WorldWideScience

Sample records for neuroanatomical processing correlates

  1. Neuroanatomical correlates of personality in the elderly.

    Science.gov (United States)

    Wright, Christopher I; Feczko, Eric; Dickerson, Bradford; Williams, Danielle

    2007-03-01

    Extraversion and neuroticism are two important and frequently studied dimensions of human personality. They describe individual differences in emotional responding that are quite stable across the adult lifespan. Neuroimaging research has begun to provide evidence that neuroticism and extraversion have specific neuroanatomical correlates within the cerebral cortex and amygdala of young adults. However, these brain areas undergo alterations in size with aging, which may influence the nature of these personality factor-brain structure associations in the elderly. One study in the elderly demonstrated associations between perisylvian cortex structure and measures of self transcendence [Kaasinen, V., Maguire, R.P., Kurki, T., Bruck, A., Rinne, J.O., 2005. Mapping brain structure and personality in late adulthood. NeuroImage 24, 315-322], but the neuroanatomical correlates of extraversion and neuroticism, or other measures of the Five Factor Model of personality have not been explored. The purpose of the present study was to investigate the structural correlates of neuroticism and extraversion in healthy elderly subjects (n=29) using neuroanatomic measures of the cerebral cortex and amygdala. We observed that the thickness of specific lateral prefrontal cortex (PFC) regions, but not amygdala volume, correlates with measures of extraversion and neuroticism. The results suggest differences in the regional neuroanatomic correlates of specific personality traits with aging. We speculate that this relates to the influences of age-related structural changes in the PFC.

  2. Nasal Consonant Production in Broca's and Wernicke's Aphasics: Speech Deficits and Neuroanatomical Correlates

    Science.gov (United States)

    Kurowski, Kathleen M.; Blumstein, Sheila E.; Palumbo, Carole L.; Waldstein, Robin S.; Burton, Martha W.

    2007-01-01

    The present study investigated the articulatory implementation deficits of Broca's and Wernicke's aphasics and their potential neuroanatomical correlates. Five Broca's aphasics, two Wernicke's aphasics, and four age-matched normal speakers produced consonant-vowel-(consonant) real word tokens consisting of [m, n] followed by [i, e, a, o, u]. Three…

  3. Convergence and divergence of neuroanatomic correlates and executive task performance in healthy controls and psychiatric participants.

    Science.gov (United States)

    Ming-Tak Chung, Dennis; Jerram, Matthew W; Lee, Jonathan K; Katz, Harvey; Gansler, David A

    2013-12-30

    The associations between brain matter volume in the cerebral cortex and set shifting and attentional control as operationalized by the Wisconsin Card Sort Test (WCST) and Condition Three of the Delis-Kaplan version of the Color Word Interference Test (CWIT) were investigated in 15 healthy controls and 16 heterogeneously diagnosed psychiatric patients with self-control problems using voxel based morphometry. Both groups underwent standardized magnetic resonance imaging and neuropsychological assessment. WCST and CWIT variables, and a composite, were regressed across the whole brain. Although CWIT performance levels were the same in both groups, neuroanatomic correlates for the psychiatric participants invoked the left hemisphere language system, but the bilateral dorsal attention system in the healthy controls. On its own, no neuroanatomic correlates were observed for the WCST. But when part of a composite with CWIT, neuroanatomic correlates in the dorsal attention system emerged for the psychiatric participants. Psychometric combinations of manifest executive task variables may best represent higher level latent neuro-cognitive control systems. Factor analytic studies of neuropsychological test performances suggest the constructs being measured are the same across psychiatric and non-diagnosed participants, however, imaging modalities indicate the relevant neural architecture can vary by group. © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Neuroanatomical correlates of brain-computer interface performance.

    Science.gov (United States)

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Elena Rykhlevskaia

    2009-11-01

    Full Text Available Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD, a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI to examine macro- and micro-structural impairments in 7-9 year old children with DD, compared to a group of typically developing (TD children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM revealed reduced grey matter (GM bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD.

  6. Is "Learning" episodic memory? Distinct cognitive and neuroanatomic correlates of immediate recall during learning trials in neurologically normal aging and neurodegenerative cohorts.

    Science.gov (United States)

    Casaletto, K B; Marx, G; Dutt, S; Neuhaus, J; Saloner, R; Kritikos, L; Miller, B; Kramer, J H

    2017-07-28

    Although commonly interpreted as a marker of episodic memory during neuropsychological exams, relatively little is known regarding the neurobehavior of "total learning" immediate recall scores. Medial temporal lobes are clearly associated with delayed recall performances, yet immediate recall may necessitate networks beyond traditional episodic memory. We aimed to operationalize cognitive and neuroanatomic correlates of total immediate recall in several aging syndromes. Demographically-matched neurologically normal adults (n=91), individuals with Alzheimer's disease (n=566), logopenic variant primary progressive aphasia (PPA) (n=34), behavioral variant frontotemporal dementia (n=97), semantic variant PPA (n=71), or nonfluent/agrammatic variant PPA (n=39) completed a neurocognitive battery, including the CVLT-Short Form trials 1-4 Total Immediate Recall; a majority subset also completed a brain MRI. Regressions covaried for age and sex, and MMSE in cognitive and total intracranial volume in neuroanatomic models. Neurologically normal adults demonstrated a heterogeneous pattern of cognitive associations with total immediate recall (executive, speed, delayed recall), such that no singular cognitive or neuroanatomic correlate uniquely predicted performance. Within the clinical cohorts, there were syndrome-specific cognitive and neural associations with total immediate recall; e.g., semantic processing was the strongest cognitive correlate in svPPA (partial r=0.41), while frontal volumes was the only meaningful neural correlate in bvFTD (partial r=0.20). Medial temporal lobes were not independently associated with total immediate recall in any group (ps>0.05). Multiple neurobehavioral systems are associated with "total learning" immediate recall scores that importantly differ across distinct clinical syndromes. Conventional memory networks may not be sufficient or even importantly contribute to total immediate recall in many syndromes. Interpreting learning scores as

  7. Neuroanatomical correlates of time perspective: A voxel-based morphometry study.

    Science.gov (United States)

    Chen, Zhiyi; Guo, Yiqun; Feng, Tingyong

    2018-02-26

    Previous studies indicated that time perspective can affect many behaviors, such as decisions, risk taking, substance abuse and health behaviors. However, very little is known about the neural substrates of time perspective (TP). To address this question, we characterized different dimensions of TP (including the Past, Present, and Future TP) using standardized Zimbardo Time Perspective Inventory (ZTPI), and quantified the gray matter volume using voxel-based morphometry (VBM) method across two independent samples. Our whole-brain analysis (sample 1, N=150) revealed Past-Negative TP was positively correlated with the GMV of a cluster in LPFC whereas Past-Positive was negatively correlated with the GMV in OFC, and Future TP was negatively correlated with GMV in mPFC. Moreover, two present scales (Present-Hedonistic and Present-Fatalistic TPs) were positively correlated with the GMV of regions in MTG and precuneus, respectively. We further examined the reliability of these correlations between multidimensional TPs and neuroanatomical structures in another independent sample (sample 2, N=58). Results verified our findings that GMV in LPFC could predict Past-Negative TP while GMV in OFC could predict Past-Positive TP, and the GMV in MTG could predict Present-Hedonistic while the GMV in presuneus could predict Present-Fatalistic, as well as the GMV in mPFC could predict Future TP. Thus, our findings suggest that the existence of selective neural basis underlying TPs, and further provide the stable biomarkers for multidimensional TPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts.

    Science.gov (United States)

    Schreiter, Marie Luise; Chmielewski, Witold; Beste, Christian

    2018-07-01

    There is a strong inter-relation of cognitive and emotional processes as evidenced by emotional conflict monitoring processes. In the cognitive domain, proactive effects of conflicts have widely been studied; i.e. effects of conflicts in the n-1 trial on trial n. Yet, the neurophysiological processes and associated functional neuroanatomical structures underlying such proactive effects during emotional conflicts have not been investigated. This is done in the current study combining EEG recordings with signal decomposition methods and source localization approaches. We show that an emotional conflict in the n-1 trial differentially influences processing of positive and negative emotions in trial n, but not the processing of conflicts in trial n. The dual competition framework stresses the importance of dissociable 'perceptual' and 'response selection' or cognitive control levels for interactive effects of cognition and emotion. Only once these coding levels were isolated in the neurophysiological data, processes explaining the behavioral effects were detectable. The data show that there is not only a close correspondence between theoretical propositions of the dual competition framework and neurophysiological processes. Rather, processing levels conceptualized in the framework operate in overlapping time windows, but are implemented via distinct functional neuroanatomical structures; the precuneus (BA31) and the insula (BA13). It seems that decoding of information in the precuneus, as well as the integration of information during response selection in the insula is more difficult when confronted with angry facial emotions whenever cognitive control resources have been highly taxed by previous conflicts. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    OpenAIRE

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-01-01

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects catego...

  10. Behavioural and neuroanatomical correlates of auditory speech analysis in primary progressive aphasias.

    Science.gov (United States)

    Hardy, Chris J D; Agustus, Jennifer L; Marshall, Charles R; Clark, Camilla N; Russell, Lucy L; Bond, Rebecca L; Brotherhood, Emilie V; Thomas, David L; Crutch, Sebastian J; Rohrer, Jonathan D; Warren, Jason D

    2017-07-27

    Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.

  11. Neuroanatomical profiles of personality change in frontotemporal lobar degeneration.

    Science.gov (United States)

    Mahoney, Colin J; Rohrer, Jonathan D; Omar, Rohani; Rossor, Martin N; Warren, Jason D

    2011-05-01

    The neurobiological basis of personality is poorly understood. Frontotemporal lobar degeneration (FTLD) frequently presents with complex behavioural changes, and therefore potentially provides a disease model in which to investigate brain substrates of personality. To assess neuroanatomical correlates of personality change in a cohort of individuals with FTLD using voxel-based morphometry (VBM). Thirty consecutive individuals fulfilling consensus criteria for FTLD were assessed. Each participant's carer completed a Big Five Inventory (BFI) questionnaire on five key personality traits; for each trait, a change score was derived based on current compared with estimated premorbid characteristics. All participants underwent volumetric brain magnetic resonance imaging. A VBM analysis was implemented regressing change score for each trait against regional grey matter volume across the FTLD group. The FTLD group showed a significant decline in extraversion, agreeableness, conscientiousness and openness and an increase in neuroticism. Change in particular personality traits was associated with overlapping profiles of grey matter loss in more anterior cortical areas and relative preservation of grey matter in more posterior areas; the most robust neuroanatomical correlate was identified for reduced conscientiousness in the region of the posterior superior temporal gyrus. Quantitative measures of personality change in FTLD can be correlated with changes in regional grey matter. The neuroanatomical profiles for particular personality traits overlap brain circuits previously implicated in aspects of social cognition and suggest that dysfunction at the level of distributed cortical networks underpins personality change in FTLD.

  12. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    Science.gov (United States)

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-03-15

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex.

  13. Functional Neuroanatomical Correlates of The Frontal Assessment Battery Performance in Alzheimer Disease: A FDG-PET Study.

    Science.gov (United States)

    Lee, Jun Ho; Byun, Min Soo; Sohn, Bo Kyung; Choe, Young Min; Yi, Dahyun; Han, Ji Young; Choi, Hyo Jung; Baek, Hyewon; Woo, Jong Inn; Lee, Dong Young

    2015-09-01

    We aimed to elucidate the functional neuroanatomical correlates of Frontal Assessment Battery (FAB) performances by applying [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET) to a large population of patients with Alzheimer disease (AD). The FAB was administered to 177 patients with AD, and regional cerebral glucose metabolism (rCMglc) was measured by FDG-PET scan. Correlations between FAB scores and rCMglc were explored using both region-of-interest-based (ROI-based) and voxel-based approaches. The ROI-based analysis showed that FAB scores correlated with the rCMglc of the dorsolateral prefrontal cortices. Voxel-based approach revealed significant positive correlations between FAB scores and rCMglc which were in various cortical regions including the temporal and parietal cortices as well as frontal regions, independent of age, gender, and education. After controlling the effect of global disease severity with Mini-Mental State Examination score, significant positive correlation was found only in the bilateral prefrontal regions. Although FAB scores are influenced by temporoparietal dysfunction due to the overall progression of AD, it likely reflects prefrontal dysfunction specifically regardless of global cognitive state or disease severity in patients with AD. © The Author(s) 2015.

  14. Neuroanatomical correlates of perceived usability

    DEFF Research Database (Denmark)

    Vi, Chi Thanh; Hornbæk, Kasper; Subramanian, Sriram

    2017-01-01

    Usability has a distinct subjective component, yet surprisingly little is known about its neural basis and relation to the neuroanatomy of aesthetics. To begin closing this gap, we conducted two functional magnetic resonance imaging studies in which participants were shown static webpages (in...... the first study) and videos of interaction with webpages (in the second study). The webpages were controlled so as to exhibit high and low levels of perceived usability and perceived aesthetics. Our results show unique links between perceived usability and brain areas involved in functions such as emotional...... processing (left fusiform gyrus, superior frontal gyrus), anticipation of physical interaction (precentral gyrus), task intention (anterior cingulate cortex), and linguistic processing (medial and bilateral superior frontal gyri). We use these findings to discuss the brain correlates of perceived usability...

  15. Neuroanatomical circuitry associated with exploratory eye movement in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Linlin Qiu

    Full Text Available Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS and widespread gray matter density (GMD reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA 17], the left cuneus (BA 18, the left superior occipital cortex (BA 18/19, the left superior frontal gyrus (BA 6, the left cerebellum, the right lingual cortex (BA 17/18, the right middle occipital cortex (BA19, the right inferior temporal cortex (BA 37, the right dorsolateral prefrontal cortex (BA 46 and bilateral precentral gyri (BA 6 extending to the frontal eye fields (FEF, BA 8. To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia.

  16. The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines

    International Nuclear Information System (INIS)

    Eeghen, Agnies M. van; Teran, Laura Ortiz; Johnson, Jason; Caruso, Paul; Pulsifer, Margaret B.; Thiele, Elizabeth A.

    2013-01-01

    The contribution of radial migration lines (RMLs) to the neuroanatomical and neurocognitive phenotype of tuberous sclerosis complex (TSC) is unclear. The aim of this study was to perform a comprehensive evaluation of the neuroradiological phenotype of TSC, distinguishing RMLs from normal-appearing white matter (NAWM) using diffusion tensor imaging (DTI) and volumetric fluid-attenuated inversion recovery imaging. Magnetic resonance images of 30 patients with TSC were evaluated. The frequencies of RMLs, tubers, and subependymal nodules (SENs) were determined for every hemispheric lobe. Cerebellar lesions and subependymal giant cell tumors were counted. DTI metrics were obtained from the NAWM of every hemispheric lobe and from the largest RML and tuber. Analyses of variance and correlations were performed to investigate the associations between neuroanatomical characteristics and relationships between RML frequency and neurocognitive outcomes. NAWM DTI metrics were compared with measurements of 16 control patients. A mean of 47 RMLs, 27 tubers, and 10 SENs were found per patient, and the frequencies of these lesions were strongly correlated (p < 0.001). RML fractional anisotropy and mean diffusivity were strongly inversely correlated (p = 0.003). NAWM DTI metrics were similar to the controls (p = 0.26). RML frequency was strongly associated with age of seizure onset (p = 0.003), intelligence outcomes (p = 0.01), and level of autistic features (p = 0.007). A detailed neuroradiological phenotype is presented, showing that RMLs are the most frequent neuroanatomical lesion, are responsible for white matter DTI abnormalities, and are strongly associated with age of seizure onset, intelligence outcomes, and level of autistic features. (orig.)

  17. The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines

    Energy Technology Data Exchange (ETDEWEB)

    Eeghen, Agnies M. van [Massachusetts General Hospital, Department of Neurology, Carol and James Herscot Center for Tuberous Sclerosis Complex, Boston, MA (United States); Erasmus Medical Centre, ENCORE, Expertise Centre for Neurodevelopmental Disorders, Department of Neuroscience, Rotterdam (Netherlands); Teran, Laura Ortiz; Johnson, Jason; Caruso, Paul [Massachusetts General Hospital, Department of Radiology, Boston, MA (United States); Pulsifer, Margaret B. [Massachusetts General Hospital, Department of Psychiatry, Psychological Assessment Center, Boston, MA (United States); Thiele, Elizabeth A. [Massachusetts General Hospital, Department of Neurology, Carol and James Herscot Center for Tuberous Sclerosis Complex, Boston, MA (United States)

    2013-08-15

    The contribution of radial migration lines (RMLs) to the neuroanatomical and neurocognitive phenotype of tuberous sclerosis complex (TSC) is unclear. The aim of this study was to perform a comprehensive evaluation of the neuroradiological phenotype of TSC, distinguishing RMLs from normal-appearing white matter (NAWM) using diffusion tensor imaging (DTI) and volumetric fluid-attenuated inversion recovery imaging. Magnetic resonance images of 30 patients with TSC were evaluated. The frequencies of RMLs, tubers, and subependymal nodules (SENs) were determined for every hemispheric lobe. Cerebellar lesions and subependymal giant cell tumors were counted. DTI metrics were obtained from the NAWM of every hemispheric lobe and from the largest RML and tuber. Analyses of variance and correlations were performed to investigate the associations between neuroanatomical characteristics and relationships between RML frequency and neurocognitive outcomes. NAWM DTI metrics were compared with measurements of 16 control patients. A mean of 47 RMLs, 27 tubers, and 10 SENs were found per patient, and the frequencies of these lesions were strongly correlated (p < 0.001). RML fractional anisotropy and mean diffusivity were strongly inversely correlated (p = 0.003). NAWM DTI metrics were similar to the controls (p = 0.26). RML frequency was strongly associated with age of seizure onset (p = 0.003), intelligence outcomes (p = 0.01), and level of autistic features (p = 0.007). A detailed neuroradiological phenotype is presented, showing that RMLs are the most frequent neuroanatomical lesion, are responsible for white matter DTI abnormalities, and are strongly associated with age of seizure onset, intelligence outcomes, and level of autistic features. (orig.)

  18. Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods.

    Science.gov (United States)

    Honnorat, Nicolas; Dong, Aoyan; Meisenzahl-Lechner, Eva; Koutsouleris, Nikolaos; Davatzikos, Christos

    2017-12-20

    Schizophrenia is associated with heterogeneous clinical symptoms and neuroanatomical alterations. In this work, we aim to disentangle the patterns of neuroanatomical alterations underlying a heterogeneous population of patients using a semi-supervised clustering method. We apply this strategy to a cohort of patients with schizophrenia of varying extends of disease duration, and we describe the neuroanatomical, demographic and clinical characteristics of the subtypes discovered. We analyze the neuroanatomical heterogeneity of 157 patients diagnosed with Schizophrenia, relative to a control population of 169 subjects, using a machine learning method called CHIMERA. CHIMERA clusters the differences between patients and a demographically-matched population of healthy subjects, rather than clustering patients themselves, thereby specifically assessing disease-related neuroanatomical alterations. Voxel-Based Morphometry was conducted to visualize the neuroanatomical patterns associated with each group. The clinical presentation and the demographics of the groups were then investigated. Three subgroups were identified. The first two differed substantially, in that one involved predominantly temporal-thalamic-peri-Sylvian regions, whereas the other involved predominantly frontal regions and the thalamus. Both subtypes included primarily male patients. The third pattern was a mix of these two and presented milder neuroanatomic alterations and comprised a comparable number of men and women. VBM and statistical analyses suggest that these groups could correspond to different neuroanatomical dimensions of schizophrenia. Our analysis suggests that schizophrenia presents distinct neuroanatomical variants. This variability points to the need for a dimensional neuroanatomical approach using data-driven, mathematically principled multivariate pattern analysis methods, and should be taken into account in clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior?

    Science.gov (United States)

    Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph

    2016-10-01

    Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (psuicidal patients with non-suicidal patients significant (psuicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Application of neuroanatomical ontologies for neuroimaging data annotation

    Directory of Open Access Journals (Sweden)

    Jessica A Turner

    2010-06-01

    Full Text Available The annotation of functional neuroimaging results for data sharing and reuse is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus. This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a sub-part of the middle frontal gyrus to more general (how many activations were found in areas connected via a known white matter tract?. In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuranatomical ontology is publicly available as a view of FMA at the Bioportal website at http://rest.bioontology.org/bioportal/ontologies/download/10005. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

  1. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    Science.gov (United States)

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Neuroanatomic correlates of stroke-related myocardial injury.

    Science.gov (United States)

    Ay, H; Koroshetz, W J; Benner, T; Vangel, M G; Melinosky, C; Arsava, E M; Ayata, C; Zhu, M; Schwamm, L H; Sorensen, A G

    2006-05-09

    Myocardial injury can occur after ischemic stroke in the absence of primary cardiac causes. The neuroanatomic basis of stroke-related myocardial injury is not well understood. To identify regions of brain infarction associated with myocardial injury using a method free of the bias of an a priori hypothesis as to any specific location. Of 738 consecutive patients with acute ischemic stroke, the authors identified 50 patients in whom serum cardiac troponin T (cTnT) elevation occurred in the absence of any apparent cause within 3 days of symptom onset. Fifty randomly selected, age- and sex-matched patients with ischemic stroke without cTnT elevation served as controls. Diffusion-weighted images with outlines of infarction were co-registered to a template, averaged, and then subtracted to find voxels that differed between the two groups. Voxel-wise p values were determined using a nonparametric permutation test to identify specific regions of infarction that were associated with cTnT elevation. The study groups were well balanced with respect to stroke risk factors, history of coronary artery disease, infarction volume, and frequency of right and left middle cerebral artery territory involvement. Brain regions that were a priori associated with cTnT elevation included the right posterior, superior, and medial insula and the right inferior parietal lobule. Among patients with right middle cerebral artery infarction, the insular cluster was involved in 88% of patients with and 33% without cTnT elevation (odds ratio: 15.00; 95% CI: 2.65 to 84.79). Infarctions in specific brain regions including the right insula are associated with elevated serum cardiac troponin T level indicative of myocardial injury.

  3. Neuroticism related differences in the functional neuroanatomical correlates of multitasking. An fMRI study.

    Science.gov (United States)

    Szameitat, Andre J; Saylik, Rahmi; Parton, Andrew

    2016-12-02

    It is known that neuroticism impairs cognitive performance mostly in difficult tasks, but not so much in easier tasks. One pervasive situation of this type is multitasking, in which the combination of two simple tasks creates a highly demanding dual-task, and consequently high neurotics show higher dual-task costs than low neurotics. However, the functional neuroanatomical correlates of these additional performance impairments in high neurotics are unknown. To test for this, we assessed brain activity by means of functional magnetic resonance imaging (fMRI) in 17 low and 15 high neurotics while they were performing a demanding dual-task and the less demanding component tasks as single-tasks. Behavioural results showed that performance (response times and error rates) was lower in the dual-task than in the single-tasks (dual-task costs), and that these dual-task costs were significantly higher in high neurotics. Imaging data showed that high neurotics showed less dual-task specific activation in lateral (mainly middle frontal gyrus) and medial prefrontal cortices. We conclude that high levels of neuroticism impair behavioural performance in demanding tasks, and that this impairment is accompanied by reduced activation of the task-associated brain areas. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. A neuroanatomical approach to exploring organizational performance

    Directory of Open Access Journals (Sweden)

    Gillingwater, D.

    2009-01-01

    Full Text Available Insights gained from studying the human brain have begun to open up promising new areas of research in the behavioural and social sciences. Neuroscience-based principles have been incorporated into areas such as business management, economics and marketing, leading to the development of artificial neural networks, neuroeconomics, neuromarketing and, most recently, organizational cognitive neuroscience. Similarly, the brain has been used as a powerful metaphor for thinking about and analysing the nature of organizations. However, no existing approach to organizational analysis has taken advantage of contemporary neuroanatomical principles, thereby missing the opportunity to translate core neuroanatomical knowledge into other, non-related areas of research. In this essentially conceptual paper, we propose several ways in which neuroanatomical approaches could be used to enhance organizational theory, practice and research. We suggest that truly interdisciplinary and collaborative research between neuroanatomists and organizational analysts is likely to provide novel approaches to exploring and improving organizational performance.

  5. Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits.

    Science.gov (United States)

    Gruene, Tina M; Roberts, Elian; Thomas, Virginia; Ronzio, Ashley; Shansky, Rebecca M

    2015-08-01

    The neural projections from the infralimbic region of the prefrontal cortex to the amygdala are important for the maintenance of conditioned fear extinction. Neurons in this pathway exhibit a unique pattern of structural plasticity that is sex-dependent, but the relationship between the morphologic characteristics of these neurons and successful extinction in male and female subjects is unknown. Using classic cued fear conditioning and an extinction paradigm in large cohorts of male and female rats, we identified subpopulations of both sexes that exhibited high (HF) or low (LF) levels of freezing on an extinction retrieval test, representing failed or successful extinction maintenance, respectively. We combined retrograde tracing with fluorescent intracellular microinjections to perform three-dimensional reconstructions of infralimbic neurons that project to the basolateral amygdala in these groups. The HF and LF male rats exhibited neuroanatomical distinctions that were not observed in HF or LF female rats. A retrospective analysis of behavior during fear conditioning and extinction revealed that despite no overall sex differences in freezing behavior, HF and LF phenotypes emerged in male rats during extinction and in female rats during fear conditioning, which does not involve infralimbic-basolateral amygdala neurons. Our results suggest that the neural processes underlying successful or failed extinction maintenance may be sex-specific. These findings are relevant not only to future basic research on sex differences in fear conditioning and extinction but also to exposure-based clinical therapies, which are similar in premise to fear extinction and which are primarily used to treat disorders that are more common in women than in men. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases

    Directory of Open Access Journals (Sweden)

    Cheng Wei-Cheng

    2006-12-01

    Full Text Available Abstract Background Anatomical studies of neural circuitry describing the basic wiring diagram of the brain produce intrinsically spatial, highly complex data of great value to the neuroscience community. Published neuroanatomical atlases provide a spatial framework for these studies. We have built an informatics framework based on these atlases for the representation of neuroanatomical knowledge. This framework not only captures current methods of anatomical data acquisition and analysis, it allows these studies to be collated, compared and synthesized within a single system. Results We have developed an atlas-viewing application ('NeuARt II' in the Java language with unique functional properties. These include the ability to use copyrighted atlases as templates within which users may view, save and retrieve data-maps and annotate them with volumetric delineations. NeuARt II also permits users to view multiple levels on multiple atlases at once. Each data-map in this system is simply a stack of vector images with one image per atlas level, so any set of accurate drawings made onto a supported atlas (in vector graphics format could be uploaded into NeuARt II. Presently the database is populated with a corpus of high-quality neuroanatomical data from the laboratory of Dr Larry Swanson (consisting 64 highly-detailed maps of PHAL tract-tracing experiments, made up of 1039 separate drawings that were published in 27 primary research publications over 17 years. Herein we take selective examples from these data to demonstrate the features of NeuArt II. Our informatics tool permits users to browse, query and compare these maps. The NeuARt II tool operates within a bioinformatics knowledge management platform (called 'NeuroScholar' either as a standalone or a plug-in application. Conclusion Anatomical localization is fundamental to neuroscientific work and atlases provide an easily-understood framework that is widely used by neuroanatomists and non

  7. Williams syndrome-specific neuroanatomical profile and its associations with behavioral features.

    Science.gov (United States)

    Fan, Chun Chieh; Brown, Timothy T; Bartsch, Hauke; Kuperman, Joshua M; Hagler, Donald J; Schork, Andrew; Searcy, Yvonne; Bellugi, Ursula; Halgren, Eric; Dale, Anders M

    2017-01-01

    Williams Syndrome (WS) is a rare genetic disorder with unique behavioral features. Yet the rareness of WS has limited the number and type of studies that can be conducted in which inferences are made about how neuroanatomical abnormalities mediate behaviors. In this study, we extracted a WS-specific neuroanatomical profile from structural magnetic resonance imaging (MRI) measurements and tested its association with behavioral features of WS. Using a WS adult cohort (22 WS, 16 healthy controls), we modeled a sparse representation of a WS-specific neuroanatomical profile. The predictive performances are robust within the training cohort (10-fold cross-validation, AUC = 1.0) and accurately identify all WS individuals in an independent child WS cohort (seven WS, 59 children with diverse developmental status, AUC = 1.0). The WS-specific neuroanatomical profile includes measurements in the orbitofrontal cortex, superior parietal cortex, Sylvian fissures, and basal ganglia, and variability within these areas related to the underlying size of hemizygous deletion in patients with partial deletions. The profile intensity mediated the overall cognitive impairment as well as personality features related to hypersociability. Our results imply that the unique behaviors in WS were mediated through the constellation of abnormalities in cortical-subcortical circuitry consistent in child WS and adult WS. The robustness of the derived WS-specific neuroanatomical profile also demonstrates the potential utility of our approach in both clinical and research applications.

  8. Cognitive consilience: Primate non-primary neuroanatomical circuits underlying cognition

    Directory of Open Access Journals (Sweden)

    Soren Van Hout Solari

    2011-12-01

    Full Text Available Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis ofcognitive information processing in the mammalian brain. Understanding the principles ofneuroanatomical organization in these structures is critical to understanding the functions theyperform and ultimately how the human brain works. We have manually distilled and synthesizedhundreds of primate neuroanatomy facts into a single interactive visualization. The resultingpicture represents the fundamental neuroanatomical blueprint upon which cognitive functionsmust be implemented. Within this framework we hypothesize and detail 7 functional circuitscorresponding to psychological perspectives on the brain: consolidated long-term declarativememory, short-term declarative memory, working memory/information processing, behavioralmemory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including thecerebral isocortex (9 pyramidal neuronal groups, parahippocampal gyrus and hippocampus,thalamus (4 neuronal groups, basal ganglia (7 neuronal groups, metencephalon, basal forebrainand other subcortical nuclei. We focus on neuroanatomy related to primate non-primary corticalsystems to elucidate the basis underlying the distinct homotypical cognitive architecture. To dis-play the breadth of this review, we introduce a novel method of integrating and presenting datain multiple independent visualizations: an interactive website (www.cognitiveconsilience.comand standalone iPhone and iPad applications. With these tools we present a unique, annotatedview of neuroanatomical consilience (integration of knowledge.

  9. Neuroanatomical Markers of Social Hierarchy Recognition in Humans: A Combined ERP/MRI Study.

    Science.gov (United States)

    Santamaría-García, Hernando; Burgaleta, Miguel; Sebastián-Gallés, Nuria

    2015-07-29

    Social hierarchy is an ubiquitous principle of social organization across animal species. Although some progress has been made in our understanding of how humans infer hierarchical identity, the neuroanatomical basis for perceiving key social dimensions of others remains unexplored. Here, we combined event-related potentials and structural MRI to reveal the neuroanatomical substrates of early status recognition. We designed a covertly simulated hierarchical setting in which participants performed a task either with a superior or with an inferior player. Participants showed higher amplitude in the N170 component when presented with a picture of a superior player compared with an inferior player. Crucially, the magnitude of this effect correlated with brain morphology of the posterior cingulate cortex, superior temporal gyrus, insula, fusiform gyrus, and caudate nucleus. We conclude that early recognition of social hierarchies relies on the structural properties of a network involved in the automatic recognition of social identity. Humans can perceive social hierarchies very rapidly, an ability that is key for social interactions. However, some individuals are more sensitive to hierarchical information than others. Currently, it is unknown how brain structure supports such fast-paced processes of social hierarchy perception and their individual differences. Here, we addressed this issue for the first time by combining the high temporal resolution of event-related potentials (ERPs) and the high spatial resolution of structural MRI. This methodological approach allowed us to unveil a novel association between ERP neuromarkers of social hierarchy perception and the morphology of several cortical and subcortical brain regions typically assumed to play a role in automatic processes of social cognition. Our results are a step forward in our understanding of the human social brain. Copyright © 2015 the authors 0270-6474/15/3510843-08$15.00/0.

  10. Interaction between neuroanatomical and psychological changes after mindfulness-based training.

    Directory of Open Access Journals (Sweden)

    Emiliano Santarnecchi

    Full Text Available Several cross-sectional studies have documented neuroanatomical changes in individuals with a long history of meditation, while a few evidences are available about the interaction between neuroanatomical and psychological changes even during brief exposure to meditation. Here we analyzed several morphometric indexes at both cortical and subcortical brain level, as well as multiple psychological dimensions, before and after a brief -8 weeks- Mindfulness Based Stress Reduction (MBSR training program, in a group of 23 meditation naïve-subjects compared to age-gender matched subjects. We found a significant cortical thickness increase in the right insula and the somatosensory cortex of MBSR trainees, coupled with a significant reduction of several psychological indices related to worry, state anxiety, depression and alexithymia. Most importantly, an interesting correlation between the increase in right insula thickness and the decrease in alexithymia levels during the MBSR training were observed. Moreover, a multivariate pattern classification approach allowed to identify a cluster of regions more responsive to MBSR training across subjects. Taken together, these findings documented the significant impact of a brief MBSR training on brain structures, as well as stressing the idea of MBSR as a valuable tool for alexithymia modulation, also originally providing a plausible neurobiological evidence of a major role of right insula into mediating the observed psychological changes.

  11. Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: a meta-analysis

    OpenAIRE

    Nickl-Jockschat, Thomas; Kleiman, Alexandra; Schulz, Jörg B.; Schneider, Frank; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.; Reetz, Kathrin

    2011-01-01

    Mild cognitive impairment (MCI) is an acquired syndrome characterised by cognitive decline not affecting activities of daily living. Using a quantitative meta-analytic approach, we aimed to identify consistent neuroanatomic correlates of MCI and how they are related to cognitive dysfunction. The meta-analysis enrols 22 studies, involving 917 MCI (848 amnestic MCI) patients and 809 healthy controls. Only studies investigating local changes in grey matter and reporting whole-brain results in st...

  12. Action control processes in autism spectrum disorder--insights from a neurobiological and neuroanatomical perspective.

    Science.gov (United States)

    Chmielewski, Witold X; Beste, Christian

    2015-01-01

    Autism spectrum disorders (ASDs) encompass a range of syndromes that are characterized by social interaction impairments, verbal and nonverbal communication difficulties, and stereotypic or repetitive behaviours. Although there has been considerable progress in understanding the mechanisms underlying the changes in the 'social' and 'communicative' aspects of ASD, the neurofunctional architecture of repetitive and stereotypic behaviours, as well as other cognitive domains related to response and action control, remain poorly understood. Based on the findings of neurobiological and neuroanatomical alterations in ASD and the functional neuroanatomy and neurobiology of different action control functions, we emphasize that changes in action control processes, including response inhibition, conflict and response monitoring, task switching, dual-tasking, motor timing, and error monitoring, are important facets of ASD. These processes must be examined further to understand the executive control deficits in ASD that are related to stereotypic or repetitive behaviours as a major facet of ASD. The review shows that not all domains of action control are strongly affected in ASD. Several factors seem to determine the consistency with which alterations in cognitive control are reported. These factors relate to the relevance of neurobiological changes in ASD for the cognitive domains examined and in how far action control relies upon the adjustment of prior experience. Future directions and hypotheses are outlined that may guide basic and clinical research on action control in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.

    Science.gov (United States)

    Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A

    2018-02-01

    Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.

  14. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism.

    Science.gov (United States)

    Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D E

    2016-03-01

    Individuals with reading disability or individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading or social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. White-matter structural connectivity via diffusion weighted imaging was examined in sixty-four children, ages 5-17 years, with reading disability, ASD, or typical development (TD), who were matched in age, gender, intelligence, and diffusion data quality. Children with reading disability and children with ASD exhibited reduced PWM compared to children with TD. The two diagnostic groups showed altered white-matter microstructure in the temporo-parietal portion of the left arcuate fasciculus (AF) and in the temporo-occipital portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups, but not in the TD group. These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left AF and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM.

  15. Neuroanatomical considerations of isolated hearing loss in thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Nitin Agarwal, M.D.

    2016-12-01

    Conclusion: Presumably, this neurological deficit was caused by a hypertensive hemorrhage in the posterior right thalamus. The following case and discussion will review the potential neuroanatomical pathways that we suggest could make isolated hearing loss be part of a “thalamic syndrome.”

  16. The parametric, psychological, neuropsychological, and neuroanatomical properties of self and world evaluation.

    Science.gov (United States)

    Simmons, Alan N; Thayer, Rachel E; Spadoni, Andrea D; Matthews, Scott C; Strigo, Irina A; Tapert, Susan F

    2012-01-01

    As an individual moves from adolescence to adulthood, they need to form a new sense of self as their environment changes from a limited to a more expansive structure. During this critical stage in development the last dramatic steps of neural development occur and numerous psychiatric conditions begin to manifest. Currently, there is no measure that aids in the quantification of how the individual is adapting to, and conceptualizing their role in, these new structures. To fill this gap we created the Self and World Evaluation Expressions Test(SWEET). Sixty-five young adults (20.6 years-old), 36 with a history of drug use, completed the SWEET. A factor analysis was performed on the SWEET and the resultant factors were correlated with psychological, neuropsychological, and neuroanatomical battery that included both T1-wieghted and diffusion tensor magnetic resonance imaging scans. WE DERIVED FOUR FACTORS: Self, Social-Emotional, Financial-Intellectual, and Spirituality. While showing limited relationships to psychological and neuropsychological measures, both white matter integrity and gray matter density showed significant relationships with SWEET factors. These findings suggest that while individual responses may not be indicative of psychological or cognitive processes they may relate to changes in brain structure. Several of these structures, such as the negative correlation of the affective impact of world with the dorsal anterior corpus callosum white matter integrity have been observed in psychiatric conditions (e.g., obsessive-compulsive disorder). Further longitudinal research using the SWEET may help understand the impact of dramatic shifts in self/world conceptualization and potentially link these shifts to underlying changes in brain structure.

  17. [Nondeclarative memory--neuropsychological findings and neuroanatomic principles].

    Science.gov (United States)

    Daum, I; Ackermann, H

    1997-03-01

    The contents of long-term memory will influence behaviour, even if the acquired knowledge or the original learning episode are not remembered. These phenomena have been termed "non-declarative" or "implicit" memory, and they are contrasted with "declarative" or "explicit" memory which is characterised by conscious search and retrieval procedures. Non-declarative memory encompasses non-associative learning, simple conditioning, priming effects as well as motor, perceptual and cognitive skill acquisition. The dissociation of both forms of memory is documented by studies in health subjects which indicated that experimental manipulations or drugs may differentially affect declarative and non-declarative memory processes. Damage to the medial temporal or the medial thalamic regions is known to result in declarative memory deficits whereas non-declarative memory is largely unaffected by such lesions. Animal research and clinical findings indicate that several components of non-declarative memory such as motor and cognitive skill acquisition or certain types of classical conditioning are dependent upon the integrity of the basal ganglia or the cerebellum. These issues are therefore of increasing importance for the understanding of extrapyramidal and cerebellar diseases. This paper presents recent neuropsychological findings and neuroanatomical data relating to the issue of non-declarative memory.

  18. A Neuroanatomical Signature for Schizophrenia Across Different Ethnic Groups.

    Science.gov (United States)

    Gong, Qiyong; Dazzan, Paola; Scarpazza, Cristina; Kasai, Kyioto; Hu, Xinyu; Marques, Tiago R; Iwashiro, Norichika; Huang, Xiaoqi; Murray, Robin M; Koike, Shinsuke; David, Anthony S; Yamasue, Hidenori; Lui, Su; Mechelli, Andrea

    2015-11-01

    Schizophrenia is a disabling clinical syndrome found across the world. While the incidence and clinical expression of this illness are strongly influenced by ethnic factors, it is unclear whether patients from different ethnicities show distinct brain deficits. In this multicentre study, we used structural Magnetic Resonance Imaging to investigate neuroanatomy in 126 patients with first episode schizophrenia who came from 4 ethnically distinct cohorts (White Caucasians, African-Caribbeans, Japanese, and Chinese). Each patient was individually matched with a healthy control of the same ethnicity, gender, and age (±1 year). We report a reduction in the gray matter volume of the right anterior insula in patients relative to controls (P ethnic groups despite differences in psychopathology, exposure to antipsychotic medication and image acquisition sequence. This finding provides evidence for a neuroanatomical signature of schizophrenia expressed above and beyond ethnic variations in incidence and clinical expression. In light of the existing literature, implicating the right anterior insula in bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety, we speculate that the neuroanatomical deficit reported here may represent a transdiagnostic feature of Axis I disorders. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  19. Neuroanatomical study of Galen's anastomosis (nervus laryngeus) in the dog.

    Science.gov (United States)

    Henry, C; Cazals, Y; Gioux, M; Didier, A; Aran, J M; Traissac, L

    1988-01-01

    To further knowledge of the laryngeal nerves, the nerve fibers of Galen's anastomosis were studied using two neuroanatomical methods, namely nerve degeneration and horseradish peroxidase labeling. It is demonstrated that the superior laryngeal nerve forms part of the tracheal and esophageal nervous system. The value of the results in relation to physiological laryngeal studies and to human laryngeal diseases is discussed.

  20. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  1. Neuroanatomical and Neurochemical Basis of Impulsivity

    Directory of Open Access Journals (Sweden)

    Kemal Yazici

    2010-08-01

    tis paradigm, the tendency to prefer small immediate rewards over larger, more delayed reinforcers is measured. İmpulsive choice is defined by a greater tendency to value or choose smaller, more immediate reinforcers. Impulsivity is a multi-faceted behaviour. This behaviour may be studied by subdividing it into different processes neuroanatomically and neurochemically. Neuroanatomical data support the suggestion that behavioral disinhibition (impulsive action / motoric impulsivity and delay-discounting (impulsive choice / decision making differ in the degree to which various components of frontostriatal loops are implicated in their regulation. The dorsal prefrontal cortex does not appear to be involved in mediating impulsive choice, yet does have some role in regulating inhibitory processes. In contrast, there appears to be a pronounced role for the orbitofrontal cortex and basolateral amygdala in controlling impulsive choice. Other structures, however, such as the nucleus accumbens and subthalamic nucleus may be common to both circuits. From the neurochemical perspective, dopamine system and dopamine- 2 (D2 receptors in particular, seems to be closely involved in making impulsive choice. When the noradrenaline system does not function optimally, it might contribute to increased impulsivity. Serotonin might act upon prefrontal cortex to decrease impulsive choices. Interactions between the serotonin and the dopamine systems are important in the regulation of impulsive behaviour. It is possible that various receptor subtypes of the serotonin system may exert differing and even contrasting effects on impulsive behaviour. Although it is very informative to study neurotransmitter systems separately, it should be kept in mind that there are very intimate interactions between the neurotransmitter systems mentioned above. Based on the fact that impulsivity is regulated through multiple neurotransmitters and even more receptors, one may suggest that pharmacotherapy of

  2. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

    Directory of Open Access Journals (Sweden)

    Müller Carsten HG

    2010-11-01

    Full Text Available Abstract Background Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. Results We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. Conclusions The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.

  3. Neuroanatomical heterogeneity of essential tremor according to propranolol response.

    Directory of Open Access Journals (Sweden)

    Seok Jong Chung

    Full Text Available BACKGROUND: Recent studies have suggested that essential tremor (ET is a more complex and heterogeneous clinical entity than initially thought. In the present study, we assessed the pattern of cortical thickness and diffusion tensor white matter (WM changes in patients with ET according to the response to propranolol to explore the pathogenesis underlying the clinical heterogeneity of ET. METHODS: A total of 32 patients with drug naive ET were recruited prospectively from the Movement Disorders outpatient clinic. The patients were divided into a propranolol-responder group (n = 18 and a non-responder group (n = 14. We analyzed the pattern of cortical thickness and diffusion tensor WM changes between these two groups and performed correlation analysis between imaging and clinical parameters. RESULTS: There were no significant differences in demographic characteristics, general cognition, or results of detailed neuropsychological tests between the groups. The non-responder group showed more severe cortical atrophy in the left orbitofrontal cortex and right temporal cortex relative to responders. However, the responders exhibited significantly lower fractional anisotropy values in the bilateral frontal, corpus callosal, and right parietotemporal WM compared with the non-responder group. There were no significant clusters where the cortical thickness or WM alterations were significantly correlated with initial tremor severity or disease duration. CONCLUSIONS: The present data suggest that patients with ET have heterogeneous cortical thinning and WM alteration with respect to responsiveness to propranolol, suggesting that propranolol responsiveness may be a predictive factor to determine ET subtypes in terms of neuroanatomical heterogeneity.

  4. Neuroanatomical Correlates of Heterotypic Comorbidity in Externalizing Male Adolescents

    Science.gov (United States)

    Sauder, Colin L.; Beauchaine, Theodore P.; Gatzke-Kopp, Lisa M.; Shannon, Katherine E.; Aylward, Elizabeth

    2012-01-01

    Children and adolescents with externalizing behavior disorders including attention-deficit/hyperactivity disorder (ADHD) and conduct disorder (CD) often present with symptoms of comorbid internalizing psychopathology. However, few studies have examined central nervous system correlates of such comorbidity. We evaluated interactions between…

  5. Process correlation analysis model for process improvement identification.

    Science.gov (United States)

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  6. Neuroanatomic alterations and social and communication deficits in monozygotic twins discordant for autism disorder.

    Science.gov (United States)

    Mitchell, Shanti R; Reiss, Allan L; Tatusko, Danielle H; Ikuta, Ichiro; Kazmerski, Dana B; Botti, Jo-Anna C; Burnette, Courtney P; Kates, Wendy R

    2009-08-01

    Investigating neuroanatomic differences in monozygotic twins who are discordant for autism can help unravel the relative contributions of genetics and environment to this pervasive developmental disorder. The authors used magnetic resonance imaging (MRI) to investigate several brain regions of interest in monozygotic twins who varied in degree of phenotypic discordance for narrowly defined autism. The subjects were 14 pairs of monozygotic twins between the ages of 5 and 14 years old and 14 singleton age- and gender-matched typically developing comparison subjects. The monozygotic twin group was a cohort of children with narrowly defined autistic deficits and their co-twins who presented with varying levels of autistic deficits. High-resolution MRIs were acquired and volumetric/area measurements obtained for the frontal lobe, amygdala, and hippocampus and subregions of the prefrontal cortex, corpus callosum, and cerebellar vermis. No neurovolumetric/area differences were found between twin pairs. Relative to typically developing comparison subjects, dorsolateral prefrontal cortex volumes and anterior areas of the corpus callosum were significantly altered in autistic twins, and volumes of the posterior vermis were altered in both autistic twins and co-twins. Intraclass correlation analysis of brain volumes between children with autism and their co-twins indicated that the degree of within-pair neuroanatomic concordance varied with brain region. In the group of subjects with narrowly defined autism only, dorsolateral prefrontal cortex, amygdala, and posterior vermis volumes were significantly associated with the severity of autism based on scores from the Autism Diagnostic Observation Schedule-Generic. These findings support previous research demonstrating alterations in the prefrontal cortex, corpus callosum, and posterior vermis in children with autism and further suggest that alterations are associated with the severity of the autism phenotype. Continued research

  7. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies).

    OpenAIRE

    Amaral David G; Scharfman Helen E; Lavenex Pierre

    2007-01-01

    The dentate gyrus is a simple cortical region that is an integral portion of the larger functional brain system called the hippocampal formation. In this review, the fundamental neuroanatomical organization of the dentate gyrus is described, including principal cell types and their connectivity, and a summary of the major extrinsic inputs of the dentate gyrus is provided. Together, this information provides essential information that can serve as an introduction to the dentate gyrus — a “dent...

  8. NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.

    Science.gov (United States)

    Pardoe, Heath R; Kuzniecky, Ruben

    2018-01-01

    The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.

  9. A Neuroanatomical Model of Prefrontal Inhibitory Modulation of Memory Retrieval

    Science.gov (United States)

    Depue, Brendan E.

    2012-01-01

    Memory of past experience is essential for guiding goal-related behavior. Being able to control accessibility of memory through modulation of retrieval enables humans to flexibly adapt to their environment. Understanding the specific neural pathways of how this control is achieved has largely eluded cognitive neuroscience. Accordingly, in the current paper I review literature that examines the overt control over retrieval in order to reduce accessibility. I first introduce three hypotheses of inhibition of retrieval. These hypotheses involve: i) attending to other stimuli as a form of diversionary attention, ii) inhibiting the specific individual neural representation of the memory, and iii) inhibiting the hippocampus and retrieval process more generally to prevent reactivation of the representation. I then analyze literature taken from the White Bear Suppression, Directed Forgetting and Think/No-Think tasks to provide evidence for these hypotheses. Finally, a neuroanatomical model is developed to indicate three pathways from PFC to the hippocampal complex that support inhibition of memory retrieval. Describing these neural pathways increases our understanding of control over memory in general. PMID:22374224

  10. Neural correlates of recognition and naming of musical instruments.

    Science.gov (United States)

    Belfi, Amy M; Bruss, Joel; Karlan, Brett; Abel, Taylor J; Tranel, Daniel

    2016-10-01

    Retrieval of lexical (names) and conceptual (semantic) information is frequently impaired in individuals with neurological damage. One category of items that is often affected is musical instruments. However, distinct neuroanatomical correlates underlying lexical and conceptual knowledge for musical instruments have not been identified. We used a neuropsychological approach to explore the neural correlates of knowledge retrieval for musical instruments. A large sample of individuals with focal brain damage (N = 298), viewed pictures of 16 musical instruments and were asked to name and identify each instrument. Neuroanatomical data were analyzed with a proportional MAP-3 method to create voxelwise lesion proportion difference maps. Impaired naming (lexical retrieval) of musical instruments was associated with damage to the left temporal pole and inferior pre- and postcentral gyri. Impaired recognition (conceptual knowledge retrieval) of musical instruments was associated with a more broadly and bilaterally distributed network of regions, including ventromedial prefrontal cortices, occipital cortices, and superior temporal gyrus. The findings extend our understanding of how musical instruments are processed at neural system level, and elucidate factors that may explain why brain damage may or may not produce anomia or agnosia for musical instruments. Our findings also help inform broader understanding of category-related knowledge mapping in the brain, as musical instruments possess several characteristics that are similar to various other categories of items: They are inanimate and highly manipulable (similar to tools), produce characteristic sounds (similar to animals), and require fine-grained visual differentiation between each other (similar to people). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. What dementia reveals about proverb interpretation and its neuroanatomical correlates.

    Science.gov (United States)

    Kaiser, Natalie C; Lee, Grace J; Lu, Po H; Mather, Michelle J; Shapira, Jill; Jimenez, Elvira; Thompson, Paul M; Mendez, Mario F

    2013-08-01

    Neuropsychologists frequently include proverb interpretation as a measure of executive abilities. A concrete interpretation of proverbs, however, may reflect semantic impairments from anterior temporal lobes, rather than executive dysfunction from frontal lobes. The investigation of proverb interpretation among patients with different dementias with varying degrees of temporal and frontal dysfunction may clarify the underlying brain-behavior mechanisms for abstraction from proverbs. We propose that patients with behavioral variant frontotemporal dementia (bvFTD), who are characteristically more impaired on proverb interpretation than those with Alzheimer's disease (AD), are disproportionately impaired because of anterior temporal-mediated semantic deficits. Eleven patients with bvFTD and 10 with AD completed the Delis-Kaplan Executive Function System (D-KEFS) Proverbs Test and a series of neuropsychological measures of executive and semantic functions. The analysis included both raw and age-adjusted normed data for multiple choice responses on the D-KEFS Proverbs Test using independent samples t-tests. Tensor-based morphometry (TBM) applied to 3D T1-weighted MRI scans mapped the association between regional brain volume and proverb performance. Computations of mean Jacobian values within select regions of interest provided a numeric summary of regional volume, and voxel-wise regression yielded 3D statistical maps of the association between tissue volume and proverb scores. The patients with bvFTD were significantly worse than those with AD in proverb interpretation. The worse performance of the bvFTD patients involved a greater number of concrete responses to common, familiar proverbs, but not to uncommon, unfamiliar ones. These concrete responses to common proverbs correlated with semantic measures, whereas concrete responses to uncommon proverbs correlated with executive functions. After controlling for dementia diagnosis, TBM analyses indicated significant

  12. MRI Anatomical Correlates of Reading and Language Deficits

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-12-01

    Full Text Available Neuroanatomical correlates of developmental dyslexia (DD, defined by isolated reading deficits, and specific language impairment (SLI, defined by poor receptive and expressive language skills, were examined using MR imaging in a heterogeneous sample of 14 boys and 8 girls (11-16 yers of age with learning disabilities, in a study at University of Florida; Georgetown University, Washington, DC; and other centers.

  13. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism

    OpenAIRE

    Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K.; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D. E.

    2016-01-01

    Background Individuals with reading disability and individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading and social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in 64 children,...

  14. Poststroke delusions: What about the neuroanatomical and neurofunctional basis?

    Science.gov (United States)

    Torrisi, Michele; De Luca, Rosaria; Pollicino, Patrizia; Leonardi, Simona; Marino, Silvia; Maresca, Giuseppa; Maggio, Maria Grazia; Piccolo, Adriana; Bramanti, Placido; Calabrò, Rocco Salvatore

    2018-01-19

    Delusion is a belief about yourself, people, or events that has no accordance with reality. Although it is known that stroke could cause various psychiatric and psychological effects, including depression, anxiety, and aggressiveness, psychotic symptoms, especially delusions, are rather uncommon. The most investigated poststroke delusions are paranoid type, nihilistic, and Fregoli syndrome. We will describe two patients showing delusion symptoms (Cotard-like and erotomanic ones) that occurred after a stroke involving the right temporal lobe, the basal ganglia and insular region, persisting for a long period after the stroke onset. We have, therefore, supposed that the simultaneous involvement of these brain areas could be involved in the neuroanatomical basis of delusions, as also demonstrated by the neurofunctional evaluation.

  15. Subsite Awareness in Neuropathology Evaluation of National Toxicology Program (NTP) Studies: A Review of Select Neuroanatomical Structures with their Functional Significance in Rodents

    Science.gov (United States)

    Rao, Deepa B.; Little, Peter B.; Sills, Robert

    2013-01-01

    This review manuscript is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The manuscript provides an overview of approximately 50 neuroanatomical subsites and their functional significance across seven coronal sections of the brain. Also reviewed are three sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin (H&E) stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies. PMID:24135464

  16. Neuroanatomical Anomalies of Dyslexia: Disambiguating the Effects of Disorder, Performance, and Maturation

    Science.gov (United States)

    Xia, Zhichao; Hoeft, Fumiko; Zhang, Linjun; Shu, Hua

    2016-01-01

    An increasing body of studies has revealed neuroanatomical impairments in developmental dyslexia. However, whether these structural anomalies are driven by dyslexia (disorder-specific effects), absolute reading performance (performance-dependent effects), and/or further influenced by age (maturation-sensitive effects) remains elusive. To help disentangle these sources, the current study used a novel disorder (dyslexia vs. control) by maturation (younger vs. older) factorial design in 48 Chinese children who were carefully matched. This design not only allows for direct comparison between dyslexics versus controls matched for chronological age and reading ability, but also enables examination of the influence of maturation and its interaction with dyslexia. Voxel-based morphometry (VBM) showed that dyslexic children had reduced regional gray matter volume in the left temporo-parietal cortex (spanning over Heschl’s gyrus, planum temporale and supramarginal gyrus), middle frontal gyrus, superior occipital gyrus, and reduced regional white matter in bilateral parieto-occipital regions (left cuneus and right precuneus) compared with both age-matched and reading-level matched controls. Therefore, maturational stage-invariant neurobiological signatures of dyslexia were found in brain regions that have been associated with impairments in the auditory/phonological and attentional systems. On the other hand, maturational stage-dependent effects on dyslexia were observed in three regions (left ventral occipito-temporal cortex, left dorsal pars opercularis and genu of the corpus callosum), all of which were previously reported to be involved in fluent reading and its development. These striking dissociations collectively suggest potential atypical developmental trajectories of dyslexia, where underlying mechanisms are currently unknown but may be driven by interactions between genetic and/or environmental factors. In summary, this is the first study to disambiguate

  17. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    OpenAIRE

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and...

  18. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    Science.gov (United States)

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory). PMID:28713278

  19. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins.

    Science.gov (United States)

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory).

  20. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    Directory of Open Access Journals (Sweden)

    Eduardo Camina

    2017-06-01

    Full Text Available This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory or unconsciously (implicit memory.

  1. Collating and Curating Neuroanatomical Nomenclatures: Principles and Use of the Brain Architecture Knowledge Management System (BAMS).

    Science.gov (United States)

    Bota, Mihail; Swanson, Larry W

    2010-01-01

    Terms used to describe nervous system parts and their interconnections are rife with synonyms, partial correspondences, and even homonyms, making effective scientific communication unnecessarily difficult. To address this problem a new Topological Relations schema for the Relations module of BAMS (Brain Architecture Knowledge Management System) was created. It includes a representation of the qualitative spatial relations between nervous system parts defined in different neuroanatomical nomenclatures or atlases and is general enough to record data and metadata from the literature, regardless of description level or species. Based on this foundation a Projections Translations inference engine was developed for the BAMS interface that automatically translates neuroanatomical projection (axonal inputs and outputs) reports across nomenclatures from translated information. To make BAMS more useful to the neuroscience community three things were done. First, we implemented a simple schema for validation of the translated neuroanatomical projections. Second, more than 1,000 topological relations between brain gray matter regions for the rat were inserted, along with associated details. Finally, a case study was performed to enter all historical or legacy published information about terminology related to one relatively complex gray matter region of the rat. The bed nuclei of the stria terminalis (BST) were chosen and 21 different nomenclatures from 1923 to present were collated, along with 284 terms for parts (gray matter differentiations), 360 qualitative topological relations between parts, and more than 7,000 details about spatial relations between parts, all of which was annotated with appropriate metadata. This information was used to construct a graphical "knowledge map" of relations used in the literature to describe subdivisions of the rat BST.

  2. Mixed-correlated ARFIMA processes for power-law cross-correlations

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 392, č. 24 (2013), s. 6484-6493 ISSN 0378-4371 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-mixed-correlated arfima processes for power-law cross-correlations.pdf

  3. Age-related changes in sleep and circadian rhythms: impact on cognitive performance and underlying neuroanatomical networks

    Directory of Open Access Journals (Sweden)

    Christina eSchmidt

    2012-07-01

    Full Text Available Circadian and homeostatic sleep-wake regulatory processes interact in a fine tuned manner to modulate human cognitive performance. Dampening of the circadian alertness signal and attenuated deterioration of psychomotor vigilance in response to elevated sleep pressure with aging change this interaction pattern. As evidenced by neuroimaging studies, both homeostatic sleep pressure and circadian sleep-wake promotion impact on cognition-related cortical and arousal-promoting subcortical brain regions including the thalamus, the anterior hypothalamus and the brainstem locus coeruleus (LC. However, how age- related changes in circadian and homeostatic processes impact on the cerebral activity subtending waking performance remains largely unexplored. Post-mortem studies point to neuronal degeneration in the SCN and age-related modifications to aging in the arousal-promoting LC. Alongside, cortical frontal brain areas are particularly susceptible both to aging and misalignment between circadian and homeostatic processes. In this perspective, we summarise and discuss here the potential neuroanatomical networks underlying age-related changes in circadian and homeostatic modulation of waking performance, ranging from basic arousal to higher order cognitive behaviours.

  4. Atlas of neuroanatomy with radiologic correlation and pathologic illustration

    International Nuclear Information System (INIS)

    Dublin, A.B.; Dublin, W.B.

    1982-01-01

    This atlas correlates gross neuroanatomic specimens with radiographs and computed tomographic scans. Pathologic specimens and radiographs are displayed in a similar manner. The first chapter, on embryology, shows the development of the telencephalon, diencephalon, mesencephalon, and metencephalon through a series of overlays. The anatomical section shows the surface of the brain, the ventricles and their adjacent structures, and the vascular system. CT anatomy is demonstrated by correlating CT scans with pathologic brain specimens cut in the axial plane. Pathologic changes associated with congenital malformations, injections, injuries, tumors, and other causes are demonstrated in the last six chapters

  5. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  6. A method for acetylcholinesterase staining of brain sections previously processed for receptor autoradiography.

    Science.gov (United States)

    Lim, M M; Hammock, E A D; Young, L J

    2004-02-01

    Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.

  7. MRI-Based Neuroanatomical Predictors of Dysphagia, Dysarthria, and Aphasia in Patients with First Acute Ischemic Stroke
.

    Science.gov (United States)

    Flowers, Heather L; AlHarbi, Mohammed A; Mikulis, David; Silver, Frank L; Rochon, Elizabeth; Streiner, David; Martino, Rosemary

    2017-01-01

    Due to the high post-stroke frequency of dysphagia, dysarthria, and aphasia, we developed comprehensive neuroanatomical, clinical, and demographic models to predict their presence after acute ischemic stroke. The sample included 160 randomly selected first-ever stroke patients with confirmed infarction on magnetic resonance imaging from 1 tertiary stroke center. We documented acute lesions within 12 neuroanatomical regions and their associated volumes. Further, we identified concomitant chronic brain disease, including atrophy, white matter hyperintensities, and covert strokes. We developed predictive models using logistic regression with odds ratios (OR) and their 95% confidence intervals (95% CI) including demographic, clinical, and acute and chronic neuroanatomical factors. Predictors of dysphagia included medullary (OR 6.2, 95% CI 1.5-25.8), insular (OR 4.8, 95% CI 2.0-11.8), and pontine (OR 3.6, 95% CI 1.2-10.1) lesions, followed by brain atrophy (OR 3.0, 95% CI 1.04-8.6), internal capsular lesions (OR 2.9, 95% CI 1.2-6.6), and increasing age (OR 1.4, 95% CI 1.1-1.8). Predictors of dysarthria included pontine (OR 7.8, 95% CI 2.7-22.9), insular (OR 4.5, 95% CI 1.8-11.4), and internal capsular (OR 3.6, 95% CI 1.6-7.9) lesions. Predictors of aphasia included left hemisphere insular (OR 34.4, 95% CI 4.2-283.4), thalamic (OR 6.2, 95% CI 1.6-24.4), and cortical middle cerebral artery (OR 4.7, 95% CI 1.5-14.2) lesions. Predicting outcomes following acute stroke is important for treatment decisions. Determining the risk of major post-stroke impairments requires consideration of factors beyond lesion localization. Accordingly, we demonstrated interactions between localized and global brain function for dysphagia and elucidated common lesion locations across 3 debilitating impairments.
. © 2017 The Author(s)
. Published by S. Karger AG, Basel.

  8. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  9. Neuroanatomical correlates of individual differences in social anxiety in a non-clinical population.

    Science.gov (United States)

    Tian, Xue; Hou, Xin; Wang, Kangcheng; Wei, Dongtao; Qiu, Jiang

    2016-01-01

    Socially anxious individuals are characterized as those with distorted negative self-beliefs (NSBs), which are thought to enhance reactions of social distress (emotional reactivity) and social avoidance (social functioning). However, it remains unclear whether individual differences in social distress and social avoidance are represented by differences in brain morphometry. To probe into these neural correlates, we analyzed magnetic resonance images of a sample of 130 healthy subjects and used the Connectome Computation System (CCS) to evaluate these factors. The results showed that social distress was correlated with the cortical volume of the right orbitofrontal cortex (OFC) and the subcortical volume of the left amygdala, while social avoidance was correlated with the cortical volume of the right dorsolateral prefrontal cortex (DLPFC). Additionally, loneliness might mediate the relationship between the amygdala volume and the social distress score. Our results demonstrated that social distress and social avoidance were represented by segregated cortical regions in the healthy individuals. These findings might provide a valuable basis for understanding the stable brain structures underlying individual differences in social anxiety.

  10. Neuroanatomical Alterations in Patients with Early Stage of Unilateral Pulsatile Tinnitus: A Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Yawen Liu

    2018-01-01

    Full Text Available During the past several years, the rapid development of neuroimaging techniques has contributed greatly in the noninvasive imaging studies of tinnitus. The aim of the present study was to explore the brain anatomical alterations in patients with right-sided unilateral pulsatile tinnitus (PT in the early stage of PT symptom using voxel-based morphometry (VBM analysis. Twenty-four patients with right-sided pulsatile tinnitus and 24 age- and gender-matched normal controls were recruited to this study. Structural image data preprocessing was performed using VBM8 toolbox. Tinnitus Handicap Inventory (THI score was acquired in the tinnitus group to assess the severity of tinnitus and tinnitus-related distress. Two-sample t-test and Pearson’s correlation analysis were used in statistical analysis. Patients with unilateral pulsatile tinnitus had significantly increased gray matter (GM volume in bilateral superior temporal gyrus compared with the normal controls. However, the left cerebellum posterior lobe, left frontal superior orbital lobe (gyrus rectus, right middle occipital gyrus (MOG, and bilateral putamen showed significantly decreased brain volumes. This was the first study which demonstrated the features of neuroanatomical changes in patients with unilateral PT during their early stages of the symptom.

  11. Beyond the pineal gland assumption: a neuroanatomical appraisal of dualism in Descartes' philosophy.

    Science.gov (United States)

    Berhouma, Moncef

    2013-09-01

    The problem of the substantial union of the soul and the body and therefore the mechanisms of interaction between them represents the core of the Cartesian dualistic philosophy. This philosophy is based upon a neuroanatomical obvious misconception, consisting mainly on a wrong intraventricular position of the pineal gland and its capacity of movement to act as a valve regulating the flow of animal spirits. Should we consider the Cartesian neurophysiology as a purely anatomical descriptive work and therefore totally incorrect, or rather as a theoretical conception supporting his dualistic philosophy? From the various pre-Cartesian theories on the pineal organ, we try to explain how Descartes used his original conception of neuroanatomy to serve his dualistic philosophy. Moreover, we present an appraisal of the Cartesian neuroanatomical corpus from an anatomical but also metaphysical and theological perspectives. A new interpretation of Descartes' writings and an analysis of the secondary related literature shed the light on the voluntary anatomical approximations aiming to build an ad hoc neurophysiology that allows Descartes' soul-body theory. By its central position within the brain mass and its particular shape, the pineal gland raised diverse metaphysical theories regarding its function, but the most original theory remains certainly its role as the seat of soul in René Descartes' philosophy and more precisely the organ where soul and body interact. The author emphasizes on the critics raised by Descartes' theories on the soul-body interaction through the role of the pineal gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons in Mice.

    Science.gov (United States)

    Vandeweerd, Jean-Michel; Hontoir, Fanny; De Knoop, Alexis; De Swert, Kathleen; Nicaise, Charles

    2018-02-22

    Phrenic motor neurons are cervical motor neurons originating from C3 to C6 levels in most mammalian species. Axonal projections converge into phrenic nerves innervating the respiratory diaphragm. In spinal cord slices, phrenic motor neurons cannot be identified from other motor neurons on morphological or biochemical criteria. We provide the description of procedures for visualizing phrenic motor neuron cell bodies in mice, following intrapleural injections of cholera toxin subunit beta (CTB) conjugated to a fluorophore. This fluorescent neuroanatomical tracer has the ability to be caught up at the diaphragm neuromuscular junction, be carried retrogradely along the phrenic axons and reach the phrenic cell bodies. Two methodological approaches of intrapleural CTB delivery are compared: transdiaphragmatic versus transthoracic injections. Both approaches are successful and result in similar number of CTB-labeled phrenic motor neurons. In conclusion, these techniques can be applied to visualize or quantify the phrenic motor neurons in various experimental studies such as those focused on the diaphragm-phrenic circuitry.

  13. Behavioral and functional neuroanatomical correlates of anterograde autobiographical memory in isolated retrograde amnesic patient M.L.

    Science.gov (United States)

    Levine, Brian; Svoboda, Eva; Turner, Gary R; Mandic, Marina; Mackey, Allison

    2009-09-01

    Patient M.L. [Levine, B., Black, S. E., Cabeza, R., Sinden, M., Mcintosh, A. R., Toth, J. P., et al. (1998). Episodic memory and the self in a case of isolated retrograde amnesia. Brain, 121, 1951-1973], lost memory for events occurring before his severe traumatic brain injury, yet his anterograde (post-injury) learning and memory appeared intact, a syndrome known as isolated or focal retrograde amnesia. Studies with M.L. demonstrated a dissociation between episodic and semantic memory. His retrograde amnesia was specific to episodic autobiographical memory. Convergent behavioral and functional imaging data suggested that his anterograde memory, while appearing normal, was accomplished with reduced autonoetic awareness (awareness of the self as a continuous entity across time that is a crucial element of episodic memory). While previous research on M.L. focused on anterograde memory of laboratory stimuli, in this study, M.L.'s autobiographical memory for post-injury events or anterograde autobiographical memory was examined using prospective collection of autobiographical events via audio diary with detailed behavioral and functional neuroanatomical analysis. Consistent with his reports of subjective disconnection from post-injury autobiographical events, M.L. assigned fewer "remember" ratings to his autobiographical events than comparison subjects. His generation of event-specific details using the Autobiographical Interview [Levine, B., Svoboda, E., Hay, J., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689] was low, but not significantly so, suggesting that it is possible to generate episodic-like details even when re-experiencing of those details is compromised. While listening to the autobiographical audio diary segments, M.L. showed reduced activation relative to comparison subjects in midline frontal and posterior nodes previously identified as part of the

  14. Neuroanatomical profiles of bilingual children.

    Science.gov (United States)

    Archila-Suerte, Pilar; Woods, Elizabeth A; Chiarello, Christine; Hernandez, Arturo E

    2018-02-26

    The goal of the present study was to examine differences in cortical thickness, cortical surface area, and subcortical volume between bilingual children who are highly proficient in two languages (i.e., English and Spanish) and bilingual children who are mainly proficient in one of the languages (i.e., Spanish). All children (N = 49) learned Spanish as a native language (L1) at home and English as a second language (L2) at school. Proficiency of both languages was assessed using the standardized Woodcock Language Proficiency Battery. Five-minute high-resolution anatomical scans were acquired with a 3-Tesla scanner. The degree of discrepancy between L1 and L2 proficiency was used to classify the children into two groups: children with balanced proficiency and children with unbalanced proficiency. The groups were comparable on language history, parental education, and other variables except English proficiency. Values of cortical thickness and surface area of the transverse STG, IFG-pars opercularis, and MFG, as well as subcortical volume of the caudate and putamen, were extracted from FreeSurfer. Results showed that children with balanced bilingualism had thinner cortices of the left STG, left IFG, left MFG and a larger bilateral putamen, whereas unbalanced bilinguals showed thicker cortices of the same regions and a smaller putamen. Additionally, unbalanced bilinguals with stronger foreign accents in the L2 showed reduced surface areas of the MFG and STS bilaterally. The results suggest that balanced/unbalanced bilingualism is reflected in different neuroanatomical characteristics that arise from biological and/or environmental factors. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  15. Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia.

    Science.gov (United States)

    Park, Min Tae M; Raznahan, Armin; Shaw, Philip; Gogtay, Nitin; Lerch, Jason P; Chakravarty, M Mallar

    2018-05-01

    There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are "enriched" within functional resting-state networks. We found cortical anomalies were preferentially enriched across functional networks rather than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). We did not account for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of developmental trajectories. These findings suggest that common deficits across neuropsychiatric disorders cannot simply be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations targeting brain networks.

  16. Neural correlates of the numerical distance effect in children

    Directory of Open Access Journals (Sweden)

    Christophe eMussolin

    2013-10-01

    Full Text Available In number comparison tasks, the performance is better when the distance between the two numbers to compare increases. During development this so-called numerical distance effect decreases with age and the neuroanatomical correlates of these age-related changes are poorly known. Using functional magnetic resonance imaging, we recorded the brain activity changes in children aged from 8 to 14 years while they performed a number comparison task on pairs of Arabic digits and a control colour comparison task on non-numerical symbols. On the one hand, we observed developmental changes in the recruitment of frontal regions and the left intraparietal sulcus, with lower activation as the age increased. On the other hand, we found that a behavioural index of selective sensitivity to the numerical distance effect was positively correlated with higher brain activity in a right lateralized occipito-temporo-parietal network including the intraparietal sulcus. This leads us to propose that the left intraparietal sulcus would be engaged in the refinement of cognitive processes involved in number comparison during development, while the right intraparietal sulcus would underlie the semantic representation of numbers and its activation would be mainly affected by the numerical proximity between them.

  17. Apparent scale correlations in a random multifractal process

    DEFF Research Database (Denmark)

    Cleve, Jochen; Schmiegel, Jürgen; Greiner, Martin

    2008-01-01

    We discuss various properties of a homogeneous random multifractal process, which are related to the issue of scale correlations. By design, the process has no built-in scale correlations. However, when it comes to observables like breakdown coefficients, which are based on a coarse......-graining of the multifractal field, scale correlations do appear. In the log-normal limit of the model process, the conditional distributions and moments of breakdown coefficients reproduce the observations made in fully developed small-scale turbulence. These findings help to understand several puzzling empirical details...

  18. [The interactive neuroanatomical simulation and practical application of frontotemporal transsylvian exposure in neurosurgery].

    Science.gov (United States)

    Balogh, Attila; Czigléczki, Gábor; Papal, Zsolt; Preul, Mark C; Banczerowski, Péter

    2014-11-30

    There is an increased need for new digital education tools in neurosurgical training. Illustrated textbooks offer anatomic and technical reference but do not substitute hands-on experience provided by surgery or cadaver dissection. Due to limited availability of cadaver dissections the need for development of simulation tools has been augmented. We explored simulation technology for producing virtual reality-like reconstructions of simulated surgical approaches on cadaver. Practical application of the simulation tool has been presented through frontotemporal transsylvian exposure. The dissections were performed on two cadaveric heads. Arteries and veins were prepared and injected with colorful silicon rubber. The heads were rigidly fixed in Mayfield headholder. A robotic microscope with two digital cameras in inverted cone method of image acquisition was used to capture images around a pivot point in several phases of dissections. Multilayered, high-resolution images have been built into interactive 4D environment by custom developed software. We have developed the simulation module of the frontotemporal transsylvian approach. The virtual specimens can be rotated or tilted to any selected angles and examined from different surgical perspectives at any stage of dissections. Important surgical issues such as appropriate head positioning or surgical maneuvers to expose deep situated neuroanatomic structures can be simulated and studied by using the module. The simulation module of the frontotemporal transsylvian exposure helps to examine effect of head positioning on the visibility of deep situated neuroanatomic structures and study surgical maneuvers required to achieve optimal exposure of deep situated anatomic structures. The simulation program is a powerful tool to study issues of preoperative planning and well suited for neurosurgical training.

  19. Modeling the neuroanatomic propagation of ALS in the spinal cord

    Science.gov (United States)

    Drawert, Brian; Thakore, Nimish; Mitchell, Brian; Pioro, Erik; Ravits, John; Petzold, Linda R.

    2017-07-01

    Recent hypotheses of amyotrophic lateral sclerosis (ALS) progression have posited a point-source origin of motor neuron death with neuroanatomic propagation either contiguously to adjacent regions, or along networks via axonal and synaptic connections. Although the molecular mechanisms of propagation are unknown, one leading hypothesis is a "prion-like" spread of misfolded and aggregated proteins, including SOD1 and TDP-43. We have developed a mathematical model representing cellular and molecular spread of ALS in the human spinal cord. Our model is based on the stochastic reaction-diffusion master equation approach using a tetrahedral discretized space to capture the complex geometry of the spinal cord. Domain dimension and shape was obtained by reconstructing human spinal cord from high-resolution magnetic resonance (MR) images and known gross and histological neuroanatomy. Our preliminary results qualitatively recapitulate the clinically observed pattern of spread of ALS thorough the spinal cord.

  20. Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics

    Science.gov (United States)

    Alluin, Olivier; Fehlings, Michael G.; Rossignol, Serge; Karimi-Abdolrezaee, Soheila

    2014-01-01

    While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional

  1. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics.

    Directory of Open Access Journals (Sweden)

    Olivier Alluin

    Full Text Available While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC, can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However

  2. Neuroanatomical correlates of intelligence in healthy young adults: the role of basal ganglia volume.

    Science.gov (United States)

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to

  3. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis.

    Directory of Open Access Journals (Sweden)

    Eduardo J Izquierdo

    Full Text Available Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function. Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the resulting network based on both experimental considerations and several simplifying assumptions. We then use an evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using.

  4. Neuroanatomical localization of endocrine control of reproductive behavior in the Japanese quail (Coturnix japonica)

    International Nuclear Information System (INIS)

    Watson, J.T. III.

    1989-01-01

    Steroid autoradiography and systematic and intracranial steroid treatment were undertaken to determine the neuroanatomical loci which are sufficient to activate steroid sensitive behaviors in the Japanese quail. (1) Autoradiographic localization of steroid binding cells was performed on male and female quail brains using tritiated ( 3 H) testosterone (T), estradiol (E2), or 5α-dihydrotestosterone (DHT). The distributions of labelled cells in the quail brain following 3 H-T or 3 H-E2 injection and autoradiography were similar to one another. The distribution of labelled cells following 3 H-DHT autoradiography was limited in comparison to that following 3 H-T autoradiography. Males were found to have more labelled cells than females in nucleus taeniae. (2) Intracranial implantation of minute pellets of testoterone propionate (TP) and estradiol benzoate (EB) was performed to determine neuroanatomical loci at which steroids activate sexual behavior. Both TP and EB implants in the preoptic area (POA) activated male copulatory behavior. (3) Systematic injection of aromatase inhibitor prior to and concurrent with implantation completely blocked copulatory behavior in males with TP implants in the POA but failed to block copulation in males with EB implants in the POA. (4) Intact males and castrated males given 5 dosages of systematic EB treatment were tested for sexual behavior, and blood samples from each group were assayed for E2 concentration. (5) Midbrain DHTP implants were activated crowing without significantly stimulating peripheral androgen-sensitive tissues, but the effect on crowing was not localized to any one nucleus

  5. Predictive modeling of neuroanatomic structures for brain atrophy detection

    Science.gov (United States)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  6. The neuroanatomical basis of panic disorder and social phobia in schizophrenia: a voxel based morphometric study.

    Science.gov (United States)

    Picado, Marisol; Carmona, Susanna; Hoekzema, Elseline; Pailhez, Guillem; Bergé, Daniel; Mané, Anna; Fauquet, Jordi; Hilferty, Joseph; Moreno, Ana; Cortizo, Romina; Vilarroya, Oscar; Bulbena, Antoni

    2015-01-01

    It is known that there is a high prevalence of certain anxiety disorders among schizophrenic patients, especially panic disorder and social phobia. However, the neural underpinnings of the comorbidity of such anxiety disorders and schizophrenia remain unclear. Our study aims to determine the neuroanatomical basis of the co-occurrence of schizophrenia with panic disorder and social phobia. Voxel-based morphometry was used in order to examine brain structure and to measure between-group differences, comparing magnetic resonance images of 20 anxious patients, 20 schizophrenic patients, 20 schizophrenic patients with comorbid anxiety, and 20 healthy control subjects. Compared to the schizophrenic patients, we observed smaller grey-matter volume (GMV) decreases in the dorsolateral prefrontal cortex and precentral gyrus in the schizophrenic-anxiety group. Additionally, the schizophrenic group showed significantly reduced GMV in the dorsolateral prefrontal cortex, precentral gyrus, orbitofrontal cortex, temporal gyrus and angular/inferior parietal gyrus when compared to the control group. Our findings suggest that the comorbidity of schizophrenia with panic disorder and social phobia might be characterized by specific neuroanatomical and clinical alterations that may be related to maladaptive emotion regulation related to anxiety. Even thought our findings need to be replicated, our study suggests that the identification of neural abnormalities involved in anxiety, schizophrenia and schizophrenia-anxiety may lead to an improved diagnosis and management of these conditions.

  7. Evidence for a neural dual-process account for adverse effects of cognitive control.

    Science.gov (United States)

    Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian

    2018-06-09

    Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.

  8. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    Directory of Open Access Journals (Sweden)

    Raffaele Nardone

    2013-01-01

    Full Text Available Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS. Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.

  9. Neuroanatomical correlates of childhood apraxia of speech: A connectomic approach.

    Science.gov (United States)

    Fiori, Simona; Guzzetta, Andrea; Mitra, Jhimli; Pannek, Kerstin; Pasquariello, Rosa; Cipriani, Paola; Tosetti, Michela; Cioni, Giovanni; Rose, Stephen E; Chilosi, Anna

    2016-01-01

    Childhood apraxia of speech (CAS) is a paediatric speech sound disorder in which precision and consistency of speech movements are impaired. Most children with idiopathic CAS have normal structural brain MRI. We hypothesize that children with CAS have altered structural connectivity in speech/language networks compared to controls and that these altered connections are related to functional speech/language measures. Whole brain probabilistic tractography, using constrained spherical deconvolution, was performed for connectome generation in 17 children with CAS and 10 age-matched controls. Fractional anisotropy (FA) was used as a measure of connectivity and the connections with altered FA between CAS and controls were identified. Further, the relationship between altered FA and speech/language scores was determined. Three intra-hemispheric/interhemispheric subnetworks showed reduction of FA in CAS compared to controls, including left inferior (opercular part) and superior (dorsolateral, medial and orbital part) frontal gyrus, left superior and middle temporal gyrus and left post-central gyrus (subnetwork 1); right supplementary motor area, left middle and inferior (orbital part) frontal gyrus, left precuneus and cuneus, right superior occipital gyrus and right cerebellum (subnetwork 2); right angular gyrus, right superior temporal gyrus and right inferior occipital gyrus (subnetwork 3). Reduced FA of some connections correlated with diadochokinesis, oromotor skills, expressive grammar and poor lexical production in CAS. These findings provide evidence of structural connectivity anomalies in children with CAS across specific brain regions involved in speech/language function. We propose altered connectivity as a possible epiphenomenon of complex pathogenic mechanisms in CAS which need further investigation.

  10. Neural Correlates of Processing Negative and Sexually Arousing Pictures

    Science.gov (United States)

    Bailey, Kira; West, Robert; Mullaney, Kellie M.

    2012-01-01

    Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071

  11. Correlations in Output and Overflow Traffic Processes in Simple Queues

    Directory of Open Access Journals (Sweden)

    Don McNickle

    2007-01-01

    Full Text Available We consider some simple Markov and Erlang queues with limited storage space. Although the departure processes from some such systems are known to be Poisson, they actually consist of the superposition of two complex correlated processes, the overflow process and the output process. We measure the cross-correlation between the counting processes for these two processes. It turns out that this can be positive, negative, or even zero (without implying independence. The models suggest some general principles on how big these correlations are, and when they are important. This may suggest when renewal or moment approximations to similar processes will be successful, and when they will not.

  12. NEUROANATOMICAL ASSOCIATION OF HYPOTHALAMIC HSD2-CONTAINING NEURONS WITH ERα, CATECHOLAMINES, OR OXYTOCIN: IMPLICATIONS FOR FEEDING?

    Directory of Open Access Journals (Sweden)

    Maegan L. Askew

    2015-06-01

    Full Text Available This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2 are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα, catecholamines, and/or oxytocin. An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized rats compared to numbers in male rats and in ovariectomized rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus. There was an absence of oxytocin-immunolabeled fibers in the area of HSD2-labeled neurons. Taken together, these findings provide no support for direct associations between hypothalamic HSD2 and ERα or oxytocin neurons in the control of feeding. In contrast, there was catecholamine-fiber labeling in the area of HSD2-labeled neurons, and these fibers occasionally were in close apposition to HSD2-labeled neurons. Therefore, we cannot rule out interactions between HSD2 and catecholamines in the control of feeding; however, given the relative sparseness of the appositions, any such interaction would appear to be modest. Thus, these studies do not conclusively identify a neuroanatomical substrate by which HSD2-containing neurons in the hypothalamus may alter feeding, and leave the functional role of hypothalamic HSD2-containing neurons subject to further investigation.

  13. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

    Science.gov (United States)

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto; Yamasue, Hidenori

    2014-10-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. The pair correlation function of spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2007-01-01

    Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....

  15. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns

    Science.gov (United States)

    Ko, Jaewon

    2017-01-01

    Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives. PMID:28659766

  16. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  17. [The neuroanatomy of attention deficit hyperactivity disorder: neuropsychological and clinical correlates].

    Science.gov (United States)

    Albert, J; Fernandez-Jaen, A; Martin Fernandez-Mayoralas, D; Lopez-Martin, S; Fernandez-Perrone, A L; Calleja-Perez, B; Jimenez-De la Pena, M; Recio-Rodriguez, M

    2016-07-16

    The development of structural magnetic resonance scanning and new methods of analysis has made it possible to explore, in a hitherto unknown way, the neuroanatomical bases of attention deficit hyperactivity disorder (ADHD). Yet, little is known about the relation between the clinical symptoms and the neuropsychological dysfunctions characterising ADHD and the neuroanatomical alterations that are observed. To explore the relation between neuroanatomy, clinical features and neuropsychology in ADHD. At group level, there are a number of marked differences between the brain of children, adolescents and adults with ADHD and the brain of subjects with a typical development. These differences are observed cross-sectionally and longitudinally in all the measurements, both in the grey matter and in the white matter. Although still scarce, there is an increasing body of evidence showing that these differences are related with the core symptoms of the disorder and with the degree of clinical dysfunction. They also appear to be associated with cognitive functioning (mainly attention and inhibitory control). The relation among the different levels of analysis in the study of ADHD bring research closer to the clinical features and allows a better understanding and management of the disorder. Although progress is undoubtedly being made in this field, there are still many questions that need exploring in greater depth. There is a need for a better understanding of the association between the neuroanatomical measurements and each dimension of the symptoms, and their relationship with other neuropsychological processes that are also involved in the disorder.

  18. Total focusing method with correlation processing of antenna array signals

    Science.gov (United States)

    Kozhemyak, O. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article proposes a method of preliminary correlation processing of a complete set of antenna array signals used in the image reconstruction algorithm. The results of experimental studies of 3D reconstruction of various reflectors using and without correlation processing are presented in the article. Software ‘IDealSystem3D’ by IDeal-Technologies was used for experiments. Copper wires of different diameters located in a water bath were used as a reflector. The use of correlation processing makes it possible to obtain more accurate reconstruction of the image of the reflectors and to increase the signal-to-noise ratio. The experimental results were processed using an original program. This program allows varying the parameters of the antenna array and sampling frequency.

  19. The role of planum temporale in processing accent variation in spoken language comprehension.

    NARCIS (Netherlands)

    Adank, P.M.; Noordzij, M.L.; Hagoort, P.

    2012-01-01

    A repetitionsuppression functional magnetic resonance imaging paradigm was used to explore the neuroanatomical substrates of processing two types of acoustic variationspeaker and accentduring spoken sentence comprehension. Recordings were made for two speakers and two accents: Standard Dutch and a

  20. The role of planum temporale in processing accent variation in spoken language comprehension

    NARCIS (Netherlands)

    Adank, P.M.; Noordzij, M.L.; Hagoort, P.

    2012-01-01

    A repetition–suppression functional magnetic resonance imaging paradigm was used to explore the neuroanatomical substrates of processing two types of acoustic variation—speaker and accent—during spoken sentence comprehension. Recordings were made for two speakers and two accents: Standard Dutch and

  1. Neuromagnetic correlates of audiovisual word processing in the developing brain.

    Science.gov (United States)

    Dinga, Samantha; Wu, Di; Huang, Shuyang; Wu, Caiyun; Wang, Xiaoshan; Shi, Jingping; Hu, Yue; Liang, Chun; Zhang, Fawen; Lu, Meng; Leiken, Kimberly; Xiang, Jing

    2018-06-01

    The brain undergoes enormous changes during childhood. Little is known about how the brain develops to serve word processing. The objective of the present study was to investigate the maturational changes of word processing in children and adolescents using magnetoencephalography (MEG). Responses to a word processing task were investigated in sixty healthy participants. Each participant was presented with simultaneous visual and auditory word pairs in "match" and "mismatch" conditions. The patterns of neuromagnetic activation from MEG recordings were analyzed at both sensor and source levels. Topography and source imaging revealed that word processing transitioned from bilateral connections to unilateral connections as age increased from 6 to 17 years old. Correlation analyses of language networks revealed that the path length of word processing networks negatively correlated with age (r = -0.833, p processing networks were positively correlated with age. In addition, males had more visual connections, whereas females had more auditory connections. The correlations between gender and path length, gender and connection strength, and gender and clustering coefficient demonstrated a developmental trend without reaching statistical significance. The results indicate that the developmental trajectory of word processing is gender specific. Since the neuromagnetic signatures of these gender-specific paths to adult word processing were determined using non-invasive, objective, and quantitative methods, the results may play a key role in understanding language impairments in pediatric patients in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis

    NARCIS (Netherlands)

    van den Heuvel, O.A.; Veltman, D.J.; Groenewegen, H.J.; Witter, M.P.; Merkelbach, J.; Cath, D.C.; van Balkom, A.J.; van Oppen, P.; van Dyck, R.

    2005-01-01

    Context: Attentional bias to disease-relevant emotional cues is considered to be pathogenetically relevant in anxiety disorders. Objective: To investigate functional neural correlates and disease specificity of attentional bias across different anxiety disorders. Design: A cognitive and emotional

  3. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis

    NARCIS (Netherlands)

    van den Heuvel, Odile A.; Veltman, Dick J.; Groenewegen, Henk J.; Witter, Menno P.; Merkelbach, Jille; Cath, Danielle C.; van Balkom, Anton J. L. M.; van Oppen, Patricia; van Dyck, Richard

    2005-01-01

    CONTEXT: Attentional bias to disease-relevant emotional cues is considered to be pathogenetically relevant in anxiety disorders. OBJECTIVE: To investigate functional neural correlates and disease specificity of attentional bias across different anxiety disorders. DESIGN: A cognitive and emotional

  4. [Prospective memory - concepts, methods of assessment, neuroanatomical bases and its deficits in mental disorders].

    Science.gov (United States)

    Wiłkość, Monika; Izdebski, Paweł; Zajac-Lamparska, Ludmiła

    2013-01-01

    In the last two decades of the last century there has been a shift in the studies on memory. In psychology of memory the criticism of the laboratory approach resulted in development of the ecological approach. One of the effects of this change was to initiate researches on memory that includes plans for the future, which has resulted in the distinction of the concept of prospective memory. Prospective memory is used in many aspects of everyday life. It deals with remembering intentions and plans, it is connected with remembering about specific task or activity in the future. There are three types of PM: event-based prospective memory, time-based prospective memory and activity-based prospective memory. Current research in this field have already established its own paradigm and tools measuring PM and there is still increasing scientific interest in this issue. Prospective memory assessment may be carried out in various ways. Among them, the most frequently used are: a) questionnaires, b) psychological tests, c) experimental procedures. Within the latter, the additional distinction can be introduced for: the experiments conducted under natural conditions and the laboratory procedures. In Polish literature, there are only a few articles on PM. The aim of this work is to review studies on assessment methods of PM. Its neuroanatomical bases and its functioning in different mental disorders are analyzed. The work is aimed to focus clinicians attention on prospective memory as an area which is important for complex diagnosis of cognitive processes.

  5. Clustering Coefficients for Correlation Networks

    Directory of Open Access Journals (Sweden)

    Naoki Masuda

    2018-03-01

    were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.

  6. Clustering Coefficients for Correlation Networks.

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.

  7. Clustering Coefficients for Correlation Networks

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties. PMID:29599714

  8. Quantum process estimation via generic two-body correlations

    International Nuclear Information System (INIS)

    Mohseni, M.; Rezakhani, A. T.; Barreiro, J. T.; Kwiat, P. G.; Aspuru-Guzik, A.

    2010-01-01

    Performance of quantum process estimation is naturally limited by fundamental, random, and systematic imperfections of preparations and measurements. These imperfections may lead to considerable errors in the process reconstruction because standard data-analysis techniques usually presume ideal devices. Here, by utilizing generic auxiliary quantum or classical correlations, we provide a framework for the estimation of quantum dynamics via a single measurement apparatus. By construction, this approach can be applied to quantum tomography schemes with calibrated faulty-state generators and analyzers. Specifically, we present a generalization of the work begun by M. Mohseni and D. A. Lidar [Phys. Rev. Lett. 97, 170501 (2006)] with an imperfect Bell-state analyzer. We demonstrate that for several physically relevant noisy preparations and measurements, classical correlations and a small data-processing overhead suffice to accomplish the full system identification. Furthermore, we provide the optimal input states whereby the error amplification due to inversion of the measurement data is minimal.

  9. Gaussian random-matrix process and universal parametric correlations in complex systems

    International Nuclear Information System (INIS)

    Attias, H.; Alhassid, Y.

    1995-01-01

    We introduce the framework of the Gaussian random-matrix process as an extension of Dyson's Gaussian ensembles and use it to discuss the statistical properties of complex quantum systems that depend on an external parameter. We classify the Gaussian processes according to the short-distance diffusive behavior of their energy levels and demonstrate that all parametric correlation functions become universal upon the appropriate scaling of the parameter. The class of differentiable Gaussian processes is identified as the relevant one for most physical systems. We reproduce the known spectral correlators and compute eigenfunction correlators in their universal form. Numerical evidence from both a chaotic model and weakly disordered model confirms our predictions

  10. Information processing correlates of a size-contrast illusion

    Directory of Open Access Journals (Sweden)

    Jason M Gold

    2014-02-01

    Full Text Available Perception is often influenced by context. A well-known class of perceptual context effects is perceptual contrast illusions, in which proximate stimulus regions interact to alter the perception of various stimulus attributes, such as perceived brightness, color and size. Although the phenomenal reality of contrast effects is well documented, in many cases the connection between these illusions and how information is processed by perceptual systems is not well understood. Here, we use noise as a tool to explore the information processing correlates of one such contrast effect: the Ebbinghaus-Titchener size-contrast illusion. In this illusion, the perceived size of a central dot is significantly altered by the sizes of a set of surrounding dots, such that the presence of larger surrounding dots tends to reduce the perceived size of the central dot (and vise-versa. In our experiments, we first replicated previous results that have demonstrated the subjective reality of the Ebbinghaus-Titchener illusion. We then used visual noise in a detection task to probe the manner in which observers processed information when experiencing the illusion. By correlating the noise with observers’ classification decisions, we found that the sizes of the surrounding contextual elements had a direct influence on the relative weight observers assigned to regions within and surrounding the central element. Specifically, observers assigned relatively more weight to the surrounding region and less weight to the central region in the presence of smaller surrounding contextual elements. These results offer new insights into the connection between the subjective experience of size-contrast illusions and their associated information processing correlates.

  11. Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Crespi, Chiara; Cerami, Chiara; Dodich, Alessandra; Canessa, Nicola; Iannaccone, Sandro; Corbo, Massimo; Lunetta, Christian; Falini, Andrea; Cappa, Stefano F

    2016-01-01

    Impairments in the ability to recognize and attribute emotional states to others have been described in amyotrophic lateral sclerosis patients and linked to the dysfunction of key nodes of the emotional empathy network. Microstructural correlates of such disorders are still unexplored. We investigated the white-matter substrates of emotional attribution deficits in a sample of amyotrophic lateral sclerosis patients without cognitive decline. Thirteen individuals with either probable or definite amyotrophic lateral sclerosis and 14 healthy controls were enrolled in a Diffusion Tensor Imaging study and administered the Story-based Empathy Task, assessing the ability to attribute mental states to others (i.e., Intention and Emotion attribution conditions). As already reported, a significant global reduction of empathic skills, mainly driven by a failure in Emotion Attribution condition, was found in amyotrophic lateral sclerosis patients compared to healthy subjects. The severity of this deficit was significantly correlated with fractional anisotropy along the forceps minor, genu of corpus callosum, right uncinate and inferior fronto-occipital fasciculi. The involvement of frontal commissural fiber tracts and right ventral associative fronto-limbic pathways is the microstructural hallmark of the impairment of high-order processing of socio-emotional stimuli in amyotrophic lateral sclerosis. These results support the notion of the neurofunctional and neuroanatomical continuum between amyotrophic lateral sclerosis and frontotemporal dementia.

  12. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  13. Functional neuroimaging correlates of thinking flexibility and knowledge structure in memory: Exploring the relationships between clinical reasoning and diagnostic thinking.

    Science.gov (United States)

    Durning, Steven J; Costanzo, Michelle E; Beckman, Thomas J; Artino, Anthony R; Roy, Michael J; van der Vleuten, Cees; Holmboe, Eric S; Lipner, Rebecca S; Schuwirth, Lambert

    2016-06-01

    Diagnostic reasoning involves the thinking steps up to and including arrival at a diagnosis. Dual process theory posits that a physician's thinking is based on both non-analytic or fast, subconscious thinking and analytic thinking that is slower, more conscious, effortful and characterized by comparing and contrasting alternatives. Expertise in clinical reasoning may relate to the two dimensions measured by the diagnostic thinking inventory (DTI): memory structure and flexibility in thinking. Explored the functional magnetic resonance imaging (fMRI) correlates of these two aspects of the DTI: memory structure and flexibility of thinking. Participants answered and reflected upon multiple-choice questions (MCQs) during fMRI. A DTI was completed shortly after the scan. The brain processes associated with the two dimensions of the DTI were correlated with fMRI phases - assessing flexibility in thinking during analytical clinical reasoning, memory structure during non-analytical clinical reasoning and the total DTI during both non-analytical and analytical reasoning in experienced physicians. Each DTI component was associated with distinct functional neuroanatomic activation patterns, particularly in the prefrontal cortex. Our findings support diagnostic thinking conceptual models and indicate mechanisms through which cognitive demands may induce functional adaptation within the prefrontal cortex. This provides additional objective validity evidence for the use of the DTI in medical education and practice settings.

  14. The autism puzzle: Diffuse but not pervasive neuroanatomical abnormalities in children with ASD

    Directory of Open Access Journals (Sweden)

    D. Sussman

    2015-01-01

    Full Text Available Autism Spectrum Disorder (ASD is a clinically diagnosed, heterogeneous, neurodevelopmental condition, whose underlying causes have yet to be fully determined. A variety of studies have investigated either cortical, subcortical, or cerebellar anatomy in ASD, but none have conducted a complete examination of all neuroanatomical parameters on a single, large cohort. The current study provides a comprehensive examination of brain development of children with ASD between the ages of 4 and 18 years who are carefully matched for age and sex with typically developing controls at a ratio of one-to-two. Two hundred and ten magnetic resonance images were examined from 138 Control (116 males and 22 females and 72 participants with ASD (61 males and 11 females. Cortical segmentation into 78 brain-regions and 81,924 vertices was conducted with CIVET which facilitated a region-of-interest- (ROI- and vertex-based analysis, respectively. Volumes for the cerebellum, hippocampus, striatum, pallidum, and thalamus and many associated subregions were derived using the MAGeT Brain algorithm. The study reveals cortical, subcortical and cerebellar differences between ASD and Control group participants. Diagnosis, diagnosis-by-age, and diagnosis-by-sex interaction effects were found to significantly impact total brain volume but not total surface area or mean cortical thickness of the ASD participants. Localized (vertex-based analysis of cortical thickness revealed no significant group differences, even when age, age-range, and sex were used as covariates. Nonetheless, the region-based cortical thickness analysis did reveal regional changes in the left orbitofrontal cortex and left posterior cingulate gyrus, both of which showed reduced age-related cortical thinning in ASD. Our finding of region-based differences without significant vertex-based results likely indicates non-focal effects spanning the entirety of these regions. The hippocampi, thalamus, and globus

  15. The Reduction of Ventrolateral Prefrontal Cortex Gray Matter Volume Correlates with Loss of Economic Rationality in Aging.

    Science.gov (United States)

    Chung, Hui-Kuan; Tymula, Agnieszka; Glimcher, Paul

    2017-12-06

    The population of people above 65 years old continues to grow, and there is mounting evidence that as humans age they are more likely to make errors. However, the specific effect of neuroanatomical aging on the efficiency of economic decision-making is poorly understood. We used whole-brain voxel-based morphometry analysis to determine where reduction of gray matter volume in healthy female and male adults over the age of 65 years correlates with a classic measure of economic irrationality: violations of the Generalized Axiom of Revealed Preference. All participants were functionally normal with Mini-Mental State Examination scores ranging between 26 and 30. While our elders showed the previously reported decline in rationality compared with younger subjects, chronological age per se did not correlate with rationality measures within our population of elders. Instead, reduction of gray matter density in ventrolateral prefrontal cortex correlates tightly with irrational behavior. Interestingly, using a large fMRI sample and meta-analytic tool with Neurosynth, we found that this brain area shows strong coactivation patterns with nearly all of the value-associated regions identified in previous studies. These findings point toward a neuroanatomic locus for economic rationality in the aging brain and highlight the importance of understanding both anatomy and function in the study of aging, cognition, and decision-making. SIGNIFICANCE STATEMENT Age is a crucial factor in decision-making, with older individuals making more errors in choices. Using whole-brain voxel-based morphometry analysis, we found that reduction of gray matter density in ventrolateral prefrontal cortex correlates with economic irrationality: reduced gray matter volume in this area correlates with the frequency and severity of violations of the Generalized Axiom of Revealed Preference. Furthermore, this brain area strongly coactivates with other reward-associated regions identified with Neurosynth

  16. To be and not to be: scale correlations in random multifractal processes

    DEFF Research Database (Denmark)

    Cleve, Jochen; Schmiegel, Jürgen; Greiner, Martin

    We discuss various properties of a random multifractal process, which are related to the issue of scale correlations. By design, the process is homogeneous, non-conservative and has no built-in scale correlations. However, when it comes to observables like breakdown coefficients, which are based...... on a coarse-graining of the multifractal field, scale correlations do appear. In the log-normal limit of the model process, the conditional distributions and moments of breakdown coefficients reproduce the observations made in fully developed small-scale turbulence. These findings help to understand several...

  17. Language-invariant verb processing regions in Spanish-English bilinguals.

    Science.gov (United States)

    Willms, Joanna L; Shapiro, Kevin A; Peelen, Marius V; Pajtas, Petra E; Costa, Albert; Moo, Lauren R; Caramazza, Alfonso

    2011-07-01

    Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Evaluation of software tools for automated identification of neuroanatomical structures in quantitative β-amyloid PET imaging to diagnose Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tuszynski, Tobias; Luthardt, Julia; Butzke, Daniel; Tiepolt, Solveig; Seese, Anita; Barthel, Henryk [Leipzig University Medical Centre, Department of Nuclear Medicine, Leipzig (Germany); Rullmann, Michael; Hesse, Swen; Sabri, Osama [Leipzig University Medical Centre, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); Gertz, Hermann-Josef [Leipzig University Medical Centre, Department of Psychiatry, Leipzig (Germany); Lobsien, Donald [Leipzig University Medical Centre, Department of Neuroradiology, Leipzig (Germany)

    2016-06-15

    For regional quantification of nuclear brain imaging data, defining volumes of interest (VOIs) by hand is still the gold standard. As this procedure is time-consuming and operator-dependent, a variety of software tools for automated identification of neuroanatomical structures were developed. As the quality and performance of those tools are poorly investigated so far in analyzing amyloid PET data, we compared in this project four algorithms for automated VOI definition (HERMES Brass, two PMOD approaches, and FreeSurfer) against the conventional method. We systematically analyzed florbetaben brain PET and MRI data of ten patients with probable Alzheimer's dementia (AD) and ten age-matched healthy controls (HCs) collected in a previous clinical study. VOIs were manually defined on the data as well as through the four automated workflows. Standardized uptake value ratios (SUVRs) with the cerebellar cortex as a reference region were obtained for each VOI. SUVR comparisons between ADs and HCs were carried out using Mann-Whitney-U tests, and effect sizes (Cohen's d) were calculated. SUVRs of automatically generated VOIs were correlated with SUVRs of conventionally derived VOIs (Pearson's tests). The composite neocortex SUVRs obtained by manually defined VOIs were significantly higher for ADs vs. HCs (p=0.010, d=1.53). This was also the case for the four tested automated approaches which achieved effect sizes of d=1.38 to d=1.62. SUVRs of automatically generated VOIs correlated significantly with those of the hand-drawn VOIs in a number of brain regions, with regional differences in the degree of these correlations. Best overall correlation was observed in the lateral temporal VOI for all tested software tools (r=0.82 to r=0.95, p<0.001). Automated VOI definition by the software tools tested has a great potential to substitute for the current standard procedure to manually define VOIs in β-amyloid PET data analysis. (orig.)

  19. Non tumoral intracranial expansive processes: clinical tomographic correlation

    International Nuclear Information System (INIS)

    Campos, P.; Herrera, G.; Valneica, F.

    1991-01-01

    Presentation of clinical-tomographic correlation in 111 cases of non tumoral intracranial expansive processes seen between 1984-1988 in the Hospital Cayetano Heredia (Lima, Peru). Emphasis is given fundamentally to: the importance of establishing the organicity of partial and late epilepsy; the high incidence rate of inflammatory infectious processes with CNS compromise in under developing countries; the necessity of making public the importance of two parasitic diseases in the differential diagnosis of non tumoral intracranial expansive processes: free living amebiasis, and toxoplasmosis (especially in association with AIDS). (author)

  20. Neuroimaging correlates of handwriting quality as children learn to read and write

    Science.gov (United States)

    Gimenez, Paul; Bugescu, Nicolle; Black, Jessica M.; Hancock, Roeland; Pugh, Kenneth; Nagamine, Masanori; Kutner, Emily; Mazaika, Paul; Hendren, Robert; McCandliss, Bruce D.; Hoeft, Fumiko

    2014-01-01

    Reading and writing are related but separable processes that are crucial skills to possess in modern society. The neurobiological basis of reading acquisition and development, which critically depends on phonological processing, and to a lesser degree, beginning writing as it relates to letter perception, are increasingly being understood. Yet direct relationships between writing and reading development, in particular, with phonological processing is not well understood. The main goal of the current preliminary study was to examine individual differences in neurofunctional and neuroanatomical patterns associated with handwriting in beginning writers/readers. In 46 5–6 year-old beginning readers/writers, ratings of handwriting quality, were rank-ordered from best to worst and correlated with brain activation patterns during a phonological task using functional MRI, and with regional gray matter volume from structural T1 MRI. Results showed that better handwriting was associated negatively with activation and positively with gray matter volume in an overlapping region of the pars triangularis of right inferior frontal gyrus. This region, in particular in the left hemisphere in adults and more bilaterally in young children, is known to be important for decoding, phonological processing, and subvocal rehearsal. We interpret the dissociation in the directionality of the association in functional activation and morphometric properties in the right inferior frontal gyrus in terms of neural efficiency, and suggest future studies that interrogate the relationship between the neural mechanisms underlying reading and writing development. PMID:24678293

  1. Neuroimaging correlations of handwriting quality as children learn to read and write

    Directory of Open Access Journals (Sweden)

    Paul eGimenez

    2014-03-01

    Full Text Available Reading and writing are related but separable processes that are crucial skills to possess in modern society. The neurobiological basis of reading acquisition and development, which critically depends on phonological processing, and to a lesser degree, beginning writing as it relates to letter perception, are increasingly being understood. Yet direct relationships between writing and reading development, in particular, with phonological processing is not well understood. The main goal of the current preliminary study was to examine individual differences in neurofunctional and neuroanatomical patterns associated with handwriting in beginning writers/readers. In 46 5-6 year-old beginning readers/writers, ratings of handwriting quality, were rank-ordered from best to worst and correlated with brain activation patterns during a phonological task using functional MRI, and with regional grey matter volume from structural T1 MRI. Results showed that better handwriting was associated negatively with activation and positively with gray matter volume in an overlapping region of the pars triangularis of right inferior frontal gyrus. This region, in particular in the left hemisphere in adults and more bilaterally in young children, is known to be important for decoding, phonological processing, and subvocal rehearsal. We interpret the dissociation in the directionality of the association in functional activation and morphometric properties in the right inferior frontal gyrus in terms of neural efficiency, and suggest future studies that interrogate the relationship between the neural mechanisms underlying reading and writing development.

  2. Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics

    Directory of Open Access Journals (Sweden)

    Yayoi K. Hayakawa

    2014-01-01

    Full Text Available Depressive symptoms, even at a subclinical level, have been associated with structural brain abnormalities. However, previous studies have used regions of interest or small sample sizes, limiting the ability to generalize the results. In this study, we examined neuroanatomical structures of both gray matter and white matter associated with depressive symptoms across the whole brain in a large sample. A total of 810 community-dwelling adult participants underwent measurement of depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D. The participants were not demented and had no neurological or psychiatric history. To examine the gray and white matter volume, we used structural MRI scans and voxel-based morphometry (VBM; to examine the white matter integrity, we used diffusion tensor imaging with tract-based spatial statistics (TBSS. In female participants, VBM revealed a negative correlation between bilateral anterior cingulate gray matter volume and the CES-D score. TBSS showed a CES-D-related decrease in fractional anisotropy and increase in radial and mean diffusivity in several white matter regions, including the right anterior cingulum. In male participants, there was no significant correlation between gray or white matter volume or white matter integrity and the CES-D score. Our results indicate that the reduction in gray matter volume and differences in white matter integrity in specific brain regions, including the anterior cingulate, are associated with depressive symptoms in women.

  3. Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics.

    Science.gov (United States)

    Hayakawa, Yayoi K; Sasaki, Hiroki; Takao, Hidemasa; Hayashi, Naoto; Kunimatsu, Akira; Ohtomo, Kuni; Aoki, Shigeki

    2014-01-01

    Depressive symptoms, even at a subclinical level, have been associated with structural brain abnormalities. However, previous studies have used regions of interest or small sample sizes, limiting the ability to generalize the results. In this study, we examined neuroanatomical structures of both gray matter and white matter associated with depressive symptoms across the whole brain in a large sample. A total of 810 community-dwelling adult participants underwent measurement of depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D). The participants were not demented and had no neurological or psychiatric history. To examine the gray and white matter volume, we used structural MRI scans and voxel-based morphometry (VBM); to examine the white matter integrity, we used diffusion tensor imaging with tract-based spatial statistics (TBSS). In female participants, VBM revealed a negative correlation between bilateral anterior cingulate gray matter volume and the CES-D score. TBSS showed a CES-D-related decrease in fractional anisotropy and increase in radial and mean diffusivity in several white matter regions, including the right anterior cingulum. In male participants, there was no significant correlation between gray or white matter volume or white matter integrity and the CES-D score. Our results indicate that the reduction in gray matter volume and differences in white matter integrity in specific brain regions, including the anterior cingulate, are associated with depressive symptoms in women.

  4. Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing.

    Science.gov (United States)

    Senden, Mario; Goebel, Rainer; Deco, Gustavo

    2012-05-01

    Despite the absence of stimulation or task conditions the cortex exhibits highly structured spatio-temporal activity patterns. These patterns are known as resting state networks (RSNs) and emerge as low-frequency fluctuations (rest. We are interested in the relationship between structural connectivity of the cortex and the fluctuations exhibited during resting conditions. We are especially interested in the effect of degree of connectivity on resting state dynamics as the default mode network (DMN) is highly connected. We find in experimental resting fMRI data that the DMN is the functional network that is most frequently active and for the longest time. In large-scale computational simulations of the cortex based on the corresponding underlying DTI/DSI based neuroanatomical connectivity matrix, we additionally find a strong correlation between the mean degree of functional networks and the proportion of time they are active. By artificially modifying different types of neuroanatomical connectivity matrices in the model, we were able to demonstrate that only models based on structural connectivity containing hubs give rise to this relationship. We conclude that, during rest, the cortex alternates efficiently between explorations of its externally oriented functional repertoire and internally oriented processing as a consequence of the DMN's high degree of connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications

    Science.gov (United States)

    Santamaría-García, Hernando; Santangelo, Gabriella

    2018-01-01

    Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM), emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs), most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients' management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD), or may emerge during the disease course as critical aspects, such as for Parkinson's and Alzheimer's diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients' well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits. PMID:29854017

  6. Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Foteini Christidi

    2018-01-01

    Full Text Available Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM, emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs, most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients’ management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD, or may emerge during the disease course as critical aspects, such as for Parkinson’s and Alzheimer’s diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients’ well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits.

  7. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. Copyright © 2016. Published by Elsevier Ltd.

  8. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence.

    Science.gov (United States)

    Levitin, Daniel J; Menon, Vinod

    2003-12-01

    The neuroanatomical correlates of musical structure were investigated using functional magnetic neuroimaging (fMRI) and a unique stimulus manipulation involving scrambled music. The experiment compared brain responses while participants listened to classical music and scrambled versions of that same music. Specifically, the scrambled versions disrupted musical structure while holding low-level musical attributes constant, including the psychoacoustic features of the music such as pitch, loudness, and timbre. Comparing music to its scrambled counterpart, we found focal activation in the pars orbitalis region (Brodmann Area 47) of the left inferior frontal cortex, a region that has been previously closely associated with the processing of linguistic structure in spoken and signed language, and its right hemisphere homologue. We speculate that this particular region of inferior frontal cortex may be more generally responsible for processing fine-structured stimuli that evolve over time, not merely those that are linguistic.

  9. Automated Processing of Two-Dimensional Correlation Spectra

    Science.gov (United States)

    Sengstschmid; Sterk; Freeman

    1998-04-01

    An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.

  10. Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Chiara Crespi

    Full Text Available Impairments in the ability to recognize and attribute emotional states to others have been described in amyotrophic lateral sclerosis patients and linked to the dysfunction of key nodes of the emotional empathy network. Microstructural correlates of such disorders are still unexplored. We investigated the white-matter substrates of emotional attribution deficits in a sample of amyotrophic lateral sclerosis patients without cognitive decline. Thirteen individuals with either probable or definite amyotrophic lateral sclerosis and 14 healthy controls were enrolled in a Diffusion Tensor Imaging study and administered the Story-based Empathy Task, assessing the ability to attribute mental states to others (i.e., Intention and Emotion attribution conditions. As already reported, a significant global reduction of empathic skills, mainly driven by a failure in Emotion Attribution condition, was found in amyotrophic lateral sclerosis patients compared to healthy subjects. The severity of this deficit was significantly correlated with fractional anisotropy along the forceps minor, genu of corpus callosum, right uncinate and inferior fronto-occipital fasciculi. The involvement of frontal commissural fiber tracts and right ventral associative fronto-limbic pathways is the microstructural hallmark of the impairment of high-order processing of socio-emotional stimuli in amyotrophic lateral sclerosis. These results support the notion of the neurofunctional and neuroanatomical continuum between amyotrophic lateral sclerosis and frontotemporal dementia.

  11. Non-Poisson Processes: Regression to Equilibrium Versus Equilibrium Correlation Functions

    Science.gov (United States)

    2004-07-07

    ARTICLE IN PRESSPhysica A 347 (2005) 268–2880378-4371/$ - doi:10.1016/j Correspo E-mail adwww.elsevier.com/locate/physaNon- Poisson processes : regression...05.40.a; 89.75.k; 02.50.Ey Keywords: Stochastic processes; Non- Poisson processes ; Liouville and Liouville-like equations; Correlation function...which is not legitimate with renewal non- Poisson processes , is a correct property if the deviation from the exponential relaxation is obtained by time

  12. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  13. Auditory processing in absolute pitch possessors

    Science.gov (United States)

    McKetton, Larissa; Schneider, Keith A.

    2018-05-01

    Absolute pitch (AP) is a rare ability in classifying a musical pitch without a reference standard. It has been of great interest to researchers studying auditory processing and music cognition since it is seldom expressed and sheds light on influences pertaining to neurodevelopmental biological predispositions and the onset of musical training. We investigated the smallest frequency that could be detected or just noticeable difference (JND) between two pitches. Here, we report significant differences in JND thresholds in AP musicians and non-AP musicians compared to non-musician control groups at both 1000 Hz and 987.76 Hz testing frequencies. Although the AP-musicians did better than non-AP musicians, the difference was not significant. In addition, we looked at neuro-anatomical correlates of musicianship and AP using structural MRI. We report increased cortical thickness of the left Heschl's Gyrus (HG) and decreased cortical thickness of the inferior frontal opercular gyrus (IFO) and circular insular sulcus volume (CIS) in AP compared to non-AP musicians and controls. These structures may therefore be optimally enhanced and reduced to form the most efficient network for AP to emerge.

  14. MRI-based volumetry correlates of autobiographical memory in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nathalie Philippi

    Full Text Available The aim of the present volumetric study was to explore the neuro-anatomical correlates of autobiographical memory loss in Alzheimer's patients and healthy elderly, in terms of the delay of retention, with a particular interest in the medial temporal lobe structures. Fifteen patients in early stages of the disease and 11 matched control subjects were included in the study. To assess autobiographical memory and the effect of the retention delay, a modified version of the Crovitz test was used according to five periods of life. Autobiographical memory deficits were correlated to local atrophy via structural MRI using Voxel Based Morphometry. We used a 'lateralized index' to compare the relative contribution of hippocampal sub-regions (anterior vs posterior, left vs right according to the different periods of life. Our results confirm the involvement of the hippocampus proper in autobiographical memory retrieval for both recent and very remote encoding periods, with larger aspect for the very remote period on the left side. Contrary to the prominent left-sided involvement for the young adulthood period, the implication of the right hippocampus prevails for the more recent periods and decreases with the remoteness of the memories, which might be associated with the visuo-spatial processing of the memories. Finally, we suggest the existence of a rostrocaudal gradient depending on the retention duration, with left anterior aspects specifically related to retrieval deficits of remote memories from the young adulthood period, whereas posterior aspects would result of simultaneous encoding and/or consolidation and retrieval deficit of more recent memories.

  15. The quark-recombination model and correlations between hard and soft hadronic processes

    International Nuclear Information System (INIS)

    Ranft, J.

    1978-07-01

    Proceeding from the fact that quark and gluon recombination models make definite predictions for correlations between hard and soft processes, the following experiments are briefly discussed: (i) correlations between deep inelastic antineutrino-proton scattering and particle production in the proton fragmentation region, (ii) correlations between massive lepton pairs and particles produced in the fragmentation regions, and (iii) correlations between large transverse momentum particles and leading protons. In order to present the large transverse momentum - leading proton correlation, a divided correlation function similar to that used for studying short-range correlations of low transverse momentum particles is defined

  16. Group-focused morality is associated with limited conflict detection and resolution capacity: Neuroanatomical evidence.

    Science.gov (United States)

    Nash, Kyle; Baumgartner, Thomas; Knoch, Daria

    2017-02-01

    Group-focused moral foundations (GMFs) - moral values that help protect the group's welfare - sharply divide conservatives from liberals and religiously devout from non-believers. However, there is little evidence about what drives this divide. Moral foundations theory and the model of motivated social cognition both associate group-focused moral foundations with differences in conflict detection and resolution capacity, but in opposing directions. Individual differences in conflict detection and resolution implicate specific neuroanatomical differences. Examining neuroanatomy thus affords an objective and non-biased opportunity to contrast these influential theories. Here, we report that increased adherence to group-focused moral foundations was strongly associated (whole-brain corrected) with reduced gray matter volume in key regions of the conflict detection and resolution system (anterior cingulate cortex and lateral prefrontal cortex). Because reduced gray matter is reliably associated with reduced neural and cognitive capacity, these findings support the idea outlined in the model of motivated social cognition that belief in group-focused moral values is associated with reduced conflict detection and resolution capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    Science.gov (United States)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  18. Electrophysiological correlates of error processing in borderline personality disorder.

    Science.gov (United States)

    Ruchsow, Martin; Walter, Henrik; Buchheim, Anna; Martius, Philipp; Spitzer, Manfred; Kächele, Horst; Grön, Georg; Kiefer, Markus

    2006-05-01

    The electrophysiological correlates of error processing were investigated in patients with borderline personality disorder (BPD) using event-related potentials (ERP). Twelve patients with BPD and 12 healthy controls were additionally rated with the Barratt impulsiveness scale (BIS-10). Participants performed a Go/Nogo task while a 64 channel EEG was recorded. Three ERP components were of special interest: error-related negativity (ERN)/error negativity (Ne), early error positivity (early Pe) reflecting automatic error processing, and the late Pe component which is thought to mirror the awareness of erroneous responses. We found smaller amplitudes of the ERN/Ne in patients with BPD compared to controls. Moreover, significant correlations with the BIS-10 non-planning sub-score could be demonstrated for both the entire group and the patient group. No between-group differences were observed for the early and late Pe components. ERP measures appear to be a suitable tool to study clinical time courses in BPD.

  19. Correlation test to assess low-level processing of high-density oligonucleotide microarray data

    Directory of Open Access Journals (Sweden)

    Bergh Jonas

    2005-03-01

    Full Text Available Abstract Background There are currently a number of competing techniques for low-level processing of oligonucleotide array data. The choice of technique has a profound effect on subsequent statistical analyses, but there is no method to assess whether a particular technique is appropriate for a specific data set, without reference to external data. Results We analyzed coregulation between genes in order to detect insufficient normalization between arrays, where coregulation is measured in terms of statistical correlation. In a large collection of genes, a random pair of genes should have on average zero correlation, hence allowing a correlation test. For all data sets that we evaluated, and the three most commonly used low-level processing procedures including MAS5, RMA and MBEI, the housekeeping-gene normalization failed the test. For a real clinical data set, RMA and MBEI showed significant correlation for absent genes. We also found that a second round of normalization on the probe set level improved normalization significantly throughout. Conclusion Previous evaluation of low-level processing in the literature has been limited to artificial spike-in and mixture data sets. In the absence of a known gold-standard, the correlation criterion allows us to assess the appropriateness of low-level processing of a specific data set and the success of normalization for subsets of genes.

  20. Search for few-nucleon correlations in doubly inclusive processes

    International Nuclear Information System (INIS)

    Strikman, M.I.; Frankfurt, L.L.

    1981-01-01

    Earlier work showed that the few-nucleon correlation model is useful in calculation of the inclusive production of cumulative particles at high energies. Certain integrated characteristics of doubly inclusive spectra in high-energy processes are investigated and permit direct information to be obtained on the structure of the correlations. Scattering of a high-energy lepton by a light nucleus with production of a cumulative nucleon is studied, with particular attention to the average transverse momentum of the hadrons recorded, and the doubly inclusive cross section averaged over the transverse momenta of the particles emitted in the forward hemisphere. Expressions are obtained for the integrated cross sections

  1. Referential processing: reciprocity and correlates of naming and imaging.

    Science.gov (United States)

    Paivio, A; Clark, J M; Digdon, N; Bons, T

    1989-03-01

    To shed light on the referential processes that underlie mental translation between representations of objects and words, we studied the reciprocity and determinants of naming and imaging reaction times (RT). Ninety-six subjects pressed a key when they had covertly named 248 pictures or imaged to their names. Mean naming and imagery RTs for each item were correlated with one another, and with properties of names, images, and their interconnections suggested by prior research and dual coding theory. Imagery RTs correlated .56 (df = 246) with manual naming RTs and .58 with voicekey naming RTs from prior studies. A factor analysis of the RTs and of 31 item characteristics revealed 7 dimensions. Imagery and naming RTs loaded on a common referential factor that included variables related to both directions of processing (e.g., missing names and missing images). Naming RTs also loaded on a nonverbal-to-verbal factor that included such variables as number of different names, whereas imagery RTs loaded on a verbal-to-nonverbal factor that included such variables as rated consistency of imagery. The other factors were verbal familiarity, verbal complexity, nonverbal familiarity, and nonverbal complexity. The findings confirm the reciprocity of imaging and naming, and their relation to constructs associated with distinct phases of referential processing.

  2. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates.

    Science.gov (United States)

    Lessios, Nicolas; Rutowski, Ronald L; Cohen, Jonathan H; Sayre, Marcel E; Strausfeld, Nicholas J

    2018-05-22

    Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats. © 2018. Published by The Company of Biologists Ltd.

  3. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity.

    Science.gov (United States)

    Ellegood, J; Anagnostou, E; Babineau, B A; Crawley, J N; Lin, L; Genestine, M; DiCicco-Bloom, E; Lai, J K Y; Foster, J A; Peñagarikano, O; Geschwind, D H; Pacey, L K; Hampson, D R; Laliberté, C L; Mills, A A; Tam, E; Osborne, L R; Kouser, M; Espinosa-Becerra, F; Xuan, Z; Powell, C M; Raznahan, A; Robins, D M; Nakai, N; Nakatani, J; Takumi, T; van Eede, M C; Kerr, T M; Muller, C; Blakely, R D; Veenstra-VanderWeele, J; Henkelman, R M; Lerch, J P

    2015-02-01

    Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1-2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response.

  4. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of visuospatial Attention

    Directory of Open Access Journals (Sweden)

    Yan eWu

    2016-03-01

    Full Text Available The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS and diffusion magnetic resonance imaging (MRI techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. TMS results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus, with the ipsilateral inferior frontal gyrus, and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  5. Suprathreshold stochastic resonance in neural processing tuned by correlation.

    Science.gov (United States)

    Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

    2011-07-01

    Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

  6. Correlation Processing Of Local Seismic Data: Applications for Autonomous Sensor Deployments

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, D A

    2010-11-16

    Excavation and operation of an underground facility is likely to produce an extensive suite of seismic signals observable at the surface for perhaps several km. Probably a large fraction of such signals will be correlated, so the design of a monitoring framework should include consideration of a correlation processing capability. Correlation detectors have been shown to be significantly more sensitive than beam-forming power detectors. Although correlation detectors have a limited detection footprint, they can be generalized into multi-rank subspace detectors which are sensitive over a much larger range of source mechanisms and positions. Production of subspace detectors can be automated, so their use in an autonomous framework may be contemplated. Waveform correlation also can be used to produce very high precision phase picks which may be jointly inverted to simultaneously relocate groups of events. The relative precision of the resulting hypocenters is sufficient to visualize structural detail at a scale of less than a few tens of meters. Three possible correlation processor systems are presented. All use a subspace signal detection framework. The simplest system uses a single-component sensor and is capable of detection and classification of signals. The most complicated system uses many sensors deployed around the facility, and is capable of detection, classification, and high-precision source location. Data from a deep underground mine are presented to demonstrate the applicability of correlation processing to monitoring an underground facility. Although the source region covers an area of about 600m by 580m, all but two of the events form clusters at a threshold of 0.7. All the events could have been detected and classified by the subspace detection framework, and high-precision picks can be computed for all cluster members.

  7. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia.

    Science.gov (United States)

    Alloza, Clara; Cox, Simon R; Duff, Barbara; Semple, Scott I; Bastin, Mark E; Whalley, Heather C; Lawrie, Stephen M

    2016-08-30

    Several authors have proposed that schizophrenia is the result of impaired connectivity between specific brain regions rather than differences in local brain activity. White matter abnormalities have been suggested as the anatomical substrate for this dysconnectivity hypothesis. Information processing speed may act as a key cognitive resource facilitating higher order cognition by allowing multiple cognitive processes to be simultaneously available. However, there is a lack of established associations between these variables in schizophrenia. We hypothesised that the relationship between white matter and general intelligence would be mediated by processing speed. White matter water diffusion parameters were studied using Tract-based Spatial Statistics and computed within 46 regions-of-interest (ROI). Principal component analysis was conducted on these white matter ROI for fractional anisotropy (FA) and mean diffusivity, and on neurocognitive subtests to extract general factors of white mater structure (gFA, gMD), general intelligence (g) and processing speed (gspeed). There was a positive correlation between g and gFA (r= 0.67, p =0.001) that was partially and significantly mediated by gspeed (56.22% CI: 0.10-0.62). These findings suggest a plausible model of structure-function relations in schizophrenia, whereby white matter structure may provide a neuroanatomical substrate for general intelligence, which is partly supported by speed of information processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  9. A software system for evaluation and training of spatial reasoning and neuroanatomical knowledge in a virtual environment.

    Science.gov (United States)

    Armstrong, Ryan; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-04-01

    This paper describes the design and development of a software tool for the evaluation and training of surgical residents using an interactive, immersive, virtual environment. Our objective was to develop a tool to evaluate user spatial reasoning skills and knowledge in a neuroanatomical context, as well as to augment their performance through interactivity. In the visualization, manually segmented anatomical surface images of MRI scans of the brain were rendered using a stereo display to improve depth cues. A magnetically tracked wand was used as a 3D input device for localization tasks within the brain. The movement of the wand was made to correspond to movement of a spherical cursor within the rendered scene, providing a reference for localization. Users can be tested on their ability to localize structures within the 3D scene, and their ability to place anatomical features at the appropriate locations within the rendering. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia.

    Science.gov (United States)

    Płoński, Piotr; Gradkowski, Wojciech; Altarelli, Irene; Monzalvo, Karla; van Ermingen-Marbach, Muna; Grande, Marion; Heim, Stefan; Marchewka, Artur; Bogorodzki, Piotr; Ramus, Franck; Jednoróg, Katarzyna

    2017-02-01

    Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between-group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10-fold and leave-one-out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10-fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900-908, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Property and process correlations for iron-enriched basalt waste forms

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-02-01

    Correlations of thermodynamic properties and process parameters of high-temperature slag for a range of compositions of iron-enriched basalt are presented. The quantification of the properties of this complex mixture can assist in the design and monitoring of high-temperature melting systems for the treatment of radioactive and hazardous wastes at the Idaho National Engineering Laboratory. The buried and stored wastes at the INEL Radioactive Waste Management Complex have a similar composition to iron-enriched basalt after oxidation of organics. The properties correlated are the viscosity, electrical conductivity, refractory corrosion, and recrystallization temperature. The correlations are expressed as a function of input waste-soil mixture composition, alkali concentration, and slag temperature. An application to determine the effect of alkali flux on slag temperature, leach rate, and volume reduction is presented. Though the correlations are for mixtures of soil and waste with average transuranic-contaminated waste compositions, it appears that good approximations for other waste streams and glass-ceramic waste forms can be obtained because of similarities in composition

  12. Structure-property-processing correlations in freeze-cast composite scaffolds.

    Science.gov (United States)

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-05-01

    Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Young's modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Proposed correlation of modern processing principles for Ayurvedic herbal drug manufacturing: A systematic review.

    Science.gov (United States)

    Jain, Rahi; Venkatasubramanian, Padma

    2014-01-01

    Quality Ayurvedic herbal medicines are potential, low-cost solutions for addressing contemporary healthcare needs of both Indian and global community. Correlating Ayurvedic herbal preparations with modern processing principles (MPPs) can help develop new and use appropriate technology for scaling up production of the medicines, which is necessary to meet the growing demand. Understanding the fundamental Ayurvedic principles behind formulation and processing is also important for improving the dosage forms. Even though Ayurvedic industry has adopted technologies from food, chemical and pharmaceutical industries, there is no systematic study to correlate the traditional and modern processing methods. This study is an attempt to provide a possible correlation between the Ayurvedic processing methods and MPPs. A systematic literature review was performed to identify the Ayurvedic processing methods by collecting information from English editions of classical Ayurveda texts on medicine preparation methods. Correlation between traditional and MPPs was done based on the techniques used in Ayurvedic drug processing. It was observed that in Ayurvedic medicine preparations there were two major types of processes, namely extraction, and separation. Extraction uses membrane rupturing and solute diffusion principles, while separation uses volatility, adsorption, and size-exclusion principles. The study provides systematic documentation of methods used in Ayurveda for herbal drug preparation along with its interpretation in terms of MPPs. This is the first step which can enable improving or replacing traditional techniques. New technologies or use of existing technologies can be used to improve the dosage forms and scaling up while maintaining the Ayurvedic principles similar to traditional techniques.

  14. Neurophysiological correlates of anhedonia in feedback processing

    Science.gov (United States)

    Mies, Gabry W.; Van den Berg, Ivo; Franken, Ingmar H. A.; Smits, Marion; Van der Molen, Maurits W.; Van der Veen, Frederik M.

    2013-01-01

    Disturbances in feedback processing and a dysregulation of the neural circuit in which the cingulate cortex plays a key role have been frequently observed in depression. Since depression is a heterogeneous disease, instead of focusing on the depressive state in general, this study investigated the relations between the two core symptoms of depression, i.e., depressed mood and anhedonia, and the neural correlates of feedback processing using fMRI. The focus was on the different subdivisions of the anterior cingulate cortex (ACC). Undergraduates with varying levels of depressed mood and anhedonia performed a time-estimation task in which they received positive and negative feedback that was either valid or invalid (i.e., related vs. unrelated to actual performance). The rostral cingulate zone (RCZ), corresponding to the dorsal part of the ACC, was less active in response to feedback in more anhedonic individuals, after correcting for the influence of depressed mood, whereas the subgenual ACC was more active in these individuals. Task performance was not affected by anhedonia, however. No statistically significant effects were found for depressed mood above and beyond the effects of anhedonia. This study therefore implies that increasing levels of anhedonia involve changes in the neural circuitry underlying feedback processing. PMID:23532800

  15. Quark correlation functions in deep-inelastic semi-inclusive processes

    International Nuclear Information System (INIS)

    Levelt, J.; Mulders, P.J.

    1994-01-01

    We investigate one-particle semi-inclusive processes in lepton-hadron scattering. In unpolarized scattering order Q -1 corrections appear only when transverse momenta are detected. We consider the twist-two and -three matrix elements and calculate the semi-inclusive structure functions in terms of quark correlation functions. We find that at the twist-three level not only the standard quark distribution and fragmentation function contribute, but also two new transverse ''profile functions.'' We discuss the gauge invariance of the hadronic tensor at the twist-three level. The results of our approach are used to calculate expressions for some cross sections for semi-inclusive processes

  16. Body dysmorphic disorder: Latest neuroanatomical and neuropsychological findings.

    Science.gov (United States)

    Tasios, K; Michopoulos, I

    2017-01-01

    Body dysmorphic disorder (BDD) is characterized by a preoccupation with a perceived defect or flaw in physical appearance that is not observable or appears slight to others. It leads to severe distress and functional impairment. Cognitive-behavioural and neurobiological similarities to obsessive compulsive disorder (OCD) have led to its newly conceived classification as an obsessive compulsive related disorder (OCRD). In the process of investigating the neurobiology of BDD, neuroimaging and neuropsychological studies have been conducted. This review presents the most recent research findings and their connection with BDD clinical features. Imaging studies have shown increased total white matter volume and caudate volume asymmetry in BDD patients. These findings are consistent with the striatal topography model of OCRDs. Other studies have showed perfusion deficits in bilateral anterior-medial temporal and occipital regions and asymmetric perfusion in parietal lobes. In addition, correlation between symptom severity and left inferior frontal gyrus volume reflects the degree of detailed, analytic encoding that occurs on day-to-day basis when viewing others and themselves, and that likely underlies their symptoms. Finally, positive correlation between right amygdala volume and symptom severity signifies pathological fear circuitry engagement, hypervigilance and heightened sensitivity to social situations. Neuropsychological studies of BDD reveal deficits in strategic organization, learning and free recall after short and long delays. Executive function deficits are related to spatial working memory and subsequent thinking speed as well as impaired higher level planning ability. BDD patients' organizational strategies tend to focus on detail rather than on larger, global clustering features. They are characterized by abnormal visual processing of both details and global elements, inaccurate processing of global elements and reduced flexibility in switching visual

  17. Noun and verb processing in aphasia: Behavioural profiles and neural correlates

    Directory of Open Access Journals (Sweden)

    Reem S.W. Alyahya

    Full Text Available The behavioural and neural processes underpinning different word classes, particularly nouns and verbs, have been a long-standing area of interest in psycholinguistic, neuropsychology and aphasiology research. This topic has theoretical implications concerning the organisation of the language system, as well as clinical consequences related to the management of patients with language deficits. Research findings, however, have diverged widely, which might, in part, reflect methodological differences, particularly related to controlling the psycholinguistic variations between nouns and verbs. The first aim of this study, therefore, was to develop a set of neuropsychological tests that assessed single-word production and comprehension with a matched set of nouns and verbs. Secondly, the behavioural profiles and neural correlates of noun and verb processing were explored, based on these novel tests, in a relatively large cohort of 48 patients with chronic post-stroke aphasia. A data-driven approach, principal component analysis (PCA, was also used to determine how noun and verb production and comprehension were related to the patients' underlying fundamental language domains. The results revealed no performance differences between noun and verb production and comprehension once matched on multiple psycholinguistic features including, most critically, imageability. Interestingly, the noun-verb differences found in previous studies were replicated in this study once un-matched materials were used. Lesion-symptom mapping revealed overlapping neural correlates of noun and verb processing along left temporal and parietal regions. These findings support the view that the neural representation of noun and verb processing at single-word level are jointly-supported by distributed cortical regions. The PCA generated five fundamental language and cognitive components of aphasia: phonological production, phonological recognition, semantics, fluency, and

  18. Serotonergic and dopaminergic modulation of attentional processes.

    Science.gov (United States)

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  19. Model of components in a process of acoustic diagnosis correlated with learning

    International Nuclear Information System (INIS)

    Seballos, S.; Costabal, H.; Matamala, P.

    1992-06-01

    Using Linden's functional scheme as a theoretical reference framework, we define a matrix of component for clinical and field applications in the acoustic diagnostic process and correlations with audiologic, learning and behavioral problems. It is expected that the model effectively contributes to classify and provide a greater knowledge about this multidisciplinary problem. Although the exact nature of this component is at present a matter to be defined, its correlation can be hypothetically established. Applying this descriptive and integral approach in the diagnostic process it is possible if not to avoid, at least to decrease, the uncertainties and assure the proper solutions becoming a powerful tool applicable to environmental studies and/or social claims. (author). 8 refs, 2 figs

  20. Neural correlates of gender differences in reputation building.

    Directory of Open Access Journals (Sweden)

    Francesca Garbarini

    Full Text Available Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect and the mentalizing network (engaged in thinking about how one is viewed by others, in which the dorsolateral prefrontal cortex (DLPFC and the medial (MPFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2. Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates.

  1. Computing the correlation between catalyst composition and its performance in the catalysed process

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Steinfeldt, N.; Baerns, M.; Štefka, David

    2012-01-01

    Roč. 43, 10 August (2012), s. 55-67 ISSN 0098-1354 R&D Projects: GA ČR GA201/08/0802 Institutional support: RVO:67985807 Keywords : catalysed process * catalyst performance * correlation measures * estimating correlation value * analysis of variance * regression trees Subject RIV: IN - Informatics, Computer Science Impact factor: 2.091, year: 2012

  2. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  3. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    Science.gov (United States)

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  4. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  5. Identification of AR(I)MA processes for modelling temporal correlations of GPS observations

    Science.gov (United States)

    Luo, X.; Mayer, M.; Heck, B.

    2009-04-01

    In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling

  6. Examining the Possibilities of Identifying and Modeling Correlations between Product Families and Business Processes

    DEFF Research Database (Denmark)

    Jepsen, Allan Dam; Hvam, Lars

    2010-01-01

    In order for companies to make well founded decisions on the product family makeup, an understanding of the correlation between the complexity of the product family and business processes is required, though it is often not available. This paper investigates the potential of using the Product...... Variant Master (PVM) modeling technique and Process Flow Charts in combination, to analyze the correlation between complexity in product families and business processes. The approach is based on a visual modeling of the product assortment and the business processes. It is hypothesized that the combined...... use of the modeling techniques can allow for analysis and communication of the product family and business processes; as well as the connections between the two, with the potential of creating a single combined model. A case from a Danish industrial company is used for the purpose of the investigation...

  7. Processing emotion from abstract art in frontotemporal lobar degeneration.

    Science.gov (United States)

    Cohen, Miriam H; Carton, Amelia M; Hardy, Christopher J; Golden, Hannah L; Clark, Camilla N; Fletcher, Phillip D; Jaisin, Kankamol; Marshall, Charles R; Henley, Susie M D; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D

    2016-01-29

    art may signal emotions independently of a biological or social carrier: it might therefore constitute a test case for defining brain mechanisms of generic emotion decoding and the impact of disease states on those mechanisms. This is potentially of particular relevance to diseases in the frontotemporal lobar degeneration (FTLD) spectrum. These diseases are often led by emotional impairment despite retained or enhanced artistic interest in at least some patients. However, the processing of emotion from art has not been studied systematically in FTLD. Here we addressed this issue using a novel emotional valence matching task on abstract paintings in patients representing major syndromes of FTLD (behavioural variant frontotemporal dementia, n=11; sematic variant primary progressive aphasia (svPPA), n=7; nonfluent variant primary progressive aphasia (nfvPPA), n=6) relative to healthy older individuals (n=39). Performance on art emotion valence matching was compared between groups taking account of perceptual matching performance and assessed in relation to facial emotion matching using customised control tasks. Neuroanatomical correlates of art emotion processing were assessed using voxel-based morphometry of patients' brain MR images. All patient groups had a deficit of art emotion processing relative to healthy controls; there were no significant interactions between syndromic group and emotion modality. Poorer art emotion valence matching performance was associated with reduced grey matter volume in right lateral occopitotemporal cortex in proximity to regions previously implicated in the processing of dynamic visual signals. Our findings suggest that abstract art may be a useful model system for investigating mechanisms of generic emotion decoding and aesthetic processing in neurodegenerative diseases. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Neurocognitive correlates of processing food-related stimuli in a Go/No-go paradigm.

    Science.gov (United States)

    Watson, Todd D; Garvey, Katherine T

    2013-12-01

    We examined the neurocognitive correlates of processing food-related stimuli in healthy young adults. Event-related potential (ERP) data were collected while 48 participants completed a computerized Go/No-go task consisting of food and nonfood images. Separately, we assessed participants' self-reported levels of external, restrained, and emotional eating behaviors as well as trait impulsivity, behavioral activation/inhibition, and performance on the Stroop Color-Word Test. We found that across participants, food images elicited significantly enhanced P3(00) and slow-wave ERP components. The difference in slow-wave components elicited by food and nonfood images was correlated with Stroop interference scores. Food images also elicited significantly enhanced N2(00) components, but only in female participants. The difference between N2 components elicited by food and nonfood images was related to body mass index and scores of external eating in females. Overall, these data suggest that processing food-related stimuli recruits distinct patterns of cortical activity, that the magnitude of these effects is related to behavioral and cognitive variables, and that the neurocognitive correlates of processing food-cues may be at least partly dissociable between males and females. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Towards a single empirical correlation to predict kLa across scales and processes

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra; Gernaey, Krist; Albæk, Mads O.

    Mathematical models are increasingly used in fermentation. Nevertheless, one of the major limitations of these models is that the parameters they include are process specific, e.g. the volumetric mass transfer coefficient (kLa). Oxygen transfer was studied in order to establish a single equation...... different calculations of the average shear rate. The experimental kLa value was determined with the direct method; however, eight variations of its calculation were evaluated. Several simple correlations were fitted to the measured kLa data. The standard empirical equation was found to be best...... scales using on ‐ line viscosity measurements. A single correlation for all processes and all scales could not be established...

  10. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chan

    2016-10-01

    Full Text Available Hostile jokes provide aggressive catharsis and a feeling of superiority. Behavioral research has found that hostile jokes are perceived as funnier than non-hostile jokes. The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing hostile jokes (HJs, non-hostile jokes (NJs, and their corresponding hostile sentences (HSs and non-hostile sentences (NSs. Hostile jokes primarily showed activation in the dorsomedial prefrontal cortex (dmPFC and midbrain compared with the corresponding hostile baseline. Conversely, non-hostile jokes primarily revealed activation in the ventromedial PFC (vmPFC, amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc compared with the corresponding non-hostile baseline. These results support the critical role of the medial prefrontal cortex (mPFC for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of hostile jokes showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of non-hostile jokes displayed increased activation in the vmPFC, which suggested social-affective engagement. Hostile jokes versus non-hostile jokes primarily showed increased activation in the dmPFC and midbrain, whereas non-hostile jokes versus hostile jokes primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for hostile jokes and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for non-hostile jokes. Surprisingly, the neural correlates of hostile jokes were not perceived as funnier than non-hostile jokes. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation

  11. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children.

    Science.gov (United States)

    Chilosi, Anna Maria; Lorenzini, Irene; Fiori, Simona; Graziosi, Valentina; Rossi, Giuseppe; Pasquariello, Rosa; Cipriani, Paola; Cioni, Giovanni

    2015-11-01

    Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multivariate analysis of correlation between electrophysiological and hemodynamic responses during cognitive processing

    Science.gov (United States)

    Kujala, Jan; Sudre, Gustavo; Vartiainen, Johanna; Liljeström, Mia; Mitchell, Tom; Salmelin, Riitta

    2014-01-01

    Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological and hemodynamic responses across the human cortex would be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electromagnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation patterns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher order cortical regions. The low-frequency range showed substantial variance, with negative and positive correlations manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing. PMID:24518260

  13. Merge processing in the human brain: a sub-region based functional investigation in the left pars opercularis

    Directory of Open Access Journals (Sweden)

    Emiliano eZaccarella

    2015-11-01

    Full Text Available Language is thought to represent one of the most complex cognitive functions in humans. Here we break down complexity of language to its most basic syntactic computation which hierarchically binds single words together to form larger phrases and sentences. So far, the neural implementation of this basic operation has only been inferred indirectly from studies investigating more complex linguistic phenomena. In the present sub-region based functional magnetic resonance imaging (fMRI study we directly assessed the neuroanatomical nature of this process. Our results showed that syntactic phrases—compared to word-list sequences—corresponded to increased neural activity in the ventral-anterior portion of the left pars opercularis (Brodmann Area (BA 44, whereas the adjacently located deep frontal operculum/anterior insula (FOP/aINS, a phylogenetically older and less specialized region, was found to be equally active for both conditions. Crucially, the functional activity of syntactic binding was confined to one out of five clusters proposed by a recent fine-grained sub-anatomical parcellation for BA 44, with consistency across individuals. Neuroanatomically, the present results call for a redefinition of BA 44 as a region with internal functional specializations. Neurocomputationally, they support the idea of invariance within BA 44 in the location of activation across participants for basic syntactic building processing.

  14. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Signals of strong electronic correlation in ion scattering processes

    Science.gov (United States)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  16. Neuroanatomical and Neuropsychological Correlates of the Cerebellum in Children with Attention-Deficit/Hyperactivity Disorder-Combined Type

    Science.gov (United States)

    Bledsoe, Jesse C.; Semrud-Clikeman, Margaret; Pliszka, Steven R.

    2011-01-01

    Objective: Studies of healthy individuals and those with cerebellar damage have implicated the cerebellum in a variety of cognitive and behavioral processes. Decreased cerebellar volume has been found in children with attention-deficit/hyperactivity disorder (ADHD) and differentially related to behavioral outcomes. The present study investigated…

  17. Correlations between MRI and Information Processing Speed in MS: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    S. M. Rao

    2014-01-01

    Full Text Available Objectives. To examine relationships between conventional MRI measures and the paced auditory serial addition test (PASAT and symbol digit modalities test (SDMT. Methods. A systematic literature review was conducted. Included studies had ≥30 multiple sclerosis (MS patients, administered the SDMT or PASAT, and measured T2LV or brain atrophy. Meta-analysis of MRI/information processing speed (IPS correlations, analysis of MRI/IPS significance tests to account for reporting bias, and binomial testing to detect trends when comparing correlation strengths of SDMT versus PASAT and T2LV versus atrophy were conducted. Results. The 39 studies identified frequently reported only significant correlations, suggesting reporting bias. Direct meta-analysis was only feasible for correlations between SDMT and T2LV (r=-0.45, P<0.001 and atrophy in patients with mixed-MS subtypes (r=-0.54, P<0.001. Familywise Holm-Bonferroni testing found that selective reporting was not the source of at least half of significant results reported. Binomial tests (P=0.006 favored SDMT over PASAT in strength of MRI correlations. Conclusions. A moderate-to-strong correlation exists between impaired IPS and MRI in mixed MS populations. Correlations with MRI were stronger for SDMT than for PASAT. Neither heterogeneity among populations nor reporting bias appeared to be responsible for these findings.

  18. Precise timing correlation in telemetry recording and processing systems

    Science.gov (United States)

    Pickett, R. B.; Matthews, F. L.

    1973-01-01

    Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.

  19. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older

  20. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  1. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  2. Neuroanatomical correlates of childhood apraxia of speech: A connectomic approach

    Directory of Open Access Journals (Sweden)

    Simona Fiori

    2016-01-01

    These findings provide evidence of structural connectivity anomalies in children with CAS across specific brain regions involved in speech/language function. We propose altered connectivity as a possible epiphenomenon of complex pathogenic mechanisms in CAS which need further investigation.

  3. Neuroanatomical circuitry between kidney and rostral elements of brain: a virally mediated transsynaptic tracing study in mice.

    Science.gov (United States)

    Zhou, Ye-Ting; He, Zhi-Gang; Liu, Tao-Tao; Feng, Mao-Hui; Zhang, Ding-Yu; Xiang, Hong-Bing

    2017-02-01

    The identity of higher-order neurons and circuits playing an associative role to control renal function is not well understood. We identified specific neural populations of rostral elements of brain regions that project multisynaptically to the kidneys in 3-6 days after injecting a retrograde tracer pseudorabies virus (PRV)-614 into kidney of 13 adult male C57BL/6J strain mice. PRV-614 infected neurons were detected in a number of mesencephalic (e.g. central amygdala nucleus), telencephalic regions and motor cortex. These divisions included the preoptic area (POA), dorsomedial hypothalamus (DMH), lateral hypothalamus, arcuate nucleus (Arc), suprachiasmatic nucleus (SCN), periventricular hypothalamus (PeH), and rostral and caudal subdivision of the paraventricular nucleus of the hypothalamus (PVN). PRV-614/Tyrosine hydroxylase (TH) double-labeled cells were found within DMH, Arc, SCN, PeH, PVN, the anterodorsal and medial POA. A subset of neurons in PVN that participated in regulating sympathetic outflow to kidney was catecholaminergic or serotonergic. PRV-614 infected neurons within the PVN also contained arginine vasopressin or oxytocin. These data demonstrate the rostral elements of brain innervate the kidney by the neuroanatomical circuitry.

  4. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale.

    Directory of Open Access Journals (Sweden)

    Jason W Bohland

    2009-03-01

    Full Text Available In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.

  5. Homonuclear long-range correlation spectra from HMBC experiments by covariance processing.

    Science.gov (United States)

    Schoefberger, Wolfgang; Smrecki, Vilko; Vikić-Topić, Drazen; Müller, Norbert

    2007-07-01

    We present a new application of covariance nuclear magnetic resonance processing based on 1H--13C-HMBC experiments which provides an effective way for establishing indirect 1H--1H and 13C--13C nuclear spin connectivity at natural isotope abundance. The method, which identifies correlated spin networks in terms of covariance between one-dimensional traces from a single decoupled HMBC experiment, derives 13C--13C as well as 1H--1H spin connectivity maps from the two-dimensional frequency domain heteronuclear long-range correlation data matrix. The potential and limitations of this novel covariance NMR application are demonstrated on two compounds: eugenyl-beta-D-glucopyranoside and an emodin-derivative. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. Anatomic Correlation of the Mini-Mental State Examination: A Voxel-Based Morphometric Study in Older Adults.

    Science.gov (United States)

    Dinomais, Mickael; Celle, Sebastien; Duval, Guillaume T; Roche, Frederic; Henni, Samir; Bartha, Robert; Beauchet, Olivier; Annweiler, Cedric

    2016-01-01

    The clinical utility of the Mini-Mental State Examination (MMSE) and its shorter version (SMMSE) is still debated. There is a need to better understand the neuroanatomical correlates of these cognitive tests. The objective of this cross-sectional study was to determine whether lower MMSE and SMMSE scores correlated with focal brain volume reduction in older adults. Participants from the GAIT study (n = 207; mean, 70.9±5.9 years; 57% female; mean MMSE 26.2±3.9; mean SMMSE 5.1±1.1) were evaluated using the MMSE and SMMSE and received a 1.5-Tesla MRI scan of the brain. Cortical gray and white matter subvolumes were automatically segmented using Statistical Parametric Mapping. Age, gender, education level, and total intracranial volume were included as potential confounders. We found correlations between the MMSE score and specific cortical regions of the limbic system including the hippocampus, amygdala, cingulate gyrus, and parahippocampal gyrus, independently of the diagnostic category (i.e., mild cognitive impairment or Alzheimer disease or controls). Regarding correlations with the SMMSE score, only one cluster in the left hippocampus was identified, which overlapped with the cluster that was positively correlated with the MMSE score. There were no correlations with the volume of white matter. In conclusion, worse MMSE and SMMSE scores were associated with gray matter atrophy mainly in the limbic system. This finding highlights that atrophy of specific brain regions are related to performance on the MMSE and the SMMSE tests, and provides new insights into the cognitive function probed by these tests.

  7. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  8. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation.

    Science.gov (United States)

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao; Chen, Hsueh-Chih

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for HJs and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor.

  9. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    Science.gov (United States)

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC–dlPFC and midbrain–dmPFC for HJs and functional coupling of the vmPFC–midbrain and amygdala–midbrain–NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor. PMID:27840604

  10. Simulating Optical Correlation on a Digital Image Processing

    Science.gov (United States)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  11. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Science.gov (United States)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  12. Diagrammatic Representation of Electronic Correlations in Photoionization Process: Application to Scandium

    International Nuclear Information System (INIS)

    Liu Mengmeng; Ma Xiaoguang

    2011-01-01

    The conversion rules under which an algebraic expression can be obtained from a corresponding photoionization Goldstone diagram have been given systematically in the present work. The electronic correlations in the photoionization processes then could be studied diagrammatically. The application to atomic scandium shows that the present theoretical scheme can give reasonable photoionization cross sections, which agree well with the experimental results. (atomic and molecular physics)

  13. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    Science.gov (United States)

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  14. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei

    Science.gov (United States)

    Reis, Renata; Hennessy, Edel; Murray, Caoimhe; Griffin, Éadaoin W.

    2015-01-01

    Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations. PMID:25727649

  15. Cognitive specialization for verbal vs. spatial ability in men and women : Neural and behavioral correlates

    NARCIS (Netherlands)

    Yeo, Ronald A.; Ryman, Sephira G.; Thompson, Melissa E.; van den Heuvel, Martijn P.; de Reus, Marcel A.; Pommy, Jessica; Seaman, Brandi; Jung, Rex E.

    2016-01-01

    An important dimension of individual differences, independent of general cognitive ability (GCA), is specialization for verbal or spatial ability. In this study we investigated neuroanatomic, network, and personality features associated with verbal vs. spatial ability. Healthy young adults (N = 244)

  16. Prediction of periodically correlated processes by wavelet transform and multivariate methods with applications to climatological data

    Science.gov (United States)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2015-05-01

    This article studies the prediction of periodically correlated process using wavelet transform and multivariate methods with applications to climatological data. Periodically correlated processes can be reformulated as multivariate stationary processes. Considering this fact, two new prediction methods are proposed. In the first method, we use stepwise regression between the principal components of the multivariate stationary process and past wavelet coefficients of the process to get a prediction. In the second method, we propose its multivariate version without principal component analysis a priori. Also, we study a generalization of the prediction methods dealing with a deterministic trend using exponential smoothing. Finally, we illustrate the performance of the proposed methods on simulated and real climatological data (ozone amounts, flows of a river, solar radiation, and sea levels) compared with the multivariate autoregressive model. The proposed methods give good results as we expected.

  17. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  18. The Feasibility of Detecting Neuropsychologic and Neuroanatomic Effects of Type 1 Diabetes in Young Children

    Science.gov (United States)

    Aye, Tandy; Reiss, Allan L.; Kesler, Shelli; Hoang, Sherry; Drobny, Jessica; Park, Yaena; Schleifer, Kristin; Baumgartner, Heidi; Wilson, Darrell M.; Buckingham, Bruce A.

    2011-01-01

    OBJECTIVE To determine if frequent exposures to hypoglycemia and hyperglycemia during early childhood lead to neurocognitive deficits and changes in brain anatomy. RESEARCH DESIGN AND METHODS In this feasibility, cross-sectional study, young children, aged 3 to 10 years, with type 1 diabetes and age- and sex-matched healthy control (HC) subjects completed neuropsychologic (NP) testing and magnetic resonance imaging (MRI) scans of the brain. RESULTS NP testing and MRI scanning was successfully completed in 98% of the type 1 diabetic and 93% of the HC children. A significant negative relationship between HbA1c and Wechsler Intelligence Scale for Children (WISC) verbal comprehension was observed. WISC index scores were significantly reduced in type 1 diabetic subjects who had experienced seizures. White matter volume did not show the expected increase with age in children with type 1 diabetes compared with HC children (diagnosis by age interaction, P = 0.005). A similar trend was detected for hippocampal volume. Children with type 1 diabetes who had experienced seizures showed significantly reduced gray matter and white matter volumes relative to children with type 1 diabetes who had not experienced seizures. CONCLUSIONS It is feasible to perform MRI and NP testing in young children with type 1 diabetes. Further, early signs of neuroanatomic variation may be present in this population. Larger cross-sectional and longitudinal studies of neurocognitive function and neuroanatomy are needed to define the effect of type 1 diabetes on the developing brain. PMID:21562318

  19. Imaging episodic memory: implications for cognitive theories and phenomena.

    Science.gov (United States)

    Nyberg, L

    1999-01-01

    Functional neuroimaging studies are beginning to identify neuroanatomical correlates of various cognitive functions. This paper presents results relevant to several theories and phenomena of episodic memory, including component processes of episodic retrieval, encoding specificity, inhibition, item versus source memory, encoding-retrieval overlap, and the picture-superiority effect. Overall, by revealing specific activation patterns, the results provide support for existing theoretical views and they add some unique information which may be important to consider in future attempts to develop cognitive theories of episodic memory.

  20. Statistical tests for power-law cross-correlated processes

    Science.gov (United States)

    Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene

    2011-12-01

    For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.

  1. Neuroanatomical and Symptomatic Sex Differences in Individuals at Clinical High Risk for Psychosis

    Directory of Open Access Journals (Sweden)

    Elisa Guma

    2017-12-01

    Full Text Available Sex differences have been widely observed in clinical presentation, functional outcome and neuroanatomy in individuals with a first-episode of psychosis, and chronic patients suffering from schizophrenia. However, little is known about sex differences in the high-risk stages for psychosis. The present study investigated sex differences in cortical and subcortical neuroanatomy in individuals at clinical high risk (CHR for psychosis and healthy controls (CTL, and the relationship between anatomy and clinical symptoms in males at CHR. Magnetic resonance images were collected in 26 individuals at CHR (13 men and 29 CTLs (15 men to determine total and regional brain volumes and morphology, cortical thickness, and surface area (SA. Clinical symptoms were assessed with the brief psychiatric rating scale. Significant sex-by-diagnosis interactions were observed with opposite directions of effect in male and female CHR subjects relative to their same-sex controls in multiple cortical and subcortical areas. The right postcentral, left superior parietal, inferior parietal supramarginal, and angular gyri [<5% false discovery rate (FDR] were thicker in male and thinner in female CHR subjects compared with their same-sex CTLs. The same pattern was observed in the right superior parietal gyrus SA at the regional and vertex level. Using a recently developed surface-based morphology pipeline, we observed sex-specific shape differences in the left hippocampus (<5% FDR and amygdala (<10% FDR. Negative symptom burden was significantly higher in male compared with female CHR subjects (p = 0.04 and was positively associated with areal expansion of the left amygdala in males (<5% FDR. Some limitations of the study include the sample size, and data acquisition at 1.5 T. This study demonstrates neuroanatomical sex differences in CHR subjects, which may be associated with variations in symptomatology in men and women with psychotic symptoms.

  2. Multiple-output all-optical header processing technique based on two-pulse correlation principle

    NARCIS (Netherlands)

    Calabretta, N.; Liu, Y.; Waardt, de H.; Hill, M.T.; Khoe, G.D.; Dorren, H.J.S.

    2001-01-01

    A serial all-optical header processing technique based on a two-pulse correlation principle in a semiconductor laser amplifier in a loop mirror (SLALOM) configuration that can have a large number of output ports is presented. The operation is demonstrated experimentally at a 10Gbit/s Manchester

  3. Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length

    International Nuclear Information System (INIS)

    Pleimling, Michel; Täuber, Uwe C

    2015-01-01

    Vortex lines in type-II superconductors display complicated relaxation processes due to the intricate competition between their mutual repulsive interactions and pinning to attractive point or extended defects. We perform extensive Monte Carlo simulations for an interacting elastic line model with either point-like or columnar pinning centers. From measurements of the space- and time-dependent height-height correlation function for lateral flux line fluctuations, we extract a characteristic correlation length that we use to investigate different non-equilibrium relaxation regimes. The specific time dependence of this correlation length for different disorder configurations displays characteristic features that provide a novel diagnostic tool to distinguish between point-like pinning centers and extended columnar defects. (paper)

  4. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters.

    Science.gov (United States)

    Bjørnebekk, Astrid; Walhovd, Kristine B; Jørstad, Marie L; Due-Tønnessen, Paulina; Hullstein, Ingunn R; Fjell, Anders M

    2017-08-15

    Prolonged high-dose anabolic-androgenic steroid (AAS) use has been associated with psychiatric symptoms and cognitive deficits, yet we have almost no knowledge of the long-term consequences of AAS use on the brain. The purpose of this study is to investigate the association between long-term AAS exposure and brain morphometry, including subcortical neuroanatomical volumes and regional cortical thickness. Male AAS users and weightlifters with no experience with AASs or any other equivalent doping substances underwent structural magnetic resonance imaging scans of the brain. The current paper is based upon high-resolution structural T1-weighted images from 82 current or past AAS users exceeding 1 year of cumulative AAS use and 68 non-AAS-using weightlifters. Images were processed with the FreeSurfer software to compare neuroanatomical volumes and cerebral cortical thickness between the groups. Compared to non-AAS-using weightlifters, the AAS group had thinner cortex in widespread regions and significantly smaller neuroanatomical volumes, including total gray matter, cerebral cortex, and putamen. Both volumetric and thickness effects remained relatively stable across different AAS subsamples comprising various degrees of exposure to AASs and also when excluding participants with previous and current non-AAS drug abuse. The effects could not be explained by differences in verbal IQ, intracranial volume, anxiety/depression, or attention or behavioral problems. This large-scale systematic investigation of AAS use on brain structure shows negative correlations between AAS use and brain volume and cortical thickness. Although the findings are correlational, they may serve to raise concern about the long-term consequences of AAS use on structural features of the brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites

    DEFF Research Database (Denmark)

    Doagou-Rad, Saeed; Islam, Aminul; Jensen, Jakob Søndergaard

    2018-01-01

    The influence of the processing variables and nanotube content on the mechanical and electrical properties of polyamide 6,6-based nanocomposites reinforced with multi-walled carbon nanotubes is investigated. Results show that variation in the processing variables such as compounding method....... Different processing parameters required for achieving optimal mechanical and electrical performances are also found. Correlation between processing parameters and microstructure within the nanocomposites is studied. Results show that variation of the processing parameters defines the existence or absence...... discussed using scanning and transmission electron microscopy, rheological and crystallization investigations. The research provides a recipe to manufacture the tailored nanocomposite with the specified properties for various industrial applications....

  6. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    Science.gov (United States)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  7. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study.

    Science.gov (United States)

    Saarela, Carina; Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions.

  8. Correlation between safety assessments in the driver-car interaction design process.

    Science.gov (United States)

    Broström, Robert; Bengtsson, Peter; Axelsson, Jakob

    2011-05-01

    With the functional revolution in modern cars, evaluation methods to be used in all phases of driver-car interaction design have gained importance. It is crucial for car manufacturers to discover and solve safety issues early in the interaction design process. A current problem is thus to find a correlation between the formative methods that are used during development and the summative methods that are used when the product has reached the customer. This paper investigates the correlation between efficiency metrics from summative and formative evaluations, where the results of two studies on sound and navigation system tasks are compared. The first, an analysis of the J.D. Power and Associates APEAL survey, consists of answers given by about two thousand customers. The second, an expert evaluation study, was done by six evaluators who assessed the layouts by task completion time, TLX and Nielsen heuristics. The results show a high degree of correlation between the studies in terms of task efficiency, i.e. between customer ratings and task completion time, and customer ratings and TLX. However, no correlation was observed between Nielsen heuristics and customer ratings, task completion time or TLX. The results of the studies introduce a possibility to develop a usability evaluation framework that includes both formative and summative approaches, as the results show a high degree of consistency between the different methodologies. Hence, combining a quantitative approach with the expert evaluation method, such as task completion time, should be more useful for driver-car interaction design. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Neural correlates of early-closure garden-path processing: Effects of prosody and plausibility.

    Science.gov (United States)

    den Ouden, Dirk-Bart; Dickey, Michael Walsh; Anderson, Catherine; Christianson, Kiel

    2016-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate neural correlates of early-closure garden-path sentence processing and use of extrasyntactic information to resolve temporary syntactic ambiguities. Sixteen participants performed an auditory picture verification task on sentences presented with natural versus flat intonation. Stimuli included sentences in which the garden-path interpretation was plausible, implausible because of a late pragmatic cue, or implausible because of a semantic mismatch between an optionally transitive verb and the following noun. Natural sentence intonation was correlated with left-hemisphere temporal activation, but also with activation that suggests the allocation of more resources to interpretation when natural prosody is provided. Garden-path processing was associated with upregulation in bilateral inferior parietal and right-hemisphere dorsolateral prefrontal and inferior frontal cortex, while differences between the strength and type of plausibility cues were also reflected in activation patterns. Region of interest (ROI) analyses in regions associated with complex syntactic processing are consistent with a role for posterior temporal cortex supporting access to verb argument structure. Furthermore, ROI analyses within left-hemisphere inferior frontal gyrus suggest a division of labour, with the anterior-ventral part primarily involved in syntactic-semantic mismatch detection, the central part supporting structural reanalysis, and the posterior-dorsal part showing a general structural complexity effect.

  10. Neural activation and functional connectivity during motor imagery of bimanual everyday actions.

    Directory of Open Access Journals (Sweden)

    André J Szameitat

    Full Text Available Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI of everyday actions using functional magnetic resonance imaging (fMRI. For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI, however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.

  11. Pipeline leak detection and location by on-line-correlation with a process computer

    International Nuclear Information System (INIS)

    Siebert, H.; Isermann, R.

    1977-01-01

    A method for leak detection using a correlation technique in pipelines is described. For leak detection and also for leak localisation and estimation of the leak flow recursive estimation algorithms are used. The efficiency of the methods is demonstrated with a process computer and a pipeline model operating on-line. It is shown that very small leaks can be detected. (orig.) [de

  12. Spinal diffusion tensor imaging: a comprehensive review with emphasis on spinal cord anatomy and clinical applications.

    Science.gov (United States)

    Hendrix, Philipp; Griessenauer, Christoph J; Cohen-Adad, Julien; Rajasekaran, Shanmuganathan; Cauley, Keith A; Shoja, Mohammadali M; Pezeshk, Parham; Tubbs, R Shane

    2015-01-01

    Magnetic resonance imaging technology allows for in vivo visualization of fiber tracts of the central nervous system using diffusion-weighted imaging sequences and data processing referred to as "diffusion tensor imaging" and "diffusion tensor tractography." While protocols for high-fidelity diffusion tensor imaging of the brain are well established, the spinal cord has proven a more difficult target for diffusion tensor methods. Here, we review the current literature on spinal diffusion tensor imaging and tractography with special emphasis on neuroanatomical correlations and clinical applications. © 2014 Wiley Periodicals, Inc.

  13. Brain activity in adults who stutter: Similarities across speaking tasks and correlations with stuttering frequency and speaking rate

    Science.gov (United States)

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent controls (CONT, n = 12) is reported that used both oral reading and monologue tasks. After correcting for speech rate differences between the groups the task-activation differences were surprisingly small. For both analyses only some regions previously considered stutter-related were more activated in the PWS group than in the CONT group, and these were also activated during eyes-closed rest (ECR). In the PWS group, stuttering frequency was correlated with cortico-striatal-thalamic circuit activity in both speaking tasks. The neuroimaging findings for the PWS group, relative to the CONT group, appear consistent with neuroanatomic abnormalities being increasingly reported among PWS. PMID:22564749

  14. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Correlated alpha activity with the facial expression processing network in a simultaneous EEG-fMRI experiment.

    Science.gov (United States)

    Simoes, Marco; Direito, Bruno; Lima, Joao; Castelhano, Joao; Ferreira, Carlos; Couceiro, Ricardo; Carvalho, Paulo; Castelo-Branco, Miguel

    2017-07-01

    The relationship between EEG and fMRI data is poorly covered in the literature. Extensive work has been conducted in resting-state and epileptic activity, highlighting a negative correlation between the alpha power band of the EEG and the BOLD activity in the default-mode-network. The identification of an appropriate task-specific relationship between fMRI and EEG data for predefined regions-of-interest, would allow the transfer of interventional paradigms (such as BOLD-based neurofeedback sessions) from fMRI to EEG, enhancing its application range by lowering its costs and improving its flexibility. In this study, we present an analysis of the correlation between task-specific alpha band fluctuations and BOLD activity in the facial expressions processing network. We characterized the network ROIs through a stringent localizer and identified two clusters on the scalp (one frontal, one parietal-occipital) with marked alpha fluctuations, related to the task. We then check whether such power variations throughout the time correlate with the BOLD activity in the network. Our results show statistically significant negative correlations between the alpha power in both clusters and for all the ROIs of the network. The correlation levels have still not met the requirements for transferring the protocol to an EEG setup, but they pave the way towards a better understand on how frontal and parietal-occipital alpha relates to the activity of the facial expressions processing network.

  16. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  17. Anomalous scaling due to correlations: limit theorems and self-similar processes

    International Nuclear Information System (INIS)

    Stella, Attilio L; Baldovin, Fulvio

    2010-01-01

    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, explain their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance

  18. Brain structure–function associations in multi-generational families genetically enriched for bipolar disorder

    Science.gov (United States)

    Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C.; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier I.; Glahn, David C.; Thompson, Paul M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Cantor, Rita M.; Freimer, Nelson B.; Bearden, Carrie E.

    2015-01-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain–behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain–behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18–87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain–behaviour associations and test whether brain–behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain–behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non

  19. Common and dissociable neural correlates associated with component processes of inductive reasoning.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng

    2011-06-15

    The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.

    Science.gov (United States)

    Chen, Baojiang; Zhou, Xiao-Hua

    2013-05-01

    Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study.

  1. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm

    International Nuclear Information System (INIS)

    Guo, Li; Li, Pei; Pan, Cong; Cheng, Yuxuan; Ding, Zhihua; Li, Peng; Liao, Rujia; Hu, Weiwei; Chen, Zhong

    2016-01-01

    The complex-based OCT angiography (Angio-OCT) offers high motion contrast by combining both the intensity and phase information. However, due to involuntary bulk tissue motions, complex-valued OCT raw data are processed sequentially with different algorithms for correcting bulk image shifts (BISs), compensating global phase fluctuations (GPFs) and extracting flow signals. Such a complicated procedure results in massive computational load. To mitigate such a problem, in this work, we present an inter-frame complex-correlation (CC) algorithm. The CC algorithm is suitable for parallel processing of both flow signal extraction and BIS correction, and it does not need GPF compensation. This method provides high processing efficiency and shows superiority in motion contrast. The feasibility and performance of the proposed CC algorithm is demonstrated using both flow phantom and live animal experiments. (paper)

  2. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study

    Science.gov (United States)

    Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O.; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions. PMID:28771634

  3. Decoherence-induced transition from photon correlation to anti-correlation

    International Nuclear Information System (INIS)

    Xu, Q

    2014-01-01

    Decoherence tends to induce the quantum-to-classical transition, which leads to a crucial obstacle in the realization of reliable quantum information processing. Counterintuitively, we propose that the decoherence due to phase decay brings about the switch from photon correlation to anti-correlation. Stronger decoherence also gives rise to an enhancement of the transition from photon correlation to anti-correlation. This breaks the conventional correlation of strong decoherence with fast decorrelation. (letters)

  4. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    Science.gov (United States)

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  5. A test of multiple correlation temporal window characteristic of non-Markov processes

    Science.gov (United States)

    Arecchi, F. T.; Farini, A.; Megna, N.

    2016-03-01

    We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.

  6. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  7. Episodic aphasia associated with tumor active multiple sclerosis: a correlative SPECT study utilising image fusion

    International Nuclear Information System (INIS)

    Roff, G.; Campbell, A.; Lawn, N.; Henderson, A.; McCarthy, M.; Lenzo, N.

    2003-01-01

    Full text: Cerebral perfusion imaging is a common technique to assess cerebral perfusion and metabolism. It can complement anatomical imaging in assessing a number of neurological conditions. At times it can better define the clinical manifestations of a disease process than anatomical imaging alone. We present a clinical case whereby cerebral SPECT imaging helped define the physiological reason for intermittent aphasia in a patient with tumor active multiple sclerotic white matter plaques. Cerebral SPECT studies were performed during a period of aphasia and when the patient had recovered. We utilised subtraction analyses and image fusion techniques to better define the changes seen on SPECT. We discuss the neuroanatomical relationship of aphasia and the automatic fusion technique that allows accurate co-registration of the MRI and SPECT data. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  8. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery

    Directory of Open Access Journals (Sweden)

    Reem S.W. Alyahya

    2018-01-01

    Full Text Available Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings

  9. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery.

    Science.gov (United States)

    Alyahya, Reem S W; Halai, Ajay D; Conroy, Paul; Lambon Ralph, Matthew A

    2018-01-01

    Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings align with data from

  10. Data-driven fault detection for industrial processes canonical correlation analysis and projection based methods

    CERN Document Server

    Chen, Zhiwen

    2017-01-01

    Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed. Contents A New Index for Performance Evaluation of FD Methods CCA-based FD Method for the Monitoring of Stationary Processes Projection-based FD Method for the Monitoring of Dynamic Processes Benchmark Study and Real-Time Implementat...

  11. Callous-unemotional traits and brain structure: Sex-specific effects in anterior insula of typically-developing youths

    Directory of Open Access Journals (Sweden)

    Nora Maria Raschle

    2018-01-01

    General scientific summary: This study suggests that callous-unemotional traits have a neuroanatomical correlate within typically developing boys, but not girls. Bilateral anterior insula volume explains up to 19% of the variance in callous-unemotional traits in boys.

  12. ERP correlates of German Sign Language processing in deaf native signers.

    Science.gov (United States)

    Hänel-Faulhaber, Barbara; Skotara, Nils; Kügow, Monique; Salden, Uta; Bottari, Davide; Röder, Brigitte

    2014-05-10

    The present study investigated the neural correlates of sign language processing of Deaf people who had learned German Sign Language (Deutsche Gebärdensprache, DGS) from their Deaf parents as their first language. Correct and incorrect signed sentences were presented sign by sign on a computer screen. At the end of each sentence the participants had to judge whether or not the sentence was an appropriate DGS sentence. Two types of violations were introduced: (1) semantically incorrect sentences containing a selectional restriction violation (implausible object); (2) morphosyntactically incorrect sentences containing a verb that was incorrectly inflected (i.e., incorrect direction of movement). Event-related brain potentials (ERPs) were recorded from 74 scalp electrodes. Semantic violations (implausible signs) elicited an N400 effect followed by a positivity. Sentences with a morphosyntactic violation (verb agreement violation) elicited a negativity followed by a broad centro-parietal positivity. ERP correlates of semantic and morphosyntactic aspects of DGS clearly differed from each other and showed a number of similarities with those observed in other signed and oral languages. These data suggest a similar functional organization of signed and oral languages despite the visual-spacial modality of sign language.

  13. Olfactory LOVER: Behavioral and neural correlates of autobiographical odor memory

    Directory of Open Access Journals (Sweden)

    Maria eLarsson

    2014-04-01

    Full Text Available Autobiographical memories (AMs are personally experienced events that may be localized in time and space. In the present work we present an overview targeting memories evoked by the sense of smell. Overall, research indicates that autobiographical odor memory is different than memories evoked by our primary sensory systems; sight and hearing. Here, observed differences from a behavioral and neuroanatomical perspective are presented. The key features of an olfactory evoked AM may be referred to the LOVER acronym - Limbic, Old, Vivid, Emotional, and Rare.

  14. Task effects on BOLD signal correlates of implicit syntactic processing

    Science.gov (United States)

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  15. Cerebral interregional correlations of associative language processing: a positron emission tomography activation study using fluorine-18 fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Schulz, G.; Tuttass, T.; Wagenknecht, G.; Kaiser, H.J.; Buell, U.; Gouzoulis-Mayfrank, E.; Sass, H.

    1998-01-01

    Even though there have been numerous positron emission tomography (PET) activation studies on the perfusional and metabolic bases of language processing, little is known about the intracerebral functional network of language and cognitive processes. It was the aim of this study to investigate the cerebral interregional correlations during voluntary word association versus word repetition in healthy subjects to gain insight into the functional connectivity of associative speech processing. Due to individual variability in functional anatomy, the study protocol was designed as an averaged single-subject study. Eight healthy volunteers performed a verbal association task during fluorine-18 fluorodeoxyglucose ( 18 F-FDG) PET scanning. Two different tasks were performed in randomized order: (a) word repetition (after auditory presentation of nouns) as a control condition, and (b) word association (after auditory presentation of nouns) as a specific semantic activation. The regional metabolic rate of glucose (rMRGlu) was calculated after brain regionalization [112 regions of interest on individual 3D flash magnetic resonance imaging (MRI)] and PET/MRI realignment. Statistical analysis was performed for comparison of association and repetition and for calculation of interregional correlation coefficients during both tasks. Compared with word repetition, word association was associated with significant increases in rMRGlu in the left prefrontal cortex, the left frontal operculum (Broca's area) and the left insula, indicating involvement of these areas in associative language processing. Decreased rMRGlu was found in the left posterior cingulum during word association. During word repetition, highly significant negative correlations were found between the left prefrontal cortex, the contralateral cortex areas and the ipsilateral posterior cingulum. These negative correlations were almost completely eliminated during the association task, suggesting a functional decoupling

  16. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.

    Science.gov (United States)

    Eddins, Ann Clock; Eddins, David A

    This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000

  17. Mechanical properties correlation to processing parameters for advanced alumina based refractories

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija M.

    2012-01-01

    Full Text Available Alumina based refractories are usually used in metallurgical furnaces and their thermal shock resistance is of great importance. In order to improve thermal shock resistance and mechanical properties of alumina based refractories short ceramic fibers were added to the material. SEM technique was used to compare the microstructure of specimens and the observed images gave the porosity and morphological characteristics of pores in the specimens. Standard compression test was used to determine the modulus of elasticity and compression strength. Results obtained from thermal shock testing and mechanical properties measurements were used to establish regression models that correlated specimen properties to process parameters.

  18. Age differences in neural correlates of feedback processing after economic decisions under risk.

    Science.gov (United States)

    Fernandes, Carina; Pasion, Rita; Gonçalves, Ana R; Ferreira-Santos, Fernando; Barbosa, Fernando; Martins, Isabel P; Marques-Teixeira, João

    2018-05-01

    This study examines age-related differences in behavioral responses to risk and in the neurophysiological correlates of feedback processing. Our sample was composed of younger, middle-aged, and older adults, who were asked to decide between 2 risky options, in the gain and loss domains, during an EEG recording. Results evidenced group-related differences in early and later stages of feedback processing, indexed by differences in the feedback-related negativity (FRN) and P3 amplitudes. Specifically, in the loss domain, younger adults showed higher FRN amplitudes after non-losses than after losses, whereas middle-aged and older adults had similar FRN amplitudes after both. In the gain domain, younger and middle-aged adults had higher P3 amplitudes after gains than after non-gains, whereas older adults had similar P3 amplitudes after both. Behaviorally, older adults had higher rates of risky decisions than younger adults in the loss domain, a result that was correlated with poorer performance in memory and executive functions. Our results suggest age-related differences in the outcome-related expectations, as well as in the affective relevance attributed to the outcomes, which may underlie the group differences found in risk-aversion. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Integrable dissipative exclusion process: Correlation functions and physical properties

    Science.gov (United States)

    Crampe, N.; Ragoucy, E.; Rittenberg, V.; Vanicat, M.

    2016-09-01

    We study a one-parameter generalization of the symmetric simple exclusion process on a one-dimensional lattice. In addition to the usual dynamics (where particles can hop with equal rates to the left or to the right with an exclusion constraint), annihilation and creation of pairs can occur. The system is driven out of equilibrium by two reservoirs at the boundaries. In this setting the model is still integrable: it is related to the open XXZ spin chain through a gauge transformation. This allows us to compute the full spectrum of the Markov matrix using Bethe equations. We also show that the stationary state can be expressed in a matrix product form permitting to compute the multipoints correlation functions as well as the mean value of the lattice and the creation-annihilation currents. Finally, the variance of the lattice current is computed for a finite-size system. In the thermodynamic limit, it matches the value obtained from the associated macroscopic fluctuation theory.

  20. Lossless compression of hyperspectral images with pre-byte processing and intra-bands correlation

    OpenAIRE

    Sarinova, Assiya; Zamyatin, Alexander; Cabral, Pedro

    2015-01-01

    This paper considers an approach to the compression of hyperspectral remote sensing data by an original multistage algorithm to increase the compression ratio using auxiliary data processing with its byte representation as well as with its intra-bands correlation. A set of the experimental results for the proposed approach of effectiveness estimation and its comparison with the well-known universal and specialized compression algorithms is presented. Este documento se refiere a la compresi...

  1. Working Memory Processing In Normal Subjects and Subjects with Dyslexia

    Science.gov (United States)

    Bowyer, S. M.; Lajiness-O'Neill, R.; Weiland, B. J.; Mason, K.; Tepley, N.

    2004-10-01

    Magnetoencephalography (MEG) was used to determine the neuroanatomical location of working memory (WM) processes. Differences between subjects with dyslexia (SD; n=5) and normal readers (NR; n=5) were studied during two WM tasks. A spatial WM task (SMW) consisted of blocks visually presented in one of 12 positions for 2 s each. Subjects were to determine if the current position matched the position presented 2 slides earlier (N-Back Test). The verbal task (VMW) consisted of presentation of a single letter. The location of cortical activity during SWM in NR (determined with MR-FOCUSS analysis) was in the right superior temporal gyrus (STG) and right angular gyrus (AG). Similar activation was seen in SD with a slight delay of approximately 20 ms. During VWM activity was seen in LEFT STG and LEFT AG in NR. In contrast for SD, activation was in the RIGHT STG and RIGHT AG. This study demonstrates the possibility to differentiate WM processing in subjects with and without learning disorders.

  2. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Kienast, Thorsten; Rapp, Michael [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias [University of Mainz, Department of Nuclear Medicine, Mainz (Germany); Wrase, Jana; Heinz, Andreas [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Central Institute of Mental Health, Mannheim (Germany); Braus, Dieter F. [University of Hamburg, Neuroimage Nord, Department of Psychiatry, Hamburg (Germany); Smolka, Michael N.; Mann, Karl [Central Institute of Mental Health, Mannheim (Germany); Roesch, Frank [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Cumming, Paul [PET Center and Center for Functionally Integrative Neuroscience, Aarhus (Denmark); Gruender, Gerhard [Aachen University Medical Center, Department of Psychiatry of the RWTH, Mainz (Germany); Bartenstein, Peter [Ludwig-Maximilians-University, Department of Nuclear Medicine, Munich (Germany)

    2008-06-15

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [{sup 18}F]DOPA for measurements of dopamine synthesis capacity and [{sup 18}F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [{sup 18}F]DOPA net influx constant K{sub in}{sup app} /[{sup 18}F]DMFP-binding potential (BP{sub N}D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  3. Neural network post-processing of grayscale optical correlator

    Science.gov (United States)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  4. Visual form-processing deficits: a global clinical classification.

    Science.gov (United States)

    Unzueta-Arce, J; García-García, R; Ladera-Fernández, V; Perea-Bartolomé, M V; Mora-Simón, S; Cacho-Gutiérrez, J

    2014-10-01

    Patients who have difficulties recognising visual form stimuli are usually labelled as having visual agnosia. However, recent studies let us identify different clinical manifestations corresponding to discrete diagnostic entities which reflect a variety of deficits along the continuum of cortical visual processing. We reviewed different clinical cases published in medical literature as well as proposals for classifying deficits in order to provide a global perspective of the subject. Here, we present the main findings on the neuroanatomical basis of visual form processing and discuss the criteria for evaluating processing which may be abnormal. We also include an inclusive diagram of visual form processing deficits which represents the different clinical cases described in the literature. Lastly, we propose a boosted decision tree to serve as a guide in the process of diagnosing such cases. Although the medical community largely agrees on which cortical areas and neuronal circuits are involved in visual processing, future studies making use of new functional neuroimaging techniques will provide more in-depth information. A well-structured and exhaustive assessment of the different stages of visual processing, designed with a global view of the deficit in mind, will give a better idea of the prognosis and serve as a basis for planning personalised psychostimulation and rehabilitation strategies. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  5. Central vestibular syndrome in a red fox ( Vulpes vulpes ) with ...

    African Journals Online (AJOL)

    ... lacunar ischemic infarct in the territory of right caudal cerebral artery and its collateral branches. The lesion epicentre was in the right periaqueductal portion of the rostral mesencephalic tegmentum. Neuroanatomical and neurophysiological correlation between lesion localization and clinical presentation are discussed.

  6. Secondary dystonia in a botulinum toxin clinic: clinical characteristics, neuroanatomical substrate and comparison with idiopathic dystonia.

    Science.gov (United States)

    Strader, Scott; Rodnitzky, Robert L; Gonzalez-Alegre, Pedro

    2011-12-01

    The analysis of patients with secondary dystonia has been valuable to explore the anatomical, pharmacological and physiological bases of this disorder. The goal of this study is to compare the clinical characteristics of patients with primary and secondary dystonia and analyze the neuroanatomical bases of a subgroup of patients with lesion-induced dystonia. We identified patients evaluated in our Botulinum Toxin Clinic from 1/2000 to 7/2009 with an ICD code for "dystonia". Medical records of all subjects were reviewed, recording demographic, clinical, therapeutic and neuroimaging data. A total of 230 patients were included in the study. Idiopathic/primary dystonia was diagnosed in 162 and secondary dystonia in 58, while in 10 the etiology was uncertain. We found a female predominance (2.4:1 and 1.9:1 for primary and secondary dystonia, respectively). The cervical region was most commonly affected in primary dystonia and the limbs in secondary cases. The age at presentation was higher in primary (54.4 ± 14.1) than secondary (49 ± 17.9) dystonia. Among patients with secondary dystonia, a focal lesion was the presumed etiology in 32, with localizing diagnostic studies available in 16. The most common lesions were strokes involving the corticospinal pathway. All of those patients exhibited limb dystonia, except one with cervical dystonia following a thalamic infarct. In conclusion, primary and secondary dystonias are more prevalent in women, suggesting a sex-related predisposition to the development of this movement disorder. Lesion-induced dystonia most frequently involves the limbs and is caused by lesions in the cerebral cortex and subcortical white matter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Investigating the neuroanatomical substrate of pathological laughing and crying in amyotrophic lateral sclerosis with multimodal neuroimaging techniques.

    Science.gov (United States)

    Christidi, Foteini; Karavasilis, Efstratios; Ferentinos, Panagiotis; Xirou, Sophia; Velonakis, Georgios; Rentzos, Michalis; Zouvelou, Vasiliki; Zalonis, Ioannis; Efstathopoulos, Efstathios; Kelekis, Nikolaos; Evdokimidis, Ioannis

    2018-02-01

    Pathological laughing and crying (PLC) is common in several neurological and psychiatric diseases and is associated with a distributed network involving the frontal cortex, the brainstem and cortico-pontine-cerebellar circuits. By applying multimodal neuroimaging approach, we examined the neuroanatomical substrate of PLC in a sample of patients with amyotrophic lateral sclerosis (ALS). We studied 56 non-demented ALS patients and 25 healthy controls (HC). PLC was measured in ALS using the Center of Neurologic Study Lability Scale (CNS-LS; cutoff score: 13). All participants underwent 3D-T1-weighted and 30-directional diffusion-weighted imaging at 3T. Voxel-based morphometry and tract-based spatial-statistics analysis was used to examine gray matter (GM) and white matter (WM) differences between ALS patients with and without PLC (ALS-PLC and ALS-nonPLC, respectively). Comparisons were restricted to regions with detected differences between ALS and HC, controlling for age, gender, total intracranial volume and depressive symptoms. In regions with significant differences between ALS and HC, ALS-PLC patients showed decreased GM volume in left orbitofrontal cortex, frontal operculum, and putamen and bilateral frontal poles, compared to ALS-nonPLC. They also had decreased fractional anisotropy in left cingulum bundle and posterior corona radiata. WM abnormalities were additionally detected in WM associative and ponto-cerebellar tracts (using a more liberal threshold). PLC in ALS is driven by both GM and WM abnormalities which highlight the role of circuits rather than isolated centers in the emergence of this condition. ALS is suggested as a useful natural experimental model to study PLC.

  9. A new multiparametry system for the acquisition, correlation and processing of nuclear data

    International Nuclear Information System (INIS)

    Toledo Acosta, Rene; Osorio Deliz, Juan F.; Arista Romeu, Eduardo; Arteche Diaz, Raul; Lopez Torres, Ernesto

    1999-01-01

    A four spectrometric channels multiparametry System for the acquisition, correlation and processing of nuclear data is described. The design was based upon an TMS320-5x DSP substituting the one developed with the 80C186 microprocessor. The current configuration is similar to the previous one since consists of a PC incorporates board, an signals adapter and the software for the processing of the information.The system can be used for the multiparametry analysis, in pulse height analysis or in any combination of both according to the necessities. The System facilitates the stabilization of the zeros of the A/D converters. The block outline of the electronic design is included and they stand out some functions of the system

  10. Neuroanatomical Correlates of Performance in a State-Wide Test of Math Achievement

    Science.gov (United States)

    Wilkey, Eric D.; Cutting, Laurie E.; Price, Gavin R.

    2018-01-01

    The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related…

  11. Neuroanatomical correlates of Klinefelter syndrome studied in relation to the neuropsychological profile

    DEFF Research Database (Denmark)

    Skakkebæk, Anne; Gravholt, Claus Højbjerg; Rasmussen, Peter Mondrup

    2014-01-01

    , putamen, caudate, hippocampus, amygdala, temporal pole and frontal inferior orbita. Additionally, the right parahippocampal region and cerebellar volumes were reduced in KS patients. KS patients had significantly larger volumes in right postcentral gyrus, precuneus and parietal regions. Multivariate...

  12. Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects

    NARCIS (Netherlands)

    Daselaar, S.M.; Veltman, D.J.; Rombouts, S.A.R.B.; Raaijmakers, J.G.W.; Jonker, C.

    2003-01-01

    Lesion studies have shown convincingly that the medial temporal lobes (MTL) and frontal lobes are critical to episodic memory. Ageing generally has been found to have a generally negative effect on episodic memory performance, which might relate to neurofunctional changes in the frontal and medial

  13. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure

    Directory of Open Access Journals (Sweden)

    F. Burgio

    2014-10-01

    Full Text Available Chemical Vapour Infiltration (CVI technique has been long used to produce carbon/carbon composites. The Pyrolytic Carbon (Py-C matrix infiltrated by CVI could have different microstructures, i.e. Rough Laminar (RL, Smooth Laminar (SL or Isotropic (ISO. These matrix microstructures, characterized by different properties, influence the mechanical behaviour of the obtained composites. Tailoring the process parameters, it is possible to direct the infiltration towards a specific Py-C type. However, the factors, influencing the production of a specific matrix microstructure, are numerous and interconnected, e.g. temperature, pressure, flow rates etc. Due to the complexity of the physical and chemical phenomena involved in CVI process, up to now it has not been possible to obtain a general correlation between CVI process parameters and Py–C microstructure. This study is aimed at investigating the relationship between infiltration temperature and the microstructure of obtained Py-C, for a pilot - sized CVI/CVD reactor. Fixing the other process parameters and varying only the temperature, from 1100°C to 1300°C, the Py-C infiltration was performed on fibrous preforms. Polarized light microscopy, with quantitative measurements of average extinction angle (Ae, and Raman spectroscopy were used to characterize the obtained Py-C microstructures

  14. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure

    Directory of Open Access Journals (Sweden)

    F. Burgio

    2014-10-01

    Full Text Available Chemical Vapour Infiltration (CVI technique has been long used to produce carbon/carbon composites. The Pyrolytic Carbon (Py-C matrix infiltrated by CVI could have different microstructures, i.e. Rough Laminar (RL, Smooth Laminar (SL or Isotropic (ISO. These matrix microstructures, characterized by different properties, influence the mechanical behaviour of the obtained composites. Tailoring the process parameters, it is possible to direct the infiltration towards a specific Py-C type. However, the factors, influencing the production of a specific matrix microstructure, are numerous and interconnected, e.g. temperature, pressure, flow rates etc. Due to the complexity of the physical and chemical phenomena involved in CVI process, up to now it has not been possible to obtain a general correlation between CVI process parameters and Py–C microstructure. This study is aimed at investigating the relationship between infiltration temperature and the microstructure of obtained Py-C, for a pilot - sized CVI/CVD reactor. Fixing the other process parameters and varying only the temperature, from 1100°C to 1300°C, the Py-C infiltration was performed on fibrous preforms. Polarized light microscopy, with quantitative measurements of average extinction angle (Ae, and Raman spectroscopy were used to characterize the obtained Py-C microstructures.

  15. "When Music Speaks": Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality.

    Science.gov (United States)

    Turker, Sabrina; Reiterer, Susanne M; Seither-Preisler, Annemarie; Schneider, Peter

    2017-01-01

    Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl's gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals ( N = 30; 13 males/17 females; aged 20-40 years) with high and low scores in a number of language aptitude tests were compared. The subjects' language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and musical

  16. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    Science.gov (United States)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2018-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  17. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    Science.gov (United States)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2017-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  18. Neural correlates of the processing of self-referent emotional information in bulimia nervosa.

    Science.gov (United States)

    Pringle, A; Ashworth, F; Harmer, C J; Norbury, R; Cooper, M J

    2011-10-01

    There is increasing interest in understanding the roles of distorted beliefs about the self, ostensibly unrelated to eating, weight and shape, in eating disorders (EDs), but little is known about their neural correlates. We therefore used functional magnetic resonance imaging to investigate the neural correlates of self-referent emotional processing in EDs. During the scan, unmedicated patients with bulimia nervosa (n=11) and healthy controls (n=16) responded to personality words previously found to be related to negative self beliefs in EDs and depression. Rating of the negative personality descriptors resulted in reduced activation in patients compared to controls in parietal, occipital and limbic areas including the amygdala. There was no evidence that reduced activity in patients was secondary to increased cognitive control. Different patterns of neural activation between patients and controls may be the result of either habituation to personally relevant negative self beliefs or of emotional blunting in patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    International Nuclear Information System (INIS)

    Theodorsen, A; Garcia, O E; Rypdal, M

    2017-01-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type. (paper)

  20. DSN Beowulf Cluster-Based VLBI Correlator

    Science.gov (United States)

    Rogstad, Stephen P.; Jongeling, Andre P.; Finley, Susan G.; White, Leslie A.; Lanyi, Gabor E.; Clark, John E.; Goodhart, Charles E.

    2009-01-01

    The NASA Deep Space Network (DSN) requires a broadband VLBI (very long baseline interferometry) correlator to process data routinely taken as part of the VLBI source Catalogue Maintenance and Enhancement task (CAT M&E) and the Time and Earth Motion Precision Observations task (TEMPO). The data provided by these measurements are a crucial ingredient in the formation of precision deep-space navigation models. In addition, a VLBI correlator is needed to provide support for other VLBI related activities for both internal and external customers. The JPL VLBI Correlator (JVC) was designed, developed, and delivered to the DSN as a successor to the legacy Block II Correlator. The JVC is a full-capability VLBI correlator that uses software processes running on multiple computers to cross-correlate two-antenna broadband noise data. Components of this new system (see Figure 1) consist of Linux PCs integrated into a Beowulf Cluster, an existing Mark5 data storage system, a RAID array, an existing software correlator package (SoftC) originally developed for Delta DOR Navigation processing, and various custom- developed software processes and scripts. Parallel processing on the JVC is achieved by assigning slave nodes of the Beowulf cluster to process separate scans in parallel until all scans have been processed. Due to the single stream sequential playback of the Mark5 data, some ramp-up time is required before all nodes can have access to required scan data. Core functions of each processing step are accomplished using optimized C programs. The coordination and execution of these programs across the cluster is accomplished using Pearl scripts, PostgreSQL commands, and a handful of miscellaneous system utilities. Mark5 data modules are loaded on Mark5 Data systems playback units, one per station. Data processing is started when the operator scans the Mark5 systems and runs a script that reads various configuration files and then creates an experiment-dependent status database

  1. The Correlation among Neural Dynamic Processing of Conflict Control, Testosterone and Cortisol Levels in 10-Year-Old Children.

    Science.gov (United States)

    Shangguan, Fangfang; Liu, Tongran; Liu, Xiuying; Shi, Jiannong

    2017-01-01

    Cognitive control is related to goal-directed self-regulation abilities, which is fundamental for human development. Conflict control includes the neural processes of conflict monitoring and conflict resolution. Testosterone and cortisol are essential hormones for the development of cognitive functions. However, there are no studies that have investigated the correlation of these two hormones with conflict control in preadolescents. In this study, we aimed to explore whether testosterone, cortisol, and testosterone/cortisol ratio worked differently for preadolescent's conflict control processes in varied conflict control tasks. Thirty-two 10-year-old children (16 boys and 16 girls) were enrolled. They were instructed to accomplish three conflict control tasks with different conflict dimensions, including the Flanker, Simon, and Stroop tasks, and electrophysiological signals were recorded. Salivary samples were collected from each child. The testosterone and cortisol levels were determined by enzyme-linked immunosorbent assay. The electrophysiological results showed that the incongruent trials induced greater N2/N450 and P3/SP responses than the congruent trials during neural processes of conflict monitoring and conflict resolution in the Flanker and Stroop tasks. The hormonal findings showed that (1) the testosterone/cortisol ratio was correlated with conflict control accuracy and conflict resolution in the Flanker task; (2) the testosterone level was associated with conflict control performance and neural processing of conflict resolution in the Stroop task; (3) the cortisol level was correlated with conflict control performance and neural processing of conflict monitoring in the Simon task. In conclusion, in 10-year-old children, the fewer processes a task needs, the more likely there is an association between the T/C ratios and the behavioral and brain response, and the dual-hormone effects on conflict resolution may be testosterone-driven in the Stroop and

  2. The Correlation among Neural Dynamic Processing of Conflict Control, Testosterone and Cortisol Levels in 10-Year-Old Children

    Directory of Open Access Journals (Sweden)

    Fangfang Shangguan

    2017-06-01

    Full Text Available Cognitive control is related to goal-directed self-regulation abilities, which is fundamental for human development. Conflict control includes the neural processes of conflict monitoring and conflict resolution. Testosterone and cortisol are essential hormones for the development of cognitive functions. However, there are no studies that have investigated the correlation of these two hormones with conflict control in preadolescents. In this study, we aimed to explore whether testosterone, cortisol, and testosterone/cortisol ratio worked differently for preadolescent’s conflict control processes in varied conflict control tasks. Thirty-two 10-year-old children (16 boys and 16 girls were enrolled. They were instructed to accomplish three conflict control tasks with different conflict dimensions, including the Flanker, Simon, and Stroop tasks, and electrophysiological signals were recorded. Salivary samples were collected from each child. The testosterone and cortisol levels were determined by enzyme-linked immunosorbent assay. The electrophysiological results showed that the incongruent trials induced greater N2/N450 and P3/SP responses than the congruent trials during neural processes of conflict monitoring and conflict resolution in the Flanker and Stroop tasks. The hormonal findings showed that (1 the testosterone/cortisol ratio was correlated with conflict control accuracy and conflict resolution in the Flanker task; (2 the testosterone level was associated with conflict control performance and neural processing of conflict resolution in the Stroop task; (3 the cortisol level was correlated with conflict control performance and neural processing of conflict monitoring in the Simon task. In conclusion, in 10-year-old children, the fewer processes a task needs, the more likely there is an association between the T/C ratios and the behavioral and brain response, and the dual-hormone effects on conflict resolution may be testosterone-driven in

  3. Cortical Changes Across the Autism Lifespan.

    Science.gov (United States)

    Osipowicz, Karol; Bosenbark, Danielle D; Patrick, Kristina E

    2015-08-01

    Although it is widely accepted that autism spectrum disorder (ASD) involves neuroanatomical abnormalities and atypical neurodevelopmental patterns, there is little consensus regarding the precise pattern of neuroanatomical differences or how these differences relate to autism symptomology. Furthermore, there is limited research related to neuroanatomical correlates of autism symptomology in individuals with ASD and the studies that do exist primarily include small samples. This study was the first to investigate gray matter (GM) changes throughout the ASD lifespan, using voxel-based morphometry to determine whether significant differences exist in the GM volumes of a large sample of individuals with ASD compared to age- and IQ-matched typical controls. We examined GM volume across the lifespan in 531 individuals diagnosed with ASD and 571 neurotypical controls, aged 7-64. We compared groups and correlated GM with age and autism severity in the ASD group. Findings suggest bilateral decreased GM volume for individuals with ASD in regions extending from the thalamus to the cerebellum, anterior medial temporal lobes, and orbitofrontal regions. Higher autism severity was associated with decreased GM volumes in prefrontal cortex, inferior parietal and temporal regions, and temporal poles. Similar relationships were found between GM volume and age. ASD diagnosis and severity were not associated with increased GM volumes in any region. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Neural correlates of sublexical processing in phonological working memory.

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E; Eisner, Frank; Marshall, Chloe R; Shanmugalingam, Pradheep; Scott, Sophie K

    2011-04-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to these manipulations under conditions of covert rehearsal (Experiment 1). A left-dominant network of temporal and motor cortex showed increased activity for longer items, with motor cortex only showing greater activity concomitant with adding consonant clusters. An individual-differences analysis revealed a significant positive relationship between activity in the angular gyrus and the hippocampus, and accuracy on pseudoword repetition. As models of pWM stipulate that its neural correlates should be activated during both perception and production/rehearsal [Buchsbaum, B. R., & D'Esposito, M. The search for the phonological store: From loop to convolution. Journal of Cognitive Neuroscience, 20, 762-778, 2008; Jacquemot, C., & Scott, S. K. What is the relationship between phonological short-term memory and speech processing? Trends in Cognitive Sciences, 10, 480-486, 2006; Baddeley, A. D., & Hitch, G. Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press, 1974], we further assessed the effects of the two factors in a separate passive listening experiment (Experiment 2). In this experiment, the effect of the number of syllables was concentrated in posterior-medial regions of the supratemporal plane bilaterally, although there was no evidence of a significant response to added clusters. Taken together, the results identify the planum temporale as a key region in pWM; within this region, representations are likely to take the form of auditory or audiomotor "templates" or "chunks" at the level of the syllable

  5. White Matter Fractional Anisotropy Correlates With Speed of Processing and Motor Speed in Young Childhood Cancer Survivors

    International Nuclear Information System (INIS)

    Aukema, Eline J.; Caan, Matthan W.A.; Oudhuis, Nienke; Majoie, Charles; Vos, Frans M.; Reneman, Liesbeth; Last, Bob F.; Grootenhuis, Martha A.; Schouten-van Meeteren, Antoinette Y.N.

    2009-01-01

    Purpose: To determine whether childhood medulloblastoma and acute lymphoblastic leukemia (ALL) survivors have decreased white matter fractional anisotropy (WMFA) and whether WMFA is related to the speed of processing and motor speed. Methods and Materials: For this study, 17 patients (6 medulloblastoma, 5 ALL treated with high-dose methotrexate (MTX) (4 x 5 g/m 2 ) and 6 with low-dose MTX (3 x 2 g/m 2 )) and 17 age-matched controls participated. On a 3.0-T magnetic resonance imaging (MRI) scanner, diffusion tensor imaging (DTI) was performed, and WMFA values were calculated, including specific regions of interest (ROIs), and correlated with the speed of processing and motor speed. Results: Mean WMFA in the patient group, mean age 14 years (range 8.9 - 16.9), was decreased compared with the control group (p = 0.01), as well as WMFA in the right inferior fronto-occipital fasciliculus (IFO) (p = 0.03) and in the genu of the corpus callosum (gCC) (p = 0.01). Based on neurocognitive results, significant positive correlations were present between processing speed and WMFA in the splenium (sCC) (r = 0.53, p = 0.03) and the body of the corpus callosum (bCC) (r = 0.52, p = 0.03), whereas the right IFO WMFA was related to motor speed (r = 0.49, p < 0.05). Conclusions: White matter tracts, using a 3.0-T MRI scanner, show impairment in childhood cancer survivors, medulloblastoma survivors, and also those treated with high doses of MTX. In particular, white matter tracts in the sCC, bCC and right IFO are positively correlated with speed of processing and motor speed.

  6. Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children

    NARCIS (Netherlands)

    S. Thijssen (Sandra); A.P. Ringoot (Ank); A. Wildeboer (Andrea); M.J. Bakermans-Kranenburg (Marian); H. El Marroun (Hanan); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); F.C. Verhulst (Frank); H.W. Tiemeier (Henning); M.H. van IJzendoorn (Rien); T.J.H. White (Tonya)

    2015-01-01

    textabstractObjective: Few studies have focused on the neuroanatomy of aggressive behavior in children younger than 10 years. Here, we explored the neuroanatomical correlates of aggression in a population-based sample of 6- to 9-year-old children using a multiple-informant approach. Methods:

  7. Brain Signals of Face Processing as Revealed by Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Ela I. Olivares

    2015-01-01

    Full Text Available We analyze the functional significance of different event-related potentials (ERPs as electrophysiological indices of face perception and face recognition, according to cognitive and neurofunctional models of face processing. Initially, the processing of faces seems to be supported by early extrastriate occipital cortices and revealed by modulations of the occipital P1. This early response is thought to reflect the detection of certain primary structural aspects indicating the presence grosso modo of a face within the visual field. The posterior-temporal N170 is more sensitive to the detection of faces as complex-structured stimuli and, therefore, to the presence of its distinctive organizational characteristics prior to within-category identification. In turn, the relatively late and probably more rostrally generated N250r and N400-like responses might respectively indicate processes of access and retrieval of face-related information, which is stored in long-term memory (LTM. New methods of analysis of electrophysiological and neuroanatomical data, namely, dynamic causal modeling, single-trial and time-frequency analyses, are highly recommended to advance in the knowledge of those brain mechanisms concerning face processing.

  8. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  9. Processing concrete words: fMRI evidence against a specific right-hemisphere involvement.

    Science.gov (United States)

    Fiebach, Christian J; Friederici, Angela D

    2004-01-01

    Behavioral, patient, and electrophysiological studies have been taken as support for the assumption that processing of abstract words is confined to the left hemisphere, whereas concrete words are processed also by right-hemispheric brain areas. These are thought to provide additional information from an imaginal representational system, as postulated in the dual-coding theory of memory and cognition. Here we report new event-related fMRI data on the processing of concrete and abstract words in a lexical decision task. While abstract words activated a subregion of the left inferior frontal gyrus (BA 45) more strongly than concrete words, specific activity for concrete words was observed in the left basal temporal cortex. These data as well as data from other neuroimaging studies reviewed here are not compatible with the assumption of a specific right-hemispheric involvement for concrete words. The combined findings rather suggest a revised view of the neuroanatomical bases of the imaginal representational system assumed in the dual-coding theory, at least with respect to word recognition.

  10. Studies of electron correlation in the photoionization process

    International Nuclear Information System (INIS)

    Rosenberg, R.A.

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying CI. The types of CI involved in the photoionization process can be divided into three categories: initial-state configuration interaction (ISCI), final-ionic-state configuration interaction (FISCI), and continuum-state configuration interaction (CSCI). The photoelecton spectroscopy of Ba, Sm, Eu, and Yb was studied using both HeI (22.22 eV) and NeI (16.85 eV) radiation. Satellite structure observed in these spectra using NeI (and for Yb, HeI also) radiation could be satisfactorily explained by ISCI alone. The HeI spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by autoionization, a special form of CSCI. The detailed nature of this mechanism was explored in Ba with synchrotron radiation. It was found that the autoionizing level decays preferentially via an Auger-type mechanism. Further insight into autoionization was gained in the electron impact/ejected electron spectra of Ba (5p 6 6s 2 ) and Yb (5p 6 4f 14 6s 2 ). Autoionizing levels excited above the first (5p) -1 threshold decayed primarily in a two-step Auger process, leading to a relatively large number of doubly charged ions. For autoionizing states below the (5p) -1 limit, decay appears to go to ground and excited states of the singly charged ion. The first experimental determination of the lifetime of the XeII 5s5p 6 2 S/sub 1/2/ state yielded a value of 34.4(6) ns. Reasonable agreement with theory could only be reached by including both FISCI and relativistic effects in calculating the lifetime. 173 references, 43 figures, 10 tables

  11. Electrophysiological correlates of melodic processing in congenital amusia.

    Science.gov (United States)

    Omigie, Diana; Pearce, Marcus T; Williamson, Victoria J; Stewart, Lauren

    2013-08-01

    Music listening involves using previously internalized regularities to process incoming musical structures. A condition known as congenital amusia is characterized by musical difficulties, notably in the detection of gross musical violations. However, there has been increasing evidence that individuals with the disorder show preserved musical ability when probed using implicit methods. To further characterize the degree to which amusic individuals show evidence of latent sensitivity to musical structure, particularly in the context of stimuli that are ecologically valid, electrophysiological recordings were taken from a sample of amusic and control participants as they listened to real melodies. To encourage them to pay attention to the music, participants were asked to detect occasional notes in a different timbre. Using a computational model of auditory expectation to identify points of varying levels of expectedness in these melodies (in units of information content (IC), a measure which has an inverse relationship with probability), ERP analysis investigated the extent to which the amusic brain differs from that of controls when processing notes of high IC (low probability) as compared to low IC ones (high probability). The data revealed a novel effect that was highly comparable in both groups: Notes with high IC reliably elicited a delayed P2 component relative to notes with low IC, suggesting that amusic individuals, like controls, found these notes more difficult to evaluate. However, notes with high IC were also characterized by an early frontal negativity in controls that was attenuated in amusic individuals. A correlation of this early negative effect with the ability to make accurate note expectedness judgments (previous data collected from a subset of the current sample) was shown to be present in typical individuals but compromised in individuals with amusia: a finding in line with evidence of a close relationship between the amplitude of such a

  12. Schizophernia and empty sella – casual or correlated?

    Science.gov (United States)

    Wix-Ramos, Richard Joseph; Capote, Eduardo; Mendoza, Milet; Garcia, Margreth; Ezequiel, Uribe

    2011-01-01

    Summary A male patient, 44 years old, with schizophrenia which started at the age of 18. At his last follow-up visit, laboratory tests and brain magnetic resonance imaging (MRI) were performed, revealing the presence of a sellar arachnoidocele. To our knowledge, there is only one similar case report of a set of male monozygotic triplets with schizophrenia and empty sella syndrome. High-resolution chromosome analysis found an extra band at chromosome 15p in all the triplets and their father. We performed a similar evaluation in our patient and his family to compare the results and identify new information on neuroanatomical abnormalities, hormonal alterations or genetic origins of schizophrenia. PMID:22802833

  13. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    International Nuclear Information System (INIS)

    Park, Sang Kyoo; Yang, Hei Cheon

    2017-01-01

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  14. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-06-15

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  15. [A Correlational Study of the Recovery Process in Patients With Mental Illness].

    Science.gov (United States)

    Huang, Yao-Hui; Lin, Yao-Yu; Lee, Shih-Kai; Lee, Ming-Feng; Lin, Ching-Lan Esther

    2018-04-01

    The ideology of recovery addresses the autonomy of patients with mental illness and their ability to reconstruct a normal life. Empirical knowledge of this process of recovery and related factors remains unclear. To assess the process of recovery and related factors in patients with mental illness. This cross-sectional, correlational study was conducted on a convenience sample in a psychiatric hospital. Two-hundred and fifty patients with mental illness were recruited and were assessed using 3 instruments: Questionnaire about the Process of Recovery (QPR), Perceived Psychiatric Stigma Scale (PPSS), and Personal and Social Performance Scale (PSP). Data were analyzed using descriptive statistics, χ 2 , analysis of variance, and multiple linear regression analysis. Most of the participants were male, middle-aged, unmarried, educated to the senior high school level, employed, receiving home-care treatment, and diagnosed with schizophrenia. Those who were unemployed, living in a community rehabilitative house, and living in the community, respectively, earned relatively higher recovery scores (p mental illness. Community psychiatric nurses should provide care to help employed patients adapt to stresses in the workplace, strengthen their stigma-coping strategies, and promote public awareness of mental health issues by increasing public knowledge and acceptance of mental illness in order to minimize patient-perceived stigma and facilitate their recovery.

  16. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    Science.gov (United States)

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  17. Neurophysiological correlates of word processing deficits in isolated reading and isolated spelling disorders.

    Science.gov (United States)

    Bakos, Sarolta; Landerl, Karin; Bartling, Jürgen; Schulte-Körne, Gerd; Moll, Kristina

    2018-03-01

    In consistent orthographies, isolated reading disorders (iRD) and isolated spelling disorders (iSD) are nearly as common as combined reading-spelling disorders (cRSD). However, the exact nature of the underlying word processing deficits in isolated versus combined literacy deficits are not well understood yet. We applied a phonological lexical decision task (including words, pseudohomophones, legal and illegal pseudowords) during ERP recording to investigate the neurophysiological correlates of lexical and sublexical word-processing in children with iRD, iSD and cRSD compared to typically developing (TD) 9-year-olds. TD children showed enhanced early sensitivity (N170) for word material and for the violation of orthographic rules compared to the other groups. Lexical orthographic effects (higher LPC amplitude for words than for pseudohomophones) were the same in the TD and iRD groups, although processing took longer in children with iRD. In the iSD and cRSD groups, lexical orthographic effects were evident and stable over time only for correctly spelled words. Orthographic representations were intact in iRD children, but word processing took longer compared to TD. Children with spelling disorders had partly missing orthographic representations. Our study is the first to specify the underlying neurophysiology of word processing deficits associated with isolated literacy deficits. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Resting and Task-Modulated High-Frequency Brain Rhythms Measured by Scalp Encephalography in Infants with Tuberous Sclerosis Complex

    Science.gov (United States)

    Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.

    2015-01-01

    The electrophysiological correlates of cognitive deficits in tuberous sclerosis complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide…

  19. Software Correlator for Radioastron Mission

    Science.gov (United States)

    Likhachev, Sergey F.; Kostenko, Vladimir I.; Girin, Igor A.; Andrianov, Andrey S.; Rudnitskiy, Alexey G.; Zharov, Vladimir E.

    In this paper, we discuss the characteristics and operation of Astro Space Center (ASC) software FX correlator that is an important component of space-ground interferometer for Radioastron project. This project performs joint observations of compact radio sources using 10m space radio telescope (SRT) together with ground radio telescopes at 92, 18, 6 and 1.3 cm wavelengths. In this paper, we describe the main features of space-ground VLBI data processing of Radioastron project using ASC correlator. Quality of implemented fringe search procedure provides positive results without significant losses in correlated amplitude. ASC Correlator has a computational power close to real time operation. The correlator has a number of processing modes: “Continuum”, “Spectral Line”, “Pulsars”, “Giant Pulses”,“Coherent”. Special attention is paid to peculiarities of Radioastron space-ground VLBI data processing. The algorithms of time delay and delay rate calculation are also discussed, which is a matter of principle for data correlation of space-ground interferometers. During five years of Radioastron SRT successful operation, ASC correlator showed high potential of satisfying steady growing needs of current and future ground and space VLBI science. Results of ASC software correlator operation are demonstrated.

  20. “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality

    Directory of Open Access Journals (Sweden)

    Sabrina Turker

    2017-12-01

    Full Text Available Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl’s gyrus (HG; auditory cortex, working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20–40 years with high and low scores in a number of language aptitude tests were compared. The subjects’ language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability, an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT. Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between

  1. “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality

    Science.gov (United States)

    Turker, Sabrina; Reiterer, Susanne M.; Seither-Preisler, Annemarie; Schneider, Peter

    2017-01-01

    Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl’s gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20–40 years) with high and low scores in a number of language aptitude tests were compared. The subjects’ language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and

  2. Effects of Age on the Neural Correlates of Retrieval Cue Processing Are Modulated by Task Demands

    Science.gov (United States)

    Duverne, Sandrine; Motamedinia, Shahab; Rugg, Michael D.

    2009-01-01

    The electrophysiological correlates of retrieval orientation--the differential processing of retrieval cues according to the nature of the sought-for information--were investigated in healthy young (18-20 years old) and older (63-77 years old) adults. In one pair of study-test cycles, subjects studied either words or pictures presented in one of…

  3. The Neural Correlates of the Body-Object Interaction Effect in Semantic Processing

    Directory of Open Access Journals (Sweden)

    Ian Scott Hargreaves

    2012-02-01

    Full Text Available The semantic richness dimension referred to as body-object interaction (BOI measures perceptions of the ease with which people can physically interact with words’ referents. Previous studies have shown facilitated lexical and semantic processing for words rated high in BOI (e.g., belt than for words rated low in BOI (e.g., sun (e.g., Siakaluk, Pexman, Sears, Wilson, Locheed, & Owen, 2008b. These BOI effects have been taken as evidence that embodied information is relevant to word recognition. However, to date there is no evidence linking BOI manipulations to differences in the utilization of perceptual or sensorimotor areas of the brain. The current study used event-related fMRI to examine the neural correlates of BOI in a semantic categorization task (SCT. Sixteen healthy adults participated. Results showed that high BOI words were associated with activation in the left inferior parietal lobule (supramarginal gyrus, BA 40, a sensory association area involved in kinesthetic memory. These results provide evidence that the BOI dimension captures sensorimotor information, and that this contributes to semantic processing.

  4. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy

    Science.gov (United States)

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ˜10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ˜1.8 MHz and ˜1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ˜750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  5. Dissociating sensory from decision processes in human perceptual decision making.

    Science.gov (United States)

    Mostert, Pim; Kok, Peter; de Lange, Floris P

    2015-12-15

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.

  6. Dissociating sensory from decision processes in human perceptual decision making

    Science.gov (United States)

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393

  7. A marked point process approach for identifying neural correlates of tics in Tourette Syndrome.

    Science.gov (United States)

    Loza, Carlos A; Shute, Jonathan B; Principe, Jose C; Okun, Michael S; Gunduz, Aysegul

    2017-07-01

    We propose a novel interpretation of local field potentials (LFP) based on a marked point process (MPP) framework that models relevant neuromodulations as shifted weighted versions of prototypical temporal patterns. Particularly, the MPP samples are categorized according to the well known oscillatory rhythms of the brain in an effort to elucidate spectrally specific behavioral correlates. The result is a transient model for LFP. We exploit data-driven techniques to fully estimate the model parameters with the added feature of exceptional temporal resolution of the resulting events. We utilize the learned features in the alpha and beta bands to assess correlations to tic events in patients with Tourette Syndrome (TS). The final results show stronger coupling between LFP recorded from the centromedian-paraficicular complex of the thalamus and the tic marks, in comparison to electrocorticogram (ECoG) recordings from the hand area of the primary motor cortex (M1) in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.

  8. Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation.

    Science.gov (United States)

    Newman, Michael J; Speller, Emily M; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung

    2018-01-01

    Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C 71 butyric acid methyl ester (BTR:PC 71 BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV-vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation - rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.

  9. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Neuroanatomical Classification in a Population-Based Sample of Psychotic Major Depression and Bipolar I Disorder with 1 Year of Diagnostic Stability

    Directory of Open Access Journals (Sweden)

    Mauricio H. Serpa

    2014-01-01

    Full Text Available The presence of psychotic features in the course of a depressive disorder is known to increase the risk for bipolarity, but the early identification of such cases remains challenging in clinical practice. In the present study, we evaluated the diagnostic performance of a neuroanatomical pattern classification method in the discrimination between psychotic major depressive disorder (MDD, bipolar I disorder (BD-I, and healthy controls (HC using a homogenous sample of patients at an early course of their illness. Twenty-three cases of first-episode psychotic mania (BD-I and 19 individuals with a first episode of psychotic MDD whose diagnosis remained stable during 1 year of followup underwent 1.5 T MRI at baseline. A previously validated multivariate classifier based on support vector machine (SVM was employed and measures of diagnostic performance were obtained for the discrimination between each diagnostic group and subsamples of age- and gender-matched controls recruited in the same neighborhood of the patients. Based on T1-weighted images only, the SVM-classifier afforded poor discrimination in all 3 pairwise comparisons: BD-I versus HC; MDD versus HC; and BD-I versus MDD. Thus, at the population level and using structural MRI only, we failed to achieve good discrimination between BD-I, psychotic MDD, and HC in this proof of concept study.

  11. A new approach to correlate transport processes and optical efficiency in GaN-based LEDs

    International Nuclear Information System (INIS)

    Pavesi, M; Manfredi, M; Rossi, F; Salviati, G; Meneghini, M; Zanoni, E

    2009-01-01

    Carrier injection and non-radiative processes are determinants of the optical efficiency of InGaN/GaN LEDs. Among transport mechanisms, tunnelling is crucial for device functioning, but other contributions can be decisive on a varying bias. It is not easy to identify the weights and roles of these terms by a simple current-voltage characterization, so it needs a careful investigation by means of complementary experimental techniques. The correlation between luminescence and microscopic transport processes in InGaN/GaN LEDs has been investigated by means of a set of techniques: electroluminescence, cathodoluminescence, current-voltage dc measurements and thermal admittance spectroscopy. Green and blue LEDs, designed with a multi-quantum-well injector layer and an optically active single-quantum-well, have been tested. They showed distinctive current and temperature dependences of the optical efficiency, with a better performance at room temperature observed for green devices. This was discussed in terms of the carrier injection efficiency controlled by electrically active traps. The comparative analysis of the optical and electrical experimental data comes in handy as a methodological approach to correlate the emission properties with the carrier injection mechanisms and to improve the functionality in a large number of quantum well heterostructures for lighting applications.

  12. Neural correlates of anticipation and processing of performance feedback in social anxiety.

    Science.gov (United States)

    Heitmann, Carina Y; Peterburs, Jutta; Mothes-Lasch, Martin; Hallfarth, Marlit C; Böhme, Stephanie; Miltner, Wolfgang H R; Straube, Thomas

    2014-12-01

    Fear of negative evaluation, such as negative social performance feedback, is the core symptom of social anxiety. The present study investigated the neural correlates of anticipation and perception of social performance feedback in social anxiety. High (HSA) and low (LSA) socially anxious individuals were asked to give a speech on a personally relevant topic and received standardized but appropriate expert performance feedback in a succeeding experimental session in which neural activity was measured during anticipation and presentation of negative and positive performance feedback concerning the speech performance, or a neutral feedback-unrelated control condition. HSA compared to LSA subjects reported greater anxiety during anticipation of negative feedback. Functional magnetic resonance imaging results showed deactivation of medial prefrontal brain areas during anticipation of negative feedback relative to the control and the positive condition, and medial prefrontal and insular hyperactivation during presentation of negative as well as positive feedback in HSA compared to LSA subjects. The results indicate distinct processes underlying feedback processing during anticipation and presentation of feedback in HSA as compared to LSA individuals. In line with the role of the medial prefrontal cortex in self-referential information processing and the insula in interoception, social anxiety seems to be associated with lower self-monitoring during feedback anticipation, and an increased self-focus and interoception during feedback presentation, regardless of feedback valence. © 2014 Wiley Periodicals, Inc.

  13. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  14. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help

  15. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    International Nuclear Information System (INIS)

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S.; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R.

    2016-01-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  16. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  17. Structural covariance networks in the mouse brain.

    Science.gov (United States)

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aldhafeeri, Faten M [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Khalid General Hospital, Ministry of Health, Radiology Department, Hafral-batin (Saudi Arabia); Mackenzie, Ian; Kay, Tony [Aintree University Hospitals NHS Foundation Trust, Liverpool (United Kingdom); Alghamdi, Jamaan [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Abdul Aziz University, Physics Department, Faculty of Sciences, Jeddah (Saudi Arabia); Sluming, Vanessa [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, Liverpool (United Kingdom)

    2012-08-15

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  19. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Aldhafeeri, Faten M.; Mackenzie, Ian; Kay, Tony; Alghamdi, Jamaan; Sluming, Vanessa

    2012-01-01

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  20. "Thinking about not-thinking": neural correlates of conceptual processing during Zen meditation.

    Directory of Open Access Journals (Sweden)

    Giuseppe Pagnoni

    2008-09-01

    Full Text Available Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This "default network" has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation.

  1. 3D registration of micro PET-CT for measurable correlates of dyspeptic symptoms in mice

    Science.gov (United States)

    Camp, Jon; Simpson, Kathryn; Bardsley, Michael R.; Popko, Laura N.; Young, David L.; Kemp, Bradley J.; Lowe, Val; Ordog, Tamas; Robb, Richard

    2009-02-01

    Patients with chronic calorie insufficiency commonly suffer from upper gastrointestinal dysfunction and consequent dyspeptic symptoms, which may interfere with their nutritional rehabilitation. To investigate the relationship between gastric dysfunction and feeding behavior, we exposed mice to chronic caloric restriction and demonstrated gastric motor abnormalities in them. Gastric dysmotility is typically associated with dyspeptic symptoms but sensations cannot be directly assessed in animal models. Therefore, as an initial step toward establishing measurable correlates of postprandial symptoms in small animals, we have attempted to characterize central responses to food intake by positron emission tomography-computerized microtomography (PET-CT) in normal and calorically restricted mice. Animals consumed a standard test meal after an overnight fast before receiving 2-deoxy-2[18F]fluoro-D-glucose tracer. The same mice were also scanned in the fasting state on a separate day. We were able to bring the fed and fasting PET volume images into spatial registration with each other and with an MR-derived atlas of the mouse brain, so that the differences in uptake between the two states could be mapped quantitatively against the neuroanatomic regions of the atlas. Our approach is suitable for studying the effects of gastric dysmotilities on central responses to feeding.

  2. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  3. Expansion and Compression of Time Correlate with Information Processing in an Enumeration Task.

    Directory of Open Access Journals (Sweden)

    Andreas Wutz

    Full Text Available Perception of temporal duration is subjective and is influenced by factors such as attention and context. For example, unexpected or emotional events are often experienced as if time subjectively expands, suggesting that the amount of information processed in a unit of time can be increased. Time dilation effects have been measured with an oddball paradigm in which an infrequent stimulus is perceived to last longer than standard stimuli in the rest of the sequence. Likewise, time compression for the oddball occurs when the duration of the standard items is relatively brief. Here, we investigated whether the amount of information processing changes when time is perceived as distorted. On each trial, an oddball stimulus of varying numerosity (1-14 items and duration was presented along with standard items that were either short (70 ms or long (1050 ms. Observers were instructed to count the number of dots within the oddball stimulus and to judge its relative duration with respect to the standards on that trial. Consistent with previous results, oddballs were reliably perceived as temporally distorted: expanded for longer standard stimuli blocks and compressed for shorter standards. The occurrence of these distortions of time perception correlated with perceptual processing; i.e. enumeration accuracy increased when time was perceived as expanded and decreased with temporal compression. These results suggest that subjective time distortions are not epiphenomenal, but reflect real changes in sensory processing. Such short-term plasticity in information processing rate could be evolutionarily advantageous in optimizing perception and action during critical moments.

  4. Neural correlates of atomoxetine improving inhibitory control and visual processing in Drug-naïve adults with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Fan, Li-Ying; Chou, Tai-Li; Gau, Susan Shur-Fen

    2017-10-01

    Atomoxetine improves inhibitory control and visual processing in healthy volunteers and adults with attention-deficit/hyperactivity disorder (ADHD). However, little is known about the neural correlates of these two functions after chronic treatment with atomoxetine. This study aimed to use the counting Stroop task with functional magnetic resonance imaging (fMRI) and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate the changes related to inhibitory control and visual processing in adults with ADHD. This study is an 8-week, placebo-controlled, double-blind, randomized clinical trial of atomoxetine in 24 drug-naïve adults with ADHD. We investigated the changes of treatment with atomoxetine compared to placebo-treated counterparts using the counting Stroop fMRI and two CANTAB tests: rapid visual information processing (RVP) for inhibitory control and delayed matching to sample (DMS) for visual processing. Atomoxetine decreased activations in the right inferior frontal gyrus and anterior cingulate cortex, which were correlated with the improvement in inhibitory control assessed by the RVP. Also, atomoxetine increased activation in the left precuneus, which was correlated with the improvement in the mean latency of correct responses assessed by the DMS. Moreover, anterior cingulate activation in the pre-treatment was able to predict the improvements of clinical symptoms. Treatment with atomoxetine may improve inhibitory control to suppress interference and may enhance the visual processing to process numbers. In addition, the anterior cingulate cortex might play an important role as a biological marker for the treatment effectiveness of atomoxetine. Hum Brain Mapp 38:4850-4864, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Performance highlights of the ALMA correlators

    Science.gov (United States)

    Baudry, Alain; Lacasse, Richard; Escoffier, Ray; Webber, John; Greenberg, Joseph; Platt, Laurence; Treacy, Robert; Saez, Alejandro F.; Cais, Philippe; Comoretto, Giovanni; Quertier, Benjamin; Okumura, Sachiko K.; Kamazaki, Takeshi; Chikada, Yoshihiro; Watanabe, Manabu; Okuda, Takeshi; Kurono, Yasutake; Iguchi, Satoru

    2012-09-01

    Two large correlators have been constructed to combine the signals captured by the ALMA antennas deployed on the Atacama Desert in Chile at an elevation of 5050 meters. The Baseline correlator was fabricated by a NRAO/European team to process up to 64 antennas for 16 GHz bandwidth in two polarizations and another correlator, the Atacama Compact Array (ACA) correlator, was fabricated by a Japanese team to process up to 16 antennas. Both correlators meet the same specifications except for the number of processed antennas. The main architectural differences between these two large machines will be underlined. Selected features of the Baseline and ACA correlators as well as the main technical challenges met by the designers will be briefly discussed. The Baseline correlator is the largest correlator ever built for radio astronomy. Its digital hybrid architecture provides a wide variety of observing modes including the ability to divide each input baseband into 32 frequency-mobile sub-bands for high spectral resolution and to be operated as a conventional 'lag' correlator for high time resolution. The various observing modes offered by the ALMA correlators to the science community for 'Early Science' are presented, as well as future observing modes. Coherently phasing the array to provide VLBI maps of extremely compact sources is another feature of the ALMA correlators. Finally, the status and availability of these large machines will be presented.

  6. The Neural Correlates of Implicit and Explicit Sequence Learning: Interacting Networks Revealed by the Process Dissociation Procedure

    Science.gov (United States)

    Laureys, Steven; Degueldre, Christian; Del Fiore, Guy; Aerts, Joel; Luxen, Andre; Van Der Linden, Martial; Cleeremans, Axel; Maquet, Pierre; Destrebecqz, Arnaud; Peigneux, Philippe

    2005-01-01

    In two H[subscript 2] [superscript 15]O PET scan experiments, we investigated the cerebral correlates of explicit and implicit knowledge in a serial reaction time (SRT) task. To do so, we used a novel application of the Process Dissociation Procedure, a behavioral paradigm that makes it possible to separately assess conscious and unconscious…

  7. Processing graded feedback: electrophysiological correlates of learning from small and large errors.

    Science.gov (United States)

    Luft, Caroline Di Bernardi; Takase, Emilio; Bhattacharya, Joydeep

    2014-05-01

    Feedback processing is important for learning and therefore may affect the consolidation of skills. Considerable research demonstrates electrophysiological differences between correct and incorrect feedback, but how we learn from small versus large errors is usually overlooked. This study investigated electrophysiological differences when processing small or large error feedback during a time estimation task. Data from high-learners and low-learners were analyzed separately. In both high- and low-learners, large error feedback was associated with higher feedback-related negativity (FRN) and small error feedback was associated with a larger P300 and increased amplitude over the motor related areas of the left hemisphere. In addition, small error feedback induced larger desynchronization in the alpha and beta bands with distinctly different topographies between the two learning groups: The high-learners showed a more localized decrease in beta power over the left frontocentral areas, and the low-learners showed a widespread reduction in the alpha power following small error feedback. Furthermore, only the high-learners showed an increase in phase synchronization between the midfrontal and left central areas. Importantly, this synchronization was correlated to how well the participants consolidated the estimation of the time interval. Thus, although large errors were associated with higher FRN, small errors were associated with larger oscillatory responses, which was more evident in the high-learners. Altogether, our results suggest an important role of the motor areas in the processing of error feedback for skill consolidation.

  8. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  9. A computational architecture for social agents

    Energy Technology Data Exchange (ETDEWEB)

    Bond, A.H. [California Institute of Technology, Pasadena, CA (United States)

    1996-12-31

    This article describes a new class of information-processing models for social agents. They axe derived from primate brain architecture, the processing in brain regions, the interactions among brain regions, and the social behavior of primates. In another paper, we have reviewed the neuroanatomical connections and functional involvements of cortical regions. We reviewed the evidence for a hierarchical architecture in the primate brain. By examining neuroanatomical evidence for connections among neural areas, we were able to establish anatomical regions and connections. We then examined evidence for specific functional involvements of the different neural axeas and found some support for hierarchical functioning, not only for the perception hierarchies but also for the planning and action hierarchy in the frontal lobes.

  10. Multiscale analysis of the correlation of processing parameters on viscidity of composites fabricated by automated fiber placement

    Science.gov (United States)

    Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya

    2017-10-01

    Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.

  11. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Directory of Open Access Journals (Sweden)

    Meytal Wilf

    Full Text Available Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  12. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Science.gov (United States)

    Wilf, Meytal; Ramot, Michal; Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  13. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  14. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    International Nuclear Information System (INIS)

    Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.

    2009-01-01

    in additional regions analyzed including the nucleus accumbens, caudate putamen, substantia nigra, and amygdala. These data suggest that medial thalamic 18-FDG uptake during inescapable shock may contribute to subsequent escape deficits, and are not confounded by shock effects per se, since all animals received the same treatment prior to scanning. We have previously explored 18-FDG differences following the escape test session which also showed hyperactivity in the medial thalamus of learned helpless animals compared to non-learned helpless, and included additional cortical-limbic changes. Given the neuroanatomical connections between the medial thalamus (and habenula) with the prefrontal cortex and monoaminergic brain stem, one possible speculation is that abnormal neuronal activity in these areas during stress may set in motion circuitry changes that correlate with learned helpless behavior.

  15. A Pontine Region is a Neural Correlate of the Human Affective Processing Network

    Directory of Open Access Journals (Sweden)

    Tatia M.C. Lee

    2015-11-01

    Full Text Available The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.

  16. Frequency of intron loss correlates with processed pseudogene abundance: a novel strategy to test the reverse transcriptase model of intron loss.

    Science.gov (United States)

    Zhu, Tao; Niu, Deng-Ke

    2013-03-05

    Although intron loss in evolution has been described, the mechanism involved is still unclear. Three models have been proposed, the reverse transcriptase (RT) model, genomic deletion model and double-strand-break repair model. The RT model, also termed mRNA-mediated intron loss, suggests that cDNA molecules reverse transcribed from spliced mRNA recombine with genomic DNA causing intron loss. Many studies have attempted to test this model based on its predictions, such as simultaneous loss of adjacent introns, 3'-side bias of intron loss, and germline expression of intron-lost genes. Evidence either supporting or opposing the model has been reported. The mechanism of intron loss proposed in the RT model shares the process of reverse transcription with the formation of processed pseudogenes. If the RT model is correct, genes that have produced more processed pseudogenes are more likely to undergo intron loss. In the present study, we observed that the frequency of intron loss is correlated with processed pseudogene abundance by analyzing a new dataset of intron loss obtained in mice and rats. Furthermore, we found that mRNA molecules of intron-lost genes are mostly translated on free cytoplasmic ribosomes, a feature shared by mRNA molecules of the parental genes of processed pseudogenes and long interspersed elements. This feature is likely convenient for intron-lost gene mRNA molecules to be reverse transcribed. Analyses of adjacent intron loss, 3'-side bias of intron loss, and germline expression of intron-lost genes also support the RT model. Compared with previous evidence, the correlation between the abundance of processed pseudogenes and intron loss frequency more directly supports the RT model of intron loss. Exploring such a correlation is a new strategy to test the RT model in organisms with abundant processed pseudogenes.

  17. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  18. Naming abilities: Differentiation between objects and verbs in aphasia

    Directory of Open Access Journals (Sweden)

    Luisa Carmen Spezzano

    Full Text Available Abstract Cognitive Neuropsychology aims to understand the processing mechanisms of normal and injured brain, by means of functional architectural models of information processing. Naming is one of the most important abilities in linguistic processing. Naming of different semantic and grammatical categories differ in their lexical properties and have distinct neuroanatomical substrates. We reviewed literature data on the differences between nouns and verbs in aphasic subjects reported by scientific publications in the form of indexed articles. Studies on naming abilities tended to emphasize the differentiation between nouns and verbs both in their lexical properties and neuroanatomical substrates. Functional neuroimaging studies have improved the state of knowledge regarding category-specific naming abilities, but further studies on different types of aphasia and the use of naming abilities in different contexts are warranted.

  19. FoodPro: A Web-Based Tool for Evaluating Covariance and Correlation NMR Spectra Associated with Food Processes

    Directory of Open Access Journals (Sweden)

    Eisuke Chikayama

    2016-10-01

    Full Text Available Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D2O and 131 hydrophobic (extracted in CDCl3 experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N-oxide.

  20. FoodPro: A Web-Based Tool for Evaluating Covariance and Correlation NMR Spectra Associated with Food Processes.

    Science.gov (United States)

    Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo

    2016-10-19

    Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D₂O) and 131 hydrophobic (extracted in CDCl₃) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N -oxide.

  1. Plasma amyloid levels within the Alzheimer's process and correlations with central biomarkers.

    Science.gov (United States)

    Hanon, Olivier; Vidal, Jean-Sébastien; Lehmann, Sylvain; Bombois, Stéphanie; Allinquant, Bernadette; Tréluyer, Jean-Marc; Gelé, Patrick; Delmaire, Christine; Blanc, Fredéric; Mangin, Jean-François; Buée, Luc; Touchon, Jacques; Hugon, Jacques; Vellas, Bruno; Galbrun, Evelyne; Benetos, Athanase; Berrut, Gilles; Paillaud, Elèna; Wallon, David; Castelnovo, Giovanni; Volpe-Gillot, Lisette; Paccalin, Marc; Robert, Philippe-Henri; Godefroy, Olivier; Dantoine, Thierry; Camus, Vincent; Belmin, Joël; Vandel, Pierre; Novella, Jean-Luc; Duron, Emmanuelle; Rigaud, Anne-Sophie; Schraen-Maschke, Suzanna; Gabelle, Audrey

    2018-02-17

    Diagnostic relevance of plasma amyloid β (Aβ) for Alzheimer's disease (AD) process yields conflicting results. The objective of the study was to assess plasma levels of Aβ 42 and Aβ 40 in amnestic mild cognitive impairment (MCI), nonamnestic MCI, and AD patients and to investigate relationships between peripheral and central biomarkers. One thousand forty participants (417 amnestic MCI, 122 nonamnestic MCI, and 501 AD) from the Biomarker of AmyLoïd pepTide and AlZheimer's diseAse Risk multicenter prospective study with cognition, plasma, cerebrospinal fluid (CSF), and magnetic resonance imaging assessments were included. Plasma Aβ 1-42 and Aβ 1-40 were lower in AD (36.9 [11.7] and 263 [80] pg/mL) than in amnestic MCI (38.2 [11.9] and 269 [68] pg/mL) than in nonamnestic MCI (39.7 [10.5] and 272 [52] pg/mL), respectively (P = .01 for overall difference between groups for Aβ 1-42 and P = .04 for Aβ 1-40 ). Globally, plasma Aβ 1-42 correlated with age, Mini-Mental State Examination, and APOE ε4 allele. Plasma Aβ 1-42 correlated with all CSF biomarkers in MCI but only with CSF Aβ 42 in AD. Plasma Aβ was associated with cognitive status and CSF biomarkers, suggesting the interest of plasma amyloid biomarkers for diagnosis purpose. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Antioxidant Activity of Chinese Shanxi Aged Vinegar and Its Correlation with Polyphenols and Flavonoids During the Brewing Process.

    Science.gov (United States)

    Xie, Xiaolin; Zheng, Yu; Liu, Xian; Cheng, Cheng; Zhang, Xianglong; Xia, Ting; Yu, Songfeng; Wang, Min

    2017-10-01

    One of the most famous Chinese vinegars, Shanxi aged vinegar (SAV), is produced with solid-state fermentation technology. Total antioxidant activity (TAC) is a special property for SAV. In this study, we investigate correlations between total antioxidant activity (TAC) and total polyphenol (TP) and total flavonoid (TF) contents of SAV, especially during the brewing process. For SAV, TAC, TP, and TF increased with the increase of aging time. The correlation coefficients between TAC and TP were 0.869 and 0.934, respectively, when analyzed with the method of ABTS and FRAP. They were 0.828 (ABTS) and 0.877 (FRAP) between the TAC and TF. In smoking pei stage that is a special technique for SAV different from other Chinese cereal vinegars, TAC increased by 120% (ABTS) and 111% (FRAP) mainly due to the increase of TP (89%) and TF (75%), which was more obvious than that during alcohol fermentation and acetic acid fermentation stages. Moreover, variation during brewing process of 8 main polyphenol compounds that were proved responsible for the TAC of SAV was analyzed. In addition to catechins and chlorogenic acid, gallic acid serves as one of the principal antioxidant ingredients in SAV. Total antioxidant activity (TAC) of Shanxi aged vinegar (SAV), which is highly correlated with total polyphenol and total flavonoid, increased with aging time, however, there is a little loss of total antioxidant after more than 8 y. During the brewing process smoking pei technique is important for enhancing the TAC of SAV suggesting critical controlled and thoroughly study of smoking pei stage are needed to improve the quality of SAV. © 2017 Institute of Food Technologists®.

  3. Correlating behavioral responses to FMRI signals from human prefrontal cortex: examining cognitive processes using task analysis.

    Science.gov (United States)

    DeSouza, Joseph F X; Ovaysikia, Shima; Pynn, Laura

    2012-06-20

    The aim of this methods paper is to describe how to implement a neuroimaging technique to examine complementary brain processes engaged by two similar tasks. Participants' behavior during task performance in an fMRI scanner can then be correlated to the brain activity using the blood-oxygen-level-dependent signal. We measure behavior to be able to sort correct trials, where the subject performed the task correctly and then be able to examine the brain signals related to correct performance. Conversely, if subjects do not perform the task correctly, and these trials are included in the same analysis with the correct trials we would introduce trials that were not only for correct performance. Thus, in many cases these errors can be used themselves to then correlate brain activity to them. We describe two complementary tasks that are used in our lab to examine the brain during suppression of an automatic responses: the stroop(1) and anti-saccade tasks. The emotional stroop paradigm instructs participants to either report the superimposed emotional 'word' across the affective faces or the facial 'expressions' of the face stimuli(1,2). When the word and the facial expression refer to different emotions, a conflict between what must be said and what is automatically read occurs. The participant has to resolve the conflict between two simultaneously competing processes of word reading and facial expression. Our urge to read out a word leads to strong 'stimulus-response (SR)' associations; hence inhibiting these strong SR's is difficult and participants are prone to making errors. Overcoming this conflict and directing attention away from the face or the word requires the subject to inhibit bottom up processes which typically directs attention to the more salient stimulus. Similarly, in the anti-saccade task(3,4,5,6), where an instruction cue is used to direct only attention to a peripheral stimulus location but then the eye movement is made to the mirror opposite position

  4. Reduced gray matter volume and increased white matter fractional anisotropy in women with hypoactive sexual desire disorder

    NARCIS (Netherlands)

    Bloemers, J.; Scholte, H.S.; van Rooij, K.; Goldstein, I.; Gerritsen, J.; Olivier, B.; Tuiten, A.

    2014-01-01

    Introduction: Models of hypoactive sexual desire disorder (HSDD) imply altered central processing of sexual stimuli. Imaging studies have identified areas which show altered processing as compared with controls, but to date, structural neuroanatomical differences have not been described. Aim: The

  5. Dynamical and Bose-Einstein correlations in hadronization

    International Nuclear Information System (INIS)

    Scholten, O.; Wu, H.C.

    1993-01-01

    Pion correlations in the hadronization process are studied. A distinction is made between 'dynamical', due to the mechanism of the fragmentation scheme, and Bose-Einstein correlations, due to the statistics. It is found that in a string hadronization model not based on the usage of fragmentation functions, the dynamical correlations are at least as important as statistical correlation for identical charged pions. Other correlation functions are dominated by resonance decay. The importance of dynamical correlations imply that a pure chaotic assumption for the hadronization process is not applicable and thus that observed correlations should not be interpreted as measuring the spatial and temporal extent of sources. Comparisons are made with data from hadronic (e + , e - ) annihilation. (orig.)

  6. Associations between neural correlates of visual stimulus processing and set-shifting in ill and recovered women with anorexia nervosa

    NARCIS (Netherlands)

    Sultson, Hedvig; van Meer, Floor; Sanders, Nicole; van Elburg, Annemarie A.; Danner, Unna N.; Hoek, Hans W.; Adan, Roger A. H.; Smeets, Paul A. M.

    2016-01-01

    Women ill with anorexia nervosa (AN) have been shown to exhibit altered cognitive functioning, particularly poor set-shifting (SS). In this study, we investigated whether brain activation in frontal and parietal regions during visual stimulus processing correlates with SS ability. Women currently

  7. Overexpression of the DYRK1A Gene (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Induces Alterations of the Serotoninergic and Dopaminergic Processing in Murine Brain Tissues.

    Science.gov (United States)

    London, Jacqueline; Rouch, Claude; Bui, Linh Chi; Assayag, Elodie; Souchet, Benoit; Daubigney, Fabrice; Medjaoui, Hind; Luquet, Serge; Magnan, Christophe; Delabar, Jean Maurice; Dairou, Julien; Janel, Nathalie

    2018-05-01

    Trisomy 21 (T21) or Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and affects around 5 million persons worldwide. Neuroanatomical phenotypes associated with T21 include slight reduction of brain size and weight, abnormalities in several brain areas including spines dysgenesis, dendritic morphogenesis, and early neuroanatomical characteristics of Alzheimer's disease. Monoamine neurotransmitters are involved in dendrites development, functioning of synapses, memory consolidation, and their levels measured in the cerebrospinal fluid, blood, or brain areas that are modified in individuals with T21. DYRK1A is one of the recognized key genes that could explain some of the deficits present in individuals with T21. We investigated by high-performance liquid chromatography with electrochemical detection the contents and processing of monoamines neurotransmitters in four brain areas of female and male transgenic mice for the Dyrk1a gene (mBactgDyrk1a). DYRK1A overexpression induced dramatic deficits in the serotonin contents of the four brain areas tested and major deficits in dopamine and adrenaline contents especially in the hypothalamus. These results suggest that DYRK1A overexpression might be associated with the modification of monoamines content found in individuals with T21 and reinforce the interest to target the level of DYRK1A expression as a therapeutic approach for persons with T21.

  8. Image correlation method for DNA sequence alignment.

    Science.gov (United States)

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  9. Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nidhi; Mudgil, Varun; Anand, Kanika; Srivastava, A.K.; Kotnala, R.K.; Dhar, Ajay, E-mail: adhar@nplindia.org

    2015-06-05

    Highlights: • The reported magnetic properties of τ-MnAl show a significant scatter in their data. • We report the synthesis of τ-MnAl employing different processing routes. • The observed magnetic properties were correlated with the synthesis route. • The resulting microstructure has been correlated with the magnetic properties. - Abstract: In order to understand the genesis of the magnetic τ-phase of MnAl alloy, which due to its multiphase nature is generally difficult to synthesize as a single-phase, we have synthesized it employing three different materials processing routes, namely, arc melting, mechanical alloying, and a combination of these two. Structural and microstructural characterizations employing X-ray diffraction and high resolution transmission electron microscopy demonstrate that irrespective of the material processing route employed, the formation of τ-MnAl phase was always accompanied by other non-magnetic phases, e.g., β-MnAl and γ-MnAl. However, the relative fraction of these phases was found to be dependent on the materials processing route and hence on the grain size of the parent phase. The arc melted alloy had the largest grain size and the highest fraction of the τ-MnAl phase, while the alloy prepared by mechanical alloying showed the smallest grain size and the lowest fraction of the magnetic phase. The largest value of Curie temperature, magnetic moment, coercivity and remanence were observed in the sample prepared by a combination of arc melting and mechanical alloying. Our results suggest that in addition to the τ-MnAl phase fraction the magnetic properties could be related to the density of structural defects.

  10. Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material

    International Nuclear Information System (INIS)

    Singh, Nidhi; Mudgil, Varun; Anand, Kanika; Srivastava, A.K.; Kotnala, R.K.; Dhar, Ajay

    2015-01-01

    Highlights: • The reported magnetic properties of τ-MnAl show a significant scatter in their data. • We report the synthesis of τ-MnAl employing different processing routes. • The observed magnetic properties were correlated with the synthesis route. • The resulting microstructure has been correlated with the magnetic properties. - Abstract: In order to understand the genesis of the magnetic τ-phase of MnAl alloy, which due to its multiphase nature is generally difficult to synthesize as a single-phase, we have synthesized it employing three different materials processing routes, namely, arc melting, mechanical alloying, and a combination of these two. Structural and microstructural characterizations employing X-ray diffraction and high resolution transmission electron microscopy demonstrate that irrespective of the material processing route employed, the formation of τ-MnAl phase was always accompanied by other non-magnetic phases, e.g., β-MnAl and γ-MnAl. However, the relative fraction of these phases was found to be dependent on the materials processing route and hence on the grain size of the parent phase. The arc melted alloy had the largest grain size and the highest fraction of the τ-MnAl phase, while the alloy prepared by mechanical alloying showed the smallest grain size and the lowest fraction of the magnetic phase. The largest value of Curie temperature, magnetic moment, coercivity and remanence were observed in the sample prepared by a combination of arc melting and mechanical alloying. Our results suggest that in addition to the τ-MnAl phase fraction the magnetic properties could be related to the density of structural defects

  11. Neuroanatomical differences between first-episode psychosis patients with and without neurocognitive deficit: a 3 year longitudinal study

    Directory of Open Access Journals (Sweden)

    Rosa eAyesa-Arriola

    2013-10-01

    Full Text Available Background: The course of cognitive function in first episode psychosis (FEP patients suggests that some individuals are normal or near-normal whereas some cases present a marked decline. The goal of the present longitudinal study was to identify neuroanatomical differences between deficit and non-deficit patients.Methods: Fifty nine FEP patients with neuroimage and neurocognitive information were studied at baseline and 3 year after illness onset. A global cognitive function score was used to classify deficit and non-deficit patients at baseline. Analysis of covarianes and repeated-measures analysis were performed to evaluate differences in brain volumes. Age, premorbid IQ and intracranial volume were used as covariates. We examined only volumes of whole brain, whole brain gray and white matter, cortical CSF and lateral ventricles, lobular volumes of gray and white matter, and subcortical (caudate nucleus and thalamus regions.Results: At illness onset 50.8% of patients presented global cognitive deficit. There were no significant differences between neuropsychological subgroups in any of the brain regions studied at baseline (all F(1,54 ≤ 3.42; all p ≥ 0.07 and follow-up (all F(1,54 ≤ 3.43; all p ≥ 0.07 time points. There was a significant time by group interaction for the parietal tissue volume (F(1,54 =4.97, p = 0.030 and the total gray matter volume (F(1,54 = 4.31, p =0.042, with the deficit group showing a greater volume decrease. Conclusions: Our results did not confirm the presence of significant morphometric differences in the brain regions evaluated between cognitively impaired and cognitively preserved schizophrenia patients at the early stages of the illness. However, there were significant time by group interactions for the parietal tissue volume and the total gray matter volume during the 3-year follow-up period, which might indicate that cognitive deficit in schizophrenia would be associated with progressive brain volume

  12. 25 ns software correlator for photon and fluorescence correlation spectroscopy

    Science.gov (United States)

    Magatti, Davide; Ferri, Fabio

    2003-02-01

    A 25 ns time resolution, multi-tau software correlator developed in LABVIEW based on the use of a standard photon counting unit, a fast timer/counter board (6602-PCI National Instrument) and a personal computer (PC) (1.5 GHz Pentium 4) is presented and quantitatively discussed. The correlator works by processing the stream of incoming data in parallel according to two different algorithms: For large lag times (τ⩾100 μs), a classical time-mode (TM) scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ⩽100 μs a photon-mode (PM) scheme is adopted and the time sequence of the arrival times of the photon pulses is measured. By combining the two methods, we developed a system capable of working out correlation functions on line, in full real time for the TM correlator and partially in batch processing for the PM correlator. For the latter one, the duty cycle depends on the count rate of the incoming pulses, being ˜100% for count rates ⩽3×104 Hz, ˜15% at 105 Hz, and ˜1% at 106 Hz. For limitations imposed by the fairly small first-in, first-out (FIFO) buffer available on the counter board, the maximum count rate permissible for a proper functioning of the PM correlator is limited to ˜105 Hz. However, this limit can be removed by using a board with a deeper FIFO. Similarly, the 25 ns time resolution is only limited by maximum clock frequency available on the 6602-PCI and can be easily improved by using a faster clock. When tested on dilute solutions of calibrated latex spheres, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  13. Statistical process control for serially correlated data

    NARCIS (Netherlands)

    Wieringa, Jakob Edo

    1999-01-01

    Statistical Process Control (SPC) aims at quality improvement through reduction of variation. The best known tool of SPC is the control chart. Over the years, the control chart has proved to be a successful practical technique for monitoring process measurements. However, its usefulness in practice

  14. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization......, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  15. Generalized interferometry - I: theory for interstation correlations

    Science.gov (United States)

    Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian

    2017-02-01

    We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on

  16. Flank wear and I-kaz 3D correlation in ball end milling process of Inconel 718

    Directory of Open Access Journals (Sweden)

    M.A.S.M. Tahir

    2015-12-01

    Full Text Available Tool wear may deteriorate the machine product quality due to high surface roughness, dimension exceeding tolerance and also to machine tool itself. Tool wear monitoring system is vital to be used in machining process to achieve high quality of the machined product and at the same time improve the productivity. Nowadays, many monitoring system developed using various sensor and statistical technique to analyze the signals being used. In this paper, I-kaz 3D method is used to analyze cutting force signal in milling process of Inconel 718 for monitoring the status of tool wear in milling process. The results from analyzing cutting force show that I-kaz 3D coefficient has a correlation with cutting tool condition. Tool wear will generate high value of I-kaz 3D coefficient than the sharp cutting tool. Furthermore, the three dimension graphical representation of I-kaz 3D for all cutting condition shown that the degree of scattering data increases with tool wear progression.

  17. Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer's disease

    OpenAIRE

    Kobeleva, Xenia; Firbank, Michael; Peraza, Luis; Gallagher, Peter; Thomas, Alan; Burn, David J.; O'Brien, John; Taylor, John-Paul

    2017-01-01

    Attention and executive dysfunction are features of Lewy body dementia (LBD) but their neuroanatomical basis is poorly understood. To investigate underlying dysfunctional attention-executive network (EXEC) interactions, we examined functional connectivity (FC) in 30 patients with LBD, 20 patients with Alzheimer's disease (AD), and 21 healthy controls during an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a modified Attention Network Test (ANT),...

  18. Hierarchical processing in music, language, and action: Lashley revisited.

    Science.gov (United States)

    Fitch, W Tecumseh; Martins, Mauricio D

    2014-05-01

    Sixty years ago, Karl Lashley suggested that complex action sequences, from simple motor acts to language and music, are a fundamental but neglected aspect of neural function. Lashley demonstrated the inadequacy of then-standard models of associative chaining, positing a more flexible and generalized "syntax of action" necessary to encompass key aspects of language and music. He suggested that hierarchy in language and music builds upon a more basic sequential action system, and provided several concrete hypotheses about the nature of this system. Here, we review a diverse set of modern data concerning musical, linguistic, and other action processing, finding them largely consistent with an updated neuroanatomical version of Lashley's hypotheses. In particular, the lateral premotor cortex, including Broca's area, plays important roles in hierarchical processing in language, music, and at least some action sequences. Although the precise computational function of the lateral prefrontal regions in action syntax remains debated, Lashley's notion-that this cortical region implements a working-memory buffer or stack scannable by posterior and subcortical brain regions-is consistent with considerable experimental data. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  19. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  20. Brain aromatase (Cyp19A2) and estrogen receptors, in larvae and adult pejerrey fish Odontesthes bonariensis: Neuroanatomical and functional relations

    Science.gov (United States)

    Strobl-Mazzulla, P. H.; Lethimonier, C.; Gueguen, M.M.; Karube, M.; Fernandino, J.I.; Yoshizaki, G.; Patino, R.; Strussmann, C.A.; Kah, O.; Somoza, G.M.

    2008-01-01

    Although estrogens exert many functions on vertebrate brains, there is little information on the relationship between brain aromatase and estrogen receptors. Here, we report the cloning and characterization of two estrogen receptors, ?? and ??, in pejerrey. Both receptors' mRNAs largely overlap and were predominantly expressed in the brain, pituitary, liver, and gonads. Also brain aromatase and estrogen receptors were up-regulated in the brain of estradiol-treated males. In situ hybridization was performed to study in more detail, the distribution of the two receptors in comparison with brain aromatase mRNA in the brain of adult pejerrey. The estrogen receptors' mRNAs exhibited distinct but partially overlapping patterns of expression in the preoptic area and the mediobasal hypothalamus, as well as in the pituitary gland. Moreover, the estrogen receptor ??, but not ??, were found to be expressed in cells lining the preoptic recess, similarly as observed for brain aromatase. Finally, it was shown that the onset expression of brain aromatase and both estrogen receptors in the head of larvae preceded the morphological differentiation of the gonads. Because pejerrey sex differentiation is strongly influenced by temperature, brain aromatase expression was measured during the temperature-sensitive window and was found to be significantly higher at male-promoting temperature. Taken together these results suggest close neuroanatomical and functional relationships between brain aromatase and estrogen receptors, probably involved in the sexual differentiation of the brain and raising interesting questions on the origin (central or peripheral) of the brain aromatase substrate. ?? 2008 Elsevier Inc.

  1. Neural correlates of reward processing in healthy siblings of patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Esther eHanssen

    2015-09-01

    Full Text Available Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ may be driven by dysfunctional reward processing (RP. RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be related to SZ. Studies in patients with SZ have found less activation in the ventral striatum (VS during anticipation of reward, but these findings do not provide information on effect of the genetic load on reward processing. Therefore, this study investigated RP in healthy first-degree relatives of SZ patients. The sample consisted of 94 healthy siblings of SZ patients and 57 healthy controls. Participants completed a classic RP task, the Monetary Incentive Delay task, during functional magnetic resonance imaging (fMRI. As expected, there were no behavioral differences between groups. In contrast to our expectations, we found no differences in any of the anticipatory reward related brain areas (region of interest analyses. Whole-brain analyses did reveal group differences during both reward anticipation and reward consumption; during reward anticipation siblings showed less deactivation in the insula, posterior cingulate cortex (PCC and medial frontal gyrus (MFG than controls. During reward consumption siblings showed less deactivation in the PCC and the right MFG compared to controls and activation in contrast to deactivation in controls in the precuneus and the left MFG. Exclusively in siblings, MFG activity correlated positively with subclinical negative symptoms. These regions are typically associated with the default mode network (DMN, which normally shows decreases in activation during task-related cognitive processes. Thus, in contrast to prior literature in patients with SZ, the results do not point to altered brain activity in classical RP brain areas, such as the VS. However, the weaker deactivation found outside the reward-related network in

  2. Electron correlation effect on radiative decay processes of the core-excited states of Be-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Cuicui, E-mail: sangcc@126.com [Department of Physics, Qinghai Normal University, Xining 810001 (China); Li, Kaikai [College of Forensic Science, People' s Public Security University of China, Beijing 100038 (China); Sun, Yan; Hu, Feng [School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221400, Jiangsu (China)

    2016-07-15

    Highlights: • Radiative rates of the states 1s2s{sup 2}2p and 1s2p{sup 3} with Z = 8–54 are studied. • Electron correlation effect on the radiative transition rates is studied. • Forbidden transitions are explored. - Abstract: Energy levels and the radiative decay processes of the core-excited configurations 1s2s{sup 2}2p and 1s2p{sup 3} of Be-like ions with Z = 8–54 are studied. Electron correlation effect on the energy levels and the radiative transition rates are studied in detail. Except for E1 radiative transition rates, the E2, M1 and M2 forbidden transitions are also explored. Further relativistic corrections from the Breit interaction, quantum electrodynamics and the finite nuclear size are included in the calculations to make the results more precise. Good agreement is found between our results and other theoretical data.

  3. Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography

    International Nuclear Information System (INIS)

    Tempel, A.; Zukin, R.S.

    1987-01-01

    Highly specific radioligands and quantitative autoradiography reveal strikingly different neuroanatomical patterns for the mu, delta, and kappa opioid receptors of rat brain. The mu receptors are most densely localized in patches in the striatum, layers I and III of the cortex, the pyramidal cell layer of the hippocampal formation, specific nuclei of the thalamus, the pars reticulata of the substantia nigra, the interpeduncular nucleus, and the locus coeruleus. In contrast, delta receptors are highly confined, exhibiting selective localization in layers I, II, and VIa of the neocortex, a diffuse pattern in the striatum, and moderate concentration in the pars reticulata of the substantia nigra and in the interpeduncular nucleus. delta receptors are absent in most other brain structures. This distribution is unexpected in that the enkephalins, the putative endogenous ligands of the delta receptor, occur essentially throughout the brain. The kappa receptors of rat brain exhibit a third pattern distinct from that of the mu and delta receptors. kappa receptors occur at low density in patches in the striatum and at particularly high density in the nucleus accumbens, along the pyramidal and molecular layers of the hippocampus, in the granular cell layer of the dentate gyrus, specific midline nuclei of the thalamus, and hindbrain regions. kappa receptors appear to be uniformly distributed across regions in the neocortex with the exception of layer III, which revealed only trace levels of binding. An important conclusion of the present study is that delta receptors occur at high density only in the forebrain and in two midbrain structures, whereas mu and kappa receptors exhibit discrete patterns in most major brain regions

  4. Neuroanatomical correlates of impaired decision-making and facial emotion recognition in early Parkinson's disease.

    Science.gov (United States)

    Ibarretxe-Bilbao, Naroa; Junque, Carme; Tolosa, Eduardo; Marti, Maria-Jose; Valldeoriola, Francesc; Bargallo, Nuria; Zarei, Mojtaba

    2009-09-01

    Decision-making and recognition of emotions are often impaired in patients with Parkinson's disease (PD). The orbitofrontal cortex (OFC) and the amygdala are critical structures subserving these functions. This study was designed to test whether there are any structural changes in these areas that might explain the impairment of decision-making and recognition of facial emotions in early PD. We used the Iowa Gambling Task (IGT) and the Ekman 60 faces test which are sensitive to the integrity of OFC and amygdala dysfunctions in 24 early PD patients and 24 controls. High-resolution structural magnetic resonance images (MRI) were also obtained. Group analysis using voxel-based morphometry (VBM) showed significant and corrected (P decision-making and recognition of facial emotions occurs at the early stages of PD, (ii) these neuropsychological deficits are accompanied by degeneration of OFC and amygdala, and (iii) bilateral OFC reductions are associated with impaired recognition of emotions, and GM volume loss in left lateral OFC is related to decision-making impairment in PD.

  5. Studies of electron correlation in the photoionization process

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard Allen [Univ. of California, Berkeley, CA (United States)

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying configuration interaction. The types of CI involved in the photoionization process can be divided into three categories: initial state configuration interaction (ISCI), final ionic state configuration interaction (FISCI), and continuum state configuration interaction (CSCI). This thesis deals with experimental studies which reveal how the various types of CI may become manifested in photoionization. The experimental methods utilized in this work are photoelectron spectroscopy (PES), electron impact spectroscopy (EIS), and time-resolved fluorescence spectroscopy. The EIS was carried out following the discovery that the UV lamp on a Perkin-Elmer photoelectron spectrometer could be utilized as a source of low energy electrons. The time-resolved fluorescence work utilized both the tunability and the time structure of the radiation available at the Stanford Synchrotron Radiation Laboratory (SSRL). A commercial photoelectron spectrometer equipped with a conventional UV lamp (Hei, Nei) was employed for some of the PES studies, and a novel time-of-flight photoelectron spectrometer was developed for the PES work performed using synchrotron radiation. The PES of Ba, Sm, Eu, and Yb was studied using both Hei (22.22 eV) and Nei (16.85 eV) radiation. Satellite structure observed in these spectra using Nei (and for Yb, Hei also) radiation could be satisfactorily explained by ISCI alone. The Hei spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by a new mechanism, autoionization, which is a special form of CSCI. The detailed nature of this mechanism was explored in Ba using synchrotron radiation. It was found that the autoionizing level decays

  6. Development of comprehensive image processing technique for differential diagnosis of liver disease by using multi-modality images. Pixel-based cross-correlation method using a profile

    International Nuclear Information System (INIS)

    Inoue, Akira; Okura, Yasuhiko; Akiyama, Mitoshi; Ishida, Takayuki; Kawashita, Ikuo; Ito, Katsuyoshi; Matsunaga, Naofumi; Sanada, Taizo

    2009-01-01

    Imaging techniques such as high magnetic field imaging and multidetector-row CT have been markedly improved recently. The final image-reading systems easily produce more than a thousand diagnostic images per patient. Therefore, we developed a comprehensive cross-correlation processing technique using multi-modality images, in order to decrease the considerable time and effort involved in the interpretation of a radiogram (multi-formatted display and/or stack display method, etc). In this scheme, the criteria of an attending radiologist for the differential diagnosis of liver cyst, hemangioma of liver, hepatocellular carcinoma, and metastatic liver cancer on magnetic resonance images with various sequences and CT images with and without contrast enhancement employ a cross-correlation coefficient. Using a one-dimensional cross-correlation method, comprehensive image processing could be also adapted for various artifacts (some depending on modality imaging, and some on patients), which may be encountered at the clinical scene. This comprehensive image-processing technique could assist radiologists in the differential diagnosis of liver diseases. (author)

  7. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    Science.gov (United States)

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A

    2009-02-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.

  9. Solving Langevin equation with the stochastic algebraically correlated noise

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Srokowski, T.

    1996-01-01

    Long time tail in the velocity and force autocorrelation function has been found recently in the molecular dynamics simulations of the peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. The Markovian process and the multidimensional Kangaroo process which permit describing various algebraic correlated stochastic processes are proposed. (author)

  10. Neural correlates of olfactory processing in congenital blindness

    DEFF Research Database (Denmark)

    Kupers, R; Beaulieu-Lefebvre, M; Schneider, F C

    2011-01-01

    Adaptive neuroplastic changes have been well documented in congenitally blind individuals for the processing of tactile and auditory information. By contrast, very few studies have investigated olfactory processing in the absence of vision. There is ample evidence that the olfactory system...... magnetic resonance imaging to measure changes in the blood-oxygenation level-dependent signal in congenitally blind and blindfolded sighted control subjects during a simple odor detection task. We found several group differences in task-related activations. Compared to sighted controls, congenitally blind......, linking it also to olfactory processing in addition to tactile and auditory processing....

  11. Interelement correlations in plants

    International Nuclear Information System (INIS)

    Markert, B.

    1987-01-01

    The concentration of 25 elements in 4 plant species (Citrus aurantia, Brassica oleracea, Lycopersicon esculentum and Pinus strobus) were linearly correlated. For some element pairs (Ce-Fe, Ce-Ni, Ce-Sb, Ce-Sc, Ce-Zn, Fe-Sb, Fe-Sc, Fe-U, Fe-Zn, K-Cd, La-U, Ni-Sb, Sc-U and Sc-Zn) a high positive correlation coefficient (r = +1) was found. The element pairs Ca-Mg, Hg-U, Ni-Sr and Sr-Zn show a significant negative correlation (r = -1). Plants seem to process some constant interelement relations, independent of plant species. (orig.)

  12. Correlations in the Grover search

    International Nuclear Information System (INIS)

    Cui Jian; Fan Heng

    2010-01-01

    The Grover search is a well-known quantum algorithm that outperforms any classical search algorithm. It is known that quantum correlations such as entanglement are responsible for the power of some quantum information protocols. But entanglement is not the only kind of quantum correlations. Other quantum correlations such as quantum discord are also useful to capture some important properties of the nonclassical correlation. Also there is no well-accepted and clear distinction between quantum correlations and classical correlations. In this paper, we systematically investigate several kinds of correlations including both quantum and classical in the whole process of the Grover search algorithm. These correlations are the concurrence, entanglement of formation, quantum discord, classical correlation and mutual information. The behaviors of quantum discord, classical correlation and mutual information are almost the same while the concurrence is different in the qubit-qubit case. For the qubit partition 1: n case, the behaviors of all correlations are qualitative the same. When the search is over, all kinds of correlations are zero, we argue that this is necessary for the final step in the search.

  13. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  14. Neural correlates of encoding processes predicting subsequent cued recall and source memory.

    Science.gov (United States)

    Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine

    2013-03-06

    In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.

  15. On the correlation between process model metrics and errors

    NARCIS (Netherlands)

    Mendling, J.; Neumann, G.; Aalst, van der W.M.P.; Grundy, J.; Hartmann, S.; Laender, S.; Maciaszek, L.; Roddick, J.F.

    2007-01-01

    Business process models play an important role for the management, design, and improvement of process organizations and process-aware information systems. Despite the extensive application of process modeling in practice there are hardly empirical results available on quality aspects of process

  16. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age

    Science.gov (United States)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2017-03-01

    We propose using multi-scale image textures to investigate links between neuroanatomical regions and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation and Entropy) are used to summarize texture statistics within standard, automatically segmented neuroanatomical regions. Significance tests are performed to identify regional texture differences between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected p brain imaging data exchange (ABIDE) brain MRI dataset is used to evaluate texture features derived from 31 brain regions from 1112 subjects including 573 typically developing control (TDC, 99 females, 474 males) and 539 Autism spectrum disorder (ASD, 65 female and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting bilateral symmetry.

  17. A Deep Learning Approach to Neuroanatomical Characterisation of Alzheimer's Disease.

    Science.gov (United States)

    Ambastha, Abhinit Kumar; Leong, Tze-Yun

    2017-01-01

    Alzheimer's disease (AD) is a neurological degenerative disorder that leads to progressive mental deterioration. This work introduces a computational approach to improve our understanding of the progression of AD. We use ensemble learning methods and deep neural networks to identify salient structural correlations among brain regions that degenerate together in AD; this provides an understanding of how AD progresses in the brain. The proposed technique has a classification accuracy of 81.79% for AD against healthy subjects using a single modality imaging dataset.

  18. Neural Correlates of Indicators of Sound Change in Cantonese: Evidence from Cortical and Subcortical Processes.

    Science.gov (United States)

    Maggu, Akshay R; Liu, Fang; Antoniou, Mark; Wong, Patrick C M

    2016-01-01

    Across time, languages undergo changes in phonetic, syntactic, and semantic dimensions. Social, cognitive, and cultural factors contribute to sound change, a phenomenon in which the phonetics of a language undergo changes over time. Individuals who misperceive and produce speech in a slightly divergent manner (called innovators ) contribute to variability in the society, eventually leading to sound change. However, the cause of variability in these individuals is still unknown. In this study, we examined whether such misperceptions are represented in neural processes of the auditory system. We investigated behavioral, subcortical (via FFR), and cortical (via P300) manifestations of sound change processing in Cantonese, a Chinese language in which several lexical tones are merging. Across the merging categories, we observed a similar gradation of speech perception abilities in both behavior and the brain (subcortical and cortical processes). Further, we also found that behavioral evidence of tone merging correlated with subjects' encoding at the subcortical and cortical levels. These findings indicate that tone-merger categories, that are indicators of sound change in Cantonese, are represented neurophysiologically with high fidelity. Using our results, we speculate that innovators encode speech in a slightly deviant neurophysiological manner, and thus produce speech divergently that eventually spreads across the community and contributes to sound change.

  19. Statistical Signal Processing by Using the Higher-Order Correlation between Sound and Vibration and Its Application to Fault Detection of Rotational Machine

    Directory of Open Access Journals (Sweden)

    Hisako Masuike

    2008-01-01

    Full Text Available In this study, a stochastic diagnosis method based on the changing information of not only a linear correlation but also a higher-order nonlinear correlation is proposed in a form suitable for online signal processing in time domain by using a personal computer, especially in order to find minutely the mutual relationship between sound and vibration emitted from rotational machines. More specifically, a conditional probability hierarchically reflecting various types of correlation information is theoretically derived by introducing an expression on the multidimensional probability distribution in orthogonal expansion series form. The effectiveness of the proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an electric motor.

  20. High values of disorder-generated multifractals and logarithmically correlated processes

    International Nuclear Information System (INIS)

    Fyodorov, Yan V.; Giraud, Olivier

    2015-01-01

    In the introductory section of the article we give a brief account of recent insights into statistics of high and extreme values of disorder-generated multifractals following a recent work by the first author with P. Le Doussal and A. Rosso (FLR) employing a close relation between multifractality and logarithmically correlated random fields. We then substantiate some aspects of the FLR approach analytically for multifractal eigenvectors in the Ruijsenaars–Schneider ensemble (RSE) of random matrices introduced by E. Bogomolny and the second author by providing an ab initio calculation that reveals hidden logarithmic correlations at the background of the disorder-generated multifractality. In the rest we investigate numerically a few representative models of that class, including the study of the highest component of multifractal eigenvectors in the Ruijsenaars–Schneider ensemble

  1. Neural correlates of treatment response in depressed bipolar adolescents during emotion processing.

    Science.gov (United States)

    Diler, Rasim Somer; Ladouceur, Cecile D; Segreti, Annamaria; Almeida, Jorge R C; Birmaher, Boris; Axelson, David A; Phillips, Mary L; Pan, Lisa A

    2013-06-01

    Depressive mood in adolescents with bipolar disorder (BDd) is associated with significant morbidity and mortality, but we have limited information about neural correlates of depression and treatment response in BDd. Ten adolescents with BDd (8 females, mean age = 15.6 ± 0.9) completed two (fearful and happy) face gender labeling fMRI experiments at baseline and after 6-weeks of open treatment. Whole-brain analysis was used at baseline to compare their neural activity with those of 10 age and sex-matched healthy controls (HC). For comparisons of the neural activity at baseline and after treatment of youth with BDd, region of interest analysis for dorsal/ventral prefrontal, anterior cingulate, and amygdala activity, and significant regions identified by wholebrain analysis between BDd and HC were analyzed. There was significant improvement in depression scores (mean percentage change on the Child Depression Rating Scale-Revised 57 % ± 28). Neural activity after treatment was decreased in left occipital cortex in the intense fearful experiment, but increased in left insula, left cerebellum, and right ventrolateral prefrontal cortex in the intense happy experiment. Greater improvement in depression was associated with baseline higher activity in ventral ACC to mild happy faces. Study sample size was relatively small for subgroup analysis and consisted of mainly female adolescents that were predominantly on psychotropic medications during scanning. Our results of reduced negative emotion processing versus increased positive emotion processing after treatment of depression (improvement of cognitive bias to negative and away from positive) are consistent with the improvement of depression according to Beck's cognitive theory.

  2. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks.

    Science.gov (United States)

    Eagle, Dawn M; Bari, Andrea; Robbins, Trevor W

    2008-08-01

    The term 'action inhibition' encapsulates the ability to prevent any form of planned physical response. Growing evidence suggests that different 'stages' or even subtypes of action inhibition activate subtly different neuropharmacological and neuroanatomical processes. In this review, we present evidence from two commonly used and apparently similar behavioural tests, the stop-signal task and the go/no-go task, to determine if these have similar neuroanatomical and neurochemical modulation. Whilst performance of the stop-signal and go/no-go tasks is modulated across only subtly different anatomical networks, serotonin (5-HT) is strongly implicated in inhibitory control on the go/no-go but not the stop-signal task, whereas the stop-signal reaction time appears more sensitive to the action of noradrenaline. There is clear neuropharmacological and neuroanatomical evidence that stop-signal and go/no-go tasks represent different forms of action inhibition. This evidence translates with remarkable consistency across species. We discuss the possible implications of this evidence with respect to the development of novel therapeutic treatments for disorders in which inhibitory deficits are prominent and debilitating.

  3. An artificial intelligence approach to well log correlation

    International Nuclear Information System (INIS)

    Startzman, R.A.; Kuo, T.B.

    1986-01-01

    This paper shows how an expert computer system was developed to correlate two well logs in at least moderately difficult situations. A four step process was devised to process log trace information and apply a set of rules to identify zonal correlations. Some of the advantages and problems with the artificial intelligence approach are shown using field logs. The approach is useful and, if properly and systematically applied, it can result in good correlations

  4. Signals of dynamical and statistical process from IMF-IMF correlation function

    Science.gov (United States)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.

    2017-11-01

    In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.

  5. Artificial intelligence approach to interwell log correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong-Se [Korea Maritime University, Pusan(Korea); Kang, Joo Myung [Seoul National University, Seoul(Korea); Kim, Jung Whan [Korea National Oil Corp., Anyang(Korea)

    2000-04-30

    This paper describes a new approach to automated interwell log correlation using artificial intelligence and principal component analysis. The approach to correlate wire line logging data is on the basis of a large set of subjective rules that are intended to represent human logical processes. The data processed are mainly the qualitative information such as the characteristics of the shapes extracted along log traces. The apparent geologic zones are identified by pattern recognition for the specific characteristics of log trace collected as a set of objects by object oriented programming. The correlation of zones between wells is made by rule-based inference program. The reliable correlation can be established from the first principal component logs derived from both the important information around well bore and the largest common part of variances of all available well log data. Correlation with field log data shows that this approach can make interwell log correlation more reliable and accurate. (author). 6 refs., 7 figs.

  6. Stochastic GARCH dynamics describing correlations between stocks

    Science.gov (United States)

    Prat-Ortega, G.; Savel'ev, S. E.

    2014-09-01

    The ARCH and GARCH processes have been successfully used for modelling price dynamics such as stock returns or foreign exchange rates. Analysing the long range correlations between stocks, we propose a model, based on the GARCH process, which is able to describe the main characteristics of the stock price correlations, including the mean, variance, probability density distribution and the noise spectrum.

  7. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  8. How are 'Barack Obama' and 'President Elect' differentially stored in the brain? An ERP investigation on the processing of proper and common noun pairs.

    Science.gov (United States)

    Proverbio, Alice Mado; Mariani, Serena; Zani, Alberto; Adorni, Roberta

    2009-09-23

    One of the most debated issues in the cognitive neuroscience of language is whether distinct semantic domains are differentially represented in the brain. Clinical studies described several anomic dissociations with no clear neuroanatomical correlate. Neuroimaging studies have shown that memory retrieval is more demanding for proper than common nouns in that the former are purely arbitrary referential expressions. In this study a semantic relatedness paradigm was devised to investigate neural processing of proper and common nouns. 780 words (arranged in pairs of Italian nouns/adjectives and the first/last names of well known persons) were presented. Half pairs were semantically related ("Woody Allen" or "social security"), while the others were not ("Sigmund Parodi" or "judicial cream"). All items were balanced for length, frequency, familiarity and semantic relatedness. Participants were to decide about the semantic relatedness of the two items in a pair. RTs and N400 data suggest that the task was more demanding for common nouns. The LORETA neural generators for the related-unrelated contrast (for proper names) included the left fusiform gyrus, right medial temporal gyrus, limbic and parahippocampal regions, inferior parietal and inferior frontal areas, which are thought to be involved in the conjoined processing a familiar face with the relevant episodic information. Person name was more emotional and sensory vivid than common noun semantic access. When memory retrieval is not required, proper name access (conspecifics knowledge) is not more demanding. The neural generators of N400 to unrelated items (unknown persons and things) did not differ as a function of lexical class, thus suggesting that proper and common nouns are not treated differently as belonging to different grammatical classes.

  9. Effects of modality on the neural correlates of encoding processes supporting recollection and familiarity

    Science.gov (United States)

    Gottlieb, Lauren J.; Rugg, Michael D.

    2011-01-01

    Prior research has demonstrated that the neural correlates of successful encoding (“subsequent memory effects”) partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting later recollection, or whether overlapping subsequent memory and study condition effects are also evident when later memory is familiarity-based. Subjects (N = 17) underwent fMRI scanning while studying a series of visually and auditorily presented words. Memory for the words was subsequently tested with a modified Remember/Know procedure. Auditorily selective subsequent familiarity effects were evident in bilateral temporal regions that also responded preferentially to auditory items. Although other interpretations are possible, these findings suggest that overlap between study condition-selective subsequent memory effects and regions selectively sensitive to study demands is not uniquely associated with later recollection. In addition, modality-independent subsequent memory effects were identified in several cortical regions. In every case, the effects were greatest for later recollected items, and smaller for items later recognized on the basis of familiarity. The implications of this quantitative dissociation for dual-process models of recognition memory are discussed. PMID:21852431

  10. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  11. New Developments in Human Neurocognition: Clinical, Genetic and Brain Imaging Correlates of Impulsivity and Compulsivity

    Science.gov (United States)

    Fineberg, Naomi A.; Chamberlain, Samuel R.; Goudriaan, Anna E.; Stein, Dan J.; Vanderschuren, Louk J.M.J.; Gillan, Claire M.; Shekar, Sameer; Gorwood, Philip A.P.M.; Voon, Valerie; Morein-Zamir, Sharon; Denys, Damiaan; Sahakian, Barbara J.; Moeller, F. Gerard; Robbins, Trevor W.; Potenza, Marc N.

    2014-01-01

    Impulsivity and compulsivity represent useful conceptualizations that involve dissociable cognitive functions, mediated by neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed, with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance. However, they are increasingly recognized to be linked by shared neuropsychological mechanisms involving dysfunctional inhibition of thoughts and behaviors. In this paper, we selectively review new developments in the investigation of the neurocognition of impulsivity and compulsivity in humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive and addictive disorders and indicate new directions for research. PMID:24512640

  12. Microwave Correlation Measurement Crossed-pair Antennas ...

    African Journals Online (AJOL)

    We propose here new processes, an add and square correlation radiometer and the non-resonant perturbation, which thoroughly investigated for different muscle phantom materials to define the optimum penetration depth of the electromagnetic field at fixed distance between the antennas. Keywords: Microwave correlation ...

  13. Correlation, regression, and cointegration of nonstationary economic time series

    DEFF Research Database (Denmark)

    Johansen, Søren

    Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974......), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coeffients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coe¢ cients do not converge to the relevant population...

  14. Correlations in double parton distributions. Effects of evolution

    International Nuclear Information System (INIS)

    Diehl, Markus; Keane, Shane; Kasemets, Tomas; Vrije Univ., Amsterdam

    2014-01-01

    We numerically investigate the impact of scale evolution on double parton distributions, which are needed to compute multiple hard scattering processes. Assuming correlations between longitudinal and transverse variables or between the parton spins to be present at a low scale, we study how they are affected by evolution to higher scales, i.e. by repeated parton emission. We find that generically evolution tends to wash out correlations, but with a speed that may be slow or fast depending on kinematics and on the type of correlation. Nontrivial parton correlations may hence persist in double parton distributions at the high scales relevant for hard scattering processes.

  15. GPU Based Software Correlators - Perspectives for VLBI2010

    Science.gov (United States)

    Hobiger, Thomas; Kimura, Moritaka; Takefuji, Kazuhiro; Oyama, Tomoaki; Koyama, Yasuhiro; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun

    2010-01-01

    Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.

  16. H Canyon Processing In Correlation With FH Analytical Labs

    International Nuclear Information System (INIS)

    Weinheimer, E.

    2012-01-01

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial

  17. Tolerating correlated failures in Massively Parallel Stream Processing Engines

    DEFF Research Database (Denmark)

    Su, L.; Zhou, Y.

    2016-01-01

    Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint. On the o......Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint....... On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...

  18. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The theory of the angular correlation between conversion electrons and gamma rays is briefly outlined. The experimental methods used for the study of the electron-gamma correlation are described. The effects of the formation of a hole and the hyperfine structure magnetic coupling dependent on time are then considered. The experimental results showed that the attenuations found for different metallic media plainly conform to a simple quadrupolar interaction mechanism. For a source surrounded by an insulator, however, the results show that a rapidly disappearing coupling occurs as a supplement to the quadrupolar interaction mechanism. This coupling attenuates the angular correlation by about 75% of the non-perturbed value. It was concluded that for an intermediate half life of the level of the order of the nanosecond, the attenuations produced by the secondary effects of the hole formation can not be completely neglected. The metallic media considered were Ag, Au, Al, and Ga. In the study of E2 conversion processes, the radical matrix elements governing the E2 conversion process in the 412-KeV transition of {sup 198}Hg were determined. The results exclude the presence of dynamic contributions within the limits of experimental error. The values b{sub 2} (E2) and {alpha}-k (E2) obtained indirectly from the experimentally determined b{sub 4} particle parameter are in complete agreement with the theoretical values obtained by applying the corrections due to the shielding effect and to the finite dimension of the nucleus and excluding the dynamic contributions. The value for the internal conversion coefficient was also in good agreement. Experimental results from the intensity ratios between the peak and the continuum, however, seem to show significant deviations with respect to other experimental and theoretical values. There is good agreement between experimental and theoretical results on the internal conversion of {sup 203}Tl, {sup 201}Tl, and {sup 181}Ta. The theory

  19. Coronoid process of the ulna: paleopathologic and anatomic study with imaging correlation. Emphasis on the anteromedial ''facet''

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Valle de Lemos Weber, Marcio [University of California, Department of Radiology, Veterans Affairs Medical Center, San Diego, CA (United States); Santa Maria, Rio Grande do Sul (Brazil); Barbosa, Diogo Miranda; Belentani, Clarissa; Negrao Ramos, Pedro Miguel; Trudell, Debra; Resnick, Donald [University of California, Department of Radiology, Veterans Affairs Medical Center, San Diego, CA (United States)

    2009-01-15

    The purpose of this study was to provide a detailed description of the anatomy of the coronoid process of the ulna and to use magnetic resonance (MR) images and anatomic correlation with cadavers to show the macroscopic configuration of this structure. Photography and high-resolution radiography were performed in 26 ulna specimens from the collection of a local museum. MR imaging of the coronoid process of 11 cadaveric elbows was performed. The images were compared with those seen on anatomic sectioning. The anteromedial rim of the coronoid process of the ulna had a regular surface, without osseous irregularities or facets in 69.2% of the specimens. In 30.8% of the specimens, the anteromedial rim was not regular and a small ridge could be identified. The insertion site of the joint capsule was onto the anterior aspect of the coronoid process, at an average distance of 5.9 mm distal to the tip. The attachment of the anterior band of the ulnar collateral ligament at the sublime tubercle was flush with the articular margin in 63.6% of the specimens. In 36.4% of the specimens, a more distal attachment, with a separation between the undersurface of the ligament and the adjacent tubercle, was seen. The brachialis tendon was attached to the coronoid process at a mean distance of 12.1 mm distal to the tip. The coronoid process of the ulna is a small osseous structure with a complex anatomy and presents some anatomical variations. (orig.)

  20. Coronoid process of the ulna: paleopathologic and anatomic study with imaging correlation. Emphasis on the anteromedial ''facet''

    International Nuclear Information System (INIS)

    Freitas Valle de Lemos Weber, Marcio; Barbosa, Diogo Miranda; Belentani, Clarissa; Negrao Ramos, Pedro Miguel; Trudell, Debra; Resnick, Donald

    2009-01-01

    The purpose of this study was to provide a detailed description of the anatomy of the coronoid process of the ulna and to use magnetic resonance (MR) images and anatomic correlation with cadavers to show the macroscopic configuration of this structure. Photography and high-resolution radiography were performed in 26 ulna specimens from the collection of a local museum. MR imaging of the coronoid process of 11 cadaveric elbows was performed. The images were compared with those seen on anatomic sectioning. The anteromedial rim of the coronoid process of the ulna had a regular surface, without osseous irregularities or facets in 69.2% of the specimens. In 30.8% of the specimens, the anteromedial rim was not regular and a small ridge could be identified. The insertion site of the joint capsule was onto the anterior aspect of the coronoid process, at an average distance of 5.9 mm distal to the tip. The attachment of the anterior band of the ulnar collateral ligament at the sublime tubercle was flush with the articular margin in 63.6% of the specimens. In 36.4% of the specimens, a more distal attachment, with a separation between the undersurface of the ligament and the adjacent tubercle, was seen. The brachialis tendon was attached to the coronoid process at a mean distance of 12.1 mm distal to the tip. The coronoid process of the ulna is a small osseous structure with a complex anatomy and presents some anatomical variations. (orig.)

  1. The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: a cross-sectional study.

    Science.gov (United States)

    Djupegot, Ingrid Laukeland; Nenseth, Camilla Bengtson; Bere, Elling; Bjørnarå, Helga Birgit Torgeirsdotter; Helland, Sissel Heidi; Øverby, Nina Cecilie; Torstveit, Monica Klungland; Stea, Tonje Holte

    2017-05-15

    Use of ultra-processed foods has expanded rapidly over the last decades and high consumption has been positively associated with risk of e.g. overweight, obesity and type 2 diabetes. Ultra-processed foods offer convenience as they require minimal time for preparation. It is therefore reasonable to assume that such foods are consumed more often among people who experience time scarcity. The main aim of this study was to investigate the association between time scarcity and consumption of ultra-processed foods among parents of 2-year olds in Norway. A secondary aim was to investigate the association between sociodemographic correlates, weight status and consumption of ultra-processed foods. This cross-sectional study included 497 participants. Chi-square and cross tabulations were used to calculate proportions of high vs. low consumption of ultra-processed foods in relation to time scarcity, sociodemographic correlates and weight status. Binary logistic regression analyses were performed to test the relationship between independent variables and consumption of ultra-processed foods. Participants reporting medium and high time scarcity were more likely to have a high consumption of ultra-processed dinner products (OR = 3. 68, 95% CI = 2. 32-5.84 and OR = 3.10, 1.80-5.35, respectively) and fast foods (OR = 2.60, 1.62-4.18 and OR = 1.90, 1.08-3.32, respectively) compared to those with low time scarcity. Further, participants with medium time scarcity were more likely to have a high consumption of snacks and soft drinks compared to participants with low time scarcity (OR = 1.63, 1.06-2.49). Finally, gender, ethnicity, educational level, number of children in the household and weight status were identified as important factors associated with the consumption of certain types of ultra-processed foods. Results from the present study showed that time scarcity, various sociodemographic factors and weight status was associated with consumption of processed foods

  2. Functional networks in parallel with cortical development associate with executive functions in children.

    Science.gov (United States)

    Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi

    2014-07-01

    Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Processes of Sibling Influence in Adolescence: Individual and Family Correlates

    Science.gov (United States)

    Whiteman, Shawn D.; Christiansen, Abigail

    2008-01-01

    This study examined the nature and correlates of adolescents' perceptions of sibling influence. Participants included 2 siblings (firstborn age M = 17.34; second-born age M = 14.76 years) from 191 maritally intact families. Adolescents' perceptions of sibling influence were measured via coded responses to open-ended questions about whether their…

  4. Neural correlates of gesture processing across human development.

    Science.gov (United States)

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process.

  5. Neurobiological foundations of multisensory processing integration in people with autism spectrum disorders: The role of the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Sonia eMartínez-Sanchis

    2014-12-01

    Full Text Available This review aims to relate the sensory processing problems in people with Autism spectrum disorders (ASD, especially Multisensory interaction (MSI, to the role of the medial prefrontal cortex (mPFC by exploring neuroanatomical findings; brain connectivity and Default Network (DN; global or locally directed attention; and temporal multisensory binding. The mPFC is part of the brain’s DN, which is deactivated when attention is focused on a particular task and activated on rest when spontaneous cognition emerges. In those with ASD, it is hypoactive and the higher the social impairment the greater the atypical activity. With an immature DN, cross-modal integration is impaired, resulting in a collection of disconnected fragments instead of a coherent global perception. The deficit in MSI may lie in the temporal synchronization of neural networks. The time interval in which the stimulation of one sensory channel could influence another would be higher, preventing integration in the typical shorter time range. Thus, the underconnectivity between distant brain areas would be involved in top-down information processes (relying on global integration of data from different sources and would enhance low level perception processes such as over focused attention to sensory details.

  6. Forward-backward correlations in pp interactions in a dual model

    International Nuclear Information System (INIS)

    Fialkowsky, K.; Kotanski, A.; Uniwersytet Jagiellonski, Krakow

    1982-01-01

    Forward-backward correlations in lepton and hadron induced processes are compared according to the dual model. It is indicated that the effect of the chain energy spread in hadron processes is important. After including this effect the model is shown to explain the forward-backward correlations in pp data assuming no dynamical correlations within a single chain. (orig.)

  7. Evaluation of correlative nuclear data at certain energy point

    International Nuclear Information System (INIS)

    Zhang Jianhua; Liu Tingjin.

    1993-01-01

    A method to process correlative nuclear data at certain energy point is presented. The corresponding processing code has also been developed. Using the code, the effects of the correlation have been discussed in detail for the cases of the two and three data. (3 figs.)

  8. The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study

    OpenAIRE

    Retico, Alessandra; Giuliano, Alessia; Tancredi, Raffaella; Cosenza, Angela; Apicella, Fabio; Narzisi, Antonio; Biagi, Laura; Tosetti, Michela; Muratori, Filippo; Calderoni, Sara

    2016-01-01

    Background Genetic, hormonal, and environmental factors contribute since infancy to sexual dimorphism in regional brain structures of subjects with typical development. However, the neuroanatomical differences between male and female children with autism spectrum disorders (ASD) are an intriguing and still poorly investigated issue. This study aims to evaluate whether the brain of young children with ASD exhibits sex-related structural differences and if a correlation exists between clinical ...

  9. Simulation of the Thermal Hydraulic Processes in the Horizontal Steam Generator with the Use of the Different Interfacial Friction Correlations

    International Nuclear Information System (INIS)

    Melikhov, V.; Melikhov, O.; Parfenov, Y.; Nerovnov, A.

    2011-01-01

    The horizontal steam generator (SG) is one of specific features of Russian-type pressurized water reactors (VVERs). The main advantages of horizontal steam generator are connected with low steam loads on evaporation surface, simple separation scheme and high circulation ratio. The complex three-dimensional steam-water flows in the steam generator vessel influence significantly the processes of the steam separation, distribution, and deposition of the soluble and non soluble impurities and determine the efficiency and reliability of the steam generator operation. The 3D code for simulation of the three-dimensional steam-water flows in the steam generator could be effective tool for design and optimization of the horizontal steam generator. The results of the code calculations are determined mainly by the set of the correlations describing interaction of the steam-water mixture with the inner constructions of the SG and interfacial friction. The results obtained by 3D code STEG with the usage of the different interfacial friction correlations are presented and discussed in the paper. These results are compared with the experimental ones obtained at the experimental test facility PGV-1500 constructed for investigation of the processes in the horizontal steam generator

  10. Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data

    Science.gov (United States)

    Delignières, Didier; Marmelat, Vivien

    2014-01-01

    In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.

  11. Cognitive correlates of performance in advanced mathematics.

    Science.gov (United States)

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  12. Neurophysiological correlates of anhedonia in feedback processing

    NARCIS (Netherlands)

    G.W. Mies (Gabry); I. van den Berg (Ivo); I.H.A. Franken (Ingmar); M. Smits (Marion); M.W. Molen, van der (Maurits); F.M. van der Veen (Frederik)

    2013-01-01

    textabstractDisturbances in feedback processing and a dysregulation of the neural circuit in which the cingulate cortex plays a key role have been frequently observed in depression. Since depression is a heterogeneous disease, instead of focusing on the depressive state in general, this study

  13. Neurophysiological correlates of anhedonia in feedback processing

    NARCIS (Netherlands)

    Mies, G.W.; Berg, I. van den; Franken, I.H.A.; Smits, M.; Molen, M.W. van der; Veen, F.M. van der

    2013-01-01

    Disturbances in feedback processing and a dysregulation of the neural circuit in which the cingulate cortex plays a keyrole have been frequently observed in depression. Since depression is a heterogeneous disease, instead of focusing on the depressive state in general, this study investigated the

  14. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography.

    Science.gov (United States)

    Hughes, Daniel F; Walker, Ellen M; Gignac, Paul M; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S; Greenbaum, Eli; Khan, Arshad M

    2016-01-01

    Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated

  15. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography.

    Directory of Open Access Journals (Sweden)

    Daniel F Hughes

    Full Text Available Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we

  16. Mapping of arithmetic processing by navigated repetitive transcranial magnetic stimulation in patients with parietal brain tumors and correlation with postoperative outcome.

    Science.gov (United States)

    Ille, Sebastian; Drummer, Katharina; Giglhuber, Katrin; Conway, Neal; Maurer, Stefanie; Meyer, Bernhard; Krieg, Sandro M

    2018-03-26

    Preserving functionality is of significant importance during neurosurgical resection of brain tumors. Specialized centers also map further brain functions apart from motor and language functions, such as arithmetic processing (AP). The mapping of AP by navigated repetitive transcranial magnetic stimulation (nrTMS) in healthy volunteers has been demonstrated. The present study aimed to correlate the results of mapping AP with functional patient outcomes. We included 26 patients with parietal brain tumors. Due to preoperative impairment of AP, mapping was not possible in 8 patients (31%). We stimulated 52 cortical sites by nrTMS while patients performed a calculation task. Pre- and postoperatively, patients underwent a standardized number-processing and calculation test (NPCT). Tumor resection was blinded to nrTMS results, and the change in NPCT performance was correlated to resected AP-positive spots as identified by nrTMS. The resection of AP-positive sites correlated with a worsening of the postoperative NPCT result in 12 cases. In 3 cases, no AP-positive sites were resected and the postoperative NPCT result was similar to or better than preoperatively. Also, in 3 cases, the postoperative NPCT result was better than preoperatively, although AP-positive sites were resected. Despite only presenting a low number of cases, nrTMS might be a useful tool for preoperative mapping of AP. However, the reliability of the present results has to be evaluated in a larger series and by intraoperative mapping data. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  18. Correlated Topic Vector for Scene Classification.

    Science.gov (United States)

    Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang

    2017-07-01

    Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.

  19. What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, action semantics, and abstract emotional concept processing.

    Science.gov (United States)

    Moseley, Rachel L; Pulvermüller, Friedemann

    2018-03-01

    Within the neurocognitive literature there is much debate about the role of the motor system in language, social communication and conceptual processing. We suggest, here, that autism spectrum conditions (ASC) may afford an excellent test case for investigating and evaluating contemporary neurocognitive models, most notably a neurobiological theory of action perception integration where widely-distributed cell assemblies linking neurons in action and perceptual brain regions act as the building blocks of many higher cognitive functions. We review a literature of functional motor abnormalities in ASC, following this with discussion of their neural correlates and aberrancies in language development, explaining how these might arise with reference to the typical formation of cell assemblies linking action and perceptual brain regions. This model gives rise to clear hypotheses regarding language comprehension, and we highlight a recent set of studies reporting differences in brain activation and behaviour in the processing of action-related and abstract-emotional concepts in individuals with ASC. At the neuroanatomical level, we discuss structural differences in long-distance frontotemporal and frontoparietal connections in ASC, such as would compromise information transfer between sensory and motor regions. This neurobiological model of action perception integration may shed light on the cognitive and social-interactive symptoms of ASC, building on and extending earlier proposals linking autistic symptomatology to motor disorder and dysfunction in action perception integration. Further investigating the contribution of motor dysfunction to higher cognitive and social impairment, we suggest, is timely and promising as it may advance both neurocognitive theory and the development of new clinical interventions for this population and others characterised by early and pervasive motor disruption. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights

  20. Neuroanatomic organization of sound memory in humans.

    Science.gov (United States)

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  1. Correlated initial condition for an embedded process by time partitioning

    Czech Academy of Sciences Publication Activity Database

    Velický, Bedřich; Kalvová, Anděla; Špička, Václav

    2010-01-01

    Roč. 81, č. 23 (2010), 235116/1-235116/12 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0361 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : non-equilibrium * Initial conditions * decay of correlations * Green's functions * quantum transport equations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  2. The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Ingrid Laukeland Djupegot

    2017-05-01

    Full Text Available Abstract Background Use of ultra-processed foods has expanded rapidly over the last decades and high consumption has been positively associated with risk of e.g. overweight, obesity and type 2 diabetes. Ultra-processed foods offer convenience as they require minimal time for preparation. It is therefore reasonable to assume that such foods are consumed more often among people who experience time scarcity. The main aim of this study was to investigate the association between time scarcity and consumption of ultra-processed foods among parents of 2-year olds in Norway. A secondary aim was to investigate the association between sociodemographic correlates, weight status and consumption of ultra-processed foods. Methods This cross-sectional study included 497 participants. Chi-square and cross tabulations were used to calculate proportions of high vs. low consumption of ultra-processed foods in relation to time scarcity, sociodemographic correlates and weight status. Binary logistic regression analyses were performed to test the relationship between independent variables and consumption of ultra-processed foods. Results Participants reporting medium and high time scarcity were more likely to have a high consumption of ultra-processed dinner products (OR = 3. 68, 95% CI = 2. 32–5.84 and OR = 3.10, 1.80–5.35, respectively and fast foods (OR = 2.60, 1.62–4.18 and OR = 1.90, 1.08–3.32, respectively compared to those with low time scarcity. Further, participants with medium time scarcity were more likely to have a high consumption of snacks and soft drinks compared to participants with low time scarcity (OR = 1.63, 1.06–2.49. Finally, gender, ethnicity, educational level, number of children in the household and weight status were identified as important factors associated with the consumption of certain types of ultra-processed foods. Conclusions Results from the present study showed that time scarcity, various sociodemographic

  3. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  4. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations.

    Science.gov (United States)

    Gompert, Zachariah

    2016-01-01

    Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur

  5. WHEN THE DISTURBANCES ARE SPATIALLY CORRELATED

    African Journals Online (AJOL)

    correlation, spatial error process. INTRODUCTION. Consider the linear regression model for spatial correlation y=XB +u, u=Ce, (1) where y is a Txl observable random vector, X is a Txk matrix of known constants with full column rank k, B is a k xl vector of unknown parameters,. :2 is a Txl random vector with expectation zero ...

  6. General correlation and partial correlation analysis in finding interactions: with Spearman rank correlation and proportion correlation as correlation measures

    OpenAIRE

    WenJun Zhang; Xin Li

    2015-01-01

    Between-taxon interactions can be detected by calculating the sampling data of taxon sample type. In present study, Spearman rank correlation and proportion correlation are chosen as the general correlation measures, and their partial correlations are calculated and compared. The results show that for Spearman rank correlation measure, in all predicted candidate direct interactions by partial correlation, about 16.77% (x, 0-45.4%) of them are not successfully detected by Spearman rank correla...

  7. A Campbell random process

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1993-02-01

    The Campbell process is a stationary random process which can have various correlation functions, according to the choice of an elementary response function. The statistical properties of this process are presented. A numerical algorithm and a subroutine for generating such a process is built up and tested, for the physically interesting case of a Campbell process with Gaussian correlations. The (non-Gaussian) probability distribution appears to be similar to the Gamma distribution

  8. Blood harmane is correlated with cerebellar metabolism in essential tremor: a pilot study.

    Science.gov (United States)

    Louis, Elan D; Zheng, Wei; Mao, Xiangling; Shungu, Dikoma C

    2007-08-07

    On proton magnetic resonance spectroscopic imaging ((1)H MRSI), there is a decrease in cerebellar N-acetylaspartate/total creatine (NAA/tCr) in essential tremor (ET), signifying cerebellar neuronal dysfunction or degeneration. Harmane, which is present in the human diet, is a potent tremor-producing neurotoxin. Blood harmane concentrations seem to be elevated in ET. To assess in patients with ET whether blood harmane concentration is correlated with cerebellar NAA/tCR, a neuroimaging measure of neuronal dysfunction or degeneration. Twelve patients with ET underwent (1)H MRSI. The major neuroanatomic structure of interest was the cerebellar cortex. Secondary regions were the central cerebellar white matter, cerebellar vermis, thalamus, and basal ganglia. Blood concentrations of harmane and another neurotoxin, lead, were also assessed. Mean +/- SD cerebellar NAA/tCR was 1.52 +/- 0.41. In a linear regression model that adjusted for age and gender, log blood harmane concentration was a predictor of cerebellar NAA/tCR (beta = -0.41, p = 0.009); every 1 g(-10)/mL unit increase in log blood harmane concentration was associated with a 0.41 unit decrease in cerebellar NAA/tCR. The association between blood harmane concentration and brain NAA/tCR only occurred in the cerebellar cortex; it was not observed in secondary brain regions of interest. Furthermore, the association was specific to harmane and not another neurotoxin, lead. This study provides additional support for the emerging link between harmane, a neurotoxin, and ET. Further studies are warranted to address whether cerebellar harmane concentrations are associated with cerebellar pathology in postmortem studies of the ET brain.

  9. Benefit of the doubt: a new view of the role of the prefrontal cortex in executive functioning and decision making

    Directory of Open Access Journals (Sweden)

    Erik William Asp

    2013-05-01

    Full Text Available The False Tagging Theory (FTT is a neuroanatomical model of belief and doubt processes that proposes a single, unique function for the prefrontal cortex. Here, we review evidence pertaining to the FTT, the implications of the FTT regarding fractionation of the prefrontal cortex, and the potential benefits of the FTT for new neuroanatomical conceptualizations of executive functions. The FTT provides a parsimonious account that may help overcome theoretical problems with prefrontal cortex mediated executive control such as the homunculus critique. Control in the FTT is examined via the heuristics and biases psychological framework for human judgment. The evidence indicates that prefrontal cortex mediated doubting is at the core of executive functioning and may explain some biases of intuitive judgments

  10. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  11. Detrended cross-correlation analysis of electroencephalogram

    International Nuclear Information System (INIS)

    Wang Jun; Zhao Da-Qing

    2012-01-01

    In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not. (interdisciplinary physics and related areas of science and technology)

  12. Neutrosophic Correlation and Simple Linear Regression

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2014-09-01

    Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.

  13. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  14. Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children

    OpenAIRE

    Thijssen, Sandra; Ringoot, Ank P.; Wildeboer, Andrea; Bakermans-Kranenburg, Marian J.; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W. V.; Verhulst, Frank C.; Tiemeier, Henning; van IJzendoorn, Marinus H.; White, Tonya

    2015-01-01

    Objective Few studies have focused on the neuroanatomy of aggressive behavior in children younger than 10 years. Here, we explored the neuroanatomical correlates of aggression in a population-based sample of 6- to 9-year-old children using a multiple-informant approach. Methods Magnetic resonance (MR) scans were acquired from 566 children from the Generation R study who participated in the Berkeley Puppet Interview and whose parents had completed the Child Behavior Checklist. Linear regressio...

  15. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex

    OpenAIRE

    Schomers, M.R.; Garagnani, M.; Pulvermüller, F.

    2017-01-01

    The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory?a specifically human trait providing the foundation for language abilities?but a mechanistic explanation of any related causal link between anatomical structure and cognitive function i...

  16. Long-range correlations in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Chekanov, S.V.

    1999-01-01

    Multiplicity correlations between the current and target regions of the Breit frame in deep-inelastic scattering processes are studied. It is shown that the correlations are sensitive to the first-order perturbative QCD effects and can be used to extract the behaviour of the boson-gluon fusion rates as a function of the Bjorken variable. The behaviour of the correlations is derived analytically and analyzed using a Monte Carlo simulation. (author)

  17. Correlation, Regression, and Cointegration of Nonstationary Economic Time Series

    DEFF Research Database (Denmark)

    Johansen, Søren

    ), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coefficients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coefficients do not converge to the relevant population...... values, due to the trending nature of the data. We conclude by giving a simple cointegration analysis of two interests. The analysis illustrates that much more insight can be gained about the dynamic behavior of the nonstationary variables then simply by calculating a correlation coefficient......Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974...

  18. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  19. Neural correlates of successful semantic processing during propofol sedation

    NARCIS (Netherlands)

    Adapa, Ram M.; Davis, Matthew H.; Stamatakis, Emmanuel A.; Absalom, Anthony R.; Menon, David K.

    Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned

  20. Program system for processing of spectra obtained on the multidetector correlation device (MUK)

    International Nuclear Information System (INIS)

    Venos, D.; Adam, J.; Hnatowicz, V.; Honusek, M.

    1988-01-01

    A program system used by evaluation of multidimensional coincidence spectra is described. The spectra recorded on magnetic tapes are obtained by means of multidetector correlation device (MUK). The angular correlation coefficients A 22 and A 44 for the given cascades of gamma transitions are the final result of the calculations. The system operates in DOS/ES system of the EC-1040 computer with the 1024 Kbyte memeory. All the codes are written in fortran language

  1. Coordination Devices in the Refurbishment Design Process: A Partial-Correlation Approach

    Directory of Open Access Journals (Sweden)

    Azlan Shah Ali

    2009-12-01

    Full Text Available Building refurbishment is an important sector in the Malaysian construction industry. The increase the number of building renovations, alterations, extensions and extensive repair works contributed to the high demand for refurbishment projects. However, refurbishment projects are more difficult to manage compared to new-built, due to uncertainty factors inherent in the projects. Therefore, this paper identifies factors that contributed to uncertainty and shows how it affects design performance of refurbishment projects. This paper was also extended to the used of coordination devices to improve design performance from the effect of uncertainty in the projects. Partial-correlation technique was used in data analysis to check any significant moderate effects of coordination devices to control the negative effect of uncertainty on design performance of refurbishment projects. Four (4 coordination devices involved in the partial-correlation tests. The results concluded that the use of lateral relations and architect’s characteristics are most likely reducing the uncertainty of client attributes towards design completeness before work started on site.

  2. Burst firing enhances neural output correlation

    Directory of Open Access Journals (Sweden)

    Ho Ka eChan

    2016-05-01

    Full Text Available Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks.

  3. The importance of parameter variances, correlations lengths, and cross-correlations in reactive transport models: key considerations for assessing the need for microscale information

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W [Los Alamos National Laboratory

    2010-12-08

    A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. lf flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems. So simple systems that lack the

  4. Thermally and optically stimulated luminescence correlated processes in X-ray irradiated KCl:Eu2+

    International Nuclear Information System (INIS)

    Chernov, V.; Melendrez Ao, R.; Piters, T.M.; Barboza-Flores, M.

    2001-01-01

    The effect of optical bleaching on thermoluminescence (TL) and thermal bleaching on optically stimulated luminescence (OSL) outputs in X-ray irradiated KCl : Eu 2+ have been investigated. The X-ray induced glow curves reveal three main peaks located at 370, 410 and 470 K. Illumination with 560 nm light leads to a drastic change of the TL glow curve. The 470 K peak is destroyed during bleaching. The other peaks initially increase in intensity and only after sufficiently long bleaching begin to decrease. After long-time bleaching, the TL peaks in X-ray irradiated crystals look like the TL peaks found in UV irradiated crystals. The effect of thermal bleaching on OSL is also very pronounced. The temperature dependencies show a step-by-step decrease of the OSL intensity correlated with the positions of the TL peaks. The result obtained shows that centers responsible for the TL peaks participate in OSL, but this participation seems not to be direct and is complicated by processes accompanying the F center bleaching

  5. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  6. Correlated motions are a fundamental property of β-sheets

    Science.gov (United States)

    Fenwick, R. Bryn; Orellana, Laura; Esteban-Martín, Santi; Orozco, Modesto; Salvatella, Xavier

    2014-06-01

    Correlated motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. The mechanisms that underlie these processes remain largely unknown due mainly to limitations in their direct detection. Here, based on a detailed analysis of protein structures deposited in the protein data bank, as well as on state-of-the art molecular simulations, we provide general evidence for the transfer of structural information by correlated backbone motions, mediated by hydrogen bonds, across β-sheets. We also show that the observed local and long-range correlated motions are mediated by the collective motions of β-sheets and investigate their role in large-scale conformational changes. Correlated motions represent a fundamental property of β-sheets that contributes to protein function.

  7. On two-particle correlations of identical pions

    International Nuclear Information System (INIS)

    Podgoretskij, M.I.

    1991-01-01

    The pion generation processes, in which the interference term describing the correlations of identical pions seems to be negative, have been analyzed. It is shown that similar processes can take place, in particular, in nuclear collisions at intermediate energies

  8. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations.

    Directory of Open Access Journals (Sweden)

    Zachariah Gompert

    Full Text Available Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20 SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure, particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among

  9. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed.

    Science.gov (United States)

    Posthuma, Daniëlle; Baaré, Wim F C; Hulshoff Pol, Hilleke E; Kahn, René S; Boomsma, Dorret I; De Geus, Eco J C

    2003-04-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related to cerebellar volume. Verbal Comprehension was not related to any of the three brain volumes. It is concluded that brain volumes are genetically related to intelligence which suggests that genes that influence brain volume may also be important for intelligence. It is also noted however, that the direction of causation (i.e., do genes influence brain volume which in turn influences intelligence, or alternatively, do genes influence intelligence which in turn influences brain volume), or the presence or absence of pleiotropy has not been resolved yet.

  10. Probing the non-classicality of temporal correlations

    Directory of Open Access Journals (Sweden)

    Martin Ringbauer

    2017-11-01

    Full Text Available Correlations between spacelike separated measurements on entangled quantum systems are stronger than any classical correlations and are at the heart of numerous quantum technologies. In practice, however, spacelike separation is often not guaranteed and we typically face situations where measurements have an underlying time order. Here we aim to provide a fair comparison of classical and quantum models of temporal correlations on a single particle, as well as timelike-separated correlations on multiple particles. We use a causal modeling approach to show, in theory and experiment, that quantum correlations outperform their classical counterpart when allowed equal, but limited communication resources. This provides a clearer picture of the role of quantum correlations in timelike separated scenarios, which play an important role in foundational and practical aspects of quantum information processing.

  11. Asymmetry in power-law magnitude correlations.

    Science.gov (United States)

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  12. Entropy measure of credit risk in highly correlated markets

    Science.gov (United States)

    Gottschalk, Sylvia

    2017-07-01

    We compare the single and multi-factor structural models of corporate default by calculating the Jeffreys-Kullback-Leibler divergence between their predicted default probabilities when asset correlations are either high or low. Single-factor structural models assume that the stochastic process driving the value of a firm is independent of that of other companies. A multi-factor structural model, on the contrary, is built on the assumption that a single firm's value follows a stochastic process correlated with that of other companies. Our main results show that the divergence between the two models increases in highly correlated, volatile, and large markets, but that it is closer to zero in small markets, when asset correlations are low and firms are highly leveraged. These findings suggest that during periods of financial instability, when asset volatility and correlations increase, one of the models misreports actual default risk.

  13. How Are ‘Barack Obama’ and ‘President Elect’ Differentially Stored in the Brain? An ERP Investigation on the Processing of Proper and Common Noun Pairs

    Science.gov (United States)

    Proverbio, Alice Mado; Mariani, Serena; Zani, Alberto; Adorni, Roberta

    2009-01-01

    Background One of the most debated issues in the cognitive neuroscience of language is whether distinct semantic domains are differentially represented in the brain. Clinical studies described several anomic dissociations with no clear neuroanatomical correlate. Neuroimaging studies have shown that memory retrieval is more demanding for proper than common nouns in that the former are purely arbitrary referential expressions. In this study a semantic relatedness paradigm was devised to investigate neural processing of proper and common nouns. Methodology/Principal Findings 780 words (arranged in pairs of Italian nouns/adjectives and the first/last names of well known persons) were presented. Half pairs were semantically related (“Woody Allen” or “social security”), while the others were not (“Sigmund Parodi” or “judicial cream”). All items were balanced for length, frequency, familiarity and semantic relatedness. Participants were to decide about the semantic relatedness of the two items in a pair. RTs and N400 data suggest that the task was more demanding for common nouns. The LORETA neural generators for the related-unrelated contrast (for proper names) included the left fusiform gyrus, right medial temporal gyrus, limbic and parahippocampal regions, inferior parietal and inferior frontal areas, which are thought to be involved in the conjoined processing a familiar face with the relevant episodic information. Person name was more emotional and sensory vivid than common noun semantic access. Conclusions/Significance When memory retrieval is not required, proper name access (conspecifics knowledge) is not more demanding. The neural generators of N400 to unrelated items (unknown persons and things) did not differ as a function of lexical class, thus suggesting that proper and common nouns are not treated differently as belonging to different grammatical classes. PMID:19774070

  14. On the correlation structure of a Lévy-driven queue

    NARCIS (Netherlands)

    A. Es-Saghouani; M.R.H. Mandjes (Michel)

    2007-01-01

    textabstractIn this paper we consider a single-server queue with Lévy input, and in particular its workload process (Q(t)), for t > 0, with a focus on the correlation structure. With the correlation function defined as r(t) := Cov(Q(0),Q(t))/Var Q(0) (assuming that the workload process is in

  15. Effects of valence and origin of emotions in word processing evidenced by event related potential correlates in a lexical decision task

    Directory of Open Access Journals (Sweden)

    Kamil Konrad Imbir

    2016-03-01

    Full Text Available This paper presents behavioral and event-related potential (ERP correlates of emotional word processing during a lexical decision task (LDT. We showed that valence and origin (two distinct affective properties of stimuli help to account for the ERP correlates of LDT. The origin of emotion is a factor derived from the emotion duality model. This model distinguishes between the automatic and controlled elicitation of emotional states. The subjects’ task was to discriminate words from pseudo-words. The stimulus words were carefully selected to differ with respect to valence and origin whilst being matched with respect to arousal, concreteness, length and frequency in natural language. Pseudo-words were matched to words with respect to length. The subjects were 32 individuals aged from 19 to 26 years who were invited to participate in an EEG study of lexical decision making. They evaluated a list of words and pseudo-words. We found that valence modulated the amplitude of the FN400 component (290-375ms at centro-frontal (Fz, Cz region, whereas origin modulated the amplitude of the component in the LPC latency range (375-670ms. The results indicate that the origin of stimuli should be taken into consideration while deliberating on the processing of emotional words.

  16. The Pharmaceutical Capping Process-Correlation between Residual Seal Force, Torque Moment, and Flip-off Removal Force.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Vorgrimler, Lothar; Steinberg, Henrik; Dreher, Sascha; Roggo, Yves; Nieto, Alejandra; Brown, Helen; Roehl, Holger; Adler, Michael; Luemkemann, Joerg; Huwyler, Joerg; Lam, Philippe; Stauch, Oliver; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force

  17. Correlated binomial models and correlation structures

    International Nuclear Information System (INIS)

    Hisakado, Masato; Kitsukawa, Kenji; Mori, Shintaro

    2006-01-01

    We discuss a general method to construct correlated binomial distributions by imposing several consistent relations on the joint probability function. We obtain self-consistency relations for the conditional correlations and conditional probabilities. The beta-binomial distribution is derived by a strong symmetric assumption on the conditional correlations. Our derivation clarifies the 'correlation' structure of the beta-binomial distribution. It is also possible to study the correlation structures of other probability distributions of exchangeable (homogeneous) correlated Bernoulli random variables. We study some distribution functions and discuss their behaviours in terms of their correlation structures

  18. Sharing-Aware Horizontal Partitioning for Exploiting Correlations during Query Processing

    DEFF Research Database (Denmark)

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian Søndergaard

    2010-01-01

    Optimization of join queries based on average selectivities is suboptimal in highly correlated databases. In such databases, relations are naturally divided into partitions, each partition having substantially different statistical characteristics. It is very compelling to discover such data...... partitions during query optimization and create multiple plans for a given query, one plan being optimal for a particular combination of data partitions. This scenario calls for the sharing of state among plans, so that common intermediate results are not recomputed. We study this problem in a setting...

  19. White Matter Correlates of Musical Anhedonia: Implications for Evolution of Music

    Directory of Open Access Journals (Sweden)

    Psyche Loui

    2017-09-01

    Full Text Available Recent theoretical advances in the evolution of music posit that affective communication is an evolutionary function of music through which the mind and brain are transformed. A rigorous test of this view should entail examining the neuroanatomical mechanisms for affective communication of music, specifically by comparing individual differences in the general population with a special population who lacks specific affective responses to music. Here we compare white matter connectivity in BW, a case with severe musical anhedonia, with a large sample of control subjects who exhibit normal variability in reward sensitivity to music. We show for the first time that structural connectivity within the reward system can predict individual differences in musical reward in a large population, but specific patterns in connectivity between auditory and reward systems are special in an extreme case of specific musical anhedonia. Results support and extend the Mixed Origins of Music theory by identifying multiple neural pathways through which music might operate as an affective signaling system.

  20. The Application of the Analytic Hierarchy Process and a New Correlation Algorithm to Urban Construction and Supervision Using Multi-Source Government Data in Tianjin

    Directory of Open Access Journals (Sweden)

    Shaoyi Wang

    2018-02-01

    Full Text Available As the era of big data approaches, big data has attracted increasing amounts of attention from researchers. Various types of studies have been conducted and these studies have focused particularly on the management, organization, and correlation of data and calculations using data. Most studies involving big data address applications in scientific, commercial, and ecological fields. However, the application of big data to government management is also needed. This paper examines the application of multi-source government data to urban construction and supervision in Tianjin, China. The analytic hierarchy process and a new approach called the correlation degree algorithm are introduced to calculate the degree of correlation between different approval items in one construction project and between different construction projects. The results show that more than 75% of the construction projects and their approval items are highly correlated. The results of this study suggest that most of the examined construction projects are well supervised, have relatively high probabilities of satisfying the relevant legal requirements, and observe their initial planning schemes.

  1. USAF/SCEEE Summer Faculty Research Program. Research Reports. Volume 1.

    Science.gov (United States)

    1982-10-01

    attributed to Craik and Lockhart £4]9 holds that material which is processed more "deeply"-in the sense that it is made more meaningful will be...accurate assessment is the first and perhaps toughest aspect of the battle damage repair process . Given the level of maintenance experience currently...neuroanatomical level of this behavior ranges from the most basic system of spinal reflex pathways to complex cortical processes affecting pyramidal and

  2. A new methodology of spatial cross-correlation analysis.

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  3. Behavioral and Functional Neuroanatomical Correlates of Anterograde Autobiographical Memory in Isolated Retrograde Amnesic Patient M. L.

    Science.gov (United States)

    Levine, Brian; Svoboda, Eva; Turner, Gary R.; Mandic, Marina; Mackey, Allison

    2009-01-01

    Patient M. L. [Levine, B., Black, S. E., Cabeza, R., Sinden, M., Mcintosh, A. R., Toth, J. P., et al. (1998). "Episodic memory and the self in a case of isolated retrograde amnesia." "Brain", "121", 1951-1973], lost memory for events occurring before his severe traumatic brain injury, yet his anterograde (post-injury) learning and memory appeared…

  4. Neuroanatomical correlates of attention-deficit-hyperactivity disorder accounting for comorbid oppositional defiant disorder and conduct disorder.

    Science.gov (United States)

    Sasayama, Daimei; Hayashida, Ayako; Yamasue, Hidenori; Harada, Yuzuru; Kaneko, Tomoki; Kasai, Kiyoto; Washizuka, Shinsuke; Amano, Naoji

    2010-08-01

    An increasing number of neuroimaging studies have been conducted to uncover the pathophysiology of attention-deficit-hyperactivity disorder (ADHD). The findings are inconsistent, however, at least partially due to methodological differences. In the present study voxel-based morphometry (VBM) was used to evaluate brain morphology in ADHD subjects after taking into account the confounding effect of oppositional defiant disorder (ODD) and conduct disorder (CD) comorbidity. Eighteen children with ADHD and 17 age- and gender-matched typically developing subjects underwent high-spatial resolution magnetic resonance imaging. The regional gray matter volume differences between the children with ADHD and controls were examined with and without accounting for comorbid ODD and CD in a voxel-by-voxel manner throughout the entire brain. The VBM indicated significantly smaller regional gray matter volume in regions including the bilateral temporal polar and occipital cortices and the left amygdala in subjects with ADHD compared with controls. Significantly smaller regional gray matter volumes were demonstrated in more extensive regions including the bilateral temporal polar cortices, bilateral amygdala, right occipital cortex, right superior temporal sulcus, and left middle frontal gyrus after controlling for the confounding effect of comorbid ODD and CD. Morphological abnormalities in ADHD were seen not only in the regions associated with executive functioning but also in the regions associated with social cognition. When the effect of comorbid CD and ODD was taken into account, there were more extensive regions with significantly smaller volume in ADHD compared to controls.

  5. Integer-valued trawl processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Lunde, Asger; Shephard, Neil

    2014-01-01

    the probabilistic properties of such processes in detail and, in addition, study volatility modulation and multivariate extensions within the new modelling framework. Moreover, we describe how the parameters of a trawl process can be estimated and obtain promising estimation results in our simulation study. Finally......This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl processes, which are serially correlated, stationary, infinitely divisible processes. We analyse...

  6. THE CORRELATED TRACK RECEIVER OF TONE TRACK CIRCUITS

    Directory of Open Access Journals (Sweden)

    K. V. Goncharov

    2011-05-01

    Full Text Available The work is devoted to further improvement of processing algorithm of checking signals of rail line. The simulation modeling of correlation track receiver of tone rail circuits has been executed; the benchmark analysis of correlation receiver and direct amplifier receiver has been executed.

  7. Geometry Processing of Conventionally Produced Mouse Brain Slice Images.

    Science.gov (United States)

    Agarwal, Nitin; Xu, Xiangmin; Gopi, M

    2018-04-21

    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Neural correlates of face processing in etiologically-distinct 12-month-old infants at high-risk of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Maggie W. Guy

    2018-01-01

    Full Text Available Neural correlates of face processing were examined in 12-month-olds at high-risk for autism spectrum disorder (ASD, including 21 siblings of children with ASD (ASIBs and 15 infants with fragile X syndrome (FXS, as well as 21 low-risk (LR controls. Event-related potentials were recorded to familiar and novel face and toy stimuli. All infants demonstrated greater N290 amplitude to faces than toys. At the Nc component, LR infants showed greater amplitude to novel stimuli than to their mother’s face and own toy, whereas infants with FXS showed the opposite pattern of responses and ASIBs did not differentiate based on familiarity. These results reflect developing face specialization across high- and low-risk infants and reveal neural patterns that distinguish between groups at high-risk for ASD. Keywords: Event-related potentials, Infancy, Face processing, Autism spectrum disorders

  9. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  10. Clinicopathologic analysis of progressive non-fluent aphasia and corticobasal degeneration:Case report and review

    Directory of Open Access Journals (Sweden)

    Paulo Roberto de Brito-Marques

    Full Text Available Abstract Objective: To investigate progressive non-fluent aphasia and histopathologically-proven corticobasal degeneration. Methods: We evaluated symptoms, signs, neuropsychological deficits, and radiology data longitudinally, in a patient with autopsy-proven corticobasal degeneration and correlated these observations directly to the neuroanatomic distribution of the disease. Results: At presentation, a specific pattern of cognitive impairment was evident with an extreme extrapyramidal motor abnormality. Follow-up examination revealed persistent impairment of praxis and executive functioning, progressive worsening of language performance, and moderately preserved memory. The motor disorder manifested and worsened as the condition progressed. Many of the residual nerve cells were ballooned and achromatic with eccentric nuclei. Tau-immunoreactive pathology was significantly more prominent in neurons in the frontal and parietal cortices and dentate nuclei than in temporal neocortex, hippocampi and brainstem. Conclusion: The clinical diagnosis of progressive non-fluent aphasia secondary to corticobasal degeneration hinged on a specific pattern of impaired cognition as well as an extrapyramidal motor disorder, reflecting the neuroanatomic distribution of the disease in frontal and anterior temporal cortices and the dentate nuclei.

  11. Clinicopathologic analysis of progressive non-fluent aphasia and corticobasal degeneration: Case report and review.

    Science.gov (United States)

    de Brito-Marques, Paulo Roberto; Vieira-Mello, Roberto José; Montenegro, Luciano; Aragão, Maria de Fátima Vasco

    2011-01-01

    To investigate progressive non-fluent aphasia and histopathologically-proven corticobasal degeneration. We evaluated symptoms, signs, neuropsychological deficits, and radiology data longitudinally, in a patient with autopsy-proven corticobasal degeneration and correlated these observations directly to the neuroanatomic distribution of the disease. At presentation, a specific pattern of cognitive impairment was evident with an extreme extrapyramidal motor abnormality. Follow-up examination revealed persistent impairment of praxis and executive functioning, progressive worsening of language performance, and moderately preserved memory. The motor disorder manifested and worsened as the condition progressed. Many of the residual nerve cells were ballooned and achromatic with eccentric nuclei. Tau-immunoreactive pathology was significantly more prominent in neurons in the frontal and parietal cortices and dentate nuclei than in temporal neocortex, hippocampi and brainstem. The clinical diagnosis of progressive non-fluent aphasia secondary to corticobasal degeneration hinged on a specific pattern of impaired cognition as well as an extrapyramidal motor disorder, reflecting the neuroanatomic distribution of the disease in frontal and anterior temporal cortices and the dentate nuclei.

  12. From micro-correlations to macro-correlations

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2016-01-01

    Random vectors with a symmetric correlation structure share a common value of pair-wise correlation between their different components. The symmetric correlation structure appears in a multitude of settings, e.g. mixture models. In a mixture model the components of the random vector are drawn independently from a general probability distribution that is determined by an underlying parameter, and the parameter itself is randomized. In this paper we study the overall correlation of high-dimensional random vectors with a symmetric correlation structure. Considering such a random vector, and terming its pair-wise correlation “micro-correlation”, we use an asymptotic analysis to derive the random vector’s “macro-correlation” : a score that takes values in the unit interval, and that quantifies the random vector’s overall correlation. The method of obtaining macro-correlations from micro-correlations is then applied to a diverse collection of frameworks that demonstrate the method’s wide applicability.

  13. Redundant correlation effect on personalized recommendation

    Science.gov (United States)

    Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang

    2014-02-01

    The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.

  14. Multimodal MRI Evaluation of the MitoPark Mouse Model of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Linlin Cong

    Full Text Available The MitoPark mouse, a relatively new genetic model of Parkinson's disease (PD, has a dopaminergic neuron-specific knock-out that inactivates the mitochondrial transcription factor A (Tfam, a protein essential for mitochondrial DNA expression and maintenance. This study used multimodal MRI to characterize the neuroanatomical correlates of PD-related deficits in MitoPark mice, along with functional behavioral tests. Compared with age-matched wild-type animals, MitoPark mice at 30 weeks showed: i reduced whole-brain volume and increased ventricular volume, indicative of brain atrophy, ii reduced transverse relaxation time (T2* of the substantia nigra and striatum, suggestive of abnormal iron accumulation, iii reduced apparent diffusion coefficient in the substantia nigra, suggestive of neuronal loss, iv reduced fractional anisotropy in the corpus callosum and substantia nigra, indicative of white-matter damages, v cerebral blood flow was not significantly affected, and vi reduced motor activity in open-field tests, reduced memory in novel object recognition tests, as well as decreased mobility in tail suspension tests, an indication of depression. In sum, MitoPark mice recapitulate changes in many MRI parameters reported in PD patients. Multimodal MRI may prove useful for evaluating neuroanatomical correlates of PD pathophysiology in MitoPark mice, and for longitudinally monitoring disease progression and therapeutic interventions for PD.

  15. Mutual information against correlations in binary communication channels.

    Science.gov (United States)

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  16. 252Cf-source-correlated transmission measurements for uranyl fluoride deposit in a 24-in.-OD process pipe

    International Nuclear Information System (INIS)

    Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Mullens, J.A.

    1998-01-01

    Characterization of a hydrated uranyl fluoride (UO 2 F 2 ·nH 2 O) deposit in a 17-ft-long, 24-in.-OD process pipe at the former Oak Ridge Gaseous Diffusion Plant was successfully performed by using 252 Cf-source-correlated time-of-flight (TOF) transmission measurements. These measurements of neutrons and gamma rays through the pipe from an external 2521 Cf fission source were used to measure the deposit profile and its distribution along the pipe, the hydration (or H/U), and the total uranium mass. The measurements were performed with a source in an ionization chamber on one side of the pipe and detectors on the other. Scanning the pipe vertically and horizontally produced a spatial and time-dependent radiograph of the deposit in which transmitted gamma rays and neutrons were separated in time. The cross-correlation function between the source and the detector was measured with the Nuclear Weapons Identification System. After correcting for pipe effects, the deposit thickness was determined from the transmitted neutrons and H/U from the gamma rays. Results were consistent with a later intrusive observation of the shape and the color of the deposit; i.e., the deposit was annular and was on the top of the pipe at some locations, demonstrating the usefulness of this method for deposit characterization

  17. Monoaminergic modulation of emotional impact in the inferomedial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    of the standard Empathy Picture System on a scale from +3 to -3. We then used regression analysis to identify sites in the ventromedial prefrontal cortex at which the two separately acquired measures, blood flow change and emotional impact of images, correlated significantly. The regression analysis identified......People assess the impact of emotionally loaded images differently. We define this impact as the average difference between individual ratings of standardized "pleasant" and "unpleasant" images. To determine the neuroanatomical correlate of a hypothetical interaction between emotional impact...... cortex underwent deactivation in proportion to a separately rated emotional impact of a stimulus. We propose a specific pharmacodynamic mechanism that explains the correlation between the emotional impact and the effect of a serotonin-noradrenaline reuptake inhibitor on cerebral blood flow....

  18. Modulation of the electrophysiological correlates of retrieval cue processing by the specificity of task demands.

    Science.gov (United States)

    Johnson, Jeffrey D; Rugg, Michael D

    2006-02-03

    Retrieval orientation refers to the differential processing of retrieval cues according to the type of information sought from memory (e.g., words vs. pictures). In the present study, event-related potentials (ERPs) were employed to investigate whether the neural correlates of differential retrieval orientations are sensitive to the specificity of the retrieval demands of the test task. In separate study-test phases, subjects encoded lists of intermixed words and pictures, and then undertook one of two retrieval tests, in both of which the retrieval cues were exclusively words. In the recognition test, subjects performed 'old/new' discriminations on the test items, and old items corresponded to only one class of studied material (words or pictures). In the exclusion test, old items corresponded to both classes of study material, and subjects were required to respond 'old' only to test items corresponding to a designated class of material. Thus, demands for retrieval specificity were greater in the exclusion test than during recognition. ERPs elicited by correctly classified new items in the two types of test were contrasted according to whether words or pictures were the sought-for material. Material-dependent ERP effects were evident in both tests, but the effects onset earlier and offset later in the exclusion test. The findings suggest that differential processing of retrieval cues, and hence the adoption of differential retrieval orientations, varies according to the specificity of the retrieval goal.

  19. Current cross-correlations in double quantum dot Cooper pair splitter

    Energy Technology Data Exchange (ETDEWEB)

    Wrzesniewski, Kacper; Trocha, Piotr; Weymann, Ireneusz [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan (Poland)

    2016-07-01

    We investigate theoretically transport properties of a quantum dot (QD) system working as a Cooper pair splitter. The device is coupled to one superconducting and two ferromagnetic leads. Presented results are calculated using real-time diagrammatic technique in the sequential tunneling approximation with respect to the coupling to ferromagnetic leads. The transport properties are evaluated within the superconductor subgap regime taking into account Andreev reflection processes solely. We focus on the analysis of current and current cross-correlations, both in linear and nonlinear responses. Current cross-correlations give additional information about dynamics of transport processes. We identify both positive and negative signs of current cross-correlations and discuss mechanisms leading to those results. Strong negative cross-correlations are found when the occupation number of QD system becomes degenerate and near the emergence of the triplet blockade, while positive ones occur in the most range where current flows due to crossed Andreev processes. Finally, we consider ferromagnetic leads polarization and temperature influences on aforementioned features.

  20. Acquired amusia.

    Science.gov (United States)

    Clark, Camilla N; Golden, Hannah L; Warren, Jason D

    2015-01-01

    Recent developments in the cognitive neuroscience of music suggest that a further review of the topic of amusia is timely. In this chapter, we first consider previous taxonomies of amusia and propose a fresh framework for understanding the amusias, essentially as disorders of cognitive information processing. We critically review current cognitive and neuroanatomic findings in the published literature on amusia. We assess the extent to which the clinical and neuropsychologic evidence in amusia can be reconciled; both with the information-processing framework we propose, and with the picture of the brain organization of music and language processing emerging from cognitive neuroscience and functional neuroimaging studies. The balance of evidence suggests that the amusias can be understood as disorders of musical object cognition targeting separable levels of an information-processing hierarchy and underpinned by specific brain network dysfunction. The neuroanatomic associations of the amusias show substantial overlap with brain networks that process speech; however, this convergence leaves scope for separable brain mechanisms based on altered connectivity and dynamics across culprit networks. The study of the amusias contributes to an increasingly complex picture of the musical brain that transcends any simple dichotomy between music and speech or other complex sounds. © 2015 Elsevier B.V. All rights reserved.

  1. Correlation models for waste tank sludges and slurries

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate

  2. Emotional intelligence moderates the relationship between regional gray matter volume in the bilateral temporal pole and critical thinking disposition.

    Science.gov (United States)

    Yao, Xiaonan; Yuan, Shuge; Yang, Wenjing; Chen, Qunlin; Wei, Dongtao; Hou, Yuling; Zhang, Lijie; Qiu, Jiang; Yang, Dong

    2018-04-01

    Critical thinking enables people to form sound beliefs and provides a basis for emotional life. Research has indicated that individuals with better critical thinking disposition can better recognize and regulate their emotions, though the neuroanatomical mechanisms involved in this process remain to be elucidated. Further, the influence of emotional intelligence on the relationship between brain structure and critical thinking disposition has not been examined. The present study utilized voxel-based morphometry (VBM) to investigate the neural structures underlying critical thinking disposition in a large sample of college students (N = 296). Regional gray matter volume (rGMV) in the bilateral temporal pole, which reflects an individual's ability to process social and emotional information, was negatively correlated with critical thinking disposition. In addition, rGMV in bilateral para hippocampal regions -regions involved in contextual association/emotional regulation-exhibited negative correlation with critical thinking disposition. Further analysis revealed that emotional intelligence moderated the relationship between rGMV of the temporal pole and critical thinking disposition. Specifically, critical thinking disposition was associated with decreased GMV of the temporal pole for individuals who have relatively higher emotional intelligence rather than lower emotional intelligence. The results of the present study indicate that people who have higher emotional intelligence exhibit more effective and automatic processing of emotional information and tend to be strong critical thinkers.

  3. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    Science.gov (United States)

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Fourth-Order Spatial Correlation of Thermal Light

    International Nuclear Information System (INIS)

    Wen Feng; Zhang Xun; Sun Jia; Song Jian-Ping; Zhang Yan-Peng; Xue Xin-Xin

    2014-01-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging

  5. Electrophysiological Correlates of Semantic Processing in Williams Syndrome

    Science.gov (United States)

    Pinheiro, Ana P.; Galdo-Alvarez, Santaigo; Sampaio, Adriana; Niznikiewicz, Margaret; Goncalves, Oscar F.

    2010-01-01

    Williams syndrome (WS), a genetic neurodevelopmental disorder due to microdeletion in chromosome 7, has been described as a syndrome with an intriguing socio-cognitive phenotype. Cognitively, the relative preservation of language and face processing abilities coexists with severe deficits in visual-spatial tasks, as well as in tasks involving…

  6. A New Methodology of Spatial Cross-Correlation Analysis

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  7. Field signatures of non-Fickian transport processes: transit time distributions, spatial correlations, reversibility and hydrogeophysical imaging

    Science.gov (United States)

    Le Borgne, T.; Kang, P. K.; Guihéneuf, N.; Shakas, A.; Bour, O.; Linde, N.; Dentz, M.

    2015-12-01

    Non-Fickian transport phenomena are observed in a wide range of scales across hydrological systems. They are generally manifested by a broad range of transit time distributions, as measured for instance in tracer breakthrough curves. However, similar transit time distributions may be caused by different origins, including broad velocity distributions, flow channeling or diffusive mass transfer [1,2]. The identification of these processes is critical for defining relevant transport models. How can we distinguish the different origins of non-Fickian transport in the field? In this presentation, we will review recent experimental developments to decipher the different causes of anomalous transport, based on tracer tests performed at different scales in cross borehole and push pull conditions, and time lapse hydrogeophysical imaging of tracer motion [3,4]. References:[1] de Anna-, P., T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy (2013) Flow Intermittency, Dispersion and Correlated Continuous Time Random Walks in Porous Media, Phys. Rev. Lett., 110, 184502 [2] Le Borgne T., Dentz M., and Carrera J. (2008) Lagrangian Statistical Model for Transport in Highly Heterogeneous Velocity Fields. Phys. Rev. Lett. 101, 090601 [3] Kang, P. K., T. Le Borgne, M. Dentz, O. Bour, and R. Juanes (2015), Impact of velocity correlation and distribution on transport in fractured media : Field evidence and theoretical model, Water Resour. Res., 51, 940-959 [4] Dorn C., Linde N., Le Borgne T., O. Bour and L. Baron (2011) Single-hole GPR reflection imaging of solute transport in a granitic aquifer Geophys. Res. Lett. Vol.38, L08401

  8. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  9. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  10. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    Science.gov (United States)

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  11. Electrophysiological correlates of social information processing for detecting agents in social interaction scenes: P200 and N250 components

    Directory of Open Access Journals (Sweden)

    Crivelli Davide

    2016-04-01

    Full Text Available According to interaction theories, the detection of situated agents and the understanding of their intentions and mental states are mediated by smart perceptual and embodied mechanisms. While the network supporting agency-attribution, action understanding, and grasping of others’ mental state is quite known, the actual mental chronometry of such social perception processes is still not clear. We then designed an exploratory study to investigate electrophysiological correlates (ERPs and source localization of information-processing for the detection of potential agents in realistic interaction scenes. Morphological and statistical analyses of electrophysiological data highlighted that the manipulation the nature of a potential agent, the gesture it executed and the relative position of an interagent was differently associated to the modulation of specific relevant middle-latency ERP components, labelled as P200 and N250, and of their relative intra-cortical current density distribution within the first 300 ms from the appearance of the stimulus.

  12. A holistic review of the medical school admission process: examining correlates of academic underperformance

    Directory of Open Access Journals (Sweden)

    Terry D. Stratton

    2014-04-01

    academic risks were identified among students who 1 had lower mean undergraduate science GPAs (OR=0.24, p=0.001; 2 entered medical school via an accelerated BS/MD track (OR=16.15, p=0.002; 3 were 31 years of age or older (OR=14.76, p=0.005; and 4 were non-unanimous admission committee admits (OR=0.53, p=0.042. Two dimensions of the NEO PI-R™ personality inventory, openness (+ and conscientiousness (−, were modestly but significantly correlated with academic underperformance. Only for the latter, however, were mean scores found to differ significantly between academic performers and underperformers. Finally, appearing before the college's PCC (OR=4.21, p=0.056 fell just short of statistical significance. Conclusions: Our review of various correlates across the matriculation process highlights the heterogeneity of factors underlying students’ underperformance during the first year of medical school and challenges medical educators to understand the complexity of predicting who, among admitted matriculants, may be at future academic risk.

  13. An Analytically Tractable Model for Pricing Multiasset Options with Correlated Jump-Diffusion Equity Processes and a Two-Factor Stochastic Yield Curve

    Directory of Open Access Journals (Sweden)

    Tristan Guillaume

    2016-01-01

    Full Text Available This paper shows how to value multiasset options analytically in a modeling framework that combines both continuous and discontinuous variations in the underlying equity or foreign exchange processes and a stochastic, two-factor yield curve. All correlations are taken into account, between the factors driving the yield curve, between fixed income and equity as asset classes, and between the individual equity assets themselves. The valuation method is applied to three of the most popular two-asset options.

  14. Correlation of Infraslow Oscillatory Processes in the Body as an Integral Characteristic of Human Adaptation

    Directory of Open Access Journals (Sweden)

    Doletskiy Aleksey Nikolaevich

    2014-12-01

    Full Text Available The aim of our study was to assess synchrony infraslow rhythm (frequency of less than 1 Hz when registering the electroencephalogram (EEG, electrocardiogram (ECG and reoentsefalogrammy (REG depending from the psychoemotional state. The severity of the infraslow oscillatory processes in the central nervous system, heart and circulatory system during meditation, biofeedback with heart rate control and rhythmic breathing at a given frequency was performed. The infraslow activity depending on the use of non-pharmacological methods of relaxation was evaluated. The method of determination of the dominant frequencies of the cardiovascular, neural infraslow activity (from 0.07 to 1 Hz was used. We compared dominant frequencies of the infraslow activity in difference relaxation states. The specific frequencies in different types of relaxation in the cardiovascular and neural systems were found. The severity of the infraslow activity correlates with the functional state of the nervous and cardiovascular systems. We found the syncronization frequency of 0.2 Hz, which is different from the frequency of cardiorespiratory synchronization of 0.1 Hz, commonly found in literature.

  15. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei

    2017-11-08

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix into variance and correlation matrices. The highlight is that the correlations are represented as products of vectors on unit spheres. We propose a variety of distributions on spheres (e.g. the squared-Dirichlet distribution) to induce flexible prior distributions for covariance matrices that go beyond the commonly used inverse-Wishart prior. To handle the intractability of the resulting posterior, we introduce the adaptive $\\\\Delta$-Spherical Hamiltonian Monte Carlo. We also extend our structured framework to dynamic cases and introduce unit-vector Gaussian process priors for modeling the evolution of correlation among multiple time series. Using an example of Normal-Inverse-Wishart problem, a simulated periodic process, and an analysis of local field potential data (collected from the hippocampus of rats performing a complex sequence memory task), we demonstrated the validity and effectiveness of our proposed framework for (dynamic) modeling covariance and correlation matrices.

  16. Point-point and point-line moving-window correlation spectroscopy and its applications

    Science.gov (United States)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  17. Effect of degree correlations above the first shell on the percolation transition

    OpenAIRE

    Valdez, L. D.; Buono, C.; Braunstein, L. A.; Macri, P. A.

    2011-01-01

    The use of degree-degree correlations to model realistic networks which are characterized by their Pearson's coefficient, has become widespread. However the effect on how different correlation algorithms produce different results on processes on top of them, has not yet been discussed. In this letter, using different correlation algorithms to generate assortative networks, we show that for very assortative networks the behavior of the main observables in percolation processes depends on the a...

  18. A Demosaicking Algorithm with Adaptive Inter-Channel Correlation

    Directory of Open Access Journals (Sweden)

    Joan Duran

    2015-12-01

    Full Text Available Most common cameras use a CCD sensor device measuring a single color per pixel. Demosaicking is the interpolation process by which one can infer a full color image from such a matrix of values, thus interpolating the two missing components per pixel. Most demosaicking methods take advantage of inter-channel correlation locally selecting the best interpolation direction. The obtained results look convincing except when local geometry cannot be inferred from neighboring pixels or channel correlation is low. In these cases, these algorithms create interpolation artifacts such as zipper effect or color aliasing. This paper discusses the implementation details of the algorithm proposed in [J. Duran, A. Buades, ``Self-Similarity and Spectral Correlation Adaptive Algorithm for Color Demosaicking'', IEEE Transactions on Image Processing, 23(9, pp. 4031--4040, 2014]. The proposed method involves nonlocal image self-similarity in order to reduce interpolation artifacts when local geometry is ambiguous. It further introduces a clear and intuitive manner of balancing how much channel-correlation must be taken advantage of.

  19. Inverse Ising inference with correlated samples

    International Nuclear Information System (INIS)

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem. (paper)

  20. METHODS OF DISTANCE MEASUREMENT’S ACCURACY INCREASING BASED ON THE CORRELATION ANALYSIS OF STEREO IMAGES

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2018-01-01

    Full Text Available To solve the problem of increasing the accuracy of restoring a three-dimensional picture of space using two-dimensional digital images, it is necessary to use new effective techniques and algorithms for processing and correlation analysis of digital images. Actively developed tools that allow you to reduce the time costs for processing stereo images, improve the quality of the depth maps construction and automate their construction. The aim of the work is to investigate the possibilities of using various techniques for processing digital images to improve the measurements accuracy of the rangefinder based on the correlation analysis of the stereo image. The results of studies of the influence of color channel mixing techniques on the distance measurements accuracy for various functions realizing correlation processing of images are presented. Studies on the analysis of the possibility of using integral representation of images to reduce the time cost in constructing a depth map areproposed. The results of studies of the possibility of using images prefiltration before correlation processing when distance measuring by stereo imaging areproposed.It is obtained that using of uniform mixing of channels leads to minimization of the total number of measurement errors, and using of brightness extraction according to the sRGB standard leads to an increase of errors number for all of the considered correlation processing techniques. Integral representation of the image makes it possible to accelerate the correlation processing, but this method is useful for depth map calculating in images no more than 0.5 megapixels. Using of image filtration before correlation processing can provide, depending on the filter parameters, either an increasing of the correlation function value, which is useful for analyzing noisy images, or compression of the correlation function.

  1. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    Directory of Open Access Journals (Sweden)

    Chemin Lin

    2016-01-01

    Full Text Available Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS. We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM imaging results to identify consistent gray matter (GM difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015 and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS.

  2. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    Science.gov (United States)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  3. The multi-instrumentalist hippocampus. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Strange, Bryan A.; Yebra, Mar

    2015-06-01

    Characterizing the neural circuitry of emotion is important not only from a basic science perspective, but also for understanding how these circuits may malfunction in psychiatric disease. A fundamental question for affective neuroscience is whether there are specialised neuroanatomical areas, or "modules", dedicated to the processing of emotional stimuli. In their review, Koelsch and colleagues [1] argue for the existence of a quartet of neuroanatomically distinct cerebral systems involved in the generation of a specific class of affects. Intriguingly, all four systems (brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred) comprise brain areas whose role in emotional processing is in addition to mediating other specific aspects of cognition. One member of the quartet in which this is particularly apparent is the hippocampus, a structure known to be critical for episodic memory and navigation. If areas involved in emotion also mediate other brain functions, this raises an issue of whether these multiple functions are executed by segregated circuits within each structure - i.e., a "module" for emotion residing in a sub-division of a brain structure - or whether these circuits are superimposed.

  4. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  5. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    Science.gov (United States)

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  6. In-process and post-process measurements of drill wear for control of the drilling process

    Science.gov (United States)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  7. The signer and the sign: cortical correlates of person identity and language processing from point-light displays.

    Science.gov (United States)

    Campbell, Ruth; Capek, Cheryl M; Gazarian, Karine; MacSweeney, Mairéad; Woll, Bencie; David, Anthony S; McGuire, Philip K; Brammer, Michael J

    2011-09-01

    In this study, the first to explore the cortical correlates of signed language (SL) processing under point-light display conditions, the observer identified either a signer or a lexical sign from a display in which different signers were seen producing a number of different individual signs. Many of the regions activated by point-light under these conditions replicated those previously reported for full-image displays, including regions within the inferior temporal cortex that are specialised for face and body-part identification, although such body parts were invisible in the display. Right frontal regions were also recruited - a pattern not usually seen in full-image SL processing. This activation may reflect the recruitment of information about person identity from the reduced display. A direct comparison of identify-signer and identify-sign conditions showed these tasks relied to a different extent on the posterior inferior regions. Signer identification elicited greater activation than sign identification in (bilateral) inferior temporal gyri (BA 37/19), fusiform gyri (BA 37), middle and posterior portions of the middle temporal gyri (BAs 37 and 19), and superior temporal gyri (BA 22 and 42). Right inferior frontal cortex was a further focus of differential activation (signer>sign). These findings suggest that the neural systems supporting point-light displays for the processing of SL rely on a cortical network including areas of the inferior temporal cortex specialized for face and body identification. While this might be predicted from other studies of whole body point-light actions (Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001) it is not predicted from the perspective of spoken language processing, where voice characteristics and speech content recruit distinct cortical regions (Stevens, 2004) in addition to a common network. In this respect, our findings contrast with studies of voice/speech recognition (Von Kriegstein, Kleinschmidt, Sterzer

  8. Secure optical verification using dual phase-only correlation

    International Nuclear Information System (INIS)

    Liu, Wei; Liu, Shutian; Zhang, Yan; Xie, Zhenwei; Liu, Zhengjun

    2015-01-01

    We introduce a security-enhanced optical verification system using dual phase-only correlation based on a novel correlation algorithm. By employing a nonlinear encoding, the inherent locks of the verification system are obtained in real-valued random distributions, and the identity keys assigned to authorized users are designed as pure phases. The verification process is implemented in two-step correlation, so only authorized identity keys can output the discriminate auto-correlation and cross-correlation signals that satisfy the reset threshold values. Compared with the traditional phase-only-correlation-based verification systems, a higher security level against counterfeiting and collisions are obtained, which is demonstrated by cryptanalysis using known attacks, such as the known-plaintext attack and the chosen-plaintext attack. Optical experiments as well as necessary numerical simulations are carried out to support the proposed verification method. (paper)

  9. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  10. Correlation-study about the ambient dose rate and the weather conditions

    Science.gov (United States)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  11. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  12. Uncovering the neuroanatomical correlates of cognitive, affective and conative theory of mind in paediatric traumatic brain injury: a neural systems perspective.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Hearps, Stephen J; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A

    2017-09-01

    Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure-function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems-the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are

  13. The dynamics of correlated novelties.

    Science.gov (United States)

    Tria, F; Loreto, V; Servedio, V D P; Strogatz, S H

    2014-07-31

    Novelties are a familiar part of daily life. They are also fundamental to the evolution of biological systems, human society, and technology. By opening new possibilities, one novelty can pave the way for others in a process that Kauffman has called "expanding the adjacent possible". The dynamics of correlated novelties, however, have yet to be quantified empirically or modeled mathematically. Here we propose a simple mathematical model that mimics the process of exploring a physical, biological, or conceptual space that enlarges whenever a novelty occurs. The model, a generalization of Polya's urn, predicts statistical laws for the rate at which novelties happen (Heaps' law) and for the probability distribution on the space explored (Zipf's law), as well as signatures of the process by which one novelty sets the stage for another. We test these predictions on four data sets of human activity: the edit events of Wikipedia pages, the emergence of tags in annotation systems, the sequence of words in texts, and listening to new songs in online music catalogues. By quantifying the dynamics of correlated novelties, our results provide a starting point for a deeper understanding of the adjacent possible and its role in biological, cultural, and technological evolution.

  14. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  15. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  16. Simulation of speckle patterns with pre-defined correlation distributions

    Science.gov (United States)

    Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.

    2016-01-01

    We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589

  17. Low-Power Architectures for Large Radio Astronomy Correlators

    Science.gov (United States)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  18. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions.

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.

  19. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  20. Experimental quantum verification in the presence of temporally correlated noise

    Science.gov (United States)

    Mavadia, S.; Edmunds, C. L.; Hempel, C.; Ball, H.; Roy, F.; Stace, T. M.; Biercuk, M. J.

    2018-02-01

    Growth in the capabilities of quantum information hardware mandates access to techniques for performance verification that function under realistic laboratory conditions. Here we experimentally characterise the impact of common temporally correlated noise processes on both randomised benchmarking (RB) and gate-set tomography (GST). Our analysis highlights the role of sequence structure in enhancing or suppressing the sensitivity of quantum verification protocols to either slowly or rapidly varying noise, which we treat in the limiting cases of quasi-DC miscalibration and white noise power spectra. We perform experiments with a single trapped 171Yb+ ion-qubit and inject engineered noise (" separators="∝σ^ z ) to probe protocol performance. Experiments on RB validate predictions that measured fidelities over sequences are described by a gamma distribution varying between approximately Gaussian, and a broad, highly skewed distribution for rapidly and slowly varying noise, respectively. Similarly we find a strong gate set dependence of default experimental GST procedures in the presence of correlated errors, leading to significant deviations between estimated and calculated diamond distances in the presence of correlated σ^ z errors. Numerical simulations demonstrate that expansion of the gate set to include negative rotations can suppress these discrepancies and increase reported diamond distances by orders of magnitude for the same error processes. Similar effects do not occur for correlated σ^ x or σ^ y errors or depolarising noise processes, highlighting the impact of the critical interplay of selected gate set and the gauge optimisation process on the meaning of the reported diamond norm in correlated noise environments.