WorldWideScience

Sample records for neuro-fuzzy decision support

  1. A neuro-fuzzy decision support system for the diagnosis of heart failure.

    Science.gov (United States)

    Akinyokun, Charles O; Obot, Okure U; Uzoka, Faith-Michael E; Andy, John J

    2010-01-01

    A neuro-fuzzy decision support system is proposed for the diagnosis of heart failure. The system comprises; knowledge base (database, neural networks and fuzzy logic) of both the quantitative and qualitative knowledge of the diagnosis of heart failure, neuro-fuzzy inference engine and decision support engine. The neural networks employ a multi-layers perception back propagation learning process while the fuzzy logic uses the root sum square inference procedure. The neuro-fuzzy inference engine uses a weighted average of the premise and consequent parameters with the fuzzy rules serving as the nodes and the fuzzy sets representing the weights of the nodes. The decision support engine carries out the cognitive and emotional filtering of the objective and subjective feelings of the medical practitioner. An experimental study of the decision support system was carried out using cases of some patients from three hospitals in Nigeria with the assistance of their medical personnel who collected patients' data over a period of six months. The results of the study show that the neuro-fuzzy system provides a highly reliable diagnosis, while the emotional and cognitive filters further refine the diagnosis results by taking care of the contextual elements of medical diagnosis.

  2. Computerized decision support system for mass identification in breast using digital mammogram: a study on GA-based neuro-fuzzy approaches.

    Science.gov (United States)

    Das, Arpita; Bhattacharya, Mahua

    2011-01-01

    In the present work, authors have developed a treatment planning system implementing genetic based neuro-fuzzy approaches for accurate analysis of shape and margin of tumor masses appearing in breast using digital mammogram. It is obvious that a complicated structure invites the problem of over learning and misclassification. In proposed methodology, genetic algorithm (GA) has been used for searching of effective input feature vectors combined with adaptive neuro-fuzzy model for final classification of different boundaries of tumor masses. The study involves 200 digitized mammograms from MIAS and other databases and has shown 86% correct classification rate.

  3. A neuro-fuzzy system to support in the diagnostic of epileptic events and non-epileptic events using different fuzzy arithmetical operations.

    Science.gov (United States)

    Carvalho, Lucimar M F de; Nassar, Silvia Modesto; Azevedo, Fernando Mendes de; Carvalho, Hugo José Teixeira de; Monteiro, Lucas Lese; Rech, Ciciliana M Zílio

    2008-06-01

    To investigate different fuzzy arithmetical operations to support in the diagnostic of epileptic events and non epileptic events. A neuro-fuzzy system was developed using the NEFCLASS (NEuro Fuzzy CLASSIfication) architecture and an artificial neural network with backpropagation learning algorithm (ANNB). The study was composed by 244 patients with a bigger frequency of the feminine sex. The number of right decisions at the test phase, obtained by the NEFCLASS and ANNB was 83.60% and 90.16%, respectively. The best sensibility result was attained by NEFCLASS (84.90%); the best specificity result were attained by ANNB with 95.65%. The proposed neuro-fuzzy system combined the artificial neural network capabilities in the pattern classifications together with the fuzzy logic qualitative approach, leading to a bigger rate of system success.

  4. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    Science.gov (United States)

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  5. A Neuro-Fuzzy Approach in the Classification of Students’ Academic Performance

    Directory of Open Access Journals (Sweden)

    Quang Hung Do

    2013-01-01

    Full Text Available Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  6. A neuro-fuzzy approach in the classification of students' academic performance.

    Science.gov (United States)

    Do, Quang Hung; Chen, Jeng-Fung

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  7. A neuro-fuzzy system to support in the diagnostic of epileptic events and non-epileptic events using different fuzzy arithmetical operations Um sistema neuro-difuso para auxiliar no diagnóstico de eventos epilépticos e eventos não epilépticos utilizando diferentes operações aritméticas difusas

    Directory of Open Access Journals (Sweden)

    Lucimar M.F. de Carvalho

    2008-06-01

    Full Text Available OBJECTIVE: To investigate different fuzzy arithmetical operations to support in the diagnostic of epileptic events and non epileptic events. METHOD: A neuro-fuzzy system was developed using the NEFCLASS (NEuro Fuzzy CLASSIfication architecture and an artificial neural network with backpropagation learning algorithm (ANNB. RESULTS: The study was composed by 244 patients with a bigger frequency of the feminine sex. The number of right decisions at the test phase, obtained by the NEFCLASS and ANNB was 83.60% and 90.16%, respectively. The best sensibility result was attained by NEFCLASS (84.90%; the best specificity result were attained by ANNB with 95.65%. CONCLUSION: The proposed neuro-fuzzy system combined the artificial neural network capabilities in the pattern classifications together with the fuzzy logic qualitative approach, leading to a bigger rate of system success.OBJETIVO: Investigar diferentes operações aritméticas difusas para auxíliar no diagnóstico de eventos epilépticos e eventos não-epilépticos. MÉTODO: Um sistema neuro-difuso foi desenvolvido utilizando a arquitetura NEFCLASS (NEuro Fuzzy CLASSIfication e uma rede neural artificial com o algoritmo de aprendizagem backpropagation (RNAB. RESULTADOS: A amostra estudada foi de 244 pacientes com maior freqüência no sexo feminino. O número de decisões corretas na fase de teste, obtidas através do NEFCLASS e RNAB foi de 83,60% e 90,16%, respectivamente. O melhor resultado de sensibilidade foi obtido com o NEFCLASS (84,90%; o melhor resultado de especificidade foi obtido com a RNAB (95,65%. CONCLUSÃO: O sistema neuro-difuso proposto combinou a capacidade das redes neurais artificiais na classificação de padrões juntamente com a abordagem qualitativa da logica difusa, levando a maior taxa de acertos do sistema.

  8. Evaluating Loans Using a Combination of Data Envelopment and Neuro-Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Rashmi Malhotra

    2015-02-01

    Full Text Available A business organization's objective is to make better decisions at all levels of the firm to improve performance. Typically organizations are multi-faceted and complex systems that use uncertain information. Therefore, making quality decisions to improve organizational performance is a daunting task. Organizations use decision support systems that apply different business intelligence techniques such as statistical models, scoring models, neural networks, expert systems, neuro-fuzzy systems, case-based systems, or simply rules that have been developed through experience. Managers need a decision-making approach that is robust, competent, effective, efficient, and integrative to handle the multi-dimensional organizational entities. The decision maker deals with multiple players in an organization such as products, customers, competitors, location, geographic structure, scope, internal organization, and cultural dimension [46]. Sound decisions include two important concepts: efficiency (return on invested resources and effectiveness (reaching predetermined goals. However, quite frequently, the decision maker cannot simultaneously handle data from different sources. Hence, we recommend that managers analyze different aspects of data from multiple sources separately and integrate the results of the analysis. This study proposes the design of a multi-attribute-decision-support-system that combines the analytical power of two different tools: data envelopment analysis (DEA and fuzzy logic. DEA evaluates and measures the relative efficiency of decision making units that use multiple inputs and outputs to provide non-objective measures without making any specific assumptions about data. On the other hand fuzzy logic's main strength lies in handling imprecise data. This study proposes a modeling technique that jointly uses the two techniques to benefit from the two methodologies. A major advantage of the DEA approach is that it clearly identifies the

  9. Diagnosis of rotor fault using neuro-fuzzy inference system | Merabet ...

    African Journals Online (AJOL)

    Also the calculation of the value of relative energy for each level of signal decomposition using package wavelet, which will be useful as data input of adaptive Neuro-Fuzzy inference system (ANFIS). In this method, fuzzy logic is used to make decisions about the machine state. The adaptive Neuro-Fuzzy inference system is ...

  10. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)

    2010-12-15

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)

  11. Memristive Neuro-Fuzzy System.

    Science.gov (United States)

    Merrikh-Bayat, Farnood; Shouraki, Saeed Bagheri

    2013-02-01

    In this paper, a novel neuro-fuzzy computing system is proposed where its learning is based on the creation of fuzzy relations by using a new implication method without utilizing any exact mathematical techniques. Then, a simple memristor crossbar-based analog circuit is designed to implement this neuro-fuzzy system which offers very interesting properties. In addition to high connectivity between neurons and being fault tolerant, all synaptic weights in our proposed method are always non-negative, and there is no need to adjust them precisely. Finally, this structure is hierarchically expandable, and it can do fuzzy operations in real time since it is implemented through analog circuits. Simulation results confirm the efficiency and applicability of our neuro-fuzzy computing system. They also indicate that this system can be a good candidate to be used for creating artificial brain.

  12. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques

    Science.gov (United States)

    Chen, Wei; Pourghasemi, Hamid Reza; Panahi, Mahdi; Kornejady, Aiding; Wang, Jiale; Xie, Xiaoshen; Cao, Shubo

    2017-11-01

    The spatial prediction of landslide susceptibility is an important prerequisite for the analysis of landslide hazards and risks in any area. This research uses three data mining techniques, such as an adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a generalized additive model (GAM), and a support vector machine (SVM), for landslide susceptibility mapping in Hanyuan County, China. In the first step, in accordance with a review of the previous literature, twelve conditioning factors, including slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, land use, normalized difference vegetation index (NDVI), and lithology, were selected. In the second step, a collinearity test and correlation analysis between the conditioning factors and landslides were applied. In the third step, we used three advanced methods, namely, ANFIS-FR, GAM, and SVM, for landslide susceptibility modeling. Subsequently, the results of their accuracy were validated using a receiver operating characteristic curve. The results showed that all three models have good prediction capabilities, while the SVM model has the highest prediction rate of 0.875, followed by the ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively. Thus, the landslide susceptibility maps produced in the study area can be applied for management of hazards and risks in landslide-prone Hanyuan County.

  13. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction.

    Science.gov (United States)

    Miranian, A; Abdollahzade, M

    2013-02-01

    Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.

  14. Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Aqil, M; Kita, I; Yano, A; Nishiyama, S

    2006-01-01

    It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other

  15. Optimization of Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    M. Sarosa

    2007-05-01

    Full Text Available Neuro-fuzzy system has been shown to provide a good performance on chromosome classification but does not offer a simple method to obtain the accurate parameter values required to yield the best recognition rate. This paper presents a neuro-fuzzy system where its parameters can be automatically adjusted using genetic algorithms. The approach combines the advantages of fuzzy logic theory, neural networks, and genetic algorithms. The structure consists of a four layer feed-forward neural network that uses a GBell membership function as the output function. The proposed methodology has been applied and tested on banded chromosome classification from the Copenhagen Chromosome Database. Simulation result showed that the proposed neuro-fuzzy system optimized by genetic algorithms offers advantages in setting the parameter values, improves the recognition rate significantly and decreases the training/testing time which makes genetic neuro-fuzzy system suitable for chromosome classification.

  16. INTELLIGENT DECISION SUPPORT ON FOREX

    Directory of Open Access Journals (Sweden)

    V. A. Rybak

    2014-01-01

    Full Text Available A new technology of intelligent decision support on Forex, including forming algorithms of trading signals, rules for the training sample based on technical indicators, which have the highest correlation with the price, the method of reducing the number of losing trades, is proposed. The last is based on an analysis of the wave structure of the market, while the beginning of the cycle (the wave number one is offered to be identified using Bill Williams Oscillator (Awesome oscillator. The process chain of constructing neuro-fuzzy model using software package MatLab is described.

  17. A Synergistic Effect in the Measurement of Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Gorbachev Sergey

    2016-01-01

    Full Text Available We consider a new type of hybrid neuro-fuzzy system based on fuzzy and neural computing in hierarchical sequential structure, the total effect exceeds the effect of each component separately. The proposed system can be applied to multi-criteria analysis, automatic classification on signs and obtain evidence-based estimates of the efficiency of scientific and technical solutions and technologies, engineering and robotics. An example of a neuro-fuzzy system measuring the intensity of the emotions of a robot, with the extraction of diagnostic decision rules “If & then”.

  18. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    Science.gov (United States)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  19. A Genetic-Neuro-Fuzzy inferential model for diagnosis of tuberculosis

    Directory of Open Access Journals (Sweden)

    Mumini Olatunji Omisore

    2017-01-01

    Full Text Available Tuberculosis is a social, re-emerging infectious disease with medical implications throughout the globe. Despite efforts, the coverage of tuberculosis disease (with HIV prevalence in Nigeria rose from 2.2% in 1991 to 22% in 2013 and the orthodox diagnosis methods available for Tuberculosis diagnosis were been faced with a number of challenges which can, if measure not taken, increase the spread rate; hence, there is a need for aid in diagnosis of the disease. This study proposes a technique for intelligent diagnosis of TB using Genetic-Neuro-Fuzzy Inferential method to provide a decision support platform that can assist medical practitioners in administering accurate, timely, and cost effective diagnosis of Tuberculosis. Performance evaluation observed, using a case study of 10 patients from St. Francis Catholic Hospital Okpara-In-Land (Delta State, Nigeria, shows sensitivity and accuracy results of 60% and 70% respectively which are within the acceptable range of predefined by domain experts.

  20. Neuro-fuzzy system for prostate cancer diagnosis.

    Science.gov (United States)

    Benecchi, Luigi

    2006-08-01

    To develop a neuro-fuzzy system to predict the presence of prostate cancer. Neuro-fuzzy systems harness the power of two paradigms: fuzzy logic and artificial neural networks. We compared the predictive accuracy of our neuro-fuzzy system with that obtained by total prostate-specific antigen (tPSA) and percent free PSA (%fPSA). The data from 1030 men (both outpatients and hospitalized patients) were used. All men had a tPSA level of less than 20 ng/mL. Of the 1030 men, 195 (18.9%) had prostate cancer. A neuro-fuzzy system was developed using the coactive neuro-fuzzy inference system model. The mean area under the receiver operating characteristic curve for the neuro-fuzzy system output was 0.799 +/- 0.029 (95% confidence interval 0.760 to 0.835), for tPSA, it was 0.724 +/- 0.032 (95% confidence interval 0.681 to 0.765), and for %fPSA, 0.766 +/- 0.024 (95% confidence interval 0.725 to 0.804). Furthermore, pairwise comparison of the area under the curves evidenced differences among %fPSA, tPSA, and neuro-fuzzy system's output (tPSA versus neuro-fuzzy system's output, P = 0.008; %fPSA versus neuro-fuzzy system's output, P = 0.032). The comparison at 95% sensitivity showed that the neuro-fuzzy system had the best specificity (31.9%). This study presented a neuro-fuzzy system based on both serum data (tPSA and %fPSA) and clinical data (age) to enhance the performance of tPSA to discriminate prostate cancer. The predictive accuracy of the neuro-fuzzy system was superior to that of tPSA and %fPSA.

  1. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  2. REPLACEMENT SPARE PART INVENTORY MONITORING USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Hartono Hartono

    2016-01-01

    Full Text Available Abstract   The amount of inventory is determined on the basis of the demand. So that users can know the demand forecasts need to be done on the request. This study uses the data to implement a replacement parts on the electronic module production equipment in the telecommunications transmission systems, switching, access and power, ie by replacing the electronic module in the system is trouble  or damaged parts of a good electronic module spare parts inventory, while the faulty electronic modules shipped to the Repair Center for repaired again, so that the results of these improvements can replenish spare part  inventory. Parameters speed on improvement process of electronic module broken (repaired, in the form of an average repair time at the repair centers, in order to get back into the electronic module that is ready for used as spare parts in compliance with the safe supply inventory  warehouse.  This research using the method  of  Adaptive Neuro Fuzzy Inference System (ANFIS in developing a decision support system for inventory control of spare parts available in Warehouse Inventory taking into account several parameters supporters, namely demand, improvement and fulfillment of spare parts and repair time. This study uses a recycling input parameter repair faulty electronic module of the customer to immediately replace the module in inventory warehouse,  do improvements in the Repair Center. So the acceleration restoration factor is very influential as the input spare parts inventory supply in the warehouse and using the Adaptive Neuro-Fuzzy Inference System (ANFIS method.   Keywords: ANFIS, inventory control, replacement

  3. Designing Flexible Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation Systems

    OpenAIRE

    Zahra Mohammadi; Mohammad Teshnehlab; Mahdi Aliyari Shoorehdeli

    2011-01-01

    This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then we use two types of flexible neuro-fuzzy systems as controllers. Basic flexible OR-type neuro-fuzzy...

  4. Neuro-fuzzy controller for active ankle foot orthosis

    Directory of Open Access Journals (Sweden)

    Rishabh Kochhar

    2016-09-01

    Full Text Available The ankle foot orthosis (AFO is as an assistive device used in foot disability for gait improvement. The objective of this paper was to design a neuro fuzzy controller for an AFO. Adaptive neuro fuzzy inference system (ANFIS was selected after a detailed study of existing neuro-fuzzy architectures. Data of gait pattern was collected with the help of analog gyro sensors. This data was fed to the ANFIS and a fuzzy rule base was created to complete the neuro-fuzzy system which was used to control the gait pattern. Angular velocity and angle of feet served as inputs to the controller and the output was actuation. The results obtained showed sigmoidal membership functions for the various inputs and outputs due to their close resemblance with the normal human gait. Output of the ANFIS showcased the initial data which was fed to the system; the modified data; changed membership functions and error after training.

  5. Aplikasi Neuro Fuzzy Controller Pada Sistem Titrasi Pengolah Limbah Cair

    OpenAIRE

    Fatkhurrozi, Bagus

    2007-01-01

    This research is aimed at planning and measuriang the system of liquid waste processing devide with ply neutral reaction that is controlled by computer based on neuro fuzzy controller, in which the system control is fuzzy logical system than can improve control out put response based on nervous net imitation. In this system, it can be seen that computer has a very important role that is to control the proless of all activities in waste processing. Key ward. PH, Neuro fuzzy controller

  6. VLSI design of universal approximator neuro-fuzzy systems

    OpenAIRE

    Baturone, I.; Sánchez-Solano, Santiago; Barriga, Angel; Jiménez Fernández, Carlos Jesús; Senhadji, Raouf; López, D. R.

    2001-01-01

    Neuro-fuzzy systems can theoretically solve any problem since they are universal approximators. Besides, they combine the advantages of the neuro and fuzzy paradigms. This paper describes and compares the different strategies that can be adopted to implement the learning and inference mechanisms involved in a neuro-fuzzy system. CAD tools, most of them integrated into the fuzzy system development environment Xfuzzy 2.0, have been developed to assist the designer in the implementation of neuro...

  7. An efficient Neuro-Fuzzy approach to nuclear power plant transient identification

    Energy Technology Data Exchange (ETDEWEB)

    Gomes da Costa, Rafael [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Abreu Mol, Antonio Carlos de, E-mail: mol@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Instituto Nacional de C and T de Reatores Nucleares Inovadores (Brazil); Carvalho, Paulo Victor R. de, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Lapa, Celso Marcelo Franklin, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Instituto Nacional de C and T de Reatores Nucleares Inovadores (Brazil)

    2011-06-15

    Highlights: > We investigate a Neuro-Fuzzy modeling tool use for able transient identification. > The prelusive transient type identification is done by an artificial neural network. > After, the fuzzy-logic system analyzes the results emitting reliability degree of it. > The research support was made in a PWR simulator at the Brazilian Nuclear Engineering Institute. > The results show the potential to help operators' decisions in a nuclear power plant. - Abstract: Transient identification in nuclear power plants (NPP) is often a computational very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Recently, several works have been developed for transient identification. These works frequently present a non reliable response, using the 'don't know' as the system output. In this work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A validation of this identification system was made at the three loops Pressurized Water Reactor (PWR) simulator of the Human-System Interface Laboratory (LABIHS) of the Nuclear Engineering Institute

  8. Neuro-fuzzy modeling in bankruptcy prediction

    Directory of Open Access Journals (Sweden)

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  9. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  10. Development of quantum-based adaptive neuro-fuzzy networks.

    Science.gov (United States)

    Kim, Sung-Suk; Kwak, Keun-Chang

    2010-02-01

    In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method. Furthermore, we developed linear-regression QANFN (LR-QANFN) as an incremental model to deal with localized nonlinearities of the system, so that all modeling discrepancies can be compensated. After adopting the construction of the linear regression as the first global model, we refined it through a series of local fuzzy if-then rules in order to capture the remaining localized characteristics. The experimental results revealed that the proposed QANFN and LR-QANFN yielded a better performance in comparison with radial basis function networks and the linguistic model obtained in previous literature for an automobile mile-per-gallon prediction, Boston Housing data, and a coagulant dosing process in a water purification plant.

  11. 1 RESEARCH ARTICLE Neuro-Fuzzy Model of Homocysteine ...

    Indian Academy of Sciences (India)

    2017-03-10

    Mar 10, 2017 ... homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to. TYMS 5'-UTR 28bp tandem repeat or non-vegetarian diet can lower homocysteine levels. Keywords: Homocysteine; Multiple Linear Regression; Neuro-Fuzzy design; diet. Introduction. Homocysteine is a non-dietary ...

  12. Neuro-fuzzy model for evaluating the performance of processes ...

    Indian Academy of Sciences (India)

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to model the periodic performance of some multi-input single-output (MISO) processes, namely: brewery operations (case study 1) and soap production (case study 2) processes. Two ANFIS models were developed to model the performance of the ...

  13. Neuro-fuzzy system for chaotic time series forecasting

    Science.gov (United States)

    Masulli, Francesco; Studer, Leonard

    1997-10-01

    We report on an on-going study to assess potential benefits using soft computing methods in forecasting problems. Our goal is to forecast natural phenomena represented by time series that show chaotic features. We use a neuro-fuzzy system for its ability to adapt to numerical data and for the possibility to input and extract expert knowledge expressed in words. We present results of experiments designed to study how to shape a neuro-fuzzy systems to forecast chaotic time series. Our main conclusions are: (1) The neuro-fuzzy system is able to forecast a synthetic chaotic time series with high accuracy if the number of inputs and the time delay between them are chosen adequately. (2) The Takens-Mane theorem from chaos theory gives a useful lower bound on the minimal number of inputs. (3) The time delay between the inputs can not be set a priori. It has to be tuned for every different times series. (4) The number of fuzzy rules seems related to the size of the learning set and not to the structure of the chaotic dynamical system. We tentatively try to interpret the rules that the neuro-fuzzy system has learned. Finally we discuss the adequacy of the whole set of fuzzy rules to forecast locally the dynamical system.

  14. Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.

    Directory of Open Access Journals (Sweden)

    Georgina Cosma

    Full Text Available The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA level, the biopsy most common tumor pattern (Primary Gleason pattern and the second most common tumor pattern (Secondary Gleason pattern in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD or Extra-Prostatic Disease (ED using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC, with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812. The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR

  15. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING

    Directory of Open Access Journals (Sweden)

    ANGELOS P. MARKOPOULOS

    2016-09-01

    Full Text Available Soft computing is commonly used as a modelling method in various technological areas. Methods such as Artificial Neural Networks and Fuzzy Logic have found application in manufacturing technology as well. NeuroFuzzy systems, aimed to combine the benefits of both the aforementioned Artificial Intelligence methods, are a subject of research lately as have proven to be superior compared to other methods. In this paper an adaptive neuro-fuzzy inference system for the prediction of surface roughness in end milling is presented. Spindle speed, feed rate, depth of cut and vibrations were used as independent input variables, while roughness parameter Ra as dependent output variable. Several variations are tested and the results of the optimum system are presented. Final results indicate that the proposed model can accurately predict surface roughness, even for input that was not used in training.

  16. Prediction of conductivity by adaptive neuro-fuzzy model.

    Science.gov (United States)

    Akbarzadeh, S; Arof, A K; Ramesh, S; Khanmirzaei, M H; Nor, R M

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.

  17. Seizure prediction using adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Rabbi, Ahmed F; Azinfar, Leila; Fazel-Rezai, Reza

    2013-01-01

    In this study, we present a neuro-fuzzy approach of seizure prediction from invasive Electroencephalogram (EEG) by applying adaptive neuro-fuzzy inference system (ANFIS). Three nonlinear seizure predictive features were extracted from a patient's data obtained from the European Epilepsy Database, one of the most comprehensive EEG database for epilepsy research. A total of 36 hours of recordings including 7 seizures was used for analysis. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. We designed an ANFIS classifier constructed based on these features as input. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. The membership function optimization was conducted based on a hybrid learning algorithm. The proposed method achieved highest sensitivity of 80% with false prediction rate as low as 0.46 per hour.

  18. Prediction of conductivity by adaptive neuro-fuzzy model.

    Directory of Open Access Journals (Sweden)

    S Akbarzadeh

    Full Text Available Electrochemical impedance spectroscopy (EIS is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.

  19. MI-ANFIS: A Multiple Instance Adaptive Neuro-Fuzzy Inference System

    Science.gov (United States)

    2015-08-02

    Instance AdaptiveNeuro- Fuzzy Inference System We introduce a novel adaptive neuro- fuzzy architecture based on the framework of Multiple Instance Fuzzy ...Inference. The new architecture called Multiple Instance-ANFIS (MI-ANFIS), is an extension of the standard Adaptive Neuro Fuzzy Inference System (ANFIS... Fuzzy Inference REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING

  20. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  1. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  2. A novel Neuro-fuzzy classification technique for data mining

    Directory of Open Access Journals (Sweden)

    Soumadip Ghosh

    2014-11-01

    Full Text Available In our study, we proposed a novel Neuro-fuzzy classification technique for data mining. The inputs to the Neuro-fuzzy classification system were fuzzified by applying generalized bell-shaped membership function. The proposed method utilized a fuzzification matrix in which the input patterns were associated with a degree of membership to different classes. Based on the value of degree of membership a pattern would be attributed to a specific category or class. We applied our method to ten benchmark data sets from the UCI machine learning repository for classification. Our objective was to analyze the proposed method and, therefore compare its performance with two powerful supervised classification algorithms Radial Basis Function Neural Network (RBFNN and Adaptive Neuro-fuzzy Inference System (ANFIS. We assessed the performance of these classification methods in terms of different performance measures such as accuracy, root-mean-square error, kappa statistic, true positive rate, false positive rate, precision, recall, and f-measure. In every aspect the proposed method proved to be superior to RBFNN and ANFIS algorithms.

  3. A transductive neuro-fuzzy controller: application to a drilling process.

    Science.gov (United States)

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

  4. Neuro fuzzy control of the FES assisted freely swinging leg of paraplegic subjects

    NARCIS (Netherlands)

    van der Spek, J.H.; Velthuis, W.J.R.; Veltink, Petrus H.; de Vries, Theodorus J.A.

    1996-01-01

    The authors designed a neuro fuzzy control strategy for control of cyclical leg movements of paraplegic subjects. The cyclical leg movements were specified by three `swing phase objectives', characteristic of natural human gait. The neuro fuzzy controller is a combination of a fuzzy logic controller

  5. Data Analysis and Neuro-Fuzzy Technique for EOR Screening: Application in Angolan Oilfields

    Directory of Open Access Journals (Sweden)

    Geraldo A. R. Ramos

    2017-06-01

    Full Text Available In this work, a neuro-fuzzy (NF simulation study was conducted in order to screen candidate reservoirs for enhanced oil recovery (EOR projects in Angolan oilfields. First, a knowledge pattern is extracted by combining both the searching potential of fuzzy-logic (FL and the learning capability of neural network (NN to make a priori decisions. The extracted knowledge pattern is validated against rock and fluid data trained from successful EOR projects around the world. Then, data from Block K offshore Angolan oilfields are then mined and analysed using box-plot technique for the investigation of the degree of suitability for EOR projects. The trained and validated model is then tested on the Angolan field data (Block K where EOR application is yet to be fully established. The results from the NF simulation technique applied in this investigation show that polymer, hydrocarbon gas, and combustion are the suitable EOR techniques.

  6. Adaptive Neuro-fuzzy Inference System as Cache Memory Replacement Policy

    Directory of Open Access Journals (Sweden)

    CHUNG, Y. M.

    2014-02-01

    Full Text Available To date, no cache memory replacement policy that can perform efficiently for all types of workloads is yet available. Replacement policies used in level 1 cache memory may not be suitable in level 2. In this study, we focused on developing an adaptive neuro-fuzzy inference system (ANFIS as a replacement policy for improving level 2 cache performance in terms of miss ratio. The recency and frequency of referenced blocks were used as input data for ANFIS to make decisions on replacement. MATLAB was employed as a training tool to obtain the trained ANFIS model. The trained ANFIS model was implemented on SimpleScalar. Simulations on SimpleScalar showed that the miss ratio improved by as high as 99.95419% and 99.95419% for instruction level 2 cache, and up to 98.04699% and 98.03467% for data level 2 cache compared with least recently used and least frequently used, respectively.

  7. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  8. Skin cancer recognition by using a neuro-fuzzy system.

    Science.gov (United States)

    Salah, Bareqa; Alshraideh, Mohammad; Beidas, Rasha; Hayajneh, Ferial

    2011-02-02

    Skin cancer is the most prevalent cancer in the light-skinned population and it is generally caused by exposure to ultraviolet light. Early detection of skin cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose skin cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the clinician. To obviate these problems, image processing techniques, a neural network system (NN) and a fuzzy inference system were used in this study as promising modalities for detection of different types of skin cancer. The accuracy rate of the diagnosis of skin cancer by using the hierarchal neural network was 90.67% while using neuro-fuzzy system yielded a slightly higher rate of accuracy of 91.26% in diagnosis skin cancer type. The sensitivity of NN in diagnosing skin cancer was 95%, while the specificity was 88%. Skin cancer diagnosis by neuro-fuzzy system achieved sensitivity of 98% and a specificity of 89%.

  9. ADAPTIVE NEURO-FUZZY COMPUTING TECHNIQUE FOR PRECIPITATION ESTIMATION

    Directory of Open Access Journals (Sweden)

    Dalibor Petković

    2016-08-01

    Full Text Available The paper investigates the accuracy of an adaptive neuro-fuzzy computing technique in precipitation estimation. The monthly precipitation data from 29 synoptic stations in Serbia during 1946-2012 are used as case studies. Even though a number of mathematical functions have been proposed for modeling the precipitation estimation, these models still suffer from the disadvantages such as their being very demanding in terms of calculation time. Artificial neural network (ANN can be used as an alternative to the analytical approach since it offers advantages such as no required knowledge of internal system parameters, compact solution for multi-variable problems and fast calculation. Due to its being a crucial problem, this paper presents a process constructed so as to simulate precipitation with an adaptive neuro-fuzzy inference (ANFIS method. ANFIS is a specific type of the ANN family and shows very good learning and prediction capabilities, which makes it an efficient tool for dealing with encountered uncertainties in any system such as precipitation. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system (FIS. This intelligent algorithm is implemented using Matlab/Simulink and the performances are investigated.  The simulation results presented in this paper show the effectiveness of the developed method.

  10. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources

    Directory of Open Access Journals (Sweden)

    Otilia Elena Dragomir

    2015-11-01

    Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.

  11. New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)

    1997-12-31

    This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.

  12. Adaptive Neuro-Fuzzy Inference System based DVR Controller Design

    Directory of Open Access Journals (Sweden)

    Brahim FERDI

    2011-06-01

    Full Text Available PI controller is very common in the control of DVRs. However, one disadvantage of this conventional controller is its inability to still working well under a wider range of operating conditions. So, as a solution fuzzy controller is proposed in literature. But, the main problem with the conventional fuzzy controllers is that the parameters associated with the membership functions and the rules depend broadly on the intuition of the experts. To overcome this problem, Adaptive Neuro-Fuzzy Inference System (ANFIS based controller design is proposed. The resulted controller is composed of Sugeno fuzzy controller with two inputs and one output. According to the error and error rate of the control system and the output data, ANFIS generates the appropriate fuzzy controller. The simulation results have proved that the proposed design method gives reliable powerful fuzzy controller with a minimum number of membership functions.

  13. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  14. Adaptive neuro-fuzzy inference system based automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.H.; Etemadi, A.H. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2008-07-15

    Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (author)

  15. A neuro-fuzzy system for characterization of arm movements.

    Science.gov (United States)

    Balbinot, Alexandre; Favieiro, Gabriela

    2013-02-21

    The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours).

  16. A neuro-fuzzy identification of ECG beats.

    Science.gov (United States)

    Chikh, Mohammed Amine; Ammar, Mohammed; Marouf, Radja

    2012-04-01

    This paper presents a fuzzy rule based classifier and its application to discriminate premature ventricular contraction (PVC) beats from normals. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to discover the fuzzy rules in order to determine the correct class of a given input beat. The main goal of our approach is to create an interpretable classifier that also provides an acceptable accuracy. The performance of the classifier is tested on MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia database. On the test set, we achieved an overall sensitivity and specificity of 97.92% and of 94.52% respectively. Experimental results show that the proposed approach is simple and effective in improving the interpretability of the fuzzy classifier while preserving the model performances at a satisfactory level.

  17. A Neuro-Fuzzy System for Characterization of Arm Movements

    Directory of Open Access Journals (Sweden)

    Alexandre Balbinot

    2013-02-01

    Full Text Available The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours.

  18. Adaptive Neuro-fuzzy approach in friction identification

    Science.gov (United States)

    Zaiyad Muda @ Ismail, Muhammad

    2016-05-01

    Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.

  19. Optimization of Neuro-Fuzzy System Using Genetic Algorithm for Chromosome Classification

    Directory of Open Access Journals (Sweden)

    M. Sarosa

    2013-09-01

    Full Text Available Neuro-fuzzy system has been shown to provide a good performance on chromosome classification but does not offer a simple method to obtain the accurate parameter values required to yield the best recognition rate. This paper presents a neuro-fuzzy system where its parameters can be automatically adjusted using genetic algorithms. The approach combines the advantages of fuzzy logic theory, neural networks, and genetic algorithms. The structure consists of a four layer feed-forward neural network that uses a GBell membership function as the output function. The proposed methodology has been applied and tested on banded chromosome classification from the Copenhagen Chromosome Database. Simulation result showed that the proposed neuro-fuzzy system optimized by genetic algorithms offers advantages in setting the parameter values, improves the recognition rate significantly and decreases the training/testing time which makes genetic neuro-fuzzy system suitable for chromosome classification.

  20. Adaptive neuro fuzzy inference system modeling to predict damage level of non-reshaped berm breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Mandal, S.; Rao, S.; Lokesha

    The Adaptive Neuro Fuzzy Inference System (ANFIS) model is constructed using experimental data set to predict the damage level of berm breakwater. Experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory...

  1. MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM

    National Research Council Canada - National Science Library

    Carlos Alberto Araújo Júnior; Liniker Fernandes da Silva; Marcio Lopes da Silva; Helio Garcia Leite; Erlon Barbosa Valdetaro; Danilo Barros Donato; Renato Vinícius Oliveira Castro

    2016-01-01

    Using a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices...

  2. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    Science.gov (United States)

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  3. Applying a neuro-fuzzy approach for transient identification in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rafael G.; Mol, Antonio C.A.; Pereira, Claudio M.N.A.; Carvalho, Paulo V.R., E-mail: rgcosta@ien.gov.b, E-mail: mol@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: paulov@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Several systems based on specialist systems, neural networks, and fuzzy logic have been developed for transient identification. In the work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A preliminary evaluation of the developed system was made at the Human-System Interface Laboratory (LABIHS). The obtained results show that the system can help the operators to take decisions during transients/accidents in the plant. (author)

  4. A Multitarget Tracking Video System Based on Fuzzy and Neuro-Fuzzy Techniques

    Directory of Open Access Journals (Sweden)

    Javier I. Portillo

    2005-08-01

    Full Text Available Automatic surveillance of airport surface is one of the core components of advanced surface movement, guidance, and control systems (A-SMGCS. This function is in charge of the automatic detection, identification, and tracking of all interesting targets (aircraft and relevant ground vehicles in the airport movement area. This paper presents a novel approach for object tracking based on sequences of video images. A fuzzy system has been developed to ponder update decisions both for the trajectories and shapes estimated for targets from the image regions extracted in the images. The advantages of this approach are robustness, flexibility in the design to adapt to different situations, and efficiency for operation in real time, avoiding combinatorial enumeration. Results obtained in representative ground operations show the system capabilities to solve complex scenarios and improve tracking accuracy. Finally, an automatic procedure, based on neuro-fuzzy techniques, has been applied in order to obtain a set of rules from representative examples. Validation of learned system shows the capability to learn the suitable tracker decisions.

  5. Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Auday Al-Mayyahi

    2014-11-01

    Full Text Available This article proposes an adaptive neuro-fuzzy inference system (ANFIS for solving navigation problems of an autonomous ground vehicle (AGV. The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD; right distance (RD and left distance (LD for the low-level motion control. Two heading controllers deploy the angle difference (AD between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles.

  6. Macroscopic Rock Texture Image Classification Using a Hierarchical Neuro-Fuzzy Class Method

    Directory of Open Access Journals (Sweden)

    Laercio B. Gonçalves

    2010-01-01

    Full Text Available We used a Hierarchical Neuro-Fuzzy Class Method based on binary space partitioning (NFHB-Class Method for macroscopic rock texture classification. The relevance of this study is in helping Geologists in the diagnosis and planning of oil reservoir exploration. The proposed method is capable of generating its own decision structure, with automatic extraction of fuzzy rules. These rules are linguistically interpretable, thus explaining the obtained data structure. The presented image classification for macroscopic rocks is based on texture descriptors, such as spatial variation coefficient, Hurst coefficient, entropy, and cooccurrence matrix. Four rock classes have been evaluated by the NFHB-Class Method: gneiss (two subclasses, basalt (four subclasses, diabase (five subclasses, and rhyolite (five subclasses. These four rock classes are of great interest in the evaluation of oil boreholes, which is considered a complex task by geologists. We present a computer method to solve this problem. In order to evaluate system performance, we used 50 RGB images for each rock classes and subclasses, thus producing a total of 800 images. For all rock classes, the NFHB-Class Method achieved a percentage of correct hits over 73%. The proposed method converged for all tests presented in the case study.

  7. A new learning algorithm for a fully connected neuro-fuzzy inference system.

    Science.gov (United States)

    Chen, C L Philip; Wang, Jing; Wang, Chi-Hsu; Chen, Long

    2014-10-01

    A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.

  8. Classification of EMG signals using neuro-fuzzy system and diagnosis of neuromuscular diseases.

    Science.gov (United States)

    Koçer, Sabri

    2010-06-01

    This work investigates the performance of neuro-fuzzy system for analyzing and classifying EMG signals recorded from normal, neuropathy, and myopathy subjects. EMG signals were obtained from 177 subjects, 60 of them had suffered from neuropathy disorder, 60 of them had suffered from myopathy disorder, and rest of them had been normal. Coefficients that were obtained from the EMG signals using Autoregressive (AR) analysis was applied to neuro-fuzzy system. The classification performance of the feature sets was investigated for three classes.

  9. A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico [Department of Nuclear Engineering, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)], E-mail: enrico.zio@polimi.it; Gola, Giulio [Department of Nuclear Engineering, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)

    2009-01-15

    Malfunctions in machinery are often sources of reduced productivity and increased maintenance costs in various industrial applications. For this reason, machine condition monitoring is being pursued to recognise incipient faults. In this paper, the fault diagnostic problem is tackled within a neuro-fuzzy approach to pattern classification. Besides the primary purpose of a high rate of correct classification, the proposed neuro-fuzzy approach also aims at obtaining an easily interpretable classification model. The efficiency of the approach is verified with respect to a literature problem and then applied to a case of motor bearing fault classification.

  10. Diagnosis of renal failure disease using Adaptive Neuro-Fuzzy Inference System.

    Science.gov (United States)

    Akgundogdu, Abdurrahim; Kurt, Serkan; Kilic, Niyazi; Ucan, Osman N; Akalin, Nilgun

    2010-12-01

    Adaptive Neuro-Fuzzy Inference System (ANFIS) is one of the useful and powerful neural network approaches for the solution of function approximation and pattern recognition problems in the last decades. In this paper, the diagnosis of renal failure disease is investigated using ANFIS approach. Totally the raw data of 112 patients is obtained from Istanbul and Cerrahpasa Medical Faculties of Istanbul University, Turkey. Sixty-four of them are related to renal failures and the rest data belong to healthy persons. In ANFIS model, three rules and Gaussian membership functions are chosen, where rules are determined by the subtractive clustering method. Seven parameters of the patients are considered for the input of the system. These are: Blood Urea Nitrogen (BUN), Creatinine, Uric Acid, Potassium (K), Calcium (Ca), Phosphorus (P) and age. We try to decide whether the patient is ill or not. We have reached 100% success in ANFIS and have better results compared to Support Vector Machine (SVM) and Artificial Neural Networks (ANN).

  11. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    Science.gov (United States)

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.

  12. A transfer learning framework for traffic video using neuro-fuzzy ...

    Indian Academy of Sciences (India)

    This paper introduces a novelty in the form of Adaptive Neuro-Fuzzy Inference System-Lossy-Count-based Topic Extraction (ANFIS-LCTE) for classification of anomalies in source and target traffic scenes. The process of transforming the input variables, learning the semantic rules in source scene and transferring the model ...

  13. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...

  14. A comparative study of ANN and neuro-fuzzy for the prediction of ...

    Indian Academy of Sciences (India)

    Istanbul Technical University, Faculty of Civil Engineering, Hydraulics and Water. Resources Division, Maslak 34469, Istanbul, Turkey. Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has ...

  15. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration

    Science.gov (United States)

    Shiri, Jalal; Nazemi, Amir Hossein; Sadraddini, Ali Ashraf; Landeras, Gorka; Kisi, Ozgur; Fard, Ahmad Fakheri; Marti, Pau

    2013-02-01

    SummaryAccurate estimation of reference evapotranspiration is important for irrigation scheduling, water resources management and planning and other agricultural water management issues. In the present paper, the capabilities of generalized neuro-fuzzy models were evaluated for estimating reference evapotranspiration using two separate sets of weather data from humid and non-humid regions of Spain and Iran. In this way, the data from some weather stations in the Basque Country and Valencia region (Spain) were used for training the neuro-fuzzy models [in humid and non-humid regions, respectively] and subsequently, the data from these regions were pooled to evaluate the generalization capability of a general neuro-fuzzy model in humid and non-humid regions. The developed models were tested in stations of Iran, located in humid and non-humid regions. The obtained results showed the capabilities of generalized neuro-fuzzy model in estimating reference evapotranspiration in different climatic zones. Global GNF models calibrated using both non-humid and humid data were found to successfully estimate ET0 in both non-humid and humid regions of Iran (the lowest MAE values are about 0.23 mm for non-humid Iranian regions and 0.12 mm for humid regions). non-humid GNF models calibrated using non-humid data performed much better than the humid GNF models calibrated using humid data in non-humid region while the humid GNF model gave better estimates in humid region.

  16. Adaptive Neuro-Fuzzy Inference System Models for Force Prediction of a Mechatronic Flexible Structure

    DEFF Research Database (Denmark)

    Achiche, S.; Shlechtingen, M.; Raison, M.

    2016-01-01

    This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped...

  17. AN INTELLIGENT NEURO-FUZZY TERMINAL SLIDING MODE CONTROL METHOD WITH APPLICATION TO ATOMIC FORCE MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Seied Yasser Nikoo

    2016-11-01

    Full Text Available In this paper, a neuro-fuzzy fast terminal sliding mode control method is proposed for controlling a class of nonlinear systems with bounded uncertainties and disturbances. In this method, a nonlinear terminal sliding surface is firstly designed. Then, this sliding surface is considered as input for an adaptive neuro-fuzzy inference system which is the main controller. A proportinal-integral-derivative controller is also used to asist the neuro-fuzzy controller in order to improve the performance of the system at the begining stage of control operation. In addition, bee algorithm is used in this paper to update the weights of neuro-fuzzy system as well as the parameters of the proportinal-integral-derivative controller. The proposed control scheme is simulated for vibration control in a model of atomic force microscope system and the results are compared with conventional sliding mode controllers. The simulation results show that the chattering effect in the proposed controller is decreased in comparison with the sliding mode and the terminal sliding mode controllers. Also, the method provides the advantages of fast convergence and low model dependency compared to the conventional methods.

  18. Adaptive neuro-fuzzy inference system for breath phase detection and breath cycle segmentation.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2017-07-01

    The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial. This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system. The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset. The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069. The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant.

    Science.gov (United States)

    Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha

    2015-01-01

    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  1. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    Science.gov (United States)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  2. Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Boumediene ALLAOUA

    2009-12-01

    Full Text Available This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally, the ANFIS is optimized by Swarm Intelligence. Digital simulation results demonstrate that the deigned ANFIS-Swarm speed controller realize a good dynamic behavior of the DC motor, a perfect speed tracking with no overshoot, give better performance and high robustness than those obtained by the ANFIS alone.

  3. Stabilization of an inverted pendulum system via an SIRM neuro-fuzzy controller

    Directory of Open Access Journals (Sweden)

    Kulworawanichpong, T.

    2005-01-01

    Full Text Available This article presents a new neuro-fuzzy controller to stabilize an inverted pendulum system. The proposed controller consists of the Single Input Rule Modules (SIRMs, the artificial neural network (ANN and the dynamic importance degrees (DIDs. It simultaneously controls both the angle of the pendulum and the position of the cart. The learning of the ANN results in the DIDs. The proposed controller has a simple structure that can decrease the number of fuzzy rules. The simulation results show that the proposed neurofuzzy controller has an ability to stabilize a wide range of the inverted pendulum system within a short periodof time. Moreover, the comparisons of the simulation results between the proposed neuro-fuzzy controller and the SIRMs fuzzy controller are revealed in this article.

  4. Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety

    Science.gov (United States)

    Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly

    2017-09-01

    The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.

  5. Integration of Fault Detection and Isolation with Control Using Neuro-fuzzy Scheme

    Directory of Open Access Journals (Sweden)

    A. Asokan

    2009-10-01

    Full Text Available In this paper an algorithms is developed for fault diagnosis and fault tolerant control strategy for nonlinear systems subjected to an unknown time-varying fault. At first, the design of fault diagnosis scheme is performed using model based fault detection technique. The neuro-fuzzy chi-square scheme is applied for fault detection and isolation. The fault magnitude and time of occurrence of fault is obtained through neuro-fuzzy chi-square scheme. The estimated magnitude of the fault magnitude is normalized and used by the feed-forward control algorithm to make appropriate changes in the manipulated variable to keep the controlled variable near its set value. The feed-forward controller acts along with feed-back controller to control the multivariable system. The performance of the proposed scheme is applied to a three- tank process for various types of fault inputs to show the effectiveness of the proposed approach.

  6. APLIKASI ADAPTIVE NEURO FUZZY INFERENCE SYSTEM PEMILIHAN SISWA MENGIKUTI LOMBA OLIMPIADE MATEMATIKA

    Directory of Open Access Journals (Sweden)

    Hendri Hendri

    2016-05-01

     Saat ini untuk pemilihan siswa yang mengikuti lomba pada SMAN 10 Bekasi dilakukan berdasarkan musyawarah (rapat dan nilai seleksi lomba. Maka pada penelitian ini, Aplikasi berbasis Adaptive Neuro Fuzzy Inference System (ANFIS digunakan dalam memilih siswa yang mengikuti lomba berdasarkan Standar Operasional Prosedur Olimpiade yang dikeluarkan oleh Direktorat Pembinaan Pendidikan Sekolah Menengah Atas.Pengujian dalam penelitian ini menggunakan beberapa fungsi keanggotaan untuk menghasilkan tingkat dugaan yang paling dekat dengan kondisi riil. Dengan menggunakan metode Backpropagation serta fungsi keanggotaan gaussmf dapat menghasilkan root mean square error 0,15248 serta tingkat kelayakan sistemnya memiliki skor 80.87 sehingga sistem pemilihan siswa yang akan memenuhi standar kualitas. Kata Kunci : Siswa Mengikuti Lomba, Adaptive Neuro Fuzzy Inference System.

  7. Vibration reduction for vision systems on board unmanned aerial vehicles using a neuro-fuzzy controller

    OpenAIRE

    Marichal, N.; Tomas-Rodriguez, M.; Hernandez, A.; Castillo, S; Campoy, P.

    2014-01-01

    In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrime...

  8. Adaptive Neuro-Fuzzy Controller Experimental Design for DC Motor Connected to Unbalanced Load

    OpenAIRE

    Reza Nejati; Rahmat Hooshamnd

    2007-01-01

    In two recent decades, fuzzy controllers have been used in controlling different systems successfully. In this article, a new method is given for controlling of permanent magnetic DC motor connected to unbalanced load. Imbalance of load leads to machine vibrations, fluctuation of power, making exhaustion in machine shaft, and equipment depreciation. In this article neuro-fuzzy controllers are used for controlling unbalanced load. Because of non-linear nature of load and machine, machine fluct...

  9. Prediction of autistic disorder using neuro fuzzy system by applying ANN technique.

    Science.gov (United States)

    Arthi, K; Tamilarasi, A

    2008-11-01

    The major challenge in medical field is to diagnose disorder rather than a disease. In this paper, a neuro fuzzy based model is designed for identification or diagnosis of autism. The problematic areas are gathered from every individual and the related linguistic inputs are converted into fuzzy input values which are in turn given as input to feed forward multilayer neural network. The network is trained using back propagation training algorithm and tested for its performance with the expertise.

  10. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.

    Science.gov (United States)

    Sun, Zhan-Li; Au, Kin-Fan; Choi, Tsan-Ming

    2007-10-01

    This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.

  11. Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy

    Directory of Open Access Journals (Sweden)

    Fitrian Imaduddin

    2017-10-01

    Full Text Available This paper presents the characterization and hysteresis modeling of magnetorheological (MR damper with meandering type valve. The meandering type MR valve, which employs the combination of multiple annular and radial flow passages, has been introduced as the new type of high performance MR valve with higher achievable pressure drop and controllable performance range than similar counterparts in its class. Since the performance of a damper is highly determined by the valve performance, the utilization of the meandering type MR valve in an MR damper could potentially improve the damper performance. The damping force characterization of the MR damper is conducted by measuring the damping force as a response to the variety of harmonic excitations. The hysteresis behavior of the damper is identified by plotting the damping force relationship to the excitation displacement and velocity. For the hysteresis modeling purpose, some parts of the data are taken as the training data source for the optimization parameters in the neuro-fuzzy model. The performance of the trained neuro-fuzzy model is assessed by validating the model output with the remaining measurement data and benchmarking the results with the output of the parametric hysteresis model. The validation results show that the neuro-fuzzy model is demonstrating good agreement with the measurement results indicated by the average relative error of only around 7%. The model also shows robustness with no tendency of growing error when the input values are changed.

  12. A neuro-fuzzy model for prediction of the indoor temperature in typical Australian residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Alasha' ary, Haitham; Moghtaderi, Behdad; Page, Adrian; Sugo, Heber [Priority Research Centre for Energy, Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, the University of Newcastle, Callaghan, Newcastle, NSW 2308 (Australia)

    2009-07-15

    The Masonry Research Group at The University of Newcastle, Australia has embarked on an extensive research program to study the thermal performance of common walling systems in Australian residential buildings by studying the thermal behaviour of four representative purpose-built thermal test buildings (referred to as 'test modules' or simply 'modules' hereafter). The modules are situated on the university campus and are constructed from brick veneer (BV), cavity brick (CB) and lightweight (LW) constructions. The program of study has both experimental and analytical strands, including the use of a neuro-fuzzy approach to predict the thermal behaviour. The latter approach employs an experimental adaptive neuro-fuzzy inference system (ANFIS) which is used in this study to predict the room (indoor) temperatures of the modules under a range of climatic conditions pertinent to Newcastle (NSW, Australia). The study shows that this neuro-fuzzy model is capable of accurately predicting the room temperature of such buildings; thus providing a potential computationally efficient and inexpensive predictive tool for the more effective thermal design of housing. (author)

  13. Prediction of biochemical failure in localized carcinoma of prostate after radical prostatectomy by neuro-fuzzy

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar Goyal

    2007-01-01

    Full Text Available Objective: To predict biochemical failure in localized prostate cancer after radical prostatectomy using preoperative variables. Materials and Methods: Twenty-six patients of early carcinoma of prostate underwent open retropubic radical prostatectomy from June 2002 to June 2006. Preoperative variables included age, family history, digital rectal examination, serum prostatic specific antigen (S. PSA, prostate biopsy Gleason score, MRI of pelvis variables like periprostatic extension, seminal vesical invasion, weight of gland and pathological stage. With application of neuro-fuzzy, these variables were fed into system as input and output, that is S. PSA at six months (predicted value was calculated. Neuro-fuzzy system is a system to combine fuzzy system with learning techniques derived from neural networks. Here, we applied Takagi Sugeno Kang model (TSK due to its close solution to our aim. All the patients were followed up for a minimum of six months. At six month S. PSA of all patients was done (observed value. Predicted and observed values were compared. Result: Predicted and observed values were plotted on 1:1 slop line. Coefficient of correlation was 0.9935. Conclusion: Coefficient of correlation is close to one. It indicates that the neuro-fuzzy is accurate in predicting biochemical failure in localized carcinoma of prostate after radical prostatectomy.

  14. Group Decision Process Support

    DEFF Research Database (Denmark)

    Gøtze, John; Hijikata, Masao

    1997-01-01

    Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists.......Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists....

  15. A dynamic neuro-fuzzy model providing bio-state estimation and prognosis prediction for wearable intelligent assistants.

    Science.gov (United States)

    Wang, Yu; Winters, Jack M

    2005-06-28

    Intelligent management of wearable applications in rehabilitation requires an understanding of the current context, which is constantly changing over the rehabilitation process because of changes in the person's status and environment. This paper presents a dynamic recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended to provide context-awareness for wearable intelligent agents/assistants (WIAs). The model structure includes the following types of signals: inputs, states, outputs and outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative states; different classes of inputs (e.g., facts, context, medication, therapy) have different nonlinear mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on causal rules, as implemented by a fuzzy inference system (FIS). The FIS, with rules based on expertise and evidence, essentially defines the nonlinear state equations that are implemented by nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-making. Outcomes are scalars to be extremized that are a function of outputs and states. The first example demonstrates setup and use for a large-scale stroke neurorehabilitation application (with 16 inputs, 12 states, 5 outputs and 3 outcomes), showing how this modelling tool can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain) as a function of input event patterns (e.g., medications). The second example demonstrates use of scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle strength with short-term fatigue and long-term strength-training. A neuro-fuzzy modelling framework is developed for estimating rehabilitative change that can be applied in any field of rehabilitation

  16. A Dynamic Neuro-Fuzzy Model Providing Bio-State Estimation and Prognosis Prediction for Wearable Intelligent Assistants

    Directory of Open Access Journals (Sweden)

    Winters Jack M

    2005-06-01

    Full Text Available Abstract Background Intelligent management of wearable applications in rehabilitation requires an understanding of the current context, which is constantly changing over the rehabilitation process because of changes in the person's status and environment. This paper presents a dynamic recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended to provide context-awareness for wearable intelligent agents/assistants (WIAs. Methods The model structure includes the following types of signals: inputs, states, outputs and outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative states; different classes of inputs (e.g., facts, context, medication, therapy have different nonlinear mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on causal rules, as implemented by a fuzzy inference system (FIS. The FIS, with rules based on expertise and evidence, essentially defines the nonlinear state equations that are implemented by nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-making. Outcomes are scalars to be extremized that are a function of outputs and states. Results The first example demonstrates setup and use for a large-scale stroke neurorehabilitation application (with 16 inputs, 12 states, 5 outputs and 3 outcomes, showing how this modelling tool can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain as a function of input event patterns (e.g., medications. The second example demonstrates use of scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle strength with short-term fatigue and long-term strength-training. Conclusion A neuro-fuzzy modelling framework is developed for estimating

  17. Detailed comparison of neuro-fuzzy estimation of subpixel land-cover composition from remotely sensed data

    Science.gov (United States)

    Baraldi, Andrea; Binaghi, Elisabetta; Blonda, Palma N.; Brivio, Pietro A.; Rampini, Anna

    1998-10-01

    Mixed pixels, which do not follow a known statistical distribution that could be parameterized, are a major source of inconvenience in classification of remote sensing images. This paper reports on an experimental study designed for the in-depth investigation of how and why two neuro-fuzzy classification schemes, whose properties are complementary, estimate sub-pixel land cover composition from remotely sensed data. The first classifier is based on the fuzzy multilayer perceptron proposed by Pal and Mitra: the second classifier consists of a two-stage hybrid (TSH) learning scheme whose unsupervised first stage is based on the fully self- organizing simplified adaptive resonance theory clustering network proposed by Baraldi. Results of the two neuro-fuzzy classifiers are assessed by means of specific evaluation tools designed to extend conventional descriptive and analytical statistical estimators to the case of multi-membership in classes. When a synthetic data set consisting of pure and mixed pixels is processed by the two neuro-fuzzy classifiers, experimental result show that: i) the two neuro- fuzzy classifiers perform better than the traditional MLP; ii) classification accuracies of the two neuro-fuzzy classifiers are comparable; and iii) the TSH classifier requires to train less background knowledge than FMLP.

  18. Expert system to predict effects of noise pollution on operators of power plant using neuro-fuzzy approach.

    Science.gov (United States)

    Ahmed, Hameed Kaleel; Zulquernain, Mallick

    2009-01-01

    Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems. Among them, adaptive neuro-fuzzy inference system provides a systematic and directed approach for model building and gives the best possible design parameters in minimum possible time. This study aims to develop a neuro-fuzzy model to predict the effects of noise pollution on human work efficiency as a function of noise level, exposure time, and age of the operators doing complex type of task.

  19. Design of a modified adaptive neuro fuzzy inference system classifier for medical diagnosis of Pima Indians Diabetes

    Science.gov (United States)

    Sagir, Abdu Masanawa; Sathasivam, Saratha

    2017-08-01

    Medical diagnosis is the process of determining which disease or medical condition explains a person's determinable signs and symptoms. Diagnosis of most of the diseases is very expensive as many tests are required for predictions. This paper aims to introduce an improved hybrid approach for training the adaptive network based fuzzy inference system with Modified Levenberg-Marquardt algorithm using analytical derivation scheme for computation of Jacobian matrix. The goal is to investigate how certain diseases are affected by patient's characteristics and measurement such as abnormalities or a decision about presence or absence of a disease. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system to classify and predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. The proposed hybridised intelligent system was tested with Pima Indian Diabetes dataset obtained from the University of California at Irvine's (UCI) machine learning repository. The proposed method's performance was evaluated based on training and test datasets. In addition, an attempt was done to specify the effectiveness of the performance measuring total accuracy, sensitivity and specificity. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.

  20. Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants; Sistemas neuro-fuzzy para identificacao de sistemas aplicados a operacao de centrais nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    2000-09-01

    A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)

  1. Family of new operations equivalency of neuro-fuzzy logic: optoelectronic realization and applications

    Science.gov (United States)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey

    2002-07-01

    The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy

  2. Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications

    Directory of Open Access Journals (Sweden)

    A.A. Fahmy

    2013-12-01

    Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.

  3. A Neuro-Fuzzy based System for Classification of Natural Textures

    Science.gov (United States)

    Jiji, G. Wiselin

    2016-12-01

    A statistical approach based on the coordinated clusters representation of images is used for classification and recognition of textured images. In this paper, two issues are being addressed; one is the extraction of texture features from the fuzzy texture spectrum in the chromatic and achromatic domains from each colour component histogram of natural texture images and the second issue is the concept of a fusion of multiple classifiers. The implementation of an advanced neuro-fuzzy learning scheme has been also adopted in this paper. The results of classification tests show the high performance of the proposed method that may have industrial application for texture classification, when compared with other works.

  4. Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2012-01-01

    in graphical and text format. Within the paper examples of real faults are provided, showing the capabilities of the method proposed. The method can be applied both to existing and new built turbines without the need of any additional hardware installation or manufacturers input.......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...

  5. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis

    Science.gov (United States)

    Dixon, B.

    2005-07-01

    Modeling groundwater vulnerability reliably and cost effectively for non-point source (NPS) pollution at a regional scale remains a major challenge. In recent years, Geographic Information Systems (GIS), neural networks and fuzzy logic techniques have been used in several hydrological studies. However, few of these research studies have undertaken an extensive sensitivity analysis. The overall objective of this research is to examine the sensitivity of neuro-fuzzy models used to predict groundwater vulnerability in a spatial context by integrating GIS and neuro-fuzzy techniques. The specific objectives are to assess the sensitivity of neuro-fuzzy models in a spatial domain using GIS by varying (i) shape of the fuzzy sets, (ii) number of fuzzy sets, and (iii) learning and validation parameters (including rule weights). The neuro-fuzzy models were developed using NEFCLASS-J software on a JAVA platform and were loosely integrated with a GIS. Four plausible parameters which are critical in transporting contaminants through the soil profile to the groundwater, included soil hydrologic group, depth of the soil profile, soil structure (pedality points) of the A horizon, and landuse. In order to validate the model predictions, coincidence reports were generated among model inputs, model predictions, and well/spring contamination data for NO 3-N. A total of 16 neuro-fuzzy models were developed for selected sub-basins of Illinois River Watershed, AR. The sensitivity analysis showed that neuro-fuzzy models were sensitive to the shape of the fuzzy sets, number of fuzzy sets, nature of the rule weights, and validation techniques used during the learning processes. Compared to bell-shaped and triangular-shaped membership functions, the neuro-fuzzy models with a trapezoidal membership function were the least sensitive to the various permutations and combinations of the learning and validation parameters. Over all, Models 11 and 8 showed relatively higher coincidence with well

  6. Comparison of MLP neural network and neuro-fuzzy system in transcranial Doppler signals recorded from the cerebral vessels.

    Science.gov (United States)

    Hardalaç, Firat

    2008-04-01

    Transcranial Doppler signals recorded from cerebral vessels of 110 patients were transferred to a personal computer by using a 16 bit sound card. Spectral analyses of Transcranial Doppler signals were performed for determining the Multi Layer Perceptron (MLP) neural network and neuro Ankara-fuzzy system inputs. In order to do a good interpretation and rapid diagnosis, FFT parameters of Transcranial Doppler signals classified using MLP neural network and neuro-fuzzy system. Our findings demonstrated that 92% correct classification rate was obtained from MLP neural network, and 86% correct classification rate was obtained from neuro-fuzzy system.

  7. Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis.

    Science.gov (United States)

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, Wen-Ming; Li, R K; Wang, Tzu-Hao

    2012-04-01

    Breast cancer is a common to females worldwide. Today, technological advancements in cancer treatment innovations have increased the survival rates. Many theoretical and experimental studies have shown that a multiple classifier system is an effective technique for reducing prediction errors. This study compared the particle swarm optimizer (PSO) based artificial neural network (ANN), the adaptive neuro-fuzzy inference system (ANFIS), and a case-based reasoning (CBR) classifier with a logistic regression model and decision tree model. It also applied three classification techniques to the Mammographic Mass Data Set, and measured its improvements in accuracy and classification errors. The experimental results showed that, the best CBR-based classification accuracy is 83.60%, and the classification accuracies of the PSO-based ANN classifier and ANFIS are 91.10% and 92.80%, respectively.

  8. Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Ja'fari, Ahmad; Kadkhodaie-Ilkhchi, Ali; Sharghi, Yoosef; Ghanavati, Kiarash

    2012-02-01

    Fractures as the most common and important geological features have a significant share in reservoir fluid flow. Therefore, fracture detection is one of the important steps in fractured reservoir characterization. Different tools and methods are introduced for fracture detection from which formation image logs are considered as the common and effective tools. Due to the economical considerations, image logs are available for a limited number of wells in a hydrocarbon field. In this paper, we suggest a model to estimate fracture density from the conventional well logs using an adaptive neuro-fuzzy inference system. Image logs from two wells of the Asmari formation in one of the SW Iranian oil fields are used to verify the results of the model. Statistical data analysis indicates good correlation between fracture density and well log data including sonic, deep resistivity, neutron porosity and bulk density. The results of this study show that there is good agreement (correlation coefficient of 98%) between the measured and neuro-fuzzy estimated fracture density.

  9. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    Directory of Open Access Journals (Sweden)

    Mohammad Subhi Al-batah

    2014-01-01

    Full Text Available To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL and high-grade squamous intraepithelial lesion (HSIL. The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.

  10. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Directory of Open Access Journals (Sweden)

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  11. A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors

    Directory of Open Access Journals (Sweden)

    A. Konstantaras

    2004-01-01

    Full Text Available Electric Earthquake Precursor (EEP recognition is essentially a problem of weak signal detection. An EEP signal, according to the theory of propagating cracks, is usually a very weak electric potential anomaly appearing on the Earth's electric field prior to an earthquake, often unobservable within the electric background, which is significantly stronger and embedded in noise. Furthermore, EEP signals vary in terms of duration and size making reliable recognition even more difficult. An average model for EEP signals has been identified based on a time function describing the evolution of the number of propagating cracks. This paper describes the use of neuro-fuzzy networks (Neural Networks with intrinsic fuzzy logic abilities for the reliable recognition of EEP signals within the electric field. Pattern recognition is performed by the neural network to identify the average EEP model from within the electric field. Use of the neuro-fuzzy model enables classification of signals that are not exactly the same, but do approximate the average EEP model, as EEPs. On the other hand, signals that look like EEPs but do not approximate enough the average model are suppressed, preventing false classification. The effectiveness of the proposed network is demonstrated using electrotelluric data recorded in NW Greece.

  12. A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors

    Science.gov (United States)

    Konstantaras, A.; Varley, M. R.; Vallianatos, F.; Collins, G.; Holifield, P.

    2004-10-01

    Electric Earthquake Precursor (EEP) recognition is essentially a problem of weak signal detection. An EEP signal, according to the theory of propagating cracks, is usually a very weak electric potential anomaly appearing on the Earth's electric field prior to an earthquake, often unobservable within the electric background, which is significantly stronger and embedded in noise. Furthermore, EEP signals vary in terms of duration and size making reliable recognition even more difficult. An average model for EEP signals has been identified based on a time function describing the evolution of the number of propagating cracks. This paper describes the use of neuro-fuzzy networks (Neural Networks with intrinsic fuzzy logic abilities) for the reliable recognition of EEP signals within the electric field. Pattern recognition is performed by the neural network to identify the average EEP model from within the electric field. Use of the neuro-fuzzy model enables classification of signals that are not exactly the same, but do approximate the average EEP model, as EEPs. On the other hand, signals that look like EEPs but do not approximate enough the average model are suppressed, preventing false classification. The effectiveness of the proposed network is demonstrated using electrotelluric data recorded in NW Greece.

  13. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    Science.gov (United States)

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.

  14. Prediction of Soil Fragmentation During Tillage Operation Using Adaptive Neuro Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    R Sedghi

    2014-09-01

    Full Text Available Suitable soil structure is important for crop growth. One of the main characteristics of soil structure is the size of soil aggregates. There are several ways of showing the stability of soil aggregates, among which the determination of the median weight diameter of soil aggregates is the most common method. In this paper, a method based on adaptive neuro fuzzy inference system (ANFIS was used to describe the soil fragmentation for seedbed preparation with combination of primary and secondary tillage implements including subsoiler, moldboard plow and disk harrow. Adaptive neuro fuzzy inference system (ANFIS is a suitable approach to solving non-linear problems. ANFIS is a combination of fuzzy inference system (FIS and an artificial neural network (ANN method and it uses the ability of both models. In this study, the model inputs included “soil moisture content”, “tractor forward speed”and “working depth”. The performance of the model was evaluated using the statistical parameters of root mean square error (RMSE, percentage of relative error (ε, mean absolute error (MAE and the coefficient of determination (R2. These parameters were determined as 0.135, 3.6%, 0.122 and 0.981, respectively. For the evaluation of the ANFIS model, the predicted data using this model were compared to the data of artificial neural network model. The simulation results by ANFIS model showed to be closer to the actual data compared with those made by the artificial neural network model.

  15. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study.

    Science.gov (United States)

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-10-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications.

  16. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.

    Science.gov (United States)

    Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges

    2014-10-01

    We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network

    Directory of Open Access Journals (Sweden)

    Vitor Badiale Furlong

    2013-02-01

    Full Text Available In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days, number of clusters (10, 30 and 50 clusters and internal weight softening parameter (Sigma (0.30, 0.45 and 0.60. These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A and 18 (B days of culture growth. The validations demonstrated that in long-term experiments (Validation A the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B, Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.

  18. Takagi-Sugeno Neuro-Fuzzy Modeling of a Multivariable Nonlinear Antenna System

    Directory of Open Access Journals (Sweden)

    E. A. Al-Gallaf

    2005-12-01

    Full Text Available This article investigates the use of a clustered based neuro-fuzzy system to nonlinear dynamic system modeling. It is focused on the modeling via Takagi-Sugeno (T-S modeling procedure and the employment of fuzzy clustering to generate suitable initial membership functions. The T-S fuzzy modeling has been applied to model a nonlinear antenna dynamic system with two coupled inputs and outputs. Compared to other well-known approximation techniques such as artificial neural networks, the employed neuro-fuzzy system has provided a more transparent representation of the nonlinear antenna system under study, mainly due to the possible linguistic interpretation in the form of rules. Created initial memberships are then employed to construct suitable T-S models. Furthermore, the T-S fuzzy models have been validated and checked through the use of some standard model validation techniques (like the correlation functions. This intelligent modeling scheme is very useful once making complicated systems linguistically transparent in terms of the fuzzy if-then rules.

  19. Adaptive Neuro-Fuzzy Inference System based control of six DOF robot manipulator

    Directory of Open Access Journals (Sweden)

    Srinivasan Alavandar

    2008-01-01

    Full Text Available The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system behavior with simple “if-then” relations owing the designer to derive “if-then” rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy. This paper presents the control of six degrees of freedom robot arm (PUMA Robot using Adaptive Neuro Fuzzy Inference System (ANFIS based PD plus I controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS controller than PID and Fuzzy PD+I controllers

  20. Neuro-fuzzy based approach for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, S.G.; Mandal, S.; Hegde, A.V.; Alavandar, S.

    University New York City, NY 10003-6603 and Systems Neurobiology Laboratory Salk Institute for Biological Studies La Jolla, CA 92037. A. Srinivasan and M.J. Nigam, Neuro-fuzzy based approach for inverse kinematics solution of industrial robot manipulators...

  1. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS...

  2. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.

  3. Simulation of neuro-fuzzy model for optimization of combine header setting

    Directory of Open Access Journals (Sweden)

    S Zareei

    2016-09-01

    Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three

  4. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    Science.gov (United States)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root

  5. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.

    Science.gov (United States)

    Ahmadieh, Hajar; Asl, Babak Mohammadzadeh

    2017-04-01

    We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its

  6. Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Talaat, Hossam E.A.; Abdennour, Adel; Al-Sulaiman, Abdulaziz A. [Electrical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    The aim of this research is the design and implementation of a decentralized power system stabilizer (PSS) capable of performing well for a wide range of variations in system parameters and/or loading conditions. The framework of the design is based on Fuzzy Logic Control (FLC). In particular, the neuro-fuzzy control rules are derived from training three classical PSSs; each is tuned using GA so as to perform optimally at one operating point. The effectiveness and robustness of the designed stabilizer, after implementing it to the laboratory model, is investigated. The results of real-time implementation prove that the proposed PSS offers a superior performance in comparison with the conventional stabilizer. (author)

  7. FPGA implementation of neuro-fuzzy system with improved PSO learning.

    Science.gov (United States)

    Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali

    2016-07-01

    This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adaptive neuro-fuzzy logic analysis based on myoelectric signals for multifunction prosthesis control.

    Science.gov (United States)

    Favieiro, Gabriela W; Balbinot, Alexandre

    2011-01-01

    The myoelectric signal is a sign of control of the human body that contains the information of the user's intent to contract a muscle and, therefore, make a move. Studies shows that the Amputees are able to generate standardized myoelectric signals repeatedly before of the intention to perform a certain movement. This paper presents a study that investigates the use of forearm surface electromyography (sEMG) signals for classification of five distinguish movements of the arm using just three pairs of surface electrodes located in strategic places. The classification is done by an adaptive neuro-fuzzy inference system (ANFIS) to process signal features to recognize performed movements. The average accuracy reached for the classification of five motion classes was 86-98% for three subjects.

  9. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  10. Modelling production uncertainties using the adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Azizi, Amir

    2015-05-01

    Full Text Available Production throughput measures the performance and behaviour of a production system. Production throughput modelling is complex because of uncertainties in the production line. This study examined the potential application of the adaptive neuro-fuzzy inference system (ANFIS to modelling the throughput of production under five significant production uncertainties: scrap, setup time, break time, demand, and lead time of manufacturing. The effects of these uncertainties on the production of floor tiles were studied by performing 104 observations on the production uncertainties over 104 weeks, based on a weekly production plan in a tile manufacturing industry. The results of the ANFIS model were compared with the multiple linear regression (MLR model. The results showed that the ANFIS model was capable of forecasting production throughput under uncertainty with higher accuracy than was the MLR model, indicated by an R-squared of 98 per cent.

  11. PSO based neuro fuzzy sliding mode control for a robot manipulator

    Directory of Open Access Journals (Sweden)

    M. Vijay

    2017-05-01

    Full Text Available This paper presents the control strategy of two degrees of freedom (2DOF rigid robot manipulator based on the coupling of artificial neuro fuzzy inference system (ANFIS with sliding mode control (SMC. Initially SMC with proportional integral derivative (PID sliding surface is adapted to control the robot manipulator. The parameters of the sliding surface are obtained by minimizing a quadratic performance indices using particle swarm optimization (PSO. Variations of SMC i.e. boundary sliding mode control (BSMC and boundary sliding mode control with PID sliding surface (PIDBSMC are developed for optimized performance index. Finally an ANFIS adaptive controller is proposed to generate the adaptive control signal and found to be more robust with regard to disturbances in input torque.

  12. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    Science.gov (United States)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  13. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation.

    Science.gov (United States)

    Lledó, Luis D; Badesa, Francisco J; Almonacid, Miguel; Cano-Izquierdo, José M; Sabater-Navarro, José M; Fernández, Eduardo; Garcia-Aracil, Nicolás

    2015-01-01

    This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.

  14. Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure

    Directory of Open Access Journals (Sweden)

    Ashraf Ahmed Fahmy

    2014-03-01

    Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation.  Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.

  15. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  16. Analyzing the dynamics of emotional scene sequence using recurrent neuro-fuzzy network.

    Science.gov (United States)

    Zhang, Qing; Lee, Minho

    2013-02-01

    In this paper, we propose a new framework to analyze the temporal dynamics of the emotional stimuli. For this framework, both electroencephalography signal and visual information are of great importance. The fusion of visual information with brain signals allows us to capture the users' emotional state. Thus we adopt previously proposed fuzzy-GIST as emotional feature to summarize the emotional feedback. In order to model the dynamics of the emotional stimuli sequence, we develop a recurrent neuro-fuzzy network for modeling the dynamic events of emotional dimensions including valence and arousal. It can incorporate human expertise by IF-THEN fuzzy rule while recurrent connections allow the fuzzy rules of network to see its own previous output. The results show that such a framework can interact with human subjects and generate arbitrary emotional sequences after learning the dynamics of an emotional sequence with enough number of samples.

  17. Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation

    Science.gov (United States)

    Almonacid, Miguel; Cano-Izquierdo, José M.; Sabater-Navarro, José M.; Fernández, Eduardo

    2015-01-01

    This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions. PMID:26001214

  18. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System.

    Science.gov (United States)

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated.

  19. Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design

    Science.gov (United States)

    Cheng, Yi-Chang; Hsu, Yung-Chi

    2010-01-01

    In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856

  20. A neuro-fuzzy system for extracting environment features based on ultrasonic sensors.

    Science.gov (United States)

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case.

  1. Wavelet decomposition and neuro-fuzzy hybrid system applied to short-term wind power

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Jimenez, L.A.; Mendoza-Villena, M. [La Rioja Univ., Logrono (Spain). Dept. of Electrical Engineering; Ramirez-Rosado, I.J.; Abebe, B. [Zaragoza Univ., Zaragoza (Spain). Dept. of Electrical Engineering

    2010-03-09

    Wind energy has become increasingly popular as a renewable energy source. However, the integration of wind farms in the electrical power systems presents several problems, including the chaotic fluctuation of wind flow which results in highly varied power generation from a wind farm. An accurate forecast of wind power generation has important consequences in the economic operation of the integrated power system. This paper presented a new statistical short-term wind power forecasting model based on wavelet decomposition and neuro-fuzzy systems optimized with a genetic algorithm. The paper discussed wavelet decomposition; the proposed wind power forecasting model; and computer results. The original time series, the mean electric power generated in a wind farm, was decomposing into wavelet coefficients that were utilized as inputs for the forecasting model. The forecasting results obtained with the final models were compared to those obtained with traditional forecasting models showing a better performance for all the forecasting horizons. 13 refs., 1 tab., 4 figs.

  2. Training Hybrid Neuro-Fuzzy System to Infer Permeability in Wells on Maracaibo Lake, Venezuela

    CERN Document Server

    Hurtado, Nuri; Torres, Julio

    2014-01-01

    The high accuracy on inferrring of rocks properties, such as permeability ($k$), is a very useful study in the analysis of wells. This has led to development and use of empirical equations like Tixier, Timur, among others. In order to improve the inference of permeability we used a hybrid Neuro-Fuzzy System (NFS). The NFS allowed us to infer permeability of well, from data of porosity ($\\phi$) and water saturation ($Sw$). The work was performed with data from wells VCL-1021 (P21) and VCL-950 (P50), Block III, Maracaibo Lake, Venezuela. We evaluated the NFS equations ($k_{P50,i}(\\phi_i,Sw_i)$) with neighboring well data ($P21$), in order to verify the validity of the equations in the area. We have used ANFIS in MatLab.

  3. Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.

    Science.gov (United States)

    Wang, B H; Lim, J W; Lim, J S

    2016-08-30

    Many studies exist for reconstructing gene regulatory networks (GRNs). In this paper, we propose a method based on an advanced neuro-fuzzy system, for gene regulatory network reconstruction from microarray time-series data. This approach uses a neural network with a weighted fuzzy function to model the relationships between genes. Fuzzy rules, which determine the regulators of genes, are very simplified through this method. Additionally, a regulator selection procedure is proposed, which extracts the exact dynamic relationship between genes, using the information obtained from the weighted fuzzy function. Time-series related features are extracted from the original data to employ the characteristics of temporal data that are useful for accurate GRN reconstruction. The microarray dataset of the yeast cell cycle was used for our study. We measured the mean squared prediction error for the efficiency of the proposed approach and evaluated the accuracy in terms of precision, sensitivity, and F-score. The proposed method outperformed the other existing approaches.

  4. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    Science.gov (United States)

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of fuzzy partitioning in Crohn's disease classification: a neuro-fuzzy-based approach.

    Science.gov (United States)

    Ahmed, Sk Saddam; Dey, Nilanjan; Ashour, Amira S; Sifaki-Pistolla, Dimitra; Bălas-Timar, Dana; Balas, Valentina E; Tavares, João Manuel R S

    2017-01-01

    Crohn's disease (CD) diagnosis is a tremendously serious health problem due to its ultimately effect on the gastrointestinal tract that leads to the need of complex medical assistance. In this study, the backpropagation neural network fuzzy classifier and a neuro-fuzzy model are combined for diagnosing the CD. Factor analysis is used for data dimension reduction. The effect on the system performance has been investigated when using fuzzy partitioning and dimension reduction. Additionally, further comparison is done between the different levels of the fuzzy partition to reach the optimal performance accuracy level. The performance evaluation of the proposed system is estimated using the classification accuracy and other metrics. The experimental results revealed that the classification with level-8 partitioning provides a classification accuracy of 97.67 %, with a sensitivity and specificity of 96.07 and 100 %, respectively.

  6. Prediction of photonic crystal fiber characteristics by Neuro-Fuzzy system

    Science.gov (United States)

    Pourmahyabadi, M.; Mohammad Nejad, S.

    2009-10-01

    The most common methods applied in the analysis of photonic crystal fibers (PCFs) are finite difference time/frequency domain (FDTD/FDFD) method and finite element method (FEM). These methods are very general and reliable (well tested). They describe arbitrary structure but are numerically intensive and require detailed treatment of boundaries and complex definition of calculation mesh. So these conventional models that simulate the photonic response of PCFs are computationally expensive and time consuming. Therefore, a practical design process with trial and error cannot be done in a reasonable amount of time. In this article, an artificial intelligence method such as Neuro-Fuzzy system is used to establish a model that can predict the properties of PCFs. Simulation results show that this model is remarkably effective in predicting the properties of PCF such as dispersion, dispersion slope and loss over the C communication band.

  7. A neuro-fuzzy price forecasting approach in deregulated electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ying-Yi; Lee, Chuan-Fang [Department of Electrical Engineering, Chung Yuan Christian University, Chung Li 320 (Taiwan)

    2005-02-01

    Bidding competition is a main transaction approach in a deregulated market. Locational marginal prices (LMPs) resulting from bidding competition signal electricity values at a node or in an area. The LMP reveals important information for market participants to develop their bidding strategies. Moreover, LMP is also a vital indicator for the Security Coordinator to perform market redispatch for congestion management. This paper presents a method using fuzzy reasoning and recurrent neural networks (RNNs) for forecasting LMPs. The fuzzy rules are used to perform the linguistic reasoning about the contingencies. The reasoning results serve as a part of inputs to the RNNs for forecasting the LMPs. The historical LMPs in the PJM market are used to test the proposed method. It is found that the proposed neuro-fuzzy method is capable of forecasting LMP values efficiently.

  8. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation.

    Directory of Open Access Journals (Sweden)

    Luis D Lledó

    Full Text Available This paper presents the application of an Adaptive Resonance Theory (ART based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.

  9. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  10. Active Head Motion Compensation of TMS Robotic System Using Neuro-Fuzzy Estimation

    Directory of Open Access Journals (Sweden)

    Wan Zakaria W.N.

    2016-01-01

    Full Text Available Transcranial Magnetic Stimulation (TMS allows neuroscientist to study human brain behaviour and also become an important technique for changing the activity of brain neurons and the functions they sub serve. However, conventional manual procedure and robotized TMS are currently unable to precisely position the TMS coil because of unconstrained subject’s head movement and excessive contact force between the coil and subject’s head. This paper addressed this challenge by proposing an adaptive neuro-fuzzy force control to enable low contact force with a moving target surface. A learning and adaption mechanism is included in the control scheme to improve position disturbance estimation. The results show the ability of the proposed force control scheme to compensate subject’s head motions while maintaining desired contact force, thus allowing for more accurate and repeatable TMS procedures.

  11. Monitoring the depth of anesthesia using a new adaptive neuro-fuzzy system.

    Science.gov (United States)

    Shalbaf, Ahmad; Saffar, Mohsen; Sleigh, Jamie W; Shalbaf, Reza

    2017-05-29

    Accurate and noninvasive monitoring of the depth of anesthesia (DoA) is highly desirable. Since the anesthetic drugs act mainly on the central nervous system, the analysis of brain activity using electroencephalogram (EEG) is very useful. This paper proposes a novel automated method for assessing the DoA using EEG. Firstly, 11 features including spectral, fractal and entropy are extracted from EEG signal and then, by applying an algorithm according to exhaustive search of all subsets of features, a combination of the best features (Beta-index, sample entropy, shannon permutation entropy and detrended fluctuation analysis) is selected. Accordingly, we feed these extracted features to a new neuro-fuzzy classification algorithm, Adaptive Neuro-Fuzzy Inference System with Linguistic Hedges (ANFIS-LH). This structure can successfully model systems with nonlinear relationships between input and output, and also classify overlapped classes accurately. ANFIS-LH, which is based on modified classical fuzzy rules, reduces the effects of the insignificant features in input space; which causes overlapping and modifies the output layer structure. The presented method classifies EEG data into awake, light, general and deep states during anesthesia with sevoflurane in 17 patients. Its accuracy is 92%, and compared to a commercial monitoring system (RE index) successfully. Moreover, this method reaches the classification accuracy of 93% to categorize EEG signal to awake and general anesthesia states by another database of propofol and volatile anesthesia in 50 patients. To sum up, this method is potentially applicable to a new real time monitoring system to help the anesthesiologist for continuous assessment of DoA quickly and accurately.

  12. Comparison between genetic fuzzy system and neuro fuzzy system to select oil wells for hydraulic fracturing; Comparacao entre genetic fuzzy system e neuro fuzzy system para selecao de pocos de petroleo para fraturamento hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Antonio Orestes de Salvo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    The hydraulic fracture operation is wide used to increase the oil wells production and to reduce formation damage. Reservoir studies and engineer analysis are made to select the wells for this kind of operation. As the reservoir parameters have some diffuses characteristics, Fuzzy Inference Systems (SIF) have been tested for this selection processes in the last few years. This paper compares the performance of a neuro fuzzy system and a genetic fuzzy system used for hydraulic Fracture well selection, with knowledge acquisition from an operational data base to set the SIF membership functions. The training data and the validation data used were the same for both systems. We concluded that, in despite of the genetic fuzzy system would be a younger process, it got better results than the neuro fuzzy system. Another conclusion was that, as the genetic fuzzy system can work with constraints, the membership functions setting kept the consistency of variables linguistic values. (author)

  13. Modeling the thermal behavior of fluid flow inside channels using an artificial locally linear neuro-fuzzy approach

    Directory of Open Access Journals (Sweden)

    Azadeh Hashemian

    2008-06-01

    Full Text Available Enhanced surface heat exchangers are commonly used all worldwide. If applicable, due to their complicated geometry, simulating corrugated plate heat exchangers is a time-consuming process. In the present study, first we simulate the heat transfer in a sharp V-shape corrugation cell with constant temperature walls; then, we use a Locally Linear Neuro-Fuzzy method based on a radial basis function (RBFs to model the temperature field in the whole channel. New approach is developed to deal with fast computational and low memory resources that can be used with the largest available data sets. The purpose of the research is to reveal the advantages of proposed Neuro-Fuzzy model as a powerful modeling system designed for predicting and to make a fair comparison between it and the successful FLUENT simulated approaches in its best structures.

  14. Adaptive neuro-fuzzy inference system (ANFIS) to predict the forced convection heat transfer from a v-shaped plate

    Science.gov (United States)

    Karami, Alimohammad; Yousefi, Tooraj; Ebrahimi, Saeid; Rezaei, Ehsan; Mahmoudinezhad, Sajjad

    2013-06-01

    This paper reports the application of the adaptive neuro-fuzzy inference system to model the forced convection heat transfer from v-shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the current study is to consider the effects of the angle of the v-shaped plate (Upphi ) , slot-to-plate spacing ratio (Z/W) and the Reynolds number (Re) variation on the average heat transfer from the v-shaped plate.

  15. Inductance Estimating of Linear Switched Reluctance Motors with the Use of Adaptive Neuro-Fuzzy Inference Systems

    OpenAIRE

    DALDABAN, Ferhat; USTKOYUNCU, Nurettin

    2010-01-01

     In this paper, a new method based on adaptive neuro-fuzzy inference system (ANFIS) to estimate the phase inductance of linear switched reluctance motors (LSRMs) is presented. The ANFIS has the advantages of expert knowledge of fuzzy inference system and learning capability of neural networks. A hybrid learning algorithm, which combines the back-propagation (BP) algorithm and the least square method (LSM), is used to identify the parameters of ANFIS. The translator position and the p...

  16. Inductance Estimating of Linear Switched Reluctance Motors with the Use of Adaptive Neuro-Fuzzy Inference Systems

    OpenAIRE

    DALDABAN, Ferhat; USTKOYUNCU, Nurettin

    2010-01-01

     In this paper, a new method based on adaptive neuro-fuzzy inference system (ANFIS) to estimate the phase inductance of linear switched reluctance motors (LSRMs) is presented. The ANFIS has the advantages of expert knowledge of fuzzy inference system and learning capability of neural networks. A hybrid learning algorithm, which combines the back-propagation (BP) algorithm and the least square method (LSM), is used to identify the parameters of ANFIS. The translator position and the phase...

  17. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  18. A system-on-chip development of a neuro-fuzzy embedded agent for ambient-intelligence environments.

    Science.gov (United States)

    del Campo, Inés; Basterretxea, Koldo; Echanobe, Javier; Bosque, Guillermo; Doctor, Faiyaz

    2012-04-01

    This paper presents the development of a neuro-fuzzy agent for ambient-intelligence environments. The agent has been implemented as a system-on-chip (SoC) on a reconfigurable device, i.e., a field-programmable gate array. It is a hardware/software (HW/SW) architecture developed around a MicroBlaze processor (SW partition) and a set of parallel intellectual property cores for neuro-fuzzy modeling (HW partition). The SoC is an autonomous electronic device able to perform real-time control of the environment in a personalized and adaptive way, anticipating the desires and needs of its inhabitants. The scheme used to model the intelligent agent is a particular class of an adaptive neuro-fuzzy inference system with piecewise multilinear behavior. The main characteristics of our model are computational efficiency, scalability, and universal approximation capability. Several online experiments have been performed with data obtained in a real ubiquitous computing environment test bed. Results obtained show that the SoC is able to provide high-performance control and adaptation in a life-long mode while retaining the modeling capabilities of similar agent-based approaches implemented on larger computing machines.

  19. Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm.

    Science.gov (United States)

    Kayacan, Erkan; Kayacan, Erdal; Ramon, Herman; Saeys, Wouter

    2013-02-01

    As a model is only an abstraction of the real system, unmodeled dynamics, parameter variations, and disturbances can result in poor performance of a conventional controller based on this model. In such cases, a conventional controller cannot remain well tuned. This paper presents the control of a spherical rolling robot by using an adaptive neuro-fuzzy controller in combination with a sliding-mode control (SMC)-theory-based learning algorithm. The proposed control structure consists of a neuro-fuzzy network and a conventional controller which is used to guarantee the asymptotic stability of the system in a compact space. The parameter updating rules of the neuro-fuzzy system using SMC theory are derived, and the stability of the learning is proven using a Lyapunov function. The simulation results show that the control scheme with the proposed SMC-theory-based learning algorithm is able to not only eliminate the steady-state error but also improve the transient response performance of the spherical rolling robot without knowing its dynamic equations.

  20. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  1. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Nonlinear aeroacoustic characterization of Helmholtz resonators with a local-linear neuro-fuzzy network model

    Science.gov (United States)

    Förner, K.; Polifke, W.

    2017-10-01

    The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.

  3. Modelling Dissolved Pollutants in Krishna River Using Adaptive Neuro Fuzzy Inference Systems

    Science.gov (United States)

    Matli, C. S.; Umamahesh, N. V.

    2014-01-01

    Water quality models are used to describe the discharge concentration relationships in the river. Number of models exists to simulate the pollutant loads in a river, of which some of them are based on simple cause effect relationships and others on highly sophisticated physical and mathematical approaches that require extensive data inputs. Fuzzy rule based modeling extensively used in other disciplines, is attempted in the present study for modeling water quality with respect of dissolved pollutants in Krishna river flowing in Southern part of India. Adaptive Neuro Fuzzy Inference Systems (ANFIS), a recent development in the area of neuro-computing, based on the concept of fuzzy sets is used to model highly non-linear relationships and are capable of adaptive learning. This paper presents the results of the application of ANFIS for modeling dissolved pollutants in the Krishna River. The application and validation of the models is carried out using water quality and flow data obtained from the monitoring stations on the river. The results indicate that the models are quite successful in simulating the physical processes of the relationships between discharge and concentrations.

  4. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    Science.gov (United States)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  5. Optimization of alkali catalyst for transesterification of jatropha curcus using adaptive neuro-fuzzy modeling

    Directory of Open Access Journals (Sweden)

    Vipan K Sohpal

    2014-06-01

    Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.

  6. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  7. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Saleh Shahinfar

    2012-01-01

    Full Text Available Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  8. Adaptive Neuro-Fuzzy Based Gain Controller for Erbium-Doped Fiber Amplifiers

    Directory of Open Access Journals (Sweden)

    YUCEL, M.

    2017-02-01

    Full Text Available Erbium-doped fiber amplifiers (EDFA must have a flat gain profile which is a very important parameter such as wavelength division multiplexing (WDM and dense WDM (DWDM applications for long-haul optical communication systems and networks. For this reason, it is crucial to hold a stable signal power per optical channel. For the purpose of overcoming performance decline of optical networks and long-haul optical systems, the gain of the EDFA must be controlled for it to be fixed at a high speed. In this study, due to the signal power attenuation in long-haul fiber optic communication systems and non-equal signal amplification in each channel, an automatic gain controller (AGC is designed based on the adaptive neuro-fuzzy inference system (ANFIS for EDFAs. The intelligent gain controller is implemented and the performance of this new electronic control method is demonstrated. The proposed ANFIS-based AGC-EDFA uses the experimental dataset to produce the ANFIS-based sets and the rule base. Laser diode currents are predicted within the accuracy rating over 98 percent with the proposed ANFIS-based system. Upon comparing ANFIS-based AGC-EDFA and experimental results, they were found to be very close and compatible.

  9. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  10. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Science.gov (United States)

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  11. A novel power swing blocking scheme using adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Zadeh, Hassan Khorashadi; Li, Zuyi [Illinois Institute of Technology, Department of Electrical and Computer Engineering, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)

    2008-07-15

    A power swing may be caused by any sudden change in the configuration or the loading of an electrical network. During a power swing, the impedance locus moves along an impedance circle with possible encroachment into the distance relay zone, which may cause an unnecessary tripping. In order to prevent the distance relay from tripping under such condition, a novel power swing blocking (PSB) scheme is proposed in this paper. The proposed scheme uses an adaptive neuro-fuzzy inference systems (ANFIS) for preventing distance relay from tripping during power swings. The input signals to ANFIS, include the change of positive sequence impedance, positive and negative sequence currents, and power swing center voltage. Extensive tests show that the proposed PSB has two distinct features that are advantageous over existing schemes. The first is that the proposed scheme is able to detect various kinds of power swings thus block distance relays during power swings, even if the power swings are fast or the power swings occur during single pole open conditions. The second distinct feature is that the proposed scheme is able to clear the blocking if faults occur within the relay trip zone during power swings, even if the faults are high resistance faults, or the faults occur at the power swing center, or the faults occur when the power angle is close to 180 . (author)

  12. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  13. Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Steffen [University of Tasmania, Hobart 7001, Tasmania (Australia); Karri, Vishy [Australian College of Kuwait (Kuwait)

    2010-09-15

    Predictive models were built using neural network based Adaptive Neuro-Fuzzy Inference Systems for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used on-line for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of {+-}3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications. (author)

  14. Static security-based available transfer capability using adaptive neuro fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Venkaiah, C.; Vinod Kumar, D.M.

    2010-07-01

    In a deregulated power system, power transactions between a seller and a buyer can only be scheduled when there is sufficient available transfer capability (ATC). Internet-based, open access same-time information systems (OASIS) provide market participants with ATC information that is continuously updated in real time. Static security-based ATC can be computed for the base case system as well as for the critical line outages of the system. Since critical line outages are based on static security analysis, the computation of static security based ATC using conventional methods is both tedious and time consuming. In this study, static security-based ATC was computed for real-time applications using 3 artificial intelligent methods notably the back propagation algorithm (BPA), the radial basis function (RBF) neural network, and the adaptive neuro fuzzy inference system (ANFIS). An IEEE 24-bus reliability test system (RTS) and 75-bus practical system were used to test these 3 different intelligent methods. The results were compared with the conventional full alternating current (AC) load flow method for different transactions.

  15. Peramalan Beban Listrik Harian dengan Metode Adaptive Neuro Fuzzy Inferrence System

    Directory of Open Access Journals (Sweden)

    I G.M.W. Meindra Sidemen

    2014-06-01

    Full Text Available Peningkatan kebutuhan tenaga listrik di Indonesia khususnya di Bali terjadi seiring dengan meningkatnya kegiatan ekonomi dan kesejahteraan masyarakat.  Peningkatan kebutuhan tenaga listrik memerlukan suatu perencanaan sistem tenaga listrik yang tepat. Perencanaan yang baik bisa dilakukan melalui peramalan yang tepat untuk kebutuhan beban listrik. Peramalan berdasarkan rentang waktu dikategorikan menjadi peramalan jangka pendek, jangka menengah dan jangka panjang. Salah satu metode dalam sistem cerdas yang dapat digunakan untuk peramalan beban adalah metode adaptive neuro fuzzy inference sistem (ANFIS. Pada penelitian ini, metode tersebut digunakan untuk peramalan beban listrik jangka pendek atau harian. Data yang dipergunakan untuk pembelajaran pada peramalan ini adalah data sebenarnya (actual data yang diambil dari PT.PLN (Persero Area Pengatur Distribusi Bali, mulai dari bulan Juni 2011 sampai dengan Agustus 2011 dan Desember 2012 sampai dengan Februari 2013. Pembangunan Model ANFIS menggunakan program Matlab. Fuzzy Inference System yang digunakan adalah tipe Takagi-Sugeno orde satu, dengan membership function yaitu time (jam, data histori beban listrik sebelumnya, kondisi hari sebelumnya (hari kerja atau hari libur dan kondisi hari ini (hari kerja atau hari libur masing-masing berjumlah 7, 10, 2 dan 2 dengan tipe fungsi keanggotan gbellmf. Penelitian ini menghasilkan nilai MAPE terbesar yaitu 9,92% yang terjadi pada bulan Juni 2011 yang nilainya lebih baik dibandingkan dengan metode JST backpropagation. Jadi metode peramalan beban listrik harian  menggunakan metode ANFIS cukup akurat.

  16. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)

    2012-11-15

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.

  17. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.

    Science.gov (United States)

    Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise

    2014-11-01

    In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers.

    Science.gov (United States)

    Ocampo-Duque, William; Juraske, Ronnie; Kumar, Vikas; Nadal, Martí; Domingo, José Luis; Schuhmacher, Marta

    2012-05-01

    A conceptual model to assess water quality in river basins was developed here. The model was based on ecological risk assessment principles, and incorporated a novel ranking and scoring system, based on self-organizing maps, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater. This approach was used to study the chemical pollution in the Ebro River basin (Spain), whose currently applied environmental indices must be revised in terms of scientific accuracy. Ecological hazard indexes for chemical substances were calculated by pattern recognition of persistence, bioaccumulation, and toxicity properties. A fuzzy inference system was proposed to compute ecological risk points (ERP), which are a combination of the ecological hazard to aquatic sensitive organisms and environmental concentrations. By aggregating ERP, changes in water quality over time were estimated. The proposed concurrent neuro-fuzzy model was applied to a comprehensive dataset of the network controlling the levels of dangerous substances, such as metals, pesticides, and polycyclic aromatic hydrocarbons, in the Ebro river basin. The approach was verified by comparison versus biological monitoring. The results showed that water quality in the Ebro river basin is affected by presence of micro-pollutants. The ERP approach is suitable to analyze overall trends of potential threats to freshwater ecosystems by anticipating the likely impacts from multiple substances, although it does not account for synergies among pollutants. Anyhow, the model produces a convenient indicator to search for pollutant levels of concern.

  19. Neuro-fuzzy classification of asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Badnjevic, Almir; Cifrek, Mario; Koruga, Dragan; Osmankovic, Dinko

    2015-01-01

    This paper presents a system for classification of asthma and chronic obstructive pulmonary disease (COPD) based on fuzzy rules and the trained neural network. Fuzzy rules and neural network parameters are defined according to Global Initiative for Asthma (GINA) and Global Initiative for chronic Obstructive Lung Disease (GOLD) guidelines. For neural network training more than one thousand medical reports obtained from database of the company CareFusion were used. Afterwards the system was validated on 455 patients by physicians from the Clinical Centre University of Sarajevo. Out of 170 patients with asthma, 99.41% of patients were correctly classified. In addition, 99.19% of the 248 COPD patients were correctly classified. The system was 100% successful on 37 patients with normal lung function. Sensitivity of 99.28% and specificity of 100% in asthma and COPD classification were obtained. Our neuro-fuzzy system for classification of asthma and COPD uses a combination of spirometry and Impulse Oscillometry System (IOS) test results, which in the very beginning enables more accurate classification. Additionally, using bronchodilatation and bronhoprovocation tests we get a complete patient's dynamic assessment, as opposed to the solution that provides a static assessment of the patient.

  20. Phase Angle Control of Three Level Inverter Based D-STATCOM Using Neuro-Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    COTELI, R.

    2012-02-01

    Full Text Available Distribution Static Compensator (D-STATCOM is a shunt compensation device used to improve electric power quality in distribution systems. It is well-known that D-STATCOM is a nonlinear, semi-defined and time-varying system. Therefore, control of D-STATCOM by the conventional control techniques is very difficult task. In this paper, the control of D-STATCOM is carried out by the neuro-fuzzy controller (NFC which has non-linear and robust structure. For this aim, an experimental setup based on three-level H-bridge inverter is constructed. Phase angle control method is used for control of D-STATCOM's output reactive power. Control algorithm for this experimental setup is prepared in MATLAB/Simulink and downloaded to DS1103 controller card. A Mamdani type NFC is designed for control of D-STATCOM's reactive current. Output of NFC is integrated to increase tracking performance of controller in steady state. The performance of D-STATCOM is experimentally evaluated by changing reference reactive current as on-line. The experimental results show that the proposed controller gives very satisfactory performance under different loading conditions.

  1. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  2. Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application.

    Science.gov (United States)

    Fernandes, Fabiano C; Rigden, Daniel J; Franco, Octavio L

    2012-01-01

    Antimicrobial peptides (AMPs) are widely distributed defense molecules and represent a promising alternative for solving the problem of antibiotic resistance. Nevertheless, the experimental time required to screen putative AMPs makes computational simulations based on peptide sequence analysis and/or molecular modeling extremely attractive. Artificial intelligence methods acting as simulation and prediction tools are of great importance in helping to efficiently discover and design novel AMPs. In the present study, state-of-the-art published outcomes using different prediction methods and databases were compared to an adaptive neuro-fuzzy inference system (ANFIS) model. Data from our study showed that ANFIS obtained an accuracy of 96.7% and a Matthew's Correlation Coefficient (MCC) of0.936, which proved it to be an efficient model for pattern recognition in antimicrobial peptide prediction. Furthermore, a lower number of input parameters were needed for the ANFIS model, improving the speed and ease of prediction. In summary, due to the fuzzy nature ofAMP physicochemical properties, the ANFIS approach presented here can provide an efficient solution for screening putative AMP sequences and for exploration of properties characteristic of AMPs.

  3. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  4. Dynamical recurrent neuro-fuzzy identification schemes employing switching parameter hopping.

    Science.gov (United States)

    Theodoridis, Dimitrios; Boutalis, Yiannis; Christodoulou, Manolis

    2012-04-01

    In this paper we analyze the identification problem which consists of choosing an appropriate identification model and adjusting its parameters according to some adaptive law, such that the response of the model to an input signal (or a class of input signals), approximates the response of the real system for the same input. For identification models we use fuzzy-recurrent high order neural networks. High order networks are expansions of the first-order Hopfield and Cohen-Grossberg models that allow higher order interactions between neurons. The underlying fuzzy model is of Mamdani type assuming a standard defuzzification procedure such as the weighted average. Learning laws are proposed which ensure that the identification error converges to zero exponentially fast or to a residual set when a modeling error is applied. There are two core ideas in the proposed method: (1) Several high order neural networks are specialized to work around fuzzy centers, separating in this way the system into neuro-fuzzy subsystems, and (2) the use of a novel method called switching parameter hopping against the commonly used projection in order to restrict the weights and avoid drifting to infinity.

  5. Human action recognition using meta-cognitive neuro-fuzzy inference system.

    Science.gov (United States)

    Subramanian, K; Suresh, S

    2012-12-01

    We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object level, and hence are used to describe the human action in McFIS classifier. McFIS classifier and its sequential learning algorithm is developed based on the principles of self-regulation observed in human meta-cognition. McFIS decides on what-to-learn, when-to-learn and how-to-learn based on the knowledge stored in the classifier and the information contained in the new training samples. The sequential learning algorithm of McFIS is controlled and monitored by the meta-cognitive components which uses class-specific, knowledge based criteria along with self-regulatory thresholds to decide on one of the following strategies: (i) Sample deletion (ii) Sample learning and (iii) Sample reserve. Performance of proposed McFIS based human action recognition system is evaluated using benchmark Weizmann and KTH video sequences. The simulation results are compared with well known SVM classifier and also with state-of-the-art action recognition results reported in the literature. The results clearly indicates McFIS action recognition system achieves better performances with minimal computational effort.

  6. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  7. New neuro-fuzzy system-based holey polymer fibers drawing process

    Science.gov (United States)

    Mohammed Salim, Omar Nameer

    2017-10-01

    Furnace temperature (T), draw tension (TE), and draw ratio (Dr) are the main parameters that could directly affect holey polymer fiber (HPF) production during the drawing stage. Therefore, a suitable mechanism to control (T), (TE), and (Dr) is required to enhance the HPF production process. The conventional approaches, such as observation and tuning technique, experience many difficulties in realizing the accurate values of (T), (TE), and (Dr) in addition to being expensive and time consuming. Therefore, an artificial intelligence model using the adaptive neuro-fuzzy system (ANFIS) method is proposed as an effective solution to achieve an accurate value of the main parameters that affect HPF drawing. Three ANFIS models are developed and tested to determine which one has the best performance for emulating the operation of HPF drawing tower. The ANFIS model with a gbell MF provides a better performance than Gaussian MF ANFIS model and triangular MF ANFIS model in terms of lower mean absolute error and mean square error. Furthermore, the proposed gbell MF model achieved the highest Q-Q response, which indicates the excellent performance of this model.

  8. Performance Analysis of Adaptive Neuro Fuzzy Inference System Control for MEMS Navigation System

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2014-01-01

    Full Text Available Characterized by small volume, low cost, and low power, MEMS inertial sensors are widely concerned and applied in navigation research, environmental monitoring, military, and so on. Notably in indoor and pedestrian navigation, its easily portable feature seems particularly indispensable and important. However, MEMS inertial sensor has inborn low precision and is impressionable and sometimes goes against accurate navigation or even becomes seriously unstable when working for a period of time and the initial alignment and calibration are invalid. A thought of adaptive neuro fuzzy inference system (ANFIS is relied on, and an assistive control modulated method is presented in this paper, which is newly designed to improve the inertial sensor performance by black box control and inference. The repeatability and long-time tendency of the MEMS sensors are tested and analyzed by ALLAN method. The parameters of ANFIS models are trained using reasonable fuzzy control strategy, with high-precision navigation system for reference as well as MEMS sensor property. The MEMS error nonlinearity is measured and modulated through the peculiarity of the fuzzy control convergence, to enhance the MEMS function and the whole MEMS system property. Performance of the proposed model has been experimentally verified using low-cost MEMS inertial sensors, and the MEMS output error is well compensated. The test results indicate that ANFIS system trained by high-precision navigation system can efficiently provide corrections to MEMS output and meet the requirement on navigation performance.

  9. Automatic Assessing of Tremor Severity Using Nonlinear Dynamics, Artificial Neural Networks and Neuro-Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    GEMAN, O.

    2014-02-01

    Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.

  10. RETRACTED: Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. Sections ;1. Introduction; and ;2. Modulation transfer function;, as well as Figures 1-3, plagiarize the article published by N. Gül and M. Efe in Turk J Elec Eng & Comp Sci 18 (2010) 71 (http://journals.tubitak.gov.tr/elektrik/issues/elk-10-18-1/elk-18-1-6-0811-9.pdf). Sections ;4. Adaptive neuro-fuzzy inference system; and ;6. Conclusion; duplicate parts of the articles previously published by the corresponding author et al in ;Expert Systems with Applications; 39 (2012) 13295-13304, http://dx.doi.org/10.1016/j.eswa.2012.05.072 and ;Expert Systems with Applications; 40 (2013) 281-286, http://dx.doi.org/10.1016/j.eswa.2012.07.076. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  11. An Adaptive Neuro Fuzzy Hybrid Control Strategy for a Semiactive Suspension with Magneto Rheological Damper

    Directory of Open Access Journals (Sweden)

    Pipit Wahyu Nugroho

    2014-04-01

    Full Text Available The main function of a vehicle suspension system is to isolate the vehicle body from external excitation in order to improve passenger comfort and road holding and to stabilise its movement. This paper considers the implementation of an adaptive neuro fuzzy inference system (ANFIS with a fuzzy hybrid control technique to control a quarter vehicle suspension system with a semiactive magneto rheological (MR damper. A quarter car suspension model is set up with an MR damper and a semiactive controller consisting of a fuzzy hybrid skyhook-groundhook controller and an ANFIS model is also designed. The fuzzy hybrid controller is used to generate the desired control force, and the ANFIS is designed to model the inverse dynamics of MR damper in order to obtain a desired current. Finally, numerical simulations of the semiactive suspensions with the ANFIS-hybrid controller, the traditional hybrid controller, and passive suspension are compared. The results of simulations show that the proposed ANFIS-hybrid controller provides better isolation performance than the other controllers.

  12. Grain classifier with computer vision using adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Sabanci, Kadir; Toktas, Abdurrahim; Kayabasi, Ahmet

    2017-09-01

    A computer vision-based classifier using an adaptive neuro-fuzzy inference system (ANFIS) is designed for classifying wheat grains into bread or durum. To train and test the classifier, images of 200 wheat grains (100 for bread and 100 for durum) are taken by a high-resolution camera. Visual feature data of the grains related to dimension (#4), color (#3) and texture (#5) as inputs of the classifier are mainly acquired for each grain using image processing techniques (IPTs). In addition to these main data, nine features are reproduced from the main features to ensure a varied population. Thus four sub-sets including categorized features of reproduced data are constituted to examine their effects on the classification. In order to simplify the classifier, the most effective visual features on the results are investigated. The data sets are compared with each other regarding classification accuracy. A simplified classifier having seven selected features is achieved with the best results. In the testing process, the simplified classifier computes the output with 99.46% accuracy and assorts the wheat grains with 100% accuracy. A system which classifies wheat grains with higher accuracy is designed. The proposed classifier integrated to industrial applications can automatically classify a variety of wheat grains. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    Science.gov (United States)

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.

  14. Hybrid neuro-fuzzy system for power generation control with environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Krishna Teerth; Pandit, Manjaree; Srivastava, Laxmi [Department of Electrical Engineering, Madhav Institute of Technology and Science (M.I.T.S.), Race Course Road, Gola Ka Mandir, Gwalior, Madhya Pradesh 474 005 (India)

    2008-11-15

    The real time controls at the central energy management centre in a power system, continuously track the load changes and endeavor to match the total power demand with total generation in such a manner that the operating cost is least. However due to the strict government regulations on environmental protection, operation at minimum cost is no longer the only criterion for dispatching electrical power. The idea behind the environmentally constrained combined economic dispatch formulation is to estimate the optimal generation allocation to generating units in such a manner that fuel cost and harmful emission levels are both simultaneously minimized for a given load demand. Conventional optimization techniques are cumbersome for such complex optimization tasks and are not suitable for on-line use due to increased computational burden. This paper proposes a neuro-fuzzy power dispatch method where the uncertainty involved with power demand is modeled as a fuzzy variable. Then Levenberg-Marquardt neural network (LMNN) is used to evaluate the optimal generation schedules. This model trains almost hundred times faster that the popular BP neural network. The proposed method has been tested on two test systems and found to be suitable for on-line combined environmental economic dispatch. (author)

  15. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  16. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

    Science.gov (United States)

    Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik

    2013-04-01

    SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.

  17. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    Science.gov (United States)

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  18. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Directory of Open Access Journals (Sweden)

    E. Golden Julie

    2016-01-01

    Full Text Available Wireless sensor networks (WSNs consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  19. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems.

    Science.gov (United States)

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  20. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Science.gov (United States)

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  1. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

    Science.gov (United States)

    Chiu, Stephen

    1996-01-01

    Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

  2. Bayesian Regression and Neuro-Fuzzy Methods Reliability Assessment for Estimating Streamflow

    Directory of Open Access Journals (Sweden)

    Yaseen A. Hamaamin

    2016-07-01

    Full Text Available Accurate and efficient estimation of streamflow in a watershed’s tributaries is prerequisite parameter for viable water resources management. This study couples process-driven and data-driven methods of streamflow forecasting as a more efficient and cost-effective approach to water resources planning and management. Two data-driven methods, Bayesian regression and adaptive neuro-fuzzy inference system (ANFIS, were tested separately as a faster alternative to a calibrated and validated Soil and Water Assessment Tool (SWAT model to predict streamflow in the Saginaw River Watershed of Michigan. For the data-driven modeling process, four structures were assumed and tested: general, temporal, spatial, and spatiotemporal. Results showed that both Bayesian regression and ANFIS can replicate global (watershed and local (subbasin results similar to a calibrated SWAT model. At the global level, Bayesian regression and ANFIS model performance were satisfactory based on Nash-Sutcliffe efficiencies of 0.99 and 0.97, respectively. At the subbasin level, Bayesian regression and ANFIS models were satisfactory for 155 and 151 subbasins out of 155 subbasins, respectively. Overall, the most accurate method was a spatiotemporal Bayesian regression model that outperformed other models at global and local scales. However, all ANFIS models performed satisfactory at both scales.

  3. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  4. Tomato grading system using machine vision technology and neuro-fuzzy networks (ANFIS

    Directory of Open Access Journals (Sweden)

    H Izadi

    2016-04-01

    Full Text Available Introduction: The quality of agricultural products is associated with their color, size and health, grading of fruits is regarded as an important step in post-harvest processing. In most cases, manual sorting inspections depends on available manpower, time consuming and their accuracy could not be guaranteed. Machine Vision is known to be a useful tool for external features measurement (e.g. size, shape, color and defects and in recent century, Machine Vision technology has been used for shape sorting. The main purpose of this study was to develop new method for tomato grading and sorting using Neuro-fuzzy system (ANFIS and to compare the accuracies of the ANFIS predicted results with those suggested by a human expert. Materials and Methods: In this study, a total of 300 image of tomatoes (Rev ground was randomly harvested, classified in 3 ripeness stage, 3 sizes and 2 health. The grading and sorting mechanism consisted of a lighting chamber (cloudy sky, lighting source and a digital camera connected to a computer. The images were recorded in a special chamber with an indirect radiation (cloudy sky with four florescent lampson each sides and camera lens was entire to lighting chamber by a hole which was only entranced to outer and covered by a camera lens. Three types of features were extracted from final images; Shap, color and texture. To receive these features, we need to have images both in color and binary format in procedure shown in Figure 1. For the first group; characteristics of the images were analysis that could offer information an surface area (S.A., maximum diameter (Dmax, minimum diameter (Dmin and average diameters. Considering to the importance of the color in acceptance of food quality by consumers, the following classification was conducted to estimate the apparent color of the tomato; 1. Classified as red (red > 90% 2. Classified as red light (red or bold pink 60-90% 3. Classified as pink (red 30-60% 4. Classified as Turning

  5. Decision support systems

    DEFF Research Database (Denmark)

    Jørgensen, L.N.; Noe, E.; Langvad, A.M.

    2007-01-01

    by these three groups to make their decisions varies and therefore different ways of using decision support systems need to be provided. Decision support systems need to be developed in close dialogue and collaboration with user groups.......The highly complex knowledge of scientific disciplines makes nuanced analysis and modelling possible. However, the information produced often does not reach farmers because it is presented in a way that does not correspond to the way their work is carried out in practice. The decision support...... 1000 farmers). A sociological investigation of farmers' decision-making styles in the area of crop protection has shown that arable farmers can be divided into three major groups: (a) system-orientated farmers, (b) experience-based farmers and (c) advisory-orientated farmers. The information required...

  6. A novel generic hebbian ordering-based fuzzy rule base reduction approach to mamdani neuro-fuzzy system.

    Science.gov (United States)

    Liu, Feng; Quek, Chai; Ng, Geok See

    2007-06-01

    There are two important issues in neuro-fuzzy modeling: (1) interpretability--the ability to describe the behavior of the system in an interpretable way--and (2) accuracy--the ability to approximate the outcome of the system accurately. As these two objectives usually exert contradictory requirements on the neuro-fuzzy model, certain compromise has to be undertaken. This letter proposes a novel rule reduction algorithm, namely, Hebb rule reduction, and an iterative tuning process to balance interpretability and accuracy. The Hebb rule reduction algorithm uses Hebbian ordering, which represents the degree of coverage of the samples by the rule, as an importance measure of each rule to merge the membership functions and hence reduces the number of the rules. Similar membership functions (MFs) are merged by a specified similarity measure in an order of Hebbian importance, and the resultant equivalent rules are deleted from the rule base. The rule with a higher Hebbian importance will be retained among a set of rules. The MFs are tuned through the least mean square (LMS) algorithm to reduce the modeling error. The tuning of the MFs and the reduction of the rules proceed iteratively to achieve a balance between interpretability and accuracy. Three published data sets by Nakanishi (Nakanishi, Turksen, & Sugeno, 1993), the Pat synthetic data set (Pal, Mitra, & Mitra, 2003), and the traffic flow density prediction data set are used as benchmarks to demonstrate the effectiveness of the proposed method. Good interpretability, as well as high modeling accuracy, are derivable simultaneously and are suitably benchmarked against other well-established neuro-fuzzy models.

  7. Measurement for Decision Support.

    Science.gov (United States)

    Sheehan, Bernard S.

    1984-01-01

    In order to explore possible impacts of changing information technology on the role of the institutional research analyst, three institutional research foundations, measurement, human information processing, and decision support technology are examined. (Author/MLW)

  8. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  9. Indirect adaptive control of nonlinear systems based on bilinear neuro-fuzzy approximation.

    Science.gov (United States)

    Boutalis, Yiannis; Christodoulou, Manolis; Theodoridis, Dimitrios

    2013-10-01

    In this paper, we investigate the indirect adaptive regulation problem of unknown affine in the control nonlinear systems. The proposed approach consists of choosing an appropriate system approximation model and a proper control law, which will regulate the system under the certainty equivalence principle. The main difference from other relevant works of the literature lies in the proposal of a potent approximation model that is bilinear with respect to the tunable parameters. To deploy the bilinear model, the components of the nonlinear plant are initially approximated by Fuzzy subsystems. Then, using appropriately defined fuzzy rule indicator functions, the initial dynamical fuzzy system is translated to a dynamical neuro-fuzzy model, where the indicator functions are replaced by High Order Neural Networks (HONNS), trained by sampled system data. The fuzzy output partitions of the initial fuzzy components are also estimated based on sampled data. This way, the parameters to be estimated are the weights of the HONNs and the centers of the output partitions, both arranged in matrices of appropriate dimensions and leading to a matrix to matrix bilinear parametric model. Based on the bilinear parametric model and the design of appropriate control law we use a Lyapunov stability analysis to obtain parameter adaptation laws and to regulate the states of the system. The weight updating laws guarantee that both the identification error and the system states reach zero exponentially fast, while keeping all signals in the closed loop bounded. Moreover, introducing a method of "concurrent" parameter hopping, the updating laws are modified so that the existence of the control signal is always assured. The main characteristic of the proposed approach is that the a priori experts information required by the identification scheme is extremely low, limited to the knowledge of the signs of the centers of the fuzzy output partitions. Therefore, the proposed scheme is not

  10. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  11. Prediction of forced expiratory volume in spirometric pulmonary function test using adaptive neuro fuzzy inference system.

    Science.gov (United States)

    Mythili, A; Sujatha, C M; Srinivasan, S; Ramakrishnan, S

    2012-01-01

    Spirometry is the most frequently performed clinical test to assess the dynamics of pulmonary function in human subjects. It measures airflow from fully inflated lungs through forced expiratory maneuver and generates large data set. However, these investigations often result in incomplete data sets due to the inability of the children and patients to perform this test. Hence, there is a requirement for prediction of significant parameters from the available incomplete data set. In this work, the results of model based prediction of two such significant parameters, Forced Expiratory Volume in one second (FEV1) and, Forced Expiratory Volume in six seconds (FEV6), are reported. The measured spirometric parameters are given as inputs to the Adaptive Neuro Fuzzy Inference System (ANFIS) which classifies data sets using fuzzy system based multilayer architecture. Triangular, Trapezoidal, Gaussian, Pi and Gbell membership functions are used to train and test the prediction process. The performance of the model is evaluated by computing their prediction error statistics of average value, standard deviation and root mean square. Results show that ANFIS model is capable of predicting FEV1 and FEV6 in both normal and abnormal subjects. Trapezoidal membership function predicted FEV1 with high precision and accuracy using a set of 21 rules. Similar prediction accuracy is observed in FEV6 using Gaussian membership function. Further, it is observed that prediction accuracy is found to be high for normal subjects with better correlation with measured values. It appears that this method is useful in enhancing diagnostic relevance of spirometric investigations in case of children and patients who are not able to perform the test as FEV1 and FEV6 are the useful indices to characterize pulmonary abnormalities.

  12. A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting

    Directory of Open Access Journals (Sweden)

    KAMPOUROPOULOS, K.

    2014-02-01

    Full Text Available This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithms (GA. The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.

  13. Neuro-fuzzy concepts applied for planning of the cereal crops: applications to the maize hybrids growing in a Romanian region.

    Science.gov (United States)

    Constantinescu, Alina

    2017-12-01

    The aim of our study is to improve the crop planning procedures using neuro-fuzzy concepts. In this paper we design a neuro-fuzzy procedure that offers the suitable maize hybrid, from a set of preferred hybrids, which must be organically farmed in the current year. Our method is a statistical one, on the one hand it processes data provided by the previous years and on the other hand it takes in account the vague character of the environmental factors. Also we present here some experimental results obtained by us on a certain set of real data, results which prove the efficiency of our approach.

  14. Fixed bed adsorption of tetracycline on a mesoporous activated carbon: Experimental study and neuro-fuzzy modeling

    Directory of Open Access Journals (Sweden)

    Mojtaba Hedayati Marzbali

    2017-10-01

    Full Text Available This study investigates the use of synthesized mesoporous carbon in the fixed bed adsorption, as a promising process, to eliminate tetracycline from wastewater. In order to study the adsorptive capability of adsorbent, particles were embedded in a laboratory-scale Pyrex glass tube. An increase in initial concentration and decrease in bed height and flow rate led to the higher adsorption capacity. The highest bed capacity of 76.97 mg g−1 was obtained using 4 cm bed depth, 4 mL min−1 and 50 mg L−1 influent concentration. The initial part of breakthrough curve perfectly matched the Adams–Bohart model at all experimental conditions. However, it was anticipated that Yoon–Nelson model could predict the whole curve acceptably, the results showed an inaccurate fitting. Therefore, the adaptive neuro-fuzzy inference system (ANFIS was used to predict the breakthrough curve using data series of adsorption experiments. This model indicated a good statistical prediction in terms of relative errors. Keywords: Apricot shell, Tetracycline, Column adsorption, Machine learning, Neuro-fuzzy

  15. Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system for prediction of financial and energy market data

    Directory of Open Access Journals (Sweden)

    A.K. Parida

    2016-09-01

    Full Text Available In this paper Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system is presented for the prediction and analysis of financial and electrical energy market data. The normally used TSK-type feedforward fuzzy neural network is unable to take the full advantage of the use of the linear fuzzy rule base in accurate input–output mapping and hence the consequent part of the rule base is made nonlinear using polynomial or arithmetic basis functions. Further the Chebyshev polynomial functions provide an expanded nonlinear transformation to the input space thereby increasing its dimension for capturing the nonlinearities and chaotic variations in financial or energy market data streams. Also the locally recurrent neuro-fuzzy information system (LRNFIS includes feedback loops both at the firing strength layer and the output layer to allow signal flow both in forward and backward directions, thereby making the LRNFIS mimic a dynamic system that provides fast convergence and accuracy in predicting time series fluctuations. Instead of using forward and backward least mean square (FBLMS learning algorithm, an improved Firefly-Harmony search (IFFHS learning algorithm is used to estimate the parameters of the consequent part and feedback loop parameters for better stability and convergence. Several real world financial and energy market time series databases are used for performance validation of the proposed LRNFIS model.

  16. Manifestation of a neuro-fuzzy model to produce landslide susceptibility map using remote sensing data derived parameters

    Science.gov (United States)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred

    Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86

  17. Adaptive neuro-fuzzy inference systems for semi-automatic discrimination between seismic events: a study in Tehran region

    Science.gov (United States)

    Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro

    2012-04-01

    Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.

  18. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    Science.gov (United States)

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works.

  19. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    Science.gov (United States)

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs.

  20. Risk analysis of lung cancer and effects of stress level on cancer risk through neuro-fuzzy model.

    Science.gov (United States)

    Yılmaz, Atınç; Arı, Seçkin; Kocabıçak, Ümit

    2016-12-01

    A significant number of people pass away due to limited medical resources for the battle with cancer. Fatal cases can be reduced by using the computational techniques in the medical and health system. If the cancer is diagnosed early, the chance of successful treatment increases. In this study, the risk of getting lung cancer will be obtained and patients will be provided with directions to exterminate the risk. After calculating the risk value for lung cancer, status of the patient's susceptibility and resistance to stress is used in determining the effects of stress to disease. In order to resolve the problem, the neuro-fuzzy logic model has been presented. When encouraging results are obtained from the study; the system will form a pre-diagnosis for the people who possibly can have risk of getting cancer due to working conditions or living standards. Therefore, this study will enable these people to take precautions to prevent the risk of cancer. In this study a new t-norm operator has been utilized in the problem. Finally, the performance of the proposed method has been compared to other methods. Beside this, the contribution of neuro-fuzzy logic model in the field of health and topics of artificial intelligence will also be examined in this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Short-term and long-term thermal prediction of a walking beam furnace using neuro-fuzzy techniques

    Directory of Open Access Journals (Sweden)

    Banadaki Hamed Dehghan

    2015-01-01

    Full Text Available The walking beam furnace (WBF is one of the most prominent process plants often met in an alloy steel production factory and characterized by high non-linearity, strong coupling, time delay, large time-constant and time variation in its parameter set and structure. From another viewpoint, the WBF is a distributed-parameter process in which the distribution of temperature is not uniform. Hence, this process plant has complicated non-linear dynamic equations that have not worked out yet. In this paper, we propose one-step non-linear predictive model for a real WBF using non-linear black-box sub-system identification based on locally linear neuro-fuzzy (LLNF model. Furthermore, a multi-step predictive model with a precise long prediction horizon (i.e., ninety seconds ahead, developed with application of the sequential one-step predictive models, is also presented for the first time. The locally linear model tree (LOLIMOT which is a progressive tree-based algorithm trains these models. Comparing the performance of the one-step LLNF predictive models with their associated models obtained through least squares error (LSE solution proves that all operating zones of the WBF are of non-linear sub-systems. The recorded data from Iran Alloy Steel factory is utilized for identification and evaluation of the proposed neuro-fuzzy predictive models of the WBF process.

  2. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  3. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  4. Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang

    Directory of Open Access Journals (Sweden)

    Ulfatun Hani'ah

    2016-06-01

    Full Text Available Peramalan pemakaian air pada bulan januari 2015 sampai April 2015 dapat dilakukan menggunakan perhitungan matematika dengan bantuan ilmu komputer. Metode yang digunakan adalah Adaptive Neuro Fuzzy Inference System (ANFIS dengan bantuan software MATLAB. Untuk pengujian program, dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Simpulan yang diperoleh adalah bahwa implementasi metode Adaptive Neuro-Fuzzy Inference System dalam peramalan pemakaian air yang pertama adalah membuat rancangan flowchart, melakukan clustering data menggunakan fuzzy C-Mean, menentukan neuron tiap-tiap lapisan, mencari nilai parameter dengan menggunakan LSE rekursif, lalu penentuan perhitungan error menggunakan sum square error (SSE dan membuat sistem peramalan pemakaian air dengan software MATLAB. Setelah dilakukan percobaan hasil yang menunjukkan SSE paling kecil adalah nilai learning rate 0.9 dan momentum 0.6 dengan SSE 0.0080107. Hasil peramalan pemakaian air pada bulan Januari adalah 3.836.138m3, bulan Februari adalah 3.595.188m3, bulan Maret adalah 3.596.416 m3, dan bulan April adalah 3.776.833 m3. 

  5. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms.

    Science.gov (United States)

    Razavi Termeh, Seyed Vahid; Kornejady, Aiding; Pourghasemi, Hamid Reza; Keesstra, Saskia

    2018-02-15

    Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the

  6. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data

    Science.gov (United States)

    Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng

    2017-02-01

    Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to

  7. Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning

    Science.gov (United States)

    Stieler, Florian; Yan, Hui; Lohr, Frank; Wenz, Frederik; Yin, Fang-Fang

    2009-01-01

    Background Parameter optimization in the process of inverse treatment planning for intensity modulated radiation therapy (IMRT) is mainly conducted by human planners in order to create a plan with the desired dose distribution. To automate this tedious process, an artificial intelligence (AI) guided system was developed and examined. Methods The AI system can automatically accomplish the optimization process based on prior knowledge operated by several fuzzy inference systems (FIS). Prior knowledge, which was collected from human planners during their routine trial-and-error process of inverse planning, has first to be "translated" to a set of "if-then rules" for driving the FISs. To minimize subjective error which could be costly during this knowledge acquisition process, it is necessary to find a quantitative method to automatically accomplish this task. A well-developed machine learning technique, based on an adaptive neuro fuzzy inference system (ANFIS), was introduced in this study. Based on this approach, prior knowledge of a fuzzy inference system can be quickly collected from observation data (clinically used constraints). The learning capability and the accuracy of such a system were analyzed by generating multiple FIS from data collected from an AI system with known settings and rules. Results Multiple analyses showed good agreements of FIS and ANFIS according to rules (error of the output values of ANFIS based on the training data from FIS of 7.77 ± 0.02%) and membership functions (3.9%), thus suggesting that the "behavior" of an FIS can be propagated to another, based on this process. The initial experimental results on a clinical case showed that ANFIS is an effective way to build FIS from practical data, and analysis of ANFIS and FIS with clinical cases showed good planning results provided by ANFIS. OAR volumes encompassed by characteristic percentages of isodoses were reduced by a mean of between 0 and 28%. Conclusion The study demonstrated a

  8. Decision time for clinical decision support systems.

    Science.gov (United States)

    O'Sullivan, Dympna; Fraccaro, Paolo; Carson, Ewart; Weller, Peter

    2014-08-01

    Clinical decision support systems are interactive software systems designed to help clinicians with decision-making tasks, such as determining a diagnosis or recommending a treatment for a patient. Clinical decision support systems are a widely researched topic in the computer science community, but their inner workings are less well understood by, and known to, clinicians. This article provides a brief explanation of clinical decision support systems and some examples of real-world systems. It also describes some of the challenges to implementing these systems in clinical environments and posits some reasons for the limited adoption of decision-support systems in practice. It aims to engage clinicians in the development of decision support systems that can meaningfully help with their decision-making tasks and to open a discussion about the future of automated clinical decision support as a part of healthcare delivery. © 2014 Royal College of Physicians.

  9. Tactical Decision Making and Decision Support Systems.

    Science.gov (United States)

    Harmon, Joel I.

    1986-01-01

    The use of computerized decision support systems in higher education for making tactical institutional decisions is reviewed, with attention to the kind of administrative problems that lie somewhere between programmed to nonprogrammed decisions and require a combination of computer support and administrative judgment. (MSE)

  10. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network Estimador neuro-fuzzy de concentração diária de biomassa da microalga Synechococcus nidulans

    Directory of Open Access Journals (Sweden)

    Vitor Badiale Furlong

    2013-02-01

    Full Text Available In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days, number of clusters (10, 30 and 50 clusters and internal weight softening parameter (Sigma (0.30, 0.45 and 0.60. These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A and 18 (B days of culture growth. The validations demonstrated that in long-term experiments (Validation A the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B, Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.Neste trabalho, foi construído um estimador neuro-fuzzy da concentração de biomassa da microalga Synechococcus nidulans a partir de concentrações iniciais da batelada, visando possibilitar a predição da produtividade. Nove experimentos em réplica foram realizados. O crescimento foi acompanhado diariamente pela transmitância do meio e mantido até o final da fase exponencial de crescimento. O treinamento das redes ocorreu segundo delineamento experimental 3³, os fatores foram o número de dias no vetor de entrada (3, 5 e 7 dias, o número de clusters (10, 30 e 50 clusters e o valor de abrandamento do filtro interno (Sigma (0,30, 0,45 e 0,60. A variável resposta foi o somatório do erro quadrático das validações. Estas possuíam 24 (A

  11. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Directory of Open Access Journals (Sweden)

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  12. Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Chaabene, Maher; Ben Ammar, Mohsen [The High Institute of Technological Studies (ISET), Sfax (Tunisia); Unite de commande de machines et energies renouvelables CMER, ENIS (Tunisia)

    2008-07-15

    This paper introduces a dynamic forecasting of irradiance and ambient temperature. The medium term forecasting (MTF) gives a daily meteorological behaviour. It consists of a neuro-fuzzy estimator based on meteorological parameters' behaviours during the days before, and on time distribution models. As for the short term forecasting (STF), it estimates, for a 5 min time step ahead, the meteorological parameters evolution. It is ensured by the Auto-Regressive Moving Average (ARMA) model of the MTF associated to a Kalman filter. STF uses instantaneous measured data, delivered by a data acquisition system, so as to accomplish the forecast. Herein we describe our method and we present forecasting results. Validation is based on measurements taken at the Energy and Thermal Research Centre (CRTEn) in the north of Tunisia. Since our work delivers accurate meteorological parameters forecasting, the obtained results can be easily adapted to forecast any solar conversion system output. (author)

  13. Detection of small bowel tumor in wireless capsule endoscopy images using an adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Alizadeh, Mahdi; Maghsoudi, Omid Haji; Sharzehi, Kaveh; Reza Hemati, Hamid; Kamali Asl, Alireza; Talebpour, Alireza

    2017-09-26

    Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate. The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images.

  14. A hierarchical two-phase framework for selecting genes in cancer datasets with a neuro-fuzzy system.

    Science.gov (United States)

    Lim, Jongwoo; Wang, Bohyun; Lim, Joon S

    2016-04-29

    Finding the minimum number of appropriate biomarkers for specific targets such as a lung cancer has been a challenging issue in bioinformatics. We propose a hierarchical two-phase framework for selecting appropriate biomarkers that extracts candidate biomarkers from the cancer microarray datasets and then selects the minimum number of appropriate biomarkers from the extracted candidate biomarkers datasets with a specific neuro-fuzzy algorithm, which is called a neural network with weighted fuzzy membership function (NEWFM). In this context, as the first phase, the proposed framework is to extract candidate biomarkers by using a Bhattacharyya distance method that measures the similarity of two discrete probability distributions. Finally, the proposed framework is able to reduce the cost of finding biomarkers by not receiving medical supplements and improve the accuracy of the biomarkers in specific cancer target datasets.

  15. Introducing an Evolving Local Neuro-Fuzzy Model--Application to modeling of car-following behavior.

    Science.gov (United States)

    Kazemi, Reza; Abdollahzade, Majid

    2015-11-01

    This paper proposes an Evolving Local Linear Neuro-Fuzzy Model for modeling and identification of nonlinear time-variant systems which change their nature and character over time. The proposed approach evolves through time to follow the structural changes in the time-variant dynamic systems. The evolution process is managed by a distance-based extended hierarchical binary tree algorithm, which decides whether the proposed evolving model should be adapted to the system variations or evolution is necessary. To represent an interesting but challenging example of the systems with changing dynamics, the proposed evolving model is applied to model car-following process in a traffic flow, as an online identification problem. Results of simulations demonstrate effectiveness of the proposed approach in modeling of the time-variant systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hinti, I.; Sakhrieh, A. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan); Samhouri, M.; Al-Ghandoor, A. [Department of Industrial Engineering, The Hashemite University, Zarqa 13115 (Jordan)

    2009-01-15

    This paper uses a neuro-fuzzy interface system (ANFIS) to study the effect of boost pressure on the efficiency, brake mean effective pressure (BMEP), and the brake specific fuel consumption (BSFC) of a single cylinder diesel engine. Experimental data were used as inputs to ANFIS to simulate the engine performance characteristics. The experimental as well as the model results emphasize the role of boost pressure in improving the different engine characteristics. The results show that the ANFIS technique can be used adequately to identify the effect of boost pressure on the different engine characteristics. In addition, different data points that were not used for ANFIS training were used to validate the developed models. The results suggest that ANFIS can be used accurately to predict the effect of boost pressure on the different engine characteristics. (author)

  17. Adaptive neuro-fuzzy inference system for classification of background EEG signals from ESES patients and controls.

    Science.gov (United States)

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3-9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  18. An Adaptive Neuro-Fuzzy Inference System for Sea Level Prediction Considering Tide-Generating Forces and Oceanic Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Li-Ching Lin Hsien-Kuo Chang

    2008-01-01

    Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.

  19. Application of Artificial Neuro-Fuzzy Logic Inference System for Predicting the Microbiological Pollution in Fresh Water

    Science.gov (United States)

    Bouharati, S.; Benmahammed, K.; Harzallah, D.; El-Assaf, Y. M.

    The classical methods for detecting the micro biological pollution in water are based on the detection of the coliform bacteria which indicators of contamination. But to check each water supply for these contaminants would be a time-consuming job and a qualify operators. In this study, we propose a novel intelligent system which provides a detection of microbiological pollution in fresh water. The proposed system is a hierarchical integration of an Artificial Neuro-Fuzzy Inference System (ANFIS). This method is based on the variations of the physical and chemical parameters occurred during bacteria growth. The instantaneous result obtained by the measurements of the variations of the physical and chemical parameters occurred during bacteria growth-temperature, pH, electrical potential and electrical conductivity of many varieties of water (surface water, well water, drinking water and used water) on the number Escherichia coli in water. The instantaneous result obtained by measurements of the inputs parameters of water from sensors.

  20. Forecasting Water Level Fluctuations of Urmieh Lake Using Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sepideh Karimi

    2012-06-01

    Full Text Available Forecasting lake level at various prediction intervals is an essential issue in such industrial applications as navigation, water resource planning and catchment management. In the present study, two data driven techniques, namely Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System, were applied for predicting daily lake levels for three prediction intervals. Daily water-level data from Urmieh Lake in Northwestern Iran were used to train, test and validate the used techniques. Three statistical indexes, coefficient of determination, root mean square error and variance accounted for were used to assess the performance of the used techniques. Technique inter-comparisons demonstrated that the GEP surpassed the ANFIS model at each of the prediction intervals. A traditional auto regressive moving average model was also applied to the same data sets; the obtained results were compared with those of the data driven approaches demonstrating superiority of the data driven models to ARMA.

  1. Prediction analysis and comparison between agriculture and mining stocks in Indonesia by using adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep

    2015-09-01

    The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.

  2. Clinical decision support systems.

    Science.gov (United States)

    Beeler, Patrick Emanuel; Bates, David Westfall; Hug, Balthasar Luzius

    2014-01-01

    Clinical decision support (CDS) systems link patient data with an electronic knowledge base in order to improve decision-making and computerised physician order entry (CPOE) is a requirement to set up electronic CDS. The medical informatics literature suggests categorising CDS tools into medication dosing support, order facilitators, point-of-care alerts and reminders, relevant information display, expert systems and workflow support. To date, CDS has particularly been recognised for improving processes. CDS successfully fostered prevention of deep-vein thrombosis, improved adherence to guidelines, increased the use of vaccinations, and decreased the rate of serious medication errors. However, CDS may introduce errors, and therefore the term "e-iatrogenesis" has been proposed to address unintended consequences. At least two studies reported severe treatment delays due to CPOE and CDS. In addition, the phenomenon of "alert fatigue" - arising from a high number of CDS alerts of low clinical significance - may facilitate overriding of potentially critical notifications. The implementation of CDS needs to be carefully planned, CDS interventions should be thoroughly examined in pilot wards only, and then stepwise introduced. A crucial feature of CPOE in combination with CDS is speed, since time consumption has been found to be a major factor determining failure. In the near future, the specificity of alerts will be improved, notifications will be prioritised and offer detailed advice, customisation of CDS will play an increasing role, and finally, CDS is heading for patient-centred decision support. The most important research question remains whether CDS is able to improve patient outcomes beyond processes.

  3. Genetic Neuro-Fuzzy System for the Intelligent Recognition of Stroke ...

    African Journals Online (AJOL)

    Genetic algorithm is used for optimizing fuzzy set or rules, neural network provides the self-learning paradigm while fuzzy logic handles vagueness or imprecision of fuzzy set. The evaluation results show an effective way of determining and assessing the three different levels of stroke. This provides a decision support for the ...

  4. Reservoir inflow forecasting with a modified coactive neuro-fuzzy inference system: a case study for a semi-arid region

    Science.gov (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Mohd, Nuruol Syuhadaa; Deo, Ravinesh C.; El-Shafie, Ahmed

    2017-10-01

    Existing forecast models applied for reservoir inflow forecasting encounter several drawbacks, due to the difficulty of the underlying mathematical procedures being to cope with and to mimic the naturalization and stochasticity of the inflow data patterns. In this study, appropriate adjustments to the conventional coactive neuro-fuzzy inference system (CANFIS) method are proposed to improve the mathematical procedure, thus enabling a better detection of the high nonlinearity patterns found in the reservoir inflow training data. This modification includes the updating of the back propagation algorithm, leading to a consequent update of the membership rules and the induction of the centre-weighted set rather than the global weighted set used in feature extraction. The modification also aids in constructing an integrated model that is able to not only detect the nonlinearity in the training data but also the wide range of features within the training data records used to simulate the forecasting model. To demonstrate the model's efficacy, the proposed CANFIS method has been applied to forecast monthly inflow data at Aswan High Dam (AHD), located in southern Egypt. Comparative analyses of the forecasting skill of the modified CANFIS and the conventional ANFIS model are carried out with statistical score indicators to assess the reliability of the developed method. The statistical metrics support the better performance of the developed CANFIS model, which significantly outperforms the ANFIS model to attain a low relative error value (23%), mean absolute error (1.4 BCM month-1), root mean square error (1.14 BCM month-1), and a relative large coefficient of determination (0.94). The present study ascertains the better utility of the modified CANFIS model in respect to the traditional ANFIS model applied in reservoir inflow forecasting for a semi-arid region.

  5. Continuous Decision Support

    Science.gov (United States)

    2015-12-24

    Decision trees [15, 39, 40] are another widely used tool in this situation and providing a decision maker with an optimal chronological sequence of...problem, or a decision analysis perspective that applies decision trees or multi-criteria methods to rank alternatives. In any case, there is an implicit...the inherent uncertainty of a decision problem in which the field of alternatives is unknown, and it is not surprising that even an educated estimate of

  6. Aproximación neuro-fuzzy para identificación de señales viales mediante tecnología infrarroja

    Directory of Open Access Journals (Sweden)

    G.N. Marichal

    2007-04-01

    Full Text Available Resumen: En este artículo se presenta un sistema basado en tecnología infrarroja para la clasificación de marcas viales empleando un sistema Neuro-Fuzzy como herramienta de clasificación. El sistema se ha testeado a partir de los datos suministrados cuando se ha instalado un prototipo en un robot móvil. Los resultados obtenidos son explicados en este artículo, haciendo hincapié en el diseño de nuevas reglas y la mejoría lograda mediante los métodos propuestos. Palabras clave: Control Inteligente, Robótica, Navegación de robots, Sistemas Neuro-Fuzzy

  7. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    Directory of Open Access Journals (Sweden)

    F. Sdao

    2013-02-01

    Full Text Available The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy (Sassi and area Rupestrian Churches sites. The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM, angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good

  8. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    Science.gov (United States)

    Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.

    2013-02-01

    The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the

  9. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff

    Science.gov (United States)

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-04-01

    SummaryModeling of rainfall-runoff dynamics is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity for calibrating the nonlinear relationships inherent in the rainfall-runoff process. In this study, the advantages of artificial neural networks and neuro-fuzzy system in continuous modeling of the daily and hourly behaviour of runoff were examined. Three different adaptive techniques were constructed and examined namely, Levenberg-Marquardt feed forward neural network, Bayesian regularization feed forward neural network, and neuro-fuzzy. In addition, the effects of data transformation on model performance were also investigated. This was done by examining the performance of the three network architectures and training algorithms using both raw and transformed data. Through inspection of the results it was found that although the model built on transformed data outperforms the model built on raw data, no significant differences were found between the forecast accuracies of the three examined models. A detailed comparison of the overall performance indicated that the neuro-fuzzy model performed better than both the Levenberg-Marquardt-FFNN and the Bayesian regularization-FFNN. In order to enable users to process the data easily, a graphic user interface (GUI) was developed. This program allows users to process the rainfall-runoff data, to train/test the model using various input options and to visualize results.

  10. NETWORK TRAFFIC FORCASTING IN INFORMATION-TELECOMMUNICATION SYSTEM OF PRYDNIPROVSK RAILWAYS BASED ON NEURO-FUZZY NETWORK

    Directory of Open Access Journals (Sweden)

    V. M. Pakhomovа

    2016-12-01

    Full Text Available Purpose. Continuous increase in network traffic in the information-telecommunication system (ITS of Prydniprovsk Railways leads to the need to determine the real-time network congestion and to control the data flows. One of the possible solutions is a method of forecasting the volume of network traffic (inbound and outbound using neural network technology that will prevent from server overload and improve the quality of services. Methodology. Analysis of current network traffic in ITS of Prydniprovsk Railways and preparation of sets: learning, test and validation ones was conducted as well as creation of neuro-fuzzy network (hybrid system in Matlab program and organization of the following phases on the appropriate sets: learning, testing, forecast adequacy analysis. Findings. For the fragment (Dnipropetrovsk – Kyiv in ITS of Prydniprovsk Railways we made a forecast (day ahead for volume of network traffic based on the hybrid system created in Matlab program; MAPE values are as follows: 6.9% for volume of inbound traffic; 7.7% for volume of outbound traffic. It was found that the average learning error of the hybrid system decreases in case of increase in: the number of inputs (from 2 to 4; the number of terms (from 2 to 5 of the input variable; learning sample power (from 20 to 100. A significant impact on the average learning error of the hybrid system is caused by the number of terms of its input variable. It was determined that the lowest value of the average learning error is provided by 4-input hybrid system, it ensures more accurate learning of the neuro-fuzzy network by the hybrid method. Originality. The work resulted in the dependences for the average hybrid system error of the network traffic volume forecasting for the fragment (Dnipropetrovsk-Kyiv in ITS Prydniprovsk Railways on: the number of its inputs, the number of input variable terms, the learning sample power for different learning methods. Practical value. Forecasting of

  11. Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists.

    Science.gov (United States)

    Buyukbingol, Erdem; Sisman, Arzu; Akyildiz, Murat; Alparslan, Ferda Nur; Adejare, Adeboye

    2007-06-15

    This paper proposes a new method, Adaptive Neuro-Fuzzy Inference System (ANFIS) to evaluate physicochemical descriptors of certain chemical compounds for their appropriate biological activities in terms of QSAR models with the aid of artificial neural network (ANN) approach combined with the principle of fuzzy logic. The ANFIS was utilized to predict NMDA (N-methyl-d-Aspartate) receptor binding activities of phencyclidine (PCP) derivatives. A data set of 38 drug-like compounds was coded with 1244 calculated molecular structure descriptors (clustered in 20 data sets) which were obtained from several sources, mainly from Dragon software. Prior to the progress to the ANFIS system, descriptors from the best subsets were selected using unsupervised forward selection (UFS) to eliminate redundancy and multicollinearity followed by fuzzy linear regression algorithm (FLR) which was used for variable selection. ANFIS was applied to train the final descriptors (Mor22m, E3s, R3v+, and R1e+) using a hybrid algorithm consisting of back-propagation and least-square estimation while the optimum number and shape of related functions were obtained through the subtractive clustering algorithm. Comparison of the proposed method with traditional methods, that is, multiple linear regression (MLR) and partial least-square (PLS) was also studied and the results indicated that the ANFIS model obtained from data sets achieved satisfactory accuracy.

  12. Hierarchical scaling of marketing decision support systems, Decision Support Systems

    NARCIS (Netherlands)

    B. Wierenga (Berend); P.A.M. Oude Ophuis (Peter); K.R.E. Huizingh; P.F.A.M. Campen, van

    1994-01-01

    textabstractMarketing Decision Support Systems (MDSS) show a large variety in functionality and form. In this paper a scale is developed that measures the sophistication of a Marketing Decision Support System. This scale, based on Guttman's Scalogram Analysis, is hierarchical in nature: more

  13. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  14. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  15. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process

    Science.gov (United States)

    Teimouri, Reza; Sohrabpoor, Hamed

    2013-12-01

    Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

  16. Fuzzy logic and adaptive neuro-fuzzy inference system for characterization of contaminant exposure through selected biomarkers in African catfish.

    Science.gov (United States)

    Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C

    2013-03-01

    This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.

  17. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    Science.gov (United States)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  18. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Ho-Hyun Lee

    2015-10-01

    Full Text Available Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  19. Neuro-Fuzzy Prediction of Cooperation Interaction Profile of Flexible Road Train Based on Hybrid Automaton Modeling

    Directory of Open Access Journals (Sweden)

    Banjanovic-Mehmedovic Lejla

    2016-01-01

    Full Text Available Accurate prediction of traffic information is important in many applications in relation to Intelligent Transport systems (ITS, since it reduces the uncertainty of future traffic states and improves traffic mobility. There is a lot of research done in the field of traffic information predictions such as speed, flow and travel time. The most important research was done in the domain of cooperative intelligent transport system (C-ITS. The goal of this paper is to introduce the novel cooperation behaviour profile prediction through the example of flexible Road Trains useful road cooperation parameter, which contributes to the improvement of traffic mobility in Intelligent Transportation Systems. This paper presents an approach towards the control and cooperation behaviour modelling of vehicles in the flexible Road Train based on hybrid automaton and neuro-fuzzy (ANFIS prediction of cooperation profile of the flexible Road Train. Hybrid automaton takes into account complex dynamics of each vehicle as well as discrete cooperation approach. The ANFIS is a particular class of the ANN family with attractive estimation and learning potentials. In order to provide statistical analysis, RMSE (root mean square error, coefficient of determination (R2 and Pearson coefficient (r, were utilized. The study results suggest that ANFIS would be an efficient soft computing methodology, which could offer precise predictions of cooperative interactions between vehicles in Road Train, which is useful for prediction mobility in Intelligent Transport systems.

  20. Migration modelling of phthalate from non-alcoholic beer bottles by adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Rafiei Nazari, Roshanak; Noorian, Simin; Arabameri, Majid

    2017-09-23

    There are limitations to the basic knowledge regarding various ways by which packaging components migrate into food as well as ways by which various conditions, elements and molecules related to this phenomenon are analysed. This research aimed to model phthalate migration from polyethylene terephthalate bottles containing non-alcoholic beer by performing adaptive neuro-fuzzy inference system (ANFIS) analysis. The data showed that storage temperature, contact surface and storage period correlates with the rate of migration. Migration of phthalate increases with storage duration gradually and reduces under different temperatures and contact surface. Moreover, increased temperature and storage duration resulted in an increase in migration level ranging from 0.6 μg L(-1) to 2.9 μg L(-1) . In summary, the present study used an ANFIS architecture which consists of three inputs (temperature, surface and storage period), Gauss-bell membership functions for each input variable and one output layer, which represent the migration level. The validation and training models showed an excellent match between the experimental and predicted values of ANFIS. Analysis of the model showed that ANFIS is a powerful tool for predicting phthalate migration from bottles containing non-alcoholic beer. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  2. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  3. Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system.

    Science.gov (United States)

    Chiu, Yung-Chia; Chiang, Chih-Wei; Lee, Tsung-Yu

    2017-10-01

    The aim of this study is to examine the potential of adaptive neuro fuzzy inference system (ANFIS) to estimate biochemical oxygen demand (BOD). To illustrate the applicability of ANFIS method, the upstream catchment of Feitsui Reservoir in Taiwan is chosen as the case study area. The appropriate input variables used to develop the ANFIS models are determined based on the t-test. The results obtained by ANFIS are compared with those by multiple linear regression (MLR) and artificial neural networks (ANNs). Simulated results show that the identified ANFIS model is superior to the traditional MLR and nonlinear ANNs models in terms of the performance evaluated by the Pearson coefficient of correlation, the root mean square error, the mean absolute percentage, and the mean absolute error. These results indicate that ANFIS models are more suitable than ANNs or MLR models to predict the nonlinear relationship within the variables caused by the complexity of aquatic systems and to produce the best fit of the measured BOD concentrations. ANFIS can be seen as a powerful predictive alternative to traditional water quality modeling techniques and extended to other areas to improve the understanding of river pollution trends.

  4. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  5. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    Science.gov (United States)

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model.

  6. Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)

    2008-12-15

    This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)

  7. Studies of relationships between free swelling index (FSI) and coal quality by regression and adaptive neuro fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Khorami, M. Tayebi [Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak Tehran (Iran, Islamic Republic of); Chelgani, S. Chehreh [Surface Science Western, Research Park, University of Western Ontario, London (Canada); Hower, James C. [Center for Applied Energy Research, University of Kentucky, Kexington (United States); Jorjani, E. [Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak Tehran (Iran, Islamic Republic of)

    2011-01-01

    The results of proximate, ultimate, and petrographic analysis for a wide range of Kentucky coal samples were used to predict Free Swelling Index (FSI) using multivariable regression and Adaptive Neuro Fuzzy Inference System (ANFIS). Three different input sets: (a) moisture, ash, and volatile matter; (b) carbon, hydrogen, nitrogen, oxygen, sulfur, and mineral matter; and (c) group-maceral analysis, mineral matter, moisture, sulfur, and R{sub max} were applied for both methods. Non-linear regression achieved the correlation coefficients (R{sup 2}) of 0.38, 0.49, and 0.70 for input sets (a), (b), and (c), respectively. By using the same input sets, ANFIS predicted FSI with higher R{sup 2} of 0.46, 0.82 and 0.95, respectively. Results show that input set (c) is the best predictor of FSI in both prediction methods, and ANFIS significantly can be used to predict FSI when regression results do not have appropriate accuracy. (author)

  8. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2014-08-22

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  9. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  10. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  11. Adaptive neuro-fuzzy inference system-applied QSAR with bond dissociation energy for antioxidant activities of phenolic compounds.

    Science.gov (United States)

    Jhin, Changho; Nho, Chu Won; Hwang, Keum Taek

    2017-10-01

    The aim of this study was to develop quantitative structure-activity relationship (QSAR) models for predicting antioxidant activities of phenolic compounds. The bond dissociation energy of O-H bond (BDE) was calculated by semi-empirical quantum chemical methods. As a new parameter for QSAR models, sum of reciprocals of BDE of enol and phenol groups (X BDE ) was calculated. Significant correlations were observed between X BDE and antioxidant activities, and X BDE was introduced as a parameter for developing QSAR models. Linear regression-applied QSAR models and adaptive neuro-fuzzy inference system (ANFIS)-applied QSAR models were developed. QSAR models by both of linear regression and ANFIS achieved high prediction accuracies. Among the developed models, ANFIS-applied models achieved better prediction accuracies than linear regression-applied models. From these results, the proposed parameter of X BDE was confirmed as an appropriate variable for predicting and analysing antioxidant activities of phenolic compounds. Also, the ANFIS could be applied on QSAR models to improve prediction accuracy.

  12. Integration of Adaptive Neuro-Fuzzy Inference System, Neural Networks and Geostatistical Methods for Fracture Density Modeling

    Directory of Open Access Journals (Sweden)

    Ja’fari A.

    2014-01-01

    Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.

  13. Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of Anaesthesia.

    Science.gov (United States)

    Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P

    2018-01-01

    The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.

  14. PERMODELAN KURVA KARAKTERISTIK INVERSE NON-STANDART PADA RELE ARUS LEBIH DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS

    Directory of Open Access Journals (Sweden)

    Erhankana Ardiana Putra

    2017-01-01

    Full Text Available Pada sistem kelistrikan terutama pada sistem proteksi kelistrikan dewasa ini sangat dibutuhkan sistem yang handal, sehingga  perkembangan pada sistem proteksi sudah semakin maju dengan adanya penggunaan rele digital. Rele digital digunakan dengan mempertimbangkan kecepatan, keakuratan dan serta flexible dalam sistem koordinasi. Flexibilitas ini dimaksudkan bahwa rele digital dapat digunakan menjadi rele arus lebih (overcurrent relay sesuai pembahasan tugas akhir ini dan dapat disetting menurut keinginan user sesuai karakteristik kurva OCR konvensional/standart (normal inverse, very inverse, long time inverse, extreme inverse yang akan digunakan dalam koordinasi. Jenis kurva pada rele digital juga dapat disetting diluar rumus kurva konvensional/standart yang seperti sudah disebutkan sebelumnya, kurva diluar rumusan standart disebut kurva rele non-standart. Kurva rele non-standart digunakan untuk memudahkan pengguna untuk menentukan waktu trip berdasarkan arus yang diinginkan dan sebagai solusi jika pada koordinasi proteksi mengalami kendala dalam koordinasi kurva rele. Pada tugas akhir ini akan dibahas bagaimana membuat atau memodelkan kurva karakteristik inverse overcurrent rele non-standart dengan menggunakan metode (Adaptive Neuro Fuzzy Inference System atau biasa disebut metode pembelajaran ANFIS. Kurva non-standart didapatkan dengan pengambilan titik-titik data baru berupa arus dan waktu trip sesuai keinginan user. Data baru tersebut akan digabungkan dengan data lama sehingga menghasilkan data non-standart yang nantinya akan dilakukan pembelajaran dengan metode ANFIS untuk mendapatkan desain kurva non-standart. Setelah didapatkan desain kurva non-standart akan dilakukan pengujian keakuratan dengan mengganti nilai MF (membership function didapatkan hasil rata-rata error terkecil 2,56% (MF=10 dan epoch=100. Pengujian selanjutnya dengan mengubah nilai epoch didapatkan nilai keakuratan dengan error terkecil pada epoch = 500. Simulasi pada

  15. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy

    Science.gov (United States)

    Kurtulus, Bedri; Razack, Moumtaz

    2010-02-01

    SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.

  16. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution.

    Science.gov (United States)

    Hong, Haoyuan; Panahi, Mahdi; Shirzadi, Ataollah; Ma, Tianwu; Liu, Junzhi; Zhu, A-Xing; Chen, Wei; Kougias, Ioannis; Kazakis, Nerantzis

    2017-10-23

    Floods are among Earth's most common natural hazards, and they cause major economic losses and seriously affect peoples' lives and health. This paper addresses the development of a flood susceptibility assessment that uses intelligent techniques and GIS. An adaptive neuro-fuzzy inference system (ANFIS) was coupled with a genetic algorithm and differential evolution for flood spatial modelling. The model considers thirteen hydrologic, morphologic and lithologic parameters for the flood susceptibility assessment, and Hengfeng County in China was chosen for the application of the model due to data availability and the 195 total flood events. The flood locations were randomly divided into two subsets, namely, training (70% of the total) and testing (30%). The Step-wise Weight Assessment Ratio Analysis (SWARA) approach was used to assess the relation between the floods and influencing parameters. Subsequently, two data mining techniques were combined with the ANFIS model, including the ANFIS-Genetic Algorithm and the ANFIS-Differential Evolution, to be used for flood spatial modelling and zonation. The flood susceptibility maps were produced, and their robustness was checked using the Receiver Operating Characteristic (ROC) curve. The results showed that the area under the curve (AUC) for all models was >0.80. The highest AUC value was for the ANFIS-DE model (0.852), followed by ANFIS-GA (0.849). According to the RMSE and MSE methods, the ANFIS-DE hybrid model is more suitable for flood susceptibility mapping in the study area. The proposed method is adaptable and can easily be applied in other sites for flood management and prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Decision Support Systems in Libraries.

    Science.gov (United States)

    Heindel, Allan; Napier, H. Albert

    Following a review of the contributions of computers and managerial science/operations research to the management of libraries, this paper introduces the concept of decision support systems. DSS, a blending of these techniques, can lead to more effective decisions by library managers. A case study of the utilization of a DSS in the budgeting…

  18. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    by employing wavelet transform under different fault conditions. Then the fuzzy logic rules are automatically trained based on the fuzzified fault features to diagnose the different faults. Neither additional sensor nor the capacitor voltages are needed in the proposed method. The high accuracy, good...... for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...

  19. Local linear model tree and Neuro-Fuzzy system for modelling and control of an experimental pH neutralization process

    OpenAIRE

    Petchinathan,G.; Valarmathi,K.; Devaraj,D.; Radhakrishnan,T. K.

    2014-01-01

    This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT) and an adaptive neuro-fuzzy inference system (ANFIS). The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. The identified models are implemented in the experimental pH system with IMC structure using a G...

  20. Application of adaptive neuro-fuzzy interference system models for prediction of forest fires in the usa on the basis of solar activity

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2015-01-01

    Full Text Available In this research we search for a functional dependence between the occurrence of forest fires in the USA and the factors which characterize the solar activity. For this purpose we used several methods (R/S analysis, Hurst index to establish potential links between the influx of some parameters from the sun and the occurrence of forest fires with lag of several days. We found evidence for a connection and developed a prognostic scenario based on the Adaptive neuro-fuzzy interference system (ANFIS technique. This scenario allows the prediction between 79-93% of forest fires. [Projekat Ministarstva nauke Republike Srbije, br. III47007

  1. Clinical Decision Support (CDS) Inventory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Clinical Decision Support (CDS) Inventory contains descriptions of past and present CDS projects across the Federal Government. It includes Federal projects,...

  2. Studies regarding the use of a neuro-fuzzy mathematical model in order to determine the technological parameters of the polyethylene pipes butt welding process

    Directory of Open Access Journals (Sweden)

    Gligor Alina

    2017-01-01

    Full Text Available The paper analyzes the possibility to use a neuro-fuzzy type mathematical model, with the final goal of establishing the welding parameters for new types and dimensions of pipes and fittings. Anticipating the developing dynamic of polyethylene-made elements, especially pipes and fittings, starting from the current situation when already a wide range of pipes and fittings with different wall thicknesses and nominal working pressures is produced and commercialized, and taking into account also new development, it was considered necessary to find out the welding parameters for any new pipe type and dimension. The usage of existing welding equipment for new pipe dimensions is impossible without a preliminary set of welding parameters: pressure, temperature, time. Based on experimentally validated data for discreet values of the characteristic welding parameters, there was generated, using mathematical laws and functions, a new model that can estimate the necessary values of the welding parameters for any value within their variation range. As a result, the mathematical model created using neuro-fuzzy techniques allows the obtaining of the correct value for certain parameters (e.g. required welding pressure for any values of the input variables pipe diameter and pipe thickness.

  3. A neuro-fuzzy warning system for combating cybersickness in the elderly caused by the virtual environment on a TFT-LCD.

    Science.gov (United States)

    Liu, Cheng-Li

    2009-05-01

    Only a few studies in the literature have focused on the effects of age on virtual environment (VE) sickness susceptibility and even less research was carried out focusing on the elderly. In general, the elderly usually browse VEs on a thin film transistor liquid crystal display (TFT-LCD) at home or somewhere, not a head-mounted display (HMD). While the TFT-LCD is used to present VEs, this set-up does not physically enclose the user. Therefore, this study investigated the factors that contribute to cybersickness among the elderly when immersed into a VE on TFT-LCD, including exposure durations, navigation rotating speeds and angle of inclination. Participants were elderly, with an average age of 69.5 years. The results of the first experiment showed that the rate of simulator sickness questionnaire (SSQ) scores increases significantly with navigational rotating speed and duration of exposure. However, the experimental data also showed that the rate of SSQ scores does not increase with the increase in angle of inclination. In applying these findings, the neuro-fuzzy technology was used to develop a neuro-fuzzy cybersickness-warning system integrating fuzzy logic reasoning and neural network learning. The contributing factors were navigational rotating speed and duration of exposure. The results of the second experiment showed that the proposed system can efficiently determine the level of cybersickness based on the associated subjective sickness estimates and combat cybersickness due to long exposure to a VE.

  4. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous {sup 99m}Tc/{sup 201}Tl SPECT imaging: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2015-01-11

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  5. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.

    Science.gov (United States)

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-10-01

    Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Sistem Kontrol Robot Arm 5 DOF Berbasis Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (MFCC dan Adaptive Neuro-Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    WS Mada Sanjaya

    2016-12-01

    Full Text Available Telah dilakukan penelitian yang menggambarkan implementasi pengenalan pola suara untuk mengontrol gerak robot arm 5 DoF dalam mengambil dan menyimpan benda. Dalam penelitian ini metode yang digunakan adalah Mel-Frequency Cepstrum Coefficients (MFCC dan Adaptive Neuro-Fuzzy Inferense System (ANFIS. Metode MFCC digunakan untuk ekstraksi ciri sinyal suara, sedangkan ANFIS digunakan sebagai metode pembelajaran untuk pengenalan pola suara. Pada proses pembelajaran ANFIS data latih yang digunakan sebanyak 6 ciri. Data suara terlatih dan data suara tak terlatih digunakan untuk pengujian sistem pengenalan pola suara. Hasil pengujian menunjukkan tingkat keberhasilan, untuk data suara terlatih sebesar 87,77% dan data tak terlatih sebesar 78,53%. Sistem pengenalan pola suara ini telah diaplikasikan dengan baik untuk mengerakan robot arm 5 DoF berbasis mikrokontroler Arduino. Have been implemented of sound pattern recognition to control 5 DoF of Arm Robot to pick and place an object. In this research used Mel-Frequency Cepstrum Coefficients (MFCC and Adaptive Neuro-Fuzzy Interferense System (ANFIS methods. MFCC method used for features extraction of sound signal, meanwhile ANFIS used to learn sound pattern recognition. On ANFIS method data learning use 6 features. Trained and not trained data used to examine the system of sound pattern identification. The result show the succesfull level, for trained data 87.77% and for not trained data 78.53%. Sound pattern identification system was appliedto controlled 5 DoF arm robot based Arduino microcontroller.

  7. Supporting medical decisions with vector decision trees.

    Science.gov (United States)

    Sprogar, M; Kokol, P; Zorman, M; Podgorelec, V; Yamamoto, R; Masuda, G; Sakamoto, N

    2001-01-01

    The article presents the extension of a common decision tree concept to a multidimensional - vector - decision tree constructed with the help of evolutionary techniques. In contrary to the common decision tree the vector decision tree can make more than just one suggestion per input sample. It has the functionality of many separate decision trees acting on a same set of training data and answering different questions. Vector decision tree is therefore simple in its form, is easy to use and analyse and can express some relationships between decisions not visible before. To explore and test the possibilities of this concept we developed a software tool--DecRain--for building vector decision trees using the ideas of evolutionary computing. Generated vector decision trees showed good results in comparison to classical decision trees. The concept of vector decision trees can be safely and effectively used in any decision making process.

  8. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were

  9. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  10. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department.

    Science.gov (United States)

    Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail

    2013-01-01

    Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in

  11. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    Science.gov (United States)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2016-08-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS

  12. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system

    National Research Council Canada - National Science Library

    Kim, Chan Moon; Parnichkun, Manukid

    2017-01-01

    .... In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system (k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data...

  13. Decision support using nonparametric statistics

    CERN Document Server

    Beatty, Warren

    2018-01-01

    This concise volume covers nonparametric statistics topics that most are most likely to be seen and used from a practical decision support perspective. While many degree programs require a course in parametric statistics, these methods are often inadequate for real-world decision making in business environments. Much of the data collected today by business executives (for example, customer satisfaction opinions) requires nonparametric statistics for valid analysis, and this book provides the reader with a set of tools that can be used to validly analyze all data, regardless of type. Through numerous examples and exercises, this book explains why nonparametric statistics will lead to better decisions and how they are used to reach a decision, with a wide array of business applications. Online resources include exercise data, spreadsheets, and solutions.

  14. Development of an intelligent neuro-fuzzy maneuver identification system for autonomous aircraft

    Science.gov (United States)

    Krishnamurthy, Karthik

    2000-10-01

    This dissertation reports an investigation of the design of intelligent systems for the high-level control of autonomous aircraft. In a departure from recent work in this field, an attempt has been made to synthesize a high-level control architecture that emulates a human pilot's reasoning capabilities. The system architecture uses pilot-type classifications of aircraft modes (the various maneuvers that pilots are trained to execute) within all decision-making and reasoning processes. A flight control system structured in terms of these modes offers scope for efficient combination of concepts from artificial intelligence, control theory and aviation practice. A critical component of this intelligent flight controller is an automated mode inference system. This innovative system extracts high-level knowledge of the current maneuver (or segment of the overall mission) from sensed measurements of dynamic state variables. Using a blend of soft computing approaches, this inference engine consistently identifies the correct maneuver being flown, even in the presence of moderate sensor noise and data ambiguities. In the process of creating this inference engine, a novel scheme to generate training data sets for neural networks has been developed. This data generation scheme permits complete coverage of the aircraft's capability envelope; this coverage is achieved without recourse to the voluminous flight data (actual or simulated) normally required to train neural networks. The data generation scheme thus significantly reduces developmental effort. Apart from this innovation, pilot-like techniques to cope with the phenomenon of chatter (where identification rapidly switches back-and-forth between modes) have been developed and implemented within the inference system. This dissertation also discusses the development of logic to interpret and implement commands from remote operators, using high-level knowledge of the current mission segment. This knowledge is used to

  15. Strategic Decision Making and Group Decision Support Systems.

    Science.gov (United States)

    McGrath, Michael Robert

    1986-01-01

    Institutional strategic decisions require the participation of every individual with a significant stake in the solution, and group decision support systems are being developed to respond to the political and consensual problems of collective decision-making. (MSE)

  16. EVALUATING ENVIRONMENTAL DECISION SUPPORT TOOLS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.

    2004-10-01

    Effective contaminated land management requires a number of decisions addressing a suite of technical, economic, and social concerns. These concerns include human health risks, ecological risks, economic costs, technical feasibility of proposed remedial actions, and the value society places on clean-up and re-use of formerly contaminated lands. Decision making, in the face of uncertainty and multiple and often conflicting objectives, is a vital and challenging role in environmental management that affects a significant economic activity. Although each environmental remediation problem is unique and requires a site-specific analysis, many of the key decisions are similar in structure. This has led many to attempt to develop standard approaches. As part of the standardization process, attempts have been made to codify specialist expertise into decision support tools. This activity is intended to facilitate reproducible and transparent decision making. The process of codifying procedures has also been found to be a useful activity for establishing and rationalizing management processes. This study will have two primary objectives. The first is to develop taxonomy for Decision Support Tools (DST) to provide a framework for understanding the different tools and what they are designed to address in the context of environmental remediation problems. The taxonomy will have a series of subject areas for the DST. From these subjects, a few key areas will be selected for further study and software in these areas will be identified. The second objective, will be to review the existing DST in the selected areas and develop a screening matrix for each software product.

  17. INTELLIGENT DECISION SUPPORT ON FOREX

    OpenAIRE

    V. A. Rybak; H. M. Sulaiman

    2014-01-01

    A new technology of intelligent decision support on Forex, including forming algorithms of trading signals, rules for the training sample based on technical indicators, which have the highest correlation with the price, the method of reducing the number of losing trades, is proposed. The last is based on an analysis of the wave structure of the market, while the beginning of the cycle (the wave number one) is offered to be identified using Bill Williams Oscillator (Awesome oscillator). The pr...

  18. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  19. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.

    Science.gov (United States)

    Zarei, Kobra; Atabati, Morteza; Kor, Kamalodin

    2014-06-01

    A quantitative structure-activity relationship (QSAR) was developed to predict the toxicity of substituted benzenes to Tetrahymena pyriformis. A set of 1,497 zero- to three-dimensional descriptors were used for each molecule in the data set. A major problem of QSAR is the high dimensionality of the descriptor space; therefore, descriptor selection is one of the most important steps. In this paper, bee algorithm was used to select the best descriptors. Three descriptors were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). Then the model was corrected for unstable compounds (the compounds that can be ionized in the aqueous solutions or can easily metabolize under some conditions). Finally squared correlation coefficients were obtained as 0.8769, 0.8649 and 0.8301 for training, test and validation sets, respectively. The results showed bee-ANFIS can be used as a powerful model for prediction of toxicity of substituted benzenes to T. pyriformis.

  20. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Science.gov (United States)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  1. Local linear model tree and Neuro-Fuzzy system for modelling and control of an experimental pH neutralization process

    Directory of Open Access Journals (Sweden)

    G. Petchinathan

    2014-06-01

    Full Text Available This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT and an adaptive neuro-fuzzy inference system (ANFIS. The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. The identified models are implemented in the experimental pH system with IMC structure using a GUI developed in the MATLAB -SIMULINK platform. The main aim is to illustrate the online modelling and control of the experimental setup. The results of real-time control of an experimental pH process using the Internal Model Control (IMC strategy are also presented.

  2. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    CERN Document Server

    Chau, K T; Chan, C C; Shen, W X

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.

  3. Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magneto rheological dampers

    Energy Technology Data Exchange (ETDEWEB)

    Sarrafan, Atabak; Zareh, Seiyed Hamid; Khayyat, Amir Ali Akbar; Zabihollah, Abolghassem [Sharif University of Technology, Teheran (Iran, Islamic Republic of)

    2012-04-15

    Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feed forward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse dynamics model, and the forward dynamics model of the MR dampers, respectively. The most important characteristic of the proposed intelligent control strategy is its inherent robustness and its ability to handle the non-linear behavior of the system. Besides, no mathematical model needed to calculate forces produced by MR dampers. According to linearized Morison equation, wave-induced forces are determined. The performance of the proposed neuro-fuzzy control system is compared with that of a traditional semi-active control strategy, i.e., clipped optimal control system with LQG-target controller, through computer simulations, while the uncontrolled system response is used as the baseline. It is demonstrated that the design of proposed control system framework is more effective than that of the clipped optimal control scheme with LQG-target controller to reduce the vibration of offshore structure. Furthermore, the control strategy is very important for semi-active control.

  4. Visual Decision Support Tool for Supporting Asset ...

    Science.gov (United States)

    Abstract:Managing urban water infrastructures faces the challenge of jointly dealing with assets of diverse types, useful life, cost, ages and condition. Service quality and sustainability require sound long-term planning, well aligned with tactical and operational planning and management. In summary, the objective of an integrated approach to infrastructure asset management is to assist utilities answer the following questions:•Who are we at present?•What service do we deliver?•What do we own?•Where do we want to be in the long-term?•How do we get there?The AWARE-P approach (www.aware-p.org) offers a coherent methodological framework and a valuable portfolio of software tools. It is designed to assist water supply and wastewater utility decision-makers in their analyses and planning processes. It is based on a Plan-Do-Check-Act process and is in accordance with the key principles of the International Standards Organization (ISO) 55000 standards on asset management. It is compatible with, and complementary to WERF’s SIMPLE framework. The software assists in strategic, tactical, and operational planning, through a non-intrusive, web-based, collaborative environment where objectives and metrics drive IAM planning. It is aimed at industry professionals and managers, as well as at the consultants and technical experts that support them. It is easy to use and maximizes the value of information from multiple existing data sources, both in da

  5. Decision support, analytics, and business intelligence

    CERN Document Server

    Power, Daniel J

    2013-01-01

    Competition is becoming more intense and decision makers are encountering increasing complexity, rapid change, and higher levels of risk. In many situations, the solution is more and better computerized decision support, especially analytics and business intelligence. Today managers need to learn about and understand computerized decision support. If a business is to succeed, managers must know much more about information technology solutions. This second edition of a powerful introductory book is targeted at busy managers and MBA students who need to grasp the basics of computerized decision support, including the following: What are analytics? What is a decision support system? How can managers identify opportunities to create innovative computerized support? Inside, the author addresses these questions and some 60 more fundamental questions that are key to understanding the rapidly changing realm of computerized decision support. In a short period of time, you'll "get up to speed" on decision support, anal...

  6. Decision Support Systems: The Need, The Challenge.

    Science.gov (United States)

    Roberts, Michael M.

    1982-01-01

    The evolution of decision support systems (DSS) has enabled computer and information technology to assist the management process of decision making. Decision support systems are designed to look forward in time, to forecast outcomes of uncertain events. A 70-item bibliography is included. (MLW)

  7. A neuro-fuzzy model to predict the inflow to the guardialfiera multipurpose dam (Southern Italy at medium-long time scales

    Directory of Open Access Journals (Sweden)

    L.F. Termite

    2013-09-01

    Full Text Available Intelligent computing tools based on fuzzy logic and artificial neural networks have been successfully applied in various problems with superior performances. A new approach of combining these two powerful tools, known as neuro-fuzzy systems, has increasingly attracted scientists in different fields. Few studies have been undertaken to evaluate their performances in hydrologic modeling. Specifically are available rainfall-runoff modeling typically at very short time scales (hourly, daily or event for the real-time forecasting of floods with in input precipitation and past runoff (i.e. inflow rate and in few cases models for the prediction of the monthly inflows to a dam using the past inflows as input. This study presents an application of an Adaptive Network-based Fuzzy Inference System (ANFIS, as a neuro-fuzzy-computational technique, in the forecasting of the inflow to the Guardialfiera multipurpose dam (CB, Italy at the weekly and monthly time scale. The latter has been performed both directly at monthly scale (monthly input data and iterating the weekly model. Twenty-nine years of rainfall, temperature, water level in the reservoir and releases to the different uses were available. In all simulations meteorological input data were used and in some cases also the past inflows. The performance of the defined ANFIS models were established by different efficiency and correlation indices. The results at the weekly time scale can be considered good, with a Nash- Sutcliffe efficiency index E = 0.724 in the testing phase. At the monthly time scale, satisfactory results were obtained with the iteration of the weekly model for the prediction of the incoming volume up to 3 weeks ahead (E = 0.574, while the direct simulation of monthly inflows gave barely satisfactory results (E = 0.502. The greatest difficulties encountered in the analysis were related to the reliability of the available data. The results of this study demonstrate the promising

  8. Customer Decision Support Systems: Resources for Student Decision Making

    Directory of Open Access Journals (Sweden)

    Cara Okleshen Peters, Ph.D.

    2005-07-01

    Full Text Available This paper highlights the potential of customer decision support systems (CDSS to assist students in education-related decision making. Faculty can use these resources to more effectively advise students on various elements of college life, while students can employ them to more actively participate in their own learning and improve their academic experience. This conceptual paper summarizes consumer decision support systems (CDSS concepts and presents exemplar websites students could utilize to support their education-related decision making. Finally, the authors discuss the potential benefits and drawbacks such resources engender from a student perspective and conclude with directions for future research.

  9. Customer Decision Support Systems: Resources for Student Decision Making

    OpenAIRE

    Cara Okleshen Peters, Ph.D.; David A. Bradbard, Ph.D.; Mary C. Martin, Ph.D.

    2005-01-01

    This paper highlights the potential of customer decision support systems (CDSS) to assist students in education-related decision making. Faculty can use these resources to more effectively advise students on various elements of college life, while students can employ them to more actively participate in their own learning and improve their academic experience. This conceptual paper summarizes consumer decision support systems (CDSS) concepts and presents exemplar websites students could utili...

  10. Platform decisions supported by gaming

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan

    2007-01-01

    is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...

  11. Financial Decision Making Support System

    OpenAIRE

    Lobanova, E. N.; Zmitrovich, A. I.; Voshevoz, A. A.; Krivko-Krasko, A. V.

    2010-01-01

    In this article we consider concepts and components of the Financial Decision Making System that is being developed in the Institute of Business and Management Technology, BSU. Such system can be successfully used either for training experts in financial analytics and financial management or for financial managers and financial directors in an enterprise for the effective financial decision making.

  12. Text summarization as a decision support aid

    OpenAIRE

    Workman, T Elizabeth; Fiszman, Marcelo; Hurdle, John F

    2012-01-01

    Abstract Background PubMed data potentially can provide decision support information, but PubMed was not exclusively designed to be a point-of-care tool. Natural language processing applications that summarize PubMed citations hold promise for extracting decision support information. The objective of this study was to evaluate the efficiency of a text summarization application called Semantic MEDLINE, enhanced with a novel dynamic summarization method, in identifying decision support data. Me...

  13. Integrating Decision Support and Social Networks

    Directory of Open Access Journals (Sweden)

    Francisco Antunes

    2012-01-01

    Full Text Available We elaborate on the shifting of decision support systems towards social networking, which is based on the concepts of Web 2.0 and Semantic Web technology. As the characteristics of the relevant components are different from traditional decision support systems, we present necessary adaptations when adopting social networks for decision support within an organization. We also present organizational obstacles when adopting/using such systems and clues to overcome them.

  14. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    Science.gov (United States)

    Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.

  15. Use of an adaptive neuro-fuzzy inference system to obtain the correspondence among balance, gait, and depression for Parkinson's disease

    Science.gov (United States)

    Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo

    2013-03-01

    The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.

  16. Quantitative Structure-Activity Relationship Model for HCVNS5B inhibitors based on an Antlion Optimizer-Adaptive Neuro-Fuzzy Inference System.

    Science.gov (United States)

    Elaziz, Mohamed Abd; Moemen, Yasmine S; Hassanien, Aboul Ella; Xiong, Shengwu

    2018-01-24

    The global prevalence of hepatitis C Virus (HCV) is approximately 3% and one-fifth of all HCV carriers live in the Middle East, where Egypt has the highest global incidence of HCV infection. Quantitative structure-activity relationship (QSAR) models were used in many applications for predicting the potential effects of chemicals on human health and environment. The adaptive neuro-fuzzy inference system (ANFIS) is one of the most popular regression methods for building a nonlinear QSAR model. However, the quality of ANFIS is influenced by the size of the descriptors, so descriptor selection methods have been proposed, although these methods are affected by slow convergence and high time complexity. To avoid these limitations, the antlion optimizer was used to select relevant descriptors, before constructing a nonlinear QSAR model based on the PIC 50 and these descriptors using ANFIS. In our experiments, 1029 compounds were used, which comprised 579 HCVNS5B inhibitors (PIC 50   ~14). The experimental results showed that the proposed QSAR model obtained acceptable accuracy according to different measures, where [Formula: see text] was 0.952 and 0.923 for the training and testing sets, respectively, using cross-validation, while [Formula: see text] was 0.8822 using leave-one-out (LOO).

  17. Neuro-fuzzy modeling to predict physicochemical and microbiological parameters of partially dried cherry tomato during storage: effects on water activity, temperature and storage time.

    Science.gov (United States)

    Tao, Yang; Li, Yong; Zhou, Ruiyun; Chu, Dinh-Toi; Su, Lijuan; Han, Yongbin; Zhou, Jianzhong

    2016-10-01

    In the study, osmotically dehydrated cherry tomatoes were partially dried to water activity between 0.746 and 0.868, vacuum-packed and stored at 4-30 °C for 60 days. Adaptive neuro-fuzzy inference system (ANFIS) was utilized to predict the physicochemical and microbiological parameters of these partially dried cherry tomatoes during storage. Satisfactory accuracies were obtained when ANFIS was used to predict the lycopene and total phenolic contents, color and microbial contamination. The coefficients of determination for all the ANFIS models were higher than 0.86 and showed better performance for prediction compared with models developed by response surface methodology. Through ANFIS modeling, the effects of storage conditions on the properties of partially dried cherry tomatoes were visualized. Generally, contents of lycopene and total phenolics decreased with the increase in water activity, temperature and storage time, while aerobic plate count and number of yeasts and molds increased at high water activities and temperatures. Overall, ANFIS approach can be used as an effective tool to study the quality decrease and microbial pollution of partially dried cherry tomatoes during storage, as well as identify the suitable preservation conditions.

  18. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    Science.gov (United States)

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparison of adaptive neuro-fuzzy inference system and artificial neural networks for estimation of oxidation parameters of sunflower oil added with some natural byproduct extracts.

    Science.gov (United States)

    Karaman, Safa; Ozturk, Ismet; Yalcin, Hasan; Kayacier, Ahmed; Sagdic, Osman

    2012-01-15

    Apple pomace, orange peel and potato peel, which have important antioxidative compounds in their structures, are byproducts obtained from fruit or vegetable processing. Use of vegetable extracts is popular and a common technique in the preservation of vegetable oils. Utilization of apple pomace, orange peel and potato peel extracts as natural antioxidant agents in refined sunflower oil during storage in order to reduce or retard oxidation was investigated. All byproduct extracts were added at 3000 ppm to sunflower oil and different nonlinear models were constructed for the estimation of oxidation parameters. Peroxide values of sunflower oil samples containing different natural extracts were found to be lower compared to control sample. Adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN) were used for the construction of models that could predict the oxidation parameters and were compared to multiple linear regression (MLR) for the determination of the best model with high accuracy. It was shown that the ANFIS model with high coefficient of determination (R(2) = 0.999) performed better compared to ANN (R(2) = 0.899) and MLR (R(2) = 0.636) for the prediction of oxidation parameters Incorporation of different natural byproduct extracts into sunflower oil provided an important retardation in oxidation during storage. Effective predictive models were constructed for the estimation of oxidation parameters using ANFIS and ANN modeling techniques. These models can be used to predict oxidative parameter values. Copyright © 2011 Society of Chemical Industry.

  20. Neuro-Fuzzy Model for the Prediction and Classification of the Fused Zone Levels of Imperfections in Ti6Al4V Alloy Butt Weld

    Directory of Open Access Journals (Sweden)

    Giuseppe Casalino

    2013-01-01

    Full Text Available Weld imperfections are tolerable defects as stated from the international standard. Nevertheless they can produce a set of drawbacks like difficulty to assembly, reworking, limited fatigue life, and surface imperfections. In this paper Ti6Al4V titanium butt welds were produced by CO2 laser welding. The following tolerable defects were analysed: weld undercut, excess weld metal, excessive penetration, incomplete filled groove, root concavity, and lack of penetration. A neuro-fuzzy model for the prediction and classification of the defects in the fused zone was built up using the experimental data. Weld imperfections were connected to the welding parameters by feed forward neural networks. Then the imperfections were clustered using the C-means fuzzy clustering algorithm. The clusters were named after the ISO standard classification of the levels of imperfection for electron and laser beam welding of aluminium alloys and steels. Finally, a single-value metric was proposed for the assessment of the overall bead geometry quality. It combined an index for each defect and functioned according to the criterion “the-smallest-the-best.”

  1. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon.

    Science.gov (United States)

    Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F

    2014-10-15

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Indirect adaptive control of unknown multi variable nonlinear systems with parametric and dynamic uncertainties using a new neuro-fuzzy system description.

    Science.gov (United States)

    Theodoridis, Dimitrios; Boutalis, Yiannis; Christodoulou, Manolis

    2010-04-01

    The indirect adaptive regulation of unknown nonlinear dynamical systems with multiple inputs and states (MIMS) under the presence of dynamic and parameter uncertainties, is considered in this paper. The method is based on a new neuro-fuzzy dynamical systems description, which uses the fuzzy partitioning of an underlying fuzzy systems outputs and high order neural networks (HONN's) associated with the centers of these partitions. Every high order neural network approximates a group of fuzzy rules associated with each center. The indirect regulation is achieved by first identifying the system around the current operation point, and then using its parameters to device the control law. Weight updating laws for the involved HONN's are provided, which guarantee that, under the presence of both parameter and dynamic uncertainties, both the identification error and the system states reach zero, while keeping all signals in the closed loop bounded. The control signal is constructed to be valid for both square and non square systems by using a pseudoinverse, in Moore-Penrose sense. The existence of the control signal is always assured by employing a novel method of parameter hopping instead of the conventional projection method. The applicability is tested on well known benchmarks.

  3. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system.

    Science.gov (United States)

    Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin

    2017-03-05

    Ammonia (NH3) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human's vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with "Gbell" membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R(2)) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    Science.gov (United States)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  5. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.

    Science.gov (United States)

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2015-09-01

    This paper presents a new model based on adaptive neuro-fuzzy inference systems (ANFIS) to predict oxygen consumption (V˙O2) from easily measured variables. The ANFIS prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. Each module was developed based on clustering a training set of data samples relevant to that module and then the ANFIS prediction model was tested against a validation data set. Fifty-eight participants performed the Meyer and Flenghi step-test, during which heart rate (HR) and V˙O2 were measured. Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated V˙O2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml kg(-1) min(-1)) demonstrated better performance than Rennie et al.'s (MAE = 7 ml kg(-1) min(-1)) and Keytel et al.'s (MAE = 6 ml kg(-1) min(-1)) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml kg(-1) min(-1)) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for V˙O2 estimation without the need for individual calibration. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Prediction of effect of natural antioxidant compounds on hazelnut oil oxidation by adaptive neuro-fuzzy inference system and artificial neural network.

    Science.gov (United States)

    Yalcin, Hasan; Ozturk, Ismet; Karaman, Safa; Kisi, Ozgur; Sagdic, Osman; Kayacier, Ahmed

    2011-05-01

    In this study, natural compounds including gallic acid, ellagic acid, quercetin, β-carotene, and retinol were used as antioxidant agents in order to prevent and decrease oxidation in hazelnut oil. Quercetin showed the strongest antioxidative effect among the antioxidative agents, during storage. The accuracy of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) models was studied to estimate the oil samples' peroxide value (PV), free fatty acid (FFA), and iodine values (IV). The root mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R(2)) statistics were used to evaluate the models' accuracy. Comparison of the models showed that the ANFIS model performed better than the ANN and multiple linear regressions (MLR) models for estimating the PV, FFA, and IV. The values of R(2) and RMSE were found to be 0.9966 and 2.51, 0.6269 and 88.55, 0.5120 and 101.8 for the ANFIS, ANN, and MLR models for PV in testing period, respectively. The MLR was found to be insufficient for estimating various properties of the oil samples. © 2011 Institute of Food Technologists®

  7. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei, S., E-mail: Sadegh.Ghanei@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Vafaeenezhad, H. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Kashefi, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Eivani, A.R. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Mazinani, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency.

  8. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    Science.gov (United States)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  9. Evaluating the potential of artificial neural network and neuro-fuzzy techniques for estimating antioxidant activity and anthocyanin content of sweet cherry during ripening by using image processing.

    Science.gov (United States)

    Taghadomi-Saberi, Saeedeh; Omid, Mahmoud; Emam-Djomeh, Zahra; Ahmadi, Hojjat

    2014-01-15

    This paper presents a versatile way for estimating antioxidant activity and anthocyanin content at different ripening stages of sweet cherry by combining image processing and two artificial intelligence (AI) techniques. In comparison with common time-consuming laboratory methods for determining these important attributes, this new way is economical and much faster. The accuracy of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models was studied to estimate the outputs. Sensitivity analysis and principal component analysis were used with ANN and ANFIS respectively to specify the most effective attributes on outputs. Among the designed ANNs, two hidden layer networks with 11-14-9-1 and 11-6-20-1 architectures had the highest correlation coefficients and lowest error values for modeling antioxidant activity (R = 0.93) and anthocyanin content (R = 0.98) respectively. ANFIS models with triangular and two-term Gaussian membership functions gave the best results for antioxidant activity (R = 0.87) and anthocyanin content (R = 0.90) respectively. Comparison of the models showed that ANN outperformed ANFIS for this case. By considering the advantages of the applied system and the accuracy obtained in somewhat similar studies, it can be concluded that both techniques presented here have good potential to be used as estimators of proposed attributes. © 2013 Society of Chemical Industry.

  10. Applying Absolute Residuals as Evaluation Criterion for Estimating the Development Time of Software Projects by Means of a Neuro-Fuzzy Approach

    Directory of Open Access Journals (Sweden)

    Noel García-Díaz

    2016-11-01

    Full Text Available In the software development field, software practitioners expend between 30% and 40% more effort than is predicted. Accordingly, researchers have proposed new models for estimating the development effort such that the estimations of these models are close to actual ones. In this study, an application based on a new neuro-fuzzy system (NFS is analyzed. The NFS accuracy was compared to that of a statistical multiple linear regression (MLR model. The criterion for evaluating the accuracy of estimation models has mainly been the Magnitude of Relative Error (MRE, however, it was recently found that MRE is asymmetric, and the use of Absolute Residuals (AR has been proposed, therefore, in this study, the accuracy results of the NFS and MLR were based on AR. After a statistical paired t-test was performed, results showed that accuracy of the New-NFS is statistically better than that of the MLR at the 99% confidence level. It can be concluded that a new-NFS could be used for predicting the effort of software development projects when they have been individually developed on a disciplined process.

  11. A novel approach for exposure assessment in air pollution epidemiological studies using neuro-fuzzy inference systems: Comparison of exposure estimates and exposure-health associations.

    Science.gov (United States)

    Blanes-Vidal, Victoria; Cantuaria, Manuella Lech; Nadimi, Esmaeil S

    2017-04-01

    Many epidemiological studies have used proximity to sources as air pollution exposure assessment method. However, proximity measures are not generally good surrogates because of their complex non-linear relationship with exposures. Neuro-fuzzy inference systems (NFIS) can be used to map complex non-linear systems, but its usefulness in exposure assessment has not been extensively explored. We present a novel approach for exposure assessment using NFIS, where the inputs of the model were easily-obtainable proximity measures, and the output was residential exposure to an air pollutant. We applied it to a case-study on NH3 pollution, and compared health effects and exposures estimated from NFIS, with those obtained from emission-dispersion models, and linear and non-linear regression proximity models, using 10-fold cross validation. The agreement between emission-dispersion and NFIS exposures was high (Root-mean-square error (RMSE) =0.275, correlation coefficient (r)=0.91) and resulted in similar health effect estimates. Linear models showed poor performance (RMSE=0.527, r=0.59), while non-linear regression models resulted in heterocedasticity, non-normality and clustered data. NFIS could be a useful tool for estimating individual air pollution exposures in epidemiological studies on large populations, when emission-dispersion data are not available. The tradeoff between simplicity and accuracy needs to be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. DECISIONS, METHODS AND TECHNIQUES RELATED TO DECISION SUPPORT SYSTEMS (DSS

    Directory of Open Access Journals (Sweden)

    Boghean Florin

    2015-07-01

    Full Text Available Generalised uncertainty, a phenomenon that today’s managers are facing as part of their professional experience, makes it impossible to anticipate the way the business environment will evolve or what will be the consequences of the decisions they plan to implement. Any decision making process within the company entails the simultaneous presence of a number of economic, technical, juridical, human and managerial variables. The development and the approval of a decision is the result of decision making activities developed by the decision maker and sometimes by a decision support team or/and a decision support system (DSS. These aspects related to specific applications of decision support systems in risk management will be approached in this research paper. Decisions in general and management decisions in particular are associated with numerous risks, due to their complexity and increasing contextual orientation. In each business entity, there are concerns with the implementation of risk management in order to improve the likelihood of meeting objectives, the trust of the parties involved, increase the operational safety and security as well as the protection of the environment, minimise losses, improve organisational resilience in order to diminish the negative impact on the organisation and provide a solid foundation for decision making. Since any business entity is considered to be a wealth generator, the analysis of their performance should not be restricted to financial efficiency alone, but will also encompass their economic efficiency as well. The type of research developed in this paper entails different dimensions: conceptual, methodological, as well as empirical testing. Subsequently, the conducted research entails a methodological side, since the conducted activities have resulted in the presentation of a simulation model that is useful in decision making processes on the capital market. The research conducted in the present paper

  13. Using computerised decision-support systems.

    Science.gov (United States)

    Dowding, Dawn

    Decision support is an extension of electronic health record or electronic patient record systems. As well as enabling health professionals to look up information about individual patients stored in the system and to consult evidence-based guidance, they give advice on the treatment and management most appropriate for that patient. They are designed to help with the process of clinical decision making. Computerised decision-support systems match patient characteristics to a computerised knowledge base to produce patient-specific assessments or recommendations. Decision support can be paper-based, but computerised systems have the advantage of being able to quickly process patient-specific information and match it to computerised decision rules or algorithms. This article discusses the benefits and limitations of using decision-support technology, which is becoming increasingly important as the use of health information technology systems becomes more common across healthcare.

  14. Decision support for customers in electronic environments

    Directory of Open Access Journals (Sweden)

    František Dařena

    2011-01-01

    Full Text Available Due to the rapid spread of computer technologies into day-to-day lives many purchases or purchase-related decisions are made in the electronic environment of the Web. In order to handle information overload that is the result of the availability of many web-based stores, products and services, consumers use decision support aids that help with need recognition, information retrieval, filtering, comparisons and choice making. Decision support systems (DSS discipline spreads about 40 years back and was mostly focused on assisting managers. However, online environments and decision support in such environments bring new opportunities also to the customers. The focus on decision support for consumers is also not investigated to the large extent and not documented in the literature. Providing customers with well designed decision aids can lead to lower cognitive decision effort associated with the purchase decision which results in significant increase of consumer’s confidence, satisfaction, and cost savings. During decision making process the subjects can chose from several methods (optimizing, reasoning, analogizing, and creating, DSS types (data-, model-, communication-, document-driven, and knowledge-based and benefit from different modern technologies. The paper investigates popular customer decision making aids, such as search, filtering, comparison, ­e-negotiations and auctions, recommendation systems, social network systems, product design applications, communication support etc. which are frequently related to e-commerce applications. Results include the overview of such decision supporting tools, specific examples, classification according the way how the decisions are supported, and possibilities of applications of progressive technologies. The paper thus contributes to the process of development of the interface between companies and the customers where customer decisions take place.

  15. 'My kidneys, my choice, decision aid': supporting shared decision making.

    Science.gov (United States)

    Fortnum, Debbie; Smolonogov, Tatiana; Walker, Rachael; Kairaitis, Luke; Pugh, Debbie

    2015-06-01

    For patients with chronic kidney disease (CKD) who are progressing to end-stage kidney disease (ESKD) a decision of whether to undertake dialysis or conservative care is a critical component of the patient journey. Shared decision making for complex decisions such as this could be enhanced by a decision aid, a practice which is well utilised in other disciplines but limited for nephrology. A multidisciplinary team in Australia and New Zealand (ANZ) utilised current decision-making theory and best practice to develop the 'My Kidneys, My Choice', a decision aid for the treatment of kidney disease. A patient-centred, five-sectioned tool is now complete and freely available to all ANZ units to support the ESKD education and shared decision-making process. Distribution and education have occurred across ANZ and evaluation of the decision aid in practice is in the first phase. Development of a new tool such as an ESKD decision aid requires vision, multidisciplinary input and ongoing implementation resources. This tool is being integrated into ANZ, ESKD education practice and is promoting the philosophy of shared decision making. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  16. Future Directions in Supported Decision-Making

    Directory of Open Access Journals (Sweden)

    Anna Arstein-Kerslake

    2017-03-01

    Full Text Available Supported decision-making is at the forefront of modern disability research. This is due to Article 12 of the Convention on the Rights of Persons with Disabilities (CRPD, which creates a state obligation to provide support for the exercise of legal capacity. This turned the practice of supported decision-making into a human rights imperative. Government and funding agencies are increasingly focusing their attention on the area. Researchers are similarly increasing their interest in the field. The impending danger is that the rush of interest in the area will overshadow the original intention of supported decision-making: to ensure that people with cognitive disability are provided with the freedom and the tools to participate as equal citizens and for every individual to be free to direct their own life. This article explores the theoretical foundations of supported decision-making and the evolution of supported decision-making research. It explains the research that is emerging in leading jurisdictions, the United States and Australia, and its potential to transform disability services and laws related to decision-making. Finally, it identifies areas of concern in the direction of such research and provides recommendations for ensuring that supported decision-making remains protective of the rights, will and preferences of people with cognitive disability.

  17. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.

    Science.gov (United States)

    Kar, Subrata; Majumder, D Dutta

    2017-08-01

    Investigation of brain cancer can detect the abnormal growth of tissue in the brain using computed tomography (CT) scans and magnetic resonance (MR) images of patients. The proposed method classifies brain cancer on shape-based feature extraction as either benign or malignant. The authors used input variables such as shape distance (SD) and shape similarity measure (SSM) in fuzzy tools, and used fuzzy rules to evaluate the risk status as an output variable. We presented a classifier neural network system (NNS), namely Levenberg-Marquardt (LM), which is a feed-forward back-propagation learning algorithm used to train the NN for the status of brain cancer, if any, and which achieved satisfactory performance with 100% accuracy. The proposed methodology is divided into three phases. First, we find the region of interest (ROI) in the brain to detect the tumors using CT and MR images. Second, we extract the shape-based features, like SD and SSM, and grade the brain tumors as benign or malignant with the concept of SD function and SSM as shape-based parameters. Third, we classify the brain cancers using neuro-fuzzy tools. In this experiment, we used a 16-sample database with SSM (μ) values and classified the benignancy or malignancy of the brain tumor lesions using the neuro-fuzzy system (NFS). We have developed a fuzzy expert system (FES) and NFS for early detection of brain cancer from CT and MR images. In this experiment, shape-based features, such as SD and SSM, were extracted from the ROI of brain tumor lesions. These shape-based features were considered as input variables and, using fuzzy rules, we were able to evaluate brain cancer risk values for each case. We used an NNS with LM, a feed-forward back-propagation learning algorithm, as a classifier for the diagnosis of brain cancer and achieved satisfactory performance with 100% accuracy. The proposed network was trained with MR image datasets of 16 cases. The 16 cases were fed to the ANN with 2 input neurons, one

  18. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Qiuju, E-mail: xqj197610@163.com [Institute of Information Technology, Heilongjiang Bayi Agricultural University, Daqing 163319 (China); Ni, Ji-qin [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 (United States); Su, Zhongbin [Institute of Electric and Information, Northeast Agricultural University, Harbin 150030 (China)

    2017-03-05

    Highlights: • A prediction model of ammonia emission was built based on the indoor ammonia concentration prediction model using ANFIS. • Five kinds of membership functions were compared to get a well fitted prediction model. • Compared with the BP and MLRM model, the ANFIS prediction model with “gbell” membership function has the best performances. - Abstract: Ammonia (NH{sub 3}) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human’s vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with “Gbell” membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R{sup 2}) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.

  19. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    Science.gov (United States)

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems.

    Science.gov (United States)

    Asadollahi-Baboli, M

    2012-07-01

    The purpose of this study was to develop quantitative structure-activity relationship models for N-benzoylindazole derivatives as inhibitors of human neutrophil elastase. These models were developed with the aid of classification and regression trees (CART) and an adaptive neuro-fuzzy inference system (ANFIS) combined with a shuffling cross-validation technique using interpretable descriptors. More than one hundred meaningful descriptors, representing various structural characteristics for all 51 N-benzoylindazole derivatives in the data set, were calculated and used as the original variables for shuffling CART modelling. Five descriptors of average Wiener index, Kier benzene-likeliness index, subpolarity parameter, average shape profile index of order 2 and folding degree index selected by the shuffling CART technique have been used as inputs of the ANFIS for prediction of inhibition behaviour of N-benzoylindazole derivatives. The results of the developed shuffling CART-ANFIS model compared to other techniques, such as genetic algorithm (GA)-partial least square (PLS)-ANFIS and stepwise multiple linear regression (MLR)-ANFIS, are promising and descriptive. The satisfactory results r2p = 0.845, Q2(LOO) = 0.861, r2(L25%O) = 0.829, RMSE(LOO)  = 0.305 and RMSE(L25%O)  = 0.336) demonstrate that shuffling CART-ANFIS models present the relationship between human neutrophil elastase inhibitor activity and molecular descriptors, and they yield predictions in excellent agreement with the experimental values.

  1. Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data

    Science.gov (United States)

    Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed

    2017-12-01

    Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude (Mw), the Joyner-Boore distance (R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.

  2. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    Science.gov (United States)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is

  3. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  4. Estimation of Flow Duration Curve for Ungauged Catchments using Adaptive Neuro-Fuzzy Inference System and Map Correlation Method: A Case Study from Turkey

    Science.gov (United States)

    Kentel, E.; Dogulu, N.

    2015-12-01

    In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.

  5. Geospatial decision support systems for societal decision making

    Science.gov (United States)

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  6. New product development with dynamic decision support

    CSIR Research Space (South Africa)

    Venter, JP

    2007-08-01

    Full Text Available of this study is to apply decision support techniques (especially Bayesian networks) to the area of new product development management in order to address some of the shortcomings. The research approach is one of decision structuring and modeling. A three...

  7. New product development with dynamic decision support

    CSIR Research Space (South Africa)

    Venter, Jacobus P

    2009-06-01

    Full Text Available . The objective of this study is to apply decision support techniques (especially Bayesian networks) to the area of new product development management in order to address some of the shortcomings. The research approach is one of decision structuring and modeling...

  8. Decision Support Systems and Public Policy Analysis.

    Science.gov (United States)

    Hall, Owen P., Jr.

    1986-01-01

    This article outlines an approach for developing and applying computerized decision support systems to the formulation and evaluation of public policy. To meet the challenge of financial resource limitations, new management systems must be developed to improve both governmental efficiency and decision-making effectiveness. (Author/BS)

  9. A Geospatial Decision Support System Toolkit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a working prototype Geospatial Decision Support Toolkit (GeoKit) that will enable scientists, agencies, and stakeholders to configure and deploy...

  10. Maintenance decision support system deployment guide

    Science.gov (United States)

    2008-07-01

    This is a guide for transportation professionals on why and how to deploy winter Maintenance Decision Support Systems (MDSS). Adverse winter weather can cause traffic delays and crashes. Treating the effects of winter weather can also have impacts on...

  11. A Decision Support System for Academic Scheduling.

    Science.gov (United States)

    Burleson, Donald K.; Leivano, Rodrigo J.

    1986-01-01

    Describes the use of a decision support system to operate on a database for academic scheduling. Discusses the scheduling environment, database subsystem, dialog subsystem, modeling subsystem, and output formats. (JM)

  12. A distributed clinical decision support system architecture

    OpenAIRE

    Shaker H. El-Sappagh; El-Masri, Samir

    2014-01-01

    This paper proposes an open and distributed clinical decision support system architecture. This technical architecture takes advantage of Electronic Health Record (EHR), data mining techniques, clinical databases, domain expert knowledge bases, available technologies and standards to provide decision-making support for healthcare professionals. The architecture will work extremely well in distributed EHR environments in which each hospital has its own local EHR, and it satisfies the compatibi...

  13. Solutions for decision support in university management

    Directory of Open Access Journals (Sweden)

    Andrei STANCIU

    2009-06-01

    Full Text Available The paper proposes an overview of decision support systems in order to define the role of a system to assist decision in university management. The authors present new technologies and the basic concepts of multidimensional data analysis using models of business processes within the universities. Based on information provided by scientific literature and on the authors’ experience, the study aims to define selection criteria in choosing a development environment for designing a support system dedicated to university management. The contributions consist in designing a data warehouse model and models of OLAP analysis to assist decision in university management.

  14. Evaluating Ethical Responsibility in Inverse Decision Support

    Directory of Open Access Journals (Sweden)

    Ahmad M. Kabil

    2012-01-01

    Full Text Available Decision makers have considerable autonomy on how they make decisions and what type of support they receive. This situation places the DSS analyst in a different relationship with the client than his colleagues who support regular MIS applications. This paper addresses an ethical dilemma in “Inverse Decision Support,” when the analyst supports a decision maker who requires justification for a preconceived selection that does not correspond to the best option that resulted from the professional resolution of the problem. An extended application of the AHP model is proposed for evaluating the ethical responsibility in selecting a suboptimal alternative. The extended application is consistent with the Inverse Decision Theory that is used extensively in medical decision making. A survey of decision analysts is used to assess their perspective of using the proposed extended application. The results show that 80% of the respondents felt that the proposed extended application is useful in business practices. 14% of them expanded the usability of the extended application to academic teaching of the ethics theory. The extended application is considered more usable in a country with a higher Transparency International Corruption Perceptions Index (TICPI than in a country with a lower one.

  15. Group decision support using Toulmin argument structures

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, T. [Argonne National Lab., IL (United States)]|[George Mason Univ., Fairfax, VA (United States). School of Information Technology and Engineering; Sage, A.P. [George Mason Univ., Fairfax, VA (United States). School of Information Technology and Engineering

    1996-12-31

    This paper addresses the need for sound science, technology, and management assessment relative to environmental policy decision making through an approach that involves a logical structure for evidence, a framed decision-making process, and an environment that encourages group participation. Toulmin-based logic possesses these characteristics and is used as the basis for development of a group decision support system. This system can support several user groups, such as pesticide policy-making experts, who can use the support system to state arguments for or against an important policy issue, and pest management experts, who can use the system to assist in identifying and evaluating alternatives for controlling pests on agricultural commodities. The resulting decision support system assists in improving the clarity of the lines of reasoning used in specific situations; the warrants, grounds, and backings that are used to support claims and specific lines of reasoning; and the contradictions, rebuttals, and arguments surrounding each step in the reasoning process associated with evaluating a claim or counterclaim. Experts and decisions makers with differing views can better understand each other`s thought processes. The net effect is enhanced communications and understanding of the whole picture and, in many cases, consensus on decisions to be taken.

  16. Aplicação de uma rede neuro Fuzzy para a previsão do comportamento do tráfego veicular urbano na região metropolitana da cidade de São Paulo

    Directory of Open Access Journals (Sweden)

    Ricardo Pinto Ferreira

    2011-01-01

    Full Text Available The increase in consumption by Brazilian families, a consequence of the economic stability experienced in the country in recent years, has resulted in an increase in the volume of items that need to be picked up and delivered daily in the city of São Paulo. This situation has led to profound changes in the market for the pickup and delivery of orders, making the distribution highly complex and directly affecting the efficiency of this service. Diverse techniques and software, some based on artificial intelligence, are used to predict the behavior of vehicular urban traffic in the São Paulo metropolitan region. In this paper, artificial neural networks were combined with fuzzy logic to form a neuro-fuzzy network in order to predict the behavior of traffic. The results indicate that the application of the neuro-fuzzy network for predicting the behavior of urban vehicular traffic in the city of São Paulo yields positive results.

  17. Collaborative Control Theory and Decision Support Systems

    Directory of Open Access Journals (Sweden)

    Shimon Y. Nof

    2017-08-01

    Full Text Available Collaborative Decision Support Systems, CDSS, depend on cost-effective collaboration among the decision participants. Those may include, in addition to human decision makers, non-human entities such as robots, software and hardware agents, sensors, and autonomous instruments. The purpose of this article is to explore the impact that CCT, the Collaborative Control Theory, has on cyber supported augmentation of collaboration in general, and its proven and potential impacts on CDSS in particular. Three recent case studies are discussed. The correlation between CDSS decision process and quality; and the level of CCT-based collaboration augmentation and the resulting level of Collaborative Intelligence, CI, is presented. It is concluded that while there are clear positive impacts of CCT based augmentation and level of CI, they need to be measured and optimized, not maximized. Further research in this area is also described.

  18. DCE-MRI prediction of survival time for patients with glioblastoma multiforme: using an adaptive neuro-fuzzy-based model and nested model selection technique.

    Science.gov (United States)

    Dehkordi, Azimeh N V; Kamali-Asl, Alireza; Wen, Ning; Mikkelsen, Tom; Chetty, Indrin J; Bagher-Ebadian, Hassan

    2017-09-01

    This pilot study investigates the construction of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for the prediction of the survival time of patients with glioblastoma multiforme (GBM). ANFIS is trained by the pharmacokinetic (PK) parameters estimated by the model selection (MS) technique in dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data analysis, and patient age. DCE-MRI investigations of 33 treatment-naïve patients with GBM were studied. Using the modified Tofts model and MS technique, the following physiologically nested models were constructed: Model 1, no vascular leakage (normal tissue); Model 2, leakage without efflux; Model 3, leakage with bidirectional exchange (influx and efflux). For each patient, the PK parameters of the three models were estimated as follows: blood plasma volume (vp ) for Model 1; vp and volume transfer constant (K(trans) ) for Model 2; vp , K(trans) and rate constant (kep ) for Model 3. Using Cox regression analysis, the best combination of the estimated PK parameters, together with patient age, was identified for the design and training of ANFIS. A K-fold cross-validation (K = 33) technique was employed for training, testing and optimization of ANFIS. Given the survival time distribution, three classes of survival were determined and a confusion matrix for the correct classification fraction (CCF) of the trained ANFIS was estimated as an accuracy index of ANFIS's performance. Patient age, kep and ve (K(trans) /kep ) of Model 3, and K(trans) of Model 2, were found to be the most effective parameters for training ANFIS. The CCF of the trained ANFIS was 84.8%. High diagonal elements of the confusion matrix (81.8%, 90.1% and 81.8% for Class 1, Class 2 and Class 3, respectively), with low off-diagonal elements, strongly confirmed the robustness and high performance of the trained ANFIS for predicting the three survival classes. This study confirms that DCE-MRI PK analysis, combined with the MS technique and ANFIS

  19. Biometric and intelligent decision making support

    CERN Document Server

    Kaklauskas, Arturas

    2015-01-01

    This book presents different methods for analyzing the body language (movement, position, use of personal space, silences, pauses and tone, the eyes, pupil dilation or constriction, smiles, body temperature and the like) for better understanding people’s needs and actions, including biometric data gathering and reading. Different studies described in this book indicate that sufficiently much data, information and knowledge can be gained by utilizing biometric technologies. This is the first, wide-ranging book that is devoted completely to the area of intelligent decision support systems, biometrics technologies and their integrations. This book is designated for scholars, practitioners and doctoral and master’s degree students in various areas and those who are interested in the latest biometric and intelligent decision making support problems and means for their resolutions, biometric and intelligent decision making support systems and the theory and practice of their integration and the opportunities fo...

  20. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...

  1. Decision support for Foodbank South Africa

    Directory of Open Access Journals (Sweden)

    NM Watson

    2014-06-01

    Full Text Available This paper employs a combined 'soft-hard' OR approach to aid decision making in the area of allocation at a not-for-profit organization, Foodbank South Africa (FBSA, that represents the largest hunger-relief network in South Africa. Two problem-structuring tools, causal mapping and root definitions (RDs are utilized. Causal mapping is used to identify areas for useful research within FBSA, and gain a greater understanding of the organization in terms of its goals and consequently a good appreciation of the context in which decisions are made. Root definitions are employed to acquire a better understanding of the 'decision-issues' within the allocation system at the Cape Town warehouse. A simulation model is developed to imitate daily allocation decisions, with the end-objective of assisting decision-making by developing a range of allocation policies. A decision support system (DSS is developed to help FBSA manage their agency database, automate some of the daily allocation decisions and simulate allocation policies.

  2. Anesthesia information management: clinical decision support.

    Science.gov (United States)

    Freundlich, Robert E; Ehrenfeld, Jesse M

    2017-12-01

    Perioperative informatics tools continue to be developed at a rapid pace and offer clinicians the potential to greatly enhance clinical decision making. The goal of this review is to bring the reader updates on perioperative information management and discuss future research directions in the field. Clinical decision support tools become more timely, accurate, and, in some instances, have been shown to improve patient outcomes. When correctly implemented, they are critical tools for optimization of perioperative care. Perioperative informaticians continue to test new and innovative ways to enhance the delivery of anesthesia care, improving the safety and efficacy of perioperative management. Future work will continue to refine tools to ensure that perioperative informatics provides clinicians timely and accurate feedback, with demonstrable evidence that a decision support system improves patient outcomes.

  3. Scalable software architectures for decision support.

    Science.gov (United States)

    Musen, M A

    1999-12-01

    Interest in decision-support programs for clinical medicine soared in the 1970s. Since that time, workers in medical informatics have been particularly attracted to rule-based systems as a means of providing clinical decision support. Although developers have built many successful applications using production rules, they also have discovered that creation and maintenance of large rule bases is quite problematic. In the 1980s, several groups of investigators began to explore alternative programming abstractions that can be used to build decision-support systems. As a result, the notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) problem-solving methods--domain-independent algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper highlights how developers can construct large, maintainable decision-support systems using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  4. Development of an ecological decision support system

    NARCIS (Netherlands)

    van Beusekom, Frits; Brazier, Frances; Schipper, Piet; Treur, Jan; del Pobil, A.P.

    1998-01-01

    In this paper a knowledge-based decision support system is described that determines the abiotic (chemical and physical) characteristics of a site on the basis of in-homogeneous samples of plant species. Techniques from the area of non-monotonic reasoning are applied to model multi-interpretable

  5. Decision Support System integrated with Geographic Information ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 1. Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat. Dhruvesh P Patel Prashant K Srivastava ...

  6. Qualitative evaluation of smallholder farmer decisions, support ...

    African Journals Online (AJOL)

    Qualitative evaluation of smallholder farmer decisions, support systems, knowledge and disease management tools. ... Due to resource-limitations of most smallholder farmers in South Africa, production practices, including disease control could be much improved, using indigenous-based, local knowledge about cultural ...

  7. Decision support system for Wamakersvallei Winery

    CSIR Research Space (South Africa)

    Van Der Merwe, A

    2007-09-01

    Full Text Available models. The three features of the decision support system are first to assist in the scheduling process of assigning grapes from the different suppliers to the different tipping bins by suggesting rapidly and in an automated fashion a possible schedule...

  8. Modeling uncertainty in requirements engineering decision support

    Science.gov (United States)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.

    2005-01-01

    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  9. Text summarization as a decision support aid

    Directory of Open Access Journals (Sweden)

    Workman T

    2012-05-01

    Full Text Available Abstract Background PubMed data potentially can provide decision support information, but PubMed was not exclusively designed to be a point-of-care tool. Natural language processing applications that summarize PubMed citations hold promise for extracting decision support information. The objective of this study was to evaluate the efficiency of a text summarization application called Semantic MEDLINE, enhanced with a novel dynamic summarization method, in identifying decision support data. Methods We downloaded PubMed citations addressing the prevention and drug treatment of four disease topics. We then processed the citations with Semantic MEDLINE, enhanced with the dynamic summarization method. We also processed the citations with a conventional summarization method, as well as with a baseline procedure. We evaluated the results using clinician-vetted reference standards built from recommendations in a commercial decision support product, DynaMed. Results For the drug treatment data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.848 and 0.377, while conventional summarization produced 0.583 average recall and 0.712 average precision, and the baseline method yielded average recall and precision values of 0.252 and 0.277. For the prevention data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.655 and 0.329. The baseline technique resulted in recall and precision scores of 0.269 and 0.247. No conventional Semantic MEDLINE method accommodating summarization for prevention exists. Conclusion Semantic MEDLINE with dynamic summarization outperformed conventional summarization in terms of recall, and outperformed the baseline method in both recall and precision. This new approach to text summarization demonstrates potential in identifying decision support data for multiple needs.

  10. Text summarization as a decision support aid.

    Science.gov (United States)

    Workman, T Elizabeth; Fiszman, Marcelo; Hurdle, John F

    2012-05-23

    PubMed data potentially can provide decision support information, but PubMed was not exclusively designed to be a point-of-care tool. Natural language processing applications that summarize PubMed citations hold promise for extracting decision support information. The objective of this study was to evaluate the efficiency of a text summarization application called Semantic MEDLINE, enhanced with a novel dynamic summarization method, in identifying decision support data. We downloaded PubMed citations addressing the prevention and drug treatment of four disease topics. We then processed the citations with Semantic MEDLINE, enhanced with the dynamic summarization method. We also processed the citations with a conventional summarization method, as well as with a baseline procedure. We evaluated the results using clinician-vetted reference standards built from recommendations in a commercial decision support product, DynaMed. For the drug treatment data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.848 and 0.377, while conventional summarization produced 0.583 average recall and 0.712 average precision, and the baseline method yielded average recall and precision values of 0.252 and 0.277. For the prevention data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.655 and 0.329. The baseline technique resulted in recall and precision scores of 0.269 and 0.247. No conventional Semantic MEDLINE method accommodating summarization for prevention exists. Semantic MEDLINE with dynamic summarization outperformed conventional summarization in terms of recall, and outperformed the baseline method in both recall and precision. This new approach to text summarization demonstrates potential in identifying decision support data for multiple needs.

  11. Decision support tools for policy and planning

    Energy Technology Data Exchange (ETDEWEB)

    Jacyk, P.; Schultz, D.; Spangenberg, L.

    1995-07-01

    A decision support system (DSS) is being developed at the Radioactive Liquid Waste Treatment Facility, Los Alamos National Laboratory (LANL). The DSS will be used to evaluate alternatives for improving LANL`s existing central radioactive waste water treatment plant and to evaluate new site-wide liquid waste treatment schemes that are required in order to handle the diverse waste streams produced at LANL. The decision support system consists of interacting modules that perform the following tasks: rigorous process simulation, configuration management, performance analysis, cost analysis, risk analysis, environmental impact assessment, transportation modeling, and local, state, and federal regulation compliance checking. Uncertainty handling techniques are used with these modules and also with a decision synthesis module which combines results from the modules listed above. We believe the DSS being developed can be applied to almost any other industrial water treatment facility with little modification because in most situations the waste streams are less complex, fewer regulations apply, and the political environment is simpler. The techniques being developed are also generally applicable to policy and planning decision support systems in the chemical process industry.

  12. Comparison of Alternative Processes for Support Decisions

    Directory of Open Access Journals (Sweden)

    Manuel Martínez-Álvarez

    2014-08-01

    Full Text Available There are many tasks that revolve around combinatorial analysis problems, same tasks found in Decision Support Systems (DSS as most of these are responsible for assessing a number of possibilities to deliver the best options. Within the analysis of possible solutions is performed by the DSS there are alternative procedures inside the engine for making decisions that involve them. As part of these alternative procedures today has highlighted the use of metaheuristics, thus in this paper we propose a comparison of some of them trying to broaden the spectrum we have for the applications nowadays.

  13. Tsunami early warning and decision support

    Directory of Open Access Journals (Sweden)

    T. Steinmetz

    2010-09-01

    Full Text Available An innovative newly developed modular and standards based Decision Support System (DSS is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS. The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind – it enables the decision maker to base his acceptance (or refusal of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010. While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system which is operated under the responsibility of BMKG – the meteorological, climatological and geophysical service of Indonesia – which also hosts the tsunami early warning center. The system is to be seen

  14. Decision Strategy Research and Policy Support

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, F

    2002-04-01

    The objective of SCK-CEN's R and D programme on decision strategies and policy support is: (1) to investigate the decision making process, with all its relevant dimensions, in the context of radiation protection or other nuclear issues (with particular emphasis on emergency preparedness); (2) to disseminate knowledge on decision making and nuclear emergencies, including the organisation of training courses, the contribution to manuals or guidelines, the participation in working groups or discussion forums; (3) to assist the authorities and the industry on any topic related to radiation protection and to make expertise and infrastructure available; (4) to participate in and contribute to initiatives related to social sciences and their implementation into SCK-CEN; (5) to co-ordinate efforts of SCK-CEN related to medical applications of ionising radiation. Principal achievements in 2001 are described.

  15. Computer-supported collaborative decision-making

    CERN Document Server

    Filip, Florin Gheorghe; Ciurea, Cristian

    2017-01-01

    This is a book about how management and control decisions are made by persons who collaborate and possibly use the support of an information system. The decision is the result of human conscious activities aiming at choosing a course of action for attaining a certain objective (or a set of objectives). The act of collaboration implies that several entities who work together and share responsibilities to jointly plan, implement and evaluate a program of activities to achieve the common goals. The book is intended to present a balanced view of the domain to include both well-established concepts and a selection of new results in the domains of methods and key technologies. It is meant to answer several questions, such as: a) “How are evolving the business models towards the ever more collaborative schemes?”; b) “What is the role of the decision-maker in the new context?” c) “What are the basic attributes and trends in the domain of decision-supporting information systems?”; d) “Which are the basic...

  16. Modeling the effect of propofol and remifentanil combinations for sedation-analgesia in endoscopic procedures using an Adaptive Neuro Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Gambús, P L; Jensen, E W; Jospin, M; Borrat, X; Martínez Pallí, G; Fernández-Candil, J; Valencia, J F; Barba, X; Caminal, P; Trocóniz, I F

    2011-02-01

    The increasing demand for anesthetic procedures in the gastrointestinal endoscopy area has not been followed by a similar increase in the methods to provide and control sedation and analgesia for these patients. In this study, we evaluated different combinations of propofol and remifentanil, administered through a target-controlled infusion system, to estimate the optimal concentrations as well as the best way to control the sedative effects induced by the combinations of drugs in patients undergoing ultrasonographic endoscopy. One hundred twenty patients undergoing ultrasonographic endoscopy were randomized to receive, by means of a target-controlled infusion system, a fixed effect-site concentration of either propofol or remifentanil of 8 different possible concentrations, allowing adjustment of the concentrations of the other drug. Predicted effect-site propofol (C(e)pro) and remifentanil (C(e)remi) concentrations, parameters derived from auditory evoked potential, autoregressive auditory evoked potential index (AAI/2) and electroencephalogram (bispectral index [BIS] and index of consciousness [IoC]) signals, as well as categorical scores of sedation (Ramsay Sedation Scale [RSS] score) in the presence or absence of nociceptive stimulation, were collected, recorded, and analyzed using an Adaptive Neuro Fuzzy Inference System. The models described for the relationship between C(e)pro and C(e)remi versus AAI/2, BIS, and IoC were diagnosed for inaccuracy using median absolute performance error (MDAPE) and median root mean squared error (MDRMSE), and for bias using median performance error (MDPE). The models were validated in a prospective group of 68 new patients receiving different combinations of propofol and remifentanil. The predictive ability (P(k)) of AAI/2, BIS, and IoC with respect to the sedation level, RSS score, was also explored. Data from 110 patients were analyzed in the training group. The resulting estimated models had an MDAPE of 32.87, 12.89, and 8

  17. DECISION SUPPORT AT THE LOGISTIC MANAGEMENT STRATEGY

    OpenAIRE

    Marta Starostka-Patyk; Iwona Grabara

    2008-01-01

    Nowadays logistics more and more often becomes the strategic issue from thepoint of view the organization aiming at reaching success in lead of its activity. The standardprocess of strategic logistics planning and management is usually periodical and the chanceof cooperation with changes in the environment of the company is missing. The paperpresents the process of logistics planning and its integration with the decision support systembased on the hierarchic analytic process - AHP (Analytic H...

  18. Weibull Decision Support Systems in Maintenance

    Directory of Open Access Journals (Sweden)

    Aboura Khalid

    2014-05-01

    Full Text Available Background: The Weibull distribution is one of the most important lifetime distributions in applied statistics. Weibull analysis is the leading method in the world for fitting and analyzing lifetime data. We discuss one of the earliest decision support system for the assessment of a distribution for the parameters of the Weibull reliability model using expert information. We then present a different approach to assess the parameters distribution.

  19. Best Practices in Clinical Decision Support

    Science.gov (United States)

    Wright, Adam; Phansalkar, Shobha; Bloomrosen, Meryl; Jenders, Robert A.; Bobb, Anne M.; Halamka, John D.; Kuperman, Gilad; Payne, Thomas H.; Teasdale, S.; Vaida, A. J.; Bates, D. W.

    2010-01-01

    Background Evidence demonstrates that clinical decision support (CDS) is a powerful tool for improving healthcare quality and ensuring patient safety. However, implementing and maintaining effective decision support interventions presents multiple technical and organizational challenges. Purpose To identify best practices for CDS, using the domain of preventive care reminders as an example. Methods We assembled a panel of experts in CDS and held a series of facilitated online and inperson discussions. We analyzed the results of these discussions using a grounded theory method to elicit themes and best practices. Results Eight best practice themes were identified as important: deliver CDS in the most appropriate ways, develop effective governance structures, consider use of incentives, be aware of workflow, keep content current, monitor and evaluate impact, maintain high quality data, and consider sharing content. Keys themes within each of these areas were also described. Conclusion Successful implementation of CDS requires consideration of both technical and socio-technical factors. The themes identified in this study provide guidance on crucial factors that need consideration when CDS is implemented across healthcare settings. These best practice themes may be useful for developers, implementers, and users of decision support. PMID:21991299

  20. Autonomous Task Management and Decision Support Tools

    Science.gov (United States)

    Burian, Barbara

    2017-01-01

    For some time aircraft manufacturers and researchers have been pursuing mechanisms for reducing crew workload and providing better decision support to the pilots, especially during non-normal situations. Some previous attempts to develop task managers or pilot decision support tools have not resulted in robust and fully functional systems. However, the increasing sophistication of sensors and automated reasoners, and the exponential surge in the amount of digital data that is now available create a ripe environment for the development of a robust, dynamic, task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This presentation will discuss the many significant challenges and issues associated with the development and functionality of such a system for use on the aircraft flight deck.

  1. The association forecasting of 13 variants within seven asthma susceptibility genes on 3 serum IgE groups in Taiwanese population by integrating of adaptive neuro-fuzzy inference system (ANFIS) and classification analysis methods.

    Science.gov (United States)

    Wang, Cheng-Hang; Liu, Baw-Jhiune; Wu, Lawrence Shih-Hsin

    2012-02-01

    Asthma is one of the most common chronic diseases in children. It is caused by complicated coactions between various genetic factors and environmental allergens. The study aims to integrate the concept of implementing adaptive neuro-fuzzy inference system (ANFIS) and classification analysis methods for forecasting the association of asthma susceptibility genes on 3 serum IgE groups. The ANFIS model was trained and tested with data sets obtained from 425 asthmatic subjects and 483 non-asthma subjects from the Taiwanese population. We assessed 13 single-nucleotide polymorphisms (SNPs) in seven well-known asthma susceptibility genes; firstly, the proposed ANFIS model learned to reduce input features from the 13 SNPs. And secondly, the classification will be used to classify the serum IgE groups from the simulated SNPs results. The performance of the ANFIS model, classification accuracies and the results confirmed that the integration of ANFIS and classified analysis has potential in association discovery.

  2. Formalisation for decision support in anaesthesiology.

    Science.gov (United States)

    Renardel de Lavalette, G R; Groenboom, R; Rotterdam, E; van Harmelen, F; ten Teije, A; de Geus, F

    1997-11-01

    This paper reports on research for decision support for anaesthesiologists at the University Hospital in Groningen, the Netherlands. Based on CAROLA, an existing automated operation documentation system, we designed a support environment that will assist in real-time diagnosis. The core of the work presented here consists of a knowledge base (containing anaesthesiological knowledge) and a diagnosis system. The knowledge base is specified in the logic-based formal specification language AFSL. This leads to a powerful and precise treatment of knowledge structuring and data abstraction.

  3. How to guide - transit operations decision support systems (TODSS).

    Science.gov (United States)

    2014-12-01

    Transit Operations Decision Support Systems (TODSS) are decision support systems designed to support dispatchers in real-time bus operations : management in response to incidents, special events, and other changing conditions in order to restore serv...

  4. A distributed clinical decision support system architecture

    Directory of Open Access Journals (Sweden)

    Shaker H. El-Sappagh

    2014-01-01

    Full Text Available This paper proposes an open and distributed clinical decision support system architecture. This technical architecture takes advantage of Electronic Health Record (EHR, data mining techniques, clinical databases, domain expert knowledge bases, available technologies and standards to provide decision-making support for healthcare professionals. The architecture will work extremely well in distributed EHR environments in which each hospital has its own local EHR, and it satisfies the compatibility, interoperability and scalability objectives of an EHR. The system will also have a set of distributed knowledge bases. Each knowledge base will be specialized in a specific domain (i.e., heart disease, and the model achieves cooperation, integration and interoperability between these knowledge bases. Moreover, the model ensures that all knowledge bases are up-to-date by connecting data mining engines to each local knowledge base. These data mining engines continuously mine EHR databases to extract the most recent knowledge, to standardize it and to add it to the knowledge bases. This framework is expected to improve the quality of healthcare, reducing medical errors and guaranteeing the safety of patients by helping clinicians to make correct, accurate, knowledgeable and timely decisions.

  5. Modelling and Decision Support of Clinical Pathways

    Science.gov (United States)

    Gabriel, Roland; Lux, Thomas

    The German health care market is under a rapid rate of change, forcing especially hospitals to provide high-quality services at low costs. Appropriate measures for more effective and efficient service provision are process orientation and decision support by information technology of clinical pathway of a patient. The essential requirements are adequate modelling of clinical pathways as well as usage of adequate systems, which are capable of assisting the complete path of a patient within a hospital, and preferably also outside of it, in a digital way. To fulfil these specifications the authors present a suitable concept, which meets the challenges of well-structured clinical pathways as well as rather poorly structured diagnostic and therapeutic decisions, by interplay of process-oriented and knowledge-based hospital information systems.

  6. Computational Support for Technology- Investment Decisions

    Science.gov (United States)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  7. Handling risk attitudes for preference learning and intelligent decision support

    DEFF Research Database (Denmark)

    Franco de los Ríos, Camilo; Hougaard, Jens Leth; Nielsen, Kurt

    2015-01-01

    Intelligent decision support should allow integrating human knowledge with efficient algorithms for making interpretable and useful recommendations on real world decision problems. Attitudes and preferences articulate and come together under a decision process that should be explicitly modeled...

  8. An Ontology-driven Framework for Supporting Complex Decision Process

    OpenAIRE

    Chai, Junyi; Liu, James N. K.

    2011-01-01

    The study proposes a framework of ONTOlogy-based Group Decision Support System (ONTOGDSS) for decision process which exhibits the complex structure of decision-problem and decision-group. It is capable of reducing the complexity of problem structure and group relations. The system allows decision makers to participate in group decision-making through the web environment, via the ontology relation. It facilitates the management of decision process as a whole, from criteria generation, alternat...

  9. Using a group decision support system to make investment prioritisation decisions

    OpenAIRE

    Read, Martin; Gear, Tony; Minkes, Leonard; Irving, Ann

    2013-01-01

    This paper is concerned with how decision making groups involved in making investment prioritisation decisions involving funding of technology and science projects may be supported by a group decision support system (GDSS). While interested in decision outcomes, the primary focus of this paper is the role of a group support system as an aid to developing shared understanding within a group. The paper develops the conceptual framework of decision-making, communication and group support, and de...

  10. Sediment Analysis Network for Decision Support (SANDS)

    Science.gov (United States)

    Hardin, D. M.; Keiser, K.; Graves, S. J.; Conover, H.; Ebersole, S.

    2009-12-01

    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The recently awarded Sediment Analysis Network for Decision Support will generate decision support products using NASA satellite observations from MODIS, Landsat and SeaWiFS instruments to support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, SANDS will generate decision support products that address the impacts of tropical storms

  11. Decision support software technology demonstration plan

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  12. Development of transportation asset management decision support tools : final report.

    Science.gov (United States)

    2017-08-09

    This study developed a web-based prototype decision support platform to demonstrate the benefits of transportation asset management in monitoring asset performance, supporting asset funding decisions, planning budget tradeoffs, and optimizing resourc...

  13. Clinical Decision Support Tools: The Evolution of a Revolution

    NARCIS (Netherlands)

    Mould, D. R.; D'Haens, G.; Upton, R. N.

    2016-01-01

    Dashboard systems for clinical decision support integrate data from multiple sources. These systems, the newest in a long line of dose calculators and other decision support tools, utilize Bayesian approaches to fully individualize dosing using information gathered through therapeutic drug

  14. Primena fuzzy logike i veštačkih neuronskih mreža u procesu donošenja odluke organa saobraćajne podrške / Using fuzzy logic and neural networks during a decision making process in transport

    Directory of Open Access Journals (Sweden)

    Dragan S. Pamučar

    2010-07-01

    Full Text Available Ključna tačka u procesu upravljanja saobraćajem u Vojsci Srbije jeste proces donošenja odluke. U radu je predstavljen neuro-fuzzy model kao podrška procesu odlučivanja, koji uspešno oponaša proces odlučivanja organa saobraćajne podrške. / Logistics systems in the Serbian Armed Forces are built in order to ensure and maintain combat readiness. During combat actions the structure of logistics forces, equipment and resources is organized in order to ensure success in combats and operations. Progress in information security and transport technology makes it possible for a soldier to switch mass for speed and to be sure that everything will work well. The spectrum of a full support means the support to a soldier from the supply source to the place where it will be needed. In order to obtain appropriate systems for logistics support, the systems which meet requirements and which are adjusted in accordance with environment changes and new requests are created, notably models based on the operational research methods. The key point in the process of transport management in the Serbian Armed Forces is a decision making process. On a daily basis, the units of transport support obtain a large number of requests from other units of the Serbian Armed Forces demanding the transport of different types of load to different destinations. Each transport request is characterized with a number of attributes such as: type of goods, quantity (weight and volume, places of loading and unloading, expected time for loading and/or unloading and distance to which goods have to be transported. This paper shows a neuro-fuzzy model as a support to the decision making process. This model successfully imitates the decision making process of the transport support officers. As a result of the research, it is shown that the suggested adaptable fuzzy system, which has ability to learn, has a possibility to imitate the decision making process of transport support officers

  15. Developing the U.S. Wildland Fire Decision Support System

    Science.gov (United States)

    Erin Noonan-Wright; Tonja S. Opperman; Mark A. Finney; Tom Zimmerman; Robert C. Seli; Lisa M. Elenz; David E. Calkin; John R. Fiedler

    2011-01-01

    A new decision support tool, the Wildland Fire Decision Support System (WFDSS) has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply...

  16. Reactive Software Agent Anesthesia Decision Support System

    Directory of Open Access Journals (Sweden)

    Grant H. Kruger

    2011-12-01

    Full Text Available Information overload of the anesthesiologist through technological advances have threatened the safety of patients under anesthesia in the operating room (OR. Traditional monitoring and alarm systems provide independent, spatially distributed indices of patient physiological state. This creates the potential to distract caregivers from direct patient care tasks. To address this situation, a novel reactive agent decision support system with graphical human machine interface was developed. The system integrates the disparate data sources available in the operating room, passes the data though a decision matrix comprising a deterministic physiologic rule base established through medical research. Patient care is improved by effecting change to the care environment by displaying risk factors and alerts as an intuitive color coded animation. The system presents a unified, contextually appropriate snapshot of the patient state including current and potential risk factors, and alerts of critical patient events to the operating room team without requiring any user intervention. To validate the efficacy of the system, a retrospective analysis focusing on the hypotension rules were performed. Results show that even with vigilant and highly trained clinicians, deviations from ideal patient care exist and it is here that the proposed system may allow more standardized and improved patient care and potentially outcomes.

  17. Barangay Decision Support and Mapping System

    Directory of Open Access Journals (Sweden)

    Tracy N. Tacuban

    2016-05-01

    Full Text Available The Barangay Decision Support and Mapping System aims to address the needs of the barangay for efficient information and decision processing. It allows the record of all the barangay residents and enables the user to create and edit the barangay map using the generally-accepted symbols or icons. It automates the barangay clearances, and permits. It allows the storage and retrieval of barangay-approved ordinances, meetings and resolutions. It records environmental problems and the solutions provided. The system also records cases of domestic violence, disputes and the actions taken by the concerned officials. Moreover, the system provides the necessary reports that can be used by the barangay officials for their barangay planning activities. The system’s functionality was tested by the Barangay Officials of San Miguel, Guimaras as respondents of the study. The respondents strongly agree that the system’s functionality conforms to their needs and requirements. With regards to the ease of use of the system as perceived by the respondents, the respondents agreed that the study is easy to use and the interface of the system is well designed. The reliability and validity of the system was tested by five (5 ICT professionals using ISO 9126 standard. Based on their responses, the system’s evaluation shows that the system conforms to international standards and is therefore valid and reliable to use.

  18. Marketing Decision Making and Decision Support: Challenges and Perspectives for Successful Marketing Management Support Systems

    NARCIS (Netherlands)

    G.H. van Bruggen (Gerrit); B. Wierenga (Berend)

    2009-01-01

    textabstractMarketing management support systems (MMSS) are computer-enabled devices that help marketers to make better decisions. Marketing processes can be quite complex, involving large numbers of variables and mostly outcomes are the results of the actions of many different stakeholders (e.g.,

  19. Decision Support for the Rolling Stock Dispatcher

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen

    and planning processes of the railway operator DSB S-tog a/s. In the thesis the problems existing in the railway planning process from the strategic to real-time level are briefly sketched. Network planning, line planning, timetabling, crew and rolling stock planning is outlined and relevant references...... problem is put forward. The main contributions of the thesis are contained in four papers included as appendices. The papers deal with respectively an analysis of robustness in timetables, the mathematical model behind a decision support tool for reinsertion of a train line, a survey on the dispatching......Real-time recovery is receiving a fast growing interest in an increasingly competitive railway operation market. This thesis considers the area of rolling stock dispatching which is one of the typical real-time railway dispatching problems. All work of the thesis is based on the network...

  20. Decision aids that support decisions about prenatal testing for Down syndrome: an environmental scan

    National Research Council Canada - National Science Library

    Leiva Portocarrero, Maria Esther; Garvelink, Mirjam M; Becerra Perez, Maria Margarita; Giguère, Anik; Robitaille, Hubert; Wilson, Brenda J; Rousseau, François; Légaré, France

    2015-01-01

    ...) can help healthcare providers support women in this decision. Using an environmental scan, we aimed to identify publicly available DAs focusing on prenatal screening/diagnosis for Down syndrome that provide effective support for decision making...

  1. Considerations for a successful clinical decision support system.

    Science.gov (United States)

    Castillo, Ranielle S; Kelemen, Arpad

    2013-07-01

    Clinical decision support systems have the potential to improve patient care in a multitude of ways. Clinical decision support systems can aid in the reduction of medical errors and reduction in adverse drug events, ensure comprehensive treatment of patient illnesses and conditions, encourage the adherence to guidelines, shorten patient length of stay, and decrease expenses over time. A clinical decision support system is one of the key components for reaching compliance for Meaningful Use. In this article, the advantages, potential drawbacks, and clinical decision support system adoption barriers are discussed, followed by an in-depth review of the characteristics that make a clinical decision support system successful. The legal and ethical issues that come with the implementation of a clinical decision support system within an organization and the future expectations of clinical decision support system are reviewed.

  2. The ECG as decision support in STEMI.

    Science.gov (United States)

    Ripa, Maria Sejersten

    2012-03-01

    The electrocardiogram (ECG) can be used for determining the presence, location and extent of jeopardized myocardium during acute coronary occlusion. Accordingly, the ECG has become essential in the treatment of patients with acute coronary syndrome (ACS). This thesis aims at optimizing the decision support, provided by the ECG, for choosing the best treatment strategy in the individual patient with ST-segment elevation acute myocardial infarction (STEMI). ECG recorded in the prehospital setting has become the standard of care in many communities, but to achieve the full advantage of this early approach it is important that the ECG is recorded from accurately placed electrodes to produce an ECG that resembles the standard 12-lead ECG. Accurate electrode placement is difficult especially in the acute setting, and we investigated an alternative lead system with fewer electrodes in easily identified positions. We showed that the system produced waveforms similar to the standard 12-lead ECG. However, occasional diagnostic errors were seen, compromising general acceptance of the system. Once the ECG has been recorded a decision regarding triage must be made on the basis of a correct ECG diagnosis. We found that trained paramedics can diagnose STEMI correctly in patients without ECG confounding factors, while the presence of ECG confounding factors decreased their ability substantially. Consequently, since many patients do present with ECG confounding factors, transmission to an on-call cardiologist for an early correct diagnosis is needed. We showed that time to pPCI was reduced by more than 1 hour by transmitting prehospital ECG to a cardiologist's handheld device for diagnosis, triage, and activation of the catheterization laboratory when needed. The optimal treatment strategy is dependent on the duration of ischemia however patient information is often inaccurate. Accordingly, it would be advantageous if the first available ECG can help identify patients who will

  3. Quantitative Decision Support Requires Quantitative User Guidance

    Science.gov (United States)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output

  4. Decision support for grape harvesting at a South African winery

    CSIR Research Space (South Africa)

    Van der Merwe, A

    2011-12-01

    Full Text Available Recent technological advances have had a major impact on the management of traditional wineries, giving rise to the prospect of computerised decision support with respect to a range of complex harvesting and wine making decisions which have...

  5. Decision Support for Environmental Management of Industrial ...

    Science.gov (United States)

    Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requires estimates of their probable environmental impacts among disposal as well as BU options. The U.S. Environmental Protection Agency (EPA) has recently approved new analytical methods (EPA Methods 1313–1316) to assess leachability of constituents of potential concern in these materials. These new methods are more realistic for many disposal and BU options than historical methods, such as the toxicity characteristic leaching protocol. Experimental data from these new methods are used to parameterize a chemical fate and transport (F&T) model to simulate long-term environmental releases from flue gas desulfurization gypsum (FGDG) when disposed of in an industrial landfill or beneficially used as an agricultural soil amendment. The F&T model is also coupled with optimization algorithms, the Beneficial Use Decision Support System (BUDSS), under development by EPA to enhance INSM management. The objective of this paper is to demonstrate the methodologies and encourage similar applications to improve environmental management and BUs of INSM through F&T simulation coupled with optimization, using realistic model parameterization.

  6. Global Turbulence Decision Support for Aviation

    Science.gov (United States)

    Williams, J.; Sharman, R.; Kessinger, C.; Feltz, W.; Wimmers, A.

    2009-09-01

    Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers, yet legacy decision support products such as SIGMETs and SIGWX charts provide relatively low spatial- and temporal-resolution assessments and forecasts of turbulence, with limited usefulness for strategic planning and tactical turbulence avoidance. A new effort is underway to develop an automated, rapid-update, gridded global turbulence diagnosis and forecast system that addresses upper-level clear-air turbulence, mountain-wave turbulence, and convectively-induced turbulence. This NASA-funded effort, modeled on the U.S. Federal Aviation Administration's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, employs NCEP Global Forecast System (GFS) model output and data from NASA and operational satellites to produce quantitative turbulence nowcasts and forecasts. A convective nowcast element based on GFS forecasts and satellite data provides a basis for diagnosing convective turbulence. An operational prototype "Global GTG” system has been running in real-time at the U.S. National Center for Atmospheric Research since the spring of 2009. Initial verification based on data from TRMM, Cloudsat and MODIS (for the convection nowcasting) and AIREPs and AMDAR data (for turbulence) are presented. This product aims to provide the "single authoritative source” for global turbulence information for the U.S. Next Generation Air Transportation System.

  7. Intelligent decision support systems for mechanical ventilation.

    Science.gov (United States)

    Tehrani, Fleur T; Roum, James H

    2008-11-01

    An overview of different methodologies used in various intelligent decision support systems (IDSSs) for mechanical ventilation is provided. The applications of the techniques are compared in view of today's intensive care unit (ICU) requirements. Information available in the literature is utilized to provide a methodological review of different systems. Comparisons are made of different systems developed for specific ventilation modes as well as those intended for use in wider applications. The inputs and the optimized parameters of different systems are discussed and rule-based systems are compared to model-based techniques. The knowledge-based systems used for closed-loop control of weaning from mechanical ventilation are also described. Finally, in view of increasing trend towards automation of mechanical ventilation, the potential utility of intelligent advisory systems for this purpose is discussed. IDSSs for mechanical ventilation can be quite helpful to clinicians in today's ICU settings. To be useful, such systems should be designed to be effective, safe, and easy to use at patient's bedside. In particular, these systems must be capable of noise removal, artifact detection and effective validation of data. Systems that can also be adapted for closed-loop control/weaning of patients at the discretion of the clinician, may have a higher potential for use in the future.

  8. Propulsion and Power Rapid Response Research and Development Support: Delivery Order: Fundamental Science Investigations for Propulsion and Power Systems

    Science.gov (United States)

    2009-01-01

    Appendix I) 0047-03-C2 Neuro - Fuzzy Probabilistic Systems For Fault Diagnosis of Turbine Engines From 1 Sep 07 – 27 Nov 08, technical support was...Data-Driven Methods:- Mo et al. [3], propose a fuzzy inference logic system for gas turbine engine fault isolation. They state their reasoning...for selecting a fuzzy inference logic system as; 1) the fuzzy logic system is a knowledge based system that has ability to handle uncertainty, 2) the

  9. Developing a Support Tool for Global Product Development Decisions

    DEFF Research Database (Denmark)

    Søndergaard, Erik Stefan; Ahmed-Kristensen, Saeema

    2016-01-01

    This paper investigates how global product development decisions are made through a multiple-case study in three Danish engineering. The paper identifies which information and methods are applied for making decisions and how decision-making can be supported based on previous experience. The paper...... presents results from 51 decisions made in the three companies, and based on the results of the studies a framework for a decision-support tool is outlined and discussed. The paper rounds off with an identification of future research opportunities in the area of global product development and decision-making....

  10. Atrial fibrillation decision support tool: Population perspective.

    Science.gov (United States)

    Eckman, Mark H; Costea, Alexandru; Attari, Mehran; Munjal, Jitender; Wise, Ruth E; Knochelmann, Carol; Flaherty, Matthew L; Baker, Pete; Ireton, Robert; Harnett, Brett M; Leonard, Anthony C; Steen, Dylan; Rose, Adam; Kues, John

    2017-12-01

    Appropriate thromboprophylaxis for patients with atrial fibrillation or atrial flutter (AF) remains a national challenge. The recent availability of direct oral anticoagulants (DOACs) with comparable efficacy and improved safety compared with warfarin alters the balance between risk factors for stroke and benefit of anticoagulation. Our objective was to examine the impact of DOACs as an alternative to warfarin on the net benefit of oral anticoagulant therapy (OAT) in a real-world population of AF patients. This is a retrospective cohort study of patients with paroxysmal or persistent nonvalvular AF. We updated an Atrial Fibrillation Decision Support Tool (AFDST) to include DOACs as treatment options. The tool generates patient-specific recommendations based upon individual patient risk factor profiles for stroke and major bleeding using quality-adjusted life-years (QALYs) calculated for each treatment strategy by a decision analytic model. The setting included inpatient and ambulatory sites in an academic health center in the midwestern United States. The study involved 5,121 adults with nonvalvular AF seen for any ambulatory visit or inpatient hospitalization over the 1-year period (January through December 2016). Outcome measure was net clinical benefit in QALYs. When DOACs are a therapeutic option, the AFDST recommends OAT for 4,134 (81%) patients and no antithrombotic therapy or aspirin for 489 (9%). A strong recommendation for OAT could not be made in 498 (10%) patients. When warfarin is the only option, OAT is recommended for 3,228 (63%) patients and no antithrombotic therapy or aspirin for 973 (19%). A strong recommendation for OAT could not be made in 920 (18%) patients. In total, 1,508 QALYs could be gained if treatment were changed to that recommended by the AFDST. Availability of DOACs increases the proportion of patients for whom oral anticoagulation therapy is recommended in a real-world cohort of AF patients and increased projected QALYs by more than

  11. Decision-support systems for forest management

    Science.gov (United States)

    H. Michael Rauscher

    2005-01-01

    The basic concept of sustainable development, formulated in the Brundtland report and applied to forest management by the Montreal Process, has focused attention on the need for formal decision processes (Brundtland. 1987). The application of decision theory is essential because meeting the needs of the present without compromising the ability of future generations to...

  12. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  13. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Kim, Chan Moon; Parnichkun, Manukid

    2017-02-01

    Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system (k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.

  14. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Kim, Chan Moon; Parnichkun, Manukid

    2017-11-01

    Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.

  15. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    Science.gov (United States)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  16. Case-based reasoning in Intelligent Health Decision Support Systems.

    Science.gov (United States)

    González, Carolina; López, Diego M; Blobel, Bernd

    2013-01-01

    Decision-making is a crucial task for decision makers in healthcare, especially because decisions have to be made quickly, accurately and under uncertainty. Taking into account the importance of providing quality decisions, offering assistance in this complex process has been one of the main challenges of Artificial Intelligence throughout history. Decision Support Systems (DSS) have gained popularity in the medical field for their efficacy to assist decision-making. In this sense, many DSS have been developed, but only few of them consider processing and analysis of information contained in electronic health records, in order to identify individual or population health risk factors. This paper deals with Intelligent Decision Support Systems that are integrated into Electronic Health Records Systems (EHRS) or Public Health Information Systems (PHIS). It provides comprehensive support for a wide range of decisions with the purpose of improving quality of care delivered to patients or public health planning, respectively.

  17. ACCOUNTING KNOWLEDGE IN FORESTRY'S DECISION SUPPORT SYSTEMS. LITERATURE REVIEW.

    OpenAIRE

    Daniela I. POSTOLACHE (MALES)

    2010-01-01

    Accounting information, processed through modern type of decision support systems, in appropriate economic analysis framework, using previous experience, gives extra knowledge to forestry managers. In our paper, we conducted a literature review, in the field of decision support systems used in international forestry, but also about the Romanian prospects and achievements in this area. Our results are useful to researchers and developers of decision support intelligent solutions, to forestry a...

  18. Decision Support for Countering Terrorist Threats against Transportation Networks

    Directory of Open Access Journals (Sweden)

    Dr. Richard Adler

    2009-01-01

    Full Text Available This article presents a dynamic decision support methodology forcounter-terrorism decision support. The initial sections introduce basic objectives and challenges of terrorism risk analysis and risk management. The remainder of the paper describes TRANSEC, a decision support framework for defining, validating, and monitoring strategies focused on managing terrorism risks to international transportation networks. The methodology and software tools underlying TRANSEC are applicable to other homeland security problems, such as critical infrastructure and border protection.

  19. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection...... will be presented for a containership with a real decision support system onboard. All possible faults can be simulated and detected using residuals and the generalized likelihood ratio (GLR) algorithm....

  20. An online infertility clinical decision support system

    Directory of Open Access Journals (Sweden)

    Fabio Diniz de Souza

    2017-09-01

    Full Text Available Objective: To explore some possibilities of computer applications in medicine, and to discuss an online infertility clinical decision support system. Methods: Retrospective data were obtained from 52 couples, and then entered into the online tool. Both its results and the initial diagnoses obtained by the treating physicians were compared with the final diagnoses established by laparoscopy and other diagnostic tests (semen analysis, hormone analysis, endometrial biopsy, ultrasound and hysteroscopy. The initial hypothesis of the research was that the online tool’s output was statistically associated with the final diagnoses. In order to verify that hypothesis, a chi-square (氈2 test with Yates’ correction for continuity (P<0.05 was performed to verify if the online tool’s and the doctor’s diagnoses were statistically associated with the final diagnoses. Results: Four etiological factors were present in more than 50% of the couples (ovarian, tubal-peritoneal, uterine, and endometriosis. The statistical results confirmed the research hypothesis for eight out of the nine etiological factors (ovarian, tubal-peritoneal, uterine, cervical, male, vaginal, psychosomatic, and endometriosis; P<0.05. Since there were no cases related to the immune factor in the sample, further clinical data are necessary in order to assess the online tool’s performance for that factor. Conclusions: The online tool tends to present more false-positives than false negatives, whereas the expert physician tends to present more false-negatives than false-positives. Therefore, the online tool and the doctor seem to complement each other. Finally, the obtained results suggest that the infertility online tool discussed herein might be a useful research and instructional tool.

  1. A Benchmark Usability Study of the Tactical Decision Making Under Stress Decision Support System

    National Research Council Canada - National Science Library

    Schmorrow, Dylan

    1998-01-01

    This study evaluates the usability of a U.S. Navy Decision Support System (DSS). The DSS was developed to enhance the performance of tactical decision makers within a Navy Combat Information Center...

  2. Modeling Based Decision Support Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phoenix Integration's vision is the creation of an intuitive human-in-the-loop engineering environment called Decision Navigator that leverages recent advances in...

  3. A Multi-criterial Decision Support System for Forest Management

    Science.gov (United States)

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  4. MOIDSS?- Mobile Online Intelligent Decision Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GRID has had a successfully completed Phase I 'Mobile Online Intelligent Decision Support System' (MOIDSS). The system developed into a total solution that supports...

  5. Future of electronic health records: implications for decision support.

    Science.gov (United States)

    Rothman, Brian; Leonard, Joan C; Vigoda, Michael M

    2012-01-01

    The potential benefits of the electronic health record over traditional paper are many, including cost containment, reductions in errors, and improved compliance by utilizing real-time data. The highest functional level of the electronic health record (EHR) is clinical decision support (CDS) and process automation, which are expected to enhance patient health and healthcare. The authors provide an overview of the progress in using patient data more efficiently and effectively through clinical decision support to improve health care delivery, how decision support impacts anesthesia practice, and how some are leading the way using these systems to solve need-specific issues. Clinical decision support uses passive or active decision support to modify clinician behavior through recommendations of specific actions. Recommendations may reduce medication errors, which would result in considerable savings by avoiding adverse drug events. In selected studies, clinical decision support has been shown to decrease the time to follow-up actions, and prediction has proved useful in forecasting patient outcomes, avoiding costs, and correctly prompting treatment plan modifications by clinicians before engaging in decision-making. Clinical documentation accuracy and completeness is improved by an electronic health record and greater relevance of care data is delivered. Clinical decision support may increase clinician adherence to clinical guidelines, but educational workshops may be equally effective. Unintentional consequences of clinical decision support, such as alert desensitization, can decrease the effectiveness of a system. Current anesthesia clinical decision support use includes antibiotic administration timing, improved documentation, more timely billing, and postoperative nausea and vomiting prophylaxis. Electronic health record implementation offers data-mining opportunities to improve operational, financial, and clinical processes. Using electronic health record data

  6. SONARES - A decision support system in ultrasound investigations

    Directory of Open Access Journals (Sweden)

    L.Burtseva

    2007-07-01

    Full Text Available The article represents synthesis of results obtained in the process of development of SonaRes - the decision support system for ultrasonographic diagnosis. The system structure, its main components are described, the series of problems with which the developers of Clinical Decision Support Systems confront are examined.

  7. Visualization of uncertainty in spatial decision support systems

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Clarke, L.A.; Keuper, A.D.

    2003-01-01

    Many land allocation issues, such as land-use planning, require input from extensive spatial databases and involve complex decision-making. Spatial decision support systems (SDSS) are designed to make these issues more transparent and to support the design and evaluation of land allocation

  8. Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan; Zvárová, Jana

    2017-01-01

    Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  9. A strategic decision support system for logistics and supply chain ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 41; Issue 6. A strategic decision support system ... This paper aims to develop a strategic decision support system for logistics and supply chain network design of a multi-stage, multi-commodity, and multi-period distribution and transportation system. A mixed integer linear programming ...

  10. An appropriateness framework for the Dutch Meuse decision support system

    NARCIS (Netherlands)

    Xu, YuePing; Xu, Yue-Ping; Booij, Martijn J.; Mynett, Arthur; Mynett, Arthur E.

    2007-01-01

    Models are essential in a decision support system for river basin management. In a decision support system for integrated planning and management, the use of appropriate models is important to avoid models being either too simple or too complex. In this paper, appropriate models refer to models that

  11. HIERARCHICAL SCALING OF MARKETING DECISION-SUPPORT SYSTEMS

    NARCIS (Netherlands)

    WIERENGA, B; OPHUIS, PAMO; HUIZINGH, EKR; VANCAMPEN, PAFM

    1994-01-01

    Marketing Decision Support Systems (MDSS) show a large variety in functionality and form. In this paper a scale is developed that measures the sophistication of a Marketing Decision Support System. This scale, based on Guttman's Scalogram Analysis, is hierarchical in nature: more sophisticated MDSS

  12. Decision support telemedicine systems: A conceptual model and reusable templates

    NARCIS (Netherlands)

    Nannings, Barry; Abu-Hanna, A.

    2006-01-01

    Decision support telemedicine systems (DSTSs) are systems combining elements from telemedicine and clinical decision support systems. Although emerging more, these types of systems have not been given much attention in the literature. Our objective is to define the term DSTS, to propose a general

  13. Decision support modeling for milk valorization

    NARCIS (Netherlands)

    Banaszewska, A.

    2014-01-01

    The research presented in this thesis concerns decision problems in practice that require structured, precise, scientific studies to provide strong, reliable answers. An opportunity to contribute to both practice and science emerged in 2008 when two large, Dutch dairy companies merged, creating

  14. Evaluation and Decision Support Tools (chapter 7)

    NARCIS (Netherlands)

    Brander, L.; Beukering, P.J.H.

    2015-01-01

    7.1 Introduction Making decisions between alternative investments, projects or policies that affect the pro-vision of ecosystem services often involves weighing up and comparing multiple costs and benefits that are measured in different metrics and are incurred at different points in time. For

  15. Cost Decision Support in Product Design

    NARCIS (Netherlands)

    Liebers, A.; Kals, H.J.J.

    1997-01-01

    The constraints addressed in decision making during product design, process planning and production planning determine the admissible solution space for the manufacture of products. The solution space determines largely the costs that are incurred in the production process. In order to be able to

  16. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    Science.gov (United States)

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  17. Empirical Study of KMS Impact on Decision Support

    Directory of Open Access Journals (Sweden)

    Kursad OZLEN

    2014-05-01

    Full Text Available This empirical study was carried out to investigate the impact of ICT-based knowledge management systems (KMS of varying sophistication on decision support in varying decision contexts. The results indicate that the positive impact of KMS sophistication was limited to simple decision contexts only. In simple contexts, the availability of more sophisticated KMS led to more intensive balanced use of the available functions and features which resulted in improved decision quality, confidence and satisfaction. In contrast, greater KMS sophistication made no difference to system usage behaviour and decision performance in complex contexts. Such findings provide much needed empirical support for the proper fit between technology-orientated decision aids and simple decision contexts. Future research is needed to determine suitable solutions for complex contexts.

  18. Developing the US Wildland Fire Decision Support System

    Directory of Open Access Journals (Sweden)

    Erin K. Noonan-Wright

    2011-01-01

    Full Text Available A new decision support tool, the Wildland Fire Decision Support System (WFDSS has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply information to the decision making process. Risk-informed decision-making is becoming increasingly important as a means of improving fire management and offers substantial opportunities to benefit natural and community resource protection, management response effectiveness, firefighter resource use and exposure, and, possibly, suppression costs. This paper reviews the development, structure, and function of WFDSS, and how it contributes to increased flexibility and agility in decision making, leading to improved fire management program effectiveness.

  19. Decision support modeling for milk valorization

    OpenAIRE

    Banaszewska, A.

    2014-01-01

    The research presented in this thesis concerns decision problems in practice that require structured, precise, scientific studies to provide strong, reliable answers. An opportunity to contribute to both practice and science emerged in 2008 when two large, Dutch dairy companies merged, creating FrieslandCampina (FC), which was the fourth largest dairy company in the world at that time. In 2009, a new Milk Valorization & Allocation (MVA) department was created at the corporate level to opt...

  20. Decision support for redesigning wastewater treatment technologies.

    Science.gov (United States)

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  1. Are mobile health applications useful for supporting shared decision making in diagnostic and treatment decisions?

    Science.gov (United States)

    Abbasgholizadeh Rahimi, Samira; Menear, Matthew; Robitaille, Hubert; Légaré, France

    2017-06-01

    Mobile health (mHealth) applications intended to support shared decision making in diagnostic and treatment decisions are increasingly available. In this paper, we discuss some recent studies on mHealth applications with relevance to shared decision making. We discuss the potential advantages and disadvantages of using mHealth in shared decision making in various contexts, and suggest some directions for future research in this quickly expanding field.

  2. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    Science.gov (United States)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  3. Supporting Informed Decision Making in Prevention of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Constantino MARTINS

    2015-05-01

    Full Text Available Identifying and making the correct decision on the best health treatment or screening test option can become a difficult task. Therefore is important that the patients get all types of information appropriate to manage their health. Decision aids can be very useful when there is more than one reasonable option about a treatment or uncertain associated with screening tests. The decision aids tools help people to understand their clinical condition, through the description of the different options available. The purpose of this paper is to present the project “Supporting Informed Decision Making In Prevention of Prostate Cancer” (SIDEMP. This project is focused on the creation of a Web-based decision platform specifically directed to screening prostate cancer, that will support the patient in the process of making an informed decision

  4. Mechanical Ventilation and Decision Support in Pediatric Intensive Care.

    Science.gov (United States)

    Newth, Christopher John L; Khemani, Robinder G; Jouvet, Philippe A; Sward, Katherine A

    2017-10-01

    Respiratory support is required in most children in the pediatric intensive care unit. Decision-support tools (paper or electronic) have been shown to improve the quality of medical care, reduce errors, and improve outcomes. Computers can assist clinicians by standardizing descriptors and procedures, consistently performing calculations, incorporating complex rules with patient data, and capturing relevant data. This article discusses computer decision-support tools to assist clinicians in making flexible but consistent, evidence-based decisions for equivalent patient states. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Decision-support tools for climate change mitigation planning

    DEFF Research Database (Denmark)

    Puig, Daniel; Aparcana Robles, Sandra Roxana

    This document describes three decision-support tools that can aid the process of planning climate change mitigation actions. The phrase ‘decision-support tools’ refers to science-based analytical procedures that facilitate the evaluation of planning options (individually or compared to alternative....... For example, in the case of life-cycle analysis, the evaluation criterion entails that the impacts of interest are examined across the entire life-cycle of the product under study, from extraction of raw materials, to product disposal. Effectively, then, the choice of decision-support tool directs...

  6. Prototyping a Rangeland Decision Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted under the Innovative Tools and Techniques Supporting the Practical Uses of Earth Science Observations topic. We seek to create a prototype...

  7. Decision support systems for robotic surgery and acute care

    Science.gov (United States)

    Kazanzides, Peter

    2012-06-01

    Doctors must frequently make decisions during medical treatment, whether in an acute care facility, such as an Intensive Care Unit (ICU), or in an operating room. These decisions rely on a various information sources, such as the patient's medical history, preoperative images, and general medical knowledge. Decision support systems can assist by facilitating access to this information when and where it is needed. This paper presents some research eorts that address the integration of information with clinical practice. The example systems include a clinical decision support system (CDSS) for pediatric traumatic brain injury, an augmented reality head- mounted display for neurosurgery, and an augmented reality telerobotic system for minimally-invasive surgery. While these are dierent systems and applications, they share the common theme of providing information to support clinical decisions and actions, whether the actions are performed with the surgeon's own hands or with robotic assistance.

  8. Intelligent decision technology support in practice

    CERN Document Server

    Neves-Silva, Rui; Jain, Lakhmi; Phillips-Wren, Gloria; Watada, Junzo; Howlett, Robert

    2016-01-01

    This book contains a collection of innovative chapters emanating from topics raised during the 5th KES International Conference on Intelligent Decision Technologies (IDT), held during 2013 at Sesimbra, Portugal. The authors were invited to expand their original papers into a plethora of innovative chapters espousing IDT methodologies and applications. This book documents leading-edge contributions, representing advances in Knowledge-Based and Intelligent Information and Engineering System. It acknowledges that researchers recognize that society is familiar with modern Advanced Information Processing and increasingly expect richer IDT systems. Each chapter concentrates on the theory, design, development, implementation, testing or evaluation of IDT techniques or applications.  Anyone that wants to work with IDT or simply process knowledge should consider reading one or more chapters and focus on their technique of choice. Most readers will benefit from reading additional chapters to access alternative techniq...

  9. Development of decision support systems manager credit bank

    Directory of Open Access Journals (Sweden)

    М.В. Зосімович

    2008-03-01

    Full Text Available  There was designed the software for innovation projects evaluation. The application of a decision assumption support by a bank manager of Credit Department allows to improve the quality of managing process, timeliness of making the right decision in problem situations, which are characterized by high complexity, uncertainly and weak structuralism.

  10. Decision support for information systems management : applying analytic hierarchy process

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Vrolijk, Hans C.J.

    1995-01-01

    Decision-making in the field of information systems has become more complex due to a larger number of alternatives, multiple and sometimes conflicting goals, and an increasingly turbulent environment. In this paper we explore the appropriateness of Analytic Hierarchy Process to support I/S decision

  11. Decision Support System for Optimized Herbicide Dose in Spring Barley

    DEFF Research Database (Denmark)

    Sønderskov, Mette; Kudsk, Per; Mathiassen, Solvejg K

    2014-01-01

    Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO...

  12. Healthcare performance turned into decision support

    DEFF Research Database (Denmark)

    Sørup, Christian Michel; Jacobsen, Peter

    2013-01-01

    and holistic information about the determinants with regard to current levels of employee absence. The framework will be a valuable support for leaders with the authority to alter the determinants of employee absence. Research limitations/implications – Since a great part of the empirical material is supplied...

  13. Choices: An Interactive Decision Support Program for Breast Cancer Treatment

    National Research Council Canada - National Science Library

    Pierce, Penny Fay

    1998-01-01

    This project is developing a computer-assisted prototype of an individualized decision support system, called Choices, to assist women newly diagnosed with breast cancer in making stressful treatment...

  14. MODIS-Based Products for Operational Decision Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SMH Consulting proposes to develop a web-based decision support system to assist in Rapid Assessment, Monitoring, and Management (RAMM-DSS) on a regional scale. SMH...

  15. Integrated Modelling Frameworks for Environmental Assessment and Decision Support

    NARCIS (Netherlands)

    Rizzoli, A.E.; Leavesley, G.; Ascough, J.C.; Argent, R.M.; Athanasiadis, I.N.; Brilhante, V.; Claeys, F.H.A.; David, O.; Donatelli, M.; Gijsbers, P.; Havlik, D.; Kassahun, A.; Krause, P.; Quinn, N.W.T.; Scholten, H.; Sojda, R.S.; Villa, F.

    2008-01-01

    Modern management of environmental resources defines problems from a holistic and integrated perspective, imposing strong requirements to Environmental Decision Support Systems (EDSSs) and Integrated Assessment Tools (IATs), which tend to be increasingly complex in terms of software architecture and

  16. Low Band Telemedicine Decision Support System for Disaster Situations

    National Research Council Canada - National Science Library

    Hastings, Patricia

    2000-01-01

    Project accomplishments as of the date of the report: The first part of the project involves development of software in preparation for field testing of the trauma web-based decision support system. Dr...

  17. Mobile Contextualized learning games for decision support training

    NARCIS (Netherlands)

    Klemke, Roland; Börner, Dirk; Suarez, Angel; Schneider, Jan; Antonaci, Alessandra

    2015-01-01

    This interactive workshop session introduces mobile serious games as situated, contextualized learning games. Example cases for mobile serious games for decision support training are introduced and discussed. Participants will get to know contextualization techniques used in modern mobile

  18. Mobile Contextualized learning games for decision support training

    NARCIS (Netherlands)

    Klemke, Roland

    2014-01-01

    This interactive workshop session introduces mobile serious games as situated, contextualized learning games. Example cases for mobile serious games for decision support training are introduced and discussed. Participants will get to know contextualization techniques used in modern mobile devices

  19. Marketing decision support systems: Adoption, use and satisfaction.

    NARCIS (Netherlands)

    Wierenga, B.; Oude Ophuis, P.A.M.

    1997-01-01

    This paper deals with marketing decision support systems (MDSS) in companies. In a conceptual framework five categories of factors are distinguished that potentially affect adoption, use, and satisfaction: external environment factors, organizational factors, task environment factors, user factors

  20. The reliability of an epilepsy treatment clinical decision support system.

    Science.gov (United States)

    Standridge, Shannon; Faist, Robert; Pestian, John; Glauser, Tracy; Ittenbach, Richard

    2014-10-01

    We developed a content validated computerized epilepsy treatment clinical decision support system to assist clinicians with selecting the best antiepilepsy treatments. Before disseminating our computerized epilepsy treatment clinical decision support system, further rigorous validation testing was necessary. As reliability is a precondition of validity, we verified proof of reliability first. We evaluated the consistency of the epilepsy treatment clinical decision support system in three areas including the preferred antiepilepsy drug choice, the top three recommended choices, and the rank order of the three choices. We demonstrated 100% reliability on 15,000 executions involving a three-step process on five different common pediatric epilepsy syndromes. Evidence for the reliability of the epilepsy treatment clinical decision support system was essential for the long-term viability of the system, and served as a crucial component for the next phase of system validation.

  1. Marketing Decision Support Systems: Adoption, Use and Satisfaction

    NARCIS (Netherlands)

    B. Wierenga (Berend); P.A.M. Oude Ophuis (Peter)

    1997-01-01

    textabstractThis paper deals with marketing decision support systems (MDSS) in companies. In a conceptual framework five categories of factors are distinguished that potentially affect adoption, use, and satisfaction: external environment factors, organizational factors, task environment factors,

  2. DECISION SUPPORT FRAMEWORK FOR STORMWATER MANAGEMENT IN URBAN WATERSHEDS

    Science.gov (United States)

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) is developing a decision support system for placement of BMPs at strategic locations in urban watersheds. This tool wil...

  3. The Feasibility of Sophisticated Multicriteria Support for Clinical Decisions.

    Science.gov (United States)

    Dolan, James G; Veazie, Peter J

    2017-10-01

    Multicriteria decision-making (MCDM) methods are well-suited to serve as the foundation for clinical decision support systems. To do so, however, they need to be appropriate for use in busy clinical settings. We compared decision-making processes and outcomes of patient-level analyses done with a range of multicriteria methods that vary in ease of use and intensity of decision support, 2 factors that could affect their ease of implementation into practice. We conducted a series of Internet surveys to compare the effects of 5 multicriteria methods that differ in user interface and required user input format on decisions regarding selection of a preferred method for lowering the risk of cardiovascular disease. The study sample consisted of members of an online Internet panel maintained by Fluidsurveys, an Internet survey company. Study outcomes were changes in preferred option, decision confidence, preparation for decision making, the Values Clarification and Decisional Uncertainty subscales of the Decisional Conflict Scale, and method ease of use. The frequency of changes in the preferred option ranged from 9% to 38%, P MCDM method increased. The proportion of respondents who rated the method as easy ranged from 57% to 79% and differed significantly among MCDM methods, P = 0.003, but was not consistently related to intensity of decision support or ease of use. Decision support based on MCDM methods is not necessarily limited by decreases in ease of use. This result suggests that it is possible to develop decision support tools using sophisticated multicriteria techniques suitable for use in routine clinical care settings.

  4. Combined Machine Learning Techniques for Decision Making Support in Medicine

    OpenAIRE

    Stoean, Ruxandra

    2016-01-01

    Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So ho...

  5. Medical decision support systems and therapeutics: The role of autopilots.

    Science.gov (United States)

    Woosley, R L; Whyte, J; Mohamadi, A; Romero, K

    2016-02-01

    For decades, medical practice has increasingly relied on prescription medicines to treat, cure, or prevent illness but their net benefit is reduced by prescribing errors that result in adverse drug reactions (ADRs) and tens of thousands of deaths each year. Optimal prescribing requires effective management of massive amounts of data. Clinical decision support systems (CDSS) can help manage information and support optimal therapeutic decisions before errors are made by operating as the prescribers' "autopilot." © 2015 ASCPT.

  6. Clinical decision-making support systema in renal failure

    OpenAIRE

    E. Martínez Bernabé; G. Paluzie-Ávila; S. Terre Ohme; D. Ruiz Poza; M. A. Parada Aradilla; J. González Martínez; R. Albertí Valmaña; M. Castellvi Gordo

    2014-01-01

    Introduction: Support systems in clinical decision-making use individual characteristicsof the patient to generate recommendations to the clinician. Objective: To assess the impact of a tool for adjusting drug dosing in renal failure asa support system in clinical decision-making regarding the level of acceptance of theinterventions as well as the time invested by the pharmacist. Method: Non-randomized, prospective and hospital interventional study comparingpre- and post-implementation ...

  7. A Stochastic Decision Support System for Economic Order Quantity Problem

    Directory of Open Access Journals (Sweden)

    Amir Yousefli

    2012-01-01

    Full Text Available Improving decisions efficiency is one of the major concerns of the decision support systems. Specially in the uncertain environment, decision support systems could be implemented efficiently to simplify decision making process. In this paper stochastic economic order quantity (EOQ problem is investigated in which decision variables and objective function are uncertain in nature and optimum probability distribution functions of them are calculated through a geometric programming model. Obtained probability distribution functions of the decision variables and the objective function are used as optimum knowledge to design a new probabilistic rule base (PRB as a decision support system for EOQ model. The developed PRB is a new type of the stochastic rule bases that can be used to infer optimum or near optimum values of the decision variables and the objective function of the EOQ model without solving the geometric programming problem directly. Comparison between the results of the developed PRB and the optimum solutions which is provided in the numerical example illustrates the efficiency of the developed PRB.

  8. The analytic hierarchy process as a support for decision making

    Directory of Open Access Journals (Sweden)

    Filipović Milanka

    2007-01-01

    Full Text Available The first part of this text deals with a convention site selection as one of the most lucrative areas in the tourism industry. The second part gives a further description of a method for decision making - the analytic hierarchy process. The basic characteristics: hierarchy constructions and pair wise comparison on the given level of the hierarchy are allured. The third part offers an example of application. This example is solved using the Super - Decision software, which is developed as a computer support for the analytic hierarchy process. This indicates that the AHP approach is a useful tool to help support a decision of convention site selection. .

  9. Prolog: A Practical Language for Decision Support Systems in Nursing?

    Science.gov (United States)

    Ozbolt, Judy G.

    1987-01-01

    Developing decision support systems for nursing has been limited by difficulties in defining and representing nursing's knowledge base and by a lack of knowledge of how nurses make decisions. Recent theoretical and empirical work offers solutions to those problems. The challenge now is to represent nursing knowledge in a way that is comprehensible to both nurse and computer and to design decision support modalities that are accurate, efficient, and appropriate for nurses with different levels of expertise. This paper reviews the issues and critically evaluates Prolog as a tool for meeting the challenge.

  10. MONITORING STUDENT PERFORMANCE. A DATA DRIVEN DECISION SUPPORT SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Vasile GORGAN

    2015-06-01

    Full Text Available Data Driven Decision Support Systems are mature technologies whose effectiveness in business and management seem to be well established and uncontroversial. Under the circumstances of increased competition between universities in their attempt to better position themselves on the market of educational services, a Data Driven Decision Support System could become a powerful instrument meant to enhance all the decisions that target various aspects of the educational process. This paper is a case study conducted in a Romanian university, presenting the development of such a system, emphasizing the analytical capabilities related to student results at exams, as this topic is of interest for the users of the system.

  11. Decision Support for Flood Event Prediction and Monitoring

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Liang, Gengsheng

    2007-01-01

    integration, floodplain delineation, and online map interfaces. Our Web-based GIS model can dynamically display observed and predicted flood extents for decision makers and the general public. The users can access Web-based GIS that models current flood events and displays satellite imagery and digital......In this paper the development of Web GIS based decision support system for flood events is presented. To improve flood prediction we developed the decision support system for flood prediction and monitoring that integrates hydrological modelling and CARIS GIS. We present the methodology for data...

  12. Group decision support system for customer-driven product design

    Science.gov (United States)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  13. Web-Based Group Decision Support System: an Economic Application

    Directory of Open Access Journals (Sweden)

    Ion ISTUDOR

    2010-01-01

    Full Text Available Decision Support Systems (DSS form a specific class of computerized information systems that support business and managerial decision-making activities. Making the right decision in business primarily depends on the quality of data. It also depends on the ability to analyze the data with a view to identifying trends that can suggest solutions and strategies. A “cooperative” decision support system means the data are collected, analyzed and then provided to a human agent who can help the system to revise or refine the data. It means that both a human component and computer component work together to come up with the best solution. This paper describes the usage of a software product (Vanguard System to a specific economic application (evaluating the financial risk assuming that the rate of the economic profitability can be under the value of the interest rate.

  14. Features of computerized clinical decision support systems supportive of nursing practice: a literature review.

    Science.gov (United States)

    Lee, Seonah

    2013-10-01

    This study aimed to organize the system features of decision support technologies targeted at nursing practice into assessment, problem identification, care plans, implementation, and outcome evaluation. It also aimed to identify the range of the five stage-related sequential decision supports that computerized clinical decision support systems provided. MEDLINE, CINAHL, and EMBASE were searched. A total of 27 studies were reviewed. The system features collected represented the characteristics of each category from patient assessment to outcome evaluation. Several features were common across the reviewed systems. For the sequential decision support, all of the reviewed systems provided decision support in sequence for patient assessment and care plans. Fewer than half of the systems included problem identification. There were only three systems operating in an implementation stage and four systems in outcome evaluation. Consequently, the key steps for sequential decision support functions were initial patient assessment, problem identification, care plan, and outcome evaluation. Providing decision support in such a full scope will effectively help nurses' clinical decision making. By organizing the system features, a comprehensive picture of nursing practice-oriented computerized decision support systems was obtained; however, the development of a guideline for better systems should go beyond the scope of a literature review.

  15. Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise.

    Science.gov (United States)

    Militello, Laura G; Saleem, Jason J; Borders, Morgan R; Sushereba, Christen E; Haverkamp, Donald; Wolf, Steven P; Doebbeling, Bradley N

    2016-03-01

    Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration's EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability.

  16. Composite decision support by combining cost-benefit and multi-criteria decision

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; Salling, Kim Bang; Leleur, Steen

    2011-01-01

    This paper concerns composite decision support based on combining cost-benefit analysis (CBA) with multi-criteria decision analysis (MCDA) for the assessment of economic as well as strategic impacts within transport projects. Specifically a composite model for assessment (COSIMA) is presented...

  17. Decision-making on olympic urban development - multi-actor decision support tool

    NARCIS (Netherlands)

    Heurkens, E.W.T.M.

    Subject of study is the possible organisation of the Olympic Games of 2028 in the Netherlands, as seen from an urban development viewpoint. The project focuses on the decision-making process in the initiative phase. Aim of the project is the development of a decision support tool for the complex,

  18. DECISION SUPPORT SYSTEMS IN MILITARY ACTIONS: NECESSITY, POSSIBILITIES AND CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Elena ŞUŞNEA

    2012-01-01

    Full Text Available Nowadays, modern organizations cannot resort to the decision-making process without relying on information and communication technology if they want to be successful. Thus, besides information as an important input of this process, the tools and techniques used by decision-makers are equally important in the support and validation of their decisions. All this is also valid for the military organizations and their specific tasks and activities. A fortiori military commanders face some of the most diff cult and high-stake decision issues meaningful not only at the level of the military, but also for the humankind. Under these circumstances and as a result of an increase in the diversity and complexity of conflict situations, in the information and technology means employed by opponents in warfare and in the amount of information needed to be processed in real time, decision support systems become a necessity. Starting from the aforementioned inevitable requirement, the aim of this article is to emphasize the possibilities and constraints in developing an intelligent decision support system that assists commanders in making scientific decisions on time, under the right circumstances, for the right costs.

  19. Computerised decision support systems for healthcare professionals: an interpretative review.

    Science.gov (United States)

    Cresswell, Kathrin; Majeed, Azeem; Bates, David W; Sheikh, Aziz

    2012-01-01

    Computerised decision support systems are designed to support clinicians in making decisions and thereby enhance the quality and safety of care. We aimed to undertake an interpretative review of the empirical evidence on computerised decision support systems, their contexts of use, and summarise evidence on the effectiveness of these tools and insights into how these can be successfully implemented and adopted. We systematically searched the empirical literature to identify systematic literature reviews on computerised decision support applications and their impact on the quality and safety of healthcare delivery over a 13-year period (1997-2010). The databases searched included: MEDLINE, EMBASE, The Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, The Cochrane Central Register of Controlled Trials, The Cochrane Methodology Register, The Health Technology Assessment Database, and The National Health Service (NHS) Economic Evaluation Database. To be eligible for inclusion, systematic reviews needed to address computerised decision support systems, and at least one of the following: impact on safety; quality; or organisational, implementation or adoption considerations. Our searches yielded 121 systematic reviews relating to eHealth, of which we identified 41 as investigating computerised decision support systems. These indicated that, whilst there was a lack of investigating potential risks, such tools can result in improvements in practitioner performance in the promotion of preventive care and guideline adherence, particularly if specific information is available in real time and systems are effectively integrated into clinical workflows. However, the evidence regarding impact on patient outcomes was less clear-cut with reviews finding either no, inconsistent or modest benefits. Whilst the potential of clinical decision support systems in improving, in particular, practitioner performance is considerable, such technology may

  20. Confronting Uncertainty in Life Cycle Assessment Used for Decision Support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky; Sohn, Michael D.

    2014-01-01

    The aim of this article is to help confront uncertainty in life cycle assessments (LCAs) used for decision support. LCAs offer a quantitative approach to assess environmental effects of products, technologies, and services and are conducted by an LCA practitioner or analyst (AN) to support...

  1. A fuzzy expert system for diabetes decision support application.

    Science.gov (United States)

    Lee, Chang-Shing; Wang, Mei-Hui

    2011-02-01

    An increasing number of decision support systems based on domain knowledge are adopted to diagnose medical conditions such as diabetes and heart disease. It is widely pointed that the classical ontologies cannot sufficiently handle imprecise and vague knowledge for some real world applications, but fuzzy ontology can effectively resolve data and knowledge problems with uncertainty. This paper presents a novel fuzzy expert system for diabetes decision support application. A five-layer fuzzy ontology, including a fuzzy knowledge layer, fuzzy group relation layer, fuzzy group domain layer, fuzzy personal relation layer, and fuzzy personal domain layer, is developed in the fuzzy expert system to describe knowledge with uncertainty. By applying the novel fuzzy ontology to the diabetes domain, the structure of the fuzzy diabetes ontology (FDO) is defined to model the diabetes knowledge. Additionally, a semantic decision support agent (SDSA), including a knowledge construction mechanism, fuzzy ontology generating mechanism, and semantic fuzzy decision making mechanism, is also developed. The knowledge construction mechanism constructs the fuzzy concepts and relations based on the structure of the FDO. The instances of the FDO are generated by the fuzzy ontology generating mechanism. Finally, based on the FDO and the fuzzy ontology, the semantic fuzzy decision making mechanism simulates the semantic description of medical staff for diabetes-related application. Importantly, the proposed fuzzy expert system can work effectively for diabetes decision support application.

  2. Decision Support for Diabetes in Scotland: Implementation and Evaluation of a Clinical Decision Support System.

    Science.gov (United States)

    Conway, Nicholas; Adamson, Karen A; Cunningham, Scott G; Emslie Smith, Alistair; Nyberg, Peter; Smith, Blair H; Wales, Ann; Wake, Deborah J

    2017-09-01

    Automated clinical decision support systems (CDSS) are associated with improvements in health care delivery to those with long-term conditions, including diabetes. A CDSS was introduced to two Scottish regions (combined diabetes population ~30 000) via a national diabetes electronic health record. This study aims to describe users' reactions to the CDSS and to quantify impact on clinical processes and outcomes over two improvement cycles: December 2013 to February 2014 and August 2014 to November 2014. Feedback was sought via patient questionnaires, health care professional (HCP) focus groups, and questionnaires. Multivariable regression was used to analyze HCP SCI-Diabetes usage (with respect to CDSS message presence/absence) and case-control comparison of clinical processes/outcomes. Cases were patients whose HCP received a CDSS messages during the study period. Closely matched controls were selected from regions outside the study, following similar clinical practice (without CDSS). Clinical process measures were screening rates for diabetes-related complications. Clinical outcomes included HbA1c at 1 year. The CDSS had no adverse impact on consultations. HCPs were generally positive toward CDSS and used it within normal clinical workflow. CDSS messages were generated for 5692 cases, matched to 10 667 controls. Following clinic, the probability of patients being appropriately screened for complications more than doubled for most measures. Mean HbA1c improved in cases and controls but more so in cases (-2.3 mmol/mol [-0.2%] versus -1.1 [-0.1%], P = .003). The CDSS was well received; associated with improved efficiencies in working practices; and large improvements in guideline adherence. These evidence-based, early interventions can significantly reduce costly and devastating complications.

  3. Decision Making Based On Management Information System and Decision Support System

    Directory of Open Access Journals (Sweden)

    Şükrü Ada

    2015-04-01

    Full Text Available Information hasbecome an essentialresource for managing modern organizations. This is so because today’sbusiness environment is volatile, dynamic, turbulent and necessitates the burgeoning demand for accurate, relevant, complete,timely and economical information needed to drive the decision-making process in order to accentuate organizational abilities to manage opportunities and threat. MIS work on online mode with an average processing speed. Generally, it is used by low level management. Decision support system are powerful tool that assist corporate executives, administrators and other senior officials in making decision regarding the problem. Management Information Systems is a useful tool that provided organized and summarized information in a proper time to decision makers and enable making accurate decision for managers in organizations. This paper will discuss the concept, characteristics, types of MIS, the MIS model, and in particular it will highlight the impact and role of MIS on decision making.

  4. Decision Support System for a Low Voltage Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Iulia Stamatescu

    2017-01-01

    Full Text Available This paper presents the development of a decision support system (DSS for a low-voltage grid with renewable energy sources (photovoltaic panels and wind turbine which aims at achieving energy balance in a pilot microgrid with less energy consumed from the network. The DSS is based on a procedural decision algorithm that is applied on a pilot microgrid, with energy produced from renewable energy sources, but it can be easily generalized for any microgrid. To underline the benefits of the developed DSS two case scenarios (a household and an office building with different energy consumptions were analyzed. The results and throw added value of the paper is the description of an implemented microgrid, the development and testing of the decision support system on real measured data. Experimental results have demonstrated the validity of the approach in rule-based decision switching.

  5. Decision Support Systems: Usage And Applications In Logistics Services

    Directory of Open Access Journals (Sweden)

    Eyüp AKÇETİN

    2014-06-01

    Full Text Available Competitive advantage in logistics operations is possible by analyzing data to create information and turning that information into decision. Supply chain optimization depends on effective management of chain knowledge. Analyzing data from supply chain and making a decision creates complex operations. Therefore, these operations require benefitting from information technology. In today’s global world, businesses use outsourcing for logistics services to focus on their own field, so are seeking to achieve competitive advantage against competitors. Outsourcing requires sharing of various information and data with companies that provide logistical support. Effective strategies are based on well-analyzed the data and information. Best options for right decisions can be created only from good analysis. That’s why companies that supply logistics services achieve competitive advantage using decision support systems (DSS in industrial competition. In short, DSS has become driving force for every business in today’s knowledge-based economy.

  6. IBM’s Health Analytics and Clinical Decision Support

    Science.gov (United States)

    Sun, J.; Knoop, S.; Shabo, A.; Carmeli, B.; Sow, D.; Syed-Mahmood, T.; Rapp, W.

    2014-01-01

    Summary Objectives This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making. Methods Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given. Results There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data. Conclusion Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation. PMID:25123736

  7. A Decision Support System for Solving Linear Programming Problems

    OpenAIRE

    Nikolaos Ploskas; Nikolaos Samaras; Jason Papathanasiou

    2014-01-01

    Linear programming algorithms have been widely used in Decision Support Systems. These systems have incorporated linear programming algorithms for the solution of the given problems. Yet, the special structure of each linear problem may take advantage of different linear programming algorithms or different techniques used in these algorithms. This paper proposes a web-based DSS that assists decision makers in the solution of linear programming problems with a variety of linear programming alg...

  8. Relational Algebra in Spatial Decision Support Systems Ontologies.

    Science.gov (United States)

    Diomidous, Marianna; Chardalias, Kostis; Koutonias, Panagiotis; Magnita, Adrianna; Andrianopoulos, Charalampos; Zimeras, Stelios; Mechili, Enkeleint Aggelos

    2017-01-01

    Decision Support Systems (DSS) is a powerful tool, for facilitates researchers to choose the correct decision based on their final results. Especially in medical cases where doctors could use these systems, to overcome the problem with the clinical misunderstanding. Based on these systems, queries must be constructed based on the particular questions that doctors must answer. In this work, combination between questions and queries would be presented via relational algebra.

  9. Application of GIS in foreign direct investment decision support system

    Science.gov (United States)

    Zhou, Jianlan; Sun, Koumei

    2007-06-01

    It is important to make decisions on how to attract foreign direct investment (FDI) to China and know how the inequality of FDI introduction by locational different provinces. Following background descriptions on China's FDI economic environments and FDI-related policies, this paper demonstrates the uses of geographical information system (GIS) and multi-criterion decision-making (MCDM) framework in solving a spatial multi-objective problem of evaluating and ranking China's provinces for FDI introduction. It implements a foreign direct investment decision support system, which reveals the main determinants of FDI in China and gives some results of regional geographical analysis over spatial data.

  10. Nurses' Clinical Decision Making on Adopting a Wound Clinical Decision Support System.

    Science.gov (United States)

    Khong, Peck Chui Betty; Hoi, Shu Yin; Holroyd, Eleanor; Wang, Wenru

    2015-07-01

    Healthcare information technology systems are considered the ideal tool to inculcate evidence-based nursing practices. The wound clinical decision support system was built locally to support nurses to manage pressure ulcer wounds in their daily practice. However, its adoption rate is not optimal. The study's objective was to discover the concepts that informed the RNs' decisions to adopt the wound clinical decision support system as an evidence-based technology in their nursing practice. This was an exploratory, descriptive, and qualitative design using face-to-face interviews, individual interviews, and active participatory observation. A purposive, theoretical sample of 14 RNs was recruited from one of the largest public tertiary hospitals in Singapore after obtaining ethics approval. After consenting, the nurses were interviewed and observed separately. Recruitment stopped when data saturation was reached. All transcribed interview data underwent a concurrent thematic analysis, whereas observational data were content analyzed independently and subsequently triangulated with the interview data. Eight emerging themes were identified, namely, use of the wound clinical decision support system, beliefs in the wound clinical decision support system, influences of the workplace culture, extent of the benefits, professional control over nursing practices, use of knowledge, gut feelings, and emotions (fear, doubt, and frustration). These themes represented the nurses' mental outlook as they made decisions on adopting the wound clinical decision support system in light of the complexities of their roles and workloads. This research has provided insight on the nurses' thoughts regarding their decision to interact with the computer environment in a Singapore context. It captured the nurses' complex thoughts when deciding whether to adopt or reject information technology as they practice in a clinical setting.

  11. Evolution of Decision Support Systems Research Field in Numbers

    Directory of Open Access Journals (Sweden)

    Ana-Maria SUDUC

    2010-01-01

    Full Text Available The scientific production in a certain field shows, in great extent, the research interests in that field. Decision Support Systems are a particular class of information systems which are gaining more popularity in various domains. In order to identify the evolution in time of the publications number, authors, subjects, publications in the Decision Support Systems (DSS field, and therefore the scientific world interest for this field, in November 2010 there have been organized a series of queries on three major international scientific databases: ScienceDirect, IEEE Xplore Digital Library and ACM Digital Library. The results presented in this paper shows that, even the decision support systems research field started in 1960s, the interests for this type of systems grew exponentially with each year in the last decades.

  12. Research on synthetic decision support technology based on data farming

    Science.gov (United States)

    Shi, Haobin; Yu, Zhujun; Li, Wenbin

    2009-12-01

    In order to solve the problems existed in current decision support system, such as closed, model-oriented, forbidding uncertainty and risk, oriented to analysis of few determined scenario, a novel synthetic decision support system(SDSS) based on data farming is proposed and established in this paper. Taking data warehouse as platform, the SDSS searches unknown information and unexpected knowledge by use of data farming, while data mining is utilized to extract reliable, original and valuable knowledge from large quantities of data. The organic combination of data farming, data mining and data warehouse opens up a new way for research on decision support system, and simulated experiments verify the validity of this technology.

  13. Data Mining for Education Decision Support: A Review

    Directory of Open Access Journals (Sweden)

    Suhirman Suhirman

    2014-12-01

    Full Text Available Management of higher education must continue to evaluate on an ongoing basis in order to improve the quality of institutions. This will be able to do the necessary evaluation of various data, information, and knowledge of both internal and external institutions. They plan to use more efficiently the collected data, develop tools so that to collect and direct management information, in order to support managerial decision making. The collected data could be utilized to evaluate quality, perform analyses and diagnoses, evaluate dependability to the standards and practices of curricula and syllabi, and suggest alternatives in decision processes. Data minings to support decision making are well suited methods to provide decision support in the education environments, by generating and presenting relevant information and knowledge towards quality improvement of education processes. In educational domain, this information is very useful since it can be used as a base for investigating and enhancing the current educational standards and managements. In this paper, a review on data mining for academic decision support in education field is presented. The details of this paper will review on recent data mining in educational field and outlines future researches in educational data mining.

  14. A medical informatics perspective on decision support systems. Findings from the yearbook 2012 section on decision support.

    Science.gov (United States)

    Ruch, P

    2012-01-01

    To summarize current excellent research in the field of computer-based decision support systems in health and healthcare. We provide a synopsis of the articles selected for the IMIA Yearbook 2012, from which we attempt to draft a synthetic overview of the activity and new trends in the field. While the state of the research in the field of medical decision support systems is illustrated by a set of fairly heterogeneous studies, it is possible to identify fundamental aspects of the fields, e.g. Decision Support Systems for Computerized Provider Order Entry, both for physicians and pharmacists, as well as more specific developments such as instruments to improve processing of data related to Clinical Trials and applications to capture family health history. The best paper selection of articles on decision support shows examples of excellent research on methods concerning original development as well as quality assurance of previously reported studies. This selected set of scientific investigations clearly question the way decision support systems are deployed in clinical environments as these systems seem to have little impact on patient safety and even could harm the patient. Furthermore, while significant research efforts are invested into translational & "omics" medicine, it is interesting to observe that simple data capture applications can reasonably lead to positive changes in healthcare.

  15. Novel Applications of Intuitionistic Fuzzy Digraphs in Decision Support Systems

    Science.gov (United States)

    Sarwar, Mansoor

    2014-01-01

    Many problems of practical interest can be modeled and solved by using graph algorithms. In general, graph theory has a wide range of applications in diverse fields. In this paper, the intuitionistic fuzzy organizational and neural network models, intuitionistic fuzzy neurons in medical diagnosis, intuitionistic fuzzy digraphs in vulnerability assessment of gas pipeline networks, and intuitionistic fuzzy digraphs in travel time are presented as examples of intuitionistic fuzzy digraphs in decision support system. We have also designed and implemented the algorithms for these decision support systems. PMID:25045752

  16. Decision support system for structure synthesis of monitoring systems

    Directory of Open Access Journals (Sweden)

    Skatkov A. V.

    2008-04-01

    Full Text Available The paper is concerned with a structure synthesis of monitoring systems. In the article a decision support system for such synthesis was proposed and described. In the first phase of the process, the proposed classification of monitoring systems is used. Then adaptive algorithms, simulation and analytic modeling are used. The results of studies carried out by means of the proposed program are represented. The topicality of proposed approach was demonstrated. It should be mentioned, that algorithms were thoroughly described, the computing experiments were carried out. The authors believe that the proposed decision support system has many advantages and, consequently, is very useful in structure synthesis of monitoring systems.

  17. Revisiting the dose calculation methodologies in European decision support systems

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roos, Per; Hou, Xiaolin

    2012-01-01

    The paper presents examples of current needs for improvement and extended applicability of the European decision support systems. The systems were originally created for prediction of the radiological consequences of accidents at nuclear installations. They could however also be of great value...... in connection with management of the consequences of other types of contaminating incidents, including ‘dirty bomb’ explosions. This would require a number of new modelling features and parametric changes. Also for nuclear power plant preparedness a number of revisions of the decision support systems are called...

  18. Decision Support Systems for Research and Management in Advanced Life Support

    Science.gov (United States)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  19. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    Science.gov (United States)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that

  20. Decision support model for introduction of gamification solution using AHP.

    Science.gov (United States)

    Kim, Sangkyun

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform.