Mawby, Phil [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-10-30

    Highlights: • Nitrogen is fully activated by 1175 °C annealing for 1.5 × 10{sup 19} cm{sup −3} doped 3C-SiC. • Free donor concentration is found to readily saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. • 3C-SiC is found to have complete donor thermal ionization above 150 K. • Donor in 1.5 × 10{sup 19} cm{sup −3} nitrogen implanted 3C-SiC has an energy level ∼15 meV. • The SiO{sub 2} cap is found to have a bigger influence on low and medium doped samples. - Abstract: A degenerated wide bandgap semiconductor is a rare system. In general, implant levels lie deeper in the band-gap and carrier freeze-out usually takes place at room temperature. Nevertheless, we have observed that heavily doped n-type degenerated 3C-SiC films are achieved by nitrogen implantation level of ∼6 × 10{sup 20} cm{sup −3} at 20 K. According to temperature dependent Hall measurements, nitrogen activation rates decrease with the doping level from almost 100% (1.5 × 10{sup 19} cm{sup −3}, donor level 15 meV) to ∼12% for 6 × 10{sup 20} cm{sup −3}. Free donors are found to saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. The implanted film electrical performances are characterized as a function of the dopant doses and post implantation annealing (PIA) conditions by fabricating Van der Pauw structures. A deposited SiO{sub 2} layer was used as the surface capping layer during the PIA process to study its effect on the resultant film properties. From the device design point of view, the lowest sheet resistivity (∼1.4 mΩ cm) has been observed for medium doped (4 × 10{sup 19} cm{sup −3}) sample with PIA 1375 °C 2 h without a SiO{sub 2} cap.

  12. The influence of electric ARC activation on the speed of heating and the structure of metal in welds

    Directory of Open Access Journals (Sweden)

    Savytsky Oleksandr M.

    2016-01-01

    Full Text Available This paper presents the results of a research related to the impact of electric arc activation onto drive welding energy and metal weld heating speed. It is confirmed that ATIG and AMIG methods, depending on metal thickness, single pass weldability and chemical composition of activating flux, enable the reduction of welding energy by 2-6 times when compared to conventional welding methods. Additionally, these procedures create conditions to increase metal weld heating speed up to 1,500-5,500°C/s-1. Steel which can be rapidly heated, allows for a hardened structure to form (with carbon content up to 0.4%, together with a released martensitic structure or a mixture of bainitic-martensitic structures. Results of the research of effectiveness of ATIG and AMIG welding showed that increase in the penetration capability of electric arc, which increases welding productivity, is the visible side of ATIG and AMIG welding capabilities.

  13. Formation of radical and active chemical species in electrical discharge plasma in the presence of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Shih, K.Y.; Burlica, R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering

    2010-07-01

    This study investigated the interactions of plasma with liquid water using a combination of emission spectroscopy of radical and atomic species and direct measurements of more stable chemical compounds. The study focused on electrical discharge plasma formed directly in liquid water and on discharges formed in the gas phase above liquid water, in bubbles in liquid water, and in the gas phase with water droplet spray that result in a variety of active chemical species that can be used for pollution control as well as other applications in biomedical and materials engineering. The purpose was to improve the design and operation of plasma reactors for a variety of applications. This presentation also reviewed the mechanisms for the formation of active chemical species such as hydroxyl and other radicals, hydrogen peroxide and molecular hydrogen, in electrical discharge plasma formed in the presence of water.

  14. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    OpenAIRE

    Jan David Kijlstra; Dongjian Hu; Nikhil Mittal; Eduardo Kausel; Peter van der Meer; Arman Garakani; Ibrahim J. Domian

    2015-01-01

    Summary The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can b...

  15. Addition of glutamate to serum free culture promotes recovery of electrical activity in adult hippocampal neurons in vitro

    Science.gov (United States)

    Edwards, Darin; Das, Mainak; Molnar, Peter; Hickman, James J.

    2010-01-01

    A long-term cell culture system utilizing normal adult hippocampal neurons would represent an important tool that could be useful in research on the mature brain, neurological disorders and age-related neurological diseases. Historically, in vitro neuronal systems are derived from embryonic rather than mature brain tissue, a practice predicated upon difficulties in supporting regeneration, functional recovery and long-term survival of adult neurons in vitro. A few studies have shown that neurons derived from the hippocampal tissue of adult rats can survive and regenerate in vitro under serum-free conditions. However, while the adult neurons regenerated morphologically under these conditions, both the electrical activity characteristic of in vivo neurons as well as long-term neuronal survival was not consistently recovered in vitro. In this study, we report on the development of a defined culture system with the ability to support functional recovery and long-term survival of adult rat hippocampal neurons. In this system, the cell-adhesive substrate, N-1 [3-(trimethoxysilyl) propyl]-diethylenetriamine, supported neuronal attachment, regeneration, and long-term survival of adult neurons for more than 80 days in vitro. Additionally, the excitatory neurotransmitter glutamate, applied at 25 μM for 1 to 7 days after morphological neuronal regeneration in vitro, enabled full recovery of neuronal electrical activity. This low concentration of glutamate promoted the recovery of neuronal electrical activity but with minimal excitotoxicity. These improvements allowed electrically active adult neurons to survive in vitro for several months, providing a stable test-bed for the long-term study of regeneration in adult derived neuronal systems, especially for traumatic brain injury (TBI). PMID:20452373

  16. Addition of glutamate to serum-free culture promotes recovery of electrical activity in adult hippocampal neurons in vitro.

    Science.gov (United States)

    Edwards, Darin; Das, Mainak; Molnar, Peter; Hickman, James J

    2010-07-15

    A long-term cell culture system utilizing normal adult hippocampal neurons would represent an important tool that could be useful in research on the mature brain, neurological disorders and age-related neurological diseases. Historically, in vitro neuronal systems are derived from embryonic rather than mature brain tissue, a practice predicated upon difficulties in supporting regeneration, functional recovery and long-term survival of adult neurons in vitro. A few studies have shown that neurons derived from the hippocampal tissue of adult rats can survive and regenerate in vitro under serum-free conditions. However, while the adult neurons regenerated morphologically under these conditions, both the electrical activity characteristic of in vivo neurons as well as long-term neuronal survival was not consistently recovered in vitro. In this study, we report on the development of a defined culture system with the ability to support functional recovery and long-term survival of adult rat hippocampal neurons. In this system, the cell-adhesive substrate, N-1 [3-(trimethoxysilyl) propyl]-diethylenetriamine, supported neuronal attachment, regeneration, and long-term survival of adult neurons for more than 80 days in vitro. Additionally, the excitatory neurotransmitter glutamate, applied at 25muM for 1-7 days after morphological neuronal regeneration in vitro, enabled full recovery of neuronal electrical activity. This low concentration of glutamate promoted the recovery of neuronal electrical activity but with minimal excitotoxicity. These improvements allowed electrically active adult neurons to survive in vitro for several months, providing a stable test-bed for the long-term study of regeneration in adult-derived neuronal systems, especially for traumatic brain injury (TBI). Copyright 2010 Elsevier B.V. All rights reserved.

  17. Characterization of electrical and mechanical activities of rabbit uterus associated with the presence of capacitated and non-capacitated spermatozoa

    Directory of Open Access Journals (Sweden)

    J.F. Lazcano-Reyes

    2013-12-01

    Full Text Available To investigate the effects capacitated spermatozoa may exert upon motility of the rabbit uterus, both contractility and electrical activity (frequency and intensity were measured in 3 distinctive uterine segments of anaesthetized does: horn (UH, uterotubal junction (UTJ and tube (UT after 1 natural mating, 2 infusion of either seminal plasma or PBS, 3 infusion of either capacitated or non-capacitated spermatozoa. Basal values were: 17.1, 15.7, 16.4 g (contractility, P>0.05; 3.5, 3.5, 3.4 Hz (frequency, P>0.05; 0.49, 0.50, 0.57 μV (intensity, P>0.05 for UH, UTJ, UT, respectively. Seminal plasma caused an increase (P<0.05 in the UH contractility: 26.3 vs. 11.7 (natural mating and 17.0 g (PBS; it also caused a decrease (P<0.05 in electrical intensity at the UTJ: 0.24 vs. 0.67 (natural mating and 0.58 μV (PBS. The presence of either capacitated or non-capacitated spermatozoa caused no changes in contractility and electrical frequency in any of the uterine segments. However, there was a change in electrical intensity at UTJ (0.37 vs. 0.57 μV for non-capacitated and capacitated spermatozoa, respectively; P<0.05. There were also differences between segments by treatment: UTJ (0.37 vs. UT (0.59 μV for non-capacitated; UH (0.46 vs. UT (0.71 μV for capacitated spermatozoa (P<0.05. In conclusion, use of this experimental model showed that uterine electrical activity was slightly modified by the presence of capacitated spermatozoa.

  18. Application of acoustic-electric interaction for neuro-muscular activity mapping: A review

    Directory of Open Access Journals (Sweden)

    Thordur Helgason

    2014-11-01

    Full Text Available Acousto-electric interaction signal (AEI signal resulting from interaction of acoustic pressure wave and electrical current field has received recent attention in biomedical field for detection and registration of bioelectrical current. The signal is very of small value and brings about several challenges when detecting it. Several observations has been done in saline solution and on nerves and tissues under controlled condition that give optimistic indication about its utilization. Ultrasound Current Source Density Imaging (UCSDI has been introduced, that uses the AEI signal to image the current distribution. This review provides an overview of the investigations on the AEI signal and USCDI imaging that has been made, their results and several considerations on the limitations and future possibilities on using the acousto-electric interaction signal.

  19. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.

    Science.gov (United States)

    Yao, Bo; Luo, Guo-an; Feng, Xue; Wang, Wei; Chen, Ling-xin; Wang, Yi-ming

    2004-12-01

    A novel method based on gravity and electric force driving of cells was developed for flow cytometry and fluorescence activated cell sorting in a microfluidic chip system. In the experiments cells flowed spontaneously under their own gravity in a upright microchip, passed through the detection region and then entered into the sorting electric field one by one at an average velocity of 0.55 mm s(-1) and were fluorescence activated cell sorted (FACS) by a switch-off activation program. In order to study the dynamical and kinematic characteristics of single cells in gravity and electric field of microchannels a physical and numerical module based on Newton's Law of motion was established and optimized. Hydroxylpropylmethyl cellulose (HPMC) was used to minimize cell assembling, sedimentation and adsorption to microchannels. This system was applied to estimate the necrotic and apoptotic effects of ultraviolet (UV) light on HeLa cells by exposing them to UV radiation for 10, 20 or 40 min and the results showed that UV radiation induced membrane damage contributed to the apoptosis and necrosis of HeLa cells.

  20. Research and Application of Fire Forecasting Model for Electric Transmission Lines Incorporating Meteorological Data and Human Activities

    Directory of Open Access Journals (Sweden)

    Jiazheng Lu

    2016-01-01

    Full Text Available Recently, there is a rise in frequency of fires which pose a serious threat to the safety operation of electric transmission lines. Several ultrahigh voltage (UHV electric transmission lines, including Fufeng line, Jinsu line, Longzheng line, and Changnan line, showed many times tripping or bipolar latching caused by fire disasters. Fire disasters have tended to be the biggest threat to the safety operation of electric transmission lines and even can cause power grid collapse in some severe situations. Researchers have made much research on fires forecasting. However, these studies are mainly concentrated on predicting fires based on measured or forecasting meteorological data and do not take into account the effect of human activities. In fact, fire disasters have a very close relationship with human activities. In our research, a fire prediction model is proposed incorporating meteorological data as well as human activities. And this model is applied in Hunan province and Anhui province, which seriously suffer from fire disasters. The results show that the model has good prediction precision and can be a powerful tool for practical application.

  1. Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life.

    Science.gov (United States)

    Akkaya, Gulizar Kurtoglu; Sekman, Elif; Top, Selin; Sagir, Ece; Bilgili, Mehmet Sinan; Guvenc, Senem Yazici

    2017-03-09

    The aim of this study is to investigate filterability enhancement of activated sludge supplied form a full-scale leachate treatment plant by applying DC electric field while keeping the biological operational conditions in desirable range. The activated sludge samples were received from the nitrification tank in the leachate treatment plant of Istanbul's Odayeri Sanitary Landfill Site. Experimental sets were conducted as laboratory-scale batch studies and were duplicated for 1A, 2A, 3A, 4A, and 5A of electrical currents and 2, 5, 10, 15, and 30 min of exposure times under continuous aeration. Physicochemical parameters such as temperature, pH, and oxidation reduction potential in the mixture right after each experimental set and biochemical parameters such as chemical oxygen demand, total phosphorus, and ammonia nitrogen in supernatant were analyzed to define the sets that remain in the range of ideal biological operational conditions. Later on, sludge filterability properties such as capillary suction time, specific resistance to filtration, zeta potential, and particle size were measured for remaining harmless sets. Additionally, cost analyses were conducted in respect to energy and electrode consumptions. Application of 2A DC electric field and 15-min exposure time was found to be the most favorable conditions to enhance filterability of the landfill leachate-activated sludge.

  2. Effects of weak electric fields on the activity of neurons and neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Jeffreys, J.G.R.; Deans, J.; Bikson, M.; Fox, J

    2003-07-01

    Electric fields applied to brain tissue will affect cellular properties. They will hyperpolarise the ends of cells closest to the positive part of the field, and depolarise ends closest to the negative. In the case of neurons this affects excitability. How these changes in transmembrane potential are distributed depends on the length constant of the neuron, and on its geometry; if the neuron is electrically compact, the change in transmembrane potential becomes an almost linear function of distance in the direction of the field. Neurons from the mammalian hippocampus, maintained in tissue slices in vitro, are significantly affected by fields of around 1-5 Vm{sup -1}. (author)

  3. A computational method for the detection of activation/deactivation patterns in biological signals with three levels of electric intensity.

    Science.gov (United States)

    Guerrero, J A; Macías-Díaz, J E

    2014-02-01

    In the present work, we develop a computational technique to approximate the changes of phase in temporal series associated to electric signals of muscles which perform activities at three different levels of intensity. We suppose that the temporal series are samples of independent, normally distributed random variables with mean equal to zero, and variance equal to one of three possible values, each of them associated to a certain degree of electric intensity. For example, these intensity levels may represent a leg muscle at rest, or active during a light activity (walking), or active during a highly demanding performance (jogging). The model is presented as a maximum likelihood problem involving discrete variables. In turn, this problem is transformed into a continuous one via the introduction of continuous variables with penalization parameters, and it is solved recursively through an iterative numerical method. An a posteriori treatment of the results is used in order to avoid the detection of relatively short periods of silence or activity. We perform simulations with synthetic data in order to assess the validity of our technique. Our computational results show that the method approximates well the occurrence of the change points in synthetic temporal series, even in the presence of autocorrelated sequences. In the way, we show that a generalization of a computational technique for the change-point detection of electric signals with two phases of activity (Esquivel-Frausto et al., 2010 [40]), may be inapplicable in cases of temporal series with three levels of intensity. In this sense, the method proposed in the present manuscript improves previous efforts of the authors.

  4. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Paralysis after a spinal cord injury (SCI induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%. We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4. However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL, mitochondrial fission and fusion genes (MFF, MFN1, MFN2, and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2. These findings support that a dose of electrical stimulation (∼10 minutes/day regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI.

  5. Gis-approach for variability assessment of soil electric conductivity under pedoturbation activity of mole rat (Spalax microphthalmus

    Directory of Open Access Journals (Sweden)

    T. М. Konovalova

    2010-06-01

    Full Text Available The results of the investigation of the impact of the mole rat’s activity on soil electric conductivity have been presented. GIS-technology have been shown to be effective for assessment of the pedoturbation activity effect on the soil surface heterogeneity formation. Method of the one-dimension spatial coordinated array transformation into matrix form has been proposed for following multidimension statistic analysis application. The quantity estimation of the mole rats role in formation of the habitat nanorelief-level diversity has been obtained by means of indexes of the landscape complexity and diversity.

  6. New Transportation Technology : Norm Activation Processes and the Intention to Switch to an Electric/Hybrid Vehicle

    OpenAIRE

    Nordlund, A.; Jansson, J.; Westin, K.

    2016-01-01

    Since humans' activities contribute to climate change it is important to change behavior. Switching to a hybrid/plugin/electric vehicle (HEV/PHEV/EV) for personal transport can be one way. In this study the intention to switch to a HEV/PHEV/EV is studied from the theoretical framework of the moral norm-activation theory of altruism (Schwartz, 1977) and the Value-Belief-Norm (VBN) Theory of environmentalism (Stern et al., 1999). Data was collected using a survey to three groups, alternative fu...

  7. Electricity research programme - Overview report on activities in 2005; Programm Elektrizitaet. Ueberblicksbericht zum Forschungsprogramm 2005

    Energy Technology Data Exchange (ETDEWEB)

    Brueniger, R.

    2006-07-01

    This overview-report for the Swiss Federal Office of Energy (SFOE) summarises the work done in 2005 in the various research areas covered by the Swiss Electricity Research programme. Work done in the programme's two main areas - technologies and efficient applications - is reviewed. In the technologies area, high-temperature superconductivity - and especially its use in power-generation facilities - is looked at, as are the topics of energy conversion and thermo-electric power generation. Further, energy storage using compressed-air is discussed. Power distribution and the use of controllable storage in the low-voltage mains is briefly commented on, as is distributed power generation. Information and communications technologies are reviewed, as is work done in the electrical drives area. Work in other areas summarised includes lighting and uninterruptible power-supplies. Co-operation with Swiss institutions and international organisations such as the IEA is reviewed. Implementation work in the pilot and demonstration area is commented on. This includes work in various areas ranging from set-top boxes through to the optimisation of compressed-air systems and electrical drives as well as codes of conduct and agreements for water-dispensers and cooling systems in retail applications and the optimisation of wastewater treatment plant. The report is completed with a list of current research and development projects.

  8. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome

    NARCIS (Netherlands)

    van den Munckhof, Bart; de Vries, Evelien E; Braun, Kees P J; Boss, H Myrthe; Willemsen, Michèl A; van Royen, Annet; de Jager, Wilco; Jansen, Floor E

    We aimed to study serum cytokine levels in 11 electrical status epilepticus in sleep (ESES) patients and 20 healthy control children. Patients showed significantly higher levels of interleukin (IL)-1α, IL-6, IL-10, chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C motif) ligand (CXCL)8/IL-8

  9. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome

    NARCIS (Netherlands)

    van den Munckhof, Bart; de Vries, Evelien E; Braun, Kees P J; Boss, H Myrthe; Willemsen, Michèl A; van Royen, Annet; de Jager, Wilco; Jansen, Floor E

    2016-01-01

    We aimed to study serum cytokine levels in 11 electrical status epilepticus in sleep (ESES) patients and 20 healthy control children. Patients showed significantly higher levels of interleukin (IL)-1α, IL-6, IL-10, chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C motif) ligand (CXCL)8/IL-8 t

  10. 77 FR 5058 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Electrical...

    Science.gov (United States)

    2012-02-01

    ... Industry alert workers to the presence and types of electrical hazards in the workplace, and thereby..., notwithstanding any other provisions of law, no person shall generally be subject to penalty for failing to comply... notice published in the Federal Register on November 10, 2011 (76 FR 70116). Interested parties...

  11. Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Pourmousavi, Seyyed Ali; Savaghebi, Mehdi

    2016-01-01

    A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs) in distribution networks by intelligent management of plug-in electric vehicle (PEV) storage. The proposed algorithm is defined to manage the reverse power flow...

  12. Active integration of electric vehicles in the distribution network - theory, modelling and practice

    DEFF Research Database (Denmark)

    Knezovic, Katarina

    Increasing environmental concerns are driving an evolution of the energy system, in which the electrification of the transport sector is considered to be a crucial element. Successful electric vehicle (EV) introduction potentially allows the reduction of CO2 emissions, but also represents...

  13. Modeling of electric resistance of shape memory alloys: self-sensing for temperature and actuation control of active hybrid composites

    Science.gov (United States)

    Nissle, Sebastian; Hübler, Moritz; Gurka, Martin

    2016-04-01

    For actuation purposes active hybrid structures made of fiber reinforced polymers (FRP) and shape memory alloys (SMA) enable substantial savings concerning weight, space and cost. Such structures allow realizing new functions which are more or less impossible with commonly used systems consisting of the structure and the actuator as separated elements, e.g. morphing winglets in aeronautics. But there are also some challenges that still need to be addressed. For the successful application of SMA FRP composites a precise control of temperature is essential, as this is the activating quantity to reach the required deformation of the structure without overloading the active material. However, a direct measurement of the temperature is difficult due to the complete integration of SMA in the hybrid structure. Also the deformation of the structure which depends on the temperature, the stiffness of the hybrid structure and external loads is hard to determine. An opportunity for controlling the activation is provided by the special behavior of the electrical resistance of SMA. During the phase transformation of the SMA - also causing the actuation travel - the resistance drops with rising temperature. This behavior can be exploited for control purposes, especially as the electrical resistance can be easily measured during the activation done by Joule heating. As shown in this contribution, theoretical modelling and experimental tests provide a load-independent self-sensing control-concept of SMA-FRP-hybrid-structures.

  14. Topological entropy and the controlled effect of glucose in the electrical activity of pancreatic β-cells

    Science.gov (United States)

    Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2009-11-01

    Insulin secretion from electrically coupled β-cells is governed by bursting electrical activity. In response to stimulatory concentrations of glucose, the membrane potential of pancreatic β-cells may experience a transition from bursting-spiking oscillations to continuous spiking oscillations. This transition can be chaotic but becomes more and more regular with an increase in glucose. In the presence of chaos, the inhability to predict the behavior of dynamical systems suggests the application of chaos control methods, when we are more interested in obtaining attracting time periodic motion. In this article, we focus our attention on a specific mathematical model from the literature that mimics the glucose-induced electrical activity of pancreatic β-cells (Deng, 1993 [7]). Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of the kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant allows us to quantify and to distinguish different chaotic regimes. Finally, we show that chaotic orbits of the system can be controlled, without changing their orbital properties, and be turned into desired limit cycles. The control is illustrated by an application of a feedback control technique developed by Romeiras, Grebogi, Ott and Dayawansa (1992) [13]. This work provides an illustration of how our understanding of biophysically motivated models can be directly enhanced by the theory of dynamical systems.

  15. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system

    NARCIS (Netherlands)

    Racyte, J.; Bernard, S.; Paulitsch-Fuchs, A.H.; Yntema, D.R.; Bruning, H.; Rijnaarts, H.H.M.

    2013-01-01

    Strong electric fields for disinfection of wastewaters have been employed already for several decades. An innovative approach combining low strength (7 V/cm) alternating electric fields with a granular activated carbon fluidized bed electrode (FBE) for disinfection was presented recently. For

  16. Trend study electricity 2022. Meta studies analysis and activity recommendations. dena report; Trendstudie Strom 2022. Metastudienanalyse und Handlungsempfehlungen. dena-Berichtsteil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Sebastian; Teichmann, Mario; Voelker, Jakob; Weber, Andreas

    2013-03-07

    The dena report concerning the trend study electricity 2022 covers the following issues: (I) aim of the project - methodology; (II) qualitative analysis of studies on the development of the energy system in Germany (meta analysis); (III) comparison of results and activity recommendations: energy demand and energy efficiency, renewable energies, conventional energies, grids, energy storage, electricity market design, European aspects; roadmap.

  17. BIOPHYSICS. Response to Comments on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2015-08-28

    Natarajan et al. and Chen and Savidge comment that comparing the electric field in ketosteroid isomerase's (KSI's) active site to zero overestimates the catalytic effect of KSI's electric field because the reference reaction occurs in water, which itself exerts a sizable electrostatic field. To compensate, Natarajan et al. argue that additional catalytic weight arises from positioning of the general base, whereas Chen and Savidge propose a separate contribution from desolvation of the general base. We note that the former claim is not well supported by published results, and the latter claim is intriguing but lacks experimental basis. We also take the opportunity to clarify some of the more conceptually subtle aspects of electrostatic catalysis.

  18. A theoretical study of molecular structure, optical properties and bond activation of energetic compound FOX-7 under intense electric fields

    Science.gov (United States)

    Tao, Zhiqiang; Wang, Xin; Wei, Yuan; Lv, Li; Wu, Deyin; Yang, Mingli

    2017-02-01

    Molecular structure, vibrational and electronic absorption spectra, chemical reactivity of energetic compound FOX-7, one of the most widely used explosives, were studied computationally in presence of an electrostatic field of 0.01-0.05 a.u. The Csbnd N bond, which usually triggers the decomposition of FOX-7, is shortened/elongated under a parallel/antiparallel field. The Csbnd N bond activation energy varies with the external electric field, decreasing remarkably with the field strength in regardless of the field direction. This is attributed to two aspects: the bond weakening by the field parallel to the Csbnd N bond and the stabilization effect on the transition-state structure by the field antiparallel to the bond. The variations in the structure and property of FOX-7 under the electric fields were further analyzed with its distributional polarizability, which is dependent on the charge transfer characteristics through the Csbnd N bond.

  19. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization

    CERN Document Server

    Pascual-Marqui, Roberto D

    2007-01-01

    This paper deals with the EEG/MEG neuroimaging problem: given measurements of scalp electric potential differences (EEG: electroencephalogram) and extracranial magnetic fields (MEG: magnetoencephalogram), find the 3D distribution of the generating electric neuronal activity. This problem has no unique solution. Only particular solutions with "good" localization properties are of interest, since neuroimaging is concerned with the localization of brain function. In this paper, a general family of linear imaging methods with exact, zero error localization to point-test sources is presented. One particular member of this family is sLORETA (standardized low resolution brain electromagnetic tomography; Pascual-Marqui, Methods Find. Exp. Clin. Pharmacol. 2002, 24D:5-12; http://www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA-Math01.pdf). It is shown here that sLORETA has no localization bias in the presence of measurement and biological noise. Another member of this family, denoted as eLORETA (exact low resolution bra...

  20. Increase of electrodermal activity of heart meridian during physical exercise: the significance of electrical values in acupuncture and diagnostic importance.

    Science.gov (United States)

    Pontarollo, Francesco; Rapacioli, Giuliana; Bellavite, Paolo

    2010-08-01

    Electric field measurements of skin potential and electrical currents are physiological indicators of electrodermal activity (EDA) and have been associated with a variety of sensory, cognitive and emotional stimuli. The aim of this study was to investigate the EDA at some hand acupoints before, during and after a physical exercise. EDA of eight points located at the corner of fingernails of hands was measured in 10 healthy young volunteers before, during and after a 14-min acute exercise in a bicycle ergometer. In pre-exercise resting state the parameters were stable and similar between the 8 different tested points, while during exercise a significant increase of current (from 1000-2000 to 4000-8000 nA) was observed, with the maximal values related to the point located on the ulnar side of the little finger, at the base of the nail, corresponding to the Shao chong (HT9) of heart meridian. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan

    Science.gov (United States)

    Velázquez, Sergio; Monzó, José M.; Borrachero, María V.; Payá, Jordi

    2014-01-01

    The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized, such as time, temperature, w/c ratio and dosage procedure. Finally, results are presented from the application of this method for characterizing the pozzolanic activity of the spent catalytic cracking catalyst. These results corroborate as previously reported, namely the high reactivity of this pozzolan obtained by other methods, such as thermogravimetry or evolution of the mechanical strength. In addition, the pozzolanic activity of the catalyst was compared with other pozzolans such as metakaolin and silica fume. PMID:28788261

  2. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures.

    Science.gov (United States)

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-09-02

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose.

  3. Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan

    Directory of Open Access Journals (Sweden)

    Sergio Velázquez

    2014-11-01

    Full Text Available The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized, such as time, temperature, w/c ratio and dosage procedure. Finally, results are presented from the application of this method for characterizing the pozzolanic activity of the spent catalytic cracking catalyst. These results corroborate as previously reported, namely the high reactivity of this pozzolan obtained by other methods, such as thermogravimetry or evolution of the mechanical strength. In addition, the pozzolanic activity of the catalyst was compared with other pozzolans such as metakaolin and silica fume.

  4. Electrical stimulation at distinct peripheral sites in spinal nerve injured rats leads to different afferent activation profiles.

    Science.gov (United States)

    Yang, Fei; Chung, Chih-Yang; Wacnik, Paul W; Carteret, Alene F; McKelvy, Alvin D; Meyer, Richard A; Raja, Srinivasa N; Guan, Yun

    2011-11-07

    The neurophysiological basis by which neuromodulatory techniques lead to relief of neuropathic pain remains unclear. We investigated whether electrical stimulation at different peripheral sites induces unique profiles of A-fiber afferent activation in nerve-injured rats. At 4-6weeks after subjecting rats to L5 spinal nerve injury (SNL) or sham operation, we recorded the orthodromic compound action potential (AP) at the ipsilateral L4 dorsal root in response to (1) transcutaneous electrical nerve stimulation (TENS, a patch electrode placed on the dorsum of the foot), (2) subcutaneous electrical stimulation (SQS, electrode inserted subcutaneously along the dorsum of the foot), (3) peroneal nerve stimulation (PNS, electrode placed longitudinally abutting the nerve), and (4) sciatic nerve stimulation (SNS). The area under the Aα/β compound AP was measured as a function of the bipolar, constant-current stimulus intensity (0.02-6.0 mA, 0.2 ms). In both nerve-injured and sham-operated groups, the stimulus-response (S-R) functions of the Aα/β compound APs differed substantially with the stimulation site; SNS having the lowest threshold and largest compound AP waveform, followed by PNS, SQS, and TENS. The S-R function to PNS was shifted to the right in the SNL group, compared to that in the sham-operated group. The Aα/β-threshold to PNS was higher in the SNL group than in the sham-operated group. The S-R functions and Aα/β-thresholds to TENS and SQS were comparable between the two groups. Electrical stimulation of different peripheral targets induced distinctive profiles of A-fiber afferent activation, suggesting that the neuronal substrates for the various forms of peripheral neuromodulatory therapies may differ. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Seasonal and magnetic activity variations of ionospheric electric fields above the southern mid-latitude station, Bundoora, Australia

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    Full Text Available We investigate the seasonal, local solar time, and geomagnetic activity variations of the average Doppler velocity measured by an HF digital ionosonde deployed at Bundoora, Australia (145.1° E, 37.7° S, geographic; 49° S magnetic. The Doppler velocities were heavily averaged to suppress the short-term effects (<3 hours of atmospheric gravity waves, and thereby obtain the diurnal variations attributed to the tidally-driven ionospheric dynamo and electric fields generated by magnetic disturbances. The observed seasonal variations in Doppler velocity were probably controlled by variations in the lower thermospheric winds and ionospheric conductivity above Bundoora and in the magnetically conjugate location. The diurnal variations of the meridional (field-perpendicular drifts and their perturbations exhibited a complex structure, and were generally smaller than the variations in the zonal drifts. The latter were basically strongly west-ward during the evening to early morning, and weakly east-ward during the late morning to just past noon. The zonal perturbations were strongly enhanced by increasing geomagnetic activity, and closely resembled the perturbation drifts measured by the incoherent scatter radar (ISR at Millstone Hill (71.5° W, 42.6° N; 57° N. There was also some resemblance between the diurnal variations in the meridional drifts. Overall, the comparisons suggest that with sufficient averaging, Doppler velocities measured with digital ionosondes at mid-latitudes correspond to true ion motions driven by ionospheric electric fields. This is a useful result because apart from the ISRs located in the American-European sector, there are no ground-based instruments capable of measuring electric fields in the mid-latitude ionosphere.

    Key words. Ionosphere (electric fields and currents; ionosphere atmosphere interactions; mid-latitude ionosphere

  6. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System

    Science.gov (United States)

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-01-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer. PMID:28145516

  7. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System

    Science.gov (United States)

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-02-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.

  8. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef

    DEFF Research Database (Denmark)

    Li, C.B.; Li, J.; Zhou, G.H.

    2012-01-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine longissimus muscle to low-voltage electrical stimulation (ES, 80 V, 35 s) after dressing and its contribution to meat tenderization at early postmortem time. Proteome analysis showed that ES resulted...... muscles up to 24 h. Immunohistochemistry and transmission electron microscopy further indicated that lysosomal enzymes were released at early postmortem time. ES also induced ultrastructural disruption of sarcomeres. In addition, ES accelerated (P

  9. Self-Potential (SP) and Active Electrical Geophysical Assessment of Bioremediation at a Contaminated Gasworks Plant

    Science.gov (United States)

    Kulessa, B.; Kalin, R.; Doherty, R.; Phillips, D.

    2006-05-01

    We have surveyed a former gasworks site in Portadown, Northern Ireland, using self-potential (SP), electrical resistivity, induced polarisation (IP), and ground conductivity (EM-31, EM-34, EM-61). Site lithology and hydrogeology were mapped in numerous trial pits, and groundwater redox conditions together with a host of associated biogeochemical and microbiological parameters have been monitored in several boreholes. A permeable reactive barrier (PRB) together with groundwater flow control (slurry wall) and monitored natural attenuation (MNA) are used for remediation of the complex site contamination, including hydrocarbon and heavy metals. The electrical geophysical surveys mapped the foundations of former infrastructure at the site and detected a formerly unknown tar well and a pit filled with mixed waste. In the contaminated regions of the site the total, measured SP signal is comprised of streaming potential and electrochemical components; in the uncontaminated regions the streaming potential is dominant and electrochemical potentials are negligible. The streaming potential coupling coefficient is estimated by relating the hydraulic potentials from borehole monitoring and groundwater flow modelling to the total SP signal measured in the uncontaminated regions. Residual SP is determined by subtracting the calculated streaming potential component from the total SP data, and the impact of spatially variable, bulk ground conductivity on streaming potential is elucidated. We investigate the relationship between residual SP and redox potential measured in several successive, contaminated aquifer layers separated by aquitards. The SP and electrical geophysical signatures of microbial processes naturally degrading the subsurface contaminants are examined. Preliminary findings from SP and electrical geophysical monitoring of artificially disturbed microbial processes and subsurface redox conditions are also presented.

  10. Activation of peripheral nerve fibers by electrical stimulation in the sole of the foot

    OpenAIRE

    Frahm, Ken Steffen; Mørch, Carsten Dahl; Grill, Warren M; Lubock, Nathan B; Hennings, Kristian; Andersen, Ole Kæseler

    2013-01-01

    Background Human nociceptive withdrawal reflexes (NWR) can be evoked by electrical stimulation applied to the sole of the foot. However, elicitation of NWRs is highly site dependent, and NWRs are especially difficult to elicit at the heel. The aim of the present study was to investigate potential peripheral mechanisms for any site dependent differences in reflex thresholds. Results The first part of the study investigated the neural innervation in different sites of the sole of the foot using...

  11. Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK.

    Directory of Open Access Journals (Sweden)

    Fei Li

    Full Text Available Direct current electric fields (DCEFs can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC or overexpression of mitochondrial superoxide dismutase (MnSOD, but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk1/2, c-Jun N-terminal kinase (JNK, and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the "bridges" coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration.

  12. Direct electrical control of IgG conformation and functional activity at surfaces

    Science.gov (United States)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  13. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    Energy Technology Data Exchange (ETDEWEB)

    Georgoulis, Manolis K. [Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 4 Soranou Efesiou Street, Athens GR-11527 (Greece); Titov, Viacheslav S.; Mikic, Zoran [Predictive Science, Inc., 9990 Mesa Rim Road, San Diego, CA 92121 (United States)

    2012-12-10

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  14. The influence of temperature on the electrical resistivity of the cellular polypropylene and the effect of activation energy.

    Science.gov (United States)

    Vila, Floran; Dhima, Pranvera; Mandija, Florian

    2013-01-01

    In this paper, we determine the surface and volume electrical resistivity of the 50 μm thick cellular polypropylen (VHD50), for the temperature range 393-453 K. For this we use a contemporary methodology, which consist of a voltage measurement across the sample, with a known current flowing through it. This methodology includes a three-electrode system, which allows us to estimate the resistivity of the samples, based on their corresponding total resistances. The electric fields applied for a time interval of 1 min are of the order of 200 kVm (-1). The order of magnitude of surface and volume electrical resistivity is 10(13) Ω and 10(11) Ωm, respectively. For both types of the resistivity, the temperature dependence is an increasing or decreasing exponential function, depending on the type of the activation energy, (its average value for the temperature range mentioned above is 41,20 kJmol (-1)), totally confirmed by the corresponding theoretical interpretation, conditioned by the ionic conduction. The methodology and equipment used, as well as the satisfying accordance with the results, found out directly or indirectly with the consulted literature, confirm the high accuracy of experimental measurements.

  15. Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole — resonance and transparency effects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2010-01-01

    The present work investigates the optical properties of active coated spherical nano-particles excited by an arbitrarily located electric Hertzian dipole. The nano-particles are made of specific dielectric and plasmonic materials. The spatial near-field distribution as well as the normalized...... radiation resistance is examined. Both enhanced as well as reduced radiation effects are demonstrated. In particular, it is shown that specific active coated nano-particles can be designed to be resonant, leading to much larger values of the normalized radiation resistance than is the case...... with the corresponding passive coated nano-particles, thereby overcoming the intrinsic losses present in the plasmonic materials. Moreover, it is shown that other active coated nano-particle designs can significantly reduce the normalized radiation resistance; thus both the resonant as well as non...

  16. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  17. The effects of mobile-phone electromagnetic fields on brain electrical activity: a critical analysis of the literature.

    Science.gov (United States)

    Marino, Andrew A; Carrubba, Simona

    2009-01-01

    We analyzed the reports in which human brain electrical activity was compared between the presence and absence of radio-frequency and low-frequency electromagnetic fields (EMFs) from mobile phones, or between pre- and post-exposure to the EMFs. Of 55 reports, 37 claimed and 18 denied an EMF-induced effect on either the baseline electro encephalogram (EEG), or on cognitive processing of visual or auditory stimuli as reflected in changes in event-related potentials. The positive reports did not adequately consider the family-wise error rate, the presence of spike artifacts in the EEG, or the confounding role of the two different EMFs. The negative reports contained neither positive controls nor power analyses. Almost all reports were based on the incorrect assumption that the brain was in equilibrium with its surroundings. Overall, the doubt regarding the existence of reproducible mobile-phone EMFs on brain activity created by the reports appeared to legitimate the knowledge claims of the mobile-phone industry. However, it funded, partly or wholly, at least 87% of the reports. From an analysis of their cognitive framework, the common use of disclaimers, the absence of information concerning conflicts of interest, and the industry's donations to the principal EMF journal, we inferred that the doubt was manufactured by the industry. The crucial scientific question of the pathophysiology of mobile-phone EMFs as reflected in measurements of brain electrical activity remains unanswered, and essentially unaddressed.

  18. Influence of Different Types of Recombination Active Defects on the Integral Electrical Properties of Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Dominik Lausch

    2015-01-01

    Full Text Available In this contribution the influence of different types of recombination-active defects on the integral electrical properties of multicrystalline Si solar cells is investigated. Based on a previous classification scheme related to the luminescence behavior of crystal defects, Type-A and Type-B defects are locally distinguished. It is shown that Type-A defects, correlated to iron contaminations, are dominating the efficiency by more than 20% relative through their impact on the short circuit current ISC and open circuit voltage VOC in standard Si material (only limited by recombination active crystal defects. Contrarily, Type-B defects show low influence on the efficiency of 3% relative. The impact of the detrimental Type-A defects on the electrical parameters is studied as a function of the block height. A clear correlation between the area fraction of Type-A defects and both the global Isc and the prebreakdown behavior (reverse current in voltage regime-2 (−11 V is observed. An outlier having an increased full-area recombination activity is traced back to dense inter- and intragrain nucleation of Fe precipitates. Based on these results it is concluded that Type-A defects are the most detrimental defects in Si solar cells (having efficiencies > 15% and have to be prevented by optimized Si material quality and solar cell process conditions.

  19. Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus.

    Science.gov (United States)

    Groff, J Alan; Liberman, M Charles

    2003-11-01

    The olivocochlear (OC) efferent innervation of the mammalian inner ear consists of two subdivisions, medial (MOC) and lateral (LOC), with different peripheral terminations on outer hair cells and cochlear afferent terminals, respectively. The cochlear effects of electrically activating MOC efferents are well known, i.e., response suppression effected by reducing outer hair cells' contribution to cochlear amplification. LOC peripheral effects are unknown, because their unmyelinated axons are difficult to electrically stimulate. Here, stimulating electrodes are placed in the inferior colliculus (IC) to indirectly activate the LOC system, while recording cochlear responses bilaterally from anesthetized guinea pigs. Shocks at some IC sites produced novel cochlear effects attributable to activation of the LOC system: long-lasting (5-20 min) enhancement or suppression of cochlear neural responses (compound action potentials and round window noise), without changes in cochlear responses dominated by outer hair cells (otoacoustic emissions and cochlear microphonics). These novel effects also differed from classic MOC effects in their lack of dependence on the level and frequency of the acoustic stimulus. These effects disappeared on sectioning the entire OC bundle, but not after selective lesioning of the MOC tracts or the cochlea's autonomic innervation. We conclude that the LOC pathway comprises two functional subdivisions, capable of inducing slow increases or decreases in response magnitudes in the auditory nerve. Such a system may be useful in maintaining accurate binaural comparisons necessary for sound localization in the face of slow changes in interaural sensitivity.

  20. Application of the Huang-Hilbert transform and natural time to the analysis of seismic electric signal activities

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, K. A.; Skordas, E. S., E-mail: eskordas@phys.uoa.gr [Department of Solid State Physics and Solid Earth Physics Institute, Faculty of Physics, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens (Greece)

    2014-12-01

    The Huang method is applied to Seismic Electric Signal (SES) activities in order to decompose them into their components, named Intrinsic Mode Functions (IMFs). We study which of these components contribute to the basic characteristics of the signal. The Hilbert transform is then applied to the IMFs in order to determine their instantaneous amplitudes. The results are compared with those obtained from the analysis in a new time domain termed natural time, after having subtracted the magnetotelluric background from the original signal. It is shown that these instantaneous amplitudes, when combined with the natural time analysis, can be used for the distinction of SES from artificial noises.

  1. Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation

    Science.gov (United States)

    Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang

    2017-09-01

    Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.

  2. Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    Directory of Open Access Journals (Sweden)

    Reza Ahmadi Kordkheili

    2016-01-01

    Full Text Available A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs in distribution networks by intelligent management of plug-in electric vehicle (PEV storage. The proposed algorithm is defined to manage the reverse power flow (PF from the distribution network to the upstream electrical system. Furthermore, a charging algorithm is proposed within the proposed optimization in order to assure PEV owner’s quality of service (QoS. The method uses genetic algorithm (GA to increase photovoltaic (PV penetration without jeopardizing PEV owners’ (QoS and grid operating limits, such as voltage level of the grid buses. The method is applied to a part of the Danish low voltage (LV grid to evaluate its effectiveness and capabilities. Different scenarios have been defined and tested using the proposed method. Simulation results demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage.

  3. Immediate effect of selective neuromuscular electrical stimulation on the electromyographic activity of the vastus medialis oblique muscle

    Directory of Open Access Journals (Sweden)

    Jamilson Simões Brasileiro

    2008-04-01

    Full Text Available The Patellofemoral pain syndrome (PFPS is described as an anterior or retropatellar knee pain in the absence of other associated diseases, and has often been associated with dysfunction of the vastus medialis oblique muscle (VMO. However, several studies have demonstrated the impossibility of selectively activating this muscle with exercises. The aim of the present study was to analyze the immediate effect of neuromuscular electrical stimulation of VMO muscle by means of monitoring the electromyographic activity of the vastus medialis oblique (VMO and vastus lateralis (VL muscles. Eighteen healthy women with a mean age of 23.2 years and mean BMI of 20 Kg/m2 were evaluated. The study protocol included electromyographic analysis of VMO and VL muscles, before and immediately after neuromuscular electrical stimulation of the VMO muscle. During the electromyographic analysis, the volunteers performed maximal voluntary isometric contraction in a 60° knee extension on an isokinetic dynamometer. “Russian current” apparatus was used for electrical stimulation. Results: The data analysis demonstrated a signifi cant increase in VMO activation intensity immediately after it had been electrically stimulated (p=0.0125, whereas VL activation intensity exhibited no signifi cant increase (p=0.924. Moreover, a significant increase in the VMO/VL ratio was also detected (p=0.048. In this study it was observed that electrical stimulation modifiedthe VMO/VL ratio, which suggests electrical stimulation has a benefi cial effect on VMO muscle strength. Resumo A Síndrome da dor patelofemoral (SDPF é descrita como dor anterior ou retro-patelar do joelho na ausência de outras patologias associadas, sendo freqüentemente associada à disfunção do Vasto Medial Oblíquo (VMO. Entretanto, diversos estudos têm demonstrado a impossibilidade de ativar seletivamente este músculo através de exercícios. O objetivo do presente estudo foi analisar o efeito imediato da

  4. Reflections of hunger and satiation in the structure of temporal organization of slow electrical and spike activities of fundal and antral stomach muscles in rabbits.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2012-11-01

    Manifestations of hunger and satiation in myoelectric activity patterns in different portions of the stomach were studied in chronic experiments. The state of hunger manifested in the structure of temporal organization of slow electric activity of muscles in the stomach body and antrum in the form of bimodal distributions of slow electric wave periods, while satiation as unimodal distribution. In hunger-specific bimodal distribution of slow electric wave periods generated by muscles of the stomach body and antrum, the position of the first maximum carries the information about oncoming food reinforcement, since this particular range of slow wave fluctuations determines temporal parameters of slow electric activity of muscles in all stomach regions in the course of subsequent successive food-procuring behavior. Under conditions of hunger, the pacemaker features of muscles in the lesser curvature are realized incompletely. Complete realization is achieved in the course of food intake and at the state of satiation.

  5. Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges

    Science.gov (United States)

    Minschwaner, K.; Kalnajs, L. E.; Dubey, M. K.; Avallone, L. M.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.

    2008-09-01

    Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O3 a-1 with a range between 40 and 180 Tg O3 a-1. This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources.

  6. Modelling the electrical activity of pancreatic alpha-cells based on experimental data from intact mouse islets

    DEFF Research Database (Denmark)

    Diderichsen, Paul Matthias; Gopel, S.O.

    2006-01-01

    Detailed experimental data from patch clamp experiments on pancreatic alpha-cells in intact mouse islets are used to model the electrical activity associated with glucagon secretion. Our model incorporates L- and T-type Ca2+ currents, delayed rectifying and A-type K+ currents, a voltage-gated Na......+ current, a KATP conductance, and an unspecific leak current. Tolbutamide closes KATP channels in the alpha-cell, leading to a reduction of the resting conductance from 1.1 nS to 0.4 nS. This causes the alpha-cell to depolarise from -76 mV to 33 mV. When the basal membrane potential passes the range...... between -60 and -35 mV, the alpha-cell generates action potentials. At higher voltages, the alpha-cell enters a stable depolarised state and the electrical activity ceases. The effects of tolbutamide are simulated by gradually reducing the KATP conductance (g (K,ATP) ) from 500 pS to 0 pS. When g (K...

  7. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1086 (United States)

    2016-01-14

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage is not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].

  8. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    Science.gov (United States)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-01

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage is not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].

  9. Electrical activation of carbon δ-doped (Al,Ga)As grown by metalorganic vapour-phase epitaxy

    Science.gov (United States)

    Li, G.; Petravić, M.; Jagadish, C.

    1997-04-01

    Carbon δ-doped (Al,Ga)As was grown by metalorganic vapour-phase epitaxy using trimethylaluminium (TMAl) or trimethylgallium (TMGa) as a doping precursor. The best C δ-doped Al 0.3Ga 0.7As has a peak hole density of 1.6 × 10 19 (1.4 × 10 19 for GaAs) cm -3 with a full hole profile width at half maximum of 85 Å (84 Å for GaAs). For C δ-doped Al 0.3Ga 0.7 As grown at 630°C, the use of TMGa as a doping precursor leads to both the sheet C atom density and the free hole density increasing with an increase in the total TMGa moles introduced during a δ-doping step. As a result, the electrical activation remains almost constant with the change of TMGa moles supplied. The sheet C atom density always increases with increasing supply of TMAl, but approaches its maximum value at an amount of TMAl of 6.4 × 10 -7 mol. The electrical activation reduces from > 90% to pipi doping superlattices with different average hole densities are fabricated to obtain C bulk-doped-like layers.

  10. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models.

    Science.gov (United States)

    Schultz, Luise; Zurich, Marie-Gabrielle; Culot, Maxime; da Costa, Anaelle; Landry, Christophe; Bellwon, Patricia; Kristl, Theresa; Hörmann, Katrin; Ruzek, Silke; Aiche, Stephan; Reinert, Knut; Bielow, Chris; Gosselet, Fabien; Cecchelli, Romeo; Huber, Christian G; Schroeder, Olaf H-U; Gramowski-Voss, Alexandra; Weiss, Dieter G; Bal-Price, Anna

    2015-12-25

    The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.

  11. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    Science.gov (United States)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  12. Optimisation of a Generic Ionic Model of Cardiac Myocyte Electrical Activity

    Directory of Open Access Journals (Sweden)

    Tianruo Guo

    2013-01-01

    Full Text Available A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically detailed ionic membrane current description, is presented. The model provides a user-defined number of ionic currents, employing two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is incorporated into the optimisation.

  13. Clinical significance of isometric bite force versus electrical activity in temporal and masseter muscles

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L; Han, K

    1989-01-01

    Bite force and activity in temporal and masseter muscles during biting and chewing were recorded in 19 control subjects and 23 subjects with symptoms and signs of functional disorders of the craniomandibular system. The entire group comprised 13 men and 29 women, 14-63 yr of age. Maximal unilater...... of mandibular elevator strength as a whole, but inadequate to disclose asymmetric conditions. During isometric contraction, relative strength of electromyographic activity fairly accurately imaged the output of mechanical activity....

  14. [Transcutaneous electrical stimulation of the spinal cord: non-invasive tool for activation of locomotor circuitry in human].

    Science.gov (United States)

    Gorodnichev, R M; Pivovarova, E A; Pukhov, A; Moiseev, S A; Savokhin, A A; Moshonkina, T R; Shcherbakova, N A; Kilimnik, V A; Selionov, V A; Kozlovskaia, I B; Edgerton, V R; Gerasimenko, Iu P

    2012-01-01

    A new tool for locomotor circuitry activation in the non-injured human by transcutaneous electrical spinal cord stimulation (tSCS) has been described. We show that continuous tSCS over T11-T12 vertebrae at 5-40 Hz induced involuntary locomotor-like stepping movements in subjects with their legs in a gravity-independent position. The increase of frequency of tSCS from 5 to 30 Hz augmented the amplitude of evoked stepping movements. The duration of cycle period did not depend on frequency of tSCS. During tSCS the hip, knee and ankle joints were involved in the stepping performance. It has been suggested that tSCS activates the locomotor circuitry through the dorsal roots. It appears that tSCS can be used as a non-invasive method in rehabilitation of spinal pathology.

  15. Integrative assessment of kick boxers’ brain blood circulation and bio-electrical activity in conditions of correction technologies’ application

    Directory of Open Access Journals (Sweden)

    Romanov Y.N.

    2016-06-01

    Full Text Available Purpose: to scientifically substantiate the role of para-vertebral impacts on blood circulation and bio-electrical activity of kick boxers’ cortex. Material: in the research participated kick boxers (main group, n=62 and university students (control group, n=25 of 18-23 years’ age. Assessment of para-vertebral impacts with device Armos and classic massage was fulfilled with the help of the following methodic: trans-cranial dopplerography of head main arteries and cortex EEG of the tested. Results: it was found that with the help of para-vertebral impacts by device Armos linear velocity of cerebral blood flow reduces to normal limits and in- and inter-hemispheres’ interaction strength increases. Conclusions: para-vertebral impacts by device Armos activate integrative processes and inter-hemispheres’ interactions of different cortex areas of kick boxers. It can witness about better formation of functional systems, ensuring sports efficiency.

  16. Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation.

    Science.gov (United States)

    Yan, Tiantian; Jiang, Xupin; Guo, Xiaowei; Chen, Wen; Tang, Di; Zhang, Junhui; Zhang, Xingyue; Zhang, Dongxia; Zhang, Qiong; Jia, Jiezhi; Huang, Yuesheng

    2017-02-01

    Naturally occurring electric fields (EFs) are an intrinsic property of wounds. Endogenous EFs in skin wounds play critical roles in the dynamic and well-ordered biological process of wound healing. The epithelial-to-mesenchymal transition (EMT) allows keratinocytes to transition from sedentary cells to motile cells, facilitating wound healing. However, EMT-related studies have been performed without considering endogenous EFs. Thus, the relationship between electrical signals and the EMT remain elusive. Phosphatase and tension homolog (PTEN) and mammalian target of rapamycin complex 1 (mTORC1) are key molecules in sensing electrical cues, and they play significant roles in cellular responses to EFs. In addition, these molecules are closely related to the occurrence of the EMT in other cells. We used primary human keratinocytes to investigate the influence of EFs on the EMT as well as the roles of PTEN and mTORC1 in this process. The effects of EFs on the EMT were investigated by analyzing the levels of specific proteins and transcription factors. The roles of mTORC1 and PTEN and their relationship with each other were studied via pharmacological inhibition or genetic knockdown. A Zeiss imaging system and scratch assays were used to study single-cell motility and monolayer cell migration. EFs induced a range of both biochemical changes (e.g., increased Snail, Slug, vimentin, and N-cadherin expression, decreased E-cadherin expression) and functional changes (e.g., enhanced migratory capacity) that are characteristic of the EMT. EF-stimulated cells exhibited suppressed PTEN expression, and further PTEN downregulation led to the acquisition of more mesenchymal features and the loss of epithelial characteristics, which was accompanied by increased migratory capacity. PTEN overexpression reversed the EF-induced EMT and inhibited the migratory capacity of keratinocytes. EF-induced mTORC1 activation was a required component of the causal relationship between PTEN

  17. Activated carbon derived from marine Posidonia Oceanica for electric energy storage

    Directory of Open Access Journals (Sweden)

    N. Boukmouche

    2014-07-01

    Full Text Available In this paper, the synthesis and characterization of activated carbon from marine Posidonia Oceanica were studied. The activated carbon was prepared by a simple process namely pyrolysis under inert atmosphere. The activated carbon can be used as electrodes for supercapacitor devices. X-ray diffraction result revealed a polycrystalline graphitic structure. While scanning electron microscope investigation showed a layered structure with micropores. The EDS analysis showed that the activated carbon contains the carbon element in high atomic percentage. Electrochemical impedance spectroscopy revealed a capacitive behavior (electrostatic phenomena. The specific capacity per unit area of the electrochemical double layer of activated carbon electrode in sulfuric acid electrolyte was 3.16 F cm−2. Cyclic voltammetry and galvanostatic chronopotentiometry demonstrated that the electrode has excellent electrochemical reversibility. It has been found that the surface capacitance was strongly related to the specific surface area and pore size.

  18. The effects of androgen on penile reflex, erectile responseto electrical stimulation and penile NOS activity in the rat

    Institute of Scientific and Technical Information of China (English)

    SeongIISeo

    1999-01-01

    Aim: To investigate the effects of androgen on penile erection through the reflex arc and penile corpus cavernosum,and study the respective roles of testosterone (T) and dihydrotestosterone (DHT) in penile erection ira rats. Methods:Male Sprague-Dawley rats were castrated and implanted with silastic brand silicone tube containing T or DHT, with orwithout daily injections of a 5a-reductase inhibitor, MKM-434. The penile reflex, erectile response to electrical stimula-tion (ES) of the cavernous nerves and penile nitric-oxide synthase (NOS) activity were observed under varying andro-genic status. Results: Penile reflex erection in the rat was, on the whole, related to serum T levels though the numberof glans engorgernents was not. The number of cups and flips was significantly decreased by castration, and restoredto the control level by T supplementation. Erectile response to ES and NOS activity in penile tissue was also related toserum T level. T administered together with a ,5a-reductase inhibitor no longer restored the number of reflex erection,erectile responses to ES and NOS activity in the corpus cavemosum. Conclusion: Androgen influenced the penile re-flex arc, corpus cavemosum, and the perinea] striated muscles, ha reflex erection, erectile response to ES and penileNOS activity in the rat, T seeras to be first conyerted to DHT, the more active androgen modality. (Asian JAndrol1999Dec; 1: 169-174)

  19. ACETYL-L-CARNITINE AFFECTS THE ELECTRICAL ACTIVITY OF MECHANOSENSORY NEURONS IN HIRUDO MEDICINALIS GANGLIA

    Directory of Open Access Journals (Sweden)

    Giovanna Traina

    2017-04-01

    Full Text Available Was previously discovered that in the leech Hirudo medicinalis, acetyl-l-carnitine (ALC affects forms of non-associative learning, such as sensitization and dishabituation, due to nociceptive stimulation of the dorsal skin in the swim induction behavioural paradigm, likely through modulating the activity of the mechanosensory tactile (T neurons, which initiate swimming. Since was found that ALC impaired sensitization and dishabituation, both of which are mediated by the neurotransmitter serotonin, the present study analyzed how ALC may interfere with the sensitizing response. Was already found that ALC reduced the activity of nociceptive (N neurons, which modulate T cell activity through serotonergic mediation.

  20. Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator

    NARCIS (Netherlands)

    Chang Liao, Mei-Ling; de Boer, Teun P; Mutoh, Hiroki; Raad, Nour; Richter, Claudia; Wagner, Eva; Downie, Bryan R; Unsöld, Bernhard; Arooj, Iqra; Streckfuss-Bömeke, Katrin; Döker, Stephan; Luther, Stefan; Guan, Kaomei; Wagner, Stefan; Lehnart, Stephan E; Maier, Lars S; Stühmer, Walter; Wettwer, Erich; van Veen, Toon; Morlock, Michael M; Knöpfel, Thomas; Zimmermann, Wolfram-Hubertus

    2015-01-01

    RATIONALE: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac

  1. A synaptic input portal for a mapped clock oscillator model of neuronal electrical rhythmic activity

    Science.gov (United States)

    Zariffa, José; Ebden, Mark; Bardakjian, Berj L.

    2004-09-01

    Neuronal electrical oscillations play a central role in a variety of situations, such as epilepsy and learning. The mapped clock oscillator (MCO) model is a general model of transmembrane voltage oscillations in excitable cells. In order to be able to investigate the behaviour of neuronal oscillator populations, we present a neuronal version of the model. The neuronal MCO includes an extra input portal, the synaptic portal, which can reflect the biological relationships in a chemical synapse between the frequency of the presynaptic action potentials and the postsynaptic resting level, which in turn affects the frequency of the postsynaptic potentials. We propose that the synaptic input-output relationship must include a power function in order to be able to reproduce physiological behaviour such as resting level saturation. One linear and two power functions (Butterworth and sigmoidal) are investigated, using the case of an inhibitory synapse. The linear relation was not able to produce physiologically plausible behaviour, whereas both the power function examples were appropriate. The resulting neuronal MCO model can be tailored to a variety of neuronal cell types, and can be used to investigate complex population behaviour, such as the influence of network topology and stochastic resonance.

  2. Power Deals. Mergers and acquisitions activity within the global electricity and gas market. 2010 Annual Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    The global power deal market is finally seeing an upward trend in momentum from the lows reached in 2009, with the total deal value in the non-renewable electricity and gas sectors up 19% year on year from USD 97.6bn to USD 116bn in 2010 - a year which also saw an end to the deal stalemate in the US with a renewed deal flow that looks set to continue this year. Compared to the heady mountain of power deals transacted between 2005-2008, deal values remain low but conditions are in place for a return at least to the foothills of these peaks, according to PwC's annual Power Deals review. Globalisation of the power sector is moving forward on a number of fronts with, for example, companies looking at gaining a larger presence in growth markets, acquisitions of global network asset portfolios with strong international interest in infrastructure assets and signs of greater Chinese involvement, not just from grid companies but also independent power producers.

  3. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    Science.gov (United States)

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia.

  4. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  5. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  6. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Science.gov (United States)

    Riz, Michela; Pedersen, Morten Gram

    2015-12-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  7. Electrical stimulation with periodic alternating intervals stimulates neuronal cells to produce neurotrophins and cytokines through activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yamamoto, Kenta; Yamamoto, Toshiro; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Kishida, Tsunao; Mazda, Osam; Kanamura, Narisato

    2015-12-01

    Peripheral neuropathy is a representative complication of dental surgery. Electrical therapy, based on electrical stimulation with periodic alternating intervals (ES-PAI), may promote nerve regeneration after peripheral nerve injury in a non-invasive manner, potentially providing an effective therapy for neuropathy. This study aimed to analyze the molecular mechanisms underlying the nerve recovery stimulated by ES-PAI. In brief, ES-PAI was applied to a neuronal cell line, Neuro2A, at various intensities using the pulse generator apparatus, FREUDE. Cell viability, neurotrophin mRNA expression, and cytokine production were examined using a tetrazolium-based assay, real-time RT-PCR, and ELISA, respectively. Mitogen-activated protein kinase (MAPK) signaling was assessed using flow cytometry. It was found that ES-PAI increased the viability of cells and elevated expression of nerve growth factor (NGF) and neurotrophin-3 (NT-3); ESPAI also augmented vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, which was restored by addition of p38 inhibitors. Phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK-1/2) was augmented by ES-PAI. Hence, ES-PAI may ameliorate peripheral neuropathy by promoting neuronal cell proliferation and production of neurogenic factors by activating p38 and ERK-1/2 pathways.

  8. Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation

    Science.gov (United States)

    Predan, F.; Reinwand, D.; Klinger, V.; Dimroth, F.

    2015-10-01

    Direct wafer bonds of the material system n-GaSb/n-Si have been achieved by means of a low-temperature direct wafer bonding process, enabling an optical transparency of the bonds along with a high electrical conductivity of the boundary layer. In the used technique, the surfaces are activated by sputter-etching with an argon fast-atom-beam (FAB) and bonded in ultra-high vacuum. The bonds were annealed at temperatures between 300 and 400 °C, followed by an optical, mechanical and electrical characterization of the interface. Additionally, the influence of the sputtering on the surface topography of the GaSb was explicitly investigated. Fully bonded wafer pairs with high bonding strengths were found, as no blade could be inserted into the bonds without destroying the samples. The interfacial resistivities of the bonded wafers were significantly reduced by optimizing the process parameters, by which Ohmic interfacial resistivities of less than 5 mΩ cm2 were reached reproducibly. These promising results make the monolithic integration of GaSb on Si attractive for various applications.

  9. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    Science.gov (United States)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  10. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    Science.gov (United States)

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  11. Effect of pulsed electric field (PEF) on structures and antioxidant activity of soybean source peptides-SHCMN.

    Science.gov (United States)

    Lin, Songyi; Liang, Rong; Li, Xingfang; Xing, Jie; Yuan, Yuan

    2016-12-15

    Recently, high-intensity pulsed electric field (PEF) has successfully used in improvement of antioxidant activity. Ser-His-Cys-Met-Asn (SHCMN) obtained from soybean protein was chosen to investigate the phenomenon of antioxidant activity improvement. Effects of PEF treatment on antioxidant activity of SHCMN were evaluated by DPPH radical inhibition. Nuclear magnetic resonance (NMR), mid-infrared (MIR), circular dichroism (CD) were used to analyze structures of SHCMN. Two-factor-at-a-time results show that DPPH radical inhibition of SHCMN is significantly (Pelectric field intensity of 5kV/cm, pulse frequency of 2400Hz, and retention time of 2h. In addition, MIR and NMR spectra show that the basic structure of peptides SHCMN is stable by PEF treatment. But the secondary structures (α-helix, β-turn, and random coil) can be affected and zeta potential of PEF-treated SHCNM was reduced to 0.59±0.03mV. The antioxidant activity improvement of SHCMN might result from the changes of secondary structures and zeta potential.

  12. Pulsed electric field processing preserves the antiproliferative activity of the milk fat globule membrane on colon carcinoma cells.

    Science.gov (United States)

    Xu, S; Walkling-Ribeiro, M; Griffiths, M W; Corredig, M

    2015-05-01

    The present work evaluated the effect of processing on the antiproliferative activities of milk fat globule membrane (MFGM) extracts. The antiproliferative activity on human adenocarcinoma HT-29 cells of untreated MFGM extracts were compared with those extracted from pasteurized cream, thermally treated cream, or cream subjected to pulsed electrical field (PEF) processing. The PEF with a 37 kV/cm field strength applied for 1,705μs at 50 and 65°C was applied to untreated cream collected from a local dairy. Heating at 50 or 65°C for 3min (the passage time in the PEF chamber) was also tested to evaluate the heating effect during PEF treatments. The MFGM extracted from pasteurized cream did not show an antiproliferative activity. On the other hand, isolates from PEF-treated cream showed activity similar to that of untreated samples. It was also shown that PEF induced interactions between β-lactoglobulin and MFGM proteins at 65°C, whereas the phospholipid composition remained unaltered. This work demonstrates the potential of PEF not only a means to produce a microbiologically safe product, but also as a process preserving the biofunctionality of the MFGM.

  13. Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain.

    Science.gov (United States)

    Matsuo, Hideaki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Watanabe, Shuji; Takeura, Naoto; Sugita, Daisuke; Shimada, Seiichiro; Nakatsuka, Terumasa; Baba, Hisatoshi

    2014-09-01

    Although transcutaneous electrical nerve stimulation (TENS) is widely used for the treatment of neuropathic pain, its effectiveness and mechanism of action in reducing neuropathic pain remain uncertain. We investigated the effects of early TENS (starting from the day after surgery) in mice with neuropathic pain, on hyperalgesia, glial cell activation, pain transmission neuron sensitization, expression of proinflammatory cytokines, and opioid receptors in the spinal dorsal horn. Following nerve injury, TENS and behavioral tests were performed every day. Immunohistochemical, immunoblot, and flow cytometric analysis of the lumbar spinal cord were performed after 8 days. Early TENS reduced mechanical and thermal hyperalgesia and decreased the activation of microglia and astrocytes (PEarly TENS decreased p-p38 within microglia (Pearly TENS relieved hyperalgesia in our mouse model of neuropathic pain by inhibiting glial activation, MAP kinase activation, PKC-γ, and p-CREB expression, and proinflammatory cytokines expression, as well as maintenance of spinal opioid receptors. The findings indicate that TENS treatment is more effective when applied as early after nerve injury as possible. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Development of knowledge about electricity and magnetism during a visit to a science museum and related post-visit activities

    Science.gov (United States)

    Anderson, David; Lucas, Keith B.; Ginns, Ian S.; Dierking, Lynn D.

    2000-09-01

    This article reports on part of a larger study of how 11- and 12-year-old students construct knowledge about electricity and magnetism by drawing on aspects of their experiences during the course of a school visit to an interactive science museum and subsequent classroom activities linked to the science museum exhibits. The significance of this study is that it focuses on an aspect of school visits to informal learning centers that has been neglected by researchers in the past, namely the influence of post-visit activities in the classroom on subsequent learning and knowledge construction. This study provides evidence that the integrated series of post-visit activities resulted in students constructing and reconstructing their personal knowledge of science concepts and principles represented in the science museum exhibits, sometimes toward the accepted scientific understanding and sometimes in different and surprising ways. A descriptive interpretive approach was adopted, with principal data sources comprising student-generated concept maps and semistructured interviews at three stages of the study. Findings demonstrate the interrelationships between learning that occurs at school, home, and in informal learning settings. The study also underscores for classroom teachers and staff of science museums and similar centers the importance of planning pre- and post-visit activities. The importance of this planning is not only to support the development of scientific conceptions, but also to detect and respond to alternative conceptions that may be produced or strengthened during a visit to an informal learning center.

  15. Distribution of electrical activation to the external intercostal muscles during high frequency spinal cord stimulation in dogs

    Science.gov (United States)

    DiMarco, Anthony F; Kowalski, Krzysztof E

    2011-01-01

    Abstract In contrast to previous methods of electrical stimulation of the inspiratory muscles, high frequency spinal cord stimulation (HF-SCS) results in more physiological activation of these muscles. The spatial distribution of activation to the external intercostal muscles by this method is unknown. In anaesthetized dogs, multiunit and single motor unit (SMU) EMG activity was monitored in the dorsal portion of the 3rd, 5th and 7th interspaces and ventral portion of the 3rd interspace during spontaneous breathing and HF-SCS following C2 spinal section. Stimulus amplitude during HF-SCS was adjusted such that inspired volumes matched spontaneous breathing (Protocol 1). During HF-SCS, mean peak SMU firing frequency was highest in the 3rd interspace (dorsal) (18.8 ± 0.3 Hz) and significantly lower in the 3rd interspace (ventral) (12.2 ± 0.2 Hz) and 5th interspace (dorsal) (15.3 ± 0.3 Hz) (P intercostal muscles during HF-SCS is similar to that occurring during spontaneous breathing and (b) differential descending synaptic input from supraspinal centres is not a required component of the differential spatial distribution of external intercostal muscle activation. HF-SCS may provide a more physiological method of inspiratory muscle pacing. PMID:21242258

  16. Topographic imaging of the atrial electrical activity during atrial fibrillation for the analysis of uniform distributions of the surface electrical potentials

    NARCIS (Netherlands)

    Bonizzi, Pietro; Meste, Olivier; Zarzoso, Vicente; Westra, Ronald; Karel, Joël; Guillem, Maria S; Castells, Francisco

    2011-01-01

    Atrial fibrillation (AF) is a progressive arrhythmia which causes time dependent impairing of the cardiac muscle. This makes that proper therapeutic interventions depend on the degree of AF progression, i.e., on the temporal decrease of the organization of the electrical patterns observed during AF.

  17. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted...... in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes...

  18. Temperature dependence of spectroscopic and electrical properties of Cr(Fe):ZnSe laser active materials

    Science.gov (United States)

    Gafarov, Ozarfar; Watkins, Rick; Bernard, Chandler; Fedorov, Vladimir; Mirov, Sergey

    2017-02-01

    Temperature influence on spectroscopic characteristics is crucial for many aspects of laser engineering including output noise, single frequency oscillation, and thermal bistability. We report on the spectroscopic characterization of chromium and iron doped ZnSe gain element media at temperatures ranging from 77K to 389K. Heating of Cr:ZnSe resulted in the absorption peak shifting to a shorter wavelength from 1.806 μm at 77K to 1.753 μm at 389K. It also resulted in broadening of the absorption band from Δλ=260 cm-1nm to Δλ=373 cm-1nm and decreasing of the absorption cross section by 69%. Similar characterization was done for Fe:ZnSe laser material. The cooling of the Fe:ZnSe crystal from room temperature to 77K resulted in a 32% increase of the absorption coefficient at 2.94 μm which is usually used as a pump source. We also studied the absorption of the electrical free-carriers in n-type Al:ZnSe crystals in visible and mid- IR absorption spectral ranges. Diffusion of Al into ZnSe samples was achieved by annealing at 1000°C during 4 days in Al vapors. It was demonstrated that free-carriers absorption of Al:ZnSe samples with resistivity σ=100-150 Ω×cm resulted in an increase of the absorption coefficient at 2.4 μm up to 2.5 cm-1.

  19. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury : Effect of duty cycle

    NARCIS (Netherlands)

    Smit, Christof A. J.; Legemate, Karin J. A.; de Koning, Anja; de Groot, Sonja; Stolwijk-Swuste, Janneke M.; Janssen, Thomas W. J.

    2013-01-01

    Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation on interf

  20. Assessment of muscle electrical activity in spinal cord injury subjects during quiet standing.

    Science.gov (United States)

    Lewko, J P

    1996-03-01

    Disturbed motor control due to a spinal cord lesion is generally considered to be the cause of unusual standing utilized by those people suffering from spinal cord injury (SCI). Electromyographic (EMG) leg muscle activity during quiet standing was analyzed in four functional groups of SCI subjects and compared to the data of healthy people. A rating system for visual assessment of the stripchart recording was developed and its adequacy was confirmed by comparison of the rating system with computerized integrated EMG values of some of the recordings. The division of 47 subjects into functional groups was based on their ambulatory capabilities ie a non-support group, crutches, cane and walker user groups. Mean total muscle EMG activity was the highest in the group of subjects standing without support and it was significantly higher when compared to the other groups including the control group. Comparison between more and less active legs within each group showed significant differences in the non-support and crutches groups, whereas cane, walker and control groups showed nearly symmetric EMG patterns during standing. Analysis of the contribution of single muscles to the asymmetry of standing showed significantly higher activity in hamstring and triceps surae muscles than in other muscles in the non-support group. No significant differences in the activity of single muscles compared to their contralateral pair between more and less active leg were obtained in the remaining groups. It is evident, however, that different support devices used by SCI subjects greatly influence EMG patterns of postural muscles. The present findings suggest that disturbed conduction in the spinal cord is related to altered motor strategies employed by SCI subjects in attempts to perform the same volitional act as before the injury.

  1. The active learning educational organisation: a case study of innovation in electrical engineering education

    NARCIS (Netherlands)

    Vos, Henk

    2004-01-01

    The introduction of active learning in engineering education is often started by enthusiastic teachers or change agents. They usually encounter resistance from stakeholders such as colleagues, department boards or students. For a successful introduction these stakeholders all have to learn what

  2. Regional brain electrical activity in posttraumatic stress disorder after motor vehicle accident.

    Science.gov (United States)

    Rabe, Sirko; Beauducel, André; Zöllner, Tanja; Maercker, Andreas; Karl, Anke

    2006-11-01

    This study examined whether patients with posttraumatic stress disorder (PTSD) related to motor vehicle accidents (MVAs) would show an abnormal pattern of electroencephalographic (EEG) alpha asymmetries, which has been proposed for particular types of anxiety. Patients with PTSD (n = 22) or subsyndromal PTSD (n = 21), traumatized controls without PTSD (non-PTSD with MVA; n = 21), and healthy controls without MVA (n = 23) underwent measurement of EEG activity during baseline and exposure to a neutral, a positive, a negative, and an accident-related picture. Differences in brain asymmetry between groups were observed only during exposure to trauma-related material. PTSD and subsyndromal PTSD patients showed a pattern of enhanced right anterior and posterior activation, whereas non-PTSD with MVA participants showed the opposite pattern. Furthermore, posterior asymmetry in nontraumatized healthy controls varied with gender, with female participants showing a pattern of higher right posterior activation. The results support the hypothesis that symptomatic MVA survivors are characterized by a pattern of right hemisphere activation that is associated with anxious arousal and symptoms of PTSD during processing of trauma-specific information. (c) 2006 APA, all rights reserved.

  3. Local induction of pacemaking activity in a monolayer of electrically coupled quiescent NRK fibroblasts

    NARCIS (Netherlands)

    Dernison, M.M.; Kusters, J.M.A.M.; Peters, P.H.J.; Meerwijk, W.P. van; Ypey, D.L.; Gielen, C.C.A.M.; Zoelen, E.J.J. van; Theuvenet, A.P.R.

    2008-01-01

    Cultures of normal rat kidney (NRK) fibroblasts may display spontaneous calcium action potentials which propagate throughout the cellular monolayer. Pacemaking activity of NRK cells was studied by patch clamp electrophysiology and vital calcium imaging, using a new experimental approach in which a r

  4. Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance.

    NARCIS (Netherlands)

    Krugers, H.J.; Karst, H.; Joëls, M.

    2012-01-01

    One of the core reactions in response to a stressful situation is the activation of the hypothalamus-pituitary-adrenal axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (nor)adrenaline, these hormones enable and promo

  5. Emergent transformation games: exploring social innovation agency and activation through the case of the Belgian electricity blackout threat

    Directory of Open Access Journals (Sweden)

    Bonno Pel

    2016-06-01

    Full Text Available The persistence of current societal problems has given rise to a quest for transformative social innovations. As social innovation actors seek to become change makers, it has been suggested that they need to play into impactful macrodevelopments or "game-changers". Here, we aim to deepen the understanding of the social innovation agency in these transformation games. We analyze assumptions about the game metaphor, invoking insights from actor-network theory. The very emergence of transformation games is identified as a crucial but easily overlooked issue. As explored through the recent electricity blackout threat in Belgium, some current transformation games are populated with largely passive players. This illustrative case demonstrates that socially innovative agency cannot be presupposed. In some transformation games, the crucial game-changing effect is to start the game by activating the players.

  6. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra

    2015-12-01

    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  7. Postinduction Paced Pulseless Electrical Activity in a Patient With a History of Oropharyngeal Instrumentation–Induced Reflex Circulatory Collapse

    Science.gov (United States)

    Kline, Ryan J.; Pham, Ky; Labrie-Brown, Carmen L.; Mancuso, Ken; LeLorier, Paul; Riopelle, James; Kaye, Alan David

    2016-01-01

    Background: Reflex hypotension and bradycardia have been reported to occur following administration of several drugs associated with administration of anesthesia and also following a variety of procedural stimuli. Case Report: A 54-year-old postmenopausal female with a history of asystole associated with sedated upper gastrointestinal endoscopy and post–anesthetic-induction tracheal intubation received advanced cardiac resuscitation after insertion of a temporary transvenous pacemaker failed to prevent pulseless electrical activity. The patient's condition stabilized, and she underwent successful cataract extraction, intraocular lens implantation, and pars plana vitrectomy. Conclusion: Cardiac pacemaker insertion prior to performance of a procedure historically associated with reflex circulatory collapse can be expected to protect a patient from bradycardia but not necessarily hypotension. PMID:27660584

  8. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    Institute of Scientific and Technical Information of China (English)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons.The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied.It is found that self-sustained rhythmic firing patterns,which are closely correlated with the cognitive functions,are significantly modified due to the self-organizing of the network in the weak AC field.The activities of the neural networks are affected by the synaptic connection strength,the external stimuli,and so on.In the presence of learning rules,the synaptic connections can be modulated by the external stimuli,which will further enhance the sensitivity of the network to the external signal.The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.

  9. Integrated Measurements of Electrical Activity, Oxygen Tension, Blood Flow, and Ca2+ -Signaling in Rodents In Vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Thomsen, Kirsten; Lauritzen, Martin

    2014-01-01

    in rodent preparation. We also describe methods for recording of cerebral blood flow (CBF), tissue partial pressure of oxygen (tpO2), and cytosolic calcium transients. We finally give examples where electrophysiology, blood flow, metabolism, and calcium transients have been studied together.......In order to assess perfusion and metabolic responses in relation to neural function we need to know the cellular signaling network, which types of neurons and astrocytes are involved, and the timing of their activation. We here present the basic electrophysiological indicators of neuronal function......, short description of the methods commonly used for recording of electrophysiological signals, examples of data analysis and limitations of the methods. This chapter describes the origin of the extracellularly recorded electrical signal, with special regard to the EEG, local field potentials, and spikes...

  10. [Electrical activity of the visual cortex under conditions of altered monoamine levels in the brain of animals].

    Science.gov (United States)

    Vorob'ev, V V; Gal'chenko, A A; Deriugina, O N

    1990-01-01

    In experiments on 8 rabbits and 12 rats changes in electrograms of the visual cortex of alert animals were studied under photic stimulation in conditions of pharmacological action on monoamine (MA) brain systems. After injection of MA precursors (5-oxitriptophane and d, 1-dioxiphenylalanine) following phenomena were observed: a) decrease of the amplitude of the averaged evoked potentials to rhythmic photic stimuli (1-20 imp. sec.-1); b) an enhancement of fast (15-25 Hz) oscillations in the cortical spontaneous electrical activity and weakening and modification of the effects of the blockader of synthesis of MA-alpha-methyl-dioxiphenylalanine. Under light stimulation potentiation of MA precursors effects was observed in the frequency spectra of electrocorticograms. In the same conditions the specificity of action of cathecholamines precursor was revealed in the form of an increase of power of rhythms of 5-7 Hz and it; decrease in 2-3 Hz. Possible mechanisms of the revealed phenomena are discussed.

  11. Multi-functional Converter with Integrated Motor Control, Battery Charging and Active Module Balancing for Electric Vehicular Application

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Schaltz, Erik; Teodorescu, Remus

    2014-01-01

    , weight and volume in comparison with other Li-Ion based chemistries. The control of the energy flow has been done through a Modular Multilevel Converter (MMC), which has demonstrated advantages over 2 level converters in terms of efficiency, fault tolerant operation, flexible operation modes. It has been......In order to reduce the fuel consumption and the acoustical noise generated by refuse lorries, electrification of the waste compactor unit is a very promising solution. For the electrical energy storage Lithium-Sulfur (Li-S) battery technology has been selected with potential for reducing the cost...... used successfully in HVDC/FACTS and large drive applications. In this paper the use of MMC for a battery driven waste compactor unit addressed with integrated functionality including: motor driver, battery charge and active balancing is presented. The challenges addressed here are related to the design...

  12. A framework for electric vehicle charging strategy optimization tested for travel demand generated by an activity-based model

    OpenAIRE

    Usman, Muhammad; Knapen, Luk; Kochan, Bruno; Yasar, Ansar; Bellemans, Tom; Janssens, Davy; WETS, Geert

    2015-01-01

    This paper presents the cost optimization model which plans a charging strategy for an electric vehicle. In case of time dependent electric prices an intelligent planner is required which plans the charging strategy only at cheaper moments and places to keep the vehicle charged enough to complete its scheduled travels. This model estimates the required charging energy to travel by the electric vehicle. Then using the time dependent electric prices and available power at each pe...

  13. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish.

    Science.gov (United States)

    Sinnett, Philip M; Markham, Michael R

    2015-05-01

    Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200-600Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve.

  14. Activation of the cGMP/PKG pathway inhibits electrical activity in rabbit urethral interstitial cells of Cajal by reducing the spatial spread of Ca2+ waves.

    Science.gov (United States)

    Sergeant, G P; Johnston, Louise; McHale, N G; Thornbury, K D; Hollywood, M A

    2006-07-01

    In the present study we used a combination of patch clamping and fast confocal Ca2+ imaging to examine the effects of activators of the nitric oxide (NO)/cGMP pathway on pacemaker activity in freshly dispersed ICC from the rabbit urethra, using the amphotericin B perforated patch configuration of the patch-clamp technique. The nitric oxide donor, DEA-NO, the soluble guanylyl cyclase activator YC-1 and the membrane-permeant analogue of cGMP, 8-Br-cGMP inhibited spontaneous transient depolarizations (STDs) and spontaneous transient inward currents (STICs) recorded under current-clamp and voltage-clamp conditions, respectively. Caffeine-evoked Cl- currents were unaltered in the presence of SP-8-Br-PET-cGMPs, suggesting that activation of the cGMP/PKG pathway does not block Cl- channels directly or interfere with Ca2+ release via ryanodine receptors (RyR). However, noradrenaline-evoked Cl- currents were attenuated by SP-8-Br-PET-cGMPs, suggesting that activation of cGMP-dependent protein kinase (PKG) may modulate release of Ca2+ via IP3 receptors (IP3R). When urethral interstitial cells (ICC) were loaded with Fluo4-AM (2 microm), and viewed with a confocal microscope, they fired regular propagating Ca2+ waves, which originated in one or more regions of the cell. Application of DEA-NO or other activators of the cGMP/PKG pathway did not significantly affect the oscillation frequency of these cells, but did significantly reduce their spatial spread. These effects were mimicked by the IP3R blocker, 2-APB (100 microm). These data suggest that NO donors and activators of the cGMP pathway inhibit electrical activity of urethral ICC by reducing the spatial spread of Ca2+ waves, rather than decreasing wave frequency.

  15. Evidence of self-organization in brain electrical activity using wavelet-based informational tools

    Science.gov (United States)

    Rosso, O. A.; Martin, M. T.; Plastino, A.

    2005-03-01

    In the present work, we show that appropriate information-theory tools based on the wavelet transform (relative wavelet energy; normalized total wavelet entropy, H; generalized wavelet complexity, CW), when applied to tonic-clonic epileptic EEG data, provide one with valuable insights into the dynamics of neural activity. Twenty tonic-clonic secondary generalized epileptic records pertaining to eight patients have been analyzed. If the electromyographic activity is excluded the difference between the ictal and pre-ictal mean entropic values (ΔH=-) is negative in 95% of the cases (pictal)>-ictal)>) is positive in 85% of the cases (p=0.0002). Thus during the seizure entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus in this kind of seizures triggers a self-organized brain state characterized by both order and maximal complexity.

  16. Changes in Mice Brain Spontaneous Electrical Activity during Cortical Spreading Depression due to Mobile Phone Radiation

    Science.gov (United States)

    Sallam, Samera M.; Mohamed, Ehab I.; Dawood, Abdel-Fattah B.

    2008-01-01

    The objective of the present study was to investigate changes in spontaneous EEG activity during cortical spreading depression (CSD) in mice brain. The cortical region of anaesthetized mice were exposed to the electromagnetic fields (EMFs) emitted from a mobile phone (MP, 935.2-960.2 MHz, 41.8 mW/cm2). The effect of EMFs on EEG was investigated before and after exposure to different stimuli (MP, 2% KCl, and MP & 2% KCl). The records of brain spontaneous EEG activity, slow potential changes (SPC), and spindle shaped firings were obtained through an interfaced computer. The results showed increases in the amplitude of evoked spindles by about 87%, 17%, and 226% for MP, 2% KCl, and MP & 2% KCl; respectively, as compared to values for the control group. These results showed that the evoked spindle is a more sensitive indicator of the effect of exposure to EMFs from MP. PMID:23675079

  17. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    OpenAIRE

    Katafuchi Toshihiko; Takaki Atsushi; Rashid Md Harunor; Furue Hidemasa; Koga Kohei; Yoshimura Megumu

    2005-01-01

    Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured e...

  18. Effect of Activated Reagent to the Parameters of Electrical Materials Supercapacitor

    Directory of Open Access Journals (Sweden)

    Z.D. Kovalyuk

    2016-06-01

    Full Text Available In this work the production and investigation of nano-porous carbon material from organic raw materials of plant origin with different promoters – KOH and ZnCl2. The basic energy capacitive characteristics of materials, the specific capacity of the materials obtained with KOH and ZnCl2 activation is 205 F/g and 138 F/g, respectively

  19. PECULIARITIES OF BRAIN ELECTRIC ACTIVITY IN YOUNG MALES AND FEMALES OF DIFFERENT CREATIVITY LEVELS

    OpenAIRE

    2013-01-01

    This article shows that the peculiarities of divergent and convergent thinking in young males and females of various creativity levels are stipulated by a definite EEG frequency-and-spa-tial arrangement. Young males and females of mixed and left lateral arrangement profiles demonstrate an expressed activity of occipital, central, and temporal areas of both cerebral hemispheres. In young males and females of right LAP (lateral arrangement profile), connections are clearly localized in case of ...

  20. Biophysical Model of Cortical Network Activity and the Influence of Electrical Stimulation

    Science.gov (United States)

    2015-11-13

    threshold is most prominent in the case of multipolar neurons with large-diameter basal/apical dendrites that are 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...axonal activation threshold is most prominent in the case of multipolar neurons with large-diameter basal/apical dendrites that are oriented parallel...distal axonal segments in neurons . The most distal axonal segments are locations where presynaptic action potentials can originate regardless of the

  1. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding.

    Science.gov (United States)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R; Born, Jan; Marshall, Lisa

    2009-09-08

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding.

  2. Initial results of bio-potential signal (Seismic Electric Signal) related to seismic activities

    Science.gov (United States)

    Kushwah, Vinod; Tiwari, Rudraksh; Gaur, Mulayam; Tiwari, Rajeev

    2013-08-01

    In recent year, there has been growing interest in the possible use of electromagnetic observations to study earthquakes and possible precursors prior to seismic activity, in response to the success in United States, Japan, Russia, China, and other countries using seismo-electromagnetic methods. We have established a new experimental setup (i.e., biopotential sensor) in Farah region (geographic coordinates: 27.17°N, 77.47°E), Mathura, India. The setup has started operating and analyzed the data since November 2011. The data have been tested by various methods and a good correlation with seismic events was found; thus, a real-time analysis from 21:00 p.m. through 8:00 a.m. every day was initiated. First, we recorded the amplitude enhancement in bio-potential and found positive correlation with seismic activities (near Delhi and Rajasthan) and analyzed the data with solar flares and magnetic storms during the same period, finding a negative correlation of these events. The studies of these events are in progress with statistical analysis of the data. We chose the observing site in Farah region because this region is well known for being a site of a conductive channel of seismic activity.

  3. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    Science.gov (United States)

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.

  4. Electrical activation to the parasternal intercostal muscles during high-frequency spinal cord stimulation in dogs

    Science.gov (United States)

    Kowalski, Krzysztof E.

    2014-01-01

    High-frequency spinal cord stimulation (HF-SCS) is a novel technique of inspiratory muscle activation involving stimulation of spinal cord pathways, which may have application as a method to provide inspiratory muscle pacing in ventilator-dependent patients with spinal cord injury. The purpose of the present study was to compare the spatial distribution of motor drive to the parasternal intercostal muscles during spontaneous breathing with that occurring during HF-SCS. In nine anesthetized dogs, HF-SCS was applied at the T2 spinal level. Fine-wire recording electrodes were used to assess single motor unit (SMU) pattern of activation in the medial bundles of the 2nd and 4th and lateral bundles of the 2nd interspaces during spontaneous breathing and HF-SCS following C1 spinal section. Stimulus amplitude during HF-SCS was adjusted such that inspired volumes matched that occurring during spontaneous breathing (protocol 1). During HF-SCS mean peak SMU firing frequency was highest in the medial bundles of the 2nd interspace (17.1 ± 0.6 Hz) and significantly lower in the lateral bundles of the 2nd interspace (13.5 ± 0.5 Hz) and medial bundles of the 4th (15.2 ± 0.7 Hz) (P intercostal muscles during HF-SCS is similar to that occurring during spontaneous breathing, and 2) differential spatial distribution of parasternal intercostal activation does not depend upon differential descending synaptic input from supraspinal centers. PMID:25342707

  5. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    Science.gov (United States)

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO2 (etCO2) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO2 increase and 70 episodes of etCO2 decrease. During etCO2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    Science.gov (United States)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V8C7. The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  7. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    Science.gov (United States)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  8. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    Science.gov (United States)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  9. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.

    Science.gov (United States)

    Fröhlich, Flavio

    2014-03-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

  10. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.

    Science.gov (United States)

    Choi, Hyung-Wook; Frey, H Christopher

    2010-05-01

    The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.

  11. Effectiveness Analysis of Active Stretching Versus Active Stretching Plus Low-Frequency Electrical Stimulation in Children Who Play Soccer and Who Have the Short Hamstring Syndrome.

    Science.gov (United States)

    Piqueras-Rodríguez, Francisco; Palazón-Bru, Antonio; Gil-Guillén, Vicente F

    2016-01-01

    To determine the effectiveness of active stretching (AS) versus AS plus electrical stimulation (stretching + TENS) in young soccer players with the short hamstring syndrome (SHS). Randomized, controlled, single-blind parallel clinical trial with 3 arms and a 2-month follow-up. The assignment ratio was 1:1:1. The study involved young federated soccer players in the town of Jumilla, in the region of Murcia (Spain), who were controlled in a physiotherapy office in 2012. Fifty-one young soccer players (10-16 years) with SHS. Stretching + TENS, AS, and conventional stretching. Straight leg raise (SLR) test, popliteal angle with the passive knee extension (PKE) test, and the toe-touch test (TT). Significant results (P Stretching + TENS produces greater improvement than AS alone, and these are both better than conventional stretching. The use of electrical stimulation combined with AS is a relevant technique for habitual clinical practice that should be systematically integrated in children aged 10 to 16 years who play soccer and who have the SHS.

  12. Evaluation of electrical activity after vagus nerve-preserving distal gastrectomy using multichannel electrogastrography

    Science.gov (United States)

    Murakami, Haruaki; Matsumoto, Hideo; Kubota, Hisako; Higashida, Masaharu; Nakamura, Masafumi; Hirai, Toshihiro

    2013-01-01

    Background Multichannel electrogastrography (M-EGG) can be used to evaluate gastrointestinal motility. The myoelectric activity of the remnant stomach after surgery has not been measured by M-EGG. This study examined whether myoelectric activity varied with surgical technique and compared vagus nerve-preserving distal gastrectomy (VP-DG) with standard distal gastrectomy without vagus nerve preservation (DG). Furthermore, we examined the relationship between the M-EGG findings and patients' postoperative symptoms. Methods Twenty-six patients who underwent VP-DG, 20 who underwent DG, and 12 healthy volunteers as controls were examined with M-EGG. The Gastrointestinal Symptom Rating Scale (GSRS) was used to assess postoperative symptoms. Results Longer periods of normal gastric function (normogastria, 2.0–4.0 cycle min–1) were detected in channel 1 in the VP-DG group than in the DG group in either the fasted or fed state (P<0.05). The percentage of slow wave coupling (%SWC) in the fed state correlated negatively with GSRS scores (reflux, r=–0.59, P=0.02; abdominal pain, r=–0.51, P=0.04, indigestion, r=–0.59, P=0.02 and total score, r=–0.75, P=0.02). Conclusions Slow waves can be recorded non-invasively using M-EGG in the remnant stomach following gastrectomy. The VP-DG group showed better preserved gastric myoelectric activity than the DG group, and the %SWC showed a significant negative correlation with scores of GSRS (reflux, abdominal pain, indigestion and total score) in the VP-DG group. PMID:23832614

  13. Electric space heating scheduling for real-time explicit power control in active distribution networks

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Bernstein, Andrey; Chamorro, Lorenzo Reyes

    2015-01-01

    This paper presents a systematic approach for abstracting the flexibility of a building space heating system and using it within a composable framework for real-time explicit power control of microgrids and, more in general, active distribution networks. In particular, the proposed approach...... is developed within the context of a previously defined microgrid control framework, called COMMELEC, conceived for the explicit and real-time control of these specific networks. The designed control algorithm is totally independent from the need of a building model and allows exploiting the intrinsic thermal...

  14. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Directory of Open Access Journals (Sweden)

    Katafuchi Toshihiko

    2005-03-01

    Full Text Available Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250, whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000 was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three

  15. Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of THz light propagation

    Science.gov (United States)

    Arezoomandan, Sara; Yang, Kai; Sensale-Rodriguez, Berardi

    2014-08-01

    This work studies the terahertz light propagation through graphene-based reconfigurable metasurfaces where the unit cell dimensions are much smaller than the terahertz wavelength. The proposed devices, which poses deep-subwavelength unit cell and active region dimensions can operate as amplitude and/or phase modulators in certain specific frequency bands determined by the device geometry. Reconfigurability is attained via electrostatically tuning the optical conductivity of patterned graphene layers, which are strategically located in each unit cell. The ultra-small unit cell dimensions can be advantageous for beam shaping applications.

  16. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Ganan, J.; Turegano, J.P.; Calama, G. [Area de Engenharia. Escola Superior de Tecnologia e Gestao. Instituto Politecnico de Portalegre, Lugar da Abadesa, Apartado 148, 7301 Portalegre Codex (Portugal); Roman, S.; Al-Kassir, A. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, Badajoz, 06071 (Spain)

    2006-01-15

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 {sup o}C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H{sub 2}, CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA

  17. Cesium blockade of delayed outward currents and electrically induced pacemaker activity in mammalian ventricular myocardium.

    Science.gov (United States)

    Meier, C F; Katzung, B G

    1981-05-01

    The effects of Cs+, 5-25 mM, were studied in cat and guinea pig papillary muscles using voltage clamp and current clamp techniques. In solutions containing normal K+, the major effects of Cs+ were depolarization of the resting potential and reduction of the delayed outward current (ixl) between -80 and -20 mV. Both inward and outward portions of the isochronal current voltage relation (l-s clamps) were reduced by extracellular Cs+. This resulted in a substantial reduction of inward rectification and, by subtraction from the normal I-V relationship, the definition of a Cs+-sensitive component of current. Under current clamp conditions, 5-10 mM Cs+ produced a dose-dependent slowing of repetitive firing induced by depolarization. At higher concentrations (25 mM) the resting potential was depolarized and repetitive activity could not be induced by further depolarization. However, release of hyperpolarizing pulses was followed by prolonged bursts of repetitive action potentials, suggesting partial reversal of blockade or participation of another pacemaker process. The experimental results and a numerical simulation show that under readily attainable conditions, reduction in an outward pacemaker current may slow pacemaker activity.

  18. Electrically and thermally activated ageing mechanisms in metallised polymer film capacitors

    CERN Document Server

    Lee, Y P

    2001-01-01

    This dissertation describes a combined computational and experimental study to understand the fundamental electrostatic, thermal, electromagnetic, and discharge related processes during the ageing of metallised polymer film capacitors. In the event of internal breakdowns, these capacitors are capable of 'self-healing' through a controlled isolation of defects on the electrode surfaces by mosaic patterning the electrode. The objective of this project is to develop viable computer models to unravel electrothermally activated ageing processes in capacitors. To provide the necessary validation to any capacitor models developed, our work is supported by comprehensive experiments including industrial standard accelerated life tests and associated breakdown damage analyses of tested capacitors. These have enabled an empirical identification of main factors affecting the reliability and lifetime of capacitors. Relevant raw data and the qualitative picture enabled by these data are crucial to the development and refin...

  19. Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2012-04-01

    Full Text Available One of the core reactions in response to a stressful situation is the activation of the hypothalamus–pituitary–adrenal (HPA axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (noradrenaline, these hormones enable and promote cognitive adaptation to stressful events. Recent studies have demonstrated that glucocorticoid hormones and noradrenaline, via their receptors, can both rapidly and persistently regulate the function of excitatory synapses which are critical for storage of information. Here we will review how glucocorticoids and noradrenaline alone and in synergy dynamically tune these synapses in the hippocampus and amygdala, and discuss how these hormones interact to promote behavioral adaptation to stressful situations.

  20. Peculiarities of brain electric activity in young males and females of different creativity levels

    Directory of Open Access Journals (Sweden)

    Ermakov, Pavel N.

    2013-09-01

    Full Text Available This article shows that the peculiarities of divergent and convergent thinking in young males and females of various creativity levels are stipulated by a definite EEG frequency-and-spatial arrangement. Young males and females of mixed and left lateral arrangement profiles demonstrate an expressed activity of occipital, central, and temporal areas of both cerebral hemispheres. In young males and females of right LAP (lateral arrangement profile, connections are clearly localized in case of solution of both convergent and divergent tasks. Solution of divergent and convergent tasks may condition certain frequency-and-spatial arrangement of EEG in young males and females with different levels of academic progress and a different lateral arrangement profile (LAP.

  1. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Haddad, Raid Edward (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Ta, Anh (University of New Mexico, Albuquerque, NM); Bai, Feng (University of New Mexico, Albuquerque, NM); Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  2. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor

    Science.gov (United States)

    Nikitskiy, Ivan; Goossens, Stijn; Kufer, Dominik; Lasanta, Tania; Navickaite, Gabriele; Koppens, Frank H. L.; Konstantatos, Gerasimos

    2016-06-01

    The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 105 and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.

  3. Mechanisms of bioelectric activity in electric tissue. I. The response to indirect and direct stimulation of electroplaques of Electrophorus electricus.

    Science.gov (United States)

    ALTAMIRANO, M; COATES, C W; GRUNDFEST, H; NACHMANSOHN, D

    1953-09-01

    1. A preparation is described consisting of one or several layers of innervated cells of the electric organ of Electrophorus electricus. 2. Each plaque is multiply innervated and only at its caudal face. The nerve fibers may derive from two or more different nerve trunks. 3. During activity the innervated face becomes negative relative to the non-innervated. 4. The first electrical response of the cell to an increasing neural volley is graded and has the character of a prepotential. At a critical size of the prepotential the cell discharges with an all-or-nothing spike. 5. Both responses have durations of about 2 msec. 6. A neural volley which does not cause the spike discharge facilitates the discharge of the cell by a second subsequent volley in the same nerve (temporal facilitation). 7. The period of facilitation lasts ca. 900 msec. During the first 100 msec., the facilitation is large enough to cause a spike. In the later portion only the prepotential is facilitated. No electrical concomitant has been detected. 8. Neural volleys reaching the plaque from different trunks interact at the cell to produce a period of facilitation lasting only about 2 msec. This interaction is interpreted as spatial summation. 9. In a population of cells, simultaneous stimulation of 2 nerves causes a smaller discharge than the sum of the two isolated responses (occlusion). 10. Cells denervated for 7 weeks or more can be excited directly, but only by a current flow outward through the caudal face. 11. Weak direct stimulation causes a prepotential in the denervated plaque. On increasing the stimulus the prepotential increases to a critical size when a spike develops. The duration of both responses is about 2 msec. 12. The absolutely refractory period of the denervated cell is about 1.5 msec. and relative refractoriness lasts about 15 msec. 13. Direct stimulation causes slight facilitation lasting as long as 200 msec. 14. Repetitive stimulation of the nerve at low frequencies (2 to 3

  4. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    Science.gov (United States)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  5. L-Tyrosine-loaded nanoparticles increase the antitumoral activity of direct electric current in a metastatic melanoma cell model

    Directory of Open Access Journals (Sweden)

    Vânia Emerich Bucco de Campos

    2010-11-01

    Full Text Available Vânia Emerich Bucco de Campos1, Cesar Augusto Antunes Teixeira1, Venicio Feo da Veiga2, Eduardo Ricci Júnior1, Carla Holandino11Departamento de Medicamentos, Faculdade de Farmácia, 2Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilAbstract: Inhibition of tumor growth induced by treatment with direct electric current (DC has been reported in several models. One of the mechanisms responsible for the antitumoral activity of DC is the generation of oxidative species, known as chloramines. With the aim of increasing chloramine production in the electrolytic medium and optimizing the antitumoral effects of DC, poly(e-caprolactone (PCL nanoparticles (NPs loaded with the amino acid tyrosine were obtained. The physical–chemical characterization showed that the NPs presented size in nanometric range and monomodal distribution. A slightly negative electrokinetic potential was also found in both blank NPs and L-tyrosine-loaded PCL NPs. The yield of the loading process was approximately 50%. Within 3 h of dissolution assay, a burst release of about 80% L-tyrosine was obtained. The in vitro cytotoxicity of DC was significantly increased when associated with L-tyrosine-loaded NPs, using a murine multidrug-resistant melanoma cell line model. This study showed that the use of the combination of nanotechnology and DC has a promising antineoplastic potential and opens a new perspective in cancer therapy.Keywords: direct electric current, nanotechnology, cancer therapy, L-tyrosine, B16F10 cells

  6. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  7. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.

    Science.gov (United States)

    Hahm, Suk-Chan; Yoon, Young Wook; Kim, Junesun

    2015-05-01

    Transcutaneous electrical nerve stimulation (TENS) can be used as a physical therapy for spasticity, but the effects of TENS on spasticity and its underlying mechanisms remain unclear. The purpose of this study was to test the effects of TENS on spasticity and the role of activated microglia as underlying mechanisms of TENS treatment for spasticity in rats with a 50-mm contusive spinal cord injury (SCI). A spinal contusion was made at the T12 spinal segment in adult male Sprague-Dawley rats using the NYU impactor. Behavioral tests for motor function were conducted before and after SCI and before and after TENS application. To assess spasticity, the modified Ashworth scale (MAS) was used before and after SCI, high-frequency (HF)/low-frequency (LF) TENS application at 3 different intensities (motor threshold [MT], 50% and 90% MT) or minocycline administration. Immunohistochemistry for microglia was performed at the lumbar spinal segments. Motor recovery reached a plateau approximately 28 days after SCI. Spasticity was well developed and was sustained above the MAS grade of 3, beginning at 28 days after SCI. HF-TENS at 90% MT significantly alleviated spasticity. Motor function did not show any significant changes with LF- or HF-TENS treatment. HF-TENS significantly reduced the proportion of activated microglia observed after SCI. Minocycline, the microglia inhibitor, also significantly alleviated spasticity with the reduction of activated microglia expression. These results suggest that HF-TENS at 90% MT alleviates spasticity in rats with SCI by inhibiting activated microglia. © The Author(s) 2014.

  8. Temperature dependence of dc electrical conductivity of activated carbon-metal oxide nanocomposites. Some insight into conduction mechanisms

    Science.gov (United States)

    Barroso-Bogeat, Adrián; Alexandre-Franco, María; Fernández-González, Carmen; Sánchez-González, José; Gómez-Serrano, Vicente

    2015-12-01

    From a commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites are prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in inert atmosphere. The temperature-dependent dc electrical conductivity of AC and the as-prepared nanocomposites is measured from room temperature up to ca. 200 °C in air atmosphere by the four-probe method. The decrease in conductivity for the hybrid materials as compared to AC is the result of a complex interplay between several factors, including not only the intrinsic conductivity, crystallite size, content and chemical nature of the supported nanoparticles, which ultimately depend on the precursor and heat treatment temperature, but also the adsorption of oxygen and water from the surrounding atmosphere. The conductivity data are discussed in terms of a thermally activated process. In this regard, both AC and the prepared nanocomposites behave as semiconductors, and the temperature-dependent conductivity data have been interpreted on the basis of the classical model proposed by Mott and Davis. Because of its high content of heteroatoms, AC may be considered as a heavily doped semiconductor, so that conduction of thermally excited carriers via acceptor or donor levels is expected to be the dominant mechanism. The activation energies for the hybrid materials suggest that the supported metal oxide nanoparticles strongly modify the electronic band structure of AC by introducing new trap levels in different positions along its band gap. Furthermore, the thermally activated conduction process satisfies the Meyer-Neldel rule, which is likely connected with the shift of the Fermi level due to the introduction of the different metal oxide nanoparticles in the AC matrix.

  9. Effects of short-term exposure to powerline-frequency electromagnetic field on the electrical activity of the heart.

    Science.gov (United States)

    Elmas, Onur; Comlekci, Selcuk; Koylu, Halis

    2012-01-01

    ABSTRACT The heart is a contractile organ that can generate its own rhythm. The contraction, or the rhythm, of the heart may be influenced by electromagnetic field (EMF) exposure, because of the heart's excitability characteristic. In previous studies, different methods have been used to study the possible effects of an extremely low frequency electromagnetic field (ELF-EMF) on the heart. But the studies' designs were not similar, and the results were also different. Recent studies have shown some evidence that short-term EMF exposure can influence the heart more than long-term exposure. This study investigated how the heart is affected in the first EMF exposure. In a simulation of the daily exposure of humans to a power frequency, Wistar albino rats were used. By utilizing the Helmholtz-coil set, we obtained a 50-Hz, 1-μT EMF and examined rat heart activity during short-term EMF exposure. No effect was observed under this exposure condition. The results obtained do not confirm a possible mechanism in the electrical activity of the rat heart model.

  10. Determination of the electrically active Al fraction in Al doped ZnO grown by pulsed reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, Steffen; Vinnichenko, Mykola; Munnik, Frans; Heller, Rene; Kolitsch, Andreas; Moeller, Wolfhard [Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany)

    2011-07-01

    Al-doped ZnO (AZO) films which combine maximum carrier mobility, moderate free electron densities and high surface roughness are of special interest for application as transparent front electrode in thin film solar cells. They posses high transmission in the near infrared spectral range, close to the bandgap energy of absorber materials like Si (Eg=1.11 eV), and enable a superior light trapping behaviour. A key to tailor AZO film properties is understanding the mechanisms and effects of the Al-dopant incorporation into the ZnO matrix. It is well accepted that the mobilities in degenerately doped AZO are limited by ionized impurity scattering. A way to overcome this limitation would be to reduce the density of ionized impurities which either do not donate electrons themselves or compensate the Al donor. This is equivalent to increasing the fraction of electrically active Al in the ZnO host material. Systematic and quantitative information on this topic is still missing in literature. Therefore this work focuses on quantification of the Al concentration by ion beam analysis methods in conjuction with Hall-effect measurements for AZO films grown by reactive pulsed magnetron sputtering. The influence of parameters like target composition and substrate temperature on the Al activation is discussed.

  11. Indices to Study the Electrical Power Signals in Active and Passive Distribution Lines: A Combined Analysis with Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Silvano Vergura

    2016-03-01

    Full Text Available The broad diffusion of renewable energy-based technologies has introduced several open issues in the design and operation of smart grids (SGs when distributed generators (DGs inject a large amount of power into the grid. In this paper, a theoretical investigation on active and reactive power data is performed for one active line characterized by several photovoltaic (PV plants with a great amount of injectable power and two passive lines, one of them having a small peak power PV plant and the other one having no PV power. The frequencies calculated via the empirical mode decomposition (EMD method based on the Hilbert-Huang transform (HHT are compared to the ones obtained via the fast Fourier transform (FFT and the wavelet transform (WT, showing a wider spectrum of significant modes mainly due to the non-periodical behavior of the power signals. The results obtained according to the HHT-EMD analysis are corroborated by the calculation of three new indices that are computed starting from the electrical signal itself and not from the Hilbert spectrum. These indices give the quantitative deviation from the periodicity and the coherence degree of the power signals, which typically deviate from the stationary regime and have a nonlinear behavior in terms of amplitude and phase. This information allows to extract intrinsic features of power lines belonging to SGs and this is useful for their optimal operation and planning.

  12. The Electrical Activity of the Temporal and Masseter Muscles in Patients with TMD and Unilateral Posterior Crossbite

    Directory of Open Access Journals (Sweden)

    Krzysztof Woźniak

    2015-01-01

    Full Text Available The aim of this study was to assess the influence of unilateral posterior crossbite on the electrical activity of the temporal and masseter muscles in patients with subjective symptoms of temporomandibular dysfunctions (TMD. The sample consisted of 50 patients (22 female and 28 male aged 18.4 to 26.3 years (mean 20.84, SD 1.14 with subjective symptoms of TMD and unilateral posterior crossbite malocclusion and 100 patients without subjective symptoms of TMD and malocclusion (54 female and 46 male aged between 18.4 and 28.7 years (mean 21.42, SD 1.06. The anamnestic interviews were conducted according to a three-point anamnestic index of temporomandibular dysfunction (Ai. Electromyographical (EMG recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany. Recordings were carried out in the mandibular rest position and during maximum voluntary contraction (MVC. Analysis of the results of the EMG recordings confirmed the influence of unilateral posterior crossbite on variations in spontaneous muscle activity in the mandibular rest position and maximum voluntary contraction. In addition, there was a significant increase in the Asymmetry Index (As and Torque Coefficient (Tc, responsible for a laterodeviating effect on the mandible caused by unbalanced right and left masseter and temporal muscles.

  13. Capacity Calculation of Shunt Active Power Filters for Electric Vehicle Charging Stations Based on Harmonic Parameter Estimation and Analytical Modeling

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2014-08-01

    Full Text Available The influence of electric vehicle charging stations on power grid harmonics is becoming increasingly significant as their presence continues to grow. This paper studies the operational principles of the charging current in the continuous and discontinuous modes for a three-phase uncontrolled rectification charger with a passive power factor correction link, which is affected by the charging power. A parameter estimation method is proposed for the equivalent circuit of the charger by using the measured characteristic AC (Alternating Current voltage and current data combined with the charging circuit constraints in the conduction process, and this method is verified using an experimental platform. The sensitivity of the current harmonics to the changes in the parameters is analyzed. An analytical harmonic model of the charging station is created by separating the chargers into groups by type. Then, the harmonic current amplification caused by the shunt active power filter is researched, and the analytical formula for the overload factor is derived to further correct the capacity of the shunt active power filter. Finally, this method is validated through a field test of a charging station.

  14. Spontaneous electrical activity of guinea-pig sinoatrial cells under modulation of two different pacemaker mechanisms

    Directory of Open Access Journals (Sweden)

    Francesca Cacciani

    2014-01-01

    Full Text Available The main cellular determinants of cardiac automaticity are the hyperpolarization-activated cationic current If, and the electrogenic Na+/Ca2+ exchanger which generates an inward current after each action potential (AP. Our goal was to evaluate their relative role in pacemaking, by means of application of Ivabradine (IVA (specific If blocker and Ryanodine (RYA (known to abolish calcium transient on enzimatically isolated guinea-pig pacemaker cells. Spontaneous APs were recorded in patch-clamp whole cell configuration at 36°C from 7 cells perfused with the following sequence of solutions: physiological normal tyrode (NT, IVA 3 mM, NT and RYA 3 mM. Cycle length (CL, ms and diastolic depolarization rate (DDR, V/s were also calculated. Both blockers displayed similar effects, increasing CL (by 27 and 30%, respectively, and decreasing DDR (by 34 and 42% with respect to NT exposure. These results suggest that both mechanisms are involved into pacemaking mechanism at a similar degree.

  15. Effect of electrical convulsions on uridine labeling and activity pattern in nerve cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Pakkenberg, H.; Pakkenberg, B.; Fog, R.

    1985-07-01

    Male white mice were exposed to electroshock and then injected intravenously with 5-(3H)uridine immediately after the shock. After 5, 30, or 60 min or 6, 12, or 24 h, the mice were killed, microautoradiographs were prepared, and grains were counted in the cortex, hippocampus, and basal ganglia. The results of the grain counts were compared with grain counts in the cortex, hippocampus, and basal ganglia of mice exposed to anoxia for 25 s and then treated in the same manner as the first groups. After electroshock the grain count decreased to 25% of that in control animals in the hippocampus and to 50% in the cortex but was normal in the basal ganglia. The counts returned to normal values within 6 h in the hippocampus, and within 1 h in the cortex. After anoxia, the grain counts were normal in the cortex and hippocampus but increased in the basal ganglia. The distribution of cells with a high or low grain count in vertical and horizontal columns of the cortex in control and convulsion animals was analyzed. There were random variations from column to column in both control and convulsion animals. In some anatomic layers there were significantly different grain counts, indicating differences in functional activity.

  16. Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles.

    Science.gov (United States)

    Cardinal, René; Ardell, Jeffrey L; Linderoth, Bengt; Vermeulen, Michel; Foreman, Robert D; Armour, J Andrew

    2004-03-31

    Spinal cord stimulation (SCS) represents an acceptable treatment modality for patients with chronic angina pectoris refractory to standard therapy, but its mechanism of action remains unclear. To develop an experimental paradigm to study this issue, ameroid (AM) constrictors were implanted around the left circumflex coronary artery (LCx) in canines. Six weeks later, unipolar electrograms were recorded from 191 sites in the LCx territory in the open-chest, anesthetized state under basal pacing at 150 beats/min. We investigated the effect of SCS on ST segment displacements induced in the collateral-dependent myocardium in response to two stressors: (i) transient bouts of rapid ventricular pacing (TRP: 240/min for 1 min) and (ii) angiotensin II administered to right atrial neurons via their coronary artery blood supply. ST segment responses to TRP consisted of ST segment elevation in central areas of the LCx territory and ST depression at more peripheral areas. Such responses were unchanged when TRP was applied under SCS. Shortening of repolarization intervals in the metabolically compromised myocardium in response to TRP was also unaffected by SCS. In contrast, ST segment responses to intracoronary angiotensin II, which consisted of increased ST elevation, were attenuated by SCS in 6/8 preparations. The modulator effects of SCS were greatest at sites at which the greatest responses to angiotensin II occurred in the absence of SCS. These data indicate that spinal cord stimulation may attenuate the deleterious effects that stressors exert on the myocardium with reduced coronary reserve, particularly stressors associated with chemical activation of the intrinsic cardiac nervous system. Copyright 2004 Elsevier B.V.

  17. Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis.

    Directory of Open Access Journals (Sweden)

    Pei-Feng Lin

    Full Text Available The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG and a 19-channel eye-closed routine electroencephalography (EEG. Multiscale entropy (MSE analysis was applied to three epochs (resting-awake state, photic stimulation of fast frequencies (fast-PS, and photic stimulation of slow frequencies (slow-PS of EEG in the 1-58 Hz frequency range, and three RR interval (RRI time series (awake-state, sleep and that concomitant with the EEG for each subject. The low-to-high frequency power (LF/HF ratio of RRI was calculated to represent sympatho-vagal balance. With statistics after Bonferroni corrections, we found that: (a the summed MSE value on coarse scales of the awake RRI (scales 11-20, RRI-MSE-coarse were inversely correlated with the summed MSE value on coarse scales of the resting-awake EEG (scales 6-20, EEG-MSE-coarse at Fp2, C4, T6 and T4; (b the awake RRI-MSE-coarse was inversely correlated with the fast-PS EEG-MSE-coarse at O1, O2 and C4; (c the sleep RRI-MSE-coarse was inversely correlated with the slow-PS EEG-MSE-coarse at Fp2; (d the RRI-MSE-coarse and LF/HF ratio of the awake RRI were correlated positively to each other; (e the EEG-MSE-coarse at F8 was proportional to the cognitive test score; (f the results conform to the cholinergic hypothesis which states that cognitive impairment causes reduction in vagal cardiac modulation; (g fast-PS significantly lowered the EEG-MSE-coarse globally. Whether these heart-brain correlations could be fully explained by the central autonomic network is unknown and needs further exploration.

  18. [Electrical activities of bursting-firing neurons in epileptic network reestablishment of rat hippocampus].

    Science.gov (United States)

    Wang, Wen-Ting; Qin, Xing-Kui; Yin, Shi-Jin; Han, Dan

    2003-12-25

    ipsilateral or contralateral anterior dorsal HPC were elicited by the ATPDH. The results obtained suggest that bursting-firing of single BFNs is produced by the ATPDH in the anterior dorsal HPC along the longitudinal axis of the ipsilateral HPC or across the hemisphere to the opposite HPC. Rhythmic activities of the BFN may be implicated in the epileptic network reestablishment of the HPC. On the other hand, synaptic modulation of the BFN temporal series might be responsible for pathophysiological information transmission in the HPC-epileptic network.

  19. Monitoring active layer thaw and freeze-back in four different periglacial landforms in Svalbard using Electrical Resistivity Tomography (ERT)

    Science.gov (United States)

    Juliussen, H.; Oswald, A.; Watanabe, T.; Christiansen, H. H.; Matsuoka, N.

    2012-04-01

    Thawing and freezing of the active layer has an important impact on the underlying permafrost through latent heat effects and changes in effective thermal conductivity and mechanisms of heat transport. Information on the active layer freeze/thaw dynamics is therefore important to understand the permafrost response to climate variability. In addition, active layer deepening may be an early sign of permafrost degradation, making monitoring programs such as the CALM network important. Active layer depths are traditionally measured by mechanical probing in fine-grained sediments or by vertical arrays of ground temperature sensors. The first technique prevents measurements to be made in stony sediments, while the latter technique gives only a point value of the active layer depth. In this study we have tested Electrical Resistivity Tomography (ERT) as a tool to measure and monitor active layer depth and freeze/thaw dynamics. The electrical resistivity of the ground is largely dependent on the unfrozen water content, making resistivity monitoring a potentially valuable tool to delineate freeze and thaw extent, and patterns in soil moisture. The results presented here are part of the IPY 2007-2009 research project 'Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard' (TSP NORWAY) and the IPA periglacial working group project on 'High-Resolution Periglacial Climate Indicators'. Electrode arrays were installed permanently in four different periglacial landforms in the Adventdalen valley area in central Svalbard; a solifluction slope in May 2007, a loess terrace (the UNISCALM site) in September 2007, and a mudboil site and ice-wedge site in June 2009 (Watanabe et al., submitted). The arrays were 16m long, giving maximum profile depths of 2m, and electrodes were installed with 0.2m spacing. Measurements were made with irregular but approximately two- to four-week time intervals, depending on weather conditions and

  20. DC and Structured Electric Fields Observed on the C/NOFS Satellite and Their Association with Longitude, Plasma Density, and Solar Activity

    Science.gov (United States)

    Pfaff, Robert; Freudenreich, H.; Rowland, D.; Klenzing, J.

    2012-01-01

    Observations of DC electric fields and associated E x B plasma drifts gathered by the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite are presented. We show statistical averages of the vector fields and resulting E x B plasma flows for the first three years of operations as a function of season, longitude, local time, and Fl 0.7 conditions. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. Although typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night, the data from DC electric field detector often reveal variations from this pattern that depend on longitude, solar activity, and plasma density. Clear "wave-4" tidal effects in both electric field components have been detected and will be presented. Zonal plasma drifts show a marked variation with solar activity and may be used as a proxy for neutral winds at night. Evidence for pre-reversal enhancements in the meridional drifts that depend on solar activity is present for some longitudes, and are corroborated by clear evidence in the plasma density data that the spacecraft journeyed below the F-peak during evenings when the rise in the ionosphere is most pronounced. In addition to DC electric fields, the data reveal considerable electric field structures at large scales (approx 100's of km) that are usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the mapping of structured electric fields along magnetic field lines from distant locations and consider

  1. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics

    Directory of Open Access Journals (Sweden)

    Sina Askari, MS

    2013-08-01

    Full Text Available Results of previous studies raise the question of how timing neuromuscular functional electrical stimulation (FES to limb movements during stepping might alter neuromuscular control differently than patterned stimulation alone. We have developed a prototype FES system for a rodent model of spinal cord injury (SCI that times FES to robotic treadmill training (RTT. In this study, one group of rats (n = 6 was trained with our FES+RTT system and received stimulation of the ankle flexor (tibialis anterior [TA] muscle timed according to robot-controlled hind-limb position (FES+RTT group; a second group (n = 5 received a similarly patterned stimulation, randomly timed with respect to the rats’ hind-limb movements, while they were in their cages (randomly timed stimulation [RS] group. After 4 wk of training, we tested treadmill stepping ability and compared kinematic measures of hind-limb movement and electromyography (EMG activity in the TA. The FES+RTT group stepped faster and exhibited TA EMG profiles that better matched the applied stimulation profile during training than the RS group. The shape of the EMG profile was assessed by "gamma," a measure that quantified the concentration of EMG activity during the early swing phase of the gait cycle. This gamma measure was 112% higher for the FES+RTT group than for the RS group. The FES+RTT group exhibited burst-to-step latencies that were 41% shorter and correspondingly exhibited a greater tendency to perform ankle flexion movements during stepping than the RS group, as measured by the percentage of time the hind limb was either dragging or in withdrawal. The results from this study support the hypothesis that locomotor training consisting of FES timed to hind-limb movement improves the activation of hind-limb muscle more so than RS alone. Our rodent FES+RTT system can serve as a tool to help further develop this combined therapy to target appropriate neurophysiological changes for locomotor control.

  2. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics.

    Science.gov (United States)

    Askari, Sina; Chao, TeKang; de Leon, Ray D; Won, Deborah S

    2013-01-01

    Results of previous studies raise the question of how timing neuromuscular functional electrical stimulation (FES) to limb movements during stepping might alter neuromuscular control differently than patterned stimulation alone. We have developed a prototype FES system for a rodent model of spinal cord injury (SCI) that times FES to robotic treadmill training (RTT). In this study, one group of rats (n = 6) was trained with our FES+RTT system and received stimulation of the ankle flexor (tibialis anterior [TA]) muscle timed according to robot-controlled hind-limb position (FES+RTT group); a second group (n = 5) received a similarly patterned stimulation, randomly timed with respect to the rats' hind-limb movements, while they were in their cages (randomly timed stimulation [RS] group). After 4 wk of training, we tested treadmill stepping ability and compared kinematic measures of hind-limb movement and electromyography (EMG) activity in the TA. The FES+RTT group stepped faster and exhibited TA EMG profiles that better matched the applied stimulation profile during training than the RS group. The shape of the EMG profile was assessed by "gamma," a measure that quantified the concentration of EMG activity during the early swing phase of the gait cycle. This gamma measure was 112% higher for the FES+RTT group than for the RS group. The FES+RTT group exhibited burst-to-step latencies that were 41% shorter and correspondingly exhibited a greater tendency to perform ankle flexion movements during stepping than the RS group, as measured by the percentage of time the hind limb was either dragging or in withdrawal. The results from this study support the hypothesis that locomotor training consisting of FES timed to hind-limb movement improves the activation of hind-limb muscle more so than RS alone. Our rodent FES+RTT system can serve as a tool to help further develop this combined therapy to target appropriate neurophysiological changes for locomotor control.

  3. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.

  4. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type

    NARCIS (Netherlands)

    Jonsdottir, S; Bouma, A; Sergeant, JA; Scherder, EJA; Bouma, J.M.

    2004-01-01

    Objective. The aim of this study was to examine the effects of transcutaneous electrical nerve stimulation (TENS) on cognition, behavior, and the rest-activity rhythm in children with attention deficit hyperactivity disorder, combined type (ADHD-CT). Methods. Twenty-two children diagnosed with ADHD-

  5. The Effect of Combining Analogy-Based Simulation and Laboratory Activities on Turkish Elementary School Students' Understanding of Simple Electric Circuits

    Science.gov (United States)

    Unlu, Zeynep Koyunlu; Dokme, Ibilge

    2011-01-01

    The purpose of this study was to investigate whether the combination of both analogy-based simulation and laboratory activities as a teaching tool was more effective than utilizing them separately in teaching the concepts of simple electricity. The quasi-experimental design that involved 66 seventh grade students from urban Turkish elementary…

  6. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    Institute of Scientific and Technical Information of China (English)

    Yu Gao

    2013-01-01

    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field.As of now,observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field.The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current.We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region,however,the net current is found to be an order-ofmagnitude less than the mean absolute magnitude and has a preferred sign.In particular,we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere,but during the solar minimum this tendency is reversed over time at some latitudes.The result indicates that there is weak net elecTRic current in areas of solar active regions with opposite polarity,thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  7. Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons.

    Directory of Open Access Journals (Sweden)

    Omar Mamad

    Full Text Available The globus pallidus (GP receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs. However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2Rs, in the modulation of GP neuronal activity and its impact on the electrical activity of subthalamic nucleus (STN and substantia nigra reticulata (SNr neurons. Extracellular recordings combined with local intracerebral microinjection of drugs were done in male Sprague-Dawley rats under urethane anesthesia. We showed that dopamine, when injected locally, increased the firing rate of the majority of neurons in the GP. This increase of the firing rate was mimicked by quinpirole, a D2R agonist, and prevented by sulpiride, a D2R antagonist. In parallel, the injection of dopamine, as well as quinpirole, in the GP reduced the firing rate of majority of STN and SNr neurons. However, neither dopamine nor quinpirole changed the tonic discharge pattern of GP, STN and SNr neurons. Our results are the first to demonstrate that dopamine through activation of D2Rs located in the GP plays an important role in the modulation of GP-STN and GP-SNr neurotransmission and consequently controls STN and SNr neuronal firing. Moreover, we provide evidence that dopamine modulate the firing rate but not the pattern of GP neurons, which in turn control the firing rate, but not the pattern of STN and SNr neurons.

  8. Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells

    Science.gov (United States)

    Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.

  9. Diffusion and Electrical Activation After a Rapid Thermal Annealing of an As and B-Co-Implanted Polysilicon Layer

    Science.gov (United States)

    Gontrand, C.; Sellitto, P.; Tabikh, S.; Latreche, S.; Kaminski, A.

    1997-01-01

    This work provides an experimental insight into the physical mechanisms involved in the co-diffusion of arsenic and boron in polysilicon/monocrystalline Si bilayers, during the formation of shallow N^+ emitters for the BiCMOS technology. The RTA-induced redistribution of As and B successively implanted in a 380 nm LPCVD polysilicon layer is studied by SIMS measurements. Hall effect, as well as sheet resistance measurements, show that the electrical activation of dopants in the co-implanted structures is satisfactory from a RTA temperature of 1100 °C. Nous présentons ici un travail expérimental mettant en évidence les mécanismes physiques intervenant dans la co-diffusion de l'arsenic et du bore dans une bicouche polysilicium sur silicium polycrystallin, durant la formation des émetteurs étroits N^+ destinés à la technologie BiCMOS. La redistribution de As et B induite par un RTA, successivement implantés dans une couche de polysilicium de 380 nm, est appréhendée par des mesures SIMS. Des mesures par effet Hall et par résistances par carrés mettent en évidence que l'activité électrique des dopants dans les structures implantées est satisfaisante à partir d'une température de 1100 °C.

  10. Functional electrical stimulation early after stroke improves lower limb motor function and ability in activities of daily living.

    Science.gov (United States)

    You, Guoqing; Liang, Huiying; Yan, Tiebin

    2014-01-01

    Functional electrical stimulation (FES) to patients early after stroke has been proved to improve walking ability. The effects on abilities in activities of daily living (ADL) are not clear. To investigate the effectiveness of FES in improving lower limb function and ability in ADL of early stroke patients. Thirty-seven stroke patients were randomly allocated to standard rehabilitation (SR) group (n = 18), and FES group with FES and SR (n = 19). SR included 60 minutes each for physiotherapy and occupational therapy. FES was delivered for 30 min to induce ankle dorsiflexion and eversion. Treatments were 5 days per week for 3 weeks. Evaluations including the composite spasticity scale (CSS), lower-extremity subscale of Fugl-Myer Assessment (FMA), postural assessment scale for stroke patients (PASS), Berg Balance Scale (BBS), and modified Barthel Index (MBI) assessed before treatment, after 2 and 3 week treatment respectively. After 2 week treatment, FES group showed a significant reduction of CSS and improvements of FMA, MBI and PASS. After 3 week treatment, FES group showed a further reduction of CSS and also improvement of FMA, MBI and BBS as well. FES on the paretic lower limbs early after stroke improved the mobility and ability in ADL.

  11. Current distribution in skeletal muscle activated by functional electrical stimulation: image-series formulation and isometric recruitment curve.

    Science.gov (United States)

    Livshitz, L M; Einziger, P D; Mizrahi, J

    2000-01-01

    The present work develops an analytical model that allows one to estimate the current distribution within the whole muscle and the resulting isometric recruitment curve (IRC). The quasistatic current distribution, expressed as an image series, i.e., a collection of properly weighted and shifted point-source responses, outlines an extension for more than three layers of the classical image theory in conductive plane-stratified media. Evaluation of the current distribution via the image series expansions requires substantially less computational time than the standard integral representation. The expansions use a unique recursive representation for Green's function, that is a generic characteristic of the stratification. This approach permits one to verify which of the tissue electrical properties are responsible for the current density distribution within the muscle, and how significant their combinations are. In addition, the model permits one to study the effect of different electrode placement on the shape and the magnitude of the potential distribution. A simple IRC model was used for parameter estimation and model verification by comparison with experimentally obtained isometric recruitment curves. Sensitivity of the model to different parameters such as conductivity of the tissues and activation threshold was verified. The resulting model demonstrated characteristic features that were similar to those of experimentally obtained data. The model also quantitatively confirmed the differences existing between surface (transcutaneous) and implanted (percutaneous) electrode stimulation.

  12. Glasgow Coma Scale, brain electric activity mapping and Glasgow Outcome Scale after hyperbaric oxygen treatment of severe brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study the effect of hyperbaric oxygen (HBO) treatment of severe brain injury.Methods: Fifty-five patients were divided into a treatment group (n = 35 receiving HBO therapy ) and a control group (n = 20 receiving dehydrating, cortical steroid and antibiotic therapy) to observe the alteration of clinic GCS (Glasgow Coma Scale), brain electric activity mapping (BEAM), prognosis and GOS (Glasgow Outcome Scale) before and after hyperbaric oxygen treatment.Results: In the treatment group GCS, BEAM and GOS were improved obviously after 3 courses of treatment,GCS increased from 5.1 to 14.6 ( P < 0.01-0.001 ), the BEAM abnormal rate reduced from 94.3% to 38% (P <0.01-0.001 ), the GOS good-mild disability rate was 83.7%, and the middle-severe disability rate was 26.3%compared with the control group. There was a statistic significant difference between the two groups (P < 0.01-0.001).Conclusions: Hyperbaric oxygen treatment could improve obviously GCS, BEAM and GOS of severe brain injury patients, and effectively reduce the mortality and morbidity. It is an effective method to treat severe brain injury. two g

  13. Electrical activity of the visual cortex under conditions of change in the levels of monoamines in the brain of animals.

    Science.gov (United States)

    Borob'ev, V V; Gal'chenko, A A; Deryugina, O N

    1991-01-01

    The changes in the electrograms of the visual cortex of awake animals under the influence of light stimulation in conditions of a pharmacological effect on the monoamine (MA) systems of the brain were investigated in experiments on 8 rabbits and 12 rats. The following was found following the administration of MA precursors (5-hydroxytryptophan and d,l-dihydroxyphenylalanine): a) a decrease in the amplitude of the averaged evoked potentials in response to rhythmical light stimuli (1-20 pulses/sec); b) intensification of rapid (15-25 Hz) oscillations in the spontaneous electrical activity of the cortex, as well as attenuation and modification of the effects of the blocker of MA synthesis, a-methyl-dihydroxyphenylalanine. A potentiation of the MA precursors was observed with light stimulation in the frequency spectra of the electrocorticograms. The specific characteristics of the action of the catecholamine precursor were manifested in the same conditions in the form of an intensification of the power of the 5-7 Hz rhythms, and an attenuation of the power of the 2-3 Hz rhythms.

  14. A dual action of saturated fatty acids on electrical activity in rat pancreatic β-cells. Role of volume-regulated anion channel and KATP channel currents.

    Science.gov (United States)

    Best, L; Jarman, E; Brown, P D

    2011-03-15

    Free fatty acids (FFAs) exert complex actions on pancreatic β-cells. Typically, an initial potentiation of insulin release is followed by a gradual impairment of β-cell function, the latter effect being of possible relevance to hyperlipidaemia in type 2 diabetes mellitus. The molecular actions of FFAs are poorly understood. The present study investigated the acute effects of saturated FFAs on electrophysiological responses of rat pancreatic β-cells. Membrane potential and KATP channel activity were recorded using the perforated patch technique. Volume-regulated anion channel (VRAC) activity was assessed from conventional whole-cell recordings. Cell volume regulation was measured using a video-imaging technique. Addition of octanoate caused a transient potentiation of glucose-induced electrical activity, followed by a gradual hyper-polarisation and a prolonged inhibition of electrical activity. Octanoate caused an initial increase in VRAC activity followed by a secondary inhibition coinciding with increased KATP channel activity. Similar effects were observed with palmitate and 2-bromopalmitate whereas butyrate was virtually ineffective. Octanoate and palmitate also exerted a dual effect on electrical activity evoked by tolbutamide. Octanoate significantly attenuated cell volume regulation in hypotonic solutions, consistent with VRAC inhibition. It is concluded that medium and long chain FFAs have a dual action on glucose-induced electrical activity in rat pancreatic β-cells: an initial stimulatory effect followed by a secondary inhibition. These effects appear to be the result of reciprocal actions on VRAC and KATP channel currents, and could contribute towards the stimulatory and inhibitory actions of FFAs on pancreatic β-cell function.

  15. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  16. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats

    OpenAIRE

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-01-01

    Background Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund’s Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extr...

  17. Electricity Customers

    Science.gov (United States)

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  18. Influence of Mechanically Activated Electric Arc Furnace Slag on Compressive Strength of Mortars Incorporating Curing Moisture and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2017-07-01

    Full Text Available In this study, the influence of mechanically activated electric arc furnace slag (EAFS was investigated through compressive strength tests on 50 mm mortar cubes. The objective was to convert the wasteful EAFS into a useful binding material to reduce the cement content in concrete without compromising strength and economy. Four different groups of mortar were cast which include control mortar, reference fly ash mortar, mortar containing EAFS to determine its optimum fineness and replacement with cement, mortar blend containing fly ash and EAFS of optimum fineness. EAFS were identified with respect to its fineness as slag ground (SG, slag-fine (SF 100% passing 75 µm sieve, and slag-super-fine (SSF 100% passing 45 µm sieve. Compressive strength was measured according to ASTM C109. Specimens were cured under different temperatures and moisture to incorporate the effects of normal and hot environmental conditions. Compressive strength of mortars increases with fineness of EAFS and its strength activity index matches the ASTM C989 blast furnace slag (BFS Grade 80 up to 30% cement substitution and Grade 100 when 10% cement substituted with SSF. The influence of curing temperatures was also significant in mortars containing SG or 10% SF where strength decreased with increasing curing temperature. However, a 20–30% and 20% cement substitution with SF produced strength comparable to control and reference fly ash mortars under moderate (40 °C and high curing temperature (60 °C, respectively. The utilization of EAFS as binder in concrete may reduce needs for cement, as well as save environment and natural resources from depletion.

  19. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    Science.gov (United States)

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  20. On a chaotic potential at the surface of a compensated semiconductor under conditions of the self-assembly of electrically active defects

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, V. B., E-mail: enter@spbstu.ru; Filimonov, A. V. [St. Petersburg State Polytechnic University (Russian Federation)

    2015-09-15

    Natural irregularities of the electric potential on the surface of a semiconductor under conditions of the partial self-assembly of electrically active defects, i.e., on the formation of donor–acceptor pairs in depletion layers, are studied. The amplitude and character of the spatial distribution of the chaotic potential on the surface of a semiconductor in the cases of localized and delocalized states are determined. The dependence of the amplitude of the chaotic potential on the degree of compensation of the semiconductor is obtained.

  1. Study of supported bilayer lipid membranes for use in chemo-electric energy conversion via active proton transport

    Science.gov (United States)

    Sarles, Stephen A.; Sundaresan, Vishnu B.; Leo, Donald J.

    2007-09-01

    Bilayer lipid membranes (BLMs) have been studied extensively due to functional and structural similarities to cell membranes, fostering research to understand ion-channel protein functions, measure bilayer mechanical properties, and identify self-assembly mechanisms. BLMs have traditionally been formed across single pores in substrates such as PTFE (Teflon). The incorporation of ion-channel proteins into the lipid bilayer enables the selective transfer of ions and fluid through the BLM. Processes of this nature have led to the measurement of ion current flowing across the lipid membrane and have been used to develop sensors that signal the presence of a particular reactant (glucose, urea, penicillin), improve drug recognition in cells, and develop materials capable of creating chemical energy from light. Recent research at Virginia Tech has shown that the incorporation of proton transporters in a supported BLM formed across an array of pores can convert chemical energy available in the adenosine triphosphate (ATP) into electricity. Experimental results from this work show that the system-named Biocell-is capable of developing 2µW/cm2 of membrane area with 15μl of ATPase. Efforts to increase the power output and conversion efficiency of this process while moving toward a packaged device present a unique engineering problem. The bilayer, as host to the active proton transporters, must therefore be formed evenly across a porous substrate, remain stable and yet fluid-like for protein interaction, and exhibit a large seal resistance. This article presents the ongoing work to characterize the Biocell using impedance analysis. Electrical impedance spectroscopy (EIS) is used to study the effect of adding ATPase proteins to POPS:POPE bilayer lipid membranes and correlate structural changes evident in the impedance data to the energy-conversion capability of various partial and whole Biocell assemblies. The specific membrane resistance of a pure BLM drops from 40-120k

  2. Lightning rod ionizing natural ionca - Ionic electrode active trimetallictriac of grounding - Definitive and total solution against 'blackouts' and electrical faults generated by atmospheric charges (lightning)

    Energy Technology Data Exchange (ETDEWEB)

    Cabareda, Luis

    2010-09-15

    The Natural Ionizing System of Electrical Protection conformed by: Lightning Rod Ionizing Natural Ionca and Ionic Electrode Active Trimetallic Triac of Grounding offers Total Protection, Maximum Security and Zero Risk to Clinics, Hospitals, Integral Diagnostic Center, avoiding ''the burning'' of Electronics Cards; Refineries, Tanks and Stations of Fuel Provision; Electrical Substations, Towers and Transmission Lines with transformer protection, motors, elevators, A/C, mechanicals stairs, portable and cooling equipment, electrical plants, others. This New High Technology is the solution to the paradigm of Benjamin Franklin and it's the mechanism to end the 'Blackouts' that produces so many damages and losses throughout the world.

  3. Deep electrical resistivity tomography along the tectonically active Middle Aterno Valley (2009 L'Aquila earthquake area, central Italy)

    Science.gov (United States)

    Pucci, Stefano; Civico, Riccardo; Villani, Fabio; Ricci, Tullio; Delcher, Eric; Finizola, Anthony; Sapia, Vincenzo; De Martini, Paolo Marco; Pantosti, Daniela; Barde-Cabusson, Stéphanie; Brothelande, Elodie; Gusset, Rachel; Mezon, Cécile; Orefice, Simone; Peltier, Aline; Poret, Matthieu; Torres, Liliana; Suski, Barbara

    2016-11-01

    Three 2-D Deep Electrical Resistivity Tomography (ERT) transects, up to 6.36 km long, were obtained across the Paganica-San Demetrio Basin, bounded by the 2009 L'Aquila Mw 6.1 normal-faulting earthquake causative fault (central Italy). The investigations allowed defining for the first time the shallow subsurface basin structure. The resistivity images, and their geological interpretation, show a dissected Mesozoic-Tertiary substratum buried under continental infill of mainly Quaternary age due to the long-term activity of the Paganica-San Demetrio normal faults system (PSDFS), ruling the most recent deformational phase. Our results indicate that the basin bottom deepens up to 600 m moving to the south, with the continental infill largely exceeding the known thickness of the Quaternary sequence. The causes of this increasing thickness can be: (1) the onset of the continental deposition in the southern sector took place before the Quaternary, (2) there was an early stage of the basin development driven by different fault systems that produced a depocentre in the southern sector not related to the present-day basin shape, or (3) the fault system slip rate in the southern sector was faster than in the northern sector. We were able to gain sights into the long-term PSDFS behaviour and evolution, by comparing throw rates at different timescales and discriminating the splays that lead deformation. Some fault splays exhibit large cumulative throws (>300 m) in coincidence with large displacement of the continental deposits sequence (>100 m), thus testifying a general persistence in time of their activity as leading splays of the fault system. We evaluate the long-term (3-2.5 Myr) cumulative and Quaternary throw rates of most of the leading splays to be 0.08-0.17 mm yr-1, indicating a substantial stability of the faults activity. Among them, an individual leading fault splay extends from Paganica to San Demetrio ne' Vestini as a result of a post-Early Pleistocene linkage of

  4. Medical criteria for active physical therapy. Physician guidelines for patient participation in a program of functional electrical rehabilitation.

    Science.gov (United States)

    Phillips, C A

    1987-10-01

    Medical guidelines are presented by which the physician may evaluate a patient for participation in a program of active physical therapy (A.P.T.). A.P.T. system modalities are introduced and defined as: a) isokinetic leg trainer, b) stationary bicycle ergometer, c) outdoor exercise bicycle, and d) Functional Electrical Stimulation (F.E.S.)--Orthosis for ambulation. The physiological responses to these F.E.S. exercise modalities are reviewed. Initial and interim patient evaluations are discussed. The initial patient evaluation includes a history, physical examination, lab tests, and a report summary, all of which culminate in an F.E.S. exercise prescription. The interim patient evaluation is performed for continuation-termination purposes as well as to progress the patient through the various F.E.S. exercise modalities. Specific F.E.S. exercise progression criteria are summarized. The medical criteria are presented with respect to both patient participation in the F.E.S. exercise program and patient monitoring during the exercise itself. Specific medical criteria for patient participation in A.P.T. are organized around eight functional categories: a) level of neurological injury, b) muscular system, c) skeletal system, subdivided into bone criteria and joint criteria, d) cardiovascular system, e) respiratory system, f) urogenital system, g) cutaneous system, and h) psychological system. The medical criteria for patient monitoring during F.E.S. exercise are discussed with respect to: a) cardiovascular monitoring, b) objective patient monitoring, and c) F.E.S. exercise system monitoring. The article concludes with a discussion of informed consent when applied to an emerging treatment modality.

  5. 系统认识人类心脏整体电活动%Systems approach to understanding electrical activity in the human heart

    Institute of Scientific and Technical Information of China (English)

    黄从新; 陈新

    2010-01-01

    Large amounts of information has been generated at the genetic,molecular,and cellular scales of the cardiovascular systems in the past decade.However,we did not integrate this information within and between scales to the level of the whole heart.Therefore,we really know little about the mechanisms underlying the normal and abnormal electrical activity in the human heart because electrical activity of heart and its alteration occur at the organ level.The study of ionic currents was the major strategy to understand the normal and diseased human cardiac electrical activity in the past years.However,evidence-based medicine has demonstrated that antiarrhythmic drugs (AADs) including flecainide,encainide,moracizine,d-sotalol and amiodarone cannot improve patients'survival.Some AADs which block single ionic channel even increase mortality.On the contrary,other strategies such as non-antiarrhythmic drugs (β-receptor blockers,angiotensin-convening enzyme inhibitors,angiotensin Ⅱ receptor blockers)and catheter ablation Can effectively suppress arrhythmias and improve outcomes,but they do not aim to any ionic channel directly.So,treatment and study of arrhythmias focused only on ionic channels have limitations.Currently,animals such as mice,rats,rabbits and dogs are used extensively in studies of cardiac electrophysiology and arrhythmogenesis.However,species differences in the distribution and kinetics of ionic channels are significant.The limitations of using animal models as means to study electrical activity suggest that we should do our best to improve our understanding of mechanisms underlying the normal and abnormal electrical activity in human heart.Despite great progress in issue,cellular and moleeular scales of the cardiovascular systems.we always troubled by a question:why there are significant difference between genotype and phenotype.Fortunately,recent advances in genomics,pmteomics,metabolomics,and genetic engineering have pmvided information and means to

  6. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Naoto Miura

    2016-01-01

    Full Text Available Clinical studies on application of functional electrical stimulation (FES to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES.

  7. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  8. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1.

    Science.gov (United States)

    Dubey, S; Kalia, Y N

    2011-06-30

    Cathodal iontophoresis of anionic macromolecules has been considered a major challenge owing to (i) the presence of a negative charge on the skin under physiological conditions and (ii) the electroosmotic solvent flow in the (opposite) anode-to-cathode direction. Moreover, electroosmosis, and not electromigration, was considered as the likely electrotransport mechanism for high molecular weight cations. However, it was recently shown that electromigration governed anodal iontophoretic transport of Cytochrome c (12.4 kDa) and Ribonuclease A (RNAse A; 13.6 kDa). Thus, the objective of this study was to investigate the feasibility of iontophoresing a negatively charged protein, the enzyme Ribonuclease T1 (RNAse T1, 11.1 kDa), from the cathode across intact skin. Cumulative permeation and skin deposition of RNAse T1 were investigated as a function of current density (0.15, 0.3 and 0.5 mA/cm(2) applied for 8h) using porcine ear skin and quantified by an enzymatic activity assay. Although RNAse T1 permeation was dependent upon current density (22.41 ± 8.10, 76.41 ± 56.98 and 142.19 ± 62.23μg/cm(2), respectively), no such relationship was observed with respect to skin deposition (9.78 ± 2.39, 7.76 ± 4.34 and 8.70 ± 2.94 μg/cm(2), respectively). MALDI-TOF spectra and the activity assay confirmed that RNAse T1 retained structural integrity and enzymatic function post-iontophoresis. Acetaminophen iontophoresis demonstrated the anode-to-cathode directionality of electroosmotic solvent flow confirming that RNAse T1 electrotransport was due entirely to electromigration. Interestingly, despite its lower net charge and higher molecular weight, electromigration of cationic Ribonuclease A was superior to that of RNAse T1 after iontophoresis at 0.5 mA/cm(2) for 8h. These results provide further evidence that charge to mass ratio and hence electric mobility might not alone be sufficient to predict protein electrotransport across the skin; three dimensional structures and the

  9. Patients with electrical status epilepticus in sleep share similar clinical features regardless of their focal or generalized sleep potentiation of epileptiform activity.

    Science.gov (United States)

    Fernández, Iván Sánchez; Peters, Jurriaan; Takeoka, Masanori; Rotenberg, Alexander; Prabhu, Sanjay; Gregas, Matt; Riviello, James J; Kothare, Sanjeev; Loddenkemper, Tobias

    2013-01-01

    The study objective was to compare qualitatively the clinical features of patients with electrical status epilepticus in sleep with focal versus generalized sleep potentiated epileptiform activity. We enrolled patients 2 to 20 years of age, studied between 2001 and 2009, and with sleep potentiated epileptiform activity defined as an increase of epileptiform activity of 50% or more during non-rapid eye movement sleep compared with wakefulness. Eighty-five patients met the inclusion criteria, median age was 7.3 years, and 54 (63.5%) were boys. Sixty-seven (78.8%) patients had focal sleep potentiated epileptiform activity, whereas 18 (21.2%) had generalized sleep potentiated epileptiform activity. The 2 groups did not differ with respect to sex, age, presence of a structural brain abnormality, epilepsy, or other qualitative cognitive, motor, or behavioral problems. Our data suggest that there are no qualitative differences in the clinical features of patients with focal versus generalized sleep potentiated epileptiform activity.

  10. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    Science.gov (United States)

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  11. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  12. Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Ruaro Maria

    2009-01-01

    Full Text Available Abstract Background Neuronal plasticity is initiated by transient elevations of neuronal networks activity leading to changes of synaptic properties and providing the basis for memory and learning 1. An increase of electrical activity can be caused by electrical stimulation 2 or by pharmacological manipulations: elevation of extracellular K+ 3, blockage of inhibitory pathways 4 or by an increase of second messengers intracellular concentrations 5. Neuronal plasticity is mediated by several biochemical pathways leading to the modulation of synaptic strength, density of ionic channels and morphological changes of neuronal arborisation 6. On a time scale of a few minutes, neuronal plasticity is mediated by local protein trafficking 7 while, in order to sustain modifications beyond 2–3 h, changes of gene expression are required 8. Findings In the present manuscript we analysed the time course of changes of the evoked electrical activity during neuronal plasticity and we correlated it with a transcriptional analysis of the underlying changes of gene expression. Our investigation shows that treatment for 30 min. with the GABAA receptor antagonist gabazine (GabT causes a potentiation of the evoked electrical activity occurring 2–4 hours after GabT and the concomitant up-regulation of 342 genes. Inhibition of the ERK1/2 pathway reduced but did not abolish the potentiation of the evoked response caused by GabT. In fact not all the genes analysed were blocked by ERK1/2 inhibitors. Conclusion These results are in agreement with the notion that neuronal plasticity is mediated by several distinct pathways working in unison.

  13. Medical station for image processing and visualization of the brain electrical activity on a three-dimensional reconstruction of the patient's head

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Forero

    2010-04-01

    Full Text Available This paper presents a review of some researchs in the computer graphics field conducted by OHWAHA to solve medical problems. Particulary, a frame work to generate a three-dimensional human head model from a stack of brain images obtained by magnetic resonance is introduced. The envisaged system is suitable to display on the 3D head model the brain electrical activity obtained from electroencephalografy.

  14. Electroacupuncture Reduces the Effects of Acute Noxious Stimulation on the Electrical Activity of Pain-Related Neurons in the Hippocampus of Control and Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-Ying Wang

    2016-01-01

    Full Text Available To study the effects of acupuncture analgesia on the hippocampus, we observed the effects of electroacupuncture (EA and mitogen-activated protein kinase (MEK inhibitor on pain-excited neurons (PENs and pain-inhibited neurons (PINs in the hippocampal area CA1 of sham or chronic constrictive injury (CCI rats. The animals were randomly divided into a control, a CCI, and a U0126 (MEK1/2 inhibitor group. In all experiments, we briefly (10-second duration stimulated the sciatic nerve electrically and recorded the firing rates of PENs and PINs. The results showed that in both sham and CCI rats brief sciatic nerve stimulation significantly increased the electrical activity of PENs and markedly decreased the electrical activity of PINs. These effects were significantly greater in CCI rats compared to sham rats. EA treatment reduced the effects of the noxious stimulus on PENs and PINs in both sham and CCI rats. The effects of EA treatment could be inhibited by U0126 in sham-operated rats. The results suggest that EA reduces effects of acute sciatic nerve stimulation on PENs and PINs in the CA1 region of the hippocampus of both sham and CCI rats and that the ERK (extracellular regulated kinase signaling pathway is involved in the modulation of EA analgesia.

  15. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the stomach in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Zenina, O Yu; Kromin, A A

    2012-10-01

    Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.

  16. Emergency Department Triage of Traumatic Head Injury Using a Brain Electrical Activity Biomarker: A Multisite Prospective Observational Validation Trial.

    Science.gov (United States)

    Hanley, Daniel; Prichep, Leslie S; Bazarian, Jeffrey; Huff, J Stephen; Naunheim, Rosanne; Garrett, John; Jones, Elizabeth B; Wright, David W; O'Neill, John; Badjatia, Neeraj; Gandhi, Dheeraj; Curley, Kenneth C; Chiacchierini, Richard; O'Neil, Brian; Hack, Dallas C

    2017-05-01

    A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state. Adul