WorldWideScience

Sample records for neurobiological mechanisms involved

  1. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Science.gov (United States)

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  2. Neurobiological Mechanisms of Pelvic Pain

    Science.gov (United States)

    Leone Roberti Maggiore, Umberto; Candiani, Massimo

    2014-01-01

    Pelvic pain is a common condition which significantly deteriorates health-related quality of life. The most commonly identified causes of pain in the pelvic region are gynaecologic, urologic, gastrointestinal, neurological, and musculoskeletal. However, in up to 33% of patients the source of this symptom is not identified, frustrating both patients and health-care professionals. Pelvic pain may involve both the somatic and visceral systems, making the differential diagnosing challenging. This paper aimed to review the mechanisms involved in pelvic pain perception by analyzing the neural plasticity and molecules which are involved in these complex circuits. PMID:25110704

  3. [Recent progress in neurobiological mechanisms of depression].

    Science.gov (United States)

    Gao, Yu-Bo; Li, Liang-Ping; Zhu, Xin-Hong; Gao, Tian-Ming

    2012-08-25

    Revealing the neurobiological mechanism of depression has always been a big challenge in the field of neuroscience. Not only are depressive syndromes heterogeneous and their aetiologies diverse, but also some symptoms are impossible to reproduce in animal models. Nevertheless, great progress has been made on the understanding and treatment of depression in recent years. In this review, we focus on key leading hypotheses in the neurobiological mechanism of depression, examine their strengths and weaknesses critically, and also highlight new insights that promise to extend the understanding of depression and its treatment.

  4. Neurobiological mechanisms of state-dependent learning.

    Science.gov (United States)

    Radulovic, Jelena; Jovasevic, Vladimir; Meyer, Mariah Aa

    2017-08-01

    State-dependent learning (SDL) is a phenomenon relating to information storage and retrieval restricted to discrete states. While extensively studied using psychopharmacological approaches, SDL has not been subjected to rigorous neuroscientific study. Here we present an overview of approaches historically used to induce SDL, and highlight some of the known neurobiological mechanisms, in particular those related to inhibitory neurotransmission and its regulation by microRNAs (miR). We also propose novel cellular and circuit mechanisms as contributing factors. Lastly, we discuss the implications of advancing our knowledge on SDL, both for most fundamental processes of learning and memory as well as for development and maintenance of psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Freeze for action: neurobiological mechanisms in animal and human freezing

    Science.gov (United States)

    2017-01-01

    Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions are associated with sympathetically driven heart rate acceleration. Despite the potential relevance of freezing for human stress-coping, its phenomenology and neurobiological underpinnings remain largely unexplored in humans. Studies in rodents have shown that freezing depends on amygdala projections to the brainstem (periaqueductal grey). Recent neuroimaging studies in humans have indicated that similar brain regions may be involved in human freezing. In addition, flexibly shifting between freezing and active defensive modes is critical for adequate stress-coping and relies on fronto-amygdala connections. This review paper presents a model detailing these neural mechanisms involved in freezing and the shift to fight-or-flight action. Freezing is not a passive state but rather a parasympathetic brake on the motor system, relevant to perception and action preparation. Study of these defensive responses in humans may advance insights into human stress-related psychopathologies characterized by rigidity in behavioural stress reactions. The paper therefore concludes with a research agenda to stimulate translational animal–human research in this emerging field of human defensive stress responses. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242739

  6. Freeze for action: neurobiological mechanisms in animal and human freezing.

    Science.gov (United States)

    Roelofs, Karin

    2017-04-19

    Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions are associated with sympathetically driven heart rate acceleration. Despite the potential relevance of freezing for human stress-coping, its phenomenology and neurobiological underpinnings remain largely unexplored in humans. Studies in rodents have shown that freezing depends on amygdala projections to the brainstem (periaqueductal grey). Recent neuroimaging studies in humans have indicated that similar brain regions may be involved in human freezing. In addition, flexibly shifting between freezing and active defensive modes is critical for adequate stress-coping and relies on fronto-amygdala connections. This review paper presents a model detailing these neural mechanisms involved in freezing and the shift to fight-or-flight action. Freezing is not a passive state but rather a parasympathetic brake on the motor system, relevant to perception and action preparation. Study of these defensive responses in humans may advance insights into human stress-related psychopathologies characterized by rigidity in behavioural stress reactions. The paper therefore concludes with a research agenda to stimulate translational animal-human research in this emerging field of human defensive stress responses.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Authors.

  7. Neurobiological mechanisms of treatment resistant depression: Functional, structural and molecular imaging studies

    NARCIS (Netherlands)

    de Kwaasteniet, B.P.

    2015-01-01

    This thesis investigated the neurobiological mechanisms of TRD using functional, structural and molecular imaging studies. First the neurobiological mechanisms of MDD were investigated and revealed decreased functional connectivity between the ventral and dorsal network. Thereafter, structural

  8. Cognitive interventions for addiction medicine: Understanding the underlying neurobiological mechanisms.

    Science.gov (United States)

    Zilverstand, Anna; Parvaz, Muhammad A; Moeller, Scott J; Goldstein, Rita Z

    2016-01-01

    Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain's reward circuitry, and the recruitment and strengthening of the brain's inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means. © 2016 Elsevier B.V. All rights reserved.

  9. Neurobiological mechanisms supporting experience-dependent resistance to social stress.

    Science.gov (United States)

    Cooper, M A; Clinard, C T; Morrison, K E

    2015-04-16

    Humans and other animals show a remarkable capacity for resilience following traumatic, stressful events. Resilience is thought to be an active process related to coping with stress, although the cellular and molecular mechanisms that support active coping and stress resistance remain poorly understood. In this review, we focus on the neurobiological mechanisms by which environmental and social experiences promote stress resistance. In male Syrian hamsters, exposure to a brief social defeat stressor leads to increased avoidance of novel opponents, which we call conditioned defeat. Also, hamsters that have achieved dominant social status show reduced conditioned defeat as well as cellular and molecular changes in the neural circuits controlling the conditioned defeat response. We propose that experience-dependent neural plasticity occurs in the prelimbic (PL) cortex, infralimbic (IL) cortex, and ventral medial amygdala (vMeA) during the maintenance of dominance relationships, and that adaptations in these neural circuits support stress resistance in dominant individuals. Overall, behavioral treatments that promote success in competitive interactions may represent valuable interventions for instilling resilience. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Science.gov (United States)

    Sandi, Carmen; Pinelo-Nava, M. Teresa

    2007-01-01

    Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects) described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type) in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge) or extrinsic (induced by conditions completely unrelated to the cognitive task), tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner), while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect). Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects. PMID:18060012

  11. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability

    Science.gov (United States)

    Fowler, Christie D.; Kenny, Paul J.

    2013-01-01

    Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action is considered critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be proposed. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered. PMID:24055497

  12. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Directory of Open Access Journals (Sweden)

    Carmen Sandi

    2007-01-01

    Full Text Available Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge or extrinsic (induced by conditions completely unrelated to the cognitive task, tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner, while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect. Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.

  13. The Neurobiological Mechanisms of Gamma-Hydroxybutyrate Dependence and Withdrawal and Their Clinical Relevance: A Review.

    Science.gov (United States)

    Kamal, Rama M; van Noorden, Martijn S; Franzek, Ernst; Dijkstra, Boukje A G; Loonen, Anton J M; De Jong, Cornelius A J

    2016-01-01

    x03B3;-Hydroxybutyrate (GHB) has gained popularity as a drug of abuse. In the Netherlands the number of patients in treatment for GHB dependence has increased sharply. Clinical presentation of GHB withdrawal can be life threatening. We aim, through this overview, to explore the neurobiological pathways causing GHB dependency and withdrawal, and their implications for treatment choices. In this work we review the literature discussing the findings from animal models to clinical studies focused on the neurobiological pathways of endogenous but mainly exogenous GHB. Chronic abuse of GHB exerts multifarious neurotransmitter and neuromodulator effects on x03B3;-aminobutyric acid (GABA), glutamate, dopamine, serotonin, norepinephrine and cholinergic systems. Moreover, important effects on neurosteroidogenesis and oxytocin release are wielded. GHB acts mainly via a bidirectional effect on GABAB receptors (GABABR; subunits GABAB1 and GABAB2), depending on the subunit of the GIRK (G-protein-dependent ion inwardly rectifying potassium) channel involved, and an indirect effect of the cortical and limbic inputs outside the nucleus accumbens. GHB also activates a specific GHB receptor and β1-subunits of α4-GABAAR. Reversing this complex interaction of neurobiological mechanisms by the abrupt cessation of GHB use results in a withdrawal syndrome with a diversity of symptoms of different intensity, depending on the pattern of GHB abuse. The GHB withdrawal symptoms cannot be related to a single mechanism or neurological pathway, which implies that different medication combinations are needed for treatment. A single drug class, such as benzodiazepines, gabapentin or antipsychotics, is unlikely to be sufficient to avoid life-threatening complications. Detoxification by means of titration and tapering of pharmaceutical GHB can be considered as a promising treatment that could make polypharmacy redundant. © 2016 S. Karger AG, Basel.

  14. New approach to the neurobiological mechanisms of addiction.

    Science.gov (United States)

    Fürst, Zsuzsanna; Riba, Pál; Al-Khrasani, Mahmoud

    2013-12-01

    Much progress has been made in the last decade in the understanding the neural substrates of drug addiction, transmitters involved, epigenetic background and their relation to learning and memory but much remains to be elucidated and strong effort is necessary to integrate the rich information at the molecular, cellular systems, and behavioral levels to further clarify the mechanisms and therapy of this complex disease. The aim of this review is to collect and interpret the latest opinions in the development, the underlying mechanisms and therapy of addiction as a disease of central nervous system. The neurocircuitry, the transmitters and the epigenetics of addiction are discussed.

  15. Consciousness, Neurobiology and Quantum Mechanics: The Case for a Connection

    Science.gov (United States)

    Hameroff, Stuart

    Consciousness is generally considered to emerge from synaptic computation among brain neurons, but this approach cannot account for its critical features. The Penrose-Hameroff "Orch OR" model suggests that consciousness is a sequence of quantum computations in microtubules within brain neurons, shielded from decoherence to reach threshold for objective reduction (OR), the Penrose quantum gravity solution to the measurement problem. The quantum computations are "orchestrated" by neuronal/synaptic inputs (hence "Orch OR"), and extend throughout cortex by tunneling through gap junctions. Each Orch OR is proposed as a conscious event, akin to Whitehead's philosophical "occasion of experience", occurring in concert with brain electrophysiology. This chapter discusses the need for such an approach and its neurobiological requirements.

  16. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration

    Directory of Open Access Journals (Sweden)

    Arun Upadhyay

    2017-05-01

    Full Text Available Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.

  17. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    Science.gov (United States)

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  18. Neurobiology of Consummatory Behavior: Mechanisms Underlying Overeating and Drug Use

    Science.gov (United States)

    Barson, Jessica R.; Morganstern, Irene; Leibowitz, Sarah F.

    2013-01-01

    Consummatory behavior is driven not just by caloric need but also by emotional need. In the last several decades, a wide variety of models have been used to study the systems that drive food and drug intake. These include selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. From this research, numerous brain areas and neurochemicals have been identified that drive consummatory behavior. While energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside of the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate or protein. Those involved in controlling fat ingestion, including galanin, enkephalin, orexin, melanin-concentrating hormone and the endocannabinoids, show positive feedback with this macronutrient, with these peptides both increasing fat intake and being further stimulated by its intake. This positive relationship offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by these neurochemical systems involved in fat intake, consistent with evidence closely relating fat and ethanol consumption. Further understanding of these systems involved in consummatory behavior will allow researchers to develop effective therapies for the treatment of overeating as well as drug abuse. PMID:23520598

  19. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  20. The neurobiology of D-amino acid oxidase (DAO) and its involvement in schizophrenia

    Science.gov (United States)

    Verrall, L; Burnet, PWJ; Betts, JF; Harrison, PJ

    2010-01-01

    D-amino acid oxidase (DAO, DAAO) is a flavoenzyme that metabolises certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate NMDAR function and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations to the disorder in several, though not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and of its substrates other than D-serine, and the causes and consequences of elevated DAO in schizophrenia. Here we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. The review also illuminates issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may play in the aetiology, pathophysiology, and pharmacotherapy of schizophrenia? PMID:19786963

  1. Stress, depression, and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models

    Science.gov (United States)

    Grippo, Angela J.; Johnson, Alan Kim

    2008-01-01

    A bidirectional association between mood disorders such as depression, and cardiovascular diseases such as myocardial infarction and congestive heart failure, has been described; however, the precise neurobiological mechanisms that underlie these associations have not been fully elucidated. This review is focused on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders, with an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction including dopamine, norepinephrine and serotonin, and (e) behavioral changes including fatigue and physical inactivity. We also focus specifically on experimental investigations with preclinical disease models, conducted to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with the extensive literature describing findings from human research, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance our understanding of the association of depression and cardiovascular disease, and can promote the development of better treatments and interventions for individuals with these co

  2. Neurobiological mechanisms behind the spatiotemporal illusions of awareness that are used for advocating prediction or postdiction

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2013-01-01

    Full Text Available The fact that it takes time for the brain to process information from the changing environment underlies many experimental phenomena of awareness of spatiotemporal events, including a number of astonishing illusions. These phenomena have been explained from the predictive and postdictive theoretical perspectives. Here I describe the most extensively studied phenomena in order to see how well the two perspectives can explain them. Next, the neurobiological perceptual retouch mechanism of producing stimulation awareness is characterized and its work in causing the listed illusions is described. A perspective on how brain mechanisms of conscious perception produce the phenomena supportive of the postdictive view is presented in this article. At the same time, some of the phenomena cannot be explained by the traditional postdictive account, but can be interpreted from the perceptual retouch theory perspective.

  3. Involvement mechanisms for organized crime

    NARCIS (Netherlands)

    van Koppen, M.V.

    2013-01-01

    This study aims to illuminate the processes that make individuals engage in organized crime activities. Within the diversity of individual involvement processes, several distinctive mechanisms are discussed. Theoretical ideas are illustrated by empirical data on 15 crime groups, including over 300

  4. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  5. Exaggerated neurobiological sensitivity to threat as a mechanism linking anxiety with increased risk for diseases of aging

    Science.gov (United States)

    O’Donovan, Aoife; Slavich, George M; Epel, Elissa S.; Neylan, Thomas C

    2015-01-01

    Anxiety disorders increase risk for the early development of several diseases of aging. Elevated inflammation, a common risk factor across diseases of aging, may play a key role in the relationship between anxiety and physical disease. However, the neurobiological mechanisms linking anxiety with elevated inflammation remain unclear. In this review, we present a neurobiological model of the mechanisms by which anxiety promotes inflammation. Specifically we propose that exaggerated neurobiological sensitivity to threat in anxious individuals may lead to sustained threat perception, which is accompanied by prolonged activation of threat-related neural circuitry and threat-responsive biological systems including the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS), and inflammatory response. Over time, this pattern of responding can promote chronic inflammation through structural and functional brain changes, altered sensitivity of immune cell receptors, dysregulation of the HPA axis and ANS, and accelerated cellular aging. Chronic inflammation, in turn, increases risk for diseases of aging. Exaggerated neurobiological sensitivity to threat may thus be a treatment target for reducing disease risk in anxious individuals. PMID:23127296

  6. How we remember the stuff that dreams are made of: neurobiological approaches to the brain mechanisms of dream recall.

    Science.gov (United States)

    De Gennaro, Luigi; Marzano, Cristina; Cipolli, Carlo; Ferrara, Michele

    2012-01-15

    Intrinsic and historical weaknesses delayed the spread of a sound neurobiological investigation on dreaming. Nevertheless, recent independent findings confirm the hypothesis that the neurophysiological mechanisms of encoding and recall of episodic memories are largely comparable across wakefulness and sleep. Brain lesion and neuroimaging studies converge in indicating that temporo-parieto-occipital junction and ventromesial prefrontal cortex play a crucial role in dream recall. Morphoanatomical measurements disclose some direct relations between volumetric and ultrastructural measures of the hippocampus-amygdala on the one hand, and some specific qualitative features of dreaming on the other. Intracranial recordings of epileptic patients also provide support for the notion that hippocampal nuclei mediate memory formation during sleep as well as in wakefulness. Finally, surface EEG studies showed that sleep cortical oscillations associated to a successful dream recall are the same involved in encoding and recall of episodic memories during wakefulness. Although preliminary, these converging pieces of evidence strengthen the general view that the neurophysiological mechanisms underlying episodic/declarative memory formation may be the same across different states of consciousness. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Behavioral and Neurobiological Mechanisms of Extinction in Pavlovian and Instrumental Learning

    Science.gov (United States)

    Todd, Travis P.; Vurbic, Drina; Bouton, Mark E.

    2013-01-01

    This article reviews research on the behavioral and neural mechanisms of extinction as it is represented in both Pavlovian and instrumental learning. In Pavlovian extinction, repeated presentation of a signal without its reinforcer weakens behavior evoked by the signal; in instrumental extinction, repeated occurrence of a voluntary action without its reinforcer weakens the strength of the action. In either case, contemporary research at both the behavioral and neural levels of analysis has been guided by a set of extinction principles that were first generated by research conducted at the behavioral level. The review discusses these principles and illustrates how they have informed the study of both Pavlovian and instrumental extinction. It shows that behavioral and neurobiological research efforts have been tightly linked and that their results are readily integrated. Pavlovian and instrumental extinction are also controlled by compatible behavioral and neural processes. Since many behavioral effects observed in extinction can be multiply determined, we suggest that the current close connection between behavioral-level and neural-level analyses will need to continue. PMID:23999219

  8. Incision and stress regulation in borderline personality disorder: neurobiological mechanisms of self-injurious behaviour.

    Science.gov (United States)

    Reitz, Sarah; Kluetsch, Rosemarie; Niedtfeld, Inga; Knorz, Teresa; Lis, Stefanie; Paret, Christian; Kirsch, Peter; Meyer-Lindenberg, Andreas; Treede, Rolf-Detlef; Baumgärtner, Ulf; Bohus, Martin; Schmahl, Christian

    2015-08-01

    Patients with borderline personality disorder frequently show non-suicidal self-injury (NSSI). In these patients, NSSI often serves to reduce high levels of stress. Investigation of neurobiological mechanisms of NSSI in borderline personality disorder. In total, 21 women with borderline personality disorder and 17 healthy controls underwent a stress induction, followed by either an incision into the forearm or a sham treatment. Afterwards participants underwent resting-state functional magnetic resonance imaging while aversive tension, heart rate and heart rate variability were assessed. We found a significant influence of incision on subjective and objective stress levels with a stronger decrease of aversive tension in the borderline personality disorder group following incision than sham. Amygdala activity decreased more and functional connectivity with superior frontal gyrus normalised after incision in the borderline personality disorder group. Decreased stress levels and amygdala activity after incision support the assumption of an influence of NSSI on emotion regulation in individuals with borderline personality disorder and aids in understanding why these patients use self-inflicted pain to reduce inner tension. © The Royal College of Psychiatrists 2015.

  9. Weaving a Net of Neurobiological Mechanisms in Schizophrenia and Unraveling the Underlying Pathophysiology.

    Science.gov (United States)

    Bitanihirwe, Byron K Y; Mauney, Sarah A; Woo, Tsung-Ung W

    2016-10-15

    Perineuronal nets (PNNs) are enigmatic structures composed of extracellular matrix molecules that encapsulate the soma, dendrites, and axon segments of neurons in a lattice-like fashion. Although most PNNs condense around parvalbumin-expressing gamma-aminobutyric acidergic interneurons, some glutamatergic pyramidal cells in the brain are also surrounded by PNNs. Experimental findings suggest pivotal roles of PNNs in the regulation of synaptic formation and function. Also, an increasing body of evidence links PNN abnormalities to schizophrenia. The number of PNNs progressively increases during postnatal development until plateauing around the period of late adolescence and early adulthood, which temporally coincides with the age of onset of schizophrenia. Given the established role of PNNs in modulating developmental plasticity, the PNN represents a possible candidate for altering the onset and progression of schizophrenia. Similarly, the reported function of PNNs in regulating the trafficking of glutamate receptors places them in a critical position to modulate synaptic pathology, considered a cardinal feature of schizophrenia. We discuss the physiologic role of PNNs in neural function, synaptic assembly, and plasticity as well as how they interface with circuit/system mechanisms of cognition. An integrated understanding of these neurobiological processes should provide a better basis to elucidate how PNN abnormalities influence brain function and contribute to the pathogenesis of neurodevelopmental disorders such as schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Oxytocin and Stress-related Disorders: Neurobiological Mechanisms and Treatment Opportunities

    Science.gov (United States)

    Sippel, Lauren M.; Allington, Casey E.; Pietrzak, Robert H.; Harpaz-Rotem, Ilan; Mayes, Linda C.; Olff, Miranda

    2017-01-01

    Novel pharmacotherapies that improve outcomes for individuals with stress-related psychiatric disorders are needed. The neurohormone oxytocin (OT) is a promising candidate given its influence on the social–emotional brain. In this review, we present an overview of evidence supporting OT’s utility for treating major depressive disorder and posttraumatic stress disorder. We first discuss endogenous OT, which research suggests is not yet a reliable biomarker of stress-related disorders. Second, we review effects of intranasal (IN) OT on processes relevant to stress-related disorders in healthy populations (anhedonia, reward processing, psychosocial stress reactivity, fear/anxiety, and social behavior) and their neurobiological mechanisms (e.g., the salience network and hypothalamic–pituitary–adrenal axis). Third, we present the sparse but promising findings from clinical populations, followed by discussion of critical moderating variables to consider in the service of maximizing the therapeutic potential of OT (e.g., patient sex and child maltreatment). We also identify heterogeneous findings and limitations of existing research, including reliance on single-dose studies in psychiatrically healthy samples and unanswered questions regarding the effectiveness of IN drug delivery and dosing schedules. Well-controlled multidose studies including women and measures of potentially moderating variables are sorely needed and would inform our understanding of the utility of OT for preventing and treating stress-related psychiatric disorders. PMID:28649672

  11. Neurobiological mechanisms associated with facial affect recognition deficits after traumatic brain injury.

    Science.gov (United States)

    Neumann, Dawn; McDonald, Brenna C; West, John; Keiski, Michelle A; Wang, Yang

    2016-06-01

    The neurobiological mechanisms that underlie facial affect recognition deficits after traumatic brain injury (TBI) have not yet been identified. Using functional magnetic resonance imaging (fMRI), study aims were to 1) determine if there are differences in brain activation during facial affect processing in people with TBI who have facial affect recognition impairments (TBI-I) relative to people with TBI and healthy controls who do not have facial affect recognition impairments (TBI-N and HC, respectively); and 2) identify relationships between neural activity and facial affect recognition performance. A facial affect recognition screening task performed outside the scanner was used to determine group classification; TBI patients who performed greater than one standard deviation below normal performance scores were classified as TBI-I, while TBI patients with normal scores were classified as TBI-N. An fMRI facial recognition paradigm was then performed within the 3T environment. Results from 35 participants are reported (TBI-I = 11, TBI-N = 12, and HC = 12). For the fMRI task, TBI-I and TBI-N groups scored significantly lower than the HC group. Blood oxygenation level-dependent (BOLD) signals for facial affect recognition compared to a baseline condition of viewing a scrambled face, revealed lower neural activation in the right fusiform gyrus (FG) in the TBI-I group than the HC group. Right fusiform gyrus activity correlated with accuracy on the facial affect recognition tasks (both within and outside the scanner). Decreased FG activity suggests facial affect recognition deficits after TBI may be the result of impaired holistic face processing. Future directions and clinical implications are discussed.

  12. Formation and adaptation of memory : Neurobiological mechanisms underlying learning and reversal learning

    NARCIS (Netherlands)

    Havekes, Robbert

    2008-01-01

    The hippocampus is a brain region that plays a critical role in memory formation. In addition, it has been suggested that this brain region is important for ‘updating’ information that is incorrect or outdated. The main goal of this thesis project was to investigate which neurobiological processes

  13. Getting Better. Neurobiological mechanisms of recovery from combat-related PTSD

    NARCIS (Netherlands)

    Rooij, S.J.H. van

    2015-01-01

    Military personnel often experience traumatic events during deployment. In the aftermath of a traumatic event, a subgroup of trauma survivors develops posttraumatic stress disorder (PTSD).Most (neurobiological) studies aim at understanding why some trauma survivors develop PTSD whereas others do

  14. Neurobiology of song learning

    Science.gov (United States)

    Mooney, Richard

    2016-01-01

    Birdsong is a culturally transmitted behavior that depends on a juvenile songbird’s ability to imitate the song of an adult tutor. Neurobiological studies of birdsong can reveal how a complex form of imitative learning, which bears strong parallels to human speech learning, can be understood at the level of underlying circuit, cellular, and synaptic mechanisms. This review focuses on recent studies that illuminate the neurobiological mechanisms for singing and song learning. PMID:19892546

  15. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment

    Directory of Open Access Journals (Sweden)

    Jillian Vinall

    2016-12-01

    Full Text Available Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and behavioral factors that lead to the development and/or maintenance of both conditions. Particularly within the pediatric chronic pain population, these factors are embedded within the broader context of the parent–child relationship. In this review, we will explore the epidemiology of, and current working models explaining, these comorbidities. Particular emphasis will be made on shared neurobiological mechanisms, given that the majority of previous research to date has centered on cognitive, affective, and behavioral mechanisms. Parental contributions to co-occurring chronic pain and psychopathology in childhood and adolescence will be discussed. Moreover, we will review current treatment recommendations and future directions for both research and practice. We argue that the integration of biological and behavioral approaches will be critical to sufficiently address why these comorbidities exist and how they can best be targeted in treatment.

  16. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment.

    Science.gov (United States)

    Vinall, Jillian; Pavlova, Maria; Asmundson, Gordon J G; Rasic, Nivez; Noel, Melanie

    2016-12-02

    Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and behavioral factors that lead to the development and/or maintenance of both conditions. Particularly within the pediatric chronic pain population, these factors are embedded within the broader context of the parent-child relationship. In this review, we will explore the epidemiology of, and current working models explaining, these comorbidities. Particular emphasis will be made on shared neurobiological mechanisms, given that the majority of previous research to date has centered on cognitive, affective, and behavioral mechanisms. Parental contributions to co-occurring chronic pain and psychopathology in childhood and adolescence will be discussed. Moreover, we will review current treatment recommendations and future directions for both research and practice. We argue that the integration of biological and behavioral approaches will be critical to sufficiently address why these comorbidities exist and how they can best be targeted in treatment.

  17. Adolescent angst or true intent? Suicidal behavior, risk, and neurobiological mechanisms in depressed children and teenagers taking antidepressants.

    Science.gov (United States)

    Morrison, Julia; Schwartz, Thomas L

    2014-01-01

    Suicide is one of the major causes of morbidity and mortality amongst children and adolescents. In 2004 the Food and Drug Administration (FDA) issued a "black-box" warning for antidepressants in children and adolescents, stating that these drugs may increase suicidality, a term encompassing both suicidal thoughts and behavior, especially in the first few weeks of treatment. The warning was extended in 2007 to antidepressants prescribed to adults aged 25 and under. The evidence behind this decision stemmed from meta-analyses of antidepressant clinical trials that demonstrated a slight increase in suicidality in those receiving antidepressants versus those treated with a placebo. Due to methods of this pooled data compilation, the relationship between antidepressants and suicidality remains controversial. This report investigates a case where a 14 year old with major depressive disorder (MDD) developed suicidal ideation shortly after being prescribed a selective serotonin reuptake inhibitor (SSRI). Investigating the role antidepressants may play in suicidality suggests the need to explore the neurobiological mechanisms within the serotonin system. This case and its theoretical explanations attempt to bridge the gap between neurobiology and pharmacology in order to better delineate the etiology of this adverse effect.

  18. Neurobiological mechanisms of exercise and psychotherapy in depression: The SPeED study-Rationale, design, and methodological issues.

    Science.gov (United States)

    Heinzel, Stephan; Rapp, Michael A; Fydrich, Thomas; Ströhle, Andreas; Terán, Christina; Kallies, Gunnar; Schwefel, Melanie; Heissel, Andreas

    2018-02-01

    Even though cognitive behavioral therapy has become a relatively effective treatment for major depressive disorder and cognitive behavioral therapy-related changes of dysfunctional neural activations were shown in recent studies, remission rates still remain at an insufficient level. Therefore, the implementation of effective augmentation strategies is needed. In recent meta-analyses, exercise therapy (especially endurance exercise) was reported to be an effective intervention in major depressive disorder. Despite these findings, underlying mechanisms of the antidepressant effect of exercise especially in combination with cognitive behavioral therapy have rarely been studied to date and an investigation of its neural underpinnings is lacking. A better understanding of the psychological and neural mechanisms of exercise and cognitive behavioral therapy would be important for developing optimal treatment strategies in depression. The SPeED study (Sport/Exercise Therapy and Psychotherapy-evaluating treatment Effects in Depressive patients) is a randomized controlled trial to investigate underlying physiological, neurobiological, and psychological mechanisms of the augmentation of cognitive behavioral therapy with endurance exercise. It is investigated if a preceding endurance exercise program will enhance the effect of a subsequent cognitive behavioral therapy. This study will include 105 patients diagnosed with a mild or moderate depressive episode according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed.). The participants are randomized into one of three groups: a high-intensive or a low-intensive endurance exercise group or a waiting list control group. After the exercise program/waiting period, all patients receive an outpatient cognitive behavioral therapy treatment according to a standardized therapy manual. At four measurement points, major depressive disorder symptoms (Beck Depression Inventory, Hamilton Rating Scale for Depression

  19. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  20. Atypical Neurotransmitters and the Neurobiology of Depression.

    Science.gov (United States)

    Joca, Samia Regiane; Moreira, Fabricio Araujo; Wegener, Gregers

    2015-01-01

    Since the first report that the mechanism of action of antidepressants involves the facilitation of monoaminergic neurotransmission in the brain in the 1960s, the leading hypothesis about the neurobiology of depression has been the so called "monoaminergic hypothesis". However, a growing body of evidence from the last two decades also supports important involvement of non-monoaminergic mechanisms in the neurobiology of depression and antidepressant action. The discovery of nitric oxide (NO) and endocannabinoid signaling in the brain during the 1990s challenged the wellestablished criteria of classical neurotransmission. These transmitters are synthesized and released on demand by the postsynaptic neurons, and may act as a retrograde messenger on the presynaptic terminal, modulating neurotransmitter release. These unconventional signaling mechanisms and the important role as neural messengers have classified NO and endocannabinoids as atypical neurotransmitters. They are able to modulate neural signaling mediated by the main conventional neurotransmitters systems in the brain, including the monoaminergic, glutamatergic and GABAergic signaling systems. This review aims at discussing the fundamental aspects of NO- and endocannabinoid-mediated signaling in the brain, and how they can be related to the neurobiology of depression. Both preclinical and clinical evidence supporting the involvement of these atypical neurotransmitters in the neurobiology of depression, and in the antidepressant effects are presented here. The evidence is discussed on basis of their ability to modulate different neurotransmitter systems in the brain, including monoaminergic and glutamatergic ones. A better comprehension of NO and endocannabinoid signaling mechanisms in the neurobiology depression could provide new avenues for the development of novel non-monoamine based antidepressants.

  1. Neurobiological mechanisms for nonverbal IQ tests: implications for instruction of nonverbal children with autism

    Directory of Open Access Journals (Sweden)

    Andrey Vyshedskiy

    2017-04-01

    Full Text Available Traditionally, the neurological correlates of IQ test questions are characterized qualitatively in terms of ‘control of attention’ and ‘working memory.’ In this report we attempt to characterize each IQ test question quantitatively by two factors: a the number of disparate objects that have to be imagined in concert in order to solve the problem and, b the amount of recruited posterior cortex territory. With such a classification, an IQ test can be understood on a neuronal level and a subject’s IQ score could be interpreted in terms of specific neurological mechanisms available to the subject. Here we present the results of an analysis of the three most popular nonverbal IQ tests: Test of Nonverbal Intelligence (TONI-4, Standard Raven's Progressive Matrices, and Wechsler Intelligence Scale for Children (WISC-V. Our analysis shows that approximately half of all questions (52±0.02% are limited to mental computations involving only a single object; these easier questions are found towards the beginning of each test. More difficult questions located towards the end of each test rely on mental synthesis of several disparate objects and the number of objects involved in computations gradually increases with question difficulty. These more challenging questions require the organization of wider posterior cortex networks by the lateral prefrontal cortex (PFC. This conclusion is in line with neuroimaging studies showing that activation level of the lateral PFC and the posterior cortex positively correlates with task difficulty. This analysis has direct implications for brain pathophysiology and, specifically, for therapeutic interventions for children with language impairment, most notably for children with Autism Spectrum Disorder (ASD and other developmental disorders.

  2. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder.

    Science.gov (United States)

    Castilla-Ortega, Estela; Ladrón de Guevara-Miranda, David; Serrano, Antonia; Pavón, Francisco J; Suárez, Juan; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2017-10-01

    After discovering that addictive drugs alter adult neurogenesis, the potential role of adult-born hippocampal neurons in drug addiction has become a promising research field, in which cocaine is the most frequently investigated drug. Although a substantial amount of pre-clinical evidence has accumulated, additional studies are required to reveal the mechanisms by which cocaine modulates adult hippocampal neurogenesis (AHN) and determine whether these adult-born neurons have a role in cocaine-related behaviors, such as cocaine-mediated cognitive symptoms. First, this review will summarize the cocaine-induced alterations in a number of neurobiological factors (neurotransmitters, neurotrophins, glucocorticoids, inflammatory mediators) that likely regulate both hippocampal-dependent learning and adult hippocampal neurogenesis after cocaine exposure. A separate section will provide a detailed review of the available literature that challenges the common view that cocaine reduces adult hippocampal neurogenesis. In fact, cocaine has a short-term anti-proliferative role, but the young adult-born neurons are apparently spared, or even enhanced, following certain cocaine protocols. Thus, we will try to reconcile this evidence with the hippocampal-dependent cognitive symptoms that are typically observed in cocaine addicts, and we will propose new directions for future studies to test the relevant hypothesis. Based on the evidence presented here, the regulation of adult hippocampal neurogenesis might be one of the many mechanisms by which cocaine sculpts hippocampus-dependent learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Involvement of Mechanical Stress in Androgenetic Alopecia

    Science.gov (United States)

    Tellez-Segura, Rafael

    2015-01-01

    Context: Androgenetic alopecia (AGA) is a frequent disorder characterized by progressive hair miniaturization in a very similar pattern among all affected men. The pathogenesis is related to androgen-inducible overexpression of transforming growth factor β-1 from balding dermal papilla cells, which is involved in epithelial inhibition and perifollicular fibrosis. Recent research shows that hair follicle androgen sensitivity is regulated by Hic-5, an androgen receptor co-activator which may be activated by the mechanical stimulation. Moreover, the dermis of scalp susceptible to be affected by AGA is firmly bounded to the galea aponeurotica, so the physical force exerted by the occipitofrontalis muscle is transmitted to the scalp skin. Aims: To know whether mechanical stress supported by hair follicles is involved in AGA phenomenon. Materials and Methods: It is performed with a finite element analysis of a galea model and a schematic representation of AGA progression according to Hamilton–Norwood scale in order to establish the correlation between elastic deformation in scalp and clinical progression of male pattern baldness. Results: The result was a highly significant correlation (r: −0.885, P < 0.001) that clearly identifies a mechanical factor in AGA development. Conclusions: All these data suggest that mechanical stress determines AGA patterning and a stretch-induced and androgen-mediated mechanotransduction in dermal papilla cells could be the primary mechanism in AGA pathogenesis. PMID:26622151

  4. Translational clinical neuroscience perspectives on the cognitive and neurobiological mechanisms underlying alcohol-related aggression.

    Science.gov (United States)

    Beck, Anne; Heinz, Adrienne J; Heinz, Andreas

    2014-01-01

    Alcohol-related violence, a longstanding, serious, and pervasive social problem, has provided researchers from diverse disciplines with a model to study individual differences in aggressive and violent behavior. Of course, not all alcohol consumers will become aggressive after drinking and similarly, not all individuals with alcohol use disorders will exhibit such untoward behavior. Rather, the relationship is best conceptualized as complex and indirect and is influenced by a constellation of social, cognitive, and biological factors that differ greatly from one person to the next. Animal experiments and human studies have elucidated how these mechanisms and processes explain (i.e., mediate) the relation between acute and chronic alcohol consumption and aggressive behavior. Further, the rich body of literature on alcohol-related aggression has allowed for identification of several potential high-yield targets for clinical intervention, e.g., cognitive training for executive dysfunction; psychopharmacology targeting affect and threat perception, which may also generalize to other psychiatric conditions characterized by aggressive behavior. Here we aim to integrate pertinent findings, derived from different methodological approaches and theoretical models, which explain heterogeneity in aggressive responses to alcohol. A translational platform is provided, highlighting common factors linking alcohol and aggression that warrant further, interdisciplinary study in order to reduce the devastating social impact of this phenomenon.

  5. Retraining the addicted brain: a review of hypothesized neurobiological mechanisms of mindfulness-based relapse prevention.

    Science.gov (United States)

    Witkiewitz, Katie; Lustyk, M Kathleen B; Bowen, Sarah

    2013-06-01

    Addiction has generally been characterized as a chronic relapsing condition (Leshner, 1999). Several laboratory, preclinical, and clinical studies have provided evidence that craving and negative affect are strong predictors of the relapse process. These states, as well as the desire to avoid them, have been described as primary motives for substance use. A recently developed behavioral treatment, mindfulness-based relapse prevention (MBRP), was designed to target experiences of craving and negative affect and their roles in the relapse process. MBRP offers skills in cognitive-behavioral relapse prevention integrated with mindfulness meditation. The mindfulness practices in MBRP are intended to increase discriminative awareness, with a specific focus on acceptance of uncomfortable states or challenging situations without reacting "automatically." A recent efficacy trial found that those randomized to MBRP, as compared with those in a control group, demonstrated significantly lower rates of substance use and greater decreases in craving following treatment. Furthermore, individuals in MBRP did not report increased craving or substance use in response to negative affect. It is important to note, areas of the brain that have been associated with craving, negative affect, and relapse have also been shown to be affected by mindfulness training. Drawing from the neuroimaging literature, we review several plausible mechanisms by which MBRP might be changing neural responses to the experiences of craving and negative affect, which subsequently may reduce risk for relapse. We hypothesize that MBRP may affect numerous brain systems and may reverse, repair, or compensate for the neuroadaptive changes associated with addiction and addictive-behavior relapse. 2013 APA, all rights reserved

  6. Neurobiology of dysregulated motivational systems in drug addiction

    Science.gov (United States)

    Edwards, Scott; Koob, George F

    2010-01-01

    The progression from recreational drug use to drug addiction impacts multiple neurobiological processes and can be conceptualized as a transition from positive to negative reinforcement mechanisms driving both drug-taking and drug-seeking behaviors. Neurobiological mechanisms for negative reinforcement, defined as drug taking that alleviates a negative emotional state, involve changes in the brain reward system and recruitment of brain stress (or antireward) systems within forebrain structures, including the extended amygdala. These systems are hypothesized to be dysregulated by excessive drug intake and to contribute to allostatic changes in reinforcement mechanisms associated with addiction. Points of intersection between positive and negative motivational circuitry may further drive the compulsivity of drug addiction but also provide a rich neurobiological substrate for therapeutic intervention. PMID:20563312

  7. The neurobiology of successful abstinence.

    Science.gov (United States)

    Garavan, H; Brennan, K L; Hester, R; Whelan, R

    2013-08-01

    This review focuses on the neurobiological processes involved in achieving successful abstinence from drugs of abuse. While there is clinical and public health value in knowing if the deficits associated with drug use correct with abstinence, studying the neurobiology that underlies successful abstinence can also illuminate the processes that enable drug-dependent individuals to successfully quit. Here, we review studies on human addicts that assess the neurobiological changes that arise with abstinence and the neurobiological predictors of successfully avoiding relapse. The literature, while modest in size, suggests that abstinence is associated with improvement in prefrontal structure and function, which may underscore the importance of prefrontally mediated cognitive control processes in avoiding relapse. Given the implication that the prefrontal cortex may be an important target for therapeutic interventions, we also review evidence indicating the efficacy of cognitive control training for abstinence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Neurobiological Mechanism of Chemical Aversion (Emetic) Therapy for Alcohol Use Disorder: An fMRI Study

    Science.gov (United States)

    Elkins, Ralph L.; Richards, Todd L.; Nielsen, Robert; Repass, Richard; Stahlbrandt, Henriettae; Hoffman, Hunter G.

    2017-01-01

    A recent NIH epidemiology study found the lifetime prevalence of alcohol use disorder in the United States to be 29%. Alcohol drinking behavior is strongly “learned” via pleasure center activation/reinforcement. Alcohol craving is a powerful desire to drink alcoholic beverages. Craving was added as one of the defining criteria for alcohol use disorder in DSM5, and craving reduction is becoming an increasingly important treatment goal. In the current study, patients with alcohol use disorder received 10 days of inpatient multi-modal treatments at Schick Shadel Hospital (SSH) of Seattle. The treatments included five chemical aversion conditioning sessions that associated alcohol cues (and alcohol) with nausea and emesis. All patients met DSM4 criteria for alcohol use disorder, were heavy drinkers, and reported craving alcohol pre-treatment. Craving reduction was one of the primary treatment goals. This is the first fMRI study to measure the effects of chemical aversion therapy on alcohol craving-related brain activity. Patients were recruited as subjects for the University of Washington (UW) brain scan study following SSH admission but before treatment onset. Prior to treatment, patients reported craving/desire for alcohol. After treatment (after four SSH chemical aversion treatments, again after five SSH chemical treatments, 30 and 90-days post-discharge), these same patients reported avoidance/aversion to alcohol. Most of the participants (69%) reported being still sober 12 months post-treatment. Consistent with a craving reduction mechanism of how chemical aversion therapy facilitates sobriety, results of the UW fMRI brain scans showed significant pre- to post-treatment reductions in craving-related brain activity in the occipital cortex. Additional fMRI brain scan studies are needed to further explore the neurobiological mechanism of chemical aversion therapy treatment for alcohol use disorder, and other substance use disorders for which chemical aversion

  9. [Neurobiology of Tourette Syndrome].

    Science.gov (United States)

    Ünal, Dilek; Akdemir, Devrim

    2016-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder characterized by chronic motor and vocal tics. Although it is a common disorder in childhood, the etiology of Tourette Syndrome has not been fully elucidated yet. Studies, -conducted so far- have revealed differences in neurobiological structures of individuals who suffer from Tourette Syndrome. The objective of this review is to assess etiological and pathophysiological studies in the Tourette Syndrome literature. An electronical search was conducted in PubMed database using the keywords tic disorders, Tourette Syndrome, neurobiology, genetics, neuroimaging and animal models. Research and review studies published between 1985 and 2015, with a selection preference towards recent publications, were reviewed. According to the studies, genetic predisposition hypothesis is considered as a priority. However, a precise genetic disorder associated with Tourette Syndrome has not been found. The evidence from postmortem and neuroimaging studies in heterogenous patient groups and animal studies supports the pathological involvement of cortico-striato-thalamo-cortical (CSTC) circuits in Tourette Syndrome. Consequently, the most emphasized hypothesis in the pathophysiology is the dopaminergic dysfunction in these circuits. Furthermore, these findings of the animal, postmortem and neuroimaging studies have confirmed the neurodevelopmental hypothesis of Tourette Syndrome. In conclusion, more studies are needed to understand the etiology of the disorder. The data obtained from neurobiological studies of the disorder will not only shed light on the way of Tourette Syndrome, but also guide studies on its treatment options.

  10. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment

    OpenAIRE

    Jillian Vinall; Maria Pavlova; Asmundson, Gordon J.G.; Nivez Rasic; Melanie Noel

    2016-01-01

    Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and be...

  11. Mechanisms involved in symptomatic myocardial bridging

    NARCIS (Netherlands)

    Hazenberg, A. J. C.; Jessurun, G. A. J.; Tio, R. A.

    Background. In patients with extensive myocardial bridging, evaluation of its clinical significance remains a challenge. Hypothesis. Sequential invasive testing is feasible and gives more insight into the pathophysiological mechanism of bridging-related angina. Methods. Twelve patients with chest

  12. Cortisol involvement in mechanisms of behavioral inhibition

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.

    We studied whether baseline cortisol is associated with post-error slowing, a measure that depends upon brain areas involved in behavioral inhibition. Moreover, we studied whether this association holds after controlling for positive associations with behavioral inhibition scores and error-related

  13. Self-Awareness, Self-Regulation, and Self-Transcendence (S-ART: A Framework for Understanding the Neurobiological Mechanisms of Mindfulness

    Directory of Open Access Journals (Sweden)

    David R. Vago

    2012-10-01

    Full Text Available Mindfulness - as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness, an ability to effectively modulate one’s behavior (self-regulation, and the development of a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence. This framework of self-awareness, regulation, and transcendence (S-ART illustrates a method for becoming aware of the conditions that cause (and remove distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

  14. Epigenetic mechanisms involved in developmental nutritional programming

    OpenAIRE

    Gabory, Anne; Attig, Linda; Junien, Claudine

    2011-01-01

    The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli, which result in modified gene expression patterns and phenotypes later in life, is a topic of considerable interest. This review focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, position and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects on a small number o...

  15. Fundamentals of neurobiology.

    Science.gov (United States)

    Greg Hall, D

    2011-01-01

    Session 1 of the 2010 STP/IFSTP Joint Symposium on Toxicologic Neuropathology, titled "Fundamentals of Neurobiology," was organized to provide a foundation for subsequent sessions by presenting essential elements of neuroanatomy and nervous system function. A brief introduction to the session titled "Introduction to Correlative Neurobiology" was provided by Dr. Greg Hall (Eli Lilly and Company, Indianapolis, IN). Correlative neurobiology refers to considerations of the relationships between the highly organized and compartmentalized structure of nervous tissues and the functioning within this system.

  16. Epigenetic mechanisms involved in developmental nutritional programming.

    Science.gov (United States)

    Gabory, Anne; Attig, Linda; Junien, Claudine

    2011-10-15

    The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli, which result in modified gene expression patterns and phenotypes later in life, is a topic of considerable interest. This review focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, position and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects on a small number of epigenetic marks, at the global or individual gene level, of environmental stressors in humans and animal models. In parallel, increasing numbers of studies based on high-throughput technologies and focusing on humans and mice have revealed additional complexity in epigenetic processes, by highlighting the importance of crosstalk between the different epigenetic marks. A number of studies focusing on the developmental origin of health and disease and metabolic programming have identified links between early nutrition, epigenetic processes and long-term illness. The existence of a self-propagating epigenetic cycle has been demonstrated. Moreover, recent studies demonstrate an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, we are still far from understanding how, when and where environmental stressors disturb key epigenetic mechanisms. Thus, identifying the original key marks and their changes throughout development during an individual's lifetime or over several generations remains a challenging issue.

  17. Mechanisms involved in breast cancer liver metastasis.

    Science.gov (United States)

    Ma, Rui; Feng, Yili; Lin, Shuang; Chen, Jiang; Lin, Hui; Liang, Xiao; Zheng, Heming; Cai, Xiujun

    2015-02-15

    Liver metastasis is a frequent occurrence in patients with breast cancer; however, the available treatments are limited and ineffective. While liver-specific homing of breast cancer cells is an important feature of metastasis, the formation of liver metastases is not random. Indeed, breast cancer cell factors contribute to the liver microenvironment. Major breakthroughs have been achieved recently in understanding breast cancer liver metastasis (BCLM). The process of liver metastasis consists of multiple steps and involves various factors from breast cancer cells and the liver microenvironment. A further understanding of the roles of breast cancer cells and the liver microenvironment is crucial to guide future work in clinical treatments. In this review we discuss the contribution of breast cancer cells and the liver microenvironment to liver metastasis, with the aim to improve therapeutic efficacy for patients with BCLM.

  18. Neurobiology of the incubation of drug craving.

    Science.gov (United States)

    Pickens, Charles L; Airavaara, Mikko; Theberge, Florence; Fanous, Sanya; Hope, Bruce T; Shaham, Yavin

    2011-08-01

    It was suggested in 1986 that cue-induced drug craving in cocaine addicts progressively increases over the first several weeks of abstinence and remains high for extended periods. During the past decade, investigators have identified an analogous incubation phenomenon in rodents, in which time-dependent increases in cue-induced drug seeking are observed after withdrawal from intravenous cocaine self-administration. Such an incubation of drug craving is not specific to cocaine, as similar findings have been observed after self-administration of heroin, nicotine, methamphetamine and alcohol in rats. In this review, we discuss recent results that have identified important brain regions involved in the incubation of drug craving, as well as evidence for the underlying cellular mechanisms. Understanding the neurobiology of the incubation of drug craving in rodents is likely to have significant implications for furthering understanding of brain mechanisms and circuits that underlie craving and relapse in human addicts. Published by Elsevier Ltd.

  19. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    Science.gov (United States)

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  20. [What brings neurobiology to addictions?

    Science.gov (United States)

    Lenoir, Magalie; Noble, Florence

    2016-12-01

    Addictions are multifactorial, and there are no experimental models replicating all aspects of this pathology. The development of animal models reproducing the clinical symptoms of addictions allows significant advances in the knowledge of the neurobiological processes involved in addiction. Preclinical data highlight different neuroadaptations according to the routes of administration, speeds of injection and frequencies of exposure to drugs of abuse. The neuroadaptations induced by an exposure to drugs of abuse follow dynamic processes in time. Despite significant progresses in the knowledge of neurobiology of addictions allowing to propose new therapeutic targets, the passage of new drugs in clinical is often disappointing. The lack of treatment efficacy reported in clinical trials is probably due to a very important heterogeneity of patients with distinct biological and genetic factors, but also with different patterns of consumption that can lead to different neuroadaptations, as clearly observed in preclinical studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Neurobiology of inflammation-associated anorexia

    Directory of Open Access Journals (Sweden)

    Laurent Gautron

    2010-01-01

    Full Text Available Compelling data demonstrate that inflammation-associated anorexia directly results from the action of pro-inflammatory factors, primarily cytokines and prostaglandins E2, on the nervous system. For instance, the aforementioned pro-inflammatory factors can stimulate the activity of peripheral sensory neurons, and induce their own de novo synthesis and release into the brain parenchyma and cerebrospinal fluid. Ultimately, it results in the mobilization of a specific neural circuit that shuts down appetite. The present article describes the different cell groups and neurotransmitters involved in inflammation-associated anorexia and examines how they interact with neural systems regulating feeding such as the melanocortin system. A better understanding of the neurobiological mechanisms underlying inflammation-associated anorexia will help to develop appetite stimulants for cancer and AIDS patients.

  2. Pathophysiology of diabetic nephropathy: involvement of multifaceted signalling mechanism.

    Science.gov (United States)

    Balakumar, Pitchai; Arora, Mandeep Kumar; Reddy, Jayarami; Anand-Srivastava, Madhu B

    2009-08-01

    Diabetic nephropathy is a major cause of end-stage renal failure and the mortality rate due to this disease is continuously progressing worldwide. The multifaceted signalling mechanisms have been identified to be involved in the pathogenesis of diabetic nephropathy. Despite the modern therapies like antidiabetics, antihypertensives, and antioxidants available to treat diabetic nephropathy; most of patients continue to show progressive renal damage. It suggests that the key pathogenic mechanism involved in the induction and progression of diabetic nephropathy is still remaining active and unmodified by the present therapies. The purpose of this review is to bring together the current information concerning the signalling systems involved in the pathogenesis of diabetic nephropathy.

  3. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility.

    Science.gov (United States)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M

    2017-03-01

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding of coping style variation is fundamental for biobehavioral neurosciences in probing individual disease susceptibility. This review outlines individual differences in trait-aggressiveness as an adaptive component of the natural sociobiology of rats and mice, and highlights that these reflect the general style of coping that varies from proactive (aggressive) to reactive (docile). We propose that this qualitative coping style can be disentangled into multiple quantitative behavioral domains, e.g., flexibility/impulse control, emotional reactivity and harm avoidance/reward processing, that each are encoded into selective neural circuitries. Since functioning of all these brain circuitries rely on fine-tuned serotonin signaling, autoinhibitory control mechanisms of serotonergic neuron (re)activity are crucial in orchestrating general coping style. Untangling the precise neuromolecular mechanisms of different coping styles will provide a roadmap for developing better therapeutic strategies of stress-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Tetanus toxin as a neurobiological tool to study mechanisms of neuronal cell death in the mammalian brain.

    Science.gov (United States)

    Bagetta, G; Nisticò, G

    1994-01-01

    Tetanus toxin is a potent clostridial neurotoxin responsible for causing spastic paralysis in humans, often accompanied by seizures and death. The tetanic syndrome is believed to originate from a disinhibitory action of the toxin in the CNS. To produce its effects, tetanus toxin undergoes retrograde, intra-axonal transport to the CNS, where it blocks preferentially the release of gamma-aminobutyric acid and glycine, two inhibitory neurotransmitters. These effects stem from the cleavage of synaptobrevin, a constitutive small-vesicle protein, by tetanus toxin, whose zinc-dependent metalloprotease characteristics recently have been recognized. Blockade of inhibitory transmission produces a predominance of excitatory amino acid neurotransmission, which is responsible for the neurodegenerative effect caused by tetanus toxin after intrahippocampal injection in rats. In fact, hippocampal damage can effectively be prevented by reduction of glutamate-mediated excitatory transmission, thus suggesting that unopposed excitation may be the underlying mechanism for neuronal cell death.

  5. Re-Training the Addicted Brain: A Review of Hypothesized Neurobiological Mechanisms of Mindfulness-Based Relapse Prevention

    Science.gov (United States)

    Witkiewitz, Katie; Lustyk, M. Kathleen B.; Bowen, Sarah

    2013-01-01

    Addiction has generally been characterized as a chronic relapsing condition. Several laboratory, preclinical, and clinical studies have provided evidence that craving and negative affect are strong predictors of the relapse process. These states, as well as the desire to avoid them, have been described as primary motives for substance use. A recently developed behavioral treatment, Mindfulness-Based Relapse Prevention (MBRP), was designed to target experiences of craving and negative affect and their roles in the relapse process. MBRP offers skills in cognitive behavioral relapse prevention integrated with mindfulness meditation. The mindfulness practices in MBRP are intended to increase discriminative awareness, with a specific focus on acceptance of uncomfortable states or challenging situations without reacting “automatically.” A recent efficacy trial found that those randomized to MBRP, as compared to those in a control group, demonstrated significantly lower rates of substance use and greater decreases in craving following treatment. Furthermore, individuals in MBRP did not report increased craving or substance use in response to negative affect. Importantly, areas of the brain that have been associated with craving, negative affect, and relapse have also been shown to be affected by mindfulness training. Drawing from the neuroimaging literature, we review several plausible mechanisms by which MBRP might be changing neural responses to the experiences of craving and negative affect, which subsequently may reduce risk for relapse. We hypothesize that MBRP may affect numerous brain systems and may reverse, repair, or compensate for the neuroadaptive changes associated with addiction and addictive behavior relapse. PMID:22775773

  6. [Neurobiological, psychological and sociological approach to sexual desire and sexual satisfaction].

    Science.gov (United States)

    Bianchi-Demicheli, Francesco; Ammar, Nadia; Bolmont, Mylène; Dosch, Alessandra; Favez, Nicolas; Van der Linden, Martial; Widmer, Eric

    2016-03-16

    In the last years, University Fund Maurice Chalumeau (FUMC) launched a dynamic of research designed to promote scientific excellence and the development of Sexology with particular interest regarding sexual desire. The FUMC has supported a research project entitled "Neurobiological, psychological and sociological approach to sexual desire and sexual satisfaction". This project, sampled on 600 people (300 men and 300 women) aged between 25 and 46 years, was structured around three studies: a broad sociological study and two more specific ones, focused on some psychological mechanisms and neurobiological factors involved in sexual desire. The results show how the secondary socialization, personal expectations, beliefs and values in sexuality, sexual motivations, body image, as well as the neurobiological foundations and visual patterns, are of vital importance in the dynamics of sexual desire.

  7. The neurobiology of decision: consensus and controversy.

    Science.gov (United States)

    Kable, Joseph W; Glimcher, Paul W

    2009-09-24

    We review and synthesize recent neurophysiological studies of decision making in humans and nonhuman primates. From these studies, the basic outline of the neurobiological mechanism for primate choice is beginning to emerge. The identified mechanism is now known to include a multicomponent valuation stage, implemented in ventromedial prefrontal cortex and associated parts of striatum, and a choice stage, implemented in lateral prefrontal and parietal areas. Neurobiological studies of decision making are beginning to enhance our understanding of economic and social behavior as well as our understanding of significant health disorders where people's behavior plays a key role.

  8. Molecular mechanisms involved in the pathogenesis of septic shock.

    Science.gov (United States)

    López-Bojórquez, Lucia Nikolaia; Dehesa, Alejandro Zentella; Reyes-Terán, Gustavo

    2004-01-01

    Pathogenesis of the development of sepsis is highly complex and has been the object of study for many years. The inflammatory phenomena underlying septic shock are described in this review, as well as the enzymes and genes involved in the cellular activation that precedes this condition. The most important molecular aspects are discussed, ranging from the cytokines involved and their respective transduction pathways to the cellular mechanisms related to accelerated catabolism and multi-organic failure.

  9. Neurobiology of Gambling Behaviors

    Science.gov (United States)

    Potenza, Marc N.

    2013-01-01

    For many, gambling is a recreational activity that is performed periodically without ill effects, but for some, gambling may interfere with life functioning. A diagnostic entity, pathological gambling, is currently used to define a condition marked by excessive and problematic gambling. In this review, the current status of understanding of the neurobiologies of gambling and pathological gambling is described. Multiple neurotransmitter systems (norepinephrine, serotonin, dopamine, opioid and glutamate) and brain regions (ventral striatum, ventromedial prefrontal cortex, insula, among others) have been implicated in gambling and pathological gambling. Considerations for future directions in gambling research, with a view towards translating neurobiological advances into more effective prevention and treatment strategies, are discussed. PMID:23541597

  10. Neurobiological and psychosocial processes associated with depressive and substance-related disorders in adolescents.

    Science.gov (United States)

    Rao, Uma; Chen, Li-Ann

    2008-01-01

    Adolescents are at heightened risk for the development of both depressive and substance-related disorders. These two disorders frequently co-occur in adolescents and are associated with significant morbidity and mortality. Given the substantial economic and psychosocial burden associated with the comorbid condition, the identification of causal mechanisms associated with their co-occurrence is of great public health importance. Although there is significant understanding of the environmental and neurobiological factors involved in depression and addictive disorders considered separately, the mechanisms underlying the comorbid illness have not been investigated carefully. The purpose of this review is to summarize the extant literature on genetic, environmental and neurobiological processes involved in the etiology of depressive and substance-related disorders in adolescents and adults. It is important to note that the data on common neurobiological systems that link addictive and depressive disorders are primarily from research with adult animals and humans. Given the ongoing maturation of these systems throughout adolescence and early adult life, it is not clear how these neurobiological processes influence the development and progression of both disorders. A better understanding of the pathophysiological mechanisms leading to the onset and course of these disorders during adolescence will be helpful in developing more effective preventive and treatment strategies not only for this population but also for adult patients with early-onset illness.

  11. Neurobiology Research Findings: How the Brain Works during Reading

    Science.gov (United States)

    Kweldju, Siusana

    2015-01-01

    In the past, neurobiology for reading was identical with neuropathology. Today, however, the advancement of modern neuroimaging techniques has contributed to the understanding of the reading processes of normal individuals. Neurobiology findings today have uncovered and illuminated the fundamental neural mechanism of reading. The findings have…

  12. Molecular neurobiology in neurology and psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, E.R.

    1987-01-01

    This book contains 14 selections. Some of the titles are: An Introduction to Ion Channels; Molecular Neurobiology of the Myelinated Nerve Fiber: Ion-Channel Distributions and Their Implications for Demyelinating Diseases; A Molecular Genetic Approach to Huntington's Disease; and Molecular Features of Cell Adhesion Molecules Involved in Neural Development.

  13. Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2012-01-01

    Full Text Available Progestogens [progesterone (P4 and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP, influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA, 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence. Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated

  14. Marijuana Neurobiology and Treatment

    OpenAIRE

    Elkashef, Ahmed; Vocci, Frank; Huestis, Marilyn; Haney, Margaret; Budney, Alan; Gruber, Amanda; el-Guebaly, Nady

    2008-01-01

    Marijuana is the number one illicit drug of abuse worldwide and a major public health problem, especially in the younger population. The objective of this article is to update and review the state of the science and treatments available for marijuana dependence based on a pre-meeting workshop that was presented at ISAM 2006. At the workshop, several papers were presented addressing the neurobiology and pharmacology of marijuana and treatment approaches, both psychotherapy and medications, for...

  15. The TFOS International Workshop on Contact Lens Discomfort: report of the subcommittee on neurobiology.

    Science.gov (United States)

    Stapleton, Fiona; Marfurt, Carl; Golebiowski, Blanka; Rosenblatt, Mark; Bereiter, David; Begley, Carolyn; Dartt, Darlene; Gallar, Juana; Belmonte, Carlos; Hamrah, Pedram; Willcox, Mark

    2013-10-18

    This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens-related discomfort. While there is limited evidence for the mechanisms involved in contact lens-related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea.

  16. Effects of alcohol on attentional mechanisms involved in figure reversals.

    Science.gov (United States)

    O'Brien, Claire; Harris, Mike; Higgs, Suzanne

    2013-09-01

    The impairing effects of alcohol on attention are well documented and are thought to involve inhibitory mechanisms. We used ambiguous figures (Face-Vase and Necker cube) to test whether the intentional control mechanism is more vulnerable to the effects of alcohol than the automatic mechanism. Participants were assigned to an alcohol (Study 1, N = 15; Study 2, N = 18), placebo (Study 1, N = 15; Study 2, N = 20) or control (Study 1 only, N = 10) group. The doses of alcohol were 0.8 g/kg for men and 0.75 g/kg for women. Participants were shown the Face-Vase and Necker cube figures and two variants of each, which were biased in varying degrees towards one interpretation. Study 1 assessed the automatic control mechanism by asking participants to report spontaneous reversals. Study 2 assessed the intentional control mechanism by asking participants to increase reversal rate. In Study 1, reversal rate was similar for all groups, whereas in Study 2, the alcohol group reported more reversals than the control group, although this was true only for the biased versions of the Face-Vase illusion. The effect of alcohol on reversal rate is observed only during intentional reversals of semantically meaningful stimuli and only when the stimulus is biased. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Borges

    2015-01-01

    Full Text Available Background: Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective: To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods: A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results: The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion: On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions.

  18. Neurobiological basis of frustration

    Directory of Open Access Journals (Sweden)

    Justel, Nadia

    2010-12-01

    Full Text Available The main feature shared by the phenomena involving unexpected changes of reinforcement is that there is a discrepancy between expected and received reward. Consequently, the behavior is modified according to this difference; the animals have an emotional response to the surprising reward change, called frustration. Some of the paradigms that are commonly used to study these problems are: consummatory Successive Negative Contrast and consummatory Extinction. This review describes the major works that investigate the neuroanatomical and neurophysiological mechanisms involved in these studies, and the main tasks related with the administration of drugs that modulate the memory of the surprising reward changes.

  19. The Neurobiology of Impulsive Aggression.

    Science.gov (United States)

    Blair, Robert J R

    2016-02-01

    This selective review provides a model of the neurobiology of impulsive aggression from a cognitive neuroscience perspective. It is argued that prototypical cases of impulsive aggression, those associated with anger, involve the recruitment of the acute threat response system structures; that is, the amygdala, hypothalamus, and periaqueductal gray. It is argued that whether the recruitment of these structures results in impulsive aggression or not reflects the functional roles of ventromedial frontal cortex and dorsomedial frontal and anterior insula cortex in response selection. It is also argued that impulsive aggression may occur because of impaired decision making. The aggression may not be accompanied by anger, but it will reflect disrupted evaluation of the rewards/benefits of the action.

  20. Neurobiology of fibromyalgia and chronic widespread pain.

    Science.gov (United States)

    Sluka, Kathleen A; Clauw, Daniel J

    2016-12-03

    Fibromyalgia is the current term for chronic widespread musculoskeletal pain for which no alternative cause can be identified. The underlying mechanisms, in both human and animal studies, for the continued pain in individuals with fibromyalgia will be explored in this review. There is a substantial amount of support for alterations of central nervous system nociceptive processing in people with fibromyalgia, and that psychological factors such as stress can enhance the pain experience. Emerging evidence has begun exploring other potential mechanisms including a peripheral nervous system component to the generation of pain and the role of systemic inflammation. We will explore the data and neurobiology related to the role of the CNS in nociceptive processing, followed by a short review of studies examining potential peripheral nervous system changes and cytokine involvement. We will not only explore the data from human subjects with fibromyalgia but will relate this to findings from animal models of fibromyalgia. We conclude that fibromyalgia and related disorders are heterogenous conditions with a complicated pathobiology with patients falling along a continuum with one end a purely peripherally driven painful condition and the other end of the continuum is when pain is purely centrally driven. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Mechanisms involved in the aging-induced vascular dysfunction

    Directory of Open Access Journals (Sweden)

    Mariam eEl Assar De La Fuente

    2012-05-01

    Full Text Available Vascular aging is a key process determining health status of aged population. Aging is an independent cardiovascular risk factor associated to an impairment of endothelial function, which is a very early and important event leading to cardiovascular disease. Vascular aging, formerly being considered an immutable and inexorable risk factor, is now viewed as a target process for intervention in order to achieve a healthier old age. A further knowledge of the mechanisms underlying the age-related vascular dysfunction is required to design an adequate therapeutic strategy to prevent or restore this impairment of vascular functionality. Among the proposed mechanisms that contribute to age-dependent endothelial dysfunction, this review is focused on the following aspects occurring into the vascular wall: (1 the reduction of nitric oxide (NO bioavailability, caused by diminished NO synthesis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite formation (ONOO-; (2 the possible sources involved in the enhancement of oxidative stress; (3 the increased activity of cyclooxygenase-derived vasoconstrictor compounds; and (4 the development of a low-grade pro-inflammatory environment. Synergisms and interactions between all these pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related to endothelial cell senescence (including telomere and telomerase, as well as sirtuins are implemented, as they are likely involved in the age-dependent endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction through life style modifications or pharmacological interventions could markedly improve cardiovascular health in older people.

  2. Carcinogenic mechanisms of endometrial cancer: involvement of genetics and epigenetics.

    Science.gov (United States)

    Banno, Kouji; Yanokura, Megumi; Iida, Miho; Masuda, Kenta; Aoki, Daisuke

    2014-08-01

    Endometrial cancer is increasing worldwide and the number of patients with this disease is likely to continue to grow, including younger patients. Many endometrial cancers show estrogen-dependent proliferation, but the carcinogenic mechanisms are unknown or not completely explained beyond mutations of single oncogenes and tumor suppressor genes. Possible carcinogenic mechanisms include imbalance between endometrial proliferation by unopposed estrogen and the mismatch repair (MMR) system; hypermethylation of the MMR gene hMLH1; mutation of PTEN, β-catenin and K-ras genes in type I endometrial cancer and of HER-2/neu and p53 genes in type II endometrial cancer; hypermethylation of SPRY2, RASSF1A, RSK4, CHFR and CDH1; and methylation of tumor suppressor microRNAs, including miR-124, miR-126, miR-137, miR-491, miR-129-2 and miR-152. Thus, it is likely that the carcinogenic mechanisms of endometrial cancer involve both genetic and epigenetic changes. Mutations and methylation of MMR genes induce various oncogenic changes that cause carcinogenesis, and both MMR mutation in germ cells and methylation patterns may be inherited over generations and cause familial tumorigenesis. Determination of the detailed carcinogenic mechanisms will be useful for prevention and diagnosis of endometrial cancer, risk assessment, and development of new treatment strategies targeting MMR genes. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  3. Enteric Neurobiology: Discoveries and Directions.

    Science.gov (United States)

    Wood, Jackie D

    Discovery and documentation of noncholinergic-nonadrenergic neurotransmission in the enteric nervous system started a revolution in mechanisms of neural control of the digestive tract that continues into a twenty-first century era of translational gastroenterology, which is now firmly embedded in the term, neurogastroenterology. This chapter, on Enteric Neurobiology: Discoveries and Directions, tracks the step-by-step advances in enteric neuronal electrophysiology and synaptic behavior and progresses to the higher order functions of central pattern generators, hard wired synaptic circuits and libraries of neural programs in the brain-in-the-gut that underlie the several different patterns of motility and secretory behaviors that occur in the specialized, serially-connected compartments extending from the esophagus to the anus.

  4. [Neurobiological basis of depressive disorders].

    Science.gov (United States)

    Stoppel, C; Bielau, H; Bogerts, B; Northoff, G

    2006-12-01

    Depressive disorders belong to the most frequent diseases worldwide showing a lifetime prevalence of up to 20%. Moreover they are one of the leading causes for the amount of years lived with disability. Increasing knowledge about the pathological mechanisms underlying depressive syndromes is obtained by using modern neurobiological research-techniques. Thereby some older theories that have been the basis of emotion-research for decades--like the monoamine hypothesis--have been strengthened. In addition new aspects of the pathological processes underlying depressive disturbances have been unraveled. In this review established models and recent findings will be discussed, to bridge various research-fields, ranging from genetics, epigenetics and morphological changes to the functional consequences of depression. Finally therapeutic implications that could be derived from these results will be presented, showing up putative possibilities for diagnosis and treatment of depressive syndromes.

  5. [Recent neurobiological data on cannabis].

    Science.gov (United States)

    Costentin, Jean

    2002-01-01

    The alarming increase in cannabis abuse has triggered a renewed interest in the neurobiological mechanisms which underlie its effects, particularly as regards its addictive properties either intrinsic or when crossed with other narcotics as well as its subsequent damage. We here report an evaluation of experimental data which reveal in animals a psychological dependence, common to all addictive drugs; a physical dependence, which is considered up to now as the characteristic of "hard addictive drugs"; the incentive effect that cannabis should exert on the inclination to abuse other addictive drugs, especially heroin; and finally the close relationships which seem to exist between cannabis and schizophrenia. Most of these recent data are far from reassuring as regards cannabis psychotoxicity. Furthermore they underline its potential danger and prompt increased caution.

  6. The sweetest pill to swallow: how patient neurobiology can be harnessed to maximise placebo effects.

    Science.gov (United States)

    Jubb, Jayne; Bensing, Jozien M

    2013-12-01

    The burgeoning interest in placebo effects over the last 10-15 years has fallen into two main research areas: elucidation of the neurobiological mechanisms recruited following placebo administration, and investigations into the situations and contexts in which placebo effects are evoked. There has been little attention focused on bridging these two i.e. how to actively translate and apply these neurobiological mechanisms into daily clinical practice in a responsible way. This article addresses this gap, first through a narrative review of the last 15 years of neuroscience findings with special attention focussed on the elucidation of the neurotransmitters, pathways and mechanisms involved in placebo effects, and secondly, at how these psycho(neuro)biological effects could be harnessed in medical care. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Proteolytic and physicochemical mechanisms involved in meat texture development.

    Science.gov (United States)

    Ouali, A

    1992-03-01

    Development in meat texture is a complex process originating very likely from a softening of the structural elements, especially myofibrils. This process probably involves two sets of mechanisms: 1) an enzymatic mechanism involving at least two of the three proteolytic systems so far identified and present in this tissue, namely lysosomal (cathepsins) and calcium dependent (calpains) proteinases; 2) a physicochemical mechanism based on the important post mortem rise in muscle osmotic pressure which could be twice as high as in live animals. Despite the large progress in muscle enzymology, the nature of the proteinases responsible for the post mortem proteolysis associated with the development in meat texture is still not clearly established. In the present review, data obtained from two different approaches attempting to answer this question were analysed. The first one was based on the identification of a set of structural and biochemical changes associated with meat texture development and to examine which proteolytic system or proteinase would be able to reproduce them when incubated with either myofibrils or muscle fibres as substrate. The second tentatively relates the rate and the extent of the changes in meat texture to the proteolytic equipment of the tissue. The first approach led to the conclusion that changes in muscle proteins and structure can be only explained by considering a synergistic action of both lysosomal and calcium-dependent proteinases. From the second, it was concluded that the process of meat texture development did not depend on the proteinase levels but was related to their initial potential efficiency assessed by measurement of the enzyme/inhibitor ratio. With respect to the physicochemical mechanisms, the post mortem rise in muscle osmotic pressure was shown to be responsible for some biochemical changes occurring in myofibrils. This was further substantiated by the fact that the greatest osmotic pressure values were observed in

  8. Neurophysiological mechanisms involved in language learning in adults.

    Science.gov (United States)

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-12-27

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished.

  9. Neurobiology of Dyslexia

    Science.gov (United States)

    Norton, Elizabeth S.; Beach, Sara D.; Gabrieli, John D. E.

    2014-01-01

    Dyslexia is one of the most common learning disabilities, yet its brain basis and core causes are not yet fully understood. Neuroimaging methods, including structural and functional magnetic resonance imaging, diffusion tensor imaging, and electrophysiology, have significantly contributed to knowledge about the neurobiology of dyslexia. Recent studies have discovered brain differences prior to formal instruction that likely encourage or discourage learning to read effectively, distinguished between brain differences that likely reflect the etiology of dyslexia versus brain differences that are the consequences of variation in reading experience, and identified distinct neural networks associated with specific psychological factors that are associated with dyslexia. PMID:25290881

  10. Neurobiology of dyslexia.

    Science.gov (United States)

    Norton, Elizabeth S; Beach, Sara D; Gabrieli, John D E

    2015-02-01

    Dyslexia is one of the most common learning disabilities, yet its brain basis and core causes are not yet fully understood. Neuroimaging methods, including structural and functional magnetic resonance imaging, diffusion tensor imaging, and electrophysiology, have significantly contributed to knowledge about the neurobiology of dyslexia. Recent studies have discovered brain differences before formal instruction that likely encourage or discourage learning to read effectively, distinguished between brain differences that likely reflect the etiology of dyslexia versus brain differences that are the consequences of variation in reading experience, and identified distinct neural networks associated with specific psychological factors that are associated with dyslexia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cholinergic mechanism involved in the nociceptive modulation of dentate gyrus.

    Science.gov (United States)

    Jiao, Runsheng; Yang, Chunxiao; Zhang, Ying; Xu, Manying; Yang, Xiaofang

    2009-02-20

    Acetylcholine (ACh) causes a wide variety of anti-nociceptive effects. The dentate gyrus (DG) region of the hippocampal formation (HF) has been demonstrated to be involved in nociceptive perception. However, the mechanisms underlying this anti-nociceptive role have not yet been elucidated in the cholinergic pain-related neurons of DG. The electrical activities of pain-related neurons of DG were recorded by a glass microelectrode. Two kinds of pain-related neurons were found: pain-excited neurons (PEN) and pain-inhibited neurons (PIN). The experimental protocol involved intra-DG administration of muscarinic cholinergic receptor (mAChR) agonist or antagonist. Intra-DG microinjection of 1 microl of ACh (0.2 microg/microl) or 1 microl of pilocarpine (0.4 microg/microl) decreased the discharge frequency of PEN and prolonged firing latency, but increased the discharge frequency of PIN and shortened PIN inhibitory duration (ID). Intra-DG administration of 1 microl of atropine (1.0 microg/microl) showed exactly the opposite effects. According to the above experimental results, we can presume that cholinergic pain-related neurons in DG are involved in the modulation of the nociceptive response by affecting the discharge of PEN and PIN.

  12. Neurobiology of functional (psychogenic) movement disorders.

    Science.gov (United States)

    Edwards, Mark J; Fotopoulou, Aikaterini; Pareés, Isabel

    2013-08-01

    This review explores recent developments in understanding the neurobiological mechanism of functional (psychogenic) movement disorders (FMDs). This is particularly relevant given the resurgence of academic and clinical interest in patients with functional neurological symptoms and the clear shift in diagnostic and treatment approaches away from a pure psychological model of functional symptoms. Recent research findings implicate three key processes in the neurobiology of FMD (and by extension other functional neurological symptoms): abnormal attentional focus, abnormal beliefs and expectations, and abnormalities in sense of agency. These three processes have been combined in recent neurobiological models of FMD in which abnormal predictions related to movement are triggered by self-focused attention, and the resulting movement is generated without the normal sense of agency that accompanies voluntary movement. New understanding of the neurobiology of FMD forms an important part of reappraising the way that patients with FMD (and other functional disorders) are characterized and treated. It also provides a testable framework for further exploring the pathophysiology of these common causes of ill health.

  13. Neurobiological studies of fatigue

    Science.gov (United States)

    Harrington, Mary E.

    2012-01-01

    Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments. PMID:22841649

  14. The neurobiology of individuality

    Science.gov (United States)

    de Bivort, Benjamin

    2015-03-01

    Individuals often display conspicuously different patterns of behavior, even when they are very closely related genetically. These differences give rise to our sense of individuality, but what is their molecular and neurobiological basis? Individuals that are nominally genetically identical differ at various molecular and neurobiological levels: cell-to-cell variation in somatic genomes, cell-to-cell variation in expression patterns, individual-to-individual variation in neuronal morphology and physiology, and individual-to-individual variation in patterns of brain activity. It is unknown which of these levels is fundamentally causal of behavioral differences. To investigate this problem, we use the fruit fly Drosophila melanogaster, whose genetic toolkit allows the manipulation of each of these mechanistic levels, and whose rapid lifecycle and small size allows for high-throughput automation of behavioral assays. This latter point is crucial; identifying inter-individual behavioral differences requires high sample sizes both within and across individual animals. Automated behavioral characterization is at the heart of our research strategy. In every behavior examined, individual flies have individual behavioral preferences, and we have begun to identify both neural genes and circuits that control the degree of behavioral variability between individuals.

  15. Complement involvement in periodontitis: molecular mechanisms and rational therapeutic approaches

    Science.gov (United States)

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D.

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis. PMID:26306443

  16. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  17. Complications involving the extensor mechanism after total knee arthroplasty.

    Science.gov (United States)

    Papalia, Rocco; Vasta, Sebastiano; D'Adamio, Stefano; Albo, Erika; Maffulli, Nicola; Denaro, Vincenzo

    2015-12-01

    To overview the complications involving extensor apparatus of the knee following total knee arthroplasty (TKA) and to summarize which are the lines of treatment available and their reported outcomes in literature. A comprehensive search of several databases was performed using as basic keywords "complications after TKA", "extensor mechanism disruption", "periprosthetic patellar fracture", "quadriceps tendon rupture", "quadriceps tendon rupture" isolated or combined with other terms by using Boolean operators. The methodological quality of each article was also evaluated using the Coleman methodology score (CMS). Twenty-nine studies were evaluated. The mean CMS of the studies selected was 33.1/100. Patellar fractures, requiring surgical treatment when there is rupture of the extensor mechanism or loosening of the patellar component, were treated surgically in 28.1 % of patients. The patellar and quadriceps tendon ruptures were surgically treated with reconstruction or augmented repair, respectively, in 98.6 and 76.5 %. Complications involving the extensor apparatus of the knee following a TKA need early and appropriate management to avoid their devastating influence on joint functionality. Management has to be evaluated very carefully based on the site of the lesion, integrity of the prosthetic components and surrounding tissue to restore, and the patients' individual characteristics. The surgical approach for comminuted periprosthetic fractures and reconstruction of torn tendons of the extensor apparatus are needed to restore function and decrease pain, but, given the poor methodological quality of the studies published so far, it is not clear which surgical technique or graft leads to better outcomes. Therefore, there is an absolute need for better designed comparative trials producing clearer and stronger evidence on this critical matter. IV.

  18. Neurobiology of migraine.

    Science.gov (United States)

    Goadsby, P J; Charbit, A R; Andreou, A P; Akerman, S; Holland, P R

    2009-06-30

    Migraine is a complex disorder of the brain whose mechanisms are only now being unraveled. It is common, disabling and economically costly. The pain suggests an important role of the nociceptive activation, or the perception of activation, of trigeminal cranial, particularly intracranial afferents. Moreover, the involvement of a multi-sensory disturbance that includes light, sound and smells, as well as nausea, suggests the problem may involve central modulation of afferent traffic more broadly. Brain imaging studies in migraine point to the importance of sub-cortical structures in the underlying pathophysiology of the disorder. Migraine may thus be considered an inherited dysfunction of sensory modulatory networks with the dominant disturbance affecting abnormal processing of essentially normal neural traffic.

  19. Cellular and Humoral Mechanisms Involved in the Control of Tuberculosis

    Directory of Open Access Journals (Sweden)

    Joaquin Zuñiga

    2012-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb infection is a major international public health problem. One-third of the world's population is thought to have latent tuberculosis, a condition where individuals are infected by the intracellular bacteria without active disease but are at risk for reactivation, if their immune system fails. Here, we discuss the role of nonspecific inflammatory responses mediated by cytokines and chemokines induced by interaction of innate receptors expressed in macrophages and dendritic cells (DCs. We also review current information regarding the importance of several cytokines including IL-17/IL-23 in the development of protective cellular and antibody-mediated protective responses against Mtb and their influence in containment of the infection. Finally, in this paper, emphasis is placed on the mechanisms of failure of Mtb control, including the immune dysregulation induced by the treatment with biological drugs in different autoimmune diseases. Further functional studies, focused on the mechanisms involved in the early host-Mtb interactions and the interplay between host innate and acquired immunity against Mtb, may be helpful to improve the understanding of protective responses in the lung and in the development of novel therapeutic and prophylactic tools in TB.

  20. The Neurobiology of Moral Behavior: Review and Neuropsychiatric Implications

    OpenAIRE

    Mendez, Mario F.

    2009-01-01

    Morality may be innate to the human brain. This review examines the neurobiological evidence from research involving functional magnetic resonance imaging of normal subjects, developmental sociopathy, acquired sociopathy from brain lesions, and frontotemporal dementia. These studies indicate a “neuromoral” network for responding to moral dilemmas centered in the ventromedial prefrontal cortex and its connections, particularly on the right. The neurobiological evidence indicates the existence ...

  1. Stalking: a neurobiological perspective.

    Science.gov (United States)

    Marazziti, Donatella; Falaschi, Valentina; Lombardi, Amedeo; Mungai, Francesco; Dell'Osso, Liliana

    2015-01-01

    Nowadays stalking is becoming a real social emergency, as it may often fuel severe aggressive behaviours. No exhaustive aetiological hypothesis is still available regarding this complex phenomenon. However, the detailed descriptions of some of its peculiar features allow to draw with cautions some general suggestions. Probably stalking may arise from the derangement of those neural networks subserving the so-called social brain and the pair bonding formation, in particular the processes of attachment/separation, attraction/romantic love/reward. In addition, it seems to be modulated by excessive functioning of the dopamine system coupled with decreased serotonin tone. It is believed that the investigation and deepening of its possible neurobiological substrates may be helpful in the prevention of the severe consequences of stalking.

  2. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  3. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Directory of Open Access Journals (Sweden)

    Carmen Sandi

    1998-01-01

    integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning and rats (spatial orientation in the Morris water maze and contextual fear conditioning, a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i glutamatergic transmission and (ii cell adhesion molecules.

  4. Neurobiology of depression: A neurodevelopmental approach.

    Science.gov (United States)

    Lima-Ojeda, Juan M; Rupprecht, Rainer; Baghai, Thomas C

    2017-03-03

    The main aims of this paper are to review and evaluate the neurobiology of the depressive syndrome from a neurodevelopmental perspective. An English language literature search was performed using PubMed. Depression is a complex syndrome that involves anatomical and functional changes that have an early origin in brain development. In subjects with genetic risk for depression, early stress factors are able to mediate not only the genetic risk but also gene expression. There is evidence that endocrine and immune interactions have an important impact on monoamine function and that the altered monoamine signalling observed in the depressive syndrome has a neuro-endocrino-immunological origin early in the development. Neurodevelopment is a key aspect to understand the whole neurobiology of depression.

  5. Toward a Neurobiology of Delusions

    Science.gov (United States)

    Corlett, P.R.; Taylor, J.R.; Wang, X.-J.; Fletcher, P.C.; Krystal, J.H.

    2013-01-01

    Delusions are the false and often incorrigible beliefs that can cause severe suffering in mental illness. We cannot yet explain them in terms of underlying neurobiological abnormalities. However, by drawing on recent advances in the biological, computational and psychological processes of reinforcement learning, memory, and perception it may be feasible to account for delusions in terms of cognition and brain function. The account focuses on a particular parameter, prediction error – the mismatch between expectation and experience – that provides a computational mechanism common to cortical hierarchies, frontostriatal circuits and the amygdala as well as parietal cortices. We suggest that delusions result from aberrations in how brain circuits specify hierarchical predictions, and how they compute and respond to prediction errors. Defects in these fundamental brain mechanisms can vitiate perception, memory, bodily agency and social learning such that individuals with delusions experience an internal and external world that healthy individuals would find difficult to comprehend. The present model attempts to provide a framework through which we can build a mechanistic and translational understanding of these puzzling symptoms. PMID:20558235

  6. Neurobiological consequences of childhood trauma.

    Science.gov (United States)

    Nemeroff, Charles B

    2004-01-01

    There is considerable evidence to suggest that adverse early-life experiences have a profound effect on the developing brain. Neurobiological changes that occur in response to untoward early-life stress can lead to lifelong psychiatric sequelae. Children who are exposed to sexual or physical abuse or the death of a parent are at higher risk for development of depressive and anxiety disorders later in life. Preclinical and clinical studies have shown that repeated early-life stress leads to alterations in central neurobiological systems, particularly in the corticotropin-releasing factor system, leading to increased responsiveness to stress. Clearly, exposure to early-life stressors leads to neurobiological changes that increase the risk of psychopathology in both children and adults. Identification of the neurobiological substrates that are affected by adverse experiences in early life should lead to the development of more effective treatments for these disorders. The preclinical and clinical studies evaluating the consequences of early-life stress are reviewed.

  7. Gravitational Neurobiology of Fish

    Science.gov (United States)

    Rahmann, H.; Anken, R. H.

    In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena

  8. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  9. Optical highlighter molecules in neurobiology.

    Science.gov (United States)

    Datta, Sandeep Robert; Patterson, George H

    2012-02-01

    The development of advanced optical methods has played a key role in propelling progress in neurobiology. Genetically-encoded fluorescent molecules found in nature have enabled labeling of individual neurons to study their physiology and anatomy. Here we discuss the recent use of both native and synthetic optical highlighter proteins to address key problems in neurobiology, including questions relevant to synaptic function, neuroanatomy, and the organization of neural circuits. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Kindling and second messengers: an approach to the neurobiology of recurrence in bipolar disorder.

    Science.gov (United States)

    Ghaemi, S N; Boiman, E E; Goodwin, F K

    1999-01-15

    Since bipolar disorder is inherently a longitudinal illness characterized by recurrence and cycling of mood episodes, neurobiological theories involving kindlinglike phenomena appear to possess a certain explanatory power. An approach to understanding kindlinglike phenomena at the molecular level has been made possible by advances in research on second-messenger systems in the brain. The time frame of interest has shifted from the microseconds of presynaptic events to hours, days, months, and even years in the longer duration of events beyond the synapse--through second messengers, gene regulation, and synthesis of long-acting trophic factors. These complex interlocking systems may explain how environmental stress could interact over time with genetic vulnerability to produce illness. In its two sections, this paper will review an approach to understanding two major aspects of the neurobiology of bipolar disorder: kindling phenomena and second-messenger mechanisms. We will suggest that these two fields of research together help explain the biology of recurrence.

  11. Stress: Neurobiology, consequences and management

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2013-01-01

    Full Text Available Stress, both physical and psychological, is attracting increasing attention among neuroresearchers. In the last 20 decades, there has been a surge of interest in the research of stress-induced manifestations and this approach has resulted in the development of more appropriate animal models for stress-associated pathologies and its therapeutic management. These stress models are an easy and convenient method for inducing both psychological and physical stress. To understand the behavioral changes underlying major depression, molecular and cellular studies are required. Dysregulation of the stress system may lead to disturbances in growth and development, and may this may further lead to the development of various other psychiatric disorders. This article reviews the different types of stress and their neurobiology, including the different neurotransmitters affected. There are various complications associated with stress and their management through various pharmacological and non-pharmacological techniques. The use of herbs in the treatment of stress-related problems is practiced in both Indian and Western societies, and it has a vast market in terms of anti-stress medications and treatments. Non-pharmacological techniques such as meditation and yoga are nowadays becoming very popular as a stress-relieving therapy because of their greater effectiveness and no associated side effects. Therefore, this review highlights the changes under stress and stressor and their impact on different animal models in understanding the mechanisms of stress along with their effective and safe management.

  12. [Neurological diseases and suicide: from neurobiology to hopelessness].

    Science.gov (United States)

    Costanza, A; Baertschi, M; Weber, K; Canuto, A

    2015-02-11

    Neurologic diseases expose at a high risk of suicidal behaviors and they constitute a privileged domain for exploring the heterogeneity of underlying mechanisms. They are in fact characterized by strictly biological injuries that may be involved in cerebral systems considered at the basis of neurobiological vulnerability for suicide. At the same time, they oblige a numberof existential topics to emerge, as the hopelessness in respect of several particularly severe conditions without an etiologic treatment. A clinical approach reserving an unconditional listening can prevent a suicidal attempt. Furthermore, it can illustrate the role of the liaison's psychiatrist, who tries to transform a hopelessness situation into a patient's personal questioning and try to be present when therapeutic action is not longer possible.

  13. The neurobiological causes and effects of alloparenting.

    Science.gov (United States)

    Kenkel, William M; Perkeybile, Allison M; Carter, C Sue

    2017-02-01

    Alloparenting, defined as care provided by individuals other than parents, is a universal behavior among humans that has shaped our evolutionary history and remains important in contemporary society. Dysfunctions in alloparenting can have serious and sometimes fatal consequences for vulnerable infants and children. In spite of the importance of alloparenting, they still have much to learn regarding the underlying neurobiological systems governing its expression. Here, they review how a lack of alloparental behavior among traditional laboratory species has led to a blind spot in our understanding of this critical facet of human social behavior and the relevant neurobiology. Based on what is known, they draw from model systems ranging from voles to meerkats to primates to describe a conserved set of neuroendocrine mechanisms supporting the expression of alloparental care. In this review we describe the neurobiological and behavioral prerequisites, ontogeny, and consequences of alloparental care. Lastly, they identified several outstanding topics in the area of alloparental care that deserve further research efforts to better advance human health and wellbeing. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 214-232, 2017. © 2016 Wiley Periodicals, Inc.

  14. Neurobiology Underlying Fibromyalgia Symptoms

    Directory of Open Access Journals (Sweden)

    Marta Ceko

    2012-01-01

    Full Text Available Fibromyalgia is characterized by chronic widespread pain, clinical symptoms that include cognitive and sleep disturbances, and other abnormalities such as increased sensitivity to painful stimuli, increased sensitivity to multiple sensory modalities, and altered pain modulatory mechanisms. Here we relate experimental findings of fibromyalgia symptoms to anatomical and functional brain changes. Neuroimaging studies show augmented sensory processing in pain-related areas, which, together with gray matter decreases and neurochemical abnormalities in areas related to pain modulation, supports the psychophysical evidence of altered pain perception and inhibition. Gray matter decreases in areas related to emotional decision making and working memory suggest that cognitive disturbances could be related to brain alterations. Altered levels of neurotransmitters involved in sleep regulation link disordered sleep to neurochemical abnormalities. Thus, current evidence supports the view that at least some fibromyalgia symptoms are associated with brain dysfunctions or alterations, giving the long-held “it is all in your head” view of the disorder a new meaning.

  15. [INVOLVEMENT OF PLANT CYTOSKELETON INTO CELLULAR MECHANISMS OF METALS TOXICITY].

    Science.gov (United States)

    Horiunova, L; Krasylenko, Yu A; Yemets, A I; Blume, Ya B

    2016-01-01

    This review summarizes published date and the results of the author's own researches cantering the participation of plant cells cytoskeleton. It is considered cytotoxic impact of metals on the cytoskeleton's components, including microtubules and actin filaments. Particular attention is paid to the cellular and molecular mechanisms of influence of metals on cytoskeleton. We discussed the most probable binding sites of heavy metals and alternative mechanisms of their impact on the cytoskeleton.

  16. [The social brain: neurobiological bases of clinical interest].

    Science.gov (United States)

    Álvaro-González, Luis C

    2015-11-16

    Human social capacities are developmentally late and unique. They allow for a specialisation that enhances the availability of resources and facilitates reproduction. Our social complexity rests on specific circuits and mechanisms, which are analysed here. The following are put into operation for those purposes: knowledge of the other by means of empathy, specific mechanisms that endow us with the capacity to detect defrauders, genetic and biochemical factors, and the autonomic nervous system. Empathy is the basic mechanism in sociability. It has different levels of complexity (emotional, cognitive, attribution), with specific anatomical differentiation. Social matters are linked to emotional ones, and this in turn to the homeostatic aspects. Hence, physical and social pain share an anatomical matrix and therapies. We are social beings of a selfish biological nature, which we adjust thanks to a special capacity to detect defrauders, which is dominant over those involving planning or abstraction. Oxytocin is the essential prosocial neurochemical mediator. Serotonin and the enzyme MAO are considered as having an antisocial capacity, which is dependent on the interaction with adverse environments. Finally, the vagal system, which is more recent phylogenetically speaking and myelinated, that of the dorsal nucleus of the vagus nerve, is a requirement for warm and leisurely social interaction. The neurobiology of social matters makes it possible to recognise disorders affecting this behaviour in structural injuries (vascular, of the white matter, dementias, etc.), neurodevelopmental disorders (autism), psychiatric illnesses (schizophrenia) or personality disorders. There are a number of promising therapeutic interventions (transcranial magnetic stimulation, drugs). The addition of cultural and environmental factors to the neurobiological ones introduces a greater amount of ecological complexity, but without lessening the validity of what it outlined.

  17. Molecular mechanisms involved in Weibel-Palade body exocytosis

    NARCIS (Netherlands)

    van Hooren, K.W.E.M.

    2014-01-01

    Endothelial cells form the barrier between the circulating blood and the underlying tissue. Endothelial cells contain specialized organelles called Weibel-Palade bodies that contain proteins involved in blood coagulation and inflammatory processes. In this thesis we describe a studies unraveling the

  18. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis

    NARCIS (Netherlands)

    Ferre, S.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2012-01-01

    Calcium (Ca(2+)) and magnesium (Mg(2+)) ions are involved in many vital physiological functions. In the human body, Ca(2+) and Mg(2+) homeostatic systems rely on three components: (i) tissues (re)absorbing or storing Ca(2+) and Mg(2+), mainly kidney, intestine, and bone; (ii) hormones that modulate

  19. Functional mechanisms involved in the internal inhibition of taboo words.

    Science.gov (United States)

    Severens, Els; Kühn, Simone; Hartsuiker, Robert J; Brass, Marcel

    2012-04-01

    The present study used functional magnetic resonance imaging to investigate brain processes associated with the inhibition of socially undesirable speech. It is tested whether the inhibition of undesirable speech is solely related to brain areas associated with classical stop signal tasks or rather also involves brain areas involved in endogenous self-control. During the experiment, subjects had to do a SLIP task, which was designed to elicit taboo or neutral spoonerisms. Here we show that the internal inhibition of taboo words activates the right inferior frontal gyrus, an area that has previously been associated with externally triggered inhibition. This finding strongly suggests that external social rules become internalized and act as a stop-signal.

  20. Generative Mechanisms of Parental Involvement in the Romanian Schools

    Directory of Open Access Journals (Sweden)

    Claudiu Ivan

    2010-07-01

    Full Text Available The research project we have carried out here targets to highlight the relation between parental involvement and family characteristics, on the one hand, and management/infrastructure’ characteristics, on the other hand. We were particularly interested in this former aspect as it defines a space where public intervention is able to find room for manoeuvre. The statistical data collected as a part of the 2008 Cross-National Survey of School Principals in South East Europe countries allowed us to reach this objective. The results show that in the case of Romania, the pupils' family characteristics (parents’ interest, communication skills, ethnic background, spare time, on parent’s emigration abroad for labour purposes, etc are highly relevant for parental involvement but certain school management practices are important as well (visits made by teacher and school staff to pupil’s domicile, the right of Parents’ council in initiating school management measures, providing information to parents for home learning environment, parents-school principals meetings or certain characteristics of school infrastructure (number of pupils enrolled in school or the share of fully qualified teaching professionals. These results allowed us to propose a set of recommendations as starting point for potential public policies as incentives for parental involvement in Romania.

  1. General mechanism for helium blistering involving displaced atom transport

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.

    1979-01-01

    A mechanism developed to account for formation of vertically elongated blisters in high displacement environments produced by /sup 252/Cf alpha particles and fission fragments has been extended to formation of done-shaped blisters in the low displacement environments produced by simple helium ion beams. In this mechanism, transport of displaced atoms to relieve compressive stresses in the helium-implanted layer allows interconnections of small, subsurface bubbles to form the blister cavity. The same transport may cause thickening of the blister caps at low implantation energies. The transition from dome-shaped to vertically elongated blistering occurs between the 300 and 3000 displacements per helium atom produced by simple helium ions and /sup 252/Cf radiations respectively.

  2. Neurodynamics: nonlinear dynamics and neurobiology.

    Science.gov (United States)

    Abarbanel, H D; Rabinovich, M I

    2001-08-01

    The use of methods from contemporary nonlinear dynamics in studying neurobiology has been rather limited.Yet, nonlinear dynamics has become a practical tool for analyzing data and verifying models. This has led to productive coupling of nonlinear dynamics with experiments in neurobiology in which the neural circuits are forced with constant stimuli, with slowly varying stimuli, with periodic stimuli, and with more complex information-bearing stimuli. Analysis of these more complex stimuli of neural circuits goes to the heart of how one is to understand the encoding and transmission of information by nervous systems.

  3. Neurobiology of wisdom: a literature overview.

    Science.gov (United States)

    Meeks, Thomas W; Jeste, Dilip V

    2009-04-01

    Wisdom is a unique psychological trait noted since antiquity, long discussed in humanities disciplines, recently operationalized by psychology and sociology researchers, but largely unexamined in psychiatry or biology. To discuss recent neurobiological studies related to subcomponents of wisdom identified from several published definitions/descriptions of wisdom by clinical investigators in the field, ie, prosocial attitudes/behaviors, social decision making/pragmatic knowledge of life, emotional homeostasis, reflection/self-understanding, value relativism/tolerance, and acknowledgment of and dealing effectively with uncertainty. Literature focusing primarily on neuroimaging/brain localization and secondarily on neurotransmitters, including their genetic determinants. Studies involving functional neuroimaging or neurotransmitter functioning, examining human (rather than animal) subjects, and identified via a PubMed search using keywords from any of the 6 proposed subcomponents of wisdom were included. Studies were reviewed by both of us, and data considered to be potentially relevant to the neurobiology of wisdom were extracted. Functional neuroimaging permits exploration of neural correlates of complex psychological attributes such as those proposed to comprise wisdom. The prefrontal cortex figures prominently in several wisdom subcomponents (eg, emotional regulation, decision making, value relativism), primarily via top-down regulation of limbic and striatal regions. The lateral prefrontal cortex facilitates calculated, reason-based decision making, whereas the medial prefrontal cortex is implicated in emotional valence and prosocial attitudes/behaviors. Reward neurocircuitry (ventral striatum, nucleus accumbens) also appears important for promoting prosocial attitudes/behaviors. Monoaminergic activity (especially dopaminergic and serotonergic), influenced by several genetic polymorphisms, is critical to certain subcomponents of wisdom such as emotional

  4. The neurobiology of uncertainty: implications for statistical learning.

    Science.gov (United States)

    Hasson, Uri

    2017-01-05

    The capacity for assessing the degree of uncertainty in the environment relies on estimating statistics of temporally unfolding inputs. This, in turn, allows calibration of predictive and bottom-up processing, and signalling changes in temporally unfolding environmental features. In the last decade, several studies have examined how the brain codes for and responds to input uncertainty. Initial neurobiological experiments implicated frontoparietal and hippocampal systems, based largely on paradigms that manipulated distributional features of visual stimuli. However, later work in the auditory domain pointed to different systems, whose activation profiles have interesting implications for computational and neurobiological models of statistical learning (SL). This review begins by briefly recapping the historical development of ideas pertaining to the sensitivity to uncertainty in temporally unfolding inputs. It then discusses several issues at the interface of studies of uncertainty and SL. Following, it presents several current treatments of the neurobiology of uncertainty and reviews recent findings that point to principles that serve as important constraints on future neurobiological theories of uncertainty, and relatedly, SL. This review suggests it may be useful to establish closer links between neurobiological research on uncertainty and SL, considering particularly mechanisms sensitive to local and global structure in inputs, the degree of input uncertainty, the complexity of the system generating the input, learning mechanisms that operate on different temporal scales and the use of learnt information for online prediction.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  5. Functional chronic pain syndromes and naturopathic treatments: neurobiological foundations.

    Science.gov (United States)

    Musial, Frauke; Michalsen, Andreas; Dobos, Gustav

    2008-04-01

    There is increasing clinical evidence that reflex therapies such as massage, Gua Sha, cupping, wet packs, acupuncture etc. are helpful in reducing symptoms of chronic pain. However, the neurobiological basis of these effects has rarely been investigated even though the increasing knowledge of the pathophysiology of chronic pain syndromes allows for specific hypotheses. Reflex therapies are likely able to influence chronic pain at the level of the nociceptor and the spinal cord. Moreover, it can be speculated that these therapies have a strong impact on relaxation and maybe understood as a social, comforting interaction. Since it is well accepted that the positive effect of grooming has a neurobiological basis in non-human primates, its biosocial impact on wellbeing and pain processing in humans may be underestimated. A synopsis of the neurobiological foundations of pain perception, from the nociceptor up the spinal cord to brain mechanisms provides the basis for the investigation of the 'way of action' of reflex therapies. Specific hypotheses on their neurobiological bases and methods suitable for their investigation are outlined. Further clarification of the mechanisms of action of reflex therapies will support their clinical evidence and add to our understanding of the neurobiology of complementary medicine. Copyright 2008 S. Karger AG, Basel.

  6. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements

    Science.gov (United States)

    Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin

    2011-01-01

    SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314

  7. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  8. Titi Monkeys as a Novel Non-Human Primate Model for the Neurobiology of Pair Bonding
.

    Science.gov (United States)

    Bales, Karen L; Arias Del Razo, Rocío; Conklin, Quinn A; Hartman, Sarah; Mayer, Heather S; Rogers, Forrest D; Simmons, Trenton C; Smith, Leigh K; Williams, Alexia; Williams, Donald R; Witczak, Lynea R; Wright, Emily C

    2017-09-01

    It is now widely recognized that social bonds are critical to human health and well-being. One of the most important social bonds is the attachment relationship between two adults, known as the pair bond. The pair bond involves many characteristics that are inextricably linked to quality of health, including providing a secure psychological base and acting as a social buffer against stress. The majority of our knowledge about the neurobiology of pair bonding comes from studies of a socially monogamous rodent, the prairie vole (Microtus ochrogaster), and from human imaging studies, which inherently lack control. Here, we first review what is known of the neurobiology of pair bonding from humans and prairie voles. We then present a summary of the studies we have conducted in titi monkeys (Callicebus cupreus)-a species of socially monogamous New World primates. Finally, we construct a neural model based on the location of neuropeptide receptors in the titi monkey brain, as well as the location of neural changes in our imaging studies, with some basic assumptions based on the prairie vole model. In this model, we emphasize the role of visual mating stimuli as well as contributions of the dopaminergic reward system and a strong role for the lateral septum. This model represents an important step in understanding the neurobiology of social bonds in non-human primates, which will in turn facilitate a better understanding of these mechanisms in humans.

  9. The neurobiology of circadian rhythms

    NARCIS (Netherlands)

    Van der Zee, Eddy A.; Boersma, Gretha J.; Hut, Roelof A.

    2009-01-01

    Purpose of review There is growing awareness of the importance of circadian rhythmicity in various research fields. Exciting developments are ongoing in the field of circadian neurobiology linked to sleep, food intake, and memory. With the current knowledge of critical clock genes' (genes found to

  10. Neurobiological Substrates of Tourette's Disorder

    NARCIS (Netherlands)

    Leckman, James F.; Bloch, Michael H.; Smith, Megan E.; Larabi, Daouia; Hampson, Michelle

    Objective: This article reviews the available scientific literature concerning the neurobiological substrates of Tourette's disorder (TD). Methods: The electronic databases of PubMed, ScienceDirect, and PsycINFO were searched for relevant studies using relevant search terms. Results:

  11. Mental health: More than neurobiology

    NARCIS (Netherlands)

    Fried, E.; Tuerlinckx, F.; Borsboom, D.

    2014-01-01

    The decision by the US National Institute of Mental Health (NIMH) to fund only research into the neurobiological roots of mental disorders (Nature 507, 288; 2014) presumes that these all result from brain abnormalities. But this is not the case for many people with mental-health issues and we fear

  12. A mechanism of paraquat toxicity involving nitric oxide synthase

    Science.gov (United States)

    Day, Brian J.; Patel, Manisha; Calavetta, Lisa; Chang, Ling-Yi; Stamler, Jonathan S.

    1999-01-01

    Paraquat (PQ) is a well described pneumotoxicant that produces toxicity by redox cycling with cellular diaphorases, thereby elevating intracellular levels of superoxide (O2⨪). NO synthase (NOS) has been shown to participate in PQ-induced lung injury. Current theory holds that NO reacts with O2⨪ generated by PQ to produce the toxin peroxynitrite. We asked whether NOS might alternatively function as a PQ diaphorase and reexamined the question of whether NO/O2⨪ reactions were toxic or protective. Here, we show that: (i) neuronal NOS has PQ diaphorase activity that inversely correlates with NO formation; (ii) PQ-induced endothelial cell toxicity is attenuated by inhibitors of NOS that prevent NADPH oxidation, but is not attenuated by those that do not; (iii) PQ inhibits endothelium-derived, but not NO-induced, relaxations of aortic rings; and (iv) PQ-induced cytotoxicity is potentiated in cytokine-activated macrophages in a manner that correlates with its ability to block NO formation. These data indicate that NOS is a PQ diaphorase and that toxicity of such redox-active compounds involves a loss of NO-related activity. PMID:10535996

  13. Mechanisms and Targets Involved in Dissemination of Ovarian Cancer

    Science.gov (United States)

    H. WEIDLE, ULRICH; BIRZELE, FABIAN; KOLLMORGEN, GWENDLYN; RUEGER, RÜDIGER

    2016-01-01

    Ovarian carcinoma is associated with the highest death rate of all gynecological tumors. On one hand, its aggressiveness is based on the rapid dissemination of ovarian cancer cells to the peritoneum, the omentum, and organs located in the peritoneal cavity, and on the other hand, on the rapid development of resistance to chemotherapeutic agents. In this review, we focus on the metastatic process of ovarian cancer, which involves dissemination of, homing to and growth of tumor cells in distant organs, and describe promising molecular targets for possible therapeutic intervention. We provide an outline of the interaction of ovarian cancer cells with the microenvironment such as mesothelial cells, adipocytes, fibroblasts, endothelial cells, and other stromal components in the context of approaches for therapeutic interference with dissemination. The targets described in this review are discussed with respect to their validity as drivers of metastasis and to the availability of suitable efficient agents for their blockage, such as small molecules, monoclonal antibodies or antibody conjugates as emerging tools to manage this disease. PMID:27807064

  14. Recent Insights into the Neurobiology of Impulsivity

    OpenAIRE

    Mitchell, Marci R.; Marc N Potenza

    2014-01-01

    Impulsivity is associated with various psychopathologies, and elevated impulsivity is typically disadvantageous. This manuscript reviews recent investigations into the neurobiology of impulsivity using human imaging techniques and animal models. Both human imaging and preclinical pharmacological manipulations have yielded important insights into the neurobiological underpinnings of impulsivity. A more thorough understanding of the complex neurobiology underlying aspects of impulsivity may pro...

  15. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  16. Molecular neurobiology of addiction.

    Science.gov (United States)

    Nestler, E J

    2001-01-01

    Addiction can be viewed as a form of drug-induced neural plasticity. One of the best established molecular mechanisms of addiction is the upregulation of the cAMP second messenger pathway, which occurs in many neuronal cell types in response to chronic administration of opiates or other drugs of abuse. This upregulation and the resulting activation of the transcription factor CREB appear to mediate aspects of tolerance and dependence. In contrast, induction of another transcription factor, termed delta FosB, exerts the opposite effect and may contribute to sensitized responses to drug exposure. Knowledge of these mechanisms could lead to more effective treatments for addictive disorders.

  17. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  18. The neurobiology and pharmacology of depression: A comparative ...

    African Journals Online (AJOL)

    A serendipitous approach to drug discovery has therefore been replaced by the development of drugs acting on predetermined neurobiological targets recognised to be involved in the pathology of depressive illness. The first of these 'designer drugs'. were the selective serotonin (5-HT) reuptake inhibitors (SSRls), followed ...

  19. Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter.

    Science.gov (United States)

    Nabokina, Svetlana M; Ramos, Mel Brendan; Said, Hamid M

    2016-01-01

    Microbiota of the large intestine synthesizes considerable amount of vitamin B1 (thiamine) in the form of thiamine pyrophosphate (TPP). We have recently demonstrated the existence of an efficient and specific carrier-mediated uptake process for TPP in human colonocytes, identified the TPP transporter (TPPT) involved (product of the SLC44A4 gene), and shown that expression of TPPT along the gastrointestinal (GI) tract is restricted to the colon. Our aim in this study was to determine the molecular basis of the colon-specific expression of TPPT focusing on a possible epigenetic mechanism. Our results showed that the CpG island predicted in the SLC44A4 promoter is non-methylated in the human colonic epithelial NCM460 cells, but is hyper-methylated in the human duodenal epithelial HuTu80 cells (as well as in the human retinal pigment epithelial ARPE19 cells). In the mouse (where TPPT expression in the GI tract is also restricted to the colon), the CpG island predicted in the Slc44a4 promoter is non-methylated in both the jejunum and colon, thus arguing against possible contribution of DNA methylation in the colon-specific expression of TPPT. A role for histone modifications in the tissue-specific pattern of Slc44a4 expression, however, was suggested by the findings that in mouse colon, histone H3 in the 5'-regulatory region of Slc44a4 is tri-methylated at lysine 4 and acetylated at lysine 9, whereas the tri-methylation at lysine 27 modification was negligible. In contrast, in the mouse jejunum, histone H3 is hyper-trimethylated at lysine 27 (repressor mark). Similarly, possible involvement of miRNA(s) in the tissue-specific expression of TPPT was also suggested by the findings that the 3'-UTR of SLC44A4 is targeted by specific miRNAs/RNA binding proteins in non-colonic, but not in colonic, epithelial cells. These studies show, for the first time, epigenetic mechanisms (histone modifications) play a role in determining the tissue-specific pattern of expression of TPPT

  20. “Love” Phenomenon and Neurobiology of Love Relations

    Directory of Open Access Journals (Sweden)

    Ali Evren Tufan

    2010-01-01

    Full Text Available The biology; especially the neurobiological features of the “love” phenomenon has recently started to attract attention. Love relations and attachment, which is closely related with them, are known to be important in health and disease. Love and love relations are found to be complex neurobiological phenomena based on activation of the limbic system of the brain. Those processes involve oxytocin, vasopressin, dopamine and serotonergic functions. Additionally, endorphine and endogenous opiate systems as well as nitrous oxide play role in those processes. The stages of love and love relations may demonstrate different neurochemical and neurophysiological features and may partially overlap with m aternal, romantic and sexual love and attachments. The aim of this article is to evaluate the common neurobiological pathways underlying the “love” phenomenon as well as their importance in medicine and health.

  1. The neurobiology of pain.

    Science.gov (United States)

    Besson, J M

    1999-05-08

    Understanding the plasticity of pain and analgesia exhibited in different pain states may improve therapies for the two major types of pain, neuropathic and inflammatory pain, in which nerve and tissue damage leads to alterations at both peripheral and central levels. At the level of the peripheral nerve, drugs that act on particular sodium channels may target only pain-related activity. Agents that act on some of the peripheral mediators of pain may control peripheral nerve activity. A new generation of non-steroidal anti-inflammatory drugs, cyclo-oxygenase 2 inhibitors, that lack gastric actions are becoming available. In the spinal cord, the release of peptides and glutamate causes activation of multiple receptors, particularly, the N-methyl-D-aspartate receptor for glutamate, which, in concert with other spinal systems, generates spinal hypersensitivity. Blocking the generation of excitability is one approach, but increasing inhibitions may also provide analgesia. Opioid actions are via presynaptic and post-synaptic inhibitory effects on central and peripheral C fibre terminals, spinal neurones, and supraspinal mechanisms. Our knowledge of brain mechanisms of pain is still, however, limited. Other new targets have been revealed by molecular biology and animal models of clinical pain, but the possibility of a "magic bullet" is doubtful. Thus, another approach could be single molecules with dual drug actions, that encompass targets where additive or synergistic effects of different mechanisms may enable pain relief without major adverse effects.

  2. The neurobiology of social phobia.

    Science.gov (United States)

    Potts, N L; Book, S; Davidson, J R

    1996-06-01

    Studies in the neurobiology of social phobia have used neuroendocrine, naturalistic and chemical challenges, pharmacological probes, neurotransmitter system measures, peripheral receptor binding and magnetic resonance measures. Studies of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes have been largely unrevealing; adrenaline, carbon dioxide, caffeine and yohimbine tests have provided mixed results; probe studies using L-dopa, clonidine and fenfluramine have provided some evidence of post-synaptic serotonergic abnormality; studies on platelet and lymphocyte binding have failed to distinguish social phobia from other groups; magnetic resonance imaging and magnetic resonance spectroscopy studies suggest possible differences between patients with social phobia and healthy controls in respect of dopamine, serotonin and second-messenger function. In aggregate, these studies have provided some neurobiological basis for separating social phobia from panic disorder and non-psychiatric healthy controls.

  3. Neurobiology of Resilience

    Science.gov (United States)

    Russo, Scott J.; Murrough, James W.; Han, Ming–Hu; Charney, Dennis S.; Nestler, Eric J.

    2013-01-01

    Humans exhibit a remarkable degree of resilience in the face of extreme stress, with most resisting the development of neuropsychiatric disorders. Over the past 5 years, there has been increasing interest in the active, adaptive coping mechanisms of resilience; however, in humans, the majority of published work focuses on correlative neuroendocrine markers that are associated with a resilient phenotype. In this review, we highlight a growing literature in rodents that is starting to complement the human work by identifying the active behavioral, neural, molecular, and hormonal basis of resilience. The therapeutic implications of these findings are important and can pave the way for an innovative new approach to drug development for a range of stress–related syndromes. PMID:23064380

  4. The Neurobiology of Anesthetic Emergence.

    Science.gov (United States)

    Tarnal, Vijay; Vlisides, Phillip E; Mashour, George A

    2016-07-01

    Achieving a smooth and rapid emergence from general anesthesia is of particular importance for neurosurgical patients and is a clinical goal for neuroanesthesiologists. Recent data suggest that the process of emergence is not simply the mirror image of induction, but rather controlled by distinct neural circuits. In this narrative review, we discuss (1) hysteresis, (2) the concept of neural inertia, (3) the asymmetry between the neurobiology of induction and emergence, and (4) recent attempts at actively inducing emergence.

  5. Applications of carbon nanotubes in neurobiology.

    Science.gov (United States)

    Malarkey, Erik B; Parpura, Vladimir

    2007-01-01

    Carbon nanotubes are one of the most promising materials for the electronics, computer and aerospace industries. There are numerous properties of carbon nanotubes that make them attractive for applications in neurobiology: small size, flexibility, strength, inertness, electrical conductivity and ease of modification with biological compounds. Here, we discuss the current applications of carbon nanotubes in neuroscience. Carbon nanotubes and their derivatives can be used as substrates/scaffolds for neural cell growth. The chemical properties of carbon nanotubes can be systematically varied by attaching different functional groups; manipulation of the charge carried by functionalized carbon nanotubes can be used to control the outgrowth and branching pattern of neuronal processes. The ease with which carbon nanotubes can be patterned makes them attractive for studying the organization of neural networks and the electrical conductivity of nanotubes can provide a mechanism to monitor or stimulate neurons through the substrate itself. However, it is important to recognize that carbon nanotubes themselves can affect neuronal function, most likely by interaction with ion channels. The use of carbon nanotubes in neurobiology is a promising application that has the potential to develop new methods and techniques to advance the study of neuroscience.

  6. Apolipoprotein E: from lipid transport to neurobiology

    Science.gov (United States)

    Hauser, Paul S.; Narayanaswami, Vasanthy; Ryan, Robert O.

    2010-01-01

    Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related to apoE's function as a ligand for cell surface receptors of the low density lipoprotein receptor family. The receptor binding properties of apoE are strongly influenced by isoform specific amino acid differences as well as the lipidation state of the protein. As understanding of apoE as a structural component of circulating plasma lipoproteins has evolved, exciting developments in neurobiology have revitalized interest in apoE. The strong and enduring correlation between the apoE4 isoform and age of onset and increased risk of Alzheimer's disease has catapulted apoE to the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein metabolism, transgenic “knock-in” and gene-disrupted mice are now favored models for study of its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform specific differences is driving research activity designed to elucidate how a single amino acid change can manifest such profoundly significant pathological consequences. This review describes apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain the functions of apoE and isoform specific effects relating to disease mechanism. PMID:20854843

  7. [Neurobiology of imprinting].

    Science.gov (United States)

    Ohki-Hamazaki, Hiroko

    2012-06-01

    Imprinting is an example of learning and memory acquisition in infancy. In the case of precocial birds, such as geese, ducks, and chickens, the baby birds learn the characteristics of the first moving object that they see within a critical period, and they imprint on it and follow it around. We analyzed the neural basis of this behavior in order to understand the neural mechanism of learning and memory in infancy. Information pertaining to a visual imprinting stimulus is recognized and processed in the visual Wulst, a region that corresponds to the mammalian visual cortex. It is then transmitted to the posterior region of the telencephalon, followed by the core region of the hyperpallium densocellulare (HDCo), periventricular region of the hyperpallium densocellulare (HDPe), and finally, the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. Memory is stored in the IMM. After imprint training, plastic changes are observed in the visual Wulst as well as in the neurons of this circuit. HDCo cells, located at the center of this circuit, express N-methyl-D-aspartate (NMDA) receptors containing the NMDA receptor (NR) 2B subunit; the expression of this receptor increased after the imprint training. Inhibition of this receptor in the cells of the HDCo region leads to failure of imprinting and inactivation of this circuit. Thus, NMDA receptors bearing the NR2B subunit play a critical role in plastic changes in this circuit and in induction of imprinting.

  8. The neurobiology of pleasure, reward processes, addiction and their health implications.

    Science.gov (United States)

    Esch, Tobias; Stefano, George B

    2004-08-01

    Modern science begins to understand pleasure as a potential component of salutogenesis. Thereby, pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. Further, health implications related to pleasurable activities are analyzed. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors, i.e., motivational toxicity. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, endorphin and endogenous morphinergic mechanisms may play a role. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways. Thus, the concrete outcome of pleasant experiences may be a question of dose. Moderate pleasurable experiences are able to enhance biological flexibility and health. Hence, pleasure can be a resistance resource or may serve salutogenesis. Natural rewards are mediated by sensory organ stimulation, thereby exhibiting a potential association with complementary medical approaches. Trust and belief can be part of a self-healing potential connected with rewarding stimuli. Further, the placebo response physiologically resembles pleasure phenomena, since both involve brain's reward circuitry stimulation and subjective feelings of well-being. Pleasurable activities can stimulate

  9. Neurobiology of value integration: when value impacts valuation.

    Science.gov (United States)

    Park, Soyoung Q; Kahnt, Thorsten; Rieskamp, Jörg; Heekeren, Hauke R

    2011-06-22

    Everyday choice options have advantages (positive values) and disadvantages (negative values) that need to be integrated into an overall subjective value. For decades, economic models have assumed that when a person evaluates a choice option, different values contribute independently to the overall subjective value of the option. However, human choice behavior often violates this assumption, suggesting interactions between values. To investigate how qualitatively different advantages and disadvantages are integrated into an overall subjective value, we measured the brain activity of human subjects using fMRI while they were accepting or rejecting choice options that were combinations of monetary reward and physical pain. We compared different subjective value models on behavioral and neural data. These models all made similar predictions of choice behavior, suggesting that behavioral data alone are not sufficient to uncover the underlying integration mechanism. Strikingly, a direct model comparison on brain data decisively demonstrated that interactive value integration (where values interact and affect overall valuation) predicts neural activity in value-sensitive brain regions significantly better than the independent mechanism. Furthermore, effective connectivity analyses revealed that value-dependent changes in valuation are associated with modulations in subgenual anterior cingulate cortex-amygdala coupling. These results provide novel insights into the neurobiological underpinnings of human decision making involving the integration of different values.

  10. Energy intake, meal frequency, and health: a neurobiological perspective.

    Science.gov (United States)

    Mattson, Mark P

    2005-01-01

    The size and frequency of meals are fundamental aspects of nutrition that can have profound effects on the health and longevity of laboratory animals. In humans, excessive energy intake is associated with increased incidence of cardiovascular disease, diabetes, and certain cancers and is a major cause of disability and death in industrialized countries. On the other hand, the influence of meal frequency on human health and longevity is unclear. Both caloric (energy) restriction (CR) and reduced meal frequency/intermittent fasting can suppress the development of various diseases and can increase life span in rodents by mechanisms involving reduced oxidative damage and increased stress resistance. Many of the beneficial effects of CR and fasting appear to be mediated by the nervous system. For example, intermittent fasting results in increased production of brain-derived neurotrophic factor (BDNF), which increases the resistance of neurons in the brain to dysfunction and degeneration in animal models of neurodegenerative disorders; BDNF signaling may also mediate beneficial effects of intermittent fasting on glucose regulation and cardiovascular function. A better understanding of the neurobiological mechanisms by which meal size and frequency affect human health may lead to novel approaches for disease prevention and treatment.

  11. The Neurobiology of Orofacial Pain and Sleep and Their Interactions.

    Science.gov (United States)

    Lavigne, G J; Sessle, B J

    2016-09-01

    This article provides an overview of the neurobiology of orofacial pain as well as the neural processes underlying sleep, with a particular focus on the mechanisms that underlie pain and sleep interactions including sleep disorders. Acute pain is part of a hypervigilance system that alerts the individual to injury or potential injury of tissues. It can also disturb sleep. Disrupted sleep is often associated with chronic pain states, including those that occur in the orofacial region. The article presents many insights that have been gained in the last few decades into the peripheral and central mechanisms involved in orofacial pain and its modulation, as well as the circuits and processes in the central nervous system that underlie sleep. Although it has become clear that sleep is essential to preserve and maintain health, it has also been found that pain, particularly chronic pain, is commonly associated with disturbed sleep. In the presence of chronic pain, a circular relationship may prevail, with mutual deleterious influences causing an increase in pain and a disruption of sleep. This article also reviews findings that indicate that reducing orofacial pain and improving sleep need to be targeted together in the management of acute to chronic orofacial pain states in order to improve an orofacial pain patient's quality of life, to prevent mood alterations or exacerbation of sleep disorder (e.g., insomnia, sleep-disordered breathing) that can negatively affect their pain, and to promote healing and optimize their health. © International & American Associations for Dental Research 2016.

  12. Recent Insights into the Neurobiology of Impulsivity

    Science.gov (United States)

    Mitchell, Marci R.; Potenza, Marc N.

    2014-01-01

    Impulsivity is associated with various psychopathologies, and elevated impulsivity is typically disadvantageous. This manuscript reviews recent investigations into the neurobiology of impulsivity using human imaging techniques and animal models. Both human imaging and preclinical pharmacological manipulations have yielded important insights into the neurobiological underpinnings of impulsivity. A more thorough understanding of the complex neurobiology underlying aspects of impulsivity may provide insight into new treatment options that target elevated impulsivity and psychopathologies such as addictions. PMID:25431750

  13. Phytochemicals: Potential in Management of Climacteric Neurobiology.

    Science.gov (United States)

    Chopra, Kanwaljit; Bansal, Seema; Sachdeva, Anand Kamal

    2016-01-01

    Menopause jeopardizes the integrity of brain and makes it vulnerable to various diseases, both of psychiatric and degenerative nature. Exogenous estrogen supplementation confers neuroprotection but the results of Women's Health Initiative (WHI), Million Women Study (MWS) and incidence of endometrial cancer, breast cancer and venous thromboembolism reported with estrogen use have engendered doubts over its clinical translation for postmenopausal neurological disorders. Scientific community and general public have started recognizing the protective potential of phytochemicals in climacteric medicine. These phytochemicals are plant-derived, non-steroidal bioactive estrogenic compounds. Emerging preclinical studies have suggested that these phytochemicals display potential benefits in mitigating postmenopausal depression, anxiety, cerebral ischemia and cognitive dysfunction. Thus, the aim of present review is: a) to give an overview of neuroprotective action of estrogen, b) to address the chemical and pharmacological features of various classes of phytoestrogens, and c) to present preclinical and clinical evidence of effect of phytoestrogens on climacteric neurobiology with their possible mechanisms of action.

  14. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  15. Neurobiology of aggression and violence

    OpenAIRE

    Ortega-Escobar, Joaquín; Alcázar-Córcoles, Miguel Ángel

    2016-01-01

    La neurobiología de la agresión y la violencia es de interés para la psicología jurídica porque buenaparte de la conducta delictiva tiene componentes violentos. En esta revisión se definen en primer lugarambos conceptos, para diferenciar a continuación los tipos de agresión (impulsiva vs. instrumental) queaparecen en la literatura científica y finalmente analizar las estructuras nerviosas que según los estudiossobre lesiones cerebrales o de neuroimagen están asociadas con la agresión. Esta re...

  16. Mechanisms Involved in the Nociception Triggered by the Venom of the Armed Spider Phoneutria nigriventer

    OpenAIRE

    Camila Gewehr; Sara Marchesan Oliveira; Mateus Fortes Rossato; Gabriela Trevisan; Gerusa Duarte Dalmolin; Flávia Karine Rigo; Célio José de Castro Júnior; Marta Nascimento Cordeiro; Juliano Ferreira; Gomez, Marcus V.

    2013-01-01

    BACKGROUND: The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). METHODOLOG...

  17. Molecular Neurobiology and Promising New Treatment in Depression

    Directory of Open Access Journals (Sweden)

    Sang Won Jeon

    2016-03-01

    Full Text Available The limited effects of currently available antidepressants are becoming an urgent issue in depression research. It takes a long time to determine treatment effects, and the overall remission rate is low. Although we expect the development of non-monoamine antidepressants in the near future, efforts in this regard over the past several decades have not yet been compensated. Thus, researchers and clinicians should clarify the neurobiological mechanisms of integrated modulators that regulate changes in genes, cells, the brain, and behaviors associated with depression. In this study, we review molecular neurobiological theories and new treatments for depression. Beyond neuroanatomy and monoamine theory, we discuss cells and molecules, neural plasticity, neurotrophisms, endocrine mechanisms, immunological mechanisms, genetics, circadian rhythms, and metabolic regulation in depression. In addition, we introduce the possibility of new antidepressant drug development using protein translation signaling (mTOR pathways.

  18. The neurobiology of addictive disorders.

    Science.gov (United States)

    Ross, Stephen; Peselow, Eric

    2009-01-01

    Addiction is increasingly understood as a neurobiological illness where repetitive substance abuse corrupts the normal circuitry of rewarding and adaptive behaviors causing drug-induced neuroplastic changes. The addictive process can be examined by looking at the biological basis of substance initiation to the progression of substance abuse to dependence to the enduring risk of relapse. Critical neurotransmitters and neurocircuits underlie the pathological changes at each of these stages. Enhanced dopamine transmission in the nucleus accumbens is part of the common pathway for the positively rewarding aspects of drugs of abuse and for initiation of the addictive process. F-Aminobutyric acid,opioid peptides, serotonin, acetylcholine, the endocannabinoids, and glutamate systems also play a role in the initial addictive process. Dopamine also plays a key role in conditioned responses to drugs of abuse, and addiction is now recognized as a disease of pathological learning and memory. In the path from substance abuse to addiction, the neurochemistry shifts from a dopamine-based behavioral system to a predominantly glutamate-based one marked by dysregulated glutamate transmission from the prefrontal cortex to the nucleus accumbens in relation to drug versus biologically oriented stimuli. This is a core part of the executive dysfunction now understood as one of the hallmark features of addiction that also includes impaired decision making and impulse dysregulation.Understanding the neurobiology of the addictive process allows for a theoretical psychopharmacological approach to treating addictive disorders,one that takes into account biological interventions aimed at particular stages of the illness.

  19. The neurobiology of empathy in borderline personality disorder.

    Science.gov (United States)

    Ripoll, Luis H; Snyder, Rebekah; Steele, Howard; Siever, Larry J

    2013-03-01

    We present a neurobiological model of empathic dysfunction in borderline personality disorder (BPD) to guide future empirical research. Empathy is a necessary component of interpersonal functioning, involving two distinct, parallel neural networks. One form of empathic processing relies on shared representations (SR) of others' mental states, while the other is associated with explicit mental state attribution (MSA). SR processing is visceral and automatic, contributing to attunement, but also emotional contagion. MSA processing contributes to deliberate, perspectival forms of empathic understanding. Empathic dysfunction in BPD may involve hyper-reactivity of SR networks and impairment of MSA networks. Nevertheless, this empathic dysfunction is subtle, but contributes to interpersonal difficulties. Interaction between genetic factors and traumatic attachment stressors may contribute to development of BPD, with painful attachment insecurity and disorganization affecting SR and MSA network functioning. Future avenues for BPD research will include developmental assessment of attachment and neurobiological functioning under varying conditions.

  20. Contactins in the neurobiology of autism.

    Science.gov (United States)

    Zuko, Amila; Kleijer, Kristel T E; Oguro-Ando, Asami; Kas, Martien J H; van Daalen, Emma; van der Zwaag, Bert; Burbach, J Peter H

    2013-11-05

    Autism is a disease of brain plasticity. Inspiring work of Willem Hendrik Gispen on neuronal plasticity has stimulated us to investigate gene defects in autism and the consequences for brain development. The central process in the pathogenesis of autism is local dendritic mRNA translation which is dependent on axodendritic communication. Hence, most autism-related gene products (i) are part of the protein synthesis machinery itself, (ii) are components of the mTOR signal transduction pathway, or (iii) shape synaptic activity and plasticity. Accordingly, prototype drugs have been recognized that interfere with these pathways. The contactin (CNTN) family of Ig cell adhesion molecules (IgCAMs) harbours at least three members that have genetically been implicated in autism: CNTN4, CNTN5, and CNTN6. In this chapter we review the genetic and neurobiological data underpinning their role in normal and abnormal development of brain systems, and the consequences for behavior. Although data on each of these CNTNs are far from complete, we tentatively conclude that these three contactins play roles in brain development in a critical phase of establishing brain systems and their plasticity. They modulate neuronal activities, such as neurite outgrowth, synaptogenesis, survival, guidance of projections and terminal branching of axons in forming neural circuits. Current research on these CNTNs concentrate on the neurobiological mechanism of their developmental functions. A future task will be to establish if proposed pharmacological strategies to counteract ASD-related symptomes can also be applied to reversal of phenotypes caused by genetic defects in these CNTN genes. © 2013 Elsevier B.V. All rights reserved.

  1. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  2. The placebo response: neurobiological and clinical issues of neurological relevance.

    Science.gov (United States)

    Pollo, Antonella; Benedetti, Fabrizio

    2009-01-01

    The recent upsurge in placebo research has demonstrated the sound neurobiological substrate of a phenomenon once believed to be only patient mystification, or at best a variable to control in clinical trials, bringing about a new awareness of its potential exploitation to the patient's benefit and framing it as a positive context effect, with the power to influence the therapy outcome. Placebo effects have been described both in the experimental setting and in different clinical conditions, many of which are of neurological interest. Multiple mechanisms have been described, namely conditioning and cognitive factors like expectation, desire, and reward. A body of evidence from neurochemical, pharmacological, and neuroimaging studies points to the involvement of neural pathways specific to single conditions, such as the activation of the endogenous antinociceptive system during placebo analgesia or the release of dopamine in the striatum of parkinsonian patients experiencing placebo reduction of motor impairment. The possible clinical applications of placebo studies range from the design of clinical trials incorporating specific recommendations and minimizing the use of placebo arms to the optimization of the context surrounding the patient, in order to maximize the placebo component present in any treatment.

  3. Evolutionary themes in the neurobiology of social cognition.

    Science.gov (United States)

    Weitekamp, Chelsea A; Hofmann, Hans A

    2014-10-01

    Remarkable examples of social cognition have been described across a diverse range of species, yet surprisingly little is known about the neurobiological underpinnings of these behaviors. Recent studies suggest that the molecular pathways and neural networks that mediate social behavior have been relatively conserved across vertebrate evolution, suggesting that shared mechanisms may drive adaptive behavioral responses to social stimuli. Here, we review recent advances in the neurobiology of flexible and context-dependent social behaviors across vertebrate taxa, focusing on female mate choice, pair-bonding, and aggressive behavior. Furthermore, we highlight the outstanding opportunities for uncovering the mechanisms mediating cooperative behavior, an exemplar of social cognition. We suggest a framework for investigating context-dependent neural organization and the evoked neural response to social stimuli. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 'The missing links': understanding how context and mechanism influence the impact of public involvement in research.

    Science.gov (United States)

    Staley, Kristina; Buckland, Sarah A; Hayes, Helen; Tarpey, Maryrose

    2014-12-01

    It is now more widely recognized that public involvement in research increases the quality and relevance of the research. However, there are also more questions as to exactly how and when involvement brings added value. Based on the findings of recent literature reviews, most reports of public involvement that discuss impact are based on observational evaluations. These usefully describe the context, the type of involvement and the impact. However, the links between these factors are rarely considered. The findings are therefore limited to identifying the range of impacts and general lessons for good practice. Reflecting on the links between context, mechanism and outcome in these observational evaluations identifies which aspects of the context and mechanism could be significant to the outcome. Studies that are more in line with the principles of realistic evaluation can test these links more rigorously. Building on the evidence from observational evaluations to design research that explores the 'missing links' will help to address the question 'what works best, for whom and when'. We conclude that a more intentional and explicit exploration of the links between context, mechanism and outcome, applying the principles of realistic evaluation to public involvement in research, should lead to a more sophisticated understanding of the factors that increase or decrease the likelihood of positive outcomes. This will support the development of more strategic approaches to involvement maximizing the benefits for all involved. © 2012 John Wiley & Sons Ltd.

  5. Neurobiological signatures of alcohol dependence revealed by protein profiling.

    Directory of Open Access Journals (Sweden)

    Giorgio Gorini

    Full Text Available Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE, two-bottle choice (2BC paradigm. We analyzed cerebral cortices (CTX and midbrains (MB from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to

  6. Dissociation in children and adolescents as reaction to trauma--an overview of conceptual issues and neurobiological factors.

    Science.gov (United States)

    Diseth, Trond H

    2005-01-01

    The discovery of trauma as an aetiological factor in mental dissociation is more than a century old, but neurobiological research in the last decade has started to clarify a neurobiological basis that may shed light on the complex symptomatology observed in traumatized children. Dysfunctional stress responses, emotional-based style of functioning, hyperarousal, anxiety, irritability, impulsivity, disengaged attention and educational underachievement may thus begin to be better understood. The aim of this overview is to give an update on the concept of dissociation and the links to new neurobiological findings, hopefully to reduce unawareness, wrong diagnostics or even neglect of dissociative symptomatology by clinicians in child and adolescent psychiatry in the Nordic countries. A systematic overview of studies of mental dissociation in children and adolescents published over the last decade disclosed a total of 1019 references; 309 papers regarding the concept of dissociation, memory, trauma and the neurobiological correlates were studied in detail. The assumption of a trauma-genic basis of dissociation is still most discussed in the literature. The importance of other childhood trauma in addition to sexual abuse is outlined, focusing on childhood interpersonal trauma. Recent research on traumatized children and adolescents has demonstrated some permanent neurochemical as well as functional and structural abnormalities in brain areas that are involved in the integrative process of cognition and memory. This research begins to clarify the cerebral basis and mechanisms for the trauma-related dissociation observed in dissociative (conversion) disorders, post-traumatic stress disorder (PTSD) and somatoform disorders. New perspectives on the nature of subcortical processes linking the phenomena of dissociation and traumatic experiences may have important implications for the understanding of dissociative disorders in children and adolescents. They may be regarded as

  7. NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis

    OpenAIRE

    Mariarosaria eSantillo; Antonio eColantuoni; Paolo eMondola; Bruna eGuida; Simona eDamiano

    2015-01-01

    Blood pressure homeostasis is maintained by several mechanisms regulating cardiac output, vascular resistances and blood volume. At cellular levels, reactive oxygen species (ROS) signaling is involved in multiple molecular mechanisms controlling blood pressure. Among ROS producing systems, NADPH oxidases (NOXs), expressed in different cells of the cardiovascular system, are the most important enzymes clearly linked to the development of hypertension. NOXs exert a central role in cardiac me...

  8. Insomnia: psychological and neurobiological aspects and non-pharmacological treatments

    Directory of Open Access Journals (Sweden)

    Yara Fleury Molen

    2014-01-01

    Full Text Available Insomnia involves difficulty in falling asleep, maintaining sleep or having refreshing sleep. This review gathers the existing informations seeking to explain insomnia, including those that focus on psychological aspects and those considered neurobiological. Insomnia has been defined in psychological (cognitive components, such as worries and rumination, and behavioral aspects, such as classic conditioning and physiological terms (increased metabolic rate, with increased muscle tone, heart rate and temperature. From the neurobiological point of view, there are two perspectives: one which proposes that insomnia occurs in association with a failure to inhibit wakefulness and another that considers hyperarousal as having an important role in the physiology of sleep. The non-pharmacological interventions developed to face different aspects of insomnia are presented.

  9. Etiopathogenesis and Neurobiology of Narcolepsy: A Review

    Science.gov (United States)

    Kumar, Swarup; Sagili, Haritha

    2014-01-01

    Narcolepsy is a chronic lifelong sleep disorder and it often leaves a debilitating effect on the quality of life of the sufferer. This disorder is characterized by a tetrad of excessive daytime sleepiness, cataplexy (brief loss of muscle tone following strong emotion), hypnogogic hallucinations and sleep paralysis. There are two distinct subgroups of Narcolepsy: Narcolepsy with cataplexy and Narcolepsy without cataplexy. For over 100 years, clinicians have recognised narcolepsy, but only in the last few decades have scientists been able to shed light on the true cause and pathogenesis of narcolepsy. Recent studies have shown that a loss of the hypothalamic neuropeptide Hypocretin/Orexincauses Narcolepsy with cataplexy and that an autoimmune mechanism may be responsible for this loss. Our understanding of the neurophysiologic aspect of narcolepsy has also significantly improved. The basic neural mechanisms behind sleepiness and cataplexy, the two defining symptoms of narcolepsy have started to become clearer. In this review, we have provided a detailed account of the key aspects of etiopathogenesis and neurobiology of narcolepsy, along with a critical appraisal of the more recent and interesting causal associations.We have also looked at the contributions of neuroimaging to the etiopathogenesis of Narcolepsy. PMID:24701532

  10. A theoretical study of the molecular mechanism of the GAPDH Trypanosoma cruzi enzyme involving iodoacetate inhibitor

    Science.gov (United States)

    Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum

    2011-10-01

    The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.

  11. The neuropathology and neurobiology of traumatic brain injury.

    Science.gov (United States)

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Evidence for the involvement of MC4 receptors in the central mechanisms of opioid antinociception

    NARCIS (Netherlands)

    Starowicz, Katarzyna

    2005-01-01

    The data described in this thesis extend general knowledge of the involvement of the MC4 receptor in mechanisms of analgesia. The following aspects outlined below constitute novel information. Firstly, the MC4R localization in the DRG is demonstrated. The MC4 receptor was assumed to exist

  13. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  14. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins

    Science.gov (United States)

    Although gibberellins (GAs) have been shown to induce the calcium deficiency disorder, blossom-end rot (BER), development in tomato fruit (Solanum lycopersicum), the mechanisms involved remain largely unexplored. Our objectives were to better understand how GAs and a GA biosynthesis inhibitor affect...

  15. THE NEUROBIOLOGY OF PAIR BONDING: INSIGHTS FROM A SOCIALLY MONOGAMOUS RODENT

    Science.gov (United States)

    Young, Kimberly A.; Gobrogge, Kyle L.; Liu, Yan; Wang, Zuoxin

    2010-01-01

    The formation of enduring relationships between adult mates (i.e., pair bonds) is an integral aspect of human social behavior and has been implicated in both physical and psychological health. However, due to the inherent complexity of these bonds and the relative rarity with which they are formed in other mammalian species, we know surprisingly little about their underlying neurobiology. Over the past few decades, the prairie vole (Microtus ochrogaster) has emerged as an animal model of pair bonding. Research in this socially monogamous rodent has provided valuable insights into the neurobiological mechanisms that regulate pair bonding behaviors. Here, we review these studies and discuss the neural regulation of three behaviors inherent to pair bonding: the formation of partner preferences, the subsequent development of selective aggression toward unfamiliar conspecifics, and the bi-parental care of young. We focus on the role of vasopressin, oxytocin, and dopamine in the regulation of these behaviors, but also discuss the involvement of other neuropeptides, neurotransmitters, and hormones. These studies may not only contribute to the understanding of pair bonding in our own species, but may also offer insight into the underlying causes of social deficits noted in several mental health disorders. PMID:20688099

  16. Cissus sicyoides: Pharmacological Mechanisms Involved in the Anti-Inflammatory and Antidiarrheal Activities

    Directory of Open Access Journals (Sweden)

    Fernando Pereira Beserra

    2016-01-01

    Full Text Available The objective of this study was to evaluate the pharmacological mechanisms involved in anti-inflammatory and antidiarrheal actions of hydroalcoholic extract obtained from the leaves of Cissus sicyoides (HECS. The anti-inflammatory effect was evaluated by oral administration of HECS against acute model of edema induced by xylene, and the mechanisms of action were analysed by involvement of arachidonic acid (AA and prostaglandin E2 (PGE2. The antidiarrheal effect of HECS was observed and we analyzed the motility and accumulation of intestinal fluid. We also analyzed the antidiarrheal mechanisms of action of HECS by evaluating the role of the opioid receptor, α2 adrenergic receptor, muscarinic receptor, nitric oxide (NO and PGE2. The oral administration of HECS inhibited the edema induced by xylene and AA and was also able to significantly decrease the levels of PGE2. The extract also exhibited significant anti-diarrheal activity by reducing motility and intestinal fluid accumulation. This extract significantly reduced intestinal transit stimulated by muscarinic agonist and intestinal secretion induced by PGE2. Our data demonstrate that the mechanism of action involved in the anti-inflammatory effect of HECS is related to PGE2. The antidiarrheal effect of this extract may be mediated by inhibition of contraction by acting on the intestinal smooth muscle and/or intestinal transit.

  17. Alcohol-related aggression-social and neurobiological factors.

    Science.gov (United States)

    Beck, Anne; Heinz, Andreas

    2013-10-01

    Alcohol-related aggression and violence are a widespread cause of personal suffering with high socioeconomic costs. In 2011, nearly one in three violent acts in Germany was committed under the influence of alcohol (31.8%). The link between alcohol consumption and aggression is promoted by various interacting factors. In this review, based on a selective search for pertinent literature in PubMed, we analyze and summarize information from original articles, reviews, and book chapters about alcohol and aggression and discuss the neurobiological basis of aggressive behavior. Aggression is promoted both by the cognitive deficits arising in connection with acute or chronic alcohol use and by prior experience of violence in particular situations where alcohol was drunk. Only a minority of persons who drink alcohol become aggressive. On the other hand, alcohol abuse and dependence together constitute the second most commonly diagnosed cause of suicide (15-43%). Current research indicates that the individual tendency toward alcohol-induced aggression depends not just on neurobiological factors, but also on personal expectations of the effects of alcohol, on prior experience of violent conflicts, and on the environmental conditions of early childhood, especially social exclusion and discrimination. Gene-environment interactions affecting the serotonergic and other neurotransmitter systems play an important role. Potential (but not yet adequately validated) therapeutic approaches involve reinforcing cognitive processes or pharmacologically modulating serotonergic neurotransmission (and other target processes). Alcohol-related aggression has manifold social and neurobiological causes. Specific treatments must be tested in controlled trials.

  18. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype.

    Science.gov (United States)

    Kere, Juha

    2014-09-19

    Among complex disorders, those concerning neuropsychiatric phenotypes involve particular challenges compared to disorders with more easily distinguished clinical signs and measures. One such common and unusually challenging phenotype to disentangle genetically is developmental dyslexia (DD), or reading disability, defined as the inability to learn to read and write for an otherwise normally intelligent child with normal senses and educational opportunity. There is presently ample evidence for the strongly biological etiology for DD, and a dozen susceptibility genes have been suggested. Many of these genes point to common but previously unsuspected biological mechanisms, such as neuronal migration and cilia functions. I discuss here the state-of-the-art in genomic and neurobiological aspects of DD research, starting with short general background to its history. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  19. Anxiety: a systematic review of neurobiology, traditional pharmaceuticals and novel alternatives from medicinal plants.

    Science.gov (United States)

    Gelfuso, Érica Aparecida; Rosa, Daiane Santos; Fachin, Ana Lúcia; Mortari, Márcia Renata; Cunha, Alexandra Olimpio Siqueira; Beleboni, Rene Oliveira

    2014-02-01

    Pathologic anxiety is a disproportional reaction of individuals to anticipation or misinterpretation of a potential danger, which affects individual social and personal life. Despite the advances already accomplished, further studies are still necessary in order to understand the mechanisms involved in anxiety. These may provide more effective and safer treatments to aid in the control of anxiety and improve patient quality of life. In this work, we review the current issue about anxiety disorders, covering general aspects such as basic epidemiology and classification, an overview of the pharmacological treatments employed and the current search for natural anxiolytics. Also, a compilation of data investigating the neurobiology that underlies anxiety disorders and a brief discussion evolving the most usual animal experimental models to study anxiety is presented.

  20. Diabetic Neuropathy: Update on Pathophysiological Mechanism and the Possible Involvement of Glutamate Pathways.

    Science.gov (United States)

    Hussain, Nadia; Adrian, Thomas E

    2017-01-01

    Diabetic neuropathy is a common complication of diabetes. It adversely affects the lives of most diabetics. It is the leading cause of non-traumatic limb amputation. Diabetic autonomic neuropathy can target any system and increases morbidity and mortality. Treatment begins with adequate glycemic control but despite this, many patients go on to develop neuropathy which suggests there are additional and unidentified, as yet, pathological mechanisms in place. Although several theories exist, the exact mechanisms are not yet established. Disease modifying treatment requires a more complete understanding of the mechanisms of disease. Pathways Involved: This review discusses the potential pathological mechanisms of diabetic neuropathy, including the polyol pathway, hexosamine pathway, protein kinase C, advanced glycation end product formation, polyADP ribose polymerase, and the role of oxidative stress, inflammation, growth factors and lipid abnormalities. Finally it focuses on how possible changes in glutamate signaling pathways fit into the current theories. Insights into the mechanisms involving gene expression in diabetic neuropathy can help pinpoint genes with altered expression. This will help in the development of novel alternative therapeutic strategies to significantly slow the progression of neuropathy in susceptible individuals and perhaps even prevention. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Neurobiological effects of physical exercise in schizophrenia: a systematic review.

    Science.gov (United States)

    Vancampfort, Davy; Probst, Michel; De Hert, Marc; Soundy, Andrew; Stubbs, Brendon; Stroobants, Marc; De Herdt, Amber

    2014-01-01

    The aim of the present systematic review was to provide a summary of neurobiological effects of physical exercise for people with schizophrenia. A systematic review was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. Searches were conducted up to April 2013 across three databases: Medline, PsycINFO, and Embase. A methodological quality assessment using the Downs and Black Quality Index was carried out with all of the included studies. Of the 654 initial data search results, two studies reported in 3 articles including 48 patients (six women) with schizophrenia, met the eligibility criteria. The methodological quality of each study was high. Data on hippocampal volume changes following physical exercise were conflicting while physical exercise-induced changes in other brain areas were absent. Increases in hippocampal volume following physical exercise were correlated with improvements in aerobic fitness and short-term memory. Future research is needed to investigate whether brain health in people with schizophrenia is activity-dependent. Additionally, research that considers the neurobiological mechanisms and associated functional outcomes of physical exercise in individuals with schizophrenia is required. Understanding the neurobiological effects of physical exercise in patients with schizophrenia may contribute to the development of new rehabilitation strategies. There is currently insufficient evidence to determine if physical exercise has a beneficial influence on the brain health of people with schizophrenia.

  2. Neurobiologically-based treatments in Rett syndrome: opportunities and challenges

    Science.gov (United States)

    Kaufmann, Walter E.; Stallworth, Jennifer L.; Everman, David B.; Skinner, Steven A.

    2016-01-01

    ABSTRACT Introduction: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that primarily affects females, typically resulting in a period of developmental regression in early childhood followed by stabilization and severe chronic cognitive, behavioral, and physical disability. No known treatment exists beyond symptomatic management, and while insights into the genetic cause, pathophysiology, neurobiology, and natural history of RTT have been gained, many challenges remain. Areas covered: Based on a comprehensive survey of the primary literature on RTT, this article describes and comments upon the general and unique features of the disorder, genetic and neurobiological bases of drug development, and the history of clinical trials in RTT, with an emphasis on drug trial design, outcome measures, and implementation. Expert opinion: Neurobiologically based drug trials are the ultimate goal in RTT, and due to the complexity and global nature of the disorder, drugs targeting both general mechanisms (e.g., growth factors) and specific systems (e.g., glutamate modulators) could be effective. Trial design should optimize data on safety and efficacy, but selection of outcome measures with adequate measurement properties, as well as innovative strategies, such as those enhancing synaptic plasticity and use of biomarkers, are essential for progress in RTT and other neurodevelopmental disorders. PMID:28163986

  3. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma].

    Science.gov (United States)

    Polonikov, A V; Ivanov, V P; Bogomazov, A D; Solodilova, M A

    2015-01-01

    In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma.

  4. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  5. Possible participation of endogenous opioid peptides on the mechanism involved in analgesia induced by vouacapan.

    Science.gov (United States)

    Duarte, I D; Ferreira-Alves, D L; Nakamura-Craig, M

    1992-01-01

    The involvement of opioid peptides in the mechanism of action of vouacapan, a new experimental compound extracted from seeds of Pterodon poligalaeflorus Benth, was investigated both in mice utilizing acetic acid writhing response and in rats utilizing inflammatory hyperalgesia induced by carrageenan and modified Randall-Selitto method. Vouacapan, in both models, caused a dose-dependent analgesia when injected p.o., s.c. and i.p. The analgesic effect was partially blocked by naloxone, nalorphine and n-methyl-nalorphine. Significant tolerance to analgesic effect was observed following repeated administration of vouacapan or morphine. On the last day of treatment, cross administration revealed symmetrical and asymmetrical cross-tolerance between vouacapan and morphine, in rats and mice, respectively. We conclude that a release of endorphins could be involved in the analgesic mechanism of vouacapan in both models tudied.

  6. Neural Mechanisms Involved in Hypersensitive Hearing: Helping Children with ASD Who Are Overly Sensitive to Sounds.

    Science.gov (United States)

    Lucker, Jay R; Doman, Alex

    2015-01-01

    Professionals working with children diagnosed with autism spectrum disorder (ASD) may find that these children are overly sensitive to sounds. These professionals are often concerned as to why children may have auditory hypersensitivities. This review article discusses the neural mechanisms identified underlying hypersensitive hearing in people. The authors focus on brain research to support the idea of the nonclassical auditory pathways being involved in connecting the auditory system with the emotional system of the brain. The authors also discuss brain mechanisms felt to be involved in auditory hypersensitivity. The authors conclude with a discussion of some treatments for hypersensitive hearing. These treatments include desensitization training and the use of listening therapies such as The Listening Program.

  7. Neural Mechanisms Involved in Hypersensitive Hearing: Helping Children with ASD Who Are Overly Sensitive to Sounds

    Directory of Open Access Journals (Sweden)

    Jay R. Lucker

    2015-01-01

    Full Text Available Professionals working with children diagnosed with autism spectrum disorder (ASD may find that these children are overly sensitive to sounds. These professionals are often concerned as to why children may have auditory hypersensitivities. This review article discusses the neural mechanisms identified underlying hypersensitive hearing in people. The authors focus on brain research to support the idea of the nonclassical auditory pathways being involved in connecting the auditory system with the emotional system of the brain. The authors also discuss brain mechanisms felt to be involved in auditory hypersensitivity. The authors conclude with a discussion of some treatments for hypersensitive hearing. These treatments include desensitization training and the use of listening therapies such as The Listening Program.

  8. [THE ROLE OF MATERNAL DIET IN METABOLIC AND BEHAVIOURAL PROGRAMMING: REVIEW OF BIOLOGIC MECHANISMS INVOLVED].

    Science.gov (United States)

    Ramírez-López, María Teresa; Vázquez Berrios, Mariam; Arco González, Rocío; Blanco Velilla, Rosario Noemí; Decara Del Olmo, Juan; Suárez Pérez, Juan; Rodríguez de Fonseca, Fernando; Gómez de Heras, Raquel

    2015-12-01

    Over the last few years, a considerable amount of studies have focused on the effect of undernutrition and overnutrition during critical periods of offspring development and their risk of developing metabolic diseases later in life. Additionally, inadequate maternal diets have been involved in the malprogramming of brain functions and some behaviours. Several mechanisms have been associated with the process of malprogramming such as epigenetics modifications, excessive oxidative stress or hypothalamic alterations. This evidence supports the idea that nutritional prevention strategies must be considered for offspring during early development stages that include the preconceptional period. Additionally, studying involved mechanisms could be particularly useful in the search of efficient therapies against malprogramming. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica

    OpenAIRE

    Xiangfeng Zheng; Qiya Yang; Hongyin Zhang; Jing Cao; Xiaoyun Zhang; Maurice Tibiru Apaliya

    2016-01-01

    In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the...

  10. Use of static lung mechanics to identify early pulmonary involvement in patients with ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2001-04-01

    Full Text Available AIM: To assess if a detailed analysis of lung mechanics could help in early recognition of pulmonary abnormalities in patients with ankylosing spondylitis. METHODS: Static pulmonary mechanics were studied in 17 patients (16 men and one woman of ankylosing spondylitis with no obvious clinical or radiological evidence of pulmonary involvement. Lung pressure-volume relationship was generated using a whole body plethysmograph, and a monoexponential equation fitted to this data. RESULTS: Total lung capacity (TLC was reduced in one (5.9% and static lung compliance (Cst in nine (52.9% patients. Four (23.5% patients had normal TLC, yet Cst and shape constant (K were reduced. Five (29.4% patients had reduced TLC and Cst; four of them had low K. One (5.9% patient had normal TLC but elevated Cst and K. CONCLUSIONS: Pulmonary involvement in patients with ankylosing spondylitis is probably diffuse and begins much earlier than generally presumed. Evaluation of static lung mechanics can identify pulmonary involvement early in the course of disease in several of these patients.

  11. ALL OUR SONS: THE DEVELOPMENTAL NEUROBIOLOGY AND NEUROENDOCRINOLOGY OF BOYS AT RISK.

    Science.gov (United States)

    Schore, Allan N

    2017-01-01

    Why are boys at risk? To address this question, I use the perspective of regulation theory to offer a model of the deeper psychoneurobiological mechanisms that underlie the vulnerability of the developing male. The central thesis of this work dictates that significant gender differences are seen between male and female social and emotional functions in the earliest stages of development, and that these result from not only differences in sex hormones and social experiences but also in rates of male and female brain maturation, specifically in the early developing right brain. I present interdisciplinary research which indicates that the stress-regulating circuits of the male brain mature more slowly than those of the female in the prenatal, perinatal, and postnatal critical periods, and that this differential structural maturation is reflected in normal gender differences in right-brain attachment functions. Due to this maturational delay, developing males also are more vulnerable over a longer period of time to stressors in the social environment (attachment trauma) and toxins in the physical environment (endocrine disruptors) that negatively impact right-brain development. In terms of differences in gender-related psychopathology, I describe the early developmental neuroendocrinological and neurobiological mechanisms that are involved in the increased vulnerability of males to autism, early onset schizophrenia, attention deficit hyperactivity disorder, and conduct disorders as well as the epigenetic mechanisms that can account for the recent widespread increase of these disorders in U.S. culture. I also offer a clinical formulation of early assessments of boys at risk, discuss the impact of early childcare on male psychopathogenesis, and end with a neurobiological model of optimal adult male socioemotional functions. © 2017 Michigan Association for Infant Mental Health.

  12. Integrated Neurobiology of Bipolar Disorder

    Science.gov (United States)

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of

  13. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  14. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Directory of Open Access Journals (Sweden)

    J.C. Brenes

    2012-04-01

    Full Text Available Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG and inferior colliculus (IC, produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing. These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL, a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  15. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Science.gov (United States)

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  16. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  17. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms.

    Science.gov (United States)

    Maqbool, Faheem; Mostafalou, Sara; Bahadar, Haji; Abdollahi, Mohammad

    2016-01-15

    Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Neurobiology of Consciousness: Current Research and Perspectives

    Directory of Open Access Journals (Sweden)

    Płonka Beata

    2015-12-01

    Full Text Available Scientific, objective approach to consciousness has allowed to obtain some experimental data concerning brain activity, ignoring, however, the longstanding philosophical tradition. Spectacular development of neuroscience which has been observed recently made this dissonance particularly noticeable. The paper addresses the main problems of discrepancy between neurobiological research and philosophical perspective. Current opinions concerning neural correlates and models of consciousness are discussed, as well as the problems of working memory, attention, self, and disorders of consciousness. A new neurobiological approach to describe brain function in terms of brain connectivity (so-called connectome is also presented. Finally, the need to introduce at least some aspects of philosophical approach directly into neurobiological research of consciousness is postulated.

  19. Neurobiology of aggression and violence in schizophrenia.

    Science.gov (United States)

    Soyka, Michael

    2011-09-01

    There is much evidence that schizophrenia patients have an increased risk for aggression and violent behavior, including homicide. The neurobiological basis and correlates of this risk have not been much studied. While genome-wide association studies are lacking, a number of candidate genes have been investigated. By far, the most intensively studied is the catechol-O-methyltransferase (COMT) gene on chromosome 22. COMT is involved in the metabolism of dopamine, a key neurotransmitter in schizophrenia pathophysiology. Several studies suggest that the Val158Met polymorphism of this gene affects COMT activity. Methionine (Met)/Met homozygote schizophrenia patients show 4- to 5-fold lower COMT activity than valine (Val)/Val homozygotes, and some but not all studies have found an association with aggression and violence. Recently, a new functional single-nucleotide polymorphism in the COMT gene, Ala72Ser, was found to be associated with homicidal behavior in schizophrenia, but this finding warrants further replication. Studies published so far indicate that an association with the monoamine oxidase A, B, or tryptophan hydroxylase 1 genes is unlikely. Data for the brain-derived neurotrophic factor gene are conflicting and limited. Data from the limited number of neuroimaging studies performed to date are interesting. Frontal and temporal lobe abnormalities are found consistently in aggressive schizophrenia patients. Positron emission tomography and single photon-emission computed tomography (SPECT) data indicate deficits also in the orbitofrontal and temporal cortex. Some functional magnetic resonance imaging studies found a negative association of violent behavior with frontal and right-sided inferior parietal activity. Neuroimaging studies may well help further elucidate the interrelationship between neurocognitive functioning, personality traits, and antisocial and violent behavior.

  20. The clinical neurobiology of drug craving.

    Science.gov (United States)

    Sinha, Rajita

    2013-08-01

    Drug craving has re-emerged as a relevant and important construct in the pathophysiology of addiction with its inclusion in DSM-V as a key clinical symptom of addictive disorders. This renewed focus has been due in part to the recent neurobiological evidence on craving-related neural activation and clinical evidence supporting its association with drug use, relapse, and recovery processes. This review covers the neurobiology of drug craving and relapse risk with a primary focus on cocaine addiction and a secondary emphasis on alcohol addiction. A conceptualization of drug craving on the continuum of healthy desire and compulsive seeking, and the associated neurobiological adaptations associated with the development of an increased craving/wanting state is presented. Altered dopamine neurochemistry as well as disrupted prefrontal control and hyperactive striatal-limbic responses in experiencing drug cues, stress, drug intake and in basal relaxed states are identified as neurobiological signatures that predict drug craving and drug use. Thus, the clinical and neurobiological features of the craving/wanting state are presented with specific attention to alterations in these cortico-limbic-striatal and prefrontal self-control circuits that predict drug craving and relapse risk. The methodological challenges that need to be addressed to further develop the evolving conceptual approach to the neuroscience of drug craving is presented, with a focus on identification and validation of biomarkers associated with the craving state and treatment approaches that may be of benefit in reversing the neurobiological adaptations associated with drug craving to improve treatment outcomes in addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Assessment of Mechanisms Involved in Antinociception Produced by the Alkaloid Caulerpine

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Agra Cavalcante-Silva

    2014-09-01

    Full Text Available In previous works we showed that oral administration of caulerpine, a bisindole alkaloid isolated from algae of the genus Caulerpa, produced antinociception when assessed in chemical and thermal models of nociception. In this study, we evaluated the possible mechanism of action of this alkaloid in mice, using the writhing test. The antinociceptive effect of caulerpine was not affected by intraperitoneal (i.p. pretreatment of mice with naloxone, flumazenil, l-arginine or atropine, thus discounting the involvement of the opioid, GABAergic, l-arginine-nitric oxide and (muscarinic cholinergic pathways, respectively. In contrast, i.p. pretreatment with yohimbine, an α2-adrenoceptor antagonist, or tropisetron, a 5-HT3 antagonist, significantly blocked caulerpine-induced antinociception. These results suggest that caulerpine exerts its antinociceptive effect in the writhing test via pathways involving α2-adrenoceptors and 5-HT3 receptors. In summary, this alkaloid could be of interest in the development of new dual-action analgesic drugs.

  2. Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer.

    Science.gov (United States)

    Gewehr, Camila; Oliveira, Sara Marchesan; Rossato, Mateus Fortes; Trevisan, Gabriela; Dalmolin, Gerusa Duarte; Rigo, Flávia Karine; de Castro Júnior, Célio José; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus V

    2013-01-01

    The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na(+) channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for better treating poisoning by P. nigriventer but also appreciating

  3. Diagnosis, treatment, and neurobiology of autism in children.

    Science.gov (United States)

    Lainhart, J E; Piven, J

    1995-08-01

    Autism is a developmental neuropsychiatric disorder defined by the presence of social and communicative deficits, restricted and repetitive behaviors and interests, and a characteristic course. Research suggests that hereditary factors play a principal role in the etiology of most cases. A phenotype broader than autism, including milder social and language-based cognitive deficits, appears to be inherited. Although the pathogenesis is unknown, neurobiologic mechanisms clearly underlie the disorder. Neuropathologic studies have demonstrated abnormalities in limbic structures, the cerebellum, and the cortex. New advances in behavioral therapies and pharmacologic treatment are important components of successful multidisciplinary treatment of this disorder.

  4. Sleep neurobiology and critical care illness.

    Science.gov (United States)

    Drouot, Xavier; Quentin, Solene

    2015-07-01

    The intensive care unit (ICU) environment is not propitious for restoring sleep and many studies have reported that critically ill patients have severe sleep disruptions. However, sleep alterations in critically ill patients are specific and differ significantly from those in ambulatory patients. Polysomnographic patterns of normal sleep are frequently lacking in critically ill patients and the neurobiology of sleep is important to consider regarding alternative methods to quantify sleep in the ICU. This article discusses elements of sleep neurobiology affecting the specificity of sleep patterns and sleep alterations in patients admitted to the ICU. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  6. Neurobiology of Escalated Aggression and Violence

    Science.gov (United States)

    Miczek, Klaus A.; de Almeida, Rosa M. M.; Kravitz, Edward A.; Rissman, Emilie F.; de Boer, Sietse F.; Raine, Adrian

    2009-01-01

    Psychopathological violence in criminals and intense aggression in fruit flies and rodents are studied with novel behavioral, neurobiological, and genetic approaches that characterize the escalation from adaptive aggression to violence. One goal is to delineate the type of aggressive behavior and its escalation with greater precision; second, the prefrontal cortex (PFC) and brainstem structures emerge as pivotal nodes in the limbic circuitry mediating escalated aggressive behavior. The neurochemical and molecular work focuses on the genes that enable invertebrate aggression in males and females and genes that are expressed or suppressed as a result of aggressive experiences in mammals. The fruitless gene, immediate early genes in discrete serotonin neurons, or sex chromosome genes identify sexually differentiated mechanisms for escalated aggression. Male, but not female, fruit flies establish hierarchical relationships in fights and learn from previous fighting experiences. By manipulating either the fruitless or transformer genes in the brains of male or female flies, patterns of aggression can be switched with males using female patterns and vice versa. Work with Sts or Sry genes suggests so far that other genes on the X chromosomes may have a more critical role in female mouse aggression. New data from feral rats point to the regulatory influences on mesocortical serotonin circuits in highly aggressive animals via feedback to autoreceptors and via GABAergic and glutamatergic inputs. Imaging data lead to the hypothesis that antisocial, violent, and psychopathic behavior may in part be attributable to impairments in some of the brain structures (dorsal and ventral PFC, amygdala, and angular gyrus) subserving moral cognition and emotion. PMID:17978016

  7. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    Science.gov (United States)

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Reducing the stigma of depression through neurobiology-based psychoeducation: a randomized controlled trial.

    Science.gov (United States)

    Han, Der-Yan; Chen, Sue-Huei

    2014-09-01

    Attribution theory claims that people who are stigmatized experience more negative emotional and behavioral reactions from others when they are thought to be responsible for their problems. Accordingly, this study proposed a neurobiology-based psychoeducational intervention, which attempted to reduce people's blameworthy attitudes toward and social distance from depressed individuals. One hundred and thirty-two college students were randomly assigned to an experimental and control group. Participants in the experimental group received a 30-min lecture on neurobiology-based psychoeducation for depressive disorders, and were asked to fill out questionnaires before and 2 weeks after the intervention. The control group, with no intervention, also filled out the same questionnaires before and 2 weeks after the experiment. The main contents of the neurobiology-based psychoeducation concerned the neurotransmission processes and biological mechanisms of depression, in order to emphasize the biological attribution of depression. An ancova indicated that the neurobiology-based psychoeducational intervention significantly elevated the biological attribution of depression and reduced the social distance from depressed individuals. Psychological blameworthy attitudes toward depression, however, did not significantly change. Through a brief psychoeducation program about depression, knowledge of neuroscience could lead to positive benefits. Public awareness that depression can be effectively prevented and treated may be a way in which people can accept depressed individuals. Further studies are needed to certify the mechanisms of the effect of neurobiology-based psychoeducation. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  9. Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and the Mechanisms of Action Involved

    Directory of Open Access Journals (Sweden)

    M. H. Mohd. Sani

    2012-01-01

    Full Text Available Muntingia calabura L. (family Elaeocarpaceae has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test and thermal (hot plate test models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P<0.05 antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO donor, NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS, methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP pathway, or their combination also caused significant (P<0.05 change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.

  10. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica.

    Science.gov (United States)

    Zheng, Xiangfeng; Yang, Qiya; Zhang, Hongyin; Cao, Jing; Zhang, Xiaoyun; Apaliya, Maurice Tibiru

    2016-10-09

    In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the capacity of degradation of patulin. Proteomics analyses revealed that patulin treatment resulted in an upregulated protein which was involved in metabolism and stress response processes. Our results suggested that the mechanism of degradation of patulin by P. caribbica was not absorption; the presence of patulin can induce P. caribbica to produce associated intracellular and extracellular enzymes, both of which have the ability to degrade patulin. The result provides a new possible method that used the enzymes produced by yeast to detoxify patulin in food and feed.

  11. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zheng

    2016-10-01

    Full Text Available In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the capacity of degradation of patulin. Proteomics analyses revealed that patulin treatment resulted in an upregulated protein which was involved in metabolism and stress response processes. Our results suggested that the mechanism of degradation of patulin by P. caribbica was not absorption; the presence of patulin can induce P. caribbica to produce associated intracellular and extracellular enzymes, both of which have the ability to degrade patulin. The result provides a new possible method that used the enzymes produced by yeast to detoxify patulin in food and feed.

  12. Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons

    Directory of Open Access Journals (Sweden)

    Jerònia eLladó

    2013-10-01

    Full Text Available Vascular endothelial growth factor (VEGF, originally described as a factor with a regulatory role in vascular growth and development, it is also known for its direct effects on neuronal cells. The discovery in the past decade that transgenic mice expressing reduced levels of VEGF developed late-onset motoneuron pathology, reminiscent of amyotrophic lateral sclerosis (ALS, opened a new field of research on this disease. VEGF has been shown to protect motoneurons from excitotoxic death, which is a relevant mechanism involved in motoneuron degeneration in ALS. Thus, VEGF delays motoneuron degeneration and increases survival in animal models of ALS. VEGF exerts its anti-excitotoxic effects on motoneurons through molecular mechanisms involving the VEGF receptor-2 resulting in the activation of the PI3-K/Akt signaling pathway, upregulation of GluR2 subunit of AMPA receptors, inhibition of p38MAPK and induction of the anti-apoptotic molecule Bcl-2. In addition, VEGF acts on astrocytes to reduce astroglial activation and to induce the release of growth factors. The potential use of VEGF as a therapeutic tool in ALS is counteracted by its vascular effects and by its short effective time frame. More studies are needed to assess the optimal isoform, route of administration and time frame for using VEGF in the treatment of ALS.

  13. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  14. Neurobiology of Anxious Depression: A Review

    OpenAIRE

    Ionescu, Dawn F; Niciu, Mark J; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-01-01

    Anxious depression is a common, distinct clinical subtype of major depressive disorder (MDD). This review summarizes current neurobiological knowledge regarding anxious depression. Peer-reviewed articles published January 1970 through September 2012 were identified via PUBMED, EMBASE, and Cochrane Library, using the following key words: anxious depression electroencephalography (EEG), anxious depression functional magnetic resonance imaging (fMRI), anxious depression genetics, anxious depress...

  15. Neurobiology of escalated aggression and violence

    NARCIS (Netherlands)

    Miczek, Klaus A.; de Almeida, Rosa M. M.; Kravitz, Edward A.; Rissman, Emilie F.; de Boer, Sietse F.; Raine, Adrian

    2007-01-01

    Psychopathological violence in criminals and intense aggression in fruit flies and rodents are studied with novel behavioral, neurobiological, and genetic approaches that characterize the escalation from adaptive aggression to violence. One goal is to delineate the type of aggressive behavior and

  16. The Neurobiology of Trust and Schooling

    Science.gov (United States)

    Sankey, Derek

    2018-01-01

    Are there neurobiological reasons why we are willing to trust other people and why "trust" and moral values such as "care" play a quite pivotal role in our social lives and the judgements we make, including our social interactions and judgements made in the context of schooling? In pursuing this question, this paper largely…

  17. The neurobiology of syntax: beyond string sets

    Science.gov (United States)

    Petersson, Karl Magnus; Hagoort, Peter

    2012-01-01

    The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty. PMID:22688633

  18. The neurobiology of syntax: beyond string sets.

    Science.gov (United States)

    Petersson, Karl Magnus; Hagoort, Peter

    2012-07-19

    The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.

  19. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  20. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  1. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins.

    Science.gov (United States)

    de Pascual-Teresa, Sonia

    2014-10-01

    Anthocyanins are the main group of natural hydrosoluble pigments in plants. They introduce colouring to foods, with colours ranging from blue to red and orange. Nowadays, their importance for the Food and Pharmaceutical industries is mainly based in the existing scientific work evidencing their beneficial effects on the prevention of cardiovascular diseases and neurological conditions. Different mechanisms have been shown to be involved in those effects. The most consistent ones are related to their antihypertensive and endothelium protective activities, antiatherogenic activity and their interaction with the estrogenic receptor. In some of the existing work, studies on structure-activity relationship have been done, showing that modifications on the structure of anthocyanins, besides having an effect on their colours, have a clear incidence on their interaction with different steps in the principal pathways related to these diseases. Therefore, different colours might show different molecular mechanisms. However, in a normal diet most of these compounds are present simultaneously and, thus; they can act by different mechanisms but can rise to a common final action. Design of new food product or food supplements should take these potential synergies into consideration. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [Pleasure: Neurobiological conception and Freudian conception].

    Science.gov (United States)

    Chenu, A; Tassin, J-P

    2014-04-01

    Despite many controversies the debate between psychoanalysis and neuroscience remains intense, all the more since the Freudian theory stands as a reference for a number of medical practitioners and faculty psychiatrists, at least in France. Instead of going on arguing we think that it may be more constructive to favour dialogue through the analysis of a precise concept developed in each discipline. The Freudian theory of pleasure, because it is based on biological principles, appears an appropriate topic to perform this task. In this paper, we aim at comparing Freud's propositions to those issued from recent findings in Neuroscience. Like all emotions, pleasure is acknowledged as a motivating factor in contemporary models. Pleasure can indeed be either rewarding when it follows satisfaction, or incentive when it reinforces behaviours. The Freudian concept of pleasure is more univocal. In Freud's theory, pleasure is assumed to be the result of the discharge of the accumulated excitation which will thus reduce the tension. This quantitative approach corresponds to the classical scheme that associates satisfaction and pleasure. Satisfaction of a need would induce both a decrease in tension and the development of pleasure. However, clinical contradictions to this model, such as the occasional co-existence between pleasure and excitation, drove Freud to suggest different theoretical reversals. Freud's 1905 publication, which describes how preliminary sexual pleasures contribute to an increased excitation and a sexual satisfaction, is the only analysis which provides an adapted answer to the apparent paradox of pleasure and excitation co-existence. Studies on the neurobiological mechanisms responsible for the development of pleasure may help to fill this gap in the Freudian theory. Activity of the mesolimbic dopaminergic pathway is strongly associated with the reward system. Experimental studies performed in animals have shown that increased dopaminergic activity in the

  3. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    Science.gov (United States)

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Science.gov (United States)

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  5. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  6. The neurobiology of the emotional adolescent: From the inside out.

    Science.gov (United States)

    Guyer, Amanda E; Silk, Jennifer S; Nelson, Eric E

    2016-11-01

    Adolescents are commonly portrayed as highly emotional, with their behaviors often hijacked by their emotions. Research on the neural substrates of adolescent affective behavior is beginning to paint a more nuanced picture of how neurodevelopmental changes in brain function influence affective behavior, and how these influences are modulated by external factors in the environment. Recent neurodevelopmental models suggest that the brain is designed to promote emotion regulation, learning, and affiliation across development, and that affective behavior reciprocally interacts with age-specific social demands and different social contexts. In this review, we discuss current findings on neurobiological mechanisms of adolescents' affective behavior and highlight individual differences in and social-contextual influences on adolescents' emotionality. Neurobiological mechanisms of affective processes related to anxiety and depression are also discussed as examples. As the field progresses, it will be critical to test new hypotheses generated from the foundational empirical and conceptual work and to focus on identifying more precisely how and when neural networks change in ways that promote or thwart adaptive affective behavior during adolescence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Beyond Broca's and Wernicke's Areas: A New Perspective on the Neurobiology of Language.

    Science.gov (United States)

    Lem, Lawrence

    1992-01-01

    Proposes a neurobiological model in which a greater number of brain structures than previously indicated are involved in language functions, with particular reference to second language learning. The study examines three areas of the brain rarely associated with language: the anterior cingulate gyrus, the prefrontal cortex, and the basal temporal…

  8. Does intensity or youth affect the neurobiological effect of exercise on major depressive disorder?

    Science.gov (United States)

    Budde, Henning; Velasques, Bruna; Ribeiro, Pedro; Machado, Sergio; Emeljanovas, Arunas; Kamandulis, Sigitas; Skurvydas, Albertas; Wegner, Mirko

    2018-01-01

    The purpose of this commentary is to discuss the different neurobiological effects of exercise on major depressive disorder (MDD) in children and adolescents and to provide additional explanations to this well written systematic review. This commentary highlights the effects of exercise on the hypothalamic-pituitary-adrenal (HPA) axis, which plays a crucial role in MDD. We address the questions of whether age and different exercise intensities may provide additional information on the neurobiological effects of acute or chronic exercise on MDD. Previous findings clearly suggest that the etiology of MDD is complex and multifaceted, involving numerous neurobiological systems, which are additionally influenced by these two factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Replication intermediates of rice tungro bacilliform virus DNA support a replication mechanism involving reverse transcription.

    Science.gov (United States)

    Bao, Y; Hull, R

    1994-11-01

    Rice tungro bacilliform virus (RTBV) replication intermediates have been studied in rice plants infected with the virus. Unencapsidated virus-specific molecules were identified which had open circular, linear, supercoiled (SC), strong-stop, single-stranded, linear double-stranded hairpin, and double-stranded with single-stranded extension DNA forms. The structures of these different DNA forms were consistent with the replication model of cauliflower mosaic virus and support other results that reverse transcription is involved in the replication of RTBV. The existence of nonspecific and defective (+)-strand priming is suggested. The relative amount of SC DNAs differs in various tissues of the same plant and in the same tissue at different ages. This indicates host regulation of the virus replication cycle and a feedback regulatory mechanism in controlling the SC DNA level. There are no obvious differences in the composition of the replication intermediates between insect-infected and agroinoculated rice plants.

  10. Understanding the neural mechanisms involved in sensory control of voice production.

    Science.gov (United States)

    Parkinson, Amy L; Flagmeier, Sabina G; Manes, Jordan L; Larson, Charles R; Rogers, Bill; Robin, Donald A

    2012-05-15

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. Published by Elsevier Inc.

  11. Apoptotic mechanisms are involved in the death of Strongyloides venezuelensis after triggering of nitric oxide.

    Science.gov (United States)

    Ruano, A L; López-Abán, J; Gajate, C; Mollinedo, F; De Melo, A L; Muro, A

    2012-12-01

    Despite progress in understanding the role of nitric oxide (NO) in the pathogenesis of helminth infections, the role in strongyloidosis is unknown. Firstly, we studied the production of NO in mice infected with Strongyloides venezuelensis as well as in macrophage cultures stimulated with parasite antigens. Somatic larvae 3 (L3) and excretory-secretory female antigens stimulate specific NO production measured by Griess reaction and expression of inducible NO synthase by RT-PCR and quantitative PCR. Moreover, mice infected with S. venezuelensis produce NO in migration stages. Secondly, we analysed the effect of NO production on L3 and females of S. venezuelensis using NO donors such as diethylenetriamine and 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene. Parasites died after NO donor treatment in a dose-dependent manner. Finally, apoptotic mechanisms are involved in the death of S. venezuelensis larvae. © 2012 Blackwell Publishing Ltd.

  12. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    Science.gov (United States)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  13. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  14. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  15. An unusual terpene cyclization mechanism involving a carbon-carbon bond rearrangement.

    Science.gov (United States)

    Meguro, Ayuko; Motoyoshi, Yudai; Teramoto, Kazuya; Ueda, Shota; Totsuka, Yusuke; Ando, Yumi; Tomita, Takeo; Kim, Seung-Young; Kimura, Tomoyuki; Igarashi, Masayuki; Sawa, Ryuichi; Shinada, Tetsuro; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2015-03-27

    Terpene cyclization reactions are fascinating owing to the precise control of connectivity and stereochemistry during the catalytic process. Cyclooctat-9-en-7-ol synthase (CotB2) synthesizes an unusual 5-8-5 fused-ring structure with six chiral centers from the universal diterpene precursor, the achiral C20 geranylgeranyl diphosphate substrate. An unusual new mechanism for the exquisite CotB2-catalyzed cyclization that involves a carbon-carbon backbone rearrangement and three long-range hydride shifts is proposed, based on a powerful combination of in vivo studies using uniformly (13)C-labeled glucose and in vitro reactions of regiospecifically deuterium-substituted geranylgeranyl diphosphate substrates. This study shows that CotB2 elegantly demonstrates the synthetic virtuosity and stereochemical control that evolution has conferred on terpene synthases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular mechanisms involved in the adaptive regulation of colonic thiamin pyrophosphate (TPP) uptake process.

    Science.gov (United States)

    Anandam, Kasin Yadunandam; Srinivasan, Padmanabhan; Subramanian, Veedamali S; Said, Hamid M

    2017-09-20

    A considerable amount of the thiamin generated by gut microbiota exists in the form of thiamin pyrophosphate (TPP). We have previously shown that human colonocytes possess an efficient carrier-mediated uptake process for TPP that involves the SLC44A4 system and this uptake process is adaptively-regulated by prevailing extracellular TPP level. Little is known about the molecular mechanisms that mediate this adaptive regulation. We addressed this issue using human-derived colonic epithelial NCM460 cells and mouse colonoids as models. Maintaining NCM460 cells in the presence of high level of TPP (1 mM) for short (2 days) and long (9 days) periods was found to lead to a significant reduction in 3H-TPP uptake compared to cells maintained in its absence. Short-term exposure showed no changes in level of expression of SLC44A4 protein in total cell homogenate (although there was a decreased expression in the membrane fraction), mRNA and promoter activity. However, a significant reduction in the level of expression of the SLC44A4 protein, mRNA and promoter activity was observed upon long-term maintenance with the substrate. Similar changes in Slc44a4 mRNA expression were observed when mouse colonoids were maintained with TPP for short- and long-terms. Expression of the transcription factors ELF3 and CREB-1, (which drive the SLC44A4 promoter), following long-term exposure was unchanged; but their binding affinity to the promoter was decreased and specific histone modifications were also observed. These studies demonstrate that, depending on the period of exposure, different mechanisms are involved in the adaptive regulation of colonic TPP uptake by extracellular substrate level. Copyright © 2017, American Journal of Physiology-Cell Physiology.

  17. Spinal toll like receptor 3 is involved in chronic pancreatitis-induced mechanical allodynia of rat

    Directory of Open Access Journals (Sweden)

    Feng Quan-Xing

    2011-02-01

    Full Text Available Abstract Background Mechanisms underlying pain in chronic pancreatitis (CP are incompletely understood. Our previous data showed that astrocytes were actively involved. However, it was unclear how astrocytic activation was induced in CP conditions. In the present study, we hypothesized that toll-like receptors (TLRs were involved in astrocytic activation and pain behavior in CP-induced pain. Results To test our hypothesis, we first investigated the changes of TLR2-4 in the rat CP model induced by intrapancreatic infusion of trinitrobenzene sulfonic acid (TNBS. Western blot showed that after TNBS infusion, TLR3, but not TLR2 or TLR4, was increased gradually and maintained at a very high level for up to 5 w, which correlated with the changing course of mechanical allodynia. Double immunostaining suggested that TLR3 was highly expressed on astrocytes. Infusion with TLR3 antisense oligodeoxynucleotide (ASO dose-dependently attenuated CP-induced allodynia. CP-induced astrocytic activation in the spinal cord was also significantly suppressed by TLR3 ASO. Furthermore, real-time PCR showed that IL-1β, TNF-α, IL-6 and monocyte chemotactic protein-1 (MCP-1 were significantly increased in spinal cord of pancreatic rats. In addition, TLR3 ASO significantly attenuated CP-induced up-regulation of IL-1β and MCP-1. Conclusions These results suggest a probable "TLR3-astrocytes-IL-1β/MCP-1" pathway as a positive feedback loop in the spinal dorsal horn in CP conditions. TLR3-mediated neuroimmune interactions could be new targets for treating persistent pain in CP patients.

  18. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.

    Science.gov (United States)

    Tarlacı, Sultan; Pregnolato, Massimo

    2016-05-01

    The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and

  19. Determination of reaction mechanisms and rates involving SO and NO radicals

    Science.gov (United States)

    Wijesingha, Manoj; Nanayakkara, Asiri

    2015-12-01

    Reaction rates and mechanisms involving radicals SO and NO are studied using ab initio electronic structure methods and transition-state theory calculations for the temperature range 200 K-2000 K. The molecules involved in these reactions are optimized at CCSD levels with basis set cc-PVTZ. The potential energy surface is determined computationally by MP2/6-31G(d,p) method. Moreover CCSD/cc-PVTZ levels of theory are employed to locate stationary points, which are then characterized by calculation of vibrational frequencies to locate the transition states. In this investigation, we find that the possible products in the ground state consist of cis-SONO, SNO2, trans-SONO, cis-NOSO, t-NOSO, NSO2, cis-OSNO, trans-OSNO, S + NO2 and N + SO2. All intermediate states of the reaction SO + NO are positive energy of formation relative to the reactants. According to the reaction profiles of SO + NO, the molecular structures of the reactants are shifted to S + NO2 (49.02 kcal/mol) and N + SO2 (25.22 kcal/mol) through four transition structures and shifted to trans-OSNO (13.39 kcal/mol) via three transition structures. The rates calculated with variational transition state theory show that for the temperature range 200 K-2000 K, three parameter Arrhenius equation produces the most accurate reaction rates.

  20. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms.

    Directory of Open Access Journals (Sweden)

    Alessandra Cenci

    Full Text Available The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of "shifting" putative N-glycosylation sites (PNGSs in the α2 helix (in C3 and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.

  1. Postreceptor signal transduction mechanisms involved in octreotide-induced inhibition of angiogenesis.

    Science.gov (United States)

    Patel, P C; Barrie, R; Hill, N; Landeck, S; Kurozawa, D; Woltering, E A

    1994-12-01

    Somatostatin analogues inhibit peptide release and cell growth through multiple postreceptor signal transduction mechanisms (PRSTM), including G proteins (GP), cyclic adenosine monophosphate (cAMP), calcium, protein kinase C (PKC), and tyrosine phosphatase (TP). Octreotide acetate (OA), a somatostatin analogue, has been shown to inhibit angiogenesis; however, the PRSTM involved are unknown. Fertilized chicken eggs were obtained and incubated. On day 3, embryos were removed and placed in plastic wrap hammocks. On day 7, disks containing OA, test substances that interfere with PRSTM, or combinations of OA plus a test substance were placed on the developing chorioallantoic membrane. Blood vessel growth under each disk was assessed at 24 hours. Data were evaluated by chi-squared analysis. OA's ability to inhibit angiogenesis is significantly diminished when combined with calcium, bradykinin (increases calcium), pertussis toxin (inhibits GP), or 3-isobutyl-1-methylxanthine (increases cAMP). In contrast, no significant decrease is noted in OA's ability to inhibit angiogenesis when combined with phorbol ester (activates PKC) or vanadate (inhibits TP). OA-induced inhibition of angiogenesis is GP, calcium, and cAMP dependent and is PKC and TP independent. Better understanding of the PRSTM involved with OA-induced inhibition of angiogenesis may lead to enhancement of OA's effect on angiogenesis.

  2. The vasorelaxant effect of gallic acid involves endothelium-dependent and -independent mechanisms.

    Science.gov (United States)

    de Oliveira, Lais Moraes; de Oliveira, Thiago Sardinha; da Costa, Rafael Menezes; de Souza Gil, Eric; Costa, Elson Alves; Passaglia, Rita de Cassia Aleixo Tostes; Filgueira, Fernando Paranaíba; Ghedini, Paulo César

    2016-06-01

    The mechanisms of action involved in the vasorelaxant effect of gallic acid (GA) were examined in the isolated rat thoracic aorta. GA exerted a relaxant effect in the highest concentrations (0.4-10mM) in both endothelium-intact and endothelium-denuded aortic rings. Pre-incubation with L-NAME, ODQ, calmidazolium, TEA, 4-aminopyridine, and barium chloride significantly reduced the pEC50 values. Moreover, this effect was not modified by indomethacin, wortmannin, PP2, glibenclamide, or paxillin. Pre-incubation of GA (1, 3, and 10mM) in a Ca(2+)-free Krebs solution attenuated CaCl2-induced contractions and blocked BAY K8644-induced vascular contractions, but it did not inhibit a contraction induced by the release of Ca(2+) from the sarcoplasmatic reticulum stores. In addition, a Western blot analysis showed that GA induces phosphorylation of eNOS in rat thoracic aorta. These results suggest that GA induces relaxation in rat aortic rings through an endothelium-dependent pathway, resulting in eNOS phosphorylation and opening potassium channels. Additionally, the relaxant effect by an endothelium-independent pathway involves the blockade of the Ca(2+) influx via L-type Ca(2+) channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    Directory of Open Access Journals (Sweden)

    J. Lozano-Cuenca

    Full Text Available Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10–9–10–5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10–7.5–10–5 M. The present outcome was not modified by 10–6 M atropine (an antagonist of muscarinic acetylcholine receptors, 3.1×10–7 M glibenclamide (an ATP-sensitive K+ channel blocker, 10–3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker, 10–5 M indomethacin (a prostaglandin synthesis inhibitor, 10–5 M clotrimazole (a cytochrome P450 inhibitor or 10–5 M cycloheximide (a general protein synthesis inhibitor. Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (P<0.05 by 10–5 M L-NAME (a direct inhibitor of nitric oxide synthase, 10–7 M ODQ (an inhibitor of nitric oxide-sensitive guanylyl cyclase, 10–6 M KT 5823 (an inhibitor of protein kinase G, 10–2 M TEA (a Ca2+-activated K+ channel blocker and non-specific voltage-activated K+ channel blocker and 10–7 M apamin plus 10–7 M charybdotoxin (blockers of small- and large-conductance Ca2+-activated K+ channels, respectively, and was blocked by 8×10–2 M potassium (a high concentration and removal of the vascular endothelium. These results suggest that the direct vasorelaxant effect by clobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  4. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  5. Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein

    Directory of Open Access Journals (Sweden)

    Moon Sung-Pyo

    2004-10-01

    Full Text Available Abstract Background Heptaplatin is a new platinum derivative with anticancer activity against various cancer cell lines, including cisplatin-resistant cancer cell lines (Cancer Chemother Pharmacol 1995; 35: 441. Methods Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines has been investigated in connection with metallothionein (MT. Cytotoxicity was determined by an MTT assay. MT mRNA, was determined by RT-PCR assay. Transfection study was carried out to examine the function of MT. Results Of various gastric cancer cell lines, SNU-638 and SNU-601 showed the highest and lowest levels of MT mRNA, respectively, showing 80-fold difference. The IC50 values of SNU-638 to cisplatin, carboplatin and heptaplatin were 11.2-fold, 5.1-fold and 2.0-fold greater than those of SNU-601, respectively. Heptaplatin was more effective against cisplatin-resistant and MT-transfected gastric cancer sublines than cisplatin or carboplatin was. In addition, heptaplatin attenuated cadmium, but not zinc, induction of MT. Conclusion These results indicate that molecular mechanisms of heptaplatin effective against cisplatin-resistant gastric cancer sublines is at least in part due to the less involvement of MT in heptaplatin resistance as well as its attenuation of MT induction.

  6. Propagation of an Aβ Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate.

    Science.gov (United States)

    Dean, Dexter N; Rana, Pratip; Campbell, Ryan P; Ghosh, Preetam; Rangachari, Vijayaraghavan

    2018-02-06

    Proteinaceous deposits composed of fibrillar amyloid-β (Aβ) are the primary neuropathological hallmarks in Alzheimer disease (AD) brains. The nucleation-dependent aggregation of Aβ is a stochastic process with frequently observed heterogeneity in aggregate size, structure, and conformation that manifests in fibril polymorphism. Emerging evidence indicates that polymorphic variations in Aβ fibrils contribute to phenotypic diversity and the rate of disease progression in AD. We recently demonstrated that a dodecamer strain derived from synthetic Aβ42 propagates to morphologically distinct fibrils and selectively induces cerebral amyloid angiopathy phenotype in transgenic mice. This report supports the growing contention that stable oligomer strains can influence phenotypic outcomes by faithful propagation of their structures. Although we determined the mechanism of dodecamer propagation on a mesoscopic scale, the molecular details of the microscopic reactions remained unknown. Here, we have dissected and evaluated individually the kinetics of macroscopic phases in aggregation to gain insight into the process of strain propagation. The bulk rates determined experimentally in each phase were used to build an ensemble kinetic simulation model, which confirmed our observation that dodecamer seeds initially grow by monomer addition toward the formation of a key intermediate. This is followed by conversion of the intermediate to fibrils by oligomer elongation and association mechanisms. Overall, this report reveals important insights into the molecular details of oligomer strain propagation involved in AD pathology. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Dhouib, Ines Bini; Annabi, Alya; El Fazaa, Saloua; Gharbi, Najoua

    2014-08-01

    There is increasing evidence reporting that organophosphorus pesticides (OPs) impair glucose homeostasis and cause insulin resistance and type 2 diabetes. Insulin resistance is a complex metabolic disorder that defies explanation by a single etiological pathway. Formation of advanced glycation end products, accumulation of lipid metabolites, activation of inflammatory pathways and oxidative stress have all been implicated in the pathogenesis of insulin resistance. Ultimately, these molecular processes activate a series of stress pathways involving a family of serine kinases, which in turn have a negative effect on insulin signaling. Experimental and clinical data suggest an association between these molecular mechanisms and OPs compounds. It was first reported that OPs induce hyperglycemia. Then a concomitant increase of blood glucose and insulin was pointed out. For some years only, we have begun to understand that OPs promote insulin resistance and increase the risk of type 2 diabetes. Overall, this review outlines various mechanisms that lead to the development of insulin resistance by OPs exposure. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  9. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants.

    Science.gov (United States)

    Saeed, Muhammad; Dahab, Abdel hafiz Adam; Wangzhen, Guo; Tianzhen, Zhang

    2012-04-01

    Today, agriculture is facing a tremendous threat from the climate change menace. As human survival is dependent on a constant supply of food from plants as the primary producers, we must aware of the underlying molecular mechanisms that plants have acquired as a result of molecular evolution to cope this rapidly changing environment. This understanding will help us in designing programs aimed at developing crop plant cultivars best suited to our needs of a sustainable agriculture. The field of systems biology is rapidly progressing, and new insight is coming out about the molecular mechanisms involved in abiotic stress tolerance. There is a cascade of changes in transcriptome, proteome, and metabolome of plants during these stress responses. We have tried to cover most pronounced recent developments in the field of "omics" related to abiotic stress tolerance of plants. These changes are very coordinated, and often there is crosstalk between different components of stress tolerance. The functions of various molecular entities are becoming more clear and being associated with more precise biological phenomenon.

  10. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders

    Science.gov (United States)

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-01-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects. PMID:23108553

  11. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  12. Lignocaine augments the in-vitro uterine contractions involving NO-guanylyl cyclase dependent mechanisms.

    Science.gov (United States)

    Raheja, Rashmi; Gupta, Hemlata; Pandey, Uma; Deshpande, Shripad B

    2017-12-01

    Lignocaine is used during intrapartum and postpartum period but there are conflicting reports regarding the effect of lignocaine on uterine contractility. Therefore, this study was undertaken to delineate the effect of lignocaine on uterine contractility and the underlying mechanisms. The in vitro contractions were recorded from the uterine segments obtained from adult rats (in estrous phase) and also from human myometrial tissue. Effect of lignocaine on spontaneous uterine contractions was recorded in the absence or presence of antagonists. Effect of sodium nitroprusside (SNP, NO donor) on uterine contractility was assessed. The NO2- was assayed (indicator of NO activity) from the supernatant after exposing the myometrial tissue to lignocaine in the absence or the presence of L-NAME or hemoglobin. Lignocaine (100μM) increased the amplitude of uterine contractions by 75% with no alterations in frequency. Similar magnitude of increase was seen with human myometrial tissue also. The spontaneous activities were absent in Ca2+-free or in nifedipine (10μM) containing medium. Heparin (IP3 blocker, 10IU/ml), but not the indomethacin (10μM) blocked the lignocaine-induced augmentation. L-NAME (NOS inhibitor, 10μM) or methylene blue (guanylyl cyclase inhibitor, 100μM) partially blocked the lignocaine-induced augmentation. SNP (30μM) increased the amplitude of spontaneous uterine contractions. Lignocaine increased the NO2- content (indicator of NO activity) of uterine tissue and the increase was blocked by L-NAME or hemoglobin. Present observations indicate that lignocaine augments the amplitude of uterine contractions via Ca2+-dependent mechanisms involving NO-G cyclase-dependent mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The sweetest pill to swallow: how patient neurobiology can be harnessed to maximise placebo effects.

    NARCIS (Netherlands)

    Jubb, J.; Bensing, J.M.

    2013-01-01

    The burgeoning interest in placebo effects over the last 10-15 years has fallen into two main research areas: elucidation of the neurobiological mechanisms recruited following placebo administration, and investigations into the situations and contexts in which placebo effects are evoked. There has

  14. Color vision in primates: Neurobiology and behavior

    OpenAIRE

    Skalníková, Petra

    2015-01-01

    Trichromacy is the condition that involves three independent channels for processing color information based on three different cone types. Most mammals have dichromatic vision, trichromacy appears in primates of the Old World (including human) and partly in the New Wold primates. This thesis focuses on the mechanisms of trichromatic vision, its evolution in primates and the comparison of the primates of the Old and New World. The neuronal mechanisms underlying both trichromatic and dichromat...

  15. Historical Overview on Plant Neurobiology

    OpenAIRE

    Stahlberg, Rainer

    2006-01-01

    The review tracks the history of electrical long-distance signals from the first recordings of action potentials (APs) in sensitive Dionea and Mimosa plants at the end of the 19th century to their re-discovery in common plants in the 1950's, from the first intracellular recordings of APs in giant algal cells to the identification of the ionic mechanisms by voltage-clamp experiments. An important aspect is the comparison of plant and animal signals and the resulting theoretical implications th...

  16. Neurobiological phenotypes associated with a family history of alcoholism.

    Science.gov (United States)

    Cservenka, Anita

    2016-01-01

    Individuals with a family history of alcoholism are at much greater risk for developing an alcohol use disorder (AUD) than youth or adults without such history. A large body of research suggests that there are premorbid differences in brain structure and function in family history positive (FHP) individuals relative to their family history negative (FHN) peers. This review summarizes the existing literature on neurobiological phenotypes present in FHP youth and adults by describing findings across neurophysiological and neuroimaging studies. Neuroimaging studies have shown FHP individuals differ from their FHN peers in amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased white matter integrity has been reported in FHP individuals compared with FHN controls. Functional magnetic resonance imaging studies have found altered inhibitory control and working memory-related brain response in FHP youth and adults, suggesting neural markers of executive functioning may be related to increased vulnerability for developing AUDs in this population. Additionally, brain activity differences in regions involved in bottom-up reward and emotional processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals relative to their FHN peers. It is critical to understand premorbid neural characteristics that could be associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in FHP individuals. This information may lead to the development of neurobiologically informed prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth and adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. [Stress and depression: clinical, neurobiological and genetical perspectives].

    Science.gov (United States)

    Claes, S J

    2009-01-01

    Major depressive disorder (mdd) can be elicited by various kinds of stress, such as negative life events, chronic stress and experiences of abuse early in life. These stressors interact with personality traits and with a genetic predisposition to depression, thereby bringing about mdd. Therefore, the neurobiology of depression cannot be separated from the neurobiology of stress system. A substantial number of publications have in fact demonstrated that mdd patients show abnormalities of the hypothalamic-pituitary-adrenal (hpa) axis, which is a key element of the stress response. Such disturbances are exacerbated by chronic stress, early experiences of abuse and even prenatal exposure to stress. On the other hand, genetic variations can play a role in the hpa axis dysfunction and in vulnerability to depression. Evidence is emerging that certain genes are directly involved in the functioning of the hpa axis. Other genetic factors, not directly related to the hpa axis, are probably relevant as well, the best known example being the serotonin transporter gene.

  18. Neurobiology of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Rosa Villanueva

    2013-01-01

    Full Text Available We survey studies which relate abnormal neurogenesis to major depressive disorder. Clinically, descriptive gene and protein expression analysis and genetic and functional studies revised here show that individual alterations of a complex signaling network, which includes the hypothalamic-pituitary-adrenal axis; the production of neurotrophins and growth factors; the expression of miRNAs; the production of proinflammatory cytokines; and, even, the abnormal delivery of gastrointestinal signaling peptides, are able to induce major mood alterations. Furthermore, all of these factors modulate neurogenesis in brain regions involved in MDD, and are functionally interconnected in such a fashion that initial alteration in one of them results in abnormalities in the others. We highlight data of potential diagnostic significance and the relevance of this information to develop new therapeutic approaches. Controversial issues, such as whether neurogenesis is the basis of the disease or whether it is a response induced by antidepressant treatments, are also discussed.

  19. Neurobiology and treatment of compulsive hoarding.

    Science.gov (United States)

    Saxena, Sanjaya

    2008-09-01

    Compulsive hoarding is a common and often disabling neuropsychiatric disorder. This article reviews the phenomenology, etiology, neurobiology, and treatment of compulsive hoarding. Compulsive hoarding is part of a discrete clinical syndrome that includes difficulty discarding, urges to save, clutter, excessive acquisition, indecisiveness, perfectionism, procrastination, disorganization, and avoidance. Epidemiological and taxometric studies indicate that compulsive hoarding is a separate but related obsessive-compulsive spectrum disorder that is frequently comorbid with obsessive-compulsive disorder (OCD). Compulsive hoarding is a genetically discrete, strongly heritable phenotype. Neuroimaging and neuropsychological studies indicate that compulsive hoarding is neurobiologically distinct from OCD and implicate dysfunction of the anterior cingulate cortex and other ventral and medial prefrontal cortical areas that mediate decision-making, attention, and emotional regulation. Effective treatments for compulsive hoarding include pharmacotherapy and cognitive-behavioral therapy. More research will be required to determine the etiology and pathophysiology of compulsive hoarding, and to develop better treatments for this disorder.

  20. The neurobiology of the human memory.

    Science.gov (United States)

    Fietta, Pierluigi; Fietta, Pieranna

    2011-01-01

    Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.

  1. Successful and unsuccessful psychopaths: a neurobiological model.

    Science.gov (United States)

    Gao, Yu; Raine, Adrian

    2010-01-01

    Despite increasing interest in psychopathy research, surprisingly little is known about the etiology of non-incarcerated, successful psychopaths. This review provides an analysis of current knowledge on the similarities and differences between successful and unsuccessful psychopaths derived from five population sources: community samples, individuals from employment agencies, college students, industrial psychopaths, and serial killers. An initial neurobiological model of successful and unsuccessful psychopathy is outlined. It is hypothesized that successful psychopaths have intact or enhanced neurobiological functioning that underlies their normal or even superior cognitive functioning, which in turn helps them to achieve their goals using more covert and nonviolent methods. In contrast, in unsuccessful, caught psychopaths, brain structural and functional impairments together with autonomic nervous system dysfunction are hypothesized to underlie cognitive and emotional deficits and more overt violent offending.

  2. Neurobiological Consequences of Sleep Deprivation

    Science.gov (United States)

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-01-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed. PMID:24179461

  3. Neurobiological consequences of sleep deprivation.

    Science.gov (United States)

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-05-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.

  4. Neurobiology of premature brain injury.

    Science.gov (United States)

    Salmaso, Natalina; Jablonska, Beata; Scafidi, Joseph; Vaccarino, Flora M; Gallo, Vittorio

    2014-03-01

    Every year in the United States, an estimated 500,000 babies are born preterm (before 37 completed weeks of gestation), and this number is rising, along with the recognition of brain injuries due to preterm delivery. A common underlying pathogenesis appears to be perinatal hypoxia induced by immature lung development, which causes injury to vulnerable neurons and glia. Abnormal growth and maturation of susceptible cell types, particularly neurons and oligodendrocytes, in preterm babies with very low birth weight is associated with decreased cerebral and cerebellar volumes and increases in cerebral ventricular size. Here we reconcile these observations with recent studies using models of perinatal hypoxia that show perturbations in the maturation and function of interneurons, oligodendrocytes and astroglia. Together, these findings suggest that the global mechanism by which perinatal hypoxia alters development is through a delay in maturation of affected cell types, including astroglia, oligodendroglia and neurons.

  5. The Neurobiological Impact of Ghrelin Suppression after Oesophagectomy

    Directory of Open Access Journals (Sweden)

    Conor F. Murphy

    2016-12-01

    Full Text Available Ghrelin, discovered in 1999, is a 28-amino-acid hormone, best recognized as a stimulator of growth hormone secretion, but with pleiotropic functions in the area of energy homeostasis, such as appetite stimulation and energy expenditure regulation. As the intrinsic ligand of the growth hormone secretagogue receptor (GHS-R, ghrelin appears to have a broad array of effects, but its primary role is still an area of debate. Produced mainly from oxyntic glands in the stomach, but with a multitude of extra-metabolic roles, ghrelin is implicated in complex neurobiological processes. Comprehensive studies within the areas of obesity and metabolic surgery have clarified the mechanism of these operations. As a stimulator of growth hormone (GH, and an apparent inducer of positive energy balance, other areas of interest include its impact on carcinogenesis and tumour proliferation and its role in the cancer cachexia syndrome. This has led several authors to study the hormone in the cancer setting. Ghrelin levels are acutely reduced following an oesophagectomy, a primary treatment modality for oesophageal cancer. We sought to investigate the nature of this postoperative ghrelin suppression, and its neurobiological implications.

  6. What can medical education learn from the neurobiology of learning?

    Science.gov (United States)

    Friedlander, Michael J; Andrews, Linda; Armstrong, Elizabeth G; Aschenbrenner, Carol; Kass, Joseph S; Ogden, Paul; Schwartzstein, Richard; Viggiano, Thomas R

    2011-04-01

    The last several decades have seen a large increase in knowledge of the underlying biological mechanisms that serve learning and memory. The insights gleaned from neurobiological and cognitive neuroscientific experimentation in humans and in animal models have identified many of the processes at the molecular, cellular, and systems levels that occur during learning and the formation, storage, and recall of memories. Moreover, with the advent of noninvasive technologies to monitor patterns of neural activity during various forms of human cognition, the efficacy of different strategies for effective teaching can be compared. Considerable insight has also been developed as to how to most effectively engage these processes to facilitate learning, retention, recall, and effective use and application of the learned information. However, this knowledge has not systematically found its way into the medical education process. Thus, there are considerable opportunities for the integration of current knowledge about the biology of learning with educational strategies and curricular design. By teaching medical students in ways that use this knowledge, there is an opportunity to make medical education easier and more effective. The authors present 10 key aspects of learning that they believe can be incorporated into effective teaching paradigms in multiple ways. They also present recommendations for applying the current knowledge of the neurobiology of learning throughout the medical education continuum. © by the Association of American Medical Colleges.

  7. Aggression and anxiety: social context and neurobiological links

    Directory of Open Access Journals (Sweden)

    Inga D Neumann

    2010-03-01

    Full Text Available Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB versus low (LAB anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic-pituitary-adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.

  8. Attachment, neurobiology, and mentalizing along the psychosis continuum

    Directory of Open Access Journals (Sweden)

    Martin Debbané

    2016-08-01

    Full Text Available In this review article, we outline the evidence linking attachment adversity to the psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioural studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.

  9. Swarming Mechanisms in the Yellow Fever Mosquito: Aggregation Pheromones are Involved in the Mating Behavior of Aedes aegypti

    Science.gov (United States)

    2014-12-01

    Vol. 39, no. 2 Journal of Vector Ecology 347 Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating...aegypti Linnaeus is one of the most medically important mosquitoes as the main vector of dengue, chikungunya, and yellow fever viruses, in addition to its...2014 to 00-00-2014 4. TITLE AND SUBTITLE Swarming Mechanisms in the Yellow Fever Mosquito: Aggregation Pheromones are Involved in the Mating

  10. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    Science.gov (United States)

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms. Copyright © 2014 the American Physiological Society.

  11. Mechanisms involved in calcium oxalate endocytosis by Madin-Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    A.H. Campos

    2000-01-01

    Full Text Available Calcium oxalate (CaOx crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001 or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005 administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001 or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001. Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01, or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05; however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6, tetraethylammonium (1 mM; N = 6 or cromakalim (1 µM; N = 6. Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.

  12. The chronobiology and neurobiology of winter seasonal affective disorder

    Science.gov (United States)

    Levitan, Robert D.

    2007-01-01

    This review summarizes research on the chronobiology and neurobiology of winter seasonal affective disorder (SAD), a recurrent subtype of depression characterized by a predictable onset in the fall/winter months and spontaneous remission in the spring/summer period. Chronobiological mechanisms related to circadian rhythms, melatonin, and photoperiodism play a significant role in many cases of SAD, and treatment of SAD can be optimized by considering individual differences in key chronobiological markers. Converging evidence also points to a role for the major monoamine neurotransmitters serotonin, norepinephrine, and dopamine in one or more aspects of SAD. Ultimately, as with other psychiatric illnesses, SAD is best considered as a complex disorder resulting from the interaction of several vulnerability factors acting at different levels, the various genetic mechanisms that underlie them, and the physical environment. Models of SAD that emphasize its potential role in human evolution will also be discussed. PMID:17969868

  13. Neurobiological findings related to Internet use disorders.

    Science.gov (United States)

    Park, Byeongsu; Han, Doug Hyun; Roh, Sungwon

    2017-07-01

    In the last 10 years, numerous neurobiological studies have been conducted on Internet addiction or Internet use disorder. Various neurobiological research methods - such as magnetic resonance imaging; nuclear imaging modalities, including positron emission tomography and single photon emission computed tomography; molecular genetics; and neurophysiologic methods - have made it possible to discover structural or functional impairments in the brains of individuals with Internet use disorder. Specifically, Internet use disorder is associated with structural or functional impairment in the orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex, and posterior cingulate cortex. These regions are associated with the processing of reward, motivation, memory, and cognitive control. Early neurobiological research results in this area indicated that Internet use disorder shares many similarities with substance use disorders, including, to a certain extent, a shared pathophysiology. However, recent studies suggest that differences in biological and psychological markers exist between Internet use disorder and substance use disorders. Further research is required for a better understanding of the pathophysiology of Internet use disorder. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  14. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  15. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making.

    Directory of Open Access Journals (Sweden)

    Julie Giustiniani

    Full Text Available The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT. In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects and one who remained Undecided (11 subjects. No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing.

  16. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making.

    Science.gov (United States)

    Giustiniani, Julie; Gabriel, Damien; Nicolier, Magali; Monnin, Julie; Haffen, Emmanuel

    2015-01-01

    The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT). In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects) and one who remained Undecided (11 subjects). No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing.

  17. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    Science.gov (United States)

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. [Neurobiology and neurogenetics of dyslexia].

    Science.gov (United States)

    Benítez-Burraco, A

    2010-01-01

    Dyslexia is a learning disability in which reading (but not any other) impairment is the most prominent symptom. There seems to be a high comorbidity among dyslexia and other learning disabilities, such as SLI, SSD or ADHD. The nulear deficit in dyslexia appears to correspond to an impairment in phonological processing. Structural and functional studies in dyslexic readers converge to indicate the presence of malformations in the brain areas corresponding to the reading systems, but also a failure of these systems to function properly during reading. Genes linked (or associated) to dyslexia have been shown to be involved in neuronal migration and axon guidance during the formation of the cortex. In the developing cerebral neocortex of rats, local loss of function of most of these genes not only results in abnormal neuronal migration and neocortical and hippocampal malformations, but also in deficits related to auditory processing and learning. While the structural malformations resemble neuronal migration abnormalities observed in the brains of individuals with developmental dyslexia, processing/learning deficits also resemble deficits described in individuals affected by the disease. On the whole, dyslexia seems to be on a continuum with typical reading at different biological levels (genetic, biochemical, physiological, cognitive). Furthermore, certain elements belonging to some of these levels (mainly -some of the- genes linked or associated to the disease, but also -some of the- neuronal structures whose development is regulated by these genes) would simultaneously belong to those of other cognitive abilities, which give rise to diseases of a different nature (i.e. non- dyslexic impairments) when they are impaired. Copyright © 2009 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  19. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  20. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  1. Noradrenergic mechanism involved in the nociceptive modulation of nociceptive-related neurons in the caudate putamen.

    Science.gov (United States)

    Zhang, Guang-Wen; Yang, Chun-Xiao; Zhang, Duo; Gao, Her-En; Zhang, Ying; Jiao, Run-Sheng; Zhang, Hui; Liang, Yu; Xu, Man-Ying

    2010-08-09

    Norepinephrine (NE) participates in pain modulation of the central nervous system. The caudate putamen (CPu) is one region of the basal ganglia that has been demonstrated to be involved in nociceptive perception. Our previous work has shown that microinjection of different doses of norepinephrine into the CPu produces opposing effects in the tail-flick latency (TFL) of rats. However, the mechanism of action of NE on the pain-related neurons in the CPu remains unclear. The present study examined the effects of NE and the alpha-adrenoceptor antagonist phentolamine on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the CPu of rats. Trains of electric impulses were used for noxious stimulation, and were applied to the sciatic nerve. The electrical activities of pain-related neurons in the CPu were recorded by a glass microelectrode. The results revealed that intra-CPu microinjection of NE (8microg/2microl) increased evoked firing frequency of PEN and shortened the firing latency, but decreased the evoked firing frequency of PIN and prolonged the inhibitory duration (ID). Intra-CPu administration of phentolamine (4microg/2microl) showed the opposite effects. The above results suggest that NE in the CPu modulates nociception by affecting the baseline firing rates of PENs and PINs. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Noradrenergic mechanism involved in the nociceptive modulation of hippocampal CA3 region of normal rats.

    Science.gov (United States)

    Jin, Hua; Teng, Yueqiu; Zhang, Xuexin; Yang, Chunxiao; Xu, Manying; Yang, Lizhuang

    2014-06-27

    Norepinephrine (NE) is an important neurotransmitter in the brain, and regulates antinociception. However, the mechanism of action of NE on pain-related neurons in the hippocampal CA3 region is not clear. This study examines the effects of NE, phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of rats. Trains of electric impulses applied to the right sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in the hippocampal CA3 region were recorded by using a glass microelectrode. Our results revealed that, in the hippocampal CA3 region, the intra-CA3 region microinjection of NE decreased the pain-evoked discharged frequency and prolonged the discharged latency of PEN, and increased the pain-evoked discharged frequency and shortened discharged inhibitory duration (ID) of PIN, exhibiting the specific analgesic effect of NE. While intra-CA3 region microinjection of phentolamine produced the opposite response. It implies that phentolamine can block the effect of endogenous NE to cause the enhanced response of PEN and PIN to noxious stimulation. On the basis of above findings we can deduce that NE, phentolamine and alpha-adrenoceptor are involved in the modulation of nociceptive information transmission in the hippocampal CA3 region. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. A novel mechanism for regulating hepatic glycogen synthesis involving serotonin and cyclin-dependent kinase-5.

    Science.gov (United States)

    Tudhope, Susan J; Wang, Chung-Chi; Petrie, John L; Potts, Lloyd; Malcomson, Fiona; Kieswich, Julius; Yaqoob, Muhammad M; Arden, Catherine; Hampson, Laura J; Agius, Loranne

    2012-01-01

    Hepatic autonomic nerves regulate postprandial hepatic glucose uptake, but the signaling pathways remain unknown. We tested the hypothesis that serotonin (5-hydroxytryptamine [5-HT]) exerts stimulatory and inhibitory effects on hepatic glucose disposal. Ligands of diverse 5-HT receptors were used to identify signaling pathway(s) regulating glucose metabolism in hepatocytes. 5-HT had stimulatory and inhibitory effects on glycogen synthesis in hepatocytes mediated by 5-HT1/2A and 5-HT2B receptors, respectively. Agonists of 5-HT1/2A receptors lowered blood glucose and increased hepatic glycogen after oral glucose loading and also stimulated glycogen synthesis in freshly isolated hepatocytes with greater efficacy than 5-HT. This effect was blocked by olanzapine, an antagonist of 5-HT1/2A receptors. It was mediated by activation of phosphorylase phosphatase, inactivation of glycogen phosphorylase, and activation of glycogen synthase. Unlike insulin action, it was not associated with stimulation of glycolysis and was counteracted by cyclin-dependent kinase (cdk) inhibitors. A role for cdk5 was supported by adaptive changes in the coactivator protein p35 and by elevated glycogen synthesis during overexpression of p35/cdk5. These results support a novel mechanism for serotonin stimulation of hepatic glycogenesis involving cdk5. The opposing effects of serotonin, mediated by distinct 5-HT receptors, could explain why drugs targeting serotonin function can cause either diabetes or hypoglycemia in humans.

  4. On Fusing Mechanism Involving the Fuses at Secondary Winding of PT Induced by VFTO

    Science.gov (United States)

    Ma, X. H.; Han, S.; Hu, Z.; Huang, J. K.; Liu, X. B.

    2017-10-01

    The impact of very fast transient over-voltage(VFTO) on the primary and secondary equipment in gas insulated station(GIS) should not be ignored. In this paper, the research on fusing mechanism involving the fuses at secondary winding of PT induced by VFTO is carried out based on an actual case from the 500kV GIS substation belonged to Guizhou Tianshengqiao No.2 hydro power plant. As for the high voltage side, the transfer function about over-voltage can be formed in order to analyse the characteristics about high frequency over-voltage. As for the low voltage side, a three-phase equivalent model for secondary circuit of PT with the parallel arrangement at the A, B and C phases may be built for simulating the current distribution of the low voltage fuses in the situation of high frequency voltage and current. The results show that the maximum allowable current of fuse might be reduced greatly in the high-frequency circumstance due to skin effect and proximity effect, in comparison with nominal frequency condition.

  5. Molecular Mechanisms Involved in the Pathogenesis of Alphavirus-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Iranaia Assunção-Miranda

    2013-01-01

    Full Text Available Arthritogenic alphaviruses, including Ross River virus (RRV, Chikungunya virus (CHIKV, Sindbis virus (SINV, Mayaro virus (MAYV, O'nyong-nyong virus (ONNV, and Barmah Forest virus (BFV, cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained with in vitro systems and in vivo studies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a virus replication in target cells, and tissues, including macrophages and muscle cells; (b the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.

  6. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment

    Science.gov (United States)

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-01-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  7. FINANCING MECHANISMS FOR INVESTMENT PROJECTS IN THE AGRICULTURAL SECTOR OF UKRAINE'S ECONOMY INVOLVING ANGEL INVESTORS

    Directory of Open Access Journals (Sweden)

    T. Nagachevska

    2014-06-01

    Full Text Available The challenges connected with attracting foreign investments into the agricultural sector of the Ukrainian economy as well as diversification of forms of international investments are actual due to the immediate needs of realization of innovative development, technological upgrading and strengthening of agricultural sector attractiveness on the world market. Current situation and problems connected with attracting foreign investments into the agricultural sector of the Ukrainian economy are revealed. It is detected that level of attracting foreign investments into the agricultural sector of Ukraine and into AIC together don't meet the needs of its innovative potential. The following factors of agricultural sector attractiveness have been considered: high soil fertility and favorable weather conditions for growing crops; export capacity; high yield of the Ukrainian farming companies; undervalued assets and low level of capitalization of agricultural companies; attractive tax regime for agricultural producers. It is recommended that agricultural producers should indicate these factors in investment proposals and projects that they present to potential international investors. State investment policy in the agricultural sector is viewed to consolidate the resource base and the sources of investment have been determined. Suggestions to expand the financing mechanisms for investment projects in the agricultural sector involving angel investors have been justified. Economic feasibility of attracting foreign investments for financing of innovation activity of farming companies has been revealed. The key requirements and main stages of investments of angel investment association have been described.

  8. Involvement of Sodium Nitroprusside (SNP in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars

    Directory of Open Access Journals (Sweden)

    Aung H. Naing

    2017-11-01

    Full Text Available Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.

  9. Study of the Genes and Mechanism Involved in the Radioadaptive Response

    Science.gov (United States)

    Dasgupta, Pushan R.

    2009-01-01

    The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor

  10. Neurobiology of Everyday Communication: What Have We Learned From Music?

    Science.gov (United States)

    Kraus, Nina; White-Schwoch, Travis

    2016-06-09

    Sound is an invisible but powerful force that is central to everyday life. Studies in the neurobiology of everyday communication seek to elucidate the neural mechanisms underlying sound processing, their stability, their plasticity, and their links to language abilities and disabilities. This sound processing lies at the nexus of cognitive, sensorimotor, and reward networks. Music provides a powerful experimental model to understand these biological foundations of communication, especially with regard to auditory learning. We review studies of music training that employ a biological approach to reveal the integrity of sound processing in the brain, the bearing these mechanisms have on everyday communication, and how these processes are shaped by experience. Together, these experiments illustrate that music works in synergistic partnerships with language skills and the ability to make sense of speech in complex, everyday listening environments. The active, repeated engagement with sound demanded by music making augments the neural processing of speech, eventually cascading to listening and language. This generalization from music to everyday communications illustrates both that these auditory brain mechanisms have a profound potential for plasticity and that sound processing is biologically intertwined with listening and language skills. A new wave of studies has pushed neuroscience beyond the traditional laboratory by revealing the effects of community music training in underserved populations. These community-based studies reinforce laboratory work highlight how the auditory system achieves a remarkable balance between stability and flexibility in processing speech. Moreover, these community studies have the potential to inform health care, education, and social policy by lending a neurobiological perspective to their efficacy. © The Author(s) 2016.

  11. The Neurobiology Shaping Affective Touch: Expectation, Motivation, and Meaning in the Multisensory Context

    Science.gov (United States)

    Ellingsen, Dan-Mikael; Leknes, Siri; Løseth, Guro; Wessberg, Johan; Olausson, Håkan

    2016-01-01

    Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile “bottom–up” stimuli and “top–down” information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the μ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual. PMID:26779092

  12. The neurobiology shaping affective touch: Expectation, motivation, and meaning in the multisensory context

    Directory of Open Access Journals (Sweden)

    Dan-Mikael eEllingsen

    2016-01-01

    Full Text Available Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile bottom-up stimuli and top-down information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the µ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual.

  13. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.

  14. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Science.gov (United States)

    Sagai, Masaru; Bocci, Velio

    2011-12-20

    stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.

  15. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Science.gov (United States)

    2011-01-01

    oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted. PMID:22185664

  16. The central anorexigenic mechanism of adrenocorticotropic hormone involves the caudal hypothalamus in chicks.

    Science.gov (United States)

    Shipp, Steven L; Yi, Jiaqing; Dridi, Sami; Gilbert, Elizabeth R; Cline, Mark A

    2015-10-01

    Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2-5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX

  17. A mechanism of Pennsylvania anthracite graphitization involving carbide formation and decomposition

    Science.gov (United States)

    Pappano, Peter Jarod

    C heat treated demincralized sample. However, when external minerals were added to the demineralized Summit anthracite, and the mixture was heat treated, the (112) peak re-appeared, and the re-mineralized Summit aithmite had a lower d-spacing and larger crystallite dimensions than the raw Summit sample. Kaolinite was also added to the raw Jeddo anthracite, but this addition had little impact on the graphitizability of the anthracite, indicating that not all minerals arc involved in promoting graphitization. The mechanism by which these minerals enhance graphitization is by the formation of a carbide from the mineral and disordered carbon of the anthracite. As with any graphitizing carbon, the removal of disordered carbon is necessary for the development of planar graphene layers that are able to stack in an ABAB configuration. So, in this system, the formation of the carbide essentially means the removal of disordered carbon and its conversion into ordered structures. As temperature is increased, the carbide can decompose into the gaseous metal and carbon atom; the metal can react with more disordered carbon and the carbon atom can add to the edge of a graphene layer or fill a hole in the layer. The reaction mechanism for each mineral---rutile, quartz, calcite, and iron oxide---and the properties of the carbide formed from them are slightly different The specific reactions are discussed in Chapter 4.

  18. Venlafaxine involves nitric oxide modulatory mechanism in experimental model of chronic behavior despair in mice.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika; Gaur, Vaibhav; Kumar, Puneet

    2010-01-22

    Present study has been designed to elucidate the nitric oxide modulatory mechanism of venlafaxine in experimental model of chronic behavior despair in mice. Animals (male albino laca mice) were forced to swim daily for 6 min test session for 7 days and immobility period of each animal was measured on every alternate days. Six minutes forced swimming test session for 7 days caused anxiety-like behavior (as assessed by mirror chamber and plus maze tests) and impairment in locomotor activity followed by oxidative damage (increased lipid peroxidation, nitrite concentration, depleted reduced glutathione and catalase activity) as compared to naïve animals. Seven days venlafaxine (5 and 10 mg/kg) treatment significantly caused anti-anxiety-like effect, improved locomotor activity and attenuated oxidative damage (reduced lipid peroxidation, nitrite concentration and caused restoration of reduce glutathione and catalase activity) as compared to control. Caffeine (10 mg/kg) pretreatment with venlfaxine (5 mg/kg) did not produce any significant effect on locomotor activity, immobility period and oxidative damage as compared to their effect per se. Further, L-NAME (5 mg/kg) and methylene blue (10 mg/kg) pretreatment with sub effective dose of venlafaxine (5 mg/kg) potentiated its protective effect which was significant as compared to their effect per se. However, L-arginine (100 mg/kg) pretreatment with venlafaxine (5 mg/kg) significantly reversed the protective effect of venlafaxine (P<0.05). Present study suggests that nitric oxide modulation might be involved in the protective effects of venlafaxine. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    Science.gov (United States)

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  20. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  1. What is so special about smell? Olfaction as a model system in neurobiology.

    Science.gov (United States)

    Barwich, Ann-Sophie

    2016-01-01

    Neurobiology studies mechanisms of cell signalling. A key question is how cells recognise specific signals. In this context, olfaction has become an important experimental system over the past 25 years. The olfactory system responds to an array of structurally diverse stimuli. The discovery of the olfactory receptors (ORs), recognising these stimuli, established the olfactory pathway as part of a greater group of signalling mechanisms mediated by G-protein-coupled receptors (GPCRs). GPCRs are the largest protein family in the mammalian genome and involved in numerous fundamental physiological processes. The OR family exhibits two characteristics that make them an excellent model system to understand GPCRs: its size and the structural diversity of its members. Research on the OR binding site investigates what amino acid sequences determine the receptor-binding capacity. This promises a better understanding of how the basic genetic makeup of GPCRs relates to their diversification in ligand-binding capacities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Characteristic neurobiological patterns differentiate paternal responsiveness in two Peromyscus species.

    Science.gov (United States)

    Lambert, Kelly G; Franssen, Catherine L; Bardi, Massimo; Hampton, Joseph E; Hainley, Leslie; Karsner, Stephanie; Tu, Eddie B; Hyer, Molly M; Crockett, Ashly; Baranova, Anya; Ferguson, Tajh; Ferguson, Tenaj; Kinsley, Craig H

    2011-01-01

    Rodent paternal models provide unique opportunities to investigate the emergence of affiliative social behavior in mammals. Using biparental and uniparental Peromyscus species (californicus and maniculatus, respectively) we assessed paternal responsiveness by exposing males to biological offspring, unrelated conspecific pups, or familiar brothers following a 24-hour separation. The putative paternal circuit we investigated included brain areas involved in fear/anxiety [cingulate cortex (Cg), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN), and lateral septum (LS)], parental motivation [medial preoptic area (MPOA)], learning/behavioral plasticity (hippocampus), olfaction [pyriform cortex (PC)], and social rewards (nucleus accumbens). Paternal experience in californicus males reduced fos immunoreactivity (ir) in several fear/anxiety areas; additionally, all californicus groups exhibited decreased fos-ir in the PC. Enhanced arginine vasopressin (AVP) and oxytocin (OT)-ir cell bodies and fibers, as well as increased neuronal restructuring in the hippocampus, were also observed in californicus mice. Multidimensional scaling analyses revealed distinct brain activation profiles differentiating californicus biological fathers, pup-exposed virgins, and pup-naïve virgins. Specifically, associations among MPOA fos, CA1 fos, dentate gyrus GFAP, CA2 nestin-, and PVN OT-ir characterized biological fathers; LS fos-, Cg fos-, and AVP-ir characterized pup-exposed virgins, and PC-, PVN-, and MeA fos-ir characterized pup-naïve virgins. Thus, whereas fear/anxiety areas characterized pup-naïve males, neurobiological factors involved in more diverse functions such as learning, motivation, and nurturing responses characterized fatherhood in biparental californicus mice. Less distinct paternal-dependent activation patterns were observed in uniparental maniculatus mice. These data suggest that dual neurobiological circuits, leading to the inhibition of social

  3. Neurobiology of anorexia and bulimia nervosa.

    Science.gov (United States)

    Kaye, Walter

    2008-04-22

    Anorexia nervosa (AN) and bulimia nervosa (BN) are related disorders of unknown etiology that most commonly begin during adolescence in women. AN and BN have unique and puzzling symptoms, such as restricted eating or binge-purge behaviors, body image distortions, denial of emaciation, and resistance to treatment. These are often chronic and relapsing disorders, and AN has the highest death rate of any psychiatric disorder. The lack of understanding of the pathogenesis of this illness has hindered the development of effective interventions, particularly for AN. Individuals with AN and BN are consistently characterized by perfectionism, obsessive-compulsiveness, and dysphoric mood. Individuals with AN tend to have high constraint, constriction of affect and emotional expressiveness, ahendonia and asceticism, whereas individuals with BN tend to be more impulsive and sensation seeking. Such symptoms often begin in childhood, before the onset of an eating disorder, and persist after recovery, suggesting they are traits that create a vulnerability for developing an ED. There is growing acknowledgement that neurobiological vulnerabilities make a substantial contribution to the pathogenesis of AN and BN. Considerable evidence suggests that altered brain serotonin (5-HT) function contributes to dysregulation of appetite, mood, and impulse control in AN and BN. Brain imaging studies, using 5-HT specific ligands, show that disturbances of 5-HT function occur when people are ill, and persist after recovery from AN and BN. It is possible that a trait-related disturbance of 5-HT neuronal modulation predates the onset of AN and contributes to premorbid symptoms of anxiety, obsessionality, and inhibition. This dysphoric temperament may involve an inherent dysregulation of emotional and reward pathways which also mediate the hedonic aspects of feeding, thus making these individuals vulnerable to disturbed appetitive behaviors. Restricting food intake may become powerfully

  4. Integrating neuroimmune systems in the neurobiology of depression.

    Science.gov (United States)

    Wohleb, Eric S; Franklin, Tina; Iwata, Masaaki; Duman, Ronald S

    2016-08-01

    Data from clinical and preclinical studies indicate that immune dysregulation, specifically of inflammatory processes, is associated with symptoms of major depressive disorder (MDD). In particular, increased levels of circulating pro-inflammatory cytokines and concomitant activation of brain-resident microglia can lead to depressive behavioural symptoms. Repeated exposure to psychological stress has a profound impact on peripheral immune responses and perturbs the function of brain microglia, which may contribute to neurobiological changes underlying MDD. Here, we review these findings and discuss ongoing studies examining neuroimmune mechanisms that influence neuronal activity as well as synaptic plasticity. Interventions targeting immune-related cellular and molecular pathways may benefit subsets of MDD patients with immune dysregulation.

  5. Advances in the neurobiological bases for food 'liking' versus 'wanting'.

    Science.gov (United States)

    Castro, D C; Berridge, K C

    2014-09-01

    The neural basis of food sensory pleasure has become an increasingly studied topic in neuroscience and psychology. Progress has been aided by the discovery of localized brain subregions called hedonic hotspots in the early 2000s, which are able to causally amplify positive affective reactions to palatable tastes ('liking') in response to particular neurochemical or neurobiological stimulations. Those hedonic mechanisms are at least partly distinct from larger mesocorticolimbic circuitry that generates the incentive motivation to eat ('wanting'). In this review, we aim to describe findings on these brain hedonic hotspots, especially in the nucleus accumbens and ventral pallidum, and discuss their role in generating food pleasure and appetite. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The neurobiology of relapse in schizophrenia.

    Science.gov (United States)

    Remington, Gary; Foussias, George; Agid, Ofer; Fervaha, Gagan; Takeuchi, Hiroyoshi; Hahn, Margaret

    2014-02-01

    Dopamine's proposed role in psychosis proved a starting point in our understanding of the neurobiology of relapse, fitting given the central role positive symptoms play. This link is reflected in early work examining neurotransmitter metabolite and drug (e.g. amphetamine, methylphenidate) challenge studies as a means of better understanding relapse and predictors. Since, lines of investigation have expanded (e.g. electrophysiological, immunological, hormonal, stress), an important step forward if relapse per se is the question. Arguably, perturbations in dopamine represent the final common pathway in psychosis but it is evident that, like schizophrenia, relapse is heterogeneous and multidimensional. In understanding the neurobiology of relapse, greater gains are likely to be made if these distinctions are acknowledged; for example, efforts to identify trait markers might better be served by distinguishing primary (i.e. idiopathic) and secondary (e.g. substance abuse, medication nonadherence) forms of relapse. Similarly, it has been suggested that relapse is 'neurotoxic', yet individuals do very well on clozapine after multiple relapses and the designation of treatment resistance. An alternative explanation holds that schizophrenia is characterized by different trajectories, at least to some extent biologically and/or structurally distinguishable from the outset, with differential patterns of response and relapse. Just as with schizophrenia, it seems naïve to conceptualize the neurobiology of relapse as a singular process. We propose that it is shaped by the form of illness and in place from the outset, modified by constitutional factors like resilience, as well as treatment, and confounded by secondary forms of relapse. © 2013 Elsevier B.V. All rights reserved.

  7. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanisms involved in the psychological distress of Black Caribbeans in the United States

    Science.gov (United States)

    Govia, Ishtar O.

    The mental health of ethnic minorities in the United States is of urgent concern. The accelerated growth of groups of ethnic minorities and immigrants in the United States and the stressors to which they are exposed, implores academic researchers to investigate more deeply health disparities and the factors that exacerbate or minimize such inequalities. This dissertation attended to that concern. It used data from the National Survey of American Life (NSAL), the first survey with a national representative sample of Black Caribbeans, to explore mechanisms that involved in the psychological distress of Black Caribbeans in the United States. In a series of three studies, the dissertation investigated the role and consequence of (1) chronic discrimination, immigration factors, and closeness to ethnic and racial groups; (2) personal control and social support; and (3) family relations and social roles in the psychological distress of Black Caribbeans. Study 1 examined how the associations between discrimination and psychological distress were buffered or exacerbated by closeness to ethnic group and closeness to racial group. It also examined how these associations differed depending on immigration factors. Results indicated that the buffering or exacerbating effect of ethnic and racial group closeness varied according to the type of discrimination (subtle or severe) and were more pronounced among those born in the United States. Using the stress process framework, Study 2 tested moderation and mediation models of the effects of social support and personal control in the association between discrimination and distress. Results from a series of analyses on 579 respondents suggested that personal control served as a mediator in this relationship and that emotional support exerted a direct distress deterring function. Study 3 investigated sex differences in the associations between social roles, intergenerational family relationship perceptions and distress. Results

  9. Integrating ecology, psychology and neurobiology within a food-hoarding paradigm.

    Science.gov (United States)

    Pravosudov, Vladimir V; Smulders, Tom V

    2010-03-27

    Many animals regularly hoard food for future use, which appears to be an important adaptation to a seasonally and/or unpredictably changing environment. This food-hoarding paradigm is an excellent example of a natural system that has broadly influenced both theoretical and empirical work in the field of biology. The food-hoarding paradigm has played a major role in the conceptual framework of numerous fields from ecology (e.g. plant-animal interactions) and evolution (e.g. the coevolution of caching, spatial memory and the hippocampus) to psychology (e.g. memory and cognition) and neurobiology (e.g. neurogenesis and the neurobiology of learning and memory). Many food-hoarding animals retrieve caches by using spatial memory. This memory-based behavioural system has the inherent advantage of being tractable for study in both the field and laboratory and has been shaped by natural selection, which produces variation with strong fitness consequences in a variety of taxa. Thus, food hoarding is an excellent model for a highly integrative approach to understanding numerous questions across a variety of disciplines. Recently, there has been a surge of interest in the complexity of animal cognition such as future planning and episodic-like-memory as well as in the relationship between memory, the environment and the brain. In addition, new breakthroughs in neurobiology have enhanced our ability to address the mechanisms underlying these behaviours. Consequently, the field is necessarily becoming more integrative by assessing behavioural questions in the context of natural ecological systems and by addressing mechanisms through neurobiology and psychology, but, importantly, within an evolutionary and ecological framework. In this issue, we aim to bring together a series of papers providing a modern synthesis of ecology, psychology, physiology and neurobiology and identifying new directions and developments in the use of food-hoarding animals as a model system.

  10. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  11. Adolescent neurobiological susceptibility to social context

    Directory of Open Access Journals (Sweden)

    Roberta A. Schriber

    2016-06-01

    Full Text Available Adolescence has been characterized as a period of heightened sensitivity to social contexts. However, adolescents vary in how their social contexts affect them. According to neurobiological susceptibility models, endogenous, biological factors confer some individuals, relative to others, with greater susceptibility to environmental influences, whereby more susceptible individuals fare the best or worst of all individuals, depending on the environment encountered (e.g., high vs. low parental warmth. Until recently, research guided by these theoretical frameworks has not incorporated direct measures of brain structure or function to index this sensitivity. Drawing on prevailing models of adolescent neurodevelopment and a growing number of neuroimaging studies on the interrelations among social contexts, the brain, and developmental outcomes, we review research that supports the idea of adolescent neurobiological susceptibility to social context for understanding why and how adolescents differ in development and well-being. We propose that adolescent development is shaped by brain-based individual differences in sensitivity to social contexts – be they positive or negative – such as those created through relationships with parents/caregivers and peers. Ultimately, we recommend that future research measure brain function and structure to operationalize susceptibility factors that moderate the influence of social contexts on developmental outcomes.

  12. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  13. The neurobiology of aggression and violence.

    Science.gov (United States)

    Rosell, Daniel R; Siever, Larry J

    2015-06-01

    Aggression and violence represent a significant public health concern and a clinical challenge for the mental healthcare provider. A great deal has been revealed regarding the neurobiology of violence and aggression, and an integration of this body of knowledge will ultimately serve to advance clinical diagnostics and therapeutic interventions. We will review here the latest findings regarding the neurobiology of aggression and violence. First, we will introduce the construct of aggression, with a focus on issues related to its heterogeneity, as well as the importance of refining the aggression phenotype in order to reduce pathophysiologic variability. Next we will examine the neuroanatomy of aggression and violence, focusing on regional volumes, functional studies, and interregional connectivity. Significant emphasis will be on the amygdala, as well as amygdala-frontal circuitry. Then we will turn our attention to the neurochemistry and molecular genetics of aggression and violence, examining the extensive findings on the serotonergic system, as well as the growing literature on the dopaminergic and vasopressinergic systems. We will also address the contribution of steroid hormones, namely, cortisol and testosterone. Finally, we will summarize these findings with a focus on reconciling inconsistencies and potential clinical implications; and, then we will suggest areas of focus for future directions in the field.

  14. Adolescent Neurobiological Susceptibility to Social Context

    Science.gov (United States)

    Schriber, Roberta A.; Guyer, Amanda E.

    2016-01-01

    Adolescence has been characterized as a period of heightened sensitivity to social contexts. However, adolescents vary in how their social contexts affect them. According to neurobiological susceptibility models, endogenous, biological factors confer some individuals, relative to others, with greater susceptibility to environmental influences, whereby more susceptible individuals fare the best or worst of all individuals, depending on the environment they encounter (e.g., high vs. low parental warmth). Until recently, research guided by these theoretical frameworks has not incorporated direct measures of brain structure or function to index this sensitivity. Drawing on prevailing models of adolescent neurodevelopment and a growing number of neuroimaging studies on the interrelations among social contexts, the brain, and developmental outcomes, we review research that supports the idea of adolescent neurobiological susceptibility to social context for understanding why and how adolescents differ in development and well-being. We propose that adolescent development is shaped in part by brain-based individual differences in sensitivity to social contexts – be they positive or negative – such as those created through relationships with parents/caregivers and peers. As such, we recommend that future research measure brain function and structure to operationalize susceptibility factors that moderate the influence of social contexts on developmental outcomes. PMID:26773514

  15. The brain decade in debate: III. Neurobiology of emotion

    Directory of Open Access Journals (Sweden)

    C. Blanchard

    2001-03-01

    Full Text Available This article is a transcription of an electronic symposium in which active researchers were invited by the Brazilian Society of Neuroscience and Behavior (SBNeC to discuss the advances of the last decade in the neurobiology of emotion. Four basic questions were debated: 1 What are the most critical issues/questions in the neurobiology of emotion? 2 What do we know for certain about brain processes involved in emotion and what is controversial? 3 What kinds of research are needed to resolve these controversial issues? 4 What is the relationship between learning, memory and emotion? The focus was on the existence of different neural systems for different emotions and the nature of the neural coding for the emotional states. Is emotion the result of the interaction of different brain regions such as the amygdala, the nucleus accumbens, or the periaqueductal gray matter or is it an emergent property of the whole brain neural network? The relationship between unlearned and learned emotions was also discussed. Are the circuits of the former the underpinnings of the latter? It was pointed out that much of what we know about emotions refers to aversively motivated behaviors, like fear and anxiety. Appetitive emotions should attract much interest in the future. The learning and memory relationship with emotions was also discussed in terms of conditioned and unconditioned stimuli, innate and learned fear, contextual cues inducing emotional states, implicit memory and the property of using this term for animal memories. In a general way it could be said that learning modifies the neural circuits through which emotional responses are expressed.

  16. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  17. Involvement of Arabidopsis Prolyl 4 Hydroxylases in Hypoxia, Anoxia and Mechanical Wounding

    National Research Council Canada - National Science Library

    Panagiotis Kalaitzis; Sotirios Fragkostefanakis; Akli Ouelhadj; Daniela Vlad; Thodhoraq Spano; Firas Bou Daher; Florina Vlad

    2007-01-01

    .... In addition, the expression patterns of plants P4Hs in response to hypoxia, anoxia and other abiotic stresses such as mechanical wounding have never been studied extensively, despite their central...

  18. Identification and Characterization of the Phage Gene sav, Involved in Sensitivity to the Lactococcal Abortive Infection Mechanism AbiV

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Rousseau, G. M.; Hammer, Karin

    2009-01-01

    Lactococcus lactis phage mutants that are insensitive to the recently characterized abortive infection mechanism AbiV were isolated and analyzed in an effort to elucidate factors involved in the sensitivity to AbiV. Whole-genome sequencing of the phage mutants p2.1 and p2.2 revealed mutations...

  19. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones involved in the mating behavior of Aedes aegypti

    Science.gov (United States)

    Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...

  20. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  1. A Neurobiological Basis for SLA and First Language Attrition.

    Science.gov (United States)

    de Bode, Stella

    The two-part paper examines the neurobiological processes of synapse overproduction, synapse elimination, and issues of language acquisition and attrition. The first part consists of diagrams and notes explaining some basic terms and concepts of neurobiology: cortex; white matter; neuron; synapse; synaptogenesis; and development and organization…

  2. [Neurobiology and pharmacotherapy of social phobia].

    Science.gov (United States)

    Aouizerate, B; Martin-Guehl, C; Tignol, J

    2004-01-01

    Social phobia (also known as social anxiety disorder) is still not clearly understood. It was not established as an authentic psychiatric entity until the diagnostic nomenclature of the American Psychiatric Association DSM III in 1980. In recent years, increasing attention among researchers has contributed to provide important information about the genetic, familial and temperamental bases of social phobia and its neurochemical, neuroendocrinological and neuroanatomical substrates, which remain to be further investigated. Up to date, there have been several findings about the possible influence of variables, including particularly genetic, socio-familial and early temperamental (eg behavioral inhibition) factors that represent risk for the later development of social phobia. Clinical neurobiological studies, based on the use of exogenous compounds such as lactate, CO2, caffeine, epinephrine, flumazenil or cholecystokinin/pentagastrin to reproduce naturally occurring phobic anxiety, have shown that patients with social phobia appear to exhibit an intermediate sensitivity between patients with panic disorder and control subjects. No difference in the rate of panic attacks in response to lactate, low concentrations of CO2 (5%), epinephrine or flumazenil was observed between patients with social phobia and normal healthy subjects, both being less reactive compared to patients with panic disorder. However, patients with social phobia had similar anxiety reactions to high concentrations of CO2 (35%), caffeine or cholecystokinin/pentagastrin than those seen in patients with panic disorder, both being more intensive than in controls. Several lines of evidence suggest specific neurotransmitter system alterations in social phobia, especially with regard to the serotoninergic, noradrenergic and dopaminergic systems. Although no abnormality in platelet serotonin transporter density has been found, patients with social phobia appear to show an enhanced sensitivity of both post

  3. Mindfulness and Emotion Regulation: Insights from Neurobiological, Psychological, and Clinical Studies

    Science.gov (United States)

    Guendelman, Simón; Medeiros, Sebastián; Rampes, Hagen

    2017-01-01

    There is increasing interest in the beneficial clinical effects of mindfulness-based interventions (MBIs). Research has demonstrated their efficacy in a wide range of psychological conditions characterized by emotion dysregulation. Neuroimaging studies have evidenced functional and structural changes in a myriad of brain regions mainly involved in attention systems, emotion regulation, and self-referential processing. In this article we review studies on psychological and neurobiological correlates across different empirically derived models of research, including dispositional mindfulness, mindfulness induction, MBIs, and expert meditators in relation to emotion regulation. From the perspective of recent findings in the neuroscience of emotion regulation, we discuss the interplay of top-down and bottom-up emotion regulation mechanisms associated with different mindfulness models. From a phenomenological and cognitive perspective, authors have argued that mindfulness elicits a “mindful emotion regulation” strategy; however, from a clinical perspective, this construct has not been properly differentiated from other strategies and interventions within MBIs. In this context we propose the distinction between top-down and bottom-up mindfulness based emotion regulation strategies. Furthermore, we propose an embodied emotion regulation framework as a multilevel approach for understanding psychobiological changes due to mindfulness meditation regarding its effect on emotion regulation. Finally, based on clinical neuroscientific evidence on mindfulness, we open perspectives and dialogues regarding commonalities and differences between MBIs and other psychotherapeutic strategies for emotion regulation. PMID:28321194

  4. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis.

    Science.gov (United States)

    Lynch, Wendy J; Peterson, Alexis B; Sanchez, Victoria; Abel, Jean; Smith, Mark A

    2013-09-01

    Physical activity, and specifically exercise, has been suggested as a potential treatment for drug addiction. In this review, we discuss clinical and preclinical evidence for the efficacy of exercise at different phases of the addiction process. Potential neurobiological mechanisms are also discussed focusing on interactions with dopaminergic and glutamatergic signaling and chromatin remodeling in the reward pathway. While exercise generally produces an efficacious response, certain exercise conditions may be either ineffective or lead to detrimental effects depending on the level/type/timing of exercise exposure, the stage of addiction, the drug involved, and the subject population. During drug use initiation and withdrawal, its efficacy may be related to its ability to facilitate dopaminergic transmission, and once addiction develops, its efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. We conclude with future directions, including the development of exercise-based interventions alone or as an adjunct to other strategies for treating drug addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  6. Unraveling the neurobiology of nicotine dependence using genetically engineered mice.

    Science.gov (United States)

    Stoker, Astrid K; Markou, Athina

    2013-08-01

    This review article provides an overview of recent studies of nicotine dependence and withdrawal that used genetically engineered mice. Major progress has been made in recent years with mutant mice that have knockout and gain-of-function of specific neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to neuronal nAChRs that consist of five subunits. The different nAChR subunits that combine to compose a receptor determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent findings in genetically engineered mice have indicated that while α4-containing and β2-containing nAChRs are involved in the acquisition of nicotine self-administration and initial stages of nicotine dependence, α7 homomeric nAChRs appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-containing, α3-containing, and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence have only recently emerged. The use of genetically engineered mice continues to vastly improve our understanding of the neurobiology of nicotine dependence and withdrawal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nonlinear dynamical patterns as personality theory for neurobiology and psychiatry.

    Science.gov (United States)

    Mandell, A J; Selz, K A

    1995-11-01

    ADVANCES in the theory of nonlinear differential equations and their statistical representations have yielded a powerful, qualitatively descriptive yet quantitative language that captures characteristic patterns of behavior (what the psychoanalyst Roy Schafer calls "continuity, coherence, and consistency of action") that has begun to influence studies of complex systems in motion as diverse in specifics as signatory patterns of discharge of neurochemically defined single neurons and the dynamical structures characteristic of a particular composer's music. What might be called personality theories of neurobiological dynamics have arisen to replace neurobiological theories of personality. It is in this way that rigorously proven and powerful general mathematical insights have changed the face of determinism in research in brain and behavior. Two examples: (1) Very complicated looking behavior of neurobiological forced-dissipative (expanding and contracting) systems over time take place on low dimensional abstract surfaces on which only a few underlying abstract parameters control the action. (2) Independent of specific details (chemical, electrical, and/or behavioral), there exist a relatively few fundamental categories of behavior in time and transitions, among them a property called universality. Results from this new theoretical, in contrast with experimental, reductionism yield analogies with and new approaches to historically important dynamic ideas about personality and character patterns that are equally relevant to micro and macrocomplex systems such as neural membrane receptor proteins and individual personality styles. Research findings achieved over the past decade and a half in our laboratory and others in neurochemistry, neurophysiology, and animal and human behavior, as well as the results of a new demonstration experiment involving the prediction of dynamical category membership from abstract expressive motion in humans, are used to exemplify this use

  8. Peripheral mechanisms of neuropathic pain – involvement of lysophosphatidic acid receptor-mediated demyelination

    Directory of Open Access Journals (Sweden)

    Ueda Hiroshi

    2008-04-01

    Full Text Available Abstract Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications – decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanims of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Aβ- and noxious C- or Aδ-fibers to influence the molecular mechanisms of allodynia.

  9. Activated spinal astrocytes are involved in the maintenance of chronic widespread mechanical hyperalgesia after cast immobilization

    Science.gov (United States)

    2014-01-01

    Background In the present study, we examined spinal glial cell activation as a central nervous system mechanism of widespread mechanical hyperalgesia in rats that experienced chronic post-cast pain (CPCP) 2 weeks after cast immobilization. Activated spinal microglia and astrocytes were investigated immunohistologically in lumbar and coccygeal spinal cord segments 1 day, 5 weeks, and 13 weeks following cast removal. Results In the lumbar cord, astrocytes were activated after microglia. Astrocytes also were activated after microglia in the coccygeal cord, but with a delay that was longer than that observed in the lumbar cord. This activation pattern paralleled the observation that mechanical hyperalgesia occurred in the hindleg or the hindpaw before the tail. The activating transcription factor 3 (ATF3) immune response in dorsal root ganglia (DRG) on the last day of cast immobilization suggested that nerve damage might not occur in CPCP rats. The neural activation assessed by the phosphorylated extracellular signal-regulated kinase (pERK) immune response in DRG arose 1 day after cast removal. In addition, L-α-aminoadipate (L-α-AA), an inhibitor of astrocyte activation administered intrathecally 5 weeks after cast removal, inhibited mechanical hyperalgesia in several body parts including the lower leg skin and muscles bilaterally, hindpaws, and tail. Conclusions These findings suggest that activation of lumbar cord astrocytes is an important factor in widespread mechanical hyperalgesia in CPCP. PMID:24456903

  10. Mathematical methods in biology and neurobiology

    CERN Document Server

    Jost, Jürgen

    2014-01-01

    Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies:   • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations.   The biological applications range from molecular to evolutionary and ecological levels, for example:   • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...

  11. Towards a new neurobiology of language.

    Science.gov (United States)

    Poeppel, David; Emmorey, Karen; Hickok, Gregory; Pylkkänen, Liina

    2012-10-10

    Theoretical advances in language research and the availability of increasingly high-resolution experimental techniques in the cognitive neurosciences are profoundly changing how we investigate and conceive of the neural basis of speech and language processing. Recent work closely aligns language research with issues at the core of systems neuroscience, ranging from neurophysiological and neuroanatomic characterizations to questions about neural coding. Here we highlight, across different aspects of language processing (perception, production, sign language, meaning construction), new insights and approaches to the neurobiology of language, aiming to describe promising new areas of investigation in which the neurosciences intersect with linguistic research more closely than before. This paper summarizes in brief some of the issues that constitute the background for talks presented in a symposium at the Annual Meeting of the Society for Neuroscience. It is not a comprehensive review of any of the issues that are discussed in the symposium.

  12. Neurobiology of the circadian system: meeting metabolism

    Directory of Open Access Journals (Sweden)

    Mendoza, Jorge

    2009-06-01

    Full Text Available The basic principles of physiology postulated the necessity of the constancy of the internal environment to maintain a physiological equilibrium and do not front serious consequences in health. Now we know that physiology is rhythmic and that a break of this rhythmicity can generate serious consequences in health which even could be lethal. Circadian clocks, headed by the suprachiasmatic nucleus in the central nervous system, are the responsible for the generation of circadian rhythms. These clocks are affected by external signals as light (day-night cycles and feeding. This review examines the basic principles of the circadian system and the current knowledge in the neurobiology of biological clocks, making emphasis in the relationship between the circadian system, feeding behaviour, nutrition and metabolism, and the consequences that occur when these systems are not coordinated each other, as the development of metabolic and circadian pathologies.

  13. Towards a new neurobiology of language

    Science.gov (United States)

    Poeppel, David; Emmorey, Karen; Hickok, Gregory; Pylkkänen, Liina

    2012-01-01

    Theoretical advances in language research and the availability of increasingly high-resolution experimental techniques in the cognitive neurosciences are profoundly changing how we investigate and conceive of the neural basis of speech and language processing. Recent work closely aligns language research with issues at the core of systems neuroscience, ranging from neurophysiological and neuroanatomic characterizations to questions about neural coding. Here we highlight, across different aspects of language processing (perception, production, sign language, meaning construction), new insights and approaches to the neurobiology of language, aiming to describe promising new areas of investigation in which the neurosciences intersect with linguistic research more closely than before. This paper summarizes in brief some of the issues that constitute the background for talks presented in a symposium at the annual meeting of the Society for Neuroscience. It is not a comprehensive review of any of the issues that are discussed in the symposium. PMID:23055482

  14. Autism spectrum disorders: from genes to neurobiology.

    Science.gov (United States)

    Willsey, A Jeremy; State, Matthew W

    2015-02-01

    Advances in genome-wide technology, coupled with the availability of large cohorts, are finally yielding a steady stream of autism spectrum disorder (ASD) genes carrying mutations of large effect. These findings represent important molecular clues, but at the same time present notable challenges to traditional strategies for moving from genes to neurobiology. A remarkable degree of genetic heterogeneity, the biological pleiotropy of ASD genes, and the tremendous complexity of the human brain are prompting the development of new strategies for translating genetic discoveries into therapeutic targets. Recent developments in systems biology approaches that 'contextualize' these genetic findings along spatial, temporal, and cellular axes of human brain development are beginning to bridge the gap between high-throughput gene discovery and testable pathophysiological hypotheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biological sex affects the neurobiology of autism

    Science.gov (United States)

    Lombardo, Michael V.; Suckling, John; Ruigrok, Amber N. V.; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C. L.; Craig, Michael C.; Murphy, Declan G. M.; Bullmore, Edward T.; Baron-Cohen, Simon

    2013-01-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the ‘extreme male brain’ theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P females with autism remains to be understood. Future research should stratify by biological sex to reduce heterogeneity and to provide greater insight into the neurobiology of autism. PMID:23935125

  16. Biological sex affects the neurobiology of autism.

    Science.gov (United States)

    Lai, Meng-Chuan; Lombardo, Michael V; Suckling, John; Ruigrok, Amber N V; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C L; Craig, Michael C; Murphy, Declan G M; Bullmore, Edward T; Baron-Cohen, Simon

    2013-09-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the 'extreme male brain' theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P neurobiology of autism.

  17. Neurobiological Alterations Induced by Exercise and Their Impact on Depressive Disorders

    OpenAIRE

    Helmich, Ingo; Latini, Alexandra; Sigwalt, Andre; Carta, Mauro Giovanni; Machado,Sergio; Velasques, Bruna; Ribeiro, Pedro; Budde, Henning

    2010-01-01

    Background: The impact of physical activity on brain metabolic functions has been investigated in different studies and there is growing evidence that exercise can be used as a preventive and rehabilitative intervention in the treatment of depressive disorders. However, the exact neuronal mechanisms underlying the latter phenomenon have not been clearly elucidated. The present article summarises key results derived from studies that focussed on the neurobiological impact of exercise on brain ...

  18. STED microscopy of living cells--new frontiers in membrane and neurobiology.

    Science.gov (United States)

    Eggeling, Christian; Willig, Katrin I; Barrantes, Francisco J

    2013-07-01

    Recent developments in fluorescence far-field microscopy such as STED microscopy have accomplished observation of the living cell with a spatial resolution far below the diffraction limit. Here, we briefly review the current approaches to super-resolution optical microscopy and present the implementation of STED microscopy for novel insights into live cell mechanisms, with a focus on neurobiology and plasma membrane dynamics. © 2013 International Society for Neurochemistry.

  19. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer...

  20. Up-date on neuro-immune mechanisms involved in allergic and non-allergic rhinitis

    NARCIS (Netherlands)

    van Gerven, L.; Boeckxstaens, G.; Hellings, P.

    2012-01-01

    Non-allergic rhinitis (NAR) is a common disorder, which can be defined as chronic nasal inflammation, independent of systemic IgE-mediated mechanisms. Symptoms of NAR patients mimic those of allergic rhinitis (AR) patients. However, AR patients can easily be diagnosed with skin prick test or

  1. [Biological effects of arsenic and diseases: The mechanisms involved in arsenic-induced carcinogenesis].

    Science.gov (United States)

    Suzuki, Takehiro; Takumi, Shota; Okamura, Kazuyuki; Nohara, Keiko

    2016-07-01

    Chronic arsenic exposure is associated with many diseases, including cancers. Our study using in vivo assay in gpt-delta transgenic mice showed that arsenic particularly induces G : C to T : A transversions, a mutation type induced through oxidative-stress-induced 8-OHdG formation. Gestational arsenic exposure of C3H mice was reported to increase hepatic tumor incidence. We showed that gestational arsenic exposure increased hepatic tumors having activated oncogene Ha-ras by C to A mutation. We also showed that DNA methylation status of Fosb region is implicated in tumor augmentation by gestational arsenic exposure. We further showed that long-term arsenic exposure induces premature senescence. Recent studies reported that senescence is involved in not only tumor suppression, but also tumorgenesis. All these effects of arsenic might be involved in arsenic-induced carcinogenesis.

  2. VIGS for dissecting mechanisms involved in the symbiotic interaction of microbes with plants

    DEFF Research Database (Denmark)

    Grønlund, Mette

    2015-01-01

    Virus-induced gene silencing (VIGS) is an alternative reverse genetics tool for silencing of genes in some plants which are difficult to transform. The pea early browning virus (PEBV) has been developed as a VIGS vector and used in pea for functional analysis of several genes. Here, a PEBV-VIGS p......-VIGS protocol is described which is suitable for reverse genetics studies in pea for genes involved in the symbiosis with arbuscular mycorrhizal fungi and Rhizobium....

  3. Are immunological mechanisms involved in colon cancer and are they possible markers for biotherapy improvement?

    Science.gov (United States)

    Berghella, Anna Maria; Contasta, Ida; Pellegrini, Patrizia; Del Beato, Tiziana; Adorno, Domenico

    2006-10-01

    This paper focuses on our data on colon cancer patients. Our overall results lead us to believe that the suppressive effect of specific cytokines in colon cancer patients alters the functionality of TH1 and TH2 subsets of CD4+ T-cells, with an expansion of TH2 cells and a malfunctioning of TH1 cells. This immunological disregulation appears to increase with stage progression, suggesting a direct role in the mechanisms that allow the tumour to locate and expand within the host. It is also clear that in order to identify disease markers and generate an in vivo immune response that corrects the imbalance between TH1 and TH2 cells, we need to understand how tumour mechanisms cause this imbalance to begin with.

  4. A Novel Nonsurgical Treatment for Pincer Nail That Involves Mechanical Force Control

    Directory of Open Access Journals (Sweden)

    Hitomi Sano, MD, PhD

    2015-02-01

    Full Text Available Summary: We hypothesize that nails have an automatic curvature feature and that their flat shape is maintained by the daily upward mechanical forces from the finger/toe pad. Thus, nail deformities, such as pincer nail, spoon nail, and koilonychias, may be caused by an imbalance between these forces and can be treated by controlling these forces. Here, we report the case of a 55-year-old man whose severe pincer nail was effectively treated by thinning the nail, which reduced the automatic curvature force. This is the first report to show that pincer nail can be treated by a nonsurgical method that reduces the automatic curvature force, thus obviating the need for surgery. This supports the notion that mechanical stimulus–based treatments have high therapeutic potential for nail deformities.

  5. Untangling the Reaction Mechanisms Involved in the Explosive Decomposition of Model Compounds of Energetic Materials

    Science.gov (United States)

    2014-06-11

    and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other...provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid...mechanisms of complex molecules in extraterrestrial environments and in combustion systems”. (2013) Received Book Chapter TOTAL: PERCENT_SUPPORTEDNAME

  6. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

    OpenAIRE

    Shih, Chao-Jen; Chen, Yi-Lung; Wang, Chia-Hsiang; Wei, Sean T.-S.; Lin, I-Ting; Ismail, Wael A.; Chiang, Yin-Ru

    2017-01-01

    Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitra...

  7. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease

    Science.gov (United States)

    Grover, Harpreet Singh; Luthra, Shailly

    2013-01-01

    Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the condition in diabetics. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. This review examines the relationship that exists between periodontal diseases and diabetes mellitus with a focus on potential common pathophysiologic mechanisms. PMID:24049328

  8. Involvement of epigenetic mechanisms in the development of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Tomaž Zupanc

    2012-03-01

    victims with no childhood abuse were found. It was suggested that changes in glucocorticoid system are mediated by tissue-specific changes in gene expression. Recent studies suggest that epigenetic mechanisms may play an important role in the interplay between stress exposure and genetic vulnerability. Conclusions: Integrating epigenetics into a model that permits prior experience to have a central role in determining individual differences is also consistent with a developmental perspective of PTSD vulnerability.

  9. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the condition in diabetics. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. This review examines the relationship that exists between periodontal diseases and diabetes mellitus with a focus on potential common pathophysiologic mechanisms.

  10. Rapid and reversible responses to IVIG in autoimmune neuromuscular diseases suggest mechanisms of action involving competition with functionally important autoantibodies

    Science.gov (United States)

    Berger, Melvin; McCallus, Daniel E; Lin, Cindy Shin-Yi

    2013-01-01

    Intravenous immunoglobulin (IVIG) is widely used in autoimmune neuromuscular diseases whose pathogenesis is undefined. Many different effects of IVIG have been demonstrated in vitro, but few studies actually identify the mechanism(s) most important in vivo. Doses and treatment intervals are generally chosen empirically. Recent studies in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy show that some effects of IVIG are readily reversible and highly dependent on the serum IgG level. This suggests that in some autoantibody-mediated neuromuscular diseases, IVIG directly competes with autoantibodies that reversibly interfere with nerve conduction. Mechanisms of action of IVIG which most likely involve direct competition with autoantibodies include: neutralization of autoantibodies by anti-idiotypes, inhibition of complement deposition, and increasing catabolism of pathologic antibodies by saturating FcRn. Indirect immunomodulatory effects are not as likely to involve competition and may not have the same reversibility and dose-dependency. Pharmacodynamic analyses should be informative regarding most relevant mechanism(s) of action of IVIG as well as the role of autoantibodies in the immunopathogenesis of each disease. Better understanding of the role of autoantibodies and of the target(s) of IVIG could lead to more efficient use of this therapy and better patient outcomes. PMID:24200120

  11. Goshajinkigan reduces bortezomib-induced mechanical allodynia in rats: Possible involvement of kappa opioid receptor

    Directory of Open Access Journals (Sweden)

    Hitomi Higuchi

    2015-11-01

    Full Text Available In the present study, we investigated the effect of a Kampo medicine Goshajinkigan (GJG on the bortezomib-induced mechanical allodynia in von Frey test in rats. The single administration of tramadol (10 mg/kg, GJG (1.0 g/kg and its component processed Aconiti tuber (0.1 g/kg significantly reversed the reduction in withdrawal threshold by bortezomib. These effects were abolished by the intrathecal injection of nor-binaltorphimine (10 μg/body, kappa opioid receptor antagonist. These findings suggest that kappa opioid receptor is involved in the effect of GJG on the bortezomib-induced mechanical allodynia.

  12. Mechanisms of experimental cancer cachexia. Local involvement of IL-1 in colon-26 tumor.

    Science.gov (United States)

    Strassmann, G; Masui, Y; Chizzonite, R; Fong, M

    1993-03-15

    In the colon-26 (C-26) tumor model, the cytokine IL-6 is an important factor involved in experimental cancer cachexia. Recent in vitro data indicated that IL-1 plays a role in the interaction between host macrophages and C-26 cells that express IL-1R, resulting in the amplification of tumor IL-6 production. To investigate the role of IL-1 on the development of C-26 cachexia in vivo, the effect of specific blockade of the action of IL-1 with reagents against IL-1R was evaluated. Both IL-1R antagonist (IL-1RA) and the mAb 35F5 directed against IL-1R type I, prevented binding of radioactive IL-1, and inhibited IL-1-induced IL-6 synthesis by the C-26 cell line. Whereas a systemic administration of these reagents did not reverse weight loss in C-26-bearing mice, intratumoral injections of IL-1RA significantly reduced cachexia. Furthermore, body composition analysis confirmed that this treatment improved lean tissue and fat, as well as hypoglycemia and serum IL-6 level. The fact that the treatment did not change the tumor burden suggests that it affected the host directly. These results support the hypothesis that, at the microenvironment of the C-26 tumor, IL-1 is involved in the cachexia endured by the host.

  13. Mechanism of N2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H2.

    Science.gov (United States)

    Harris, Derek F; Lukoyanov, Dmitriy A; Shaw, Sudipta; Compton, Phil; Tokmina-Lukaszewska, Monika; Bothner, Brian; Kelleher, Neil; Dean, Dennis R; Hoffman, Brian M; Seefeldt, Lance C

    2018-01-17

    Of the three forms of nitrogenase (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase), Fe-nitrogenase has the poorest ratio of N2 reduction relative to H2 evolution. Recent work on the Mo-nitrogenase has revealed that reductive elimination of two bridging Fe-H-Fe hydrides on the active site FeMo-cofactor to yield H2 is a key feature in the N2 reduction mechanism. The N2 reduction mechanism for the Fe-nitrogenase active site FeFe-cofactor was unknown. Here, we have purified both component proteins of the Fe-nitrogenase system, the electron-delivery Fe protein (AnfH) plus the catalytic FeFe protein (AnfDGK), and established its mechanism of N2 reduction. Inductively coupled plasma optical emission spectroscopy and mass spectrometry show that the FeFe protein component does not contain significant amounts of Mo or V, thus ruling out a requirement of these metals for N2 reduction. The fully functioning Fe-nitrogenase system was found to have specific activities for N2 reduction (1 atm) of 181 ± 5 nmol NH3 min-1 mg-1 FeFe protein, for proton reduction (in the absence of N2) of 1085 ± 41 nmol H2 min-1 mg-1 FeFe protein, and for acetylene reduction (0.3 atm) of 306 ± 3 nmol C2H4 min-1 mg-1 FeFe protein. Under turnover conditions, N2 reduction is inhibited by H2 and the enzyme catalyzes the formation of HD when presented with N2 and D2. These observations are explained by the accumulation of four reducing equivalents as two metal-bound hydrides and two protons at the FeFe-cofactor, with activation for N2 reduction occurring by reductive elimination of H2.

  14. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems.

    Directory of Open Access Journals (Sweden)

    Kentaro Yamanaka

    Full Text Available The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (~100 ms stop-to-restart intervals (SRSI, and an increased probability of difficulties after longer (>200 ms SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms, the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM excitability. Finally, we recorded electroencephalogram (EEG activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms, weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150-200 ms, because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results

  15. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems.

    Science.gov (United States)

    Yamanaka, Kentaro; Nozaki, Daichi

    2013-01-01

    The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time) of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (~100 ms) stop-to-restart intervals (SRSI), and an increased probability of difficulties after longer (>200 ms) SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs) in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms), the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM) excitability. Finally, we recorded electroencephalogram (EEG) activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms), weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150-200 ms), because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results suggest that

  16. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  17. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E

    OpenAIRE

    Santana, Andr?ia T; Guelfi, Marieli; Medeiros, Hyllana C D; Tavares, Marco A; Bizerra, Paulo F V; Mingatto, F?bio E

    2015-01-01

    Background Gossypol is a chemical present in the seeds of cotton plants (Gossypium sp.) that reduces fertility in farm animals. Vitamin E is an antioxidant and may help to protect cells and tissues against the deleterious effects of free radicals. The aim of this study was to evaluate the mechanisms of reproductive toxicity of gossypol in rats and the protective effects of vitamin E. Forty Wistar rats were used, divided into four experimental groups (n?=?10): DMSO/saline?+?corn oil; DMSO/sali...

  18. Neurobiology of addiction versus drug use driven by lack of choice.

    Science.gov (United States)

    Ahmed, Serge H; Lenoir, Magalie; Guillem, Karine

    2013-08-01

    Research on the neurobiology of addiction often involves nonhuman animals that are given ready access to drugs for self-administration but without other choices. Here we argue using cocaine as an example that this standard setting may no longer be sufficient and can even lead to the formulation of unrealistic views about the neurobiology of addiction. Addiction as a psychiatric disorder is defined as resulting from brain dysfunctions that affect normal choice-making, not as an expectable response to lack of alternative choices. We encourage neurobiologists involved in addiction research to increase animals' choice during drug access, preferably by supplying alternative rewarding pursuits. Only animals that continue to take and prefer drugs despite and at the expense of other available choices may be considered as having developed an addiction-like behavior in comparison to those that remain able to stop drug use for other pursuits, even after extended drug use. The systematic comparison of these two individual behaviors should reveal new insights about the neurobiology of drug choice and addiction. More generally, this research should also shed a unique light on how the brain 'chooses' among qualitatively different kinds of pursuits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The involvement of noradrenergic mechanisms in the suppressive effects of diazepam on the hypothalamicpituitary- adrenal axis activity in female rats

    OpenAIRE

    Švob Štrac, Dubravka; Muck-Šeler, Dorotea

    2012-01-01

    Aim To elucidate the involvement of noradrenergic system in the mechanism by which diazepam suppresses basal hypothalamic-pituitary-adrenal (HPA) axis activity. Methods Plasma corticosterone and adrenocorticotropic hormone (ACTH) levels were determined in female rats treated with diazepam alone, as well as with diazepam in combination with clonidine (α2-adrenoreceptor agonist), yohimbine (α2-adrenoreceptor antagonist), alpha-methylp- tyrosine (α-MPT, an inhibitor of ca...

  20. To what extent do neurobiological sleep-waking processes support psychoanalysis?

    Science.gov (United States)

    Gottesmann, Claude

    2010-01-01

    Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children.

    Science.gov (United States)

    Chilosi, Anna Maria; Lorenzini, Irene; Fiori, Simona; Graziosi, Valentina; Rossi, Giuseppe; Pasquariello, Rosa; Cipriani, Paola; Cioni, Giovanni

    2015-11-01

    Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  3. Mechanical Properties Involved in the Micro-forming of Ultra-thin Stainless Steel Sheets

    Science.gov (United States)

    Pham, Cong-Hanh; Thuillier, Sandrine; Manach, Pierre-Yves

    2015-08-01

    The objective of this paper is to characterize the mechanical behavior of an ultra-thin stainless steel, of 0.15-mm thickness, that is commonly used in the manufacturing of miniature connectors. The main focus is the relationship between some microstructural features, like grain size and surface roughness, and the macroscopic mechanical behavior investigated in uniaxial tension and simple shear. In tension, adaptations to the very small sheet thickness, in order to hold the specimen under the grips, are presented. Yield stress, initial elastic modulus, and evolution of the loading-unloading slope with plastic deformation were evaluated. Moreover, the kinematic contribution to the hardening was characterized by monotonic and cyclic simple shear test and reproduced by a mixed hardening law implemented in Abaqus finite element code. Then, the evolution of surface roughness with plastic strain, both in tension and simple shear, was analyzed. It was shown that in the case of an ultra-thin sheet, the stress levels, calculated either from an average thickness or when considering the effect of the surface roughness, exhibit a significant difference. Finally, the influence of surface roughness on the fracture of a tensile specimen was also investigated.

  4. Activity-Dependent Dendritic Spine Shrinkage and Growth Involve Downregulation of Cofilin via Distinct Mechanisms

    Science.gov (United States)

    Calabrese, Barbara; Saffin, Jean-Michel; Halpain, Shelley

    2014-01-01

    A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity. PMID:24740405

  5. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2.

    Science.gov (United States)

    McLaughlin, Declan; Zhao, Youyou; O'Neill, Karla M; Edgar, Kevin S; Dunne, Philip D; Kearney, Anna M; Grieve, David J; McDermott, Barbara J

    2017-11-01

    The anthracycline doxorubicin (DOX), although successful as a first-line cancer treatment, induces cardiotoxicity linked with increased production of myocardial ROS, with Nox2 NADPH oxidase-derived superoxide reported to play a key role. The aim of this study was to identify novel mechanisms underlying development of cardiac remodelling/dysfunction further to DOX-stimulated Nox2 activation. Nox2-/- and wild-type (WT) littermate mice were administered DOX (12 mg·kg-1 over 3 weeks) prior to study at 4 weeks. Detailed mechanisms were investigated in murine HL-1 cardiomyocytes, employing a robust model of oxidative stress, gene silencing and pharmacological tools. DOX-induced cardiac dysfunction, cardiomyocyte remodelling, superoxide production and apoptosis in WT mice were attenuated in Nox2-/- mice. Transcriptional analysis of left ventricular tissue identified 152 differentially regulated genes (using adjusted P article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  6. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis.

    Science.gov (United States)

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2016-12-01

    While there are a variety of therapies for relapsing remitting multiple sclerosis (MS), there is a lack of treatments for progressive MS. An early study indicated that high dose biotin therapy has beneficial effects in approximately 12-15% of patients with progressive MS. The mechanisms behind the putative improvements seen with biotin therapy are not well understood, but have been postulated to include: 1) improving mitochondrial function which is impaired in MS, 2) increasing synthesis of lipids and cholesterol to facilitate remyelination, and 3) affecting gene expression. We suggest one reason that a greater percentage of patients with MS didn't respond to biotin therapy is the inaccessibility or lack of other nutrients, such as iron. In addition to biotin, iron (or heme) is necessary for energy production, biosynthesis of cholesterol and lipids, and for some protective mechanisms. Both biotin and iron are required for myelination during development, and by inference, remyelination. However, iron can also play a role in the pathology of MS. Increased deposition of iron can occur in some CNS structures possibly promoting oxidative damage while low iron levels can occur in other areas. Thus, the potential, detrimental effects of iron need to be considered together with the need for iron to support metabolic demands associated with repair and/or protective processes. We propose the optimal utilization of iron may be necessary to maximize the beneficial effects of biotin. This review will examine the interactions between biotin and iron in pathways that may have therapeutic or pathogenic implications for MS.

  7. Antidiabetic mechanism of Coptis chinensis polysaccharide through its antioxidant property involving the JNK pathway.

    Science.gov (United States)

    Jiang, Shuang; Wang, Yahong; Ren, Dayong; Li, Jianrui; Yuan, Guangxin; An, Liping; Du, Peige; Ma, Jie

    2015-07-01

    Antidiabetic activity of Coptis chinensis Franch (Ranunculaceae) polysaccharide (CCPW) has been reported. However, its molecular mechanism remains unclear. An attempt was made to further verify the antidiabetic activity of CCPW on type 2 diabetes mellitus (T2DM) and elucidate the mechanism of antidiabetic activity. Male Wistar rats were fed with high-fat diet (HFD) and injected with streptozotocin (STZ) to generate a T2DM model. Effects of CCPW on fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), glutathione (GSH), glutathione peroxidases (GSH-Px), superoxide dismutases (SOD), catalase (CAT), malondialdehyde (MDA), c-jun n-terminal kinase (JNK), phosphorylated insulin receptor substrate 1 (phospho-IRS1), phosphorylated phosphatidylinositol 3 kinase (phospho-PI3Kp85) and glucose transporter 4 (Glut4) were investigated. FBG level of diabetic rats could be significantly inhibited by 51.2, 42.7, and 23.3% through administration of CCPW at doses of 200, 100, and 50 mg/kg b.w., respectively (p antioxidant effect through increasing GSH-Px, SOD, and CAT activities, and decreasing GSH and MDA contents (p antioxidative effect, which is closely related to the JNK/IRS1/PI3K pathway.

  8. Sensitizing Children to the Social and Emotional Mechanisms involved in Racism: a program evaluation

    Directory of Open Access Journals (Sweden)

    Sofia Triliva

    2014-11-01

    Full Text Available This paper describes and discusses the results of an intervention aiming to sensitize children to the social and emotional processes involved in racism. The intervention was applied and evaluated in 10 Greek elementary schools. The goals and the intervention methods of the program modules are briefly outlined and the results of the program evaluation are elaborated and discussed. Two-hundred students participated in the program and 180 took part in the pre-and-post-testing which assessed their ability to identify emotions associated with prejudice, discrimination and stereotypical thinking; to understand similarities and differences between people; and to develop perspective taking and empathic skills in relation to diverse others. Results indicate gains in all three areas of assessment although the increased ability to identify similarities between people can also be attributed to age/grade effects. The implications of the findings are discussed with regard to antiracism intervention methods and evaluation strategies.

  9. Antinociceptive action of Ocimum sanctum (Tulsi) in mice: possible mechanisms involved.

    Science.gov (United States)

    Khanna, N; Bhatia, Jagriti

    2003-10-01

    The alcoholic leaf extract of Ocimum sanctum (OS, Tulsi) was tested for analgesic activity in mice. In the glacial acetic acid (GAA)-induced writhing test, OS (50, 100 mg/kg, i.p.; and 50, 100, 200 mg/kg, p.o.) reduced the number of writhes. OS (50, 100 mg/kg, i.p.) also increased the tail withdrawal latency in mice. Naloxone (1 mg/kg, i.p.), an opioid antagonist, and DSP-4 (50 mg/kg, i.p.), a central noradrenaline depletor, attenuated the analgesic effect of OS in both the experimental models, whereas, PCPA (300 mg/kg, i.p.), a serotonin synthesis inhibitor, potentiated the action of OS on tail flick response in mice. The results of our study suggest that the analgesic action of OS is exerted both centrally as well as peripherally and involves an interplay between various neurotransmitter systems.

  10. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Science.gov (United States)

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  11. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  12. Mechanic's hands revisited: is this sign still useful for diagnosis in patients with lung involvement of collagen vascular diseases?

    Science.gov (United States)

    Sohara, Erei; Saraya, Takeshi; Sato, Shinji; Tsujimoto, Naoki; Watanabe, Takayasu; Takata, Saori; Tanaka, Yasutaka; Ishii, Haruyuki; Takizawa, Hajime; Goto, Hajime

    2014-05-17

    The presence of "mechanic's hands" is one of the clinical clues for collagen vascular diseases. However, the exact relevance of "mechanic's hands" in collagen vascular diseases has not been well documented. The aim of this study was to clarify the relevance of "mechanic's hands" to collagen vascular diseases including various skin lesions and interstitial pneumonia. A retrospective review of the medical records of patients with "mechanic's hands" at our hospital between April 2011 and December 2012 was conducted. A PubMed search was also conducted using the term "mechanic's hands". Four patients in our institution and 40 patients obtained from PubMed who had "mechanic's hands" were identified. The most frequent diseases were DM/amyopathic DM (n = 24, 54.5%) and anti-ARS syndrome (n = 17, 38.6%). In these patients, the major skin lesions associated with "mechanic's hands" were periungual erythema (n = 23, 52.3%), Gottron's sign (n = 17, 38.6%), heliotrope rash (n = 10, 22.7%), Raynaud's phenomenon (n = 9, 20.5%), and anti-ARS syndrome (n = 17, 38.6%). Six cases (2 DM, 4 anti-ARS syndrome) had only "mechanic's hands". Antibodies to anti-ARS (n = 24) were Jo-1 (n = 19), PL-7 (n = 3), OJ (n = 1), and PL-12 (n = 1). The presence of "mechanic's hands" together with diverse skin lesions could be a clinical clue to the diagnosis of lung involvement associated with collagen vascular diseases, especially in anti-ARS syndrome or DM/amyopathic DM.

  13. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2017-05-01

    Full Text Available Beneficial effects of cannabidiol (CBD have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.

  14. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  15. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Directory of Open Access Journals (Sweden)

    Yidan Ma

    Full Text Available A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  16. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway.

    Science.gov (United States)

    Ha, Ae Wha; Kim, Woo Kyoung

    2017-06-01

    Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin F2α (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly (P black garlic extract were related to mRNA expression levels of Nrf2 related genes.

  17. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed. PMID:26309232

  18. Space, place and the midwife: exploring the relationship between the birth environment, neurobiology and midwifery practice.

    Science.gov (United States)

    Hammond, Athena; Foureur, Maralyn; Homer, Caroline S E; Davis, Deborah

    2013-12-01

    Research indicates that midwives and their practice are influenced by space and place and that midwives practice differently in different places. It is possible that one mechanism through which space and place influence midwifery practice is via neurobiological responses such as the production and release of oxytocin, which can be triggered by experiences and perceptions of the physical environment. To articulate the significance of space and place to midwifery and explore the relationship between the birth environment, neurobiology and midwifery practice. Quality midwifery care requires the facilitation of trusting social relationships and the provision of emotionally sensitive care to childbearing women. The neuropeptide oxytocin plays a critical role in human social and emotional behaviour by increasing trust, reducing stress and heightening empathy, reciprocity and generosity. Through its role as a trigger for oxytocin release, the birth environment may play a direct role in the provision of quality midwifery care. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  19. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells

    Science.gov (United States)

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-01-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms. PMID:19240275

  20. Neurobiological candidate endophenotypes of social anxiety disorder.

    Science.gov (United States)

    Bas-Hoogendam, Janna Marie; Blackford, Jennifer U; Brühl, Annette B; Blair, Karina S; van der Wee, Nic J A; Westenberg, P Michiel

    2016-12-01

    Social anxiety disorder (SAD) is a disabling psychiatric disorder with a complex pathogenesis. Studies indicate a genetic component in the development of SAD, but the search for genetic mechanisms underlying this vulnerability is complicated. A focus on endophenotypes instead of the disorder itself may provide a fruitful path forward. Endophenotypes are measurable characteristics related to complex psychiatric disorders and reflective of genetically-based disease mechanisms, and could shed light on the ways by which genes contribute to the development of SAD. We review evidence for candidate MRI endophenotypes of SAD and discuss the extent to which they meet the criteria for an endophenotype, focussing on the amygdala, the medial prefrontal cortex, whole-brain functional connectivity and structural-anatomical changes. Strongest evidence is present for the primary endophenotype criterion of association between the candidate endophenotypes and SAD, while the other criteria, involving trait-stability, heritability and co-segregation of the endophenotype with the disorder within families, warrant further investigation. We highlight the potential of neuroimaging endophenotypes and stress the need for family studies into SAD endophenotypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  2. Study of the effects of dietary polyunsaturated fatty acids: Molecular mechanisms involved in intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Knoch, Bianca

    2009-03-01

    Full Text Available The use of «omic» techniques in combination with model systems and molecular tools allows to understand how foods and food components act on metabolic pathways to regulate transcriptional processes. Polyunsaturated fatty acids have distinctive nutritional and metabolic effects because they give rise to lipid mediated products and affect the expression of various genes involved in intestinal inflammation. The present review focuses on the molecular effects of dietary polyunsaturated fatty acids on intestinal inflammation.El uso de técnicas «omic» en combinación con sistemas modelo y herramientas moleculares nos permiten entender como los alimentos y sus componentes actúan en las rutas metabólicas que regulan los procesos transcripcionales. Los ácidos grasos poliinsaturados tienen efectos nutricionales y metabólicos diferenciadores porque producen una elevación de los productos regulados por lípidos y afectan a la expresión de varios genes involucrados en la inflamación intestinal. La presente revisión se enfoca en los efectos moleculares de los ácidos grasos poliinsaturados de la dieta en la inflamación intestinal.

  3. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism

    Science.gov (United States)

    Pinard, Robert; Hampel, Ken J.; Heckman, Joyce E.; Lambert, Dominic; Chan, Philip A.; Major, Francois; Burke, John M.

    2001-01-01

    The catalytic determinants for the cleavage and ligation reactions mediated by the hairpin ribozyme are integral to the polyribonucleotide chain. We describe experiments that place G8, a critical guanosine, at the active site, and point to an essential role in catalysis. Cross-linking and modeling show that formation of a catalytic complex is accompanied by a conformational change in which N1 and O6 of G8 become closely apposed to the scissile phosphodiester. UV cross-linking, hydroxyl-radical footprinting and native gel electrophoresis indicate that G8 variants inhibit the reaction at a step following domain association, and that the tertiary structure of the inactive complex is not measurably altered. Rate–pH profiles and fluorescence spectroscopy show that protonation at the N1 position of G8 is required for catalysis, and that modification of O6 can inhibit the reaction. Kinetic solvent isotope analysis suggests that two protons are transferred during the rate-limiting step, consistent with rate-limiting cleavage chemistry involving concerted deprotonation of the attacking 2′-OH and protonation of the 5′-O leaving group. We propose mechanistic models that are consistent with these data, including some that invoke a novel keto–enol tautomerization. PMID:11707414

  4. Freeze for action: Neurobiological mechanisms in animal and human freezing

    NARCIS (Netherlands)

    Roelofs, K.

    2017-01-01

    Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions

  5. Stress and the social brain: behavioural effects and neurobiological mechanisms

    OpenAIRE

    Sandi Carmen; Haller József

    2015-01-01

    Stress often affects our social lives. When undergoing high level or persistent stress individuals frequently retract from social interactions and become irritable and hostile. Predisposition to antisocial behaviours — including social detachment and violence — is also modulated by early life adversity; however the effects of early life stress depend on the timing of exposure and genetic factors. Research in animals and humans has revealed some of the structural functional and molecular chang...

  6. Stress and the social brain: behavioural effects and neurobiological mechanisms.

    Science.gov (United States)

    Sandi, Carmen; Haller, József

    2015-05-01

    Stress often affects our social lives. When undergoing high-level or persistent stress, individuals frequently retract from social interactions and become irritable and hostile. Predisposition to antisocial behaviours - including social detachment and violence - is also modulated by early life adversity; however, the effects of early life stress depend on the timing of exposure and genetic factors. Research in animals and humans has revealed some of the structural, functional and molecular changes in the brain that underlie the effects of stress on social behaviour. Findings in this emerging field will have implications both for the clinic and for society.

  7. Modeling the mechanism involved during the sorption of methylene blue onto fly ash.

    Science.gov (United States)

    Kumar, K Vasanth; Ramamurthi, V; Sivanesan, S

    2005-04-01

    Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using fly ash as an adsorbent. Operating variables studied were initial dye concentration, fly ash mass, pH, and contact time. Maximum color removal was observed at a basic pH of 8. Equilibrium data were represented well by a Langmuir isotherm equation with a monolayer sorption capacity of 5.718 mg/g. Sorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics. Rate constants at different initial concentrations were estimated. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D(i) values were estimated at different initial concentrations and the average value was determined to be 2.063 x 10(-9)cm2/s. Analysis of sorption data using a Boyd plot confirms the particle diffusion as the rate-limiting step for the dye concentration ranges studied in the present investigation (20 to 60 mg/L).

  8. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury.

    Science.gov (United States)

    Slezak, Jan; Kura, Branislav; Babal, Pavel; Barancik, Miroslav; Ferko, Miroslav; Frimmel, Karel; Kalocayova, Barbora; Kukreja, Rakesh C; Lazou, Antigone; Mezesova, Lucia; Okruhlicova, Ludmila; Ravingerova, Tanya; Singal, Pawan K; Szeiffova Bacova, Barbara; Viczenczova, Csilla; Vrbjar, Norbert; Tribulova, Narcis

    2017-10-01

    Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.

  9. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    Science.gov (United States)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  10. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    Directory of Open Access Journals (Sweden)

    M.P. da Silva

    2014-02-01

    Full Text Available Physiological evidence indicates that the supraoptic nucleus (SON is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1 the intrinsic membrane properties of the MNCs themselves and 2 synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

  11. Viral mechanisms involved in the transcriptional CBP/p300 regulation of inflammatory and immune responses.

    Science.gov (United States)

    Revilla, Yolanda; Granja, Aitor G

    2009-01-01

    The transcriptional coactivators CREB-binding protein (capital ES, Cyrilliccapital VE, Cyrilliccapital ER, Cyrillic) and small er, Cyrillic300 regulate inducible transcription in multiple cellular processes and during the establishment of inflammatory and immune response. These closely related transcriptional coactivators arc able to modulate the transcription of specific genes, modify chromatin structure, and influence cell-cycle progression. Several viruses have been shown to interfere with CREB-binding protein/small er, Cyrillic300 function, modulating their transcriptional activity. During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response and, thus, many viruses encode proteins that can influence or interfere with cellular signals to evade inflammation and immune response. The mechanism of transcriptional regulation by coactivator proteins, including small er, Cyrillic300/CBP, has been the focus of intense study. As a part of this, some of the molecular instruments developed by viruses to counteract the host response and their role in the regulation of inflammation and immune response are summarized in this review.

  12. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Chao-Jen Shih

    2017-08-01

    Full Text Available Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM and individual electron acceptors (10 mM, including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0–30 ppt. Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions.

  13. Chemical Compounds and Mechanisms Involved in the Formation and Stabilization of Foam in Sparkling Wines.

    Science.gov (United States)

    Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard

    2018-02-08

    The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the traditional, transfer, and charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.

  14. Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity.

    Directory of Open Access Journals (Sweden)

    Mélodie Sawicki

    Full Text Available Grapevine flower development and fruit set are influenced by cold nights in the vineyard. To investigate the impact of cold stress on carbon metabolism in the inflorescence, we exposed the inflorescences of fruiting cuttings to chilling and freezing temperatures overnight and measured fluctuations in photosynthesis and sugar content. Whatever the temperature, after the stress treatment photosynthesis was modified in the inflorescence, but the nature of the alteration depended on the intensity of the cold stress. At 4°C, photosynthesis in the inflorescence was impaired through non-stomatal limitations, whereas at 0°C it was affected through stomatal limitations. A freezing night (-3°C severely deregulated photosynthesis in the inflorescence, acting primarily on photosystem II. Cold nights also induced accumulation of sugars. Soluble carbohydrates increased in inflorescences exposed to -3°C, 0°C and 4°C, but starch accumulated only in inflorescences of plants treated at 0 and -3°C. These results suggest that inflorescences are able to cope with cold temperatures by adapting their carbohydrate metabolism using mechanisms that are differentially induced according to stress intensity.

  15. Mechanism of arylating quinone toxicity involving Michael adduct formation and induction of endoplasmic reticulum stress.

    Science.gov (United States)

    Wang, Xinhe; Thomas, Beena; Sachdeva, Rakesh; Arterburn, Linnea; Frye, Lucy; Hatcher, Patrick G; Cornwell, David G; Ma, Jiyan

    2006-03-07

    Quinones permeate our biotic environment, contributing to both homeostasis and cytotoxicity. All quinones generate reactive oxygen species through redox cycling, while partially substituted quinones also undergo arylation (Michael adduct formation) yielding covalent bonds with nucleophiles such as cysteinyl thiols. In contrast to reactive oxygen species, the role of arylation in quinone cytotoxicity is not well understood. We found that the arylating quinones, including unsubstituted 1,4-benzoquinone (1,4-BzQ) and partially substituted vitamin E congener gamma-tocopherol quinone (gamma-TQ), were cytotoxic, with gamma-TQ > 1,4-BzQ, whereas the fully substituted nonarylating vitamin E congener alpha-tocopherol quinone was not. In vitro, both arylating quinones formed Michael adducts with the thiol nucleophile N-acetylcysteine (NAC) at rates where 1,4-BzQ > gamma-TQ. In cultured cells, concurrent addition of NAC eliminated 1,4-BzQ caused toxicity, but preincubation was required for the same NAC detoxification effect on gamma-TQ. These data clearly established the role of arylation in quinone toxicity and revealed that arylating quinone structure affects cytotoxicity by governing detoxification through the rate of adduct formation. Furthermore, arylating quinones induced endoplasmic reticulum (ER) stress by activating the pancreatic ER kinase (PERK) signaling pathway including elF2alpha, ATF4, and C/EBP homologous protein (CHOP). Detoxification by NAC greatly attenuates CHOP induction in arylating quinone-treated cells, suggesting that ER stress is a cellular mechanism for arylating quinone cytotoxicity.

  16. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E.

    Science.gov (United States)

    Santana, Andréia T; Guelfi, Marieli; Medeiros, Hyllana C D; Tavares, Marco A; Bizerra, Paulo F V; Mingatto, Fábio E

    2015-07-31

    Gossypol is a chemical present in the seeds of cotton plants (Gossypium sp.) that reduces fertility in farm animals. Vitamin E is an antioxidant and may help to protect cells and tissues against the deleterious effects of free radicals. The aim of this study was to evaluate the mechanisms of reproductive toxicity of gossypol in rats and the protective effects of vitamin E. Forty Wistar rats were used, divided into four experimental groups (n = 10): DMSO/saline + corn oil; DMSO/saline + vitamin E; gossypol + corn oil; and gossypol + vitamin E. Fertility was significantly reduced in male rats treated with gossypol in that a significant decrease in epididymal sperm count was observed (P vitamin E. Gossypol caused a significant increase in the activity of the enzymes glutathione peroxidase (P vitamin E did not reduce the enzyme activities (P > 0.05). The levels of reduced glutathione and pyridine nucleotides in testis homogenate were significantly reduced by gossypol (P Vitamin E showed a preventive effect on the changes in the levels of these substances. Gossypol significantly increased the levels of malondialdehyde (P vitamin E inhibited the action of the gossypol. Vitamin E prevented a decrease in mitochondrial ATP induced by gossypol (P vitamin E can prevent the infertility caused by the toxin.

  17. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient  -sheet

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, L. E.; Dunkelberger, E. B.; Tran, H. Q.; Cheng, P. -N.; Chiu, C. -C.; Cao, P.; Raleigh, D. P.; de Pablo, J. J.; Nowick, J. S.; Zanni, M. T.

    2013-11-11

    Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.

  18. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review.

    Science.gov (United States)

    Sahaï, Aïsha; Pacherie, Elisabeth; Grynszpan, Ouriel; Berberian, Bruno

    2017-01-01

    Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents.

  19. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Aïsha Sahaï

    2017-10-01

    Full Text Available Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents.

  20. Phospholipase A{sub 2} is involved in the mechanism of activation of neutrophils by polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Tithof, P.K.; Schiamberg, E.; Ganey, P.E. [Univ. of Michigan, Ann Arbor, MI (United States); Peters-Golden, M. [Michigan State Univ., East Lansing, MI (United States)

    1996-01-01

    Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs), activates neutrophils to produce superoxide anion (O{sub 2}{sup {minus}}) by a mechanism that involves phospholipase C-dependent hydrolysis of membrane phosphoinositides; however, subsequent signal transduction mechanisms are unknown. This study determines whether phospholipase A{sub 2}-dependent release of arachidonic acid is involved in PCB-induced O{sub 2}{sup {minus}} production. O{sub 2}{sup {minus}} production was measured in vitro in glycogen-elicited, rat neutrophils in the presence and absence of the inhibitors of phospholipase A{sub 2}: quinacrine, 4-bromophenacyl bromide (BPB), and manoalide. All three agents significantly decreased the amount of O{sub 2}{sup {minus}} detected during stimulation of neutrophils with Aroclor 1242. Similar inhibition occurred when neutrophils were activated with the classical stimuli, formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate. The effects of BPB and manoalide were not a result of cytotoxicity or other nonspecific effects. Significant release of {sup 3}H-arachidonic acid preceded O{sub 2}{sup {minus}} production in neutrophils stimulated with Aroclor 1242 or fMLP. Manoalide, at a concentration that abolished O{sub 2}{sup {minus}} production, also inhibited the release of {sup 3}H-arachidonate. Aspirin, zileuton, or WEB 2086 did not affect Aroclor 1242-induced O{sub 2}{sup {minus}} production, suggesting that eicosanoids and platelet-activating factor are not needed for neutrophil activation by PCBs. Activation of phos-pholipase A{sub 2} and O{sub 2}{sup {minus}} production do not appear to involve the Ah receptor. These data suggest that Aroclor 1242 stimulates neutrophils to produce O{sub 2}{sup {minus}} by a mechanism that involves phospholipase A{sub 2}-dependent release of arachiodonic acid. 49 refs., 6 figs., 2 tabs.

  1. Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment

    Directory of Open Access Journals (Sweden)

    Kondo Masahiro

    2008-11-01

    Full Text Available Abstract Background In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn and upper cervical spinal cord (C1-C2 nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK in Vc and C1-C2 neurons were studied in rats. Results Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t. injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats. Conclusion The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.

  2. Clinical--imaging aspects of young permanent teeth traumas and the ethiopatogenic mechanisms involved.

    Science.gov (United States)

    Nemţoi, A; Dănila, I; Lăduncă, Oana; Petcu, Ana; Bamboi, Ana; Haba, Danisia

    2013-01-01

    Dental trauma occurring to children and teenagers all over the world represents a serious issue in Public Health. This present study wants to investigate the etiology and the environment in which the dental trauma occurs and also wants to establish a connection between dental trauma and social-economic status. The study was made to collect information about dental trauma on human subjects involving 372 children and teenagers, both female and male, between 8 and 20 years of age. The data obtained from the clinical and radiological exams for each patient have been registered in a special conceived register, which represented a stage of the study. The frequency of dental trauma varied from 62.1% for males to 37.9% for women. Most of them have suffered from dental trauma between the age of 14 and 16 (30.1%), and a few between 18 and 20 years (2.2%). Dental trauma has occurred most frequently in school, during sports lessons, followed by those in public places like the street (23.1%), from which 17.1% have been associated with bicycle accidents, 3.5% with scooter accidents and 2.5% with car accidents. Children and teenagers who live in areas with a low social economic level have been the fewest to seek medical attention due to difficult access to medical services. Overall, this study wanted to present the importance of knowing the frequency of dental trauma in children and teenagers and to point out the need of promoting medical education to parents regarding the means they can use to reduce the risk factors associated with dental trauma.

  3. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats

    Directory of Open Access Journals (Sweden)

    Yano Takahisa

    2011-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Results Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol and memantine (1 μmol, NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t. and ifenprodil (50 mg/kg, p.o. significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase but not on Day 5 (early phase. Moreover, we examined the involvement of nitric oxide synthase (NOS as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. Conclusion These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.

  4. Involvement of Epigenetic Mechanisms in the Regulation of Secreted Phospholipase A2 Expressions in Jurkat Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Mario Menschikowski

    2008-11-01

    Full Text Available Epigenetic changes provide a frequent mechanism for transcriptional silencing of genes in cancer cells. We previously established that epigenetic mechanisms are important for control of group IIA phospholipase A2 (PLA2G2A gene transcription in human DU-145 prostate cells. In this study, we analyzed the involvement of such mechanisms in the regulation of five sPLA2 isozymes and the M-type receptor of sPLA2 (sPLA2-R in human leukemic Jurkat cells. These cells constitutively expressed sPLA2-IB, sPLA2-III, sPLA2-X, and sPLA2-R but not sPLA2-IIA and sPLA2-V. Transcription of sPLA2-IIA and sPLA2-V was, however, detected after exposure of cells to the DNA demethylating agent, 5-aza-2′-deoxycytidine (5-aza-dC. Expression of sPLA2-IIA was further enhanced by additional exposure to interferon-γ and blocked by inhibitors of specificity protein 1, nuclear factor κB, and Janus kinase/signal transducer and activator of transcription-dependent pathways. Sequence analysis and methylation-specific polymerase chain reaction of bisulfite-modified genomic DNA revealed two 5′-CpG sites (-111 and -82 in the sPLA2-IIA proximal promoter that were demethylated after 5-aza-dC treatment. These sites may be involved in the DNA binding of specificity protein 1 and other transcription factors. Similar findings after treatment of human U937 leukemia cells with 5-aza-dC indicate that this mechanism of PLA2G2A gene silencing is not restricted to Jurkat and DU-145 cells. These data establish that regulation of sPLA2-IIA and sPLA2-V in Jurkat and other cells involves epigenetic silencing by DNA hypermethylation.

  5. Neurobiological Correlates in Forensic Assessment : A Systematic Review

    NARCIS (Netherlands)

    van der Gronde, Toon; Kempes, Maaike; van El, Carla; Rinne, Thomas; Pieters, Toine

    2014-01-01

    Background: With the increased knowledge of biological risk factors, interest in including this information in forensic assessments is growing. Currently, forensic assessments are predominantly focused on psychosocial factors. A better understanding of the neurobiology of violent criminal behaviour

  6. Quantum and Multidimensional Explanations in a Neurobiological Context of Mind

    NARCIS (Netherlands)

    Korf, Jakob

    This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement,

  7. Social Context Effects on Decision-Making: A Neurobiological Approach

    NARCIS (Netherlands)

    M. Stallen (Mirre)

    2013-01-01

    textabstractThis thesis explores how social context influences the neurobiological processes underlying decision-making. To this end, this research takes an interdisciplinary approach, combining methods and insights from Psychology, Marketing, Economics, and Neuroscience. In particular, behavioural

  8. An embodied view of octopus neurobiology.

    Science.gov (United States)

    Hochner, Binyamin

    2012-10-23

    Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape and color to their environment. The most obvious characteristic feature of an octopus is its eight long and flexible arms, but these pose a great challenge for achieving the level of motor and sensory information processing necessary for their behaviors. First, coordinating motion is a formidable task because of the infinite degrees of freedom that have to be controlled; and second, it is hard to use body coordinates in this flexible animal to represent sensory information in a central control system. Here I will review experimental results suggesting that these difficulties, arising from the animal's morphology, have imposed the evolution of unique brain/body/behavior relationships best explained as intelligent behavior which emerges from the octopus's embodied organization. The term 'intelligent embodiment' comes from robotics and refers to an approach to designing autonomous robots in which the behavior emerges from the dynamic physical and sensory interactions of the agent's materials, morphology and environment. Consideration of the unusual neurobiology of the octopus in the light of its unique morphology suggests that similar embodied principles are instrumental for understanding the emergence of intelligent behavior in all biological systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The neurobiology of neuropsychiatric syndromes in dementia.

    Science.gov (United States)

    Meeks, Thomas W; Ropacki, Susan A; Jeste, Dilip V

    2006-11-01

    Neuropsychiatric disturbances in dementia are prevalent, and research is uncovering their neurobiological correlates. Late-onset depression appears to be associated with Alzheimer's disease pathology at autopsy, and lifetime depression episodes may worsen Alzheimer's disease pathology in the hippocampus. Vascular disease and elevated homocysteine increase risk for both late-onset depression and Alzheimer's disease and may partly mediate their relationship. Monoamine changes are robust finding in Alzheimer's disease and may account for many observed depression symptoms. Risk of psychosis of Alzheimer's disease appears to be increased by several genes also implicated in schizophrenia (e.g., catechol-O-methyltransferase, neuregulin-1). Psychosis in dementia with Lewy bodies appears to be related to cholinergic deficits. Alzheimer's disease is associated with changes in the circadian sleep-wake cycles, including decreased night-time melatonin. Sleep apnea may be related to apolipoprotein E genotype and impact cognition in Alzheimer's disease. Rapid eye movement sleep behavior disorder is intricately related to synucleinopathies, such as dementia with Lewy bodies, but synuclein changes may not totally explain this relationship. Neuropsychiatric disturbances are a core feature of dementia and worsen many clinical outcomes. Among the most validated syndromes are depression, psychosis, and sleep disturbance of Alzheimer's disease. Neuropathology, neuroimaging, and genetic studies increasingly provide insight into the origins of these psychiatric symptoms in dementia.

  10. Neurobiological linkage between stress and sleep

    Science.gov (United States)

    Sanford, Larry D.; Wellman, Laurie L.

    2012-10-01

    Stress can have a significant negative impact on health and stress-induced alterations in sleep are implicated in both human sleep disorders and in psychiatric disorders in which sleep is affected. We have demonstrated that the amygdala, a region critical for regulating emotion, is a key modulator of sleep. Our current research is focused on understanding how the amygdala and stressful emotion affect sleep and on the role sleep plays in recovery from stress. We have implemented animal models to examine the how stress and stress-related memories impact sleep. Experiencing uncontrollable stress and reminders of uncontrollable stress can produce significant reductions in sleep, in particular rapid eye movement sleep. We are using these models to explore the neurobiology linking stress-related emotion and sleep. This research is relevant for sleep disorders such as insomnia and into mental disorders in which sleep is affected such as post-traumatic stress disorder (PTSD), which is typically characterized by a prominent sleep disturbance in the aftermath of exposure to a psychologically traumatic event.

  11. [Collective violence: neurobiological, psychosocial and sociological condition].

    Science.gov (United States)

    Möller-Leimkühler, A M; Bogerts, B

    2013-11-01

    Collective violence, despite its often disastrous consequences has widely been disregarded by psychiatry, as was the case for individual violence. Physical violence is not only an individual, mostly male phenomenon but manifests mainly as collective violence among men in multiple forms. Due to the plentitude of theories and findings on collective violence the present article is limited to a few relevant sociological and neurobiological aspects of collective violence as a group and intergroup phenomenon. A special focus is given to the association of the phylogenetic disposition to group violence and constructions of masculinity, to the potential relevance of mirror neurons for social contagion and to the influence of sociostructural factors for male adolescents joining violence-prone groups. In this context group dynamics such as in-group overevaluation and out-group devaluation are of central importance by stabilizing the male sense of self-worth and legitimizing, normalizing and internalizing violent behavior. Instead of mythologizing, biologizing or banalizing violence, transdisciplinary approaches are necessary to improve violence prevention on different ecological levels being obligated to a culture of nonviolent conflict management.

  12. Mechanisms involved in the association between periodontitis and complications in pregnancy.

    Directory of Open Access Journals (Sweden)

    Marcela eYang

    2015-01-01

    Full Text Available The association between periodontitis and gestation complications such as premature delivery, low weight at birth and preeclampsia has been suggested. Nevertheless, epidemiological data have shown contradictory data, mainly due to differences in clinical parameters of periodontitis assessment. Furthermore, differences in microbial composition and immune response between aggressive and chronic periodontitis are not addressed by these epidemiological studies. We aimed to review the current data on the association between gestation complications and periodontitis, and the mechanisms underlying this association. Shifts in the microbial composition of the subgingival biofilm may occur during pregnancy, leading to a potentially more hazardous microbial community. Pregnancy is characterized by physiological immune tolerance. However, the infection leads to a shift in maternal immune response to a pathogenic pro-inflammatory response, with production of inflammatory cytokines and toxic products. In women with periodontitis, the infected periodontal tissues may act as reservoirs of bacteria and their products which can disseminate to the fetus-placenta unit. In severe periodontitis patients, the infection agents and their products are able to activate inflammatory signaling pathways locally and in extra-oral sites, including the placenta-fetal unit, which may not only induce preterm labor, but also lead to preeclampsia and restrict intrauterine growth. Despite these evidences, the effectiveness of periodontal treatment in preventing gestational complications was still not established since it may be influenced by several factors such as severity of disease, composition of microbial community, treatment strategy, and period of treatment throughout pregnancy. This lack of scientific evidence does not exclude the need to control infection and inflammation in periodontitis patients during pregnancy, and treatment protocols should be validated.

  13. Insecticide resistance status of United States populations of Aedes albopictus and mechanisms involved.

    Science.gov (United States)

    Marcombe, Sébastien; Farajollahi, Ary; Healy, Sean P; Clark, Gary G; Fonseca, Dina M

    2014-01-01

    Aedes albopictus (Skuse) is an invasive mosquito that has become an important vector of chikungunya and dengue viruses. Immature Ae. albopictus thrive in backyard household containers that require treatment with larvicides and when adult populations reach pest levels or disease transmission is ongoing, adulticiding is often required. To assess the feasibility of control of USA populations, we tested the susceptibility of Ae. albopictus to chemicals representing the main insecticide classes with different modes of action: organochlorines, organophosphates, carbamates, pyrethroids, insect growth regulators (IGR), naturalytes, and biolarvicides. We characterized a susceptible reference strain of Ae. albopictus, ATM95, and tested the susceptibility of eight USA populations to five adulticides and six larvicides. We found that USA populations are broadly susceptible to currently available larvicides and adulticides. Unexpectedly, however, we found significant resistance to dichlorodiphenyltrichloroethane (DDT) in two Florida populations and in a New Jersey population. We also found resistance to malathion, an organophosphate, in Florida and New Jersey and reduced susceptibility to the IGRs pyriproxyfen and methoprene. All populations tested were fully susceptible to pyrethroids. Biochemical assays revealed a significant up-regulation of GSTs in DDT-resistant populations in both larval and adult stages. Also, β-esterases were up-regulated in the populations with suspected resistance to malathion. Of note, we identified a previously unknown amino acid polymorphism (Phe → Leu) in domain III of the VGSC, in a location known to be associated with pyrethroid resistance in another container-inhabiting mosquito, Aedes aegypti L. The observed DDT resistance in populations from Florida may indicate multiple introductions of this species into the USA, possibly from tropical populations. In addition, the mechanisms underlying DDT resistance often result in pyrethroid resistance

  14. Insecticide resistance status of United States populations of Aedes albopictus and mechanisms involved.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    Full Text Available Aedes albopictus (Skuse is an invasive mosquito that has become an important vector of chikungunya and dengue viruses. Immature Ae. albopictus thrive in backyard household containers that require treatment with larvicides and when adult populations reach pest levels or disease transmission is ongoing, adulticiding is often required. To assess the feasibility of control of USA populations, we tested the susceptibility of Ae. albopictus to chemicals representing the main insecticide classes with different modes of action: organochlorines, organophosphates, carbamates, pyrethroids, insect growth regulators (IGR, naturalytes, and biolarvicides. We characterized a susceptible reference strain of Ae. albopictus, ATM95, and tested the susceptibility of eight USA populations to five adulticides and six larvicides. We found that USA populations are broadly susceptible to currently available larvicides and adulticides. Unexpectedly, however, we found significant resistance to dichlorodiphenyltrichloroethane (DDT in two Florida populations and in a New Jersey population. We also found resistance to malathion, an organophosphate, in Florida and New Jersey and reduced susceptibility to the IGRs pyriproxyfen and methoprene. All populations tested were fully susceptible to pyrethroids. Biochemical assays revealed a significant up-regulation of GSTs in DDT-resistant populations in both larval and adult stages. Also, β-esterases were up-regulated in the populations with suspected resistance to malathion. Of note, we identified a previously unknown amino acid polymorphism (Phe → Leu in domain III of the VGSC, in a location known to be associated with pyrethroid resistance in another container-inhabiting mosquito, Aedes aegypti L. The observed DDT resistance in populations from Florida may indicate multiple introductions of this species into the USA, possibly from tropical populations. In addition, the mechanisms underlying DDT resistance often result in

  15. Inhibitory effects of low decibel infrasound on the cardiac fibroblasts and the involved mechanism.

    Science.gov (United States)

    Jin, Wei; Deng, Qin-Qin; Chen, Bao-Ying; Lu, Zhen-Xing; Li, Qing; Zhao, Hai-Kang; Chang, Pan; Yu, Jun; Pei, Zhao-Hui

    2017-01-01

    Infrasound is a mechanical vibration wave with frequency between 0.0001 and 20 Hz. It has been established that infrasound of 120 dB or stronger is dangerous to humans. However, the biological effects of low decibel infrasound are largely unknown. The purpose of this study was to investigate the effects of low decibel infrasound on the cardiac fibroblasts. The cardiac fibroblasts were isolated and cultured from Sprague-Dawley rats. The cultured cells were assigned into the following four groups: control group, angiotensin II (Ang II) group, infrasound group, and Ang II+infrasound group. The cell proliferation and collagen synthesis rates were evaluated by means of [3H]-thymidine and [3H]-proline incorporation, respectively. The levels of TGF-β were determined by enzyme-linked immunosorbent assay. Moreover, RNAi approaches were used for the analysis of the biological functions of miR-29a, and the phosphorylation status of Smad3 was detected using western blotting analysis. The results showed that low decibel infrasound significantly alleviated Ang II-induced enhancement of cell proliferation and collagen synthesis. Compared with the control, Ang II markedly decreased the expression of miR-29a levels and increased the secretion of TGF-β and phosphorylation of Smad3, which was partly reversed by the treatment with low decibel infrasound. Importantly, knockdown of miR-29a diminished the effects of infrasound on the cardiac fibroblasts. In conclusion, low decibel infrasound inhibits Ang II-stimulated cardiac fibroblasts via miR-29a targeting TGF-β/Smad3 signaling.

  16. Inhibitory effects of low decibel infrasound on the cardiac fibroblasts and the involved mechanism

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2017-01-01

    Full Text Available Introduction: Infrasound is a mechanical vibration wave with frequency between 0.0001 and 20 Hz. It has been established that infrasound of 120 dB or stronger is dangerous to humans. However, the biological effects of low decibel infrasound are largely unknown. The purpose of this study was to investigate the effects of low decibel infrasound on the cardiac fibroblasts. Materials and Methods: The cardiac fibroblasts were isolated and cultured from Sprague–Dawley rats. The cultured cells were assigned into the following four groups: control group, angiotensin II (Ang II group, infrasound group, and Ang II+infrasound group. The cell proliferation and collagen synthesis rates were evaluated by means of [3H]-thymidine and [3H]-proline incorporation, respectively. The levels of TGF-β were determined by enzyme-linked immunosorbent assay. Moreover, RNAi approaches were used for the analysis of the biological functions of miR-29a, and the phosphorylation status of Smad3 was detected using western blotting analysis. Results: The results showed that low decibel infrasound significantly alleviated Ang II-induced enhancement of cell proliferation and collagen synthesis. Discussion: Compared with the control, Ang II markedly decreased the expression of miR-29a levels and increased the secretion of TGF-β and phosphorylation of Smad3, which was partly reversed by the treatment with low decibel infrasound. Importantly, knockdown of miR-29a diminished the effects of infrasound on the cardiac fibroblasts. In conclusion, low decibel infrasound inhibits Ang II-stimulated cardiac fibroblasts via miR-29a targeting TGF-β/Smad3 signaling.

  17. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms

    Science.gov (United States)

    Bishayee, Anupam; Bhatia, Deepak; Thoppil, Roslin J.; Darvesh, Altaf S.; Nevo, Eviatar; Lansky, Ephraim P.

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most prevalent and lethal cancers, has shown an alarming rise in the USA. Without effective therapy for HCC, novel chemopreventive strategies may effectively circumvent the current morbidity and mortality. Oxidative stress predisposes to hepatocarcinogenesis and is the major driving force of HCC. Pomegranate, an ancient fruit, is gaining tremendous attention due to its powerful antioxidant properties. Here, we examined mechanism-based chemopreventive potential of a pomegranate emulsion (PE) against dietary carcinogen diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis that mimics human HCC. PE treatment (1 or 10 g/kg), started 4 weeks prior to the DENA challenge and continued for 18 weeks thereafter, showed striking chemopreventive activity demonstrated by reduced incidence, number, multiplicity, size and volume of hepatic nodules, precursors of HCC. Both doses of PE significantly attenuated the number and area of γ-glutamyl transpeptidase-positive hepatic foci compared with the DENA control. PE also attenuated DENA-induced hepatic lipid peroxidation and protein oxidation. Mechanistic studies revealed that PE elevated gene expression of an array of hepatic antioxidant and carcinogen detoxifying enzymes in DENA-exposed animals. PE elevated protein and messenger RNA expression of the hepatic nuclear factor E2-related factor 2 (Nrf2). Our results provide substantial evidence, for the first time, that pomegranate constituents afford chemoprevention of hepatocarcinogenesis possibly through potent antioxidant activity achieved by upregulation of several housekeeping genes under the control of Nrf2 without toxicity. The outcome of this study strongly supports the development of pomegranate-derived products in the prevention and treatment of human HCC, which remains a devastating disease. PMID:21389260

  18. Mechanisms involved in extracellular matrix remodeling and arterial stiffness induced by hyaluronan accumulation.

    Science.gov (United States)

    Lorentzen, Karen Axelgaard; Chai, Song; Chen, Hui; Danielsen, Carl Christian; Simonsen, Ulf; Wogensen, Lise

    2016-01-01

    Hyperglycemia induces hyaluronan (HA) accumulation in the vasculature. Excessive accumulation of HA around the vascular smooth muscle cells (VSMC) results in increased aortic stiffness and strength and accelerated atherosclerosis in ApoE(-)/(-) mice. We hypothesized that HA accumulation primes the vasculature for atherosclerosis by crosslinking and reorganizing the extracellular matrix (ECM) and by pushing VSMC differentiation towards a less mature phenotype. Aortas from HAS-2 transgenic (Tg) mice and wild type mice were used for all experiments. Biomechanics and cross-sectional area measurements were performed before and after HA digestion. The vessel and ECM composition was examined by immunoblotting and electron microscopy. Primary VSMC cultures were examined by qPCR and thymidine incorporation. Tg mice aorta cross-sectional area was increased before (14%, p = 0.0148), but not after HA digestion (p = 0.3437). The increase in vessel stiffness (32%, p = 0.0217) and strength (31%, p = 0.0043) in the Tg aorta persisted after HA digestion. Crosslinking of HA by heavy chains from Inter-α-Inhibitor was increased (175%, p = 0.0006). The Tg VSMCs have the appearance of a synthetic phenotype supported by a 40% decrease in α-smooth muscle actin isoform X1 (p = 0.0296) and an increase in proliferation (63%, p = 0.0048) and osteoprotegerin production (133%, p = 0.0010) in cultured Tg VSMCs. Our results show that induced HA accumulation is followed by increased HA crosslinking and create a shift in VSMC phenotype and proliferation. These findings may provide a mechanism for how hyperglycemia through HA accumulation prime the vascular wall for cholesterol and leucocyte accumulation and development of atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Carbachol-Mediated Endocytosis of NHE3 Involves a Clathrin-Independent Mechanism Requiring Lipid Rafts and Cdc42

    Directory of Open Access Journals (Sweden)

    Nicholas C. Zachos

    2014-03-01

    Full Text Available Background: In intestinal epithelial cells, acute regulation of the brush border Na+/H+ exchanger, NHE3, usually occurs by changes in endocytosis and/or exocytosis. Constitutive NHE3 endocytosis involves clathrin. Carbachol (CCH, which elevates intracellular Ca2+ ([Ca2+]i, decreases NHE3 activity and stimulates endocytosis; however, the mechanism involved in calcium-mediated endocytosis of NHE3 is unclear. A pool of NHE3 resides in lipid rafts, which contributes to basal, but not cAMP-mediated, NHE3 trafficking, suggesting that an alternative mechanism exists for NHE3 endocytosis. Cdc42 was demonstrated to play an integral role in some cases of cholesterol-sensitive, clathrin-independent endocytosis. Therefore, the current study was designed to test the hypotheses that (1 clathrin-mediated endocytosis (CME is involved in constitutive, but not CCH-mediated, endocytosis of NHE3, and (2 CCH-mediated endocytosis of NHE3 occurs through a lipid raft, activated Cdc42-dependent pathway that does not involve clathrin. Methods: The role of Cdc42 and lipid rafts on NHE3 activity and endocytosis were investigated in polarized Caco-2/BBe cells using pharmacological and shRNA knockdown approaches. Results: Basal NHE3 activity was increased in the presence of CME blockers (chlorpromazine; K+ depletion supporting previous reports that constitutive NHE3 endocytosis is clathrin dependent. In contrast, CCH-inhibition of NHE3 activity was abolished in Caco-2/BBe cells treated with MβCD (to disrupt lipid rafts as well as in Cdc42 knockdown cells but was unaffected by CME blockers. Conclusion: CCH-mediated inhibition of NHE3 activity is not dependent on clathrin and involves lipid rafts and requires Cdc42.

  20. Towards a neurobiological understanding of pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Olesen, Søren S; Krauss, Theresa; Demir, Ihsan Ekin

    2017-01-01

    a chronic pain syndrome. Objectives: We aimed to characterize the neurobiological signature of pain associated with CP and to discuss its implications for treatment strategies. Methods: Relevant basic and clinical articles were selected for review following an extensive search of the literature. Results...... processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification....

  1. Neurobiology of dyslexia : A reinterpretation of the data

    OpenAIRE

    Ramus, Franck

    2004-01-01

    Theories of developmental dyslexia differ on how to best interpret the great variety of symptoms (linguistic, sensory, motor) observed in dyslexic individuals. One approach views dyslexia as a specific phonological deficit, which sometimes co-occurs with a more general sensorimotor syndrome. The present review of the neurobiology of dyslexia shows that neurobiological data are indeed consistent with this view, explaining both how a specific phonological deficit might arise, and why a sensorim...

  2. The Vulnerability of Vessels Involved in the Role of Embolism and Hypoperfusion in the Mechanisms of Ischemic Cerebrovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yong Peng Yu

    2016-01-01

    Full Text Available Accurate definition and better understanding of the mechanisms of stroke are crucial as this will guide the effective care and therapy. In this paper, we review the previous basic and clinical researches on the causes or mechanisms of ischemic cerebrovascular diseases (ICVD and interpret the correlation between embolism and hypoperfusion based on vascular stenosis and arterial intimal lesions. It was suggested that if there is no embolus (dynamic or in situ emboli, there might be no cerebral infarction. Three kinds of different clinical outcomes of TIA were theoretically interpreted based on its mechanisms. We suppose that there is a correlation between embolism and hypoperfusion, and which mechanisms (hypoperfusion or hypoperfusion induced microemboli playing the dominant role in each type of ICVD depends on the unique background of arterial intimal lesions (the vulnerability of vessels. That is to say, the vulnerability of vessels is involved in the role of embolism and hypoperfusion in the mechanisms of ischemic cerebrovascular diseases. This inference might enrich and provide better understandings for the underlying etiologies of ischemic cerebrovascular events.

  3. Study of the involved sorption mechanisms of Cr(VI) and Cr(III) species onto dried Salvinia auriculata biomass.

    Science.gov (United States)

    Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Espinoza-Quiñones, Fernando R; Trigueros, Daniela Estelita Goes; Kroumov, Alexander Dimitrov; Bergamasco, Rosângela

    2017-04-01

    Removal of Cr(VI) species by dried biomass of the aquatic macrophyte Salvinia auriculata was studied in order to understand the involved sorption mechanisms. Kinetic tests were carried out under the conditions such as concentration range of Cr(VI) from 50 to 250 mg L-1 and a temperature of 30 °C. Modification of the biosorbent by the presence of Cr(VI) species was assessed by analysis of its porosity, density and infrared molecular absorption spectrum. A series of experimental approaches involving directed chemical modifications on the biosorbent surface was performed. The main functional groups involved in the sorption mechanisms were identified. The gas sorption analyser was applied and proved that a strong chemical effect of Cr(VI) species on the surface took place, resulting in a leaching organic matter with an obvious and significant increase in the porosity parameters. The intra-particle diffusion model revealed different mass transfer zones into the adsorbent during Cr(VI) removal. New combined Langmuir and Dubinin-Radushkevich isotherm was the best to fit the equilibrium data of Cr(VI) species removal. Finally, Cr(VI) removal was mainly mediated by a redox process where Cr(III) species were formed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neurobiologia das emoções Neurobiology of the emotions

    Directory of Open Access Journals (Sweden)

    Vanderson Esperidião-Antonio

    2008-01-01

    Full Text Available CONTEXTO: A "natureza" das emoções é um dos temas arcaicos do pensamento ocidental, sendo tematizada em diferentes manifestações da cultura como a arte, a religião, a filosofia e a ciência, desde tempos imemoriais. Nos últimos anos, o avanço das neurociências possibilitou a construção de hipóteses para a explicação das emoções, especialmente a partir dos estudos envolvendo o sistema límbico. OBJETIVOS: Apresentar uma discussão atualizada acerca da neurobiologia dos processos relativos às emoções, demarcando suas conexões com o controle neurovegetativo. MÉTODOS: Revisão da literatura e reflexão crítica dos textos obtidos. RESULTADOS: Apresentação das principais estruturas neurais relativas às emoções, suas vias e circuitos de maior relevância, os neurotransmissores implicados, seguindo-se uma discussão sobre as principais emoções. CONCLUSÕES: Espera-se que o presente manuscrito possa contribuir à difusão de idéias sobre o sistema das emoções, as quais poderão motivar futuros estudos capazes de elucidar pontos ainda em aberto.BACKGROUND: The "nature" of emotions is one of the archaic subjects of the western thought, being the theme choice in diverse manifestations of culture - as in art, religion, philosophy and science - from time immemorial. In recent years the advances in Neurosciences have made it possible to build hypotheses to explain emotions, a possibility derived particularly from the studies involving the limbic system. OBJECTIVES: To present an updated discussion about the neurobiology of the processes relating to emotions and their connections with neurovegetative control. METHODS: Review of the literature on the subject. RESULTS: An updated account of the main neural structures related with emotions, the pathways and circuits of greater relevance as well as the regarding neurotransmitters. The neurobiological aspects of emotions are also discussed. DISCUSSION: It is expected that the present

  5. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues.

    Science.gov (United States)

    Cerniglia, L; Zoratto, F; Cimino, S; Laviola, G; Ammaniti, M; Adriani, W

    2017-05-01

    Despite it has not been formally included in DSM-5 as a disorder, 'Internet addiction (IA)' has become a worldwide issue. It can be broadly defined as a non-chemical, behavioral addiction, which involves human-machine interaction. We pinpoint it as an "instrumental" form of social interaction (i.e. mediated by machines), a notion that appears useful for the sake of possible preclinical modeling. The features of Internet use reveals as addictive when this comes at the expense of genuine real-life sociability, with an overlap towards the hikikomori phenomenon (i.e., extreme retreat to one's own room). Due to the specific neuro-developmental plasticity in adolescence, IA poses risks to youths' mental health, and may likely produce negative consequences in everyday life. The thwarted development of adolescents' identity, self-image and adaptive social relationships is discussed: the IA adolescents often suffer loss of control, feelings of anger, symptoms of distress, social withdrawal, and familial conflicts. Further, more severe clinical conditions are also associated to IA, such as dysthymic, bipolar, affective, social-anxiety disorders, as well as major depression. This paper overviews the literature on IA, from neuro-biological, psycho-social and clinical standpoints, taking into account recent debates on diagnostic criteria, nosographic label and assessment tools. Neuroimaging data and neurochemical regulations are illustrated with links to pathogenetic hypotheses, which are amenable to validation through innovative preclinical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Neurobiological problems in long-term deep space flights

    Science.gov (United States)

    Vazquez, M. E.

    Future missions in space may involve long-term travel beyond the magnetic field of the Earth, subjecting astronauts to radiation hazards posed by solar flares and galactic cosmic rays, altered gravitation fields and physiological stress. Thus, it is critical to determine if there will be any reversible or irreversible, detrimental neurological effects from this prolonged exposure to space. A question of particular importance focuses on the long-term effects of the space environment on the central nervous system (CNS) neuroplasticity, with the potential acute and/or delayed effects that such perturbations might entail. Although the short-term effects of microgravity on neural control were studied on previous low earth orbit missions, the late consequences of stress in space, microgravity and space radiation have not been addressed sufficiently at the molecular, cellular and tissue levels. The possibility that space flight factors can interact influencing the neuroplastic response in the CNS looms critical issue not only to understand the ontogeny of the CNS and its functional integrity, but also, ultimately the performance of astronauts in extended space forays. The purpose of this paper is to review the neurobiological modifications that occur in the CNS exposed to the space environment, and its potential consequences for extended deep space flight.

  7. Multiple Mechanisms Are Involved in 6-Gingerol-Induced Cell Growth Arrest and Apoptosis in Human Colorectal Cancer Cells

    Science.gov (United States)

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-01-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by β-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G1 cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of β-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCε and glycogen synthase kinase (GSK)-3β pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G1 cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as β-catenin, PKCε, and GSK-3β pathways. PMID:18058799

  8. [Neurobiological hypothesis relating to connections between psychopathy and childhood maltreatment].

    Science.gov (United States)

    Tarquis, N

    2006-01-01

    This article aims to closely link maltreatment subjected in childhood with the psychopathy, which is characterised by 2 factors: factor one: callousness, lack of guilt, emotional shallowness; factor two: antisocial behaviour, violence and impulsivity. If the parental education system seems to have an effect on the development of "factor two", "factor one" is for the authors of unknown aetiology. I will try to theorize that harsh and chronic maltreatment could be responsible for this emotional impairment which characterizes psychopathic individuals. There's a wealth of literature on the consequences of maltreatment on the brain's development in childhood, which are considered from a stress point of view, some individuals developing a syndrome called "post-traumatic stress disorder": PTSD (Perry, Shore, Van der Kolk, Teicher, Bremner, Carrion, De Bellis, Lanius, Nutt...). With prolonged chronic stress, the hypothalamic-pituitary-adrenal (HPA) axis is hyper-activated, with the resulting release in adrenocorticotropin and cortisol, which involves structural changes, cell atrophy and neuronal loss. According to the authors, there are 2 responses to harsh or chronic stress: dissociation (numbing) which involves the parasympathetic system, and hyperarousal which involves the sympathetic system. One of the worst neurobiological effects of repeated stress is amygdala kindling. Many laboratory studies on physiological alterations of amygdala in rats show that kindling interferes with the acquisition of fear conditioning. Now, fear conditioning is the model on which the abusive education system is based. If this cannot develop, the child lives in the present, reacting to the unconditioned stimulus (US) like blows (with autonomic reactions), but the emotional association between this and the conditioned stimulus (CS) -- like hostile glances or shouting -- could not be registered in the orbital frontal cortex and the conditioned stimulus would not provoke autonomic responses

  9. The neurobiology of offensive aggression: Revealing a modular view.

    Science.gov (United States)

    de Boer, S F; Olivier, B; Veening, J; Koolhaas, J M

    2015-07-01

    Experimental studies aimed at understanding the neurobiology of aggression started in the early 20th century, and by employing increasingly sophisticated tools of functional neuroanatomy (i.e., from electric/chemical lesion and stimulation techniques to neurochemical mapping and manipulations) have provided the important framework for the functional brain circuit organization of aggressive behaviors. Recently, newly emerging technologies for mapping,measuring and manipulating neural circuitry at the level of molecular and genetically defined neuronal subtypes promise to further delineate the precise neural microcircuits mediating the initiation and termination of aggressive behavior, and characterize its dynamic neuromolecular functioning. This paper will review some of the behavioral, neuroanatomical and neurochemical evidence in support of a modular view of the neurobiology of offensive aggressive behavior. Although aggressive behavior likely arises from a specific concerted activity within a distributed neural network across multiple brain regions, emerging opto- and pharmacogenetic neuronal manipulation studies make it clear that manipulation of molecularly-defined neurons within a single node of this global interconnected network seems to be both necessary and sufficient to evoke aggressive attacks. However, the evidence so far also indicates that in addition to behavior-specific neurons there are neuronal systems that should be considered as more general behavioral control modules. The answer to the question of behavioral specificity of brain structures at the level of individual neurons requires a change of the traditional experimental setup. Studies using c-fos expression mapping usually compare the activation patterns induced by for example aggression with a home cage control. However, to reveal the behavioral specificity of this neuronal activation pattern, a comparison with other social and non-social related behaviors such as mating, defensive burying

  10. The neurobiology of speech perception decline in aging.

    Science.gov (United States)

    Bilodeau-Mercure, Mylène; Lortie, Catherine L; Sato, Marc; Guitton, Matthieu J; Tremblay, Pascale

    2015-03-01

    Speech perception difficulties are common among elderlies; yet the underlying neural mechanisms are still poorly understood. New empirical evidence suggesting that brain senescence may be an important contributor to these difficulties has challenged the traditional view that peripheral hearing loss was the main factor in the etiology of these difficulties. Here, we investigated the relationship between structural and functional brain senescence and speech perception skills in aging. Following audiometric evaluations, participants underwent MRI while performing a speech perception task at different intelligibility levels. As expected, with age speech perception declined, even after controlling for hearing sensitivity using an audiological measure (pure tone averages), and a bioacoustical measure (DPOAEs recordings). Our results reveal that the core speech network, centered on the supratemporal cortex and ventral motor areas bilaterally, decreased in spatial extent in older adults. Importantly, our results also show that speech skills in aging are affected by changes in cortical thickness and in brain functioning. Age-independent intelligibility effects were found in several motor and premotor areas, including the left ventral premotor cortex and the right supplementary motor area (SMA). Age-dependent intelligibility effects were also found, mainly in sensorimotor cortical areas, and in the left dorsal anterior insula. In this region, changes in BOLD signal modulated the relationship between age and speech perception skills suggesting a role for this region in maintaining speech perception in older ages. These results provide important new insights into the neurobiology of speech perception in aging.

  11. The Neurobiological Grounding of Persistent Stuttering: from Structure to Function.

    Science.gov (United States)

    Neef, Nicole E; Anwander, Alfred; Friederici, Angela D

    2015-09-01

    Neuroimaging and transcranial magnetic stimulation provide insights into the neuronal mechanisms underlying speech disfluencies in chronic persistent stuttering. In the present paper, the goal is not to provide an exhaustive review of existing literature, but rather to highlight robust findings. We, therefore, conducted a meta-analysis of diffusion tensor imaging studies which have recently implicated disrupted white matter connectivity in stuttering. A reduction of fractional anisotropy in persistent stuttering has been reported at several different loci. Our meta-analysis revealed consistent deficits in the left dorsal stream and in the interhemispheric connections between the sensorimotor cortices. In addition, recent fMRI meta-analyses link stuttering to reduced left fronto-parieto-temporal activation while greater fluency is associated with boosted co-activations of right fronto-parieto-temporal areas. However, the physiological foundation of these irregularities is not accessible with MRI. Complementary, transcranial magnetic stimulation (TMS) reveals local excitatory and inhibitory regulation of cortical dynamics. Applied to a speech motor area, TMS revealed reduced speech-planning-related neuronal dynamics at the level of the primary motor cortex in stuttering. Together, this review provides a focused view of the neurobiology of stuttering to date and may guide the rational design of future research. This future needs to account for the perpetual dynamic interactions between auditory, somatosensory, and speech motor circuits that shape fluent speech.

  12. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas......‐scanning extended X‐ray absorption fine structure spectroscopy enabled the time‐dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution...

  13. Neurobiological effects of exercise on major depressive disorder: A systematic review.

    Science.gov (United States)

    Schuch, Felipe Barreto; Deslandes, Andrea Camaz; Stubbs, Brendon; Gosmann, Natan Pereira; Silva, Cristiano Tschiedel Belem da; Fleck, Marcelo Pio de Almeida

    2016-02-01

    Exercise displays promise as an efficacious treatment for people with depression. However, no systematic review has evaluated the neurobiological effects of exercise among people with major depressive disorder (MDD). The aim of this article was to systematically review the acute and chronic biological responses to exercise in people with MDD. Two authors conducted searches using Medline (PubMed), EMBASE and PsycINFO. From the searches, twenty studies were included within the review, representing 1353 people with MDD. The results demonstrate that a single bout of exercise increases atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), copepetin and growth hormone among people with MDD. Exercise also potentially promotes long-term adaptations of copeptin, thiobarbituric acid reactive species (TBARS) and total mean frequency (TMF). However, there is limited evidence that exercise promotes adaptations on neurogenesis, inflammation biomarkers and brain structure. Associations between depressive symptoms improvement and hippocampus volume and IL-1β were found. Nevertheless, the paucity of studies and limitations presented within, precludes a more definitive conclusion of the underlying neurobiological explanation for the antidepressant effect of exercise in people with MDD. Further trials should utilize appropriate assessments of neurobiological markers in order to build upon the results of our review and further clarify the potential mechanisms associated with the antidepressant effects of exercise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Visual loss in HIV-associated cryptococcal meningitis: A case series and review of the mechanisms involved

    Directory of Open Access Journals (Sweden)

    Anand Moodley

    2015-04-01

    Full Text Available Permanent visual loss is a devastating yet preventable complication of cryptococcal meningitis. Early and aggressive management of cerebrospinal fluid pressure in conjunction with antifungal therapy is required. Historically, the mechanisms of visual loss in cryptococcal meningitis have included optic neuritis and papilloedema. Hence, the basis of visual loss therapy has been steroid therapy and intracranial pressure lowering without clear guidelines. With the use of high-resolution magnetic resonance imaging of the optic nerve, an additional mechanism has emerged, namely an optic nerve sheath compartment syndrome (ONSCS caused by severely elevated intracranial pressure and fungal loading in the peri-optic space. An improved understanding of these mechanisms and recognition of the important role played by raised intracranial pressure allows for more targeted treatment measures and better outcomes. In the present case series of 90 HIV co-infected patients with cryptococcal meningitis, we present the clinical and electrophysiological manifestations of Cryptococcus-induced visual loss and review the mechanisms involved.

  15. Visual loss in HIV-associated cryptococcal meningitis: A case series and review of the mechanisms involved

    Directory of Open Access Journals (Sweden)

    Anand Moodley

    2015-10-01

    Full Text Available Permanent visual loss is a devastating yet preventable complication of cryptococcal meningitis. Early and aggressive management of cerebrospinal fluid pressure in conjunction with antifungal therapy is required. Historically, the mechanisms of visual loss in cryptococcal meningitis have included optic neuritis and papilloedema. Hence, the basis of visual loss therapy has been steroid therapy and intracranial pressure lowering without clear guidelines. With the use of high-resolution magnetic resonance imaging of the optic nerve, an additional mechanism has emerged, namely an optic nerve sheath compartment syndrome (ONSCS caused by severely elevated intracranial pressure and fungal loading in the peri-optic space. An improved understanding of these mechanisms and recognition of the important role played by raised intracranial pressure allows for more targeted treatment measures and better outcomes. In the present case series of 90 HIV co-infected patients with cryptococcal meningitis, we present the clinical and electrophysiological manifestations of Cryptococcus-induced visual loss and review the mechanisms involved.

  16. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved.

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  17. Translation from neurobiological data to music parameters.

    Science.gov (United States)

    Minciacchi, Diego

    2003-11-01

    Composers have explored different ways to use biological information for the realization of music. Throughout the decades, biological findings have been repeatedly indicated as a source of inspiration or a reservoir of extramusical material for musical composition. More radical and fertile are attempts to produce music systematically using biological data in processes called data sonification or biofeedback techniques. Presented here is a novel strategy of translation where populations of neurobiological data are converted into relational structures from which sound objects are generated by flexible and homogeneous control of the sound parameters. All brain data originate from experiments performed with standard anatomical and physiological techniques, and results of studies based on these experimental materials have already been published. During the translation processes, the information for every sound parameter (such as pitch, duration, envelope, and dynamics) is never derived from fixed transcriptions of data properties. Rather, the space and/or the time interrelations of data populations are used to obtain indexes for sound construction. In this way, equivalent sets of information are exploited to model, or sculpt, the different parameters of sound objects. Three examples from the last decade's personal productions are given. The first refers to the microformal aspects of sound aggregation and is based on data from a microstimulation experiment in the motor cortex. The second describes the earliest translation process developed for live performance with conventional instruments and is based on experiments using a conventional tract tracing technique to compare selected spinal-projecting cell populations in two differently organized brains. The third outlines a recent music production for three pianos based on data from experiments using the multiple fluorescent tract-tracing technique to simultaneously label different populations of thalamocortical neurons

  18. Neurobiological Correlates of Coping through Emotional Approach

    Science.gov (United States)

    Master, Sarah L.; Amodio, David M.; Stanton, Annette L.; Yee, Cindy M.; Hilmert, Clayton J.; Taylor, Shelley E.

    2008-01-01

    This investigation considered possible health-related neurobiological processes associated with “emotional approach coping” (EAC), or intentional efforts to identify, process, and express emotions surrounding stressors. It was hypothesized that higher dispositional use of EAC strategies would be related to neural activity indicative of greater trait approach motivational orientation and to lower proinflammatory cytokine and cortisol responses to stress. To assess these relationships, 46 healthy participants completed a questionnaire assessing the two components of EAC (i.e., emotional processing and emotional expression), and their resting frontal cortical asymmetry was measured using electroencephalography (EEG). A subset (N = 22) of these participants’ levels of the soluble receptor for tumor necrosis factor-alpha (sTNFαRII), interleukin-6 (IL-6), and cortisol (all obtained from oral fluids) were also assessed before and after exposure to an acute laboratory stressor. Consistent with predictions, higher reported levels of emotional expression were significantly associated with greater relative left-sided frontal EEG asymmetry, indicative of greater trait approach motivation. Additionally, people who scored higher on EAC, particularly the emotional processing component, tended to show a less-pronounced TNF-α stress response. EAC was unrelated to levels of IL-6 and cortisol. Greater left-sided frontal EEG asymmetry was significantly related to lower baseline levels of IL-6 and to lower stress-related levels of sTNFαRII, and was marginally related to lower stress-related levels of IL-6. The findings suggest that the salubrious effects of EAC strategies for managing stress may be linked to an approach-oriented neurocognitive profile and to well-regulated proinflammatory cytokine responses to stress. PMID:18558470

  19. Neurobiology and clinical implications of lucid dreaming.

    Science.gov (United States)

    Mota-Rolim, Sérgio A; Araujo, John F

    2013-11-01

    Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversial. Since the frontal lobe plays a role in self-consciousness, working memory and attention, here we hypothesize that LD is associated with increased frontal activity during REMS. A possible way to test this hypothesis is to check whether transcranial magnetic or electric stimulation of the frontal region during REMS triggers LD. We further suggest that psychosis and LD are opposite phenomena: LD as a physiological awakening while dreaming due to frontal activity, and psychosis as a pathological intrusion of dream features during wake state due to hypofrontality. We further suggest that LD research may have three main clinical implications. First, LD could be important to the study of consciousness, including its pathologies and other altered states. Second, LD could be used as a therapy for recurrent nightmares, a common symptom of depression and post-traumatic stress disorder. Finally, LD may allow for motor imagery during dreaming with possible improvement of physical rehabilitation. In all, we believe that LD research may clarify multiple aspects of brain functioning in its physiological, altered and pathological states. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Alcohol and Suicide: Neurobiological and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Leo Sher

    2006-01-01

    Full Text Available Alcohol, primarily in the form of ethyl alcohol (ethanol, has occupied an important place in the history of humankind for at least 8,000 years. In most Western societies, at least 90% of people consume alcohol at some time during their lives, and 30% or more of drinkers develop alcohol-related problems. Severe alcohol-related life impairment, alcohol dependence (alcoholism, is observed at some time during their lives in about 10% of men and 3—5% of women. An additional 5—10% of each sex develops persistent, but less intense, problems that are diagnosed as alcohol abuse. It this review, neurobiological aspects of suicidal behavior in alcoholism is discussed. In individuals with comorbid depression and alcoholism, greater serotonergic impairment may be associated with higher risk of completed suicide. Dopaminergic dysfunction may play an important role in the pathophysiology of suicidal behavior in alcoholism. Brain damage and neurobehavioral deficits are associated with alcohol use disorders and may contribute to suicidal behavior in persons with alcohol dependence or abuse. Aggression/impulsivity and alcoholism severity affect risk for suicide among individuals with alcoholism. Major depressive episodes and stressful life events particularly, partner-relationship disruptions, may precipitate suicidal behavior in individuals with alcohol use disorders. Alcohol misuse and psychosocial adversity can combine to increase stress on the person, and, thereby, potentially, increase the risk for suicidal behavior. The management of suicidal patients with alcohol use disorders is also discussed. It is to be hoped that the efforts of clinicians will reduce morbidity and mortality associated with alcohol misuse.

  1. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy

    Science.gov (United States)

    Cottingham, Christopher; Wang, Qin

    2012-01-01

    Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction. PMID:22910678

  2. The mechanism of metastasis suppressor gene nm23-H1 involving in the Ras signaling of lung cancer

    Directory of Open Access Journals (Sweden)

    Xueqin YANG

    2008-10-01

    Full Text Available Background and objective It has been confirmed that nm23-H1 gene is one of the tumor metastasis suppressor genes. Up to now, the exact mechanism of nm23-H1 gebe is uncertain. The aim of this study the mechanism of metastasis suppressor gene nm23-H1 involving in the Ras signaling of lung cancer. Methods The wild and mutant typeof pEGFP-nm23-H1 plasmids [WT (wild type, H118F, S120G, P96S, S44A] were transfected into the L9981 lung cancer cell lines through liposome method, and the complex of KSR and nm23-H1 was detected through co-immunoprecipitation and Western blot assay. Results The human KSR could be detected in the nm23-H1 immunoprecipitations in all the trasfected L9981 lung cancer cell lines. But no significant difference of KSR expression was found in the wild and mutantnm23-H1 trasfected cell lines (F =0.190, P =0.938. Conclusion There was a close interaction between nm23-H1 and KSR, which was independent of the nm23-H1 mutation. Nm23-H1 involving in the Ras signaling of lung cancer may be through the KSR gene.

  3. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms.

    Science.gov (United States)

    Ali, Asad; Cui, Xiaoying; Eyles, Darryl

    2018-01-01

    Autism is a neurodevelopmental disease that presents in early life. Despite a considerable amount of studies, the neurobiological mechanisms underlying autism remain obscure. Both genetic and environmental factors are involved in the development of autism. Vitamin D deficiency is emerging as a consistently reported risk factor in children. One reason for the prominence now being given to this risk factor is that it would appear to interact with several other epidemiological risk factors for autism. Vitamin D is an active neurosteroid and plays crucial neuroprotective roles in the developing brain. It has important roles in cell proliferation and differentiation, immunomodulation, regulation of neurotransmission and steroidogenesis. Animal studies have suggested that transient prenatal vitamin D deficiency is associated with altered brain development. Here we review the potential neurobiological mechanisms linking prenatal vitamin D deficiency and autism and also discuss what future research targets must now be addressed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    Science.gov (United States)

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved.

    Science.gov (United States)

    Gao, Yonglin; Li, Chunmei; Shen, Jingyu; Yin, Huaxian; An, Xiulin; Jin, Haizhu

    2011-08-01

    Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in mice and rats. Animals were administered different doses of tartrazine for a period of 30 d and were evaluated by open-field test, step-through test, and Morris water maze test, respectively. Furthermore, the biomarkers of the oxidative stress and pathohistology were also measured to explore the possible mechanisms involved. The results indicated that tartrazine extract significantly enhanced active behavioral response to the open field, increased the escape latency in Morris water maze test and decreased the retention latency in step-through tests. The decline in the activities of catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) as well as a rise in the level of malonaldehyde (MDA) were observed in the brain of tartrazine-treated rats, and these changes were associated with the brain from oxidative damage. The dose levels of tartrazine in the present study produced a few adverse effects in learning and memory functions in animals. The mechanisms might be attributed to promoting lipid peroxidation products and reactive oxygen species, inhibiting endogenous antioxidant defense enzymes and the brain tissue damage. Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. Since the last assessment carried out by the Joint FAO/WHO Expert Committee on Food Additives in 1964, many new studies have been conducted. However, there is a little information about the effects on learning and memory performance. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in animals and its possible mechanism involved. Based on our results, we believe that more extensive assessment of food additives in current use is warranted. © 2011 Institute of Food

  6. Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Arlek M González-Jamett

    Full Text Available Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin's ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.

  7. Opioid Mechanism Involvement in the Synergism Produced by the Combination of Diclofenac and Caffeine in the Formalin Model

    Science.gov (United States)

    Flores-Ramos, José María; Díaz-Reval, M. Irene

    2013-01-01

    Analgesics can be administered in combination with caffeine for improved analgesic effectiveness in a process known as synergism. The mechanisms by which these combinations produce synergism are not yet fully understood. The aim of this study was to analyze whether the administration of diclofenac combined with caffeine produced antinociceptive synergism and whether opioid mechanisms played a role in this event. The formalin model was used to evaluate the antinociception produced by the oral administration of diclofenac, caffeine, or their combination. Opioid involvement was analyzed through intracerebroventricular (i.c.v.) administration of naloxone followed by the oral administration of the study drugs. Diclofenac presented a dose-dependent effect, with a mean effective dose (ED50) of 6.7 mg/kg. Caffeine presented an analgesic effect with a 17–36% range. The combination of subeffective doses of each of the two drugs presented the greatest synergism with an effect of 57.7 ± 5.6%. The maximal antinociceptive effect was obtained with the combination of 10.0 mg/kg diclofenac and 1.0 mg/kg of caffeine, with an effect of 76.7 ± 5.6%. The i.c.v. administration of naloxone inhibited the effect of diclofenac, both separately and combined. In conclusion, caffeine produces antinociceptive synergism when administered in combination with diclofenac, and this synergism is partially mediated by opioid mechanisms at the central level. PMID:27335871

  8. Towards a neurobiological understanding of alexithymia

    Directory of Open Access Journals (Sweden)

    Nicolás Meza-Concha

    2017-05-01

    Full Text Available Resumen Si bien la literatura especializada sobre la etiología de la alexitimia es controvertida, la investigación neurobiológica sobre el fenómeno ha demostrado importantes avances. El objetivo de esta revisión es analizar la evidencia disponible en relación a las bases neurofisiológicas de la alexitimia. Se realizó una revisión exhaustiva de artículos disponibles en MEDLINE/PubMed, EBSCO y SciELO. Inicialmente, se vinculó a la alexitimia con una conexión cerebral interhemisférica reducida. Desde la perspectiva traumática infantil, la corteza prefrontal derecha y la red neuronal por defecto experimentarían alteraciones, primero hipermetabólicas (desregulación dopaminérgica y glutamatérgica y luego hipometabólicas-disociativas (desregulación serotoninérgica y opioide, resultando en una consciencia interoceptiva y emocional distorsionada. Las neuronas espejo son el sustrato neurobiológico fundamental de la teoría de la mente y la cognición social, intrínsecamente vinculadas con la alexitimia, involucrando cortezas como la parietal, la temporal, la premotora, la cingulada y el giro frontal inferior. Otras estructuras involucradas son amígdala (expresión facial y reactividad emocional, ínsula (interocepción, integración emocional y empatía y cerebelo (cerebelo límbico y consciencia somatosensorial. La genética molecular ha detectado polimorfismos en el gen del transportador de serotonina, en los genes de las enzimas del metabolismo dopaminérgico y del factor neurotrófico derivado del cerebro, mientras que el rol de la oxitocina es controvertido. En conclusión, numerosos estudios demuestran contundentemente la existencia de una neurobiología subyacente a la alexitimia. Sin embargo, la investigación es aún poco concluyente y debe considerar los factores ambientales, traumáticos, sociales y psicológicos que contribuyen al origen del fenómeno.

  9. [Neurobiological consequences of child sexual abuse: a systematic review].

    Science.gov (United States)

    Pereda, Noemí; Gallardo-Pujol, David

    2011-01-01

    The results of several studies suggest that there is a critical timeframe during development in which experiences of maltreatment and sexual abuse may lead to permanent or long-lasting neurobiological changes that particularly affect the hypothalamus-pituitary-adrenal axis response. The aim of the present study was to provide an updated review on the main neurobiological consequences of child sexual abuse. We selected articles published between January 1999 and January 2010 in English or Spanish that focused on the neurobiological consequences of child sexual abuse available through Medline, Scopus and Web of Science. We also examined the references in published articles on the consequences of sexual victimization in childhood. In this review we included 34 studies on neurobiological consequences, indicating different kinds of effects, namely: neuroendocrine, structural, functional and neuropsychological consequences, which affect a large number of victims. The existing body of work on the neurobiological consequences of maltreatment shows the need to consider maltreatment and child sexual abuse as health problems that affect different areas of victims' lives, which would in turn favor the development of intervention and treatment programs that take these multiple effects into account. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  10. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  11. Resistance to coumaphos and diazinon in Boophilus microplus (Acari: Ixodidae) and evidence for the involvement of an oxidative detoxification mechanism.

    Science.gov (United States)

    Li, Andrew Y; Davey, Ronald B; Miller, Robert J; George, John E

    2003-07-01

    The levels of resistance to two organophosphate acaricides, coumaphos and diazinon, in several Mexican strains of Boophilus microplus (Canestrini) were evaluated using the FAO larval packet test. Regression analysis of LC50 data revealed a significant cross-resistance pattern between those two acaricides. Metabolic mechanisms of resistance were investigated with synergist bioassays. Piperonyl butoxide (PBO) reduced coumaphos toxicity in susceptible strains, but synergized coumaphos toxicity in resistant strains. There was a significant correlation between PBO synergism ratios and the coumaphos resistance ratios. The results suggest that an enhanced cytochrome P450 monooxygenase (cytP450)-mediated detoxification mechanism may exist in the resistant strains, in addition to the cytP450-mediated metabolic pathway that activates coumaphos. PBO failed to synergize diazinon toxicity in resistant strains, suggesting the cytP450 involved in detoxification were specific. Triphenylphosphate (TPP) synergized toxicity of both acaricides in both susceptible and resistant strains, and there was no correlation between TPP synergism ratios and the LC50 estimates for either acaricide. Esterases may not play a major role in resistance to coumaphos and diazinon in those strains. Bioassays with diethyl maleate (DEM) revealed a significant correlation between DEM synergism ratios and LC50 estimates for diazinon, suggesting a possible role for glutathione S-transferases in diazinon detoxification. Resistance to coumaphos in the Mexican strains of B. microplus was likely to be conferred by both a cytP450-mediated detoxification mechanism described here and the mechanism of insensitive acetylcholinesterases reported elsewhere. The results of this study also underscore the potential risk of coumaphos resistance in B. microplus from Mexico to the U.S. cattle fever tick eradication program.

  12. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...... was observed in BL cases, compared to normal controls. More interestingly, hsa-mir-34b was found to be down-regulated only in BL cases that were negative for MYC translocation, suggesting that this event might be responsible for c-Myc deregulation in such cases. This hypothesis was further confirmed by our...

  13. Neurobiological determinism: human freedom of choice and criminal responsibility.

    Science.gov (United States)

    Urbaniok, Frank; Laubacher, Arja; Hardegger, Judith; Rossegger, Astrid; Endrass, Jérôme; Moskvitin, Konstantin

    2012-04-01

    Several authors have argued that criminal behavior is generally caused by neurobiological deficits. This assumption not only questions the concept of free will and a person's responsibility for his or her own actions but also the principle of guilt in criminal law. When critically examining the current state of research, it becomes apparent that the results are not sufficient to support the existence of a universally valid neurobiological causality of criminal behavior. Moreover, the assumption of total neurobiological determination of human behavior and the impossibility of individual responsibility are characterized by both faulty empiricism and methodical misconceptions. The principle of relative determinism and the analysis of the offender's behavior at the time of the offense thus remain the central and cogent approach to the assessment of criminal responsibility.

  14. Neurobiological Evidence for the Primacy of Mania Hypothesis.

    Science.gov (United States)

    Kotzalidis, Georgios D; Rapinesi, Chiara; Savoja, Valeria; Cuomo, Ilaria; Simonetti, Alessio; Ambrosi, Elisa; Panaccione, Isabella; Gubbini, Silvia; De Rossi, Pietro; De Chiara, Lavinia; Janiri, Delfina; Sani, Gabriele; Koukopoulos, Alexia E; Manfredi, Giovanni; Napoletano, Flavia; Caloro, Matteo; Pancheri, Lucia; Puzella, Antonella; Callovini, Gemma; Angeletti, Gloria; Del Casale, Antonio

    2017-04-01

    Athanasios Koukopoulos proposed the primacy of mania hypothesis (PoM) in a 2006 book chapter and later, in two peer-reviewed papers with Nassir Ghaemi and other collaborators. This hypothesis supports that in bipolar disorder, mania leads to depression, while depression does not lead to mania. To identify evidence in literature that supports or falsifies this hypothesis. We searched the medical literature (PubMed, Embase, PsycINFO, and the Cochrane Library) for peer-reviewed papers on the primacy of mania, the default mode function of the brain in normal people and in bipolar disorder patients, and on illusion superiority until 6 June, 2016. Papers resulting from searches were considered for appropriateness to our objective. We adopted the PRISMA method for our review. The search for consistency with PoM was filtered through the neurobiological results of superiority illusion studies. Out of a grand total of 139 records, 59 were included in our analysis. Of these, 36 were of uncertain value as to the primacy of mania hypothesis, 22 favoured it, and 1 was contrary, but the latter pooled patients in their manic and depressive phases, so to invalidate possible conclusions about its consistency with regard to PoM. All considered studies were not focused on PoM or superiority illusion, hence most of their results were, as expected, unrelated to the circuitry involved in superiority illusion. A considerable amount of evidence is consistent with the hypothesis, although indirectly so. Only few studies compared manic with depressive phases, with the majority including patients in euthymia. It is possible that humans have a natural tendency for elation/optimism and positive self-consideration, that are more akin to mania; the depressive state could be a consequence of frustrated or unsustainable mania. This would be consistent with PoM.

  15. Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation.

    Science.gov (United States)

    Leo, Lanfranco; Weissmann, Carina; Burns, Matthew; Kang, Minsu; Song, Yuyu; Qiang, Liang; Brady, Scott T; Baas, Peter W; Morfini, Gerardo

    2017-06-15

    Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    Energy Technology Data Exchange (ETDEWEB)

    López-Canales, J.S. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico); Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C. [Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico)

    2015-03-27

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca{sup 2+}-activated K{sup +} channels were involved in this effect.

  17. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Directory of Open Access Journals (Sweden)

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  18. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    Directory of Open Access Journals (Sweden)

    Valérie Wolff

    2015-01-01

    Full Text Available Cannabis has potential therapeutic use but tetrahydrocannabinol (THC, its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities, Vsucc (complexes II, III, and IV activities, Vtmpd (complex IV activity, together with mitochondrial coupling (Vmax/V0, were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2 production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P<0.0001, Vsucc (−65%; P<0.0001, and Vtmpd (−3.5%; P<0.001. Mitochondrial coupling (Vmax/V0 was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P<0.001. Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P<0.05 and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P<0.001. Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient’s vulnerability to stroke.

  19. Gastroprotective and ulcer healing effects of hydroethanolic extract of leaves of Caryocar coriaceum: Mechanisms involved in the gastroprotective activity.

    Science.gov (United States)

    de Lacerda Neto, Luis Jardelino; Ramos, Andreza Guedes Barbosa; Santos Sales, Valterlucio; de Souza, Severino Denicio Gonçalves; Dos Santos, Antonia Thassya Lucas; de Oliveira, Larissa Rolim; Kerntopf, Marta Regina; de Albuquerque, Thais Rodrigues; Coutinho, Henrique Douglas Melo; Quintans-Júnior, Lucindo Jose; Wanderley, Almir Gonçalves; de Menezes, Irwin Rose Alencar

    2017-01-05

    This work aimed to determine the chemical fingerprint of hydroethanolic extract of leaves of Caryocar coriaceum (HELCC) and the gastroprotective activity. The chemical fingerprint of HELCC was analyzed by HPLC-DAD, to quantify total phenols and flavonoids were carried out by Folin-Ciocalteu reagent and aluminum chloride assay, while in vitro antioxidant activity was evaluated by the DPPH method. The methods used to determine pharmacological activity were: gastroprotective screening test in classical models of induced acute and chronic gastric lesions and physical barrier test. Further assays were performed to demonstrate the involvement of NO, prostaglandins, ATP-dependent potassium channels, TRPV, noradrenergic α2 receptors, histamines, and opioids. The DPPH method demonstrated the antioxidant activity of the extract, in vitro, explained by the presence of polyphenols and flavonoids. Oral administration of the extract, previously dissolved in deionized water, at a dose of 100 mg/kg decreased the lesions induced by indomethacin, acidified ethanol, ethanol and acetic acid by 75.0, 72.8, 69.4 and 86.2% respectively. It was demonstrated that opioid receptors, α2-adrenergic receptors and primary afferent neurons sensitive to capsaicin were involved in the mechanism of gastric protection, in addition to the contribution of NO and prostaglandins. The results show that extract is a promising candidate for the treatment of gastric ulcers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Mechanisms involved in antinociception induced by a polysulfated fraction from seaweed Gracilaria cornea in the temporomandibular joint of rats.

    Science.gov (United States)

    Coura, Chistiane Oliveira; Chaves, Hellíada Vasconcelos; do Val, Danielle Rocha; Vieira, Lorena Vasconcelos; Silveira, Felipe Dantas; Dos Santos Lopes, Fernanda Maxcynne Lino; Gomes, Francisco Isaac Fernandes; Frota, Annyta Fernandes; Souza, Ricardo Basto; Clemente-Napimoga, Juliana Trindade; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2017-04-01

    Temporomandibular disorder is a common clinical condition involving pain in the temporomandibular joint (TMJ) region. This study assessed the antinociceptive effects of a polysulfated fraction from the red seaweed Gracilaria cornea (Gc-FI) on the formalin-induced TMJ hypernociception in rats and investigated the involvement of different mechanisms. Male Wistar rats were pretreated with injection (sc) of saline or Gc-FI 1h before intra- TMJ injection of formalin to evaluate the nociception. The results showed that pretreatment with Gc-FI significantly reduced formalin-induced nociceptive behavior. Moreover, the antinociceptive effect of the Gc-FI was blocked by naloxone (a non-selective opioid antagonist), suggesting the involvement of opioids selective receptors. Thus, the pretreatment with selective opioids receptors antagonists, reversed the antinociceptive effect of the Gc-FI in the TMJ. The Gc-FI antinociceptive effect depends on the nitric oxide/cyclic GMP/protein kinase G/ATP-sensitive potassium channel (NO/cGMP/PKG/K(+)ATP) pathway because it was prevented by pretreatment with inhibitors of nitric oxide synthase, guanylate cyclase enzyme, PKG and a K(+)ATP blocker. In addition, after inhibition with a specific heme oxygenase-1 (HO-1) inhibitor, the antinociceptive effect of the Gc-FI was not observed. Collectively, these data suggest that the antinociceptive effect induced by Gc-FI is mediated by μ/δ/κ-opioid receptors and by activation NO/cGMP/PKG/K(+)ATP channel pathway, besides of HO-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. IAP Suppression of Apoptosis Involves Distinct Mechanisms: the TAK1/JNK1 Signaling Cascade and Caspase Inhibition

    Science.gov (United States)

    Sanna, M. Germana; Correia, Jean da Silva; Ducrey, Odile; Lee, Jongdae; Nomoto, Ken; Schrantz, Nicolas; Deveraux, Quinn L.; Ulevitch, Richard J.

    2002-01-01

    The antiapoptotic properties of the inhibitor of apoptosis (IAP) family of proteins have been linked to caspase inhibition. We have previously described an alternative mechanism of XIAP inhibition of apoptosis that depends on the selective activation of JNK1. Here we report that two other members of the IAP family, NAIP and ML-IAP, both activate JNK1. Expression of catalytically inactive JNK1 blocks NAIP and ML-IAP protection against ICE- and TNF-α-induced apoptosis, indicating that JNK1 activation is necessary for the antiapoptotic effect of these proteins. The MAP3 kinase, TAK1, appears to be an essential component of this antiapoptotic pathway since IAP-mediated activation of JNK1, as well as protection against TNF-α- and ICE-induced apoptosis, is inhibited when catalytically inactive TAK1 is expressed. In addition, XIAP, NAIP, and JNK1 bind to TAK1. Importantly, expression of catalytically inactive TAK1 did not affect XIAP inhibition of caspase activity. These data suggest that XIAP's antiapoptotic activity is achieved by two separate mechanisms: one requiring TAK1-dependent JNK1 activation and the second involving caspase inhibition. PMID:11865055

  2. The Self-Organizing Psyche: Nonlinear and Neurobiological Contributions to Psychoanalysis

    Science.gov (United States)

    Stein, A. H.

    Sigmund Freud attempted to align nineteenth century biology (and the dynamically conservative, continuous, Newtonian mechanics that underlie it) with discontinuous conscious experience. His tactics both set the future course for psychoanalytic development and introduced seemingly intractable complications into its metapsychology. In large part, these arose from what we now recognize were biological errors and dynamical oversimplifications amid his physical assumptions. Their correction, brought about by integrating nonlinear dynamics and neuro-biological research findings with W. Bion's reading of metapsychology, fundamentally supports a psychoanalysis based upon D. W. Winnicott's ideas surrounding play within transitional space.

  3. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders.

    Science.gov (United States)

    Vollenweider, Franz X; Kometer, Michael

    2010-09-01

    After a pause of nearly 40 years in research into the effects of psychedelic drugs, recent advances in our understanding of the neurobiology of psychedelics, such as lysergic acid diethylamide (LSD), psilocybin and ketamine have led to renewed interest in the clinical potential of psychedelics in the treatment of various psychiatric disorders. Recent behavioural and neuroimaging data show that psychedelics modulate neural circuits that have been implicated in mood and affective disorders, and can reduce the clinical symptoms of these disorders. These findings raise the possibility that research into psychedelics might identify novel therapeutic mechanisms and approaches that are based on glutamate-driven neuroplasticity.

  4. Avances en neurobiología de la conducta

    Directory of Open Access Journals (Sweden)

    Luis Alberto Raggi

    2013-07-01

    Full Text Available La experiencia diaria nos enseña que el cerebro tiene una notable capacidad de adaptarse a cambios ambientales,de almacenar memoria y determinar la conducta. Pero hasta que punto esta adaptación del cerebroadulto, depende de reordcnamicntos en las conexiones entre las células nerviosas, sigue siendo uno de losmayores desafios de la neurobiología moderna. Los mecanismos sioápticos de la plasticidad en la cortezaadulta, dependiente de la experiencia, aún se desconocen. En esta breve revisión se comunican algunos delos avances en la neurobiología de la plasticidad neuronal.

  5. Neurobiology of dyslexia: a reinterpretation of the data.

    Science.gov (United States)

    Ramus, Franck

    2004-12-01

    Theories of developmental dyslexia differ on how to best interpret the great variety of symptoms (linguistic, sensory and motor) observed in dyslexic individuals. One approach views dyslexia as a specific phonological deficit, which sometimes co-occurs with a more general sensorimotor syndrome. This article on the neurobiology of dyslexia shows that neurobiological data are indeed consistent with this view, explaining both how a specific phonological deficit might arise, and why a sensorimotor syndrome should be significantly associated with it. This new conceptualisation of the aetiology of dyslexia could generalize to other neurodevelopmental disorders, and might further explain heterogeneity within each disorder and comorbidity between disorders.

  6. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available BACKGROUND: Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. CONCLUSIONS/SIGNIFICANCE: The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  7. Addicted to palatable foods: comparing the neurobiology of Bulimia Nervosa to that of drug addiction.

    Science.gov (United States)

    Hadad, Natalie A; Knackstedt, Lori A

    2014-05-01

    Bulimia nervosa (BN) is highly comorbid with substance abuse and shares common phenotypic and genetic predispositions with drug addiction. Although treatments for the two disorders are similar, controversy remains about whether BN should be classified as addiction. Here, we review the animal and human literature with the goal of assessing whether BN and drug addiction share a common neurobiology. Similar neurobiological features are present following administration of drugs and bingeing on palatable food, especially sugar. Specifically, both disorders involve increases in extracellular dopamine (DA), D1 binding, D3 messenger RNA (mRNA), and ΔFosB in the nucleus accumbens (NAc). Animal models of BN reveal increases in ventral tegmental area (VTA) DA and enzymes involved in DA synthesis that resemble changes observed after exposure to addictive drugs. Additionally, alterations in the expression of glutamate receptors and prefrontal cortex activity present in human BN or following sugar bingeing in animals are comparable to the effects of addictive drugs. The two disorders differ in regards to alterations in NAc D2 binding, VTA DAT mRNA expression, and the efficacy of drugs targeting glutamate to treat these disorders. Although additional empirical studies are necessary, the synthesis of the two bodies of research presented here suggests that BN shares many neurobiological features with drug addiction. While few Food and Drug Administration-approved options currently exist for the treatment of drug addiction, pharmacotherapies developed in the future, which target the glutamate, DA, and opioid systems, may be beneficial for the treatment of both BN and drug addiction.

  8. Neurokinetics: The Dynamics of Neurobiology in Vivo

    DEFF Research Database (Denmark)

    Gjedde, Albert; Bauer, William R.; Wong, Dean F.

    This book summarizes 20 years of work on the kinetics of blood-brain transfer and metabolism mechanisms in mammalian brain. The substances affiliated with these mechanisms include glucose, amino acids, monocarboxylic acids, and oxygen. These substances are important to energy metabolism and neuro...

  9. Formation of conical fractures in sedimentary basins: Experiments involving pore fluids and implications for sandstone intrusion mechanisms

    Science.gov (United States)

    Mourgues, R.; Bureau, D.; Bodet, L.; Gay, A.; Gressier, J. B.

    2012-01-01

    a flat cone. We make use of a P.I.V. (Particle Imaging Velocimetry) technique to analyse plastic deformation, showing that these inclined fractures are opened in mixed modes. Close to the surface, they change into steep shear bands where fluids can infiltrate. The final morphology of the fracture network is very similar to the common tripartite architecture of various injection complexes, indicating that different mechanisms may be involved in the formation of dykes. Feeder dykes under the sill zones may open as tensile fractures, while overlying dykes may be guided by the deformation induced by the growth of sills. These deformation conditions may also favour the formation of fluid escape structures and pockmarks.

  10. Neurovascular Unit Dysfunction and Blood–Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Souhel Najjar

    2017-05-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by delusions, hallucinations, negative symptoms, as well as behavioral and cognitive dysfunction. It is a pathoetiologically heterogeneous disorder involving complex interrelated mechanisms that include oxidative stress and neuroinflammation. Neurovascular endothelial dysfunction and blood–brain barrier (BBB hyperpermeability are established mechanisms in neurological disorders with comorbid psychiatric symptoms such as epilepsy, traumatic brain injury, and Alzheimer’s disease. Schizophrenia is frequently comorbid with medical conditions associated with peripheral vascular endothelial dysfunction, such as metabolic syndrome, cardiovascular disease, and diabetes mellitus. However, the existence and etiological relevance of neurovascular endothelial dysfunction and BBB hyperpermeability in schizophrenia are still not well recognized. Here, we review the growing clinical and experimental evidence, indicating that neurovascular endotheliopathy and BBB hyperpermeability occur in schizophrenia patients. We present a theoretical integration of human and animal data linking oxidative stress and neuroinflammation to neurovascular endotheliopathy and BBB breakdown in schizophrenia. These abnormalities may contribute to the cognitive and behavioral symptoms of schizophrenia via several mechanisms involving reduced cerebral perfusion and impaired homeostatic processes of cerebral microenvironment. Furthermore, BBB disruption can facilitate interactions between brain innate and peripheral adaptive immunity, thereby perpetuating harmful neuroimmune signals and toxic neuroinflammatory responses, which can also contribute to the symptoms of schizophrenia. Taken together, these findings support the “mild encephalitis” hypothesis of schizophrenia. If neurovascular abnormalities prove to be etiologically relevant to the neurobiology of schizophrenia, then targeting these abnormalities may represent a

  11. Neurobiological changes after intervention in individuals with anti-social behaviour: A literature review

    NARCIS (Netherlands)

    Cornet, L.J.M.; de Kogel, C.H.; Nijman, H.L.I.; Raine, A.; van der Laan, P.H.

    2015-01-01

    Background: A neurobiological perspective has become accepted as a valuable approach for understanding anti-social behaviour. There is literature to suggest that, in non-offending populations, psychological treatments affect both neurobiological measures and clinical presentation. A theoretical

  12. Neurobiological changes after intervention in individuals with anti-social behaviour: A literature review

    NARCIS (Netherlands)

    Cornet, L.J.M.; Kogel, C.H. de; Nijman, H.L.I.; Raine, A.; Laan, P.H. van der

    2015-01-01

    Background A neurobiological perspective has become accepted as a valuable approach for understanding anti-social behaviour. There is literature to suggest that, in non-offending populations, psychological treatments affect both neurobiological measures and clinical presentation. A theoretical

  13. What artificial grammar learning reveals about the neurobiology of syntax

    NARCIS (Netherlands)

    Petersson, K.M.; Vasiliki, F.; Hagoort, P.

    2012-01-01

    In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple

  14. What artificial grammar learning reveals about the neurobiology of syntax

    NARCIS (Netherlands)

    Petersson, K.M.; Folia, V.; Hagoort, Peter

    2012-01-01

    : In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple

  15. What Artificial Grammar Learning Reveals about the Neurobiology of Syntax

    Science.gov (United States)

    Petersson, Karl-Magnus; Folia, Vasiliki; Hagoort, Peter

    2012-01-01

    In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple right-linear unification grammar in an implicit artificial…

  16. Early Adverse Experiences and the Neurobiology of Facial Emotion Processing

    Science.gov (United States)

    Moulson, Margaret C.; Fox, Nathan A.; Zeanah, Charles H.; Nelson, Charles A.

    2009-01-01

    To examine the neurobiological consequences of early institutionalization, the authors recorded event-related potentials (ERPs) from 3 groups of Romanian children--currently institutionalized, previously institutionalized but randomly assigned to foster care, and family-reared children--in response to pictures of happy, angry, fearful, and sad…

  17. Feather pecking and monoamines - a behavioral and neurobiological approach

    NARCIS (Netherlands)

    Kops, M.S.

    2014-01-01

    Severe feather pecking (SFP) remains one of the major welfare issues in laying hens. SFP is the pecking at and pulling out of feathers, inflicting damage to the plumage and skin of the recipient. The neurobiological profile determining the vulnerability of individual hens to develop into a severe

  18. Neglected but Exciting Concepts in Developmental and Neurobiological Psychology

    Science.gov (United States)

    Jordan, Evan M.; Thomas, David G.

    2017-01-01

    This review provides an evaluative overview of five concepts specific to developmental and neurobiological psychology that are found to be largely overlooked in current textbooks. A sample of 19 introductory psychology texts was surveyed to develop a list, including glial cell signaling, grandmother cells, memory reconsolidation, brain plasticity,…

  19. Dynamics of multi-articular coordination in neurobiological systems.

    Science.gov (United States)

    Chow, Jia Yi; Davids, Keith; Button, Chris; Rein, Robert; Hristovski, Robert; Koh, Michael

    2009-01-01

    Although previous work in nonlinear dynamics on neurobiological coordination and control has provided valuable insights from studies of single joint movements in humans, researchers have shown increasing interest in coordination of multi-articular actions. Multi-articular movement models have provided valuable insights on neurobiological systems conceptualised as degenerate, adaptive complex systems satisfying the constraints of dynamic environments. In this paper, we overview empirical evidence illustrating the dynamics of adaptive movement behavior in a range of multi-articular actions including kicking, throwing, hitting and balancing. We model the emergence of creativity and the diversity of neurobiological action in the meta-stable region of self organising criticality. We examine the influence on multi-articular actions of decaying and emerging constraints in the context of skill acquisition. We demonstrate how, in this context, transitions between preferred movement patterns exemplify the search for and adaptation of attractor states within the perceptual motor workspace as a function of practice. We conclude by showing how empirical analyses of neurobiological coordination and control have been used to establish a nonlinear pedagogical framework for enhancing acquisition of multi-articular actions.

  20. Sex Influences on the Neurobiology of Learning and Memory

    Science.gov (United States)

    Andreano, Joseph M.; Cahill, Larry

    2009-01-01

    In essentially every domain of neuroscience, the generally implicit assumption that few, if any, meaningful differences exist between male and female brain function is being challenged. Here we address how this development is influencing studies of the neurobiology of learning and memory. While it has been commonly held that males show an…

  1. Matching the Neurobiology of Learning to Teaching Principles

    Science.gov (United States)

    Moffett, Nelle; Fleisher, Steven C.

    2013-01-01

    The authors describe principles of good teaching drawn from meta-analyses of research on teaching effectiveness. Recent developments in neurobiology are presented and aligned to provide biological support for these principles. To make it easier for college faculty to try out sample instructional strategies, the authors map principles of good…

  2. Autism Spectrum Disorders: Neurobiology and Current Assessment Practices

    Science.gov (United States)

    Allen, Ryan A.; Robins, Diana L.; Decker, Scott L.

    2008-01-01

    This study reviews recent research related to the neurobiology of Autism Spectrum Disorders (ASDs) an provides an empirical analysis of current assessment practices. Data were collected through a survey of 117 school psychologists. The Childhood Autism Rating Scale (CARS), Gilliam Autism Rating Scale (GARS), and Gilliam Asperger's Disorder Scale…

  3. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action

    Science.gov (United States)

    Fonseca-Silva, Fernanda; Inacio, Job D. F.; Canto-Cavalheiro, Marilene M.; Menna-Barreto, Rubem F. S.; Almeida-Amaral, Elmo E.

    2016-01-01

    Background The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis. Methodology/Principal Finding Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. Conclusions/Significance In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health

  4. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action.

    Directory of Open Access Journals (Sweden)

    Fernanda Fonseca-Silva

    2016-02-01

    Full Text Available The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis.Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers.In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health of the infected mice encourage us to supports

  5. Studying the neurobiology of human social interaction: Making the case for ecological validity.

    Science.gov (United States)

    Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije

    2015-01-01

    With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.

  6. A targeted review of the neurobiology and genetics of behavioural addictions: an emerging area of research.

    Science.gov (United States)

    Leeman, Robert F; Potenza, Marc N

    2013-05-01

    This review summarizes neurobiological and genetic findings in behavioural addictions, draws parallels with findings pertaining to substance use disorders, and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity, and family history and (or) genetic findings for behavioural addictions involving gambling, Internet use, video game playing, shopping, kleptomania, and sexual activity were reviewed. Behavioural addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and grey matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history and genetic data support heritability for pathological gambling and that people with behavioural addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic and family history findings in substance and nonsubstance addictions, suggesting that compulsive engagement in these behaviours may constitute addictions. To date, findings are limited, particularly for shopping, kleptomania, and sexual behaviour. Genetic understandings are at an early stage. Future research directions are offered.

  7. A Targeted Review of the Neurobiology and Genetics of Behavioral Addictions: An Emerging Area of Research

    Science.gov (United States)

    Leeman, Robert F.; Potenza, Marc N.

    2013-01-01

    This review summarizes neurobiological and genetic findings in behavioral addictions, draws parallels with findings pertaining to substance use disorders and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity and family history/genetics findings for behavioral addictions involving gambling, internet use, video game playing, shopping, kleptomania and sexual activity were reviewed. Behavioral addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and gray matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history/genetic data support heritability for pathological gambling and that those with behavioral addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic/family history findings in substance and non-substance addictions, suggesting that compulsive engagement in these behaviors may constitute addictions. Findings to date are limited, particularly for shopping, kleptomania and sexual behavior. Genetic understandings are at an early stage. Future research directions are offered. PMID:23756286

  8. Involvement of oxidative stress in the mechanism of p,p'-DDT-induced nephrotoxicity in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-07-01

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (p,p'-DDT) is an organochlorine pesticide that persists in the environment and has a risk to human health. We investigated whether p,p'-DDT-induces nephrotoxicity in rats and whether oxidative stress and apoptosis are involved in the pathogenesis of this process. Male rats received the pesticide at doses of 50 and 100 mg/kg for 10 days. Renal damage was evaluated by histopathological examination and serum markers. The oxidative stress was evaluated by lipid peroxidation (LPO), metallothioneins (MTs) and protein carbonyl levels. Antioxidant enzymes were assessed by determination of superoxide dismutase (SOD) and catalase (CAT) activities. Glutathione-dependent enzymes and reducing power in kidney were evaluated by glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) activities. Renal tubular cells apoptosis was assessed through the TUNEL assay. After 10 days of treatment, an increase of serum creatinine and urea levels occurred, LPO and protein carbonyl levels were increased, while MTs level, SOD and CAT activities were decreased. Besides, the GPx, GR, GST, and GSH activities were decreased. Histological alterations in kidney tissue and intense apoptosis in renal tubular cells were observed. These results suggest that DDT sub-acute treatment causes oxidative stress and apoptosis, which may be the chief mechanisms of DDT-induced nephrotoxicity.

  9. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    Science.gov (United States)

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-03-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care.

  10. Cooperative mechanisms involved in chronic antidiuretic response to bendroflumethiazide in rats with lithium-induced nephrogenic diabetes insipidus.

    Science.gov (United States)

    Moosavi, S M S; Karimi, Z

    2014-03-01

    Previous studies of central diabetes insipidus suggested that thiazides acutely exerted a paradoxical antidiuresis by either indirectly activating volume-homeostatic reflexes to decrease distal fluid-delivery, or directly stimulating distal water-reabsorption. This study investigated whether the direct and indirect actions of bendroflumethiazide (BFTZ) simultaneously cooperated and also whether the renal nerves were involved in inducing long-term antidiuresis in nephrogenic diabetes insipidus (NDI). BFTZ or vehicle was gavaged into bilateral renal denervated and innervated rats with lithium-induced NDI for 10 days, constituting four groups. At one day before (D0) and one, five and ten days after starting administration of BFTZ or vehicle, rats were placed in metabolic cages to collect urine for 6 hours. BFTZ-treatment in both renal innervated and denervated rats caused equivalent reductions in urine-flow, creatinine clearance, lithium clearance and free-water clearance, but rises in urine-osmolality, fractional proximal reabsorption and fractional distal reabsorption at all days compared to D0, as well as to those of their relevant vehicle-received group. Therefore, the chronic antidiuretic response to BFTZ in conscious NDI rats was exerted through a concomitant cooperation of its direct distal effect of stimulating water-reabsorption and its indirect effect of reducing distal fluid-delivery by activating volume-homeostatic mechanisms, which appeared independent of the renal nerves.

  11. Clinical trial involving sufferers and non-sufferers of cervicogenic headache (CGH): potential mechanisms of action of photobiomodulation (Conference Presentation)

    Science.gov (United States)

    Liebert, Ann D.; Bicknell, Brian

    2017-02-01

    Photobiomodulation (PBM) is an effective tool for the management of spinal pain including inflammation of facet joints. Apart from cervical and lumbar joint pain the upper cervical spine facet joint inflammation can result in the CGH (traumatic or atraumatic in origin). This condition affects children, adults and elders and is responsible for 19% of chronic headache and up to 33% of patients in pain clinics. The condition responds well to physiotherapy, facet joint injection, radiofrequency neurotomy and surgery at a rate of 75%. The other 25% being unresponsive to treatment with no identified features of unresponsiveness. In other conditions of chronic unresponsive cervical pain have responded to photobiomodulation at a level of 80% in the short and medium term. A clinical trial was therefore conducted on a cohort of atraumatic patients from the ages of 5-93 (predominantly Neurologist referred / familial sufferers 2/3 generations vertically and laterally) who had responded to a course of PBM and physiotherapy. The CGH sufferers and their non CGH suffering relatives over these generations were then compared for features that distinguish the two groups. Fifty parameters were tested (anthropmetric, movement and neural tension tests included) and there was a noted difference in tandem stance between the groups (.04 significance with repeated measures). As this impairment is common to benign ataxia and migrainous vertigo and in these conditions there is an ion channelopathy (especially potassium channelopathy). A postulated mechanism of action of PBM would involve modulation of ion channels and this is discussed in this presentation.

  12. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Science.gov (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  13. An investigation into membrane bound redox carriers involved in energy transduction mechanism in Brevibacterium linens DSM 20158 with unsequenced genome.

    Science.gov (United States)

    Shabbiri, Khadija; Botting, Catherine H; Adnan, Ahmad; Fuszard, Matthew; Naseem, Shahid; Ahmed, Safeer; Shujaat, Shahida; Syed, Quratulain; Ahmad, Waqar

    2014-04-01

    Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS-Polyacrylamide gel electrophoresis coupled with nano LC-MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.

  14. Newt tail regeneration: a model for gravity-dependent morphogenesis and clues to the molecular mechanisms involved.

    Science.gov (United States)

    Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora

    factors and are expressed during development, we hypothesized they may play a role newt tail regenerative morphogenesis under altered g-levels. Specifically there is increasing evidence for HSPs expression changes as a result of hyper-and microgravity. HSPs are also expressed throughout regeneration, rather than just after surgery. To test this hypothesis we performed heat shock on intact and regenerating newts and collected tail tissues. In these experiments we observed that some tails had uplifted tips while others mimicked hook-like regenerates at 1g or 2g. These findings suggest that heat shock, and HSPs induction, may be involved in the mechanism responsible for gravity effects on morphogenesis, or at least interact with them. Current work underway is focused on analyzing the expression of mRNA and localization of proteins for two members of the group, Hsp70 and Hsp90. In summary, we developed and characterized a new practical animal model in which gravity mechanostimulation at 1g, versus unloading in aquaria, causes prominent effects on newt tail regenerative morphogenesis. This model can be achieved without the use of a centrifuge, significantly simplifying its research applications. Initial results using this model suggest that induction of HSPs may be involved in gravity regulation of newt tail regenerative morphogenesis. Further research based on this simple model may help to unravel mechanisms of gravity influence relevant not only to newt tail regeneration, but also to a broad range of other biological processes in amphibian models.

  15. Teaching adults-best practices that leverage the emerging understanding of the neurobiology of learning.

    Science.gov (United States)

    Mahan, John D; Stein, David S

    2014-07-01

    It is important in teaching adults to recognize the essential characteristics of adult learners and how these characteristics define their learning priorities and activities. The seven key premises and practices for teaching adults provide a good guide for those interested in helping adults learn. The emerging science of the neurobiology of learning provides powerful new insights into how learning occurs in the complex integrated neural network that characterizes the adult. Differentiation of the two types of thinking: System 1 (fast, intuitive, and, often, emotional) and System 2 (slower, deliberate, and logical). System 1 thinking helps explain the basis for quick decisions and reliance of humans on heuristics (or rules of thumb) that leads to the type of convenient thinking associated with errors of thinking and judgment. We now know that the learning experience has an objective location-in the temporal and parietal lobes-as persistent dynamic networks of neurons and neuronal connections. Learning is initially stored in transient working memory (relatively limited capacity and time frame) and then moved under the right conditions to more long-lasting/stable memory (with larger capacity) that is stored for future access and development. It is clear that memories are not static and are not destined, once developed, to forever remain as stable constructs; rather, memories are dynamic, always available for modulation and alteration, and heavily invested with context, emotion, and other operant factors. The framework for such neural networks involves new neuronal connections, enhanced neuronal synaptic transmission, and neuron generation. Ten key teaching and learning concepts derived from recent neurobiology studies on learning and memory are presented. As the neurobiology of learning is better defined, the basis for how adults best learn, and even the preferences they display, can be employed as the physiological foundation for our best methods to effectively teach

  16. Neurobiological alterations induced by exercise and their impact on depressive disorders [corrected].

    Science.gov (United States)

    Helmich, Ingo; Latini, Alexandra; Sigwalt, Andre; Carta, Mauro Giovanni; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Budde, Henning

    2010-11-30

    The impact of physical activity on brain metabolic functions has been investigated in different studies and there is growing evidence that exercise can be used as a preventive and rehabilitative intervention in the treatment of depressive disorders. However, the exact neuronal mechanisms underlying the latter phenomenon have not been clearly elucidated. The present article summarises key results derived from studies that focussed on the neurobiological impact of exercise on brain metabolic functions associated with depressive disorders. Since major depressive disorder (MDD) is a life threatening disease it is of great significance to find reliable strategies to prevent or to cure this illness. Therefore, the aim of this paper is to review (1) the physiological relationship between physical activity and depressive disorders and (2) the potential neurobiological alterations induced by exercise that might lead to the relief of mental disorders like depression. We searched electronic databases for literature concerning the relationship between exercise and depression from 1963 until 2009. The data suggests an association between physical inactivity and higher levels of depressive symptoms. Properly designed studies could show that exercise training can be as effective as antidepressive medications. The exact mechanisms how exercise affects the brain are not fully understood and the literature lacks of well designed studies concerning the effects of exercise training on depressive disorders. But the observed antidepressant actions of exercise are strong enough that it already can be used as an alternative to current medications in the treatment of depressive disorders.

  17. Neurobiological Alterations Induced by Exercise and Their Impact on Depressive Disorders

    Science.gov (United States)

    Helmich, Ingo; Latini, Alexandra; Sigwalt, Andre; Carta, Mauro Giovanni; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Budde, Henning

    2010-01-01

    Background: The impact of physical