WorldWideScience

Sample records for neuro electric machine

  1. Neuro-vector-based electrical machine driver combining a neural plant identifier and a conventional vector controller

    Science.gov (United States)

    Madani, Kurosh; Mercier, Gilles; Dinarvand, Mohammad; Depecker, Jean-Charles

    1999-03-01

    One of the most important problems, for a machine control process is the system identification. To identify varying parameters which are dependent from other system's parameters (speed, voltage and currents, etc.), one must have an adaptive control system. Synchronous machines conventional vector control's implementation using PID controllers have been recently proposed presenting the best actual solution. It supposes an appropriated model of the plant. But real plant's parameters vary and the P.I.D. controller is not suitable because of the parameters variation and non-linearity introduced by the machine's physical structure. In this paper, we present an on-line dynamic adaptive neural based vector control system identifying the motor's parameters of a synchronous machine. We present and discuss a DSP based real- time implementation of our adaptive neuro-controller. Simulation and experimental results validating our approach have been reported.

  2. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  3. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  4. Merging machines with microsurgery: clinical experience with neuroArm.

    Science.gov (United States)

    Sutherland, Garnette R; Lama, Sanju; Gan, Liu Shi; Wolfsberger, Stefan; Zareinia, Kourosh

    2013-03-01

    It has been over a decade since the introduction of the da Vinci Surgical System into surgery. Since then, technology has been advancing at an exponential rate, and newer surgical robots are becoming increasingly sophisticated, which could greatly impact the performance of surgery. NeuroArm is one such robotic system. Clinical integration of neuroArm, an MR-compatible image-guided robot, into surgical procedure has been developed over a prospective series of 35 cases with varying pathology. Only 1 adverse event was encountered in the first 35 neuroArm cases, with no patient injury. The adverse event was uncontrolled motion of the left neuroArm manipulator, which was corrected through a rigorous safety review procedure. Surgeons used a graded approach to introducing neuroArm into surgery, with routine dissection of the tumor-brain interface occurring over the last 15 cases. The use of neuroArm for routine dissection shows that robotic technology can be successfully integrated into microsurgery. Karnofsky performance status scores were significantly improved postoperatively and at 12-week follow-up. Surgical robots have the potential to improve surgical precision and accuracy through motion scaling and tremor filters, although human surgeons currently possess superior speed and dexterity. Additionally, neuroArm's workstation has positive implications for technology management and surgical education. NeuroArm is a step toward a future in which a variety of machines are merged with medicine.

  5. Electrical machines diagnosis

    CERN Document Server

    Trigeassou, Jean-Claude

    2013-01-01

    Monitoring and diagnosis of electrical machine faults is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives.This book provides a survey of the techniques used to detect the faults occurring in electrical drives: electrical, thermal and mechanical faults of the electrical machine, faults of the static converter and faults of the energy storage unit.Diagnosis of faults occurring in electrical drives is an essential part of a global monitoring system used to improve reliability and serviceability. This diagnosis is perf

  6. Electrical machines & drives

    CERN Document Server

    Hammond, P

    1985-01-01

    Containing approximately 200 problems (100 worked), the text covers a wide range of topics concerning electrical machines, placing particular emphasis upon electrical-machine drive applications. The theory is concisely reviewed and focuses on features common to all machine types. The problems are arranged in order of increasing levels of complexity and discussions of the solutions are included where appropriate to illustrate the engineering implications. This second edition includes an important new chapter on mathematical and computer simulation of machine systems and revised discussions o

  7. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  8. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  9. Electrical Discharge Machining.

    Science.gov (United States)

    Montgomery, C. M.

    The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…

  10. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  11. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  12. Electrical machines with Matlab

    CERN Document Server

    Gonen, Turan

    2011-01-01

    Basic ConceptsDistribution SystemImpact of Dispersed Storage and GenerationBrief Overview of Basic Electrical MachinesReal and Reactive Powers in Single-Phase AC CircuitsThree-Phase CircuitsThree-Phase SystemsUnbalanced Three-Phase LoadsMeasurement of Average Power in Three-Phase CircuitsPower Factor CorrectionMagnetic CircuitsMagnetic Field of Current-Carrying ConductorsAmpère's Magnetic Circuital LawMagnetic CircuitsMagnetic Circuit with Air GapBrief Review of FerromagnetismMagnetic Core LossesHow to Determine Flux for a Given MMFPermanent MagnetsTransformersTransformer ConstructionBrief Rev

  13. Non-conventional electrical machines

    CERN Document Server

    Rezzoug, Abderrezak

    2013-01-01

    The developments of electrical machines are due to the convergence of material progress, improved calculation tools, and new feeding sources. Among the many recent machines, the authors have chosen, in this first book, to relate the progress in slow speed machines, high speed machines, and superconducting machines. The first part of the book is dedicated to materials and an overview of magnetism, mechanic, and heat transfer.

  14. CNC electrical discharge machining centers

    Energy Technology Data Exchange (ETDEWEB)

    Jaggars, S.R.

    1991-10-01

    Computer numerical control (CNC) electrical discharge machining (EDM) centers were investigated to evaluate the application and cost effectiveness of establishing this capability at Allied-Signal Inc., Kansas City Division (KCD). In line with this investigation, metal samples were designed, prepared, and machined on an existing 15-year-old EDM machine and on two current technology CNC EDM machining centers at outside vendors. The results were recorded and evaluated. The study revealed that CNC EDM centers are a capability that should be established at KCD. From the information gained, a machine specification was written and a shop was purchased and installed in the Engineering Shop. The older machine was exchanged for a new model. Additional machines were installed in the Tool Design and Fabrication and Precision Microfinishing departments. The Engineering Shop machine will be principally used for the following purposes: producing deep cavities in small corner radii, machining simulated casting models, machining difficult-to-machine materials, and polishing difficult-to-hand polish mold cavities. 2 refs., 18 figs., 3 tabs.

  15. Electrical machines and drives

    CERN Document Server

    Hindmarsh, John

    2002-01-01

    Recent years have brought substantial developments in electrical drive technology, with the appearance of highly rated, very-high-speed power-electronic switches, combined with microcomputer control systems.This popular textbook has been thoroughly revised and updated in the light of these changes. It retains its successful formula of teaching through worked examples, which are put in context with concise explanations of theory, revision of equations and discussion of the engineering implications. Numerous problems are also provided, with answers supplied.The third edition in

  16. Magnet management in electric machines

    Science.gov (United States)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang

    2017-03-21

    A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

  17. Rotating electrical machines: Poynting flow

    Science.gov (United States)

    Donaghy-Spargo, C.

    2017-09-01

    This paper presents a complementary approach to the traditional Lorentz and Faraday approaches that are typically adopted in the classroom when teaching the fundamentals of electrical machines—motors and generators. The approach adopted is based upon the Poynting vector, which illustrates the ‘flow’ of electromagnetic energy. It is shown through simple vector analysis that the energy-flux density flow approach can provide insight into the operation of electrical machines and it is also shown that the results are in agreement with conventional Maxwell stress-based theory. The advantage of this approach is its complementary completion of the physical picture regarding the electromechanical energy conversion process—it is also a means of maintaining student interest in this subject and as an unconventional application of the Poynting vector during normal study of electromagnetism.

  18. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  19. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.

    Science.gov (United States)

    Sun, Zhan-Li; Au, Kin-Fan; Choi, Tsan-Ming

    2007-10-01

    This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.

  20. Multi-winding homopolar electric machine

    Science.gov (United States)

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  1. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  2. Torque ripple reduction in electric machines

    Science.gov (United States)

    Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi; Galioto, Steven Joseph

    2017-08-22

    An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machine is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.

  3. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  4. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  5. Apparatus for cooling an electric machine

    Science.gov (United States)

    Palafox, Pepe; Gerstler, William Dwight; Shen, Xiaochun; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Salasoo, Lembit

    2013-07-16

    Provided is an apparatus, for example, for use with a rotating electric machine, that includes a housing. The housing can include a housing main portion and a housing end portion. The housing main portion can be configured to be disposed proximal to a body portion of a stator section of an electric machine. The housing main portion can define a main fluid channel that is configured to conduct fluid therethrough. The housing end portion can receive fluid from said main fluid channel and direct fluid into contact with a winding end portion of a conductive winding of the stator section.

  6. Insulation assembly for electric machine

    Science.gov (United States)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  7. Soft Magnetic Composites in Novel Designs of Electrical Traction Machines

    OpenAIRE

    Zhang, Bo

    2017-01-01

    Nowadays, the manufacturing of electrical machines based on electrical steel laminations has been well established worldwide. Compared with the electrical steel, the soft magnetic composites (SMC) shows magnetic isotropy and lower eddy current losses. Thus, it becomes an important impulse promoting the development of new topologies of electrical machine. The application of SMC in the electrical traction machine for hybrid electrical vehicle or electrical vehicle has been researched in the work.

  8. Developments in electrical machines using permanent magnets

    Science.gov (United States)

    Chalmers, B. J.

    1996-05-01

    The availability of high-field permanent-magnet materials has created opportunities for the development of electrical machines with advantageous properties including high efficiency, compact size, low weight and brushless operation. The paper reports the design and performance of a number of motors and generators which have recently been developed and demonstrated.

  9. SIMULATION TOOLS FOR ELECTRICAL MACHINES MODELLING ...

    African Journals Online (AJOL)

    Dr Obe

    [10]D.W. Marquardt, "An Algorithm for least-square estimation of non-linear parameters" J Soc. Ind. Appl. Math, voI.1l, No.2, June 1963,pp.431-441. [11] Peter Vas, Electrical machines and drives-A space vector theory approach, Clarendon Press,. Oxford, 1992. [12] MATLAB User's Guide. The Mathworks, Inc,. Natick, 199l.

  10. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    National Research Council Canada - National Science Library

    Gregor Wolbring; Lucy Diep; Sophya Yumakulov; Natalie Ball; Dean Yergens

    2013-01-01

      Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people...

  11. Analysis Of Electrical – Thermal Coupling Of Induction Machine ...

    African Journals Online (AJOL)

    The interaction of the Electrical and mechanical parts of Electrical machines gives rise to the heating of the machine's constituent parts. This consequently leads to an increase in temperature which if not properly monitored may lead to the breakdown of the machine. This paper therefore presents the Electrical and thermal ...

  12. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Directory of Open Access Journals (Sweden)

    Renjie Ji

    Full Text Available Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR, electrode wear ratio (EWR, and surface roughness (SR. The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical

  13. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  14. A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors

    Directory of Open Access Journals (Sweden)

    A. Konstantaras

    2004-01-01

    Full Text Available Electric Earthquake Precursor (EEP recognition is essentially a problem of weak signal detection. An EEP signal, according to the theory of propagating cracks, is usually a very weak electric potential anomaly appearing on the Earth's electric field prior to an earthquake, often unobservable within the electric background, which is significantly stronger and embedded in noise. Furthermore, EEP signals vary in terms of duration and size making reliable recognition even more difficult. An average model for EEP signals has been identified based on a time function describing the evolution of the number of propagating cracks. This paper describes the use of neuro-fuzzy networks (Neural Networks with intrinsic fuzzy logic abilities for the reliable recognition of EEP signals within the electric field. Pattern recognition is performed by the neural network to identify the average EEP model from within the electric field. Use of the neuro-fuzzy model enables classification of signals that are not exactly the same, but do approximate the average EEP model, as EEPs. On the other hand, signals that look like EEPs but do not approximate enough the average model are suppressed, preventing false classification. The effectiveness of the proposed network is demonstrated using electrotelluric data recorded in NW Greece.

  15. A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors

    Science.gov (United States)

    Konstantaras, A.; Varley, M. R.; Vallianatos, F.; Collins, G.; Holifield, P.

    2004-10-01

    Electric Earthquake Precursor (EEP) recognition is essentially a problem of weak signal detection. An EEP signal, according to the theory of propagating cracks, is usually a very weak electric potential anomaly appearing on the Earth's electric field prior to an earthquake, often unobservable within the electric background, which is significantly stronger and embedded in noise. Furthermore, EEP signals vary in terms of duration and size making reliable recognition even more difficult. An average model for EEP signals has been identified based on a time function describing the evolution of the number of propagating cracks. This paper describes the use of neuro-fuzzy networks (Neural Networks with intrinsic fuzzy logic abilities) for the reliable recognition of EEP signals within the electric field. Pattern recognition is performed by the neural network to identify the average EEP model from within the electric field. Use of the neuro-fuzzy model enables classification of signals that are not exactly the same, but do approximate the average EEP model, as EEPs. On the other hand, signals that look like EEPs but do not approximate enough the average model are suppressed, preventing false classification. The effectiveness of the proposed network is demonstrated using electrotelluric data recorded in NW Greece.

  16. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  17. A Novel Configuration of Feedback's Electric Machine Tutor (EMT ...

    African Journals Online (AJOL)

    This paper reports a successful adaptation of a laboratory teaching machine - Electrical Machine Tutor (EMT) model 180 as an asynchronous composite polyphase electric motor without rotor conductors. The device comprises two such identical machines without rotor conductors, all the conductors being on the stator side, ...

  18. Linear electric machines, drives, and MAGLEVs handbook

    CERN Document Server

    Boldea, Ion

    2013-01-01

    Based on author Ion Boldea's 40 years of experience and the latest research, Linear Electric Machines, Drives, and Maglevs Handbook provides a practical and comprehensive resource on the steady improvement in this field. The book presents in-depth reviews of basic concepts and detailed explorations of complex subjects, including classifications and practical topologies, with sample results based on an up-to-date survey of the field. Packed with case studies, this state-of-the-art handbook covers topics such as modeling, steady state, and transients as well as control, design, and testing of li

  19. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  20. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  1. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  2. Tomato grading system using machine vision technology and neuro-fuzzy networks (ANFIS

    Directory of Open Access Journals (Sweden)

    H Izadi

    2016-04-01

    Full Text Available Introduction: The quality of agricultural products is associated with their color, size and health, grading of fruits is regarded as an important step in post-harvest processing. In most cases, manual sorting inspections depends on available manpower, time consuming and their accuracy could not be guaranteed. Machine Vision is known to be a useful tool for external features measurement (e.g. size, shape, color and defects and in recent century, Machine Vision technology has been used for shape sorting. The main purpose of this study was to develop new method for tomato grading and sorting using Neuro-fuzzy system (ANFIS and to compare the accuracies of the ANFIS predicted results with those suggested by a human expert. Materials and Methods: In this study, a total of 300 image of tomatoes (Rev ground was randomly harvested, classified in 3 ripeness stage, 3 sizes and 2 health. The grading and sorting mechanism consisted of a lighting chamber (cloudy sky, lighting source and a digital camera connected to a computer. The images were recorded in a special chamber with an indirect radiation (cloudy sky with four florescent lampson each sides and camera lens was entire to lighting chamber by a hole which was only entranced to outer and covered by a camera lens. Three types of features were extracted from final images; Shap, color and texture. To receive these features, we need to have images both in color and binary format in procedure shown in Figure 1. For the first group; characteristics of the images were analysis that could offer information an surface area (S.A., maximum diameter (Dmax, minimum diameter (Dmin and average diameters. Considering to the importance of the color in acceptance of food quality by consumers, the following classification was conducted to estimate the apparent color of the tomato; 1. Classified as red (red > 90% 2. Classified as red light (red or bold pink 60-90% 3. Classified as pink (red 30-60% 4. Classified as Turning

  3. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process

    Science.gov (United States)

    Teimouri, Reza; Sohrabpoor, Hamed

    2013-12-01

    Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

  4. A neuro-fuzzy price forecasting approach in deregulated electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ying-Yi; Lee, Chuan-Fang [Department of Electrical Engineering, Chung Yuan Christian University, Chung Li 320 (Taiwan)

    2005-02-01

    Bidding competition is a main transaction approach in a deregulated market. Locational marginal prices (LMPs) resulting from bidding competition signal electricity values at a node or in an area. The LMP reveals important information for market participants to develop their bidding strategies. Moreover, LMP is also a vital indicator for the Security Coordinator to perform market redispatch for congestion management. This paper presents a method using fuzzy reasoning and recurrent neural networks (RNNs) for forecasting LMPs. The fuzzy rules are used to perform the linguistic reasoning about the contingencies. The reasoning results serve as a part of inputs to the RNNs for forecasting the LMPs. The historical LMPs in the PJM market are used to test the proposed method. It is found that the proposed neuro-fuzzy method is capable of forecasting LMP values efficiently.

  5. Electric machines steady state, transients, and design with Matlab

    CERN Document Server

    Boldea, Ion

    2009-01-01

    Part I: Steady StateIntroductionElectric Energy and Electric MachinesBasic Types of Transformers and Electric MachinesLosses and EfficiencyPhysical Limitations and RatingsNameplate RatingsMethods of AnalysisState of the Art and Perspective Electric TransformersAC Coil with Magnetic Core and Transformer Principles Magnetic Materials in EMs and Their LossesElectric Conductors and Their Skin EffectsComponents of Single- and 3-Phase TransformersFlux Linkages and Inductances of Single-Phase TransformersCircuit Equations of Single-Phase Transformers With Core LossesSteady State and Equivalent Circui

  6. Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia.

    Science.gov (United States)

    Tamboer, P; Vorst, H C M; Ghebreab, S; Scholte, H S

    2016-01-01

    Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique--support vector machine--to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18-21 years), a classification performance of 80% (p dyslexia (r = 0.47). Furthermore, various significant correlations were found between the three anatomical regions and behavioural measures of spelling, phonology and whole-word-reading. No correlations were found with behavioural measures of short-term memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology. In a second and independent sample of 876 young adults of a general population, the trained classifier of the first sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in classification performance resulted from a large percentage of false alarms. This study provided support for the use of machine learning in anatomical brain imaging.

  7. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  8. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  9. On the Optimal Selection of Electrical Machines Fans

    Directory of Open Access Journals (Sweden)

    Mădălin Costin

    2014-09-01

    Full Text Available In this paper an analytic relationship for electrical machine fan design has been developed. In the particularly case of salient poles synchronous machine (with salient poles – for electromagnetic field excitation or surface mounded permanent magnet, this approach allowed to express the fan power as a function of machine middle axe air gap. This analytic foundation developed may leads to different optimization criteria as specific active materials or costs. Numerical simulations confirm our approach.

  10. Experimental Investigation of process parameters influence on machining Inconel 800 in the Electrical Spark Eroding Machine

    Science.gov (United States)

    Karunakaran, K.; Chandrasekaran, M.

    2016-11-01

    The Electrical Spark Eroding Machining is an entrenched sophisticated machining process for producing complex geometry with close tolerances in hard materials like super alloy which are extremely difficult-to-machine by using conventional machining processes. It is sometimes offered as a better alternative or sometimes as an only alternative for generating accurate 3D complex shapes of macro, micro and nano-features in such difficult-to-machine materials among other advanced machining processes. The accomplishment of such challenging task by use of Electrical Spark Eroding Machining or Electrical Discharge Machining (EDM) is depending upon selection of apt process parameters. This paper is about analyzing the influencing of parameter in electrical eroding machining for Inconel 800 with electrolytic copper as a tool. The experimental runs were performed with various input conditions to process Inconel 800 nickel based super alloy for analyzing the response of material removal rate, surface roughness and tool wear rate. These are the measures of performance of individual experimental value of parameters such as pulse on time, Pulse off time, peak current. Taguchi full factorial Design by using Minitab release 14 software was employed to meet the manufacture requirements of preparing process parameter selection card for Inconel 800 jobs. The individual parameter's contribution towards surface roughness was observed from 13.68% to 64.66%.

  11. a novel configuration of feedback's electric machine tutor (emt)

    African Journals Online (AJOL)

    NIJOTECH

    They have the advantage of reliable operation at high speeds and potential for long life in a hostile environment. Permanent magnet machines with rotating magnets can be used to fulfill this objective. What is described in this paper is how to achieve this with Feedback Electrical. Machines Tutor Model 180 with all windings.

  12. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time.

  13. Feasibility of using RH795 dye for photoacoustic imaging of neuro-electrical activity

    Science.gov (United States)

    Rasheed, Nashaat; Cressman, John R.; Chitnis, Parag V.

    2017-02-01

    Currently, the most researched noninvasive approach for monitoring neuro-electrical activity involves opticalfluorescence imaging, which suffers from limited imaging penetration. We propose an alternative approach, photoacoustic imaging (PAI) of biopotentials, that relies on transient absorption of light by voltage-sensitive probes and subsequent generation/detection of ultrasound. PAI-based voltage imaging approach can offer the same advantages as the fluorescence imaging in terms of sensitivity and molecular specificity, but it also can significantly extend the imaging depth. In this pilot study we are investigating the feasibility of photoacoustically visualizing biopotentials in rat pheochromocytoma (PC12) cells tagged with voltage-sensitive styrylpyridinium dye, RH795. A change in the intramembrane potential was induced in PC12 cells by adding tetraphenylborate (TPB) to the cell culture. A custommade absorption spectrophotometer was used to verify the change in optical absorption of RH795 dye as a result of TPBinduced electrical fields. Absorption spectra recorded before and after the addition of 100 μM TPB exhibited a wavelength shift of the absorption peak (approximately 510 nm to 550 nm) as well as an increase in the overall magnitude of absorption in the wavelength range of 500-1000 nm. The absorption spectral measurements indicated that RH795 is a good candidate as a voltage-sensitive dye for photoacoustically tracking changes in cell-membrane potential.

  14. Converter applications and their influence on large electrical machines

    CERN Document Server

    Drubel, Oliver

    2013-01-01

    Converter driven applications are applied in more and more processes. Almost any installed wind-farm, ship drives, steel mills, several boiler feed water pumps, extruder and many other applications operate much more efficient and economic in case of variable speed solutions. The boundary conditions for a motor or generator will change, if it is supplied by a converter. An electrical machine, which is operated by a converter, can no longer be regarded as an independent component, but is embedded in a system consisting of converter and machine. This book gives an overview of existing converter designs for large electrical machines. Methods for the appropriate calculation of machine phenomena, which are implied by converters are derived in the power range above 500kVA. It is shown how due to the converter inherent higher voltage harmonics and pulse frequencies special phenomena are caused inside the machine which can be the reason for malfunction. It is demonstrated that additional losses create additional tempe...

  15. A Review of Design Optimization Methods for Electrical Machines

    Directory of Open Access Journals (Sweden)

    Gang Lei

    2017-11-01

    Full Text Available Electrical machines are the hearts of many appliances, industrial equipment and systems. In the context of global sustainability, they must fulfill various requirements, not only physically and technologically but also environmentally. Therefore, their design optimization process becomes more and more complex as more engineering disciplines/domains and constraints are involved, such as electromagnetics, structural mechanics and heat transfer. This paper aims to present a review of the design optimization methods for electrical machines, including design analysis methods and models, optimization models, algorithms and methods/strategies. Several efficient optimization methods/strategies are highlighted with comments, including surrogate-model based and multi-level optimization methods. In addition, two promising and challenging topics in both academic and industrial communities are discussed, and two novel optimization methods are introduced for advanced design optimization of electrical machines. First, a system-level design optimization method is introduced for the development of advanced electric drive systems. Second, a robust design optimization method based on the design for six-sigma technique is introduced for high-quality manufacturing of electrical machines in production. Meanwhile, a proposal is presented for the development of a robust design optimization service based on industrial big data and cloud computing services. Finally, five future directions are proposed, including smart design optimization method for future intelligent design and production of electrical machines.

  16. Standard of Electrical Washing Machine for Household and Similar Purposes

    Institute of Scientific and Technical Information of China (English)

    Lu Jianguo

    2011-01-01

    Background With further improvement of people's living,the household washing machine industry has entered a new stage of development.However,some indicators of GB/T 4288-2003 have become no longer suitable for the development of household washing machine products at present.Particularly,with an increasing number of basic functions and auxiliary functions,many aspects are not covered by the existing standard.In order to further improve the overall quality of China's household washing machines and enhance their competitiveness in the international market,guide manufacturers to produce household washing machines in line with the demands of consumers and instruct consumers to properly purchase and use household washing machines,it is imperative to revise the GB/T 4288-2003 Household Electric Washing Machine.

  17. A COMPUTERIZED DIAGNOSTIC COMPLEX FOR RELIABILITY TESTING OF ELECTRIC MACHINES

    Directory of Open Access Journals (Sweden)

    O.О. Somka

    2015-06-01

    Full Text Available Purpose. To develop a diagnostic complex meeting the criteria and requirements for carrying out accelerated reliability test and realizing the basic modes of electric machines operation and performance of the posed problems necessary in the process of such test. Methodology. To determine and forecast the indices of electric machines reliability in accordance with the statistic data of repair plants we have conditionally divided them into structural parts that are most likely to fail. We have preliminarily assessed the state of each of these parts, which includes revelation of faults and deviations of technical and geometric parameters. We have determined the analyzed electric machine controlled parameters used for assessment of quantitative characteristics of reliability of these parts and electric machines on the whole. Results. As a result of the research, we have substantiated the structure of a computerized complex for electric machines reliability test. It allows us to change thermal and vibration actions without violation of the physics of the processes of aging and wearing of the basic structural parts and elements material. The above mentioned makes it possible to considerably reduce time spent on carrying out electric machines reliability tests and improve trustworthiness of the data obtained as a result of their performance. Originality. A special feature of determination of the controlled parameters consists in removal of vibration components in the idle mode and after disconnection of the analyzed electric machine from the power supply with the aim of singling out the vibration electromagnetic component, fixing the degree of sparking and bend of the shaft by means of phototechnique and local determination of structural parts temperature provided by corresponding location of thermal sensors. Practical value. We have offered a scheme of location of thermal and vibration sensors, which allows improvement of parameters measuring accuracy

  18. A Review on the Faults of Electric Machines Used in Electric Ships

    OpenAIRE

    Dionysios V. Spyropoulos; Epaminondas D. Mitronikas

    2013-01-01

    Electric propulsion systems are today widely applied in modern ships, including transport ships and warships. The ship of the future will be fully electric, and not only its propulsion system but also all the other services will depend on electric power. The robust and reliable operation of the ship’s power system is essential. In this work, a review on the mechanical and electrical faults of electric machines that are used in electric ships is presented.

  19. A Review on the Faults of Electric Machines Used in Electric Ships

    Directory of Open Access Journals (Sweden)

    Dionysios V. Spyropoulos

    2013-01-01

    Full Text Available Electric propulsion systems are today widely applied in modern ships, including transport ships and warships. The ship of the future will be fully electric, and not only its propulsion system but also all the other services will depend on electric power. The robust and reliable operation of the ship’s power system is essential. In this work, a review on the mechanical and electrical faults of electric machines that are used in electric ships is presented.

  20. SIMULATION TOOLS FOR ELECTRICAL MACHINES MODELLING ...

    African Journals Online (AJOL)

    Dr Obe

    This paper illustrates the way MATLAB is used to model non-linearites in synchronous ... Keywords: Asynchronous machine; MATLAB scripts; engineering education; skin-effect; saturation effect; dynamic behavour. 1.0 Introduction .... algorithm of Marquardt [10] is employed. In figure 1, the estimated function becomes,.

  1. Iron Losses in Electrical Machines - Influence of Material Properties, Manufacturing Processes, and Inverter Operation

    OpenAIRE

    Krings, Andreas

    2014-01-01

    As the major electricity consumer, electrical machines play a key role for global energy savings. Machine manufacturers put considerable efforts into the development of more efficient electrical machines for loss reduction and higher power density achievements. A consolidated knowledge of the occurring losses in electrical machines is a basic requirement for efficiency improvements. This thesis deals with iron losses in electrical machines. The major focus is on the influences of the stator c...

  2. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2013-06-01

    Full Text Available Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned behaviour, social cognitive theory, self-determination theory, technology of acceptance model, Unified Theory of Acceptance and Use of Technology UTAUT and UTAUT2 are employed in the social robotics, brain machine interfaces and neuro and cognitive enhancement product literature and which of the core measures used in the technology acceptance models are implicit or explicit engaged with in the literature.

  3. Electricity price prediction: a comparison of machine learning algorithms

    OpenAIRE

    Wormstrand, Øystein

    2011-01-01

    In this master thesis we have worked with seven different machine learning methods to discover which algorithm is best suited for predicting the next-day electricity price for the Norwegian price area NO1 on Nord Pool Spot. Based on historical price, consumption, weather and reservoir data, we have created our own data sets. Data from 2001 through 2009 was gathered, where the last one third of the period was used for testing. We have tested our selected machine learning methods ...

  4. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  5. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    Science.gov (United States)

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  6. Analytical calculation of vibrations of electromagnetic origin in electrical machines

    Science.gov (United States)

    McCloskey, Alex; Arrasate, Xabier; Hernández, Xabier; Gómez, Iratxo; Almandoz, Gaizka

    2018-01-01

    Electrical motors are widely used and are often required to satisfy comfort specifications. Thus, vibration response estimations are necessary to reach optimum machine designs. This work presents an improved analytical model to calculate vibration response of an electrical machine. The stator and windings are modelled as a double circular cylindrical shell. As the stator is a laminated structure, orthotropic properties are applied to it. The values of those material properties are calculated according to the characteristics of the motor and the known material properties taken from previous works. Therefore, the model proposed takes into account the axial direction, so that length is considered, and also the contribution of windings, which differs from one machine to another. These aspects make the model valuable for a wide range of electrical motor types. In order to validate the analytical calculation, natural frequencies are calculated and compared to those obtained by Finite Element Method (FEM), giving relative errors below 10% for several circumferential and axial mode order combinations. It is also validated the analytical vibration calculation with acceleration measurements in a real machine. The comparison shows good agreement for the proposed model, being the most important frequency components in the same magnitude order. A simplified two dimensional model is also applied and the results obtained are not so satisfactory.

  7. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)

    2010-12-15

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)

  8. Electric machines modeling, condition monitoring, and fault diagnosis

    CERN Document Server

    Toliyat, Hamid A; Choi, Seungdeog; Meshgin-Kelk, Homayoun

    2012-01-01

    With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condi

  9. Support vector machine for day ahead electricity price forecasting

    Science.gov (United States)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  10. COMPARISON OF CRYO TREATMENT EFFECT ON MACHINING CHARACTERISTICS OF TITANIUM IN ELECTRIC DISCHARGE MACHINING

    Directory of Open Access Journals (Sweden)

    Bhupinder Singh

    2011-06-01

    Full Text Available Earlier studies on cryogenic treatment highlighted that certain metals, after being cryogenically treated, show a significant increase in tool life when used in manufacturing, cutting and shaping processes. The present work deals with experimental investigation of the role of cryogenic treatment on the machining characteristics of titanium in electric discharge machining (EDM. EDM is a potential process to commercially machine tough materials like titanium alloys, due to the properties of non-mechanical contact between the tool and workpiece and the capability to machine intricate shapes. In this research work an effort has been made to compare the machining characteristics of titanium with EDM, before and after cryogenic treatment of the tool and workpiece using a Taguchi design approach. The output parameters for study are material removal rate (MRR, tool wear rate (TWR, surface roughness (SR and dimensional accuracy (Δd. The results of the study suggest that with cryogenic treatment MRR, TWR, SR and Δd show an improvement of 60.39%, 58.77%, 7.99% and 80.00% respectively.

  11. Importance of polarity change in the electrical discharge machining

    Science.gov (United States)

    Schulze, H.-P.

    2017-10-01

    The polarity change in the electrical discharge machining is still a problem and is often performed completely unmotivated or randomly. The polarity must be designated primarily, i.e. the anodic part must be clearly assigned to the tool or the workpiece. Normally, the polarity of the workpiece electrode is named. In paper, will be shown which determine fundamental causes the structural behavior of the cathode and anode, and when it makes sense to change the polarity. The polarity change is primarily dependent on the materials that are used as cathode and anode. This distinction must be made if there are pure metals or complex materials. Secondary of the polarity change is also affected by the process energy source (PES) and the supply line. The polarity change is mostly influenced by the fact that the removal is to be maximized on the workpiece while the tool is minimal removal (wear) occur. A second factor that makes a polarity change needed is the use of electrical discharge in combination with other machining methods, such as electrochemical machining (ECM).

  12. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system

    NARCIS (Netherlands)

    B. Tutmez (Bulent); Z. Hatipoglu (Z.); U. Kaymak (Uzay)

    2006-01-01

    textabstractElectrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this

  13. Application brushless machines with combine excitation for a hybrid car and an electric car

    OpenAIRE

    Gandzha S.A.; Kiessh I.E.

    2015-01-01

    This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding) for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric...

  14. Electrical test prediction using hybrid metrology and machine learning

    Science.gov (United States)

    Breton, Mary; Chao, Robin; Muthinti, Gangadhara Raja; de la Peña, Abraham A.; Simon, Jacques; Cepler, Aron J.; Sendelbach, Matthew; Gaudiello, John; Emans, Susan; Shifrin, Michael; Etzioni, Yoav; Urenski, Ronen; Lee, Wei Ti

    2017-03-01

    Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing intended process splits. Any in-line, nondestructive technique in the process flow to accurately predict these measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling. Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited (for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically testable. A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD measurement directly of the electrically-testable structures, even when they are not OCD-compatible. By incorporating such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures is significantly improved. Improvements in prediction capability for multiple types of in-die electrically-testable device structures is demonstrated. To further improve the quality of the prediction of the electrical resistance measurements, hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used. Hybrid metrology

  15. Application brushless machines with combine excitation for a hybrid car and an electric car

    Directory of Open Access Journals (Sweden)

    Gandzha S.A.

    2015-08-01

    Full Text Available This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric machine. The machine was modeled using Solidworks program for creating design and Maxwell program for the magnetic field analysis. The result of tests is shown as well.

  16. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  17. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Science.gov (United States)

    2010-10-01

    ... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical... 49 Transportation 4 2010-10-01 2010-10-01 false Electromechanical interlocking machine; locking...

  18. Engineering electrodynamics electric machine, transformer, and power equipment design

    CERN Document Server

    Turowski, Janusz

    2013-01-01

    Due to a huge concentration of electromagnetic fields and eddy currents, large power equipment and systems are prone to crushing forces, overheating, and overloading. Luckily, power failures due to disturbances like these can be predicted and/or prevented.Based on the success of internationally acclaimed computer programs, such as the authors' own RNM-3D, Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design explains how to implement industry-proven modeling and design techniques to solve complex electromagnetic phenomena. Considering recent progress in magneti

  19. Power quality in power systems and electrical machines

    CERN Document Server

    Fuchs, Ewald

    2015-01-01

    The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable

  20. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    Energy Technology Data Exchange (ETDEWEB)

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  1. A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors

    OpenAIRE

    Konstantaras, A.; Varley, M. R.; Vallianatos, F.; Collins, G.; Holifield, P.

    2004-01-01

    Electric Earthquake Precursor (EEP) recognition is essentially a problem of weak signal detection. An EEP signal, according to the theory of propagating cracks, is usually a very weak electric potential anomaly appearing on the Earth's electric field prior to an earthquake, often unobservable within the electric background, which is significantly stronger and embedded in noise. Furthermore, EEP signals vary in terms of duration and size making reliable recognition even more difficult. An aver...

  2. A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors

    OpenAIRE

    A. Konstantaras; M. R. Varley; F. Vallianatos; G. Collins; P. Holifield

    2004-01-01

    International audience; Electric Earthquake Precursor (EEP) recognition is essentially a problem of weak signal detection. An EEP signal, according to the theory of propagating cracks, is usually a very weak electric potential anomaly appearing on the Earth's electric field prior to an earthquake, often unobservable within the electric background, which is significantly stronger and embedded in noise. Furthermore, EEP signals vary in terms of duration and size making reliable recognition even...

  3. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.

    Science.gov (United States)

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-10-01

    Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  5. Electrical machines monitoring using partial discharges; Monitorizacion de maquinas electricas mediante descargas parciales

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Rodriguez Ruiz, S.

    2006-07-01

    Electrical Machines Monitoring is a philosophy that is being more and more accepted in maintenance, the application of these techniques has a lot of advantages as the life evaluation non-intrusively and the detection and evolution evaluation of defects. this paper presents the monitoring of electrical machines using the Partial Discharges technique, which allow the evaluation of insulation of Electrical Machines. Real Cases are included in the paper as samples in which this techniques has been useful to detecting defects. (Author)

  6. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  7. Feedback Control of arm movements using Neuro-Muscular Electrical Stimulation (NMES combined with a lockable, passive exoskeleton for gravity compensation

    Directory of Open Access Journals (Sweden)

    Christian eKlauer

    2014-09-01

    Full Text Available Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. Potential users of this system are patients with high-level spinal cord injury and neurodegenerative neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES to enable reaching functions in people with no residual voluntary control of the arm due to upper motor neuron lesions after spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e. a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 seconds.

  8. Pursuing optimal electric machines transient diagnosis: The adaptive slope transform

    Science.gov (United States)

    Pons-Llinares, Joan; Riera-Guasp, Martín; Antonino-Daviu, Jose A.; Habetler, Thomas G.

    2016-12-01

    The aim of this paper is to introduce a new linear time-frequency transform to improve the detection of fault components in electric machines transient currents. Linear transforms are analysed from the perspective of the atoms used. A criterion to select the atoms at every point of the time-frequency plane is proposed, taking into account the characteristics of the searched component at each point. This criterion leads to the definition of the Adaptive Slope Transform, which enables a complete and optimal capture of the different components evolutions in a transient current. A comparison with conventional linear transforms (Short-Time Fourier Transform and Wavelet Transform) is carried out, showing their inherent limitations. The approach is tested with laboratory and field motors, and the Lower Sideband Harmonic is captured for the first time during an induction motor startup and subsequent load oscillations, accurately tracking its evolution.

  9. Computer Aided Design Of Electrical Machines For Variable Speed Applications.

    Science.gov (United States)

    Krishnan, R.; Aravind, S.; Materu, P.

    1987-10-01

    In recent years, the product life cycle has decreased and demands for new products have emerged due to competition, modern industrial needs and rapidly changing technology. This has necessitated changes in design, development and manufacturing processes so as to improve quality and efficiency as well as reducing costs. Computer Aided Design (CAD) helps to meet this challenge in the design evaluation and final product design stages. This paper presents the development of an interactive software for the optimal design of a motor intended for variable speed applications. The use of finite element analysis methods is proposed as an indispensable part of the CAD system for electrical machine design. An illustration of the method is given for the design of a switched reluctance motor.

  10. Wire electrical discharge machining of E110 zirconium alloy

    Science.gov (United States)

    Bobkov, N. V.; Fedorov, A. A.; Blesman, A. I.; Postnikov, D. V.; Polonyankin, D. A.

    2017-06-01

    The paper deals with the results of experimental research carried out by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) to define, how the modes of wire electrical discharge machining (WEDM) influence on the elemental and the phase composition of E110 zirconium alloy’s surface layer.Investigation of the phase composition allowed us to determine the main α and δ phase’s distribution through the depth of zirconium surface layer, in common with phases of oxygen, copper, zirconium, and niobium specific compounds. It was also established the maximum depth of the defect level containing amorphous phase for all of WEDM modes, and proposed the grinding and polishing as potential mechanical methods of its removal.

  11. [Design and application of medical electric leg-raising machine].

    Science.gov (United States)

    Liang, Jintang; Chen, Jinyuan; Zhao, Zixian; Lin, Jinfeng; Li, Juanhong; Zhong, Jingliang

    2017-08-01

    Passive leg raising is widely used in clinic, but it lacks of specialized mechanical raise equipment. It requires medical staff to raise leg by hand or requires a multi-functional bed to raise leg, which takes time and effort. Therefore we have developed a new medical electric leg-raising machine. The equipment has the following characteristics: simple structure, stable performance, easy operation, fast and effective, safe and comfortable. The height range of the lifter is 50-120 cm, the range of the angle of raising leg is 10degree angle-80degree angle, the maximum supporting weight is 40 kg. Because of raising the height of the lower limbs and making precise angle, this equipment can completely replace the traditional manner of lifting leg by hand with multi-functional bed to lift patients' leg and can reduce the physical exhaustion and time consumption of medical staff. It can change the settings at any time to meet the needs of the patient; can be applied to the testing of PLR and dynamically assessing the hemodynamics; can prevent deep vein thrombosis and some related complications of staying in bed; and the machine is easy to be cleaned and disinfected, which can effectively avoid hospital acquired infection and cross infection; and can also be applied to emergency rescue of various disasters and emergencies.

  12. Acid-base machines: electrical work from neutralization reactions.

    Science.gov (United States)

    Lima, Gilberto; Morais, William G; Gomes, Wellington J A S; Huguenin, Fritz

    2017-11-29

    We have developed an electrochemical system that performs electrical work due to changes in alkaline ion and proton activities associated with acidic solution neutralization. This system can be used to treat wastewater, contributing to sustainable growth. The system includes an electrochemical machine that operates between an acidic and a basic reservoir to produce work in cycles comprising four stages: two isothermal ionic insertion/de-insertion steps and two steps involving acid and base injection. On the basis of the mixing free energy associated with the reaction free energy, we have developed the thermodynamic formalism by considering reversible electrochemical processes to determine the maximum work performed by this acid-base machine and the efficiency. Electrochemical methods in the time and frequency domains helped in investigating the kinetics of sodium ions and proton insertion in host matrices consisting of copper hexacyanoferrate and phosphomolybdic acid, respectively, to improve our understanding of the factors underlying dissipation as a function of pH and pNa. The full cell composed of these insertion electrodes was used as a proof of concept. It performed a maximum work of 26.4 kJ per mol of electro-inserted ion from HCl solution neutralization with the addition of NaOH, to simulate acidic wastewater treatment in a profitable and sustainable way.

  13. APPROXIMATION OF UNIVERSAL MAGNETIC CHARACTERISTIC FOR MODELLING ELECTRIC TRACTION MACHINES

    Directory of Open Access Journals (Sweden)

    A. Yu. Drubetskyi

    2017-02-01

    Full Text Available Purpose. The scientific work is aimed to obtain an analytic expression describing universal magnetic characteristic and enabling to take into account the demagnetizing effect of the armature. On the basis of the universal magnetic characteristics one need to obtain universal expressions for inductive parameters of electric traction machines of direct and pulsating currents. Methodology. A universal magnetic characteristic (UMC is the dependence of the relative units of the magnetic flux on the magnetomotive force (MMF of the excitation winding. Since MMF was built for machines operating under load, therefore, in fact it is a dependency on the MMF and on the MMF of the armature reaction. For the calculation of electromechanical characteristics at constant excitation one can use one of the well-known expressions approximating the UMC. However, during modeling the electric traction engine operation in wide ranges of excitation change it is necessary the expression, in which there is a second variable in the form of MMF of the anchor reaction. Such an expression is also necessary to determine the inductive parameters of electric traction engine, to a large extent dependent on the current. The expression for the approximation of the UMC with two variables can be obtained by analyzing the magnetic field distribution in the air gap at the calculated pole arc. Findings. The author obtained expression for approximation of the UMC, which depends on two variables: MMF of excitation and MMF of armature reaction. For a particular mode of excitation weakening it is possible to convert the expression into the function of one variable, for example, the anchor current. Also, the MMF of excitation winding can be the argument. Originality. For the UMC approximation it was proposed a methodology that makes it possible to record into approximating expression the second variable in the form of the anchor reaction MMF. Practical value. Due to the presence of speed

  14. Multiphysics simulation by design for electrical machines, power electronics and drives

    CERN Document Server

    Rosu, Marius; Lin, Dingsheng; Ionel, Dan M; Popescu, Mircea; Blaabjerg, Frede; Rallabandi, Vandana; Staton, David

    2018-01-01

    This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept--a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design--providing deta...

  15. Iron Losses in Electrical Machines Due to Non Sinusoidal Alternating Fluxes

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Walker, J.A.; Dorrell, D. G.

    2007-01-01

    This paper shows how the flux waveform in the core of an electrical machine can be vary non- sinusoidally which complicates the calculation of the iron loss in a machine. A set of tests are conducted on a steel sample using an Epstein square where harmonics are injected into the flux waveform which...... of a machine....

  16. Rotating electrical machines part 4: methods for determining synchronous machine quantities from tests

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1985-01-01

    Applies to three-phase synchronous machines of 1 kVA rating and larger with rated frequency of not more than 400 Hz and not less than 15 Hz. An appendix gives unconfirmed test methods for determining synchronous machine quantities. Notes: 1 -Tests are not applicable to synchronous machines such as permanent magnet field machines, inductor type machines, etc. 2 -They also apply to brushless machines, but certain variations exist and special precautions should be taken.

  17. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  18. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  19. Characterization of nanoparticles from abrasive waterjet machining and electrical discharge machining processes.

    Science.gov (United States)

    Ling, Tsz Yan; Pui, David Y H

    2013-11-19

    Abrasive Waterjet Machining (AWM) and Electrical Discharge Machining (EDM) processes are found to produce nanoparticles during operation. Impacts of engineered nanoparticles released to the environment and biological system have caused much concern. Similarly, the nanoparticles unintentionally produced by the AWM and EDM can lead to comparable effects. By application of the Nanoparticle Tracking Analysis (NTA) technique, the size distribution and concentration of nanoparticles in the water used in AWM and EDM were measured. The particles generally have a peak size of 100-200 nm. The filtration systems of the AWM and EDM processes were found to remove 70% and 90% the nanoparticles present, respectively. However, the particle concentration of the filtered water from the AWM was still four times higher than that found in regular tap water. These nanoparticles are mostly agglomerated, according to the microscopy analysis. Using the electron dispersive spectroscopy (EDS) technique, the particles are confirmed to come from the debris of the materials cut with the equipment. Since AWM and EDM are widely used, the handling and disposal of used filters collected with nanoparticles, release of nanoparticles to the sewer, and potential use of higher performance filters for these processes will deserve further consideration.

  20. New Balancing Equipment for Mass Production of Small and Medium-Sized Electrical Machines

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2010-01-01

    The level of vibration and noise is an important feature. It is good practice to explain the significance of the indicators of the quality of electrical machines. The mass production of small and medium-sized electrical machines demands speed (short typical measurement time), reliability...

  1. Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia

    OpenAIRE

    Tamboer, P.; H.C.M. Vorst; Ghebreab, S.; Scholte, H.S.

    2016-01-01

    Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique – support vector machine – to differentiate between subjects with and without dyslexia. In a sample of...

  2. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, J. Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Doug [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mihalic, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  3. Machining Performance and Surface Integrity of AISI D2 Die Steel Machined Using Electrical Discharge Surface Grinding Process

    Science.gov (United States)

    Choudhary, Rajesh; Kumar, Harmesh; Singh, Shankar

    2013-12-01

    The aim of this study is to establish optimum machining conditions for EDSG of AISI D2 die steel through an experimental investigation using Taguchi Methodology. To achieve combined grinding and electrical discharge machining, metal matrix composite electrodes (Cu-SiCp) were processed through powder metallurgy route. A rotary spindle attachment was developed to perform the EDSG experimental runs on EDM machine. Relationships were developed between various input parameters such as peak current, speed, pulse-on time, pulse-off time, abrasive particle size, and abrasive particle concentration, and output characteristics such as material removal rate and surface roughness. The optimized parameters were further validated by conducting confirmation experiments.

  4. Surface quality analysis of die steels in powder-mixed electrical discharge machining using titan powder in fine machining

    Directory of Open Access Journals (Sweden)

    Banh Tien Long

    2016-06-01

    Full Text Available Improving the quality of surface molds after electrical discharge machining is still being considered by many researchers. Powder-mixed dielectric in electrical discharge machining showed that it is one of the processing methods with high efficiency. This article reports on the results of surface quality of mold steels after powder-mixed electrical discharge machining using titanium powder in fine machining. The process parameters such as electrode material, workpiece material, electrode polarity, pulse on-time, pulse off-time, current, and titanium powder concentration were considered in the research. These materials are most commonly used with die-sinking electrical discharge machining in the manufacture of molds and has been selected as the subject of research: workpiece materials were SKD61, SKT4, and SKD11 mold steels, and electrode materials were copper and graphite. Taguchi’s method is used to design experiments. The influence of the parameters on surface roughness was evaluated through the average value and ratio (S/N. Results showed that the parameters such as electrical current, electrode material, pulse on-time, electrode polarity, and interaction between the electrode materials with concentration powder mostly influence surface roughness and surface roughness at optimal parameters SRopt = 1.73 ± 0.39 µm. Analysis of the surface layer after powder-mixed electrical discharge machining using titanium powder in optimal conditions has shown that the white layer with more uniform thickness and increased hardness (≈861.0 HV, and amount and size of microscopic cracks, is reduced. This significantly leads to the increase in the quality of the surface layer.

  5. Rotor apparatus for high strength undiffused brushless electric machine

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2006-01-24

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). Improvements of a laminated rotor, an end pole structure, and an arrangement of the PM elements for providing an arrangement of the flux paths from the auxiliary field coil assemblies are also disclosed.

  6. Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine

    Directory of Open Access Journals (Sweden)

    Chunhua Liu

    2014-03-01

    Full Text Available This paper proposes a new electrically controlled magnetic variable-speed gearing (EC-MVSG machine, which is capable of providing controllable gear ratios for hybrid electric vehicle (HEV applications. The key design feature involves the adoption of a magnetic gearing structure and acceptance of the memory machine flux-mnemonic concept. Hence, the proposed machine can not only offer a gear-shifting mechanism for torque and speed transmission, but also provide variable gear ratios for torque and speed variation. The electromagnetic design is studied and discussed. The finite-element method is developed with the hysteresis model to verify the validity of the machine design.

  7. Pattern Recognition in NeuroImaging: What can machine learning classifiers bring to the analysis of functional brain imaging?

    OpenAIRE

    Schrouff, Jessica

    2013-01-01

    The study of the brain development and functioning raises many question that are tracked using neuroimaging techniques such as positron emission tomography or (functional) magnetic resonance imaging. During the last decades, various techniques have been developed to analyse neuroimaging data. These techniques brought valuable insight on neuroscientific questions, but encounter limitations which make them unsuitable to tackle more complex problems. More recently, machine learning based models,...

  8. Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2000-01-01

    Gives definitions for standard degrees of protection provided by enclosures; protection of machines against harmful effects due to the ingress of water; protection of machines against ingress of solid foreign objects; Protection of persons against contact with or approach to live parts and against contact with moving parts. Gives designations for these protective degrees and tests to verify that the machines meet the requirements.

  9. RELIABILITY EVALUATION OF THE ACTIVATION MACHINE FOR THE ELECTRIC DETONATING CAPS-EKA 350

    Directory of Open Access Journals (Sweden)

    Ljubinka Radosavljević

    2007-09-01

    Full Text Available The machine - EKA 350 is designed for the activation of the serial or mixed connected electric detonating caps EK - 40 - 69 in explosive fillings at mining and demolition. For the analyzes of reliability it is important that the machine works in the three regimes of function: LOAD, FIRE and EMPTY. Modeling of reliability was executed for each of the mentioned regimes of the EKA 350 machine. In the machine are incorporated the components dedicated to the professional usage and satisfaction of the MIL standards. The machine is treated as it works in a single - stage mission which lasts 20 seconds.

  10. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques

    Science.gov (United States)

    Chen, Wei; Pourghasemi, Hamid Reza; Panahi, Mahdi; Kornejady, Aiding; Wang, Jiale; Xie, Xiaoshen; Cao, Shubo

    2017-11-01

    The spatial prediction of landslide susceptibility is an important prerequisite for the analysis of landslide hazards and risks in any area. This research uses three data mining techniques, such as an adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a generalized additive model (GAM), and a support vector machine (SVM), for landslide susceptibility mapping in Hanyuan County, China. In the first step, in accordance with a review of the previous literature, twelve conditioning factors, including slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, land use, normalized difference vegetation index (NDVI), and lithology, were selected. In the second step, a collinearity test and correlation analysis between the conditioning factors and landslides were applied. In the third step, we used three advanced methods, namely, ANFIS-FR, GAM, and SVM, for landslide susceptibility modeling. Subsequently, the results of their accuracy were validated using a receiver operating characteristic curve. The results showed that all three models have good prediction capabilities, while the SVM model has the highest prediction rate of 0.875, followed by the ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively. Thus, the landslide susceptibility maps produced in the study area can be applied for management of hazards and risks in landslide-prone Hanyuan County.

  11. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction.

    Science.gov (United States)

    Miranian, A; Abdollahzade, M

    2013-02-01

    Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.

  12. electrical-thermal coupling of induction machine for improved

    African Journals Online (AJOL)

    user

    The system of non-linear ordinary differential equations which describe the thermal behaviour of the machine in transient state were solved numerically using the fourth-order Runge-Kutta method. MATLAB m-files .... symmetrical induction machine in an arbitrary reference frame could be derived from the d-q equivalent ...

  13. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  14. Electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    The system of non-linear ordinary differential equations which describe the thermal behaviour of the machine in transient state were solved numerically using the fourth-order Runge-Kutta method. MATLAB m-files were developed and were used to solve the coupled machine model under transient condition. The thermal ...

  15. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    , control seems necessary to implement. For hybrid permanent magnet (PM) machines torque control in an indirect fashion using dq-current control is frequently done. This approach requires knowledge about the machine shaft position which may be obtained sensorless. In this article a method based on accurate...

  16. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles

    National Research Council Canada - National Science Library

    Wu, Zhihong; Lu, Ke; Zhu, Yuan

    2015-01-01

    The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary...

  17. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles: e0130923

    National Research Council Canada - National Science Library

    Zhihong Wu; Ke Lu; Yuan Zhu

    2015-01-01

      The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary...

  18. A new MSc course on diagnostics of electrical machines and power electronics

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen

    2011-01-01

    students. Additionally, specific subjects requested by participants, basic diagnosis and testing methods were presented during the lectures and workshops. General engineering knowledge about electric machines, power electronics and the combination of these was presented. The laboratory method, experiments...

  19. Fractional Slot Concentrated Windings: A New Method to Manage the Mutual Inductance between Phases in Three-Phase Electrical Machines and Multi-Star Electrical Machines

    Directory of Open Access Journals (Sweden)

    Olivier Barre

    2015-06-01

    Full Text Available Mutual inductance is a phenomenon caused by the circulation of the magnetic flux in the core of an electrical machine. It is the result of the effect of the current flowing in one phase on the other phases. In conventional three-phase machines, such an effect has no influence on the electrical behaviour of the device. Although these machines are powered by power inverters, no problem should occur. The result is not the same for multi-star machines. If these machines are using a conventional winding structure, namely distributed windings, and are powered by voltage source converters, current ripples appear in the power supply lines. These current ripples are related to magnetic couplings between the stars. Designers should check these current ripples in order to stay within the limits imposed by the specifications. These electric current disturbances also provide torque ripples. With concentrated windings, a new degree of freedom appears; the configuration—number of slots/number of poles—can have a positive impact. The circulation of the magnetic flux is the initial phenomenon that produces the mutual inductance. The main goal of this discussion is to describe a design method that is able to produce not only a machine with low mutual inductance between phases, but also a multi-star machine where the stars and the phases are magnetically decoupled or less coupled. This discussion only takes into account the machines that use permanent magnets mounted on the rotor surface. This article is part of a study aimed at designing a high efficiency generator using fractional-slot concentrated-windings (FSCW.

  20. Hydraulic and electric drivelines for mobile working machines

    OpenAIRE

    Gallmeier, M.;Auernhammer, H.

    2015-01-01

    The field tests identify optimized controllability at inverter controlled electric drives because of easy closed loop control. During full load operation 17% increased efficiency by electric driveline. Further increased advantages for partial load operation. Lower load dependability of the efficiency of the electric driveline. Disadvantageous power-to-weight ratio requires further work for „mobile“ electric drives.

  1. TESTING OF ELECTRIC MACHINES IN INDUSTRIAL ENVIRONMENT USING A DATA ACQUISITION AND PROCESSING SYSTEM

    OpenAIRE

    Toma DORDEA; Marius BIRIESCU; Petru ANDEA; Groza, Voicu; Vladimir CREŢU; Marţian MOŢ; Gheorghe MADESCU; Ciprian ŞORÂNDARU

    2009-01-01

    The paper presents some significant aspects concerning testing electrical machines, including high power ones, using a Data Acquisition and Processing System (DAPS), based on a PC compatible microsystem. There are described the main measurement tasks of DAPS in electrical machines testing, in various functional conditions: constant frequency steady state (used in classical standard tests), variable frequency conditions (used in asynchronous motors testing by mixed frequency method) and finall...

  2. A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-like Network

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Lund, Henrik Hautop

    2017-01-01

    the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input......Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds......-driven contributions to deliver accurate corrective commands to the global IM. This article extends the earlier work by including the Deep Cerebellar Nuclei (DCN) and by reproducing the Purkinje and the DCN layers using a spiking neural network (SNN) implemented on the neuromorphic SpiNNaker platform. The performance...

  3. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    OpenAIRE

    Yan, Xing; Chowdhury, Nurul A.

    2015-01-01

    Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP), but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM) based midterm forecasting model of the electricity MCP is proposed in t...

  4. Machining and Surface Characteristics of AISI 304L After Electric Discharge Machining for Copper and Graphite Electrodes in Different Dielectric Liquids

    National Research Council Canada - National Science Library

    S. Anjum; M. Shah; N. A. Anjum; S. Mehmood; W. Anwar

    2017-01-01

    In Electric Discharge Machining (EDM), the thermal energy used for material erosion depends on the intensity of electric sparks, the thermal conductivities of electrode material and the dielectric liquid...

  5. ENERGY EFFICIENCY DETERMINATION OF LOADING-BACK SYSTEM OF ELECTRIC TRACTION MACHINES

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-03-01

    Full Text Available Purpose.Acceptance post-repair testsof electric traction machinesare conducted onloading-backstandsthat reducethe overall power costsfor the tests.Currentlya numberof possiblecircuit designs of loading-backsystems of electric machines are known, but there is nomethod of determiningtheir energy efficiency. This in turn makes difficult the choiceof rationaloptions. The purpose of the article is the development of the corresponding methodo-logy to make easier this process. Methodology. Expressions for determining theenergy efficiency ofa stand for testingof electric traction machineswere obtained using the generalizedscheme analysisof energy transformationsin the loading-backsystems of universal structure. Findings.Thetechnique wasoffered and the analytical expressions for determining the energy efficiency of loading-backsystemsof electric traction machines wereobtained. Energy efficiency coefficientofloading-backsystemisproposed to consider as the ratio of the total actionenergy of the mechanical and electromotive forces, providing anchors rotation and flowof currents in electric machines, which are being tested,to the total energy, consumed during the test from the external network. Originality. The concept was introduced and the analytical determination method of the energy efficiency of loading-backsystem in electric traction machines was offered. It differs by efficiency availability of power sources and converters, as well as energy efficiency factors of indirect methods of loss compensation. Practical value. The proposed technique of energy efficiency estimation of a loading-backsystemcan be used in solving the problem of rational options choice of schematics stands decisions for electric traction machines acceptance tests of main line and industrial transport.

  6. Sustainable Electric Vehicle Management using Coordinated Machine Learning

    NARCIS (Netherlands)

    K. Valogianni (Konstantina)

    2016-01-01

    markdownabstractThe purpose of this dissertation is to investigate how intelligent algorithms can support electricity customers in their complex decisions within the electricity grid. In particular, we focus on how electric vehicle (EV) owners can be supported in their charging and discharging

  7. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  8. Computationally-efficient finite-element-based thermal and electromagnetic models of electric machines

    Science.gov (United States)

    Zhou, Kan

    With the modern trend of transportation electrification, electric machines are a key component of electric/hybrid electric vehicle (EV/HEV) powertrains. It is therefore important that vehicle powertrain-level and system-level designers and control engineers have access to accurate yet computationally-efficient (CE), physics-based modeling tools of the thermal and electromagnetic (EM) behavior of electric machines. In this dissertation, CE yet sufficiently-accurate thermal and EM models for electric machines, which are suitable for use in vehicle powertrain design, optimization, and control, are developed. This includes not only creating fast and accurate thermal and EM models for specific machine designs, but also the ability to quickly generate and determine the performance of new machine designs through the application of scaling techniques to existing designs. With the developed techniques, the thermal and EM performance can be accurately and efficiently estimated. Furthermore, powertrain or system designers can easily and quickly adjust the characteristics and the performance of the machine in ways that are favorable to the overall vehicle performance.

  9. The method for controlling electric machine parameters based on the analysis of starting currents

    Directory of Open Access Journals (Sweden)

    Remezovsky V.M.

    2015-03-01

    Full Text Available The theoretical and experimental analysis of the electric machine technical condition by studying activate currents has been carried out. It has been shown that by means of express-methods it is possible to estimate the electric engine parameters with sufficient degree of accuracy

  10. USING OF OBJECT-ORIENTED DESIGN PRINCIPLES IN ELECTRIC MACHINES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zablodskii

    2016-03-01

    Full Text Available Purpose. To develop the theoretical basis of electrical machines object-oriented design, mathematical models and software to improve their design synthesis, analysis and optimization. Methodology. We have applied object-oriented design theory in electric machines optimal design and mathematical modelling of electromagnetic transients and electromagnetic field distribution. We have correlated the simulated results with the experimental data obtained by means of the double-stator screw dryer with an external solid rotor, brushless turbo-generator exciter and induction motor with squirrel cage rotor. Results. We have developed object-oriented design methodology, transient mathematical modelling and electromagnetic field equations templates for cylindrical electrical machines, improved and remade Cartesian product and genetic optimization algorithms. This allows to develop electrical machines classifications models, included not only structure development but also parallel synthesis of mathematical models and design software, to improve electric machines efficiency and technical performance. Originality. For the first time, we have applied a new way of design and modelling of electrical machines, which is based on the basic concepts of the object-oriented analysis. For the first time is suggested to use a single class template for structural and system organization of electrical machines, invariant to their specific variety. Practical value. We have manufactured screw dryer for coil dust drying and mixing based on the performed object-oriented theory. We have developed object-oriented software for design and optimization of induction motor with squirrel cage rotor of AIR series and brushless turbo-generator exciter. The experimental studies have confirmed the adequacy of the developed object-oriented design methodology.

  11. Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy

    Directory of Open Access Journals (Sweden)

    Podgornovs Andrejs

    2014-12-01

    Full Text Available In this paper the electromechanical battery (EMB with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation, it is necessary to find all geometrical dimensions of the electrical machine. To achieve this goal the iterative calculation method was used. Electromechanical battery mass was analyzed as a discharge process rotation speed function. Taking into account the rotor stored energy, we can increase the minimum rotation speed thus reducing the electrical machine mass and increasing the flywheel mass, which provides EMB cost reduction. Additionally, the possibilities of using numerical approximation calculations of magnetization curves are discussed. Each iteration of numerical application necessary for the method for rapid calculation is essential when calculating the field problems. Nowadays there are a lot of computer added design programs for electromagnetic field calculation in different types of applications, electrical machines and apparatus. For the electromagnetic field calculation process some more commonly used magnetization curve approximation methods are described, and the machine calculation time is tested for different numbers of calculations.

  12. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Unknown

    machine (Cheng et al 1996). Intermetallic alloys such as FeAl are potential materials for high temperature applications. This iron aluminide has a remarkable oxidation and corrosion resistance. Its main applications are in hot gas filters, furnace fixtures, heating elements, automobile components subjected to high tempe-.

  13. Two phase gap cooling of an electrical machine

    Energy Technology Data Exchange (ETDEWEB)

    Shoykhet, Boris A.

    2016-10-04

    An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inlet to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.

  14. On the Carter's Factor Calculation for Slotted Electric Machines

    Directory of Open Access Journals (Sweden)

    VIOREL, I. A.

    2007-11-01

    Full Text Available The air-gap flux density in a single side slotted unsaturated machine is computed via two dimensions finite element method (2D-FEM and via some analytical approximations. The Carter's factor values are calculated using different equations and a comparison between the obtained results is presented, allowing for pertinent conclusions concerning the flux density analytical estimation or the Carter's factor calculation.

  15. CAD-CAE in Electrical Machines and Drives Teaching.

    Science.gov (United States)

    Belmans, R.; Geysen, W.

    1988-01-01

    Describes the use of computer-aided design (CAD) techniques in teaching the design of electrical motors. Approaches described include three technical viewpoints, such as electromagnetics, thermal, and mechanical aspects. Provides three diagrams, a table, and conclusions. (YP)

  16. Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy

    OpenAIRE

    Podgornovs Andrejs; Sipovichs Antons

    2014-01-01

    In this paper the electromechanical battery (EMB) with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in) in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation...

  17. Optimization of Wire Electrical Discharge Machining Process Using Taguchi Method and Back Propagation Neural Network

    OpenAIRE

    SAĞBAŞ, Aysun; KAHRAMAN, Funda; Esme, Uğur

    2017-01-01

    In this study, it isattempted to model and optimize the wire electrical discharge machining (WEDM)process using Taguchi design of experiment and artificial neural network. Aneural network with back propagation algorithm was developed to predict theperformance characteristic, namely surface roughness. An approach to determineoptimal machining parameters setting was proposed based on the Taguchi designmethod. In addition, analysis of variance (ANOVA) was performed to identify thesignificant par...

  18. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  19. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  20. Feasibility Study for Electrical Discharge Machining of Large DU-Mo Castings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Clarke, Kester Diederik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Forsyth, Robert Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Aikin, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Alexander, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Tegtmeier, Eric Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Robison, Jeffrey Curt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Beard, Timothy Vance [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Edwards, Randall Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Mauro, Michael Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Scott, Jeffrey E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Strandy, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division

    2016-10-31

    U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) compared to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer-generated machining programs.

  1. Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2014-11-20

    We propose a method for fabricating a lens array mold by electrical discharge machining (EDM). In this method, the tips of rods are machined individually to form a specific surface, and then a number of the machined rods are arranged to construct an electrode for EDM. The repetition of the EDM process using the electrode enables a number of lens elements to be produced on the mold surface. The effectiveness of our proposed method is demonstrated by shaping a lens array mold made of stainless steel with 16 spherical elements, in which the EDM process with a single rod electrode is repeatedly conducted.

  2. Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings

    Science.gov (United States)

    Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.

    2017-04-01

    In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.

  3. Specification Requirement for Thermal Stability of Sintered NdFeB Materials for Electrical Machines

    Institute of Scientific and Technical Information of China (English)

    Lin Yan; Jiang Daiwei; Chen Lixiang; Chen Hailing; Bi Haitao; Tang Renyuan

    2004-01-01

    Based on IEC standards and Chinese national standards of sintered NdFeB materials, in the paper the hightemperature, room-temperature properties and thermal stability of about one hundred samples of NdFeB materials for electrical machines were measured and analyzed.These materials are produced by ten representative manufactories in China.Combined with the analysis results, the paper points out that the magnetic properties of sintered NdFeB materials for electrical machines should meet not only the specific values in standards, such as Br, (BH)max ,HcJ ,but also the requirement of temperature coefficients a (Br) , a (HcJ).

  4. PROCESSING OF SOFT MAGNETIC MATERIALS BY POWDER METALLURGY AND ANALYSIS OF THEIR PERFORMANCE IN ELECTRICAL MACHINES

    Directory of Open Access Journals (Sweden)

    W. H. D. Luna

    2017-12-01

    Full Text Available This article presents the use of finite elements to analyze the yield of electric machines based on the use of different soft magnetic materials for the rotor and the stator, in order to verify the performance in electric machine using powder metallurgy. Traditionally, the cores of electric machines are built from rolled steel plates, thus the cores developed in this work are obtained from an alternative process known as powder metallurgy, where powders of soft magnetic materials are compacted and sintered. The properties of interest were analyzed (magnetic, electric and mechanical properties and they were introduced into the software database. The topology of the rotor used was 400 W three-phase synchronous motor manufactured by WEG Motors. The results show the feasibility to replace the metal sheets of the electric machines by solid blocks obtained by powder metallurgy process with only 0.37% yield losses. In addition, the powder metallurgical process reduces the use of raw materials and energy consumption per kg of raw material processed.

  5. INFLUENCE OF FEEDING ELECTRIC ENERGY QUALITY ON HEATING OF THE AUXILIARY MA-CHINES OF AC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    O. YU. Baliichuk

    2014-04-01

    Full Text Available Purpose. The article aims to study the problem of increase the reliability of auxiliary machines for AC electric trains during operation in real conditions. Methodology. The peculiarity of system construction of auxiliary machines for AC electric rolling stock is the use of asynchronous motors for general industrial purpose. An engineering method of influence determination on the feeding voltage asymmetry and its deviation from the nominal value on heating of auxiliary machines insulation was proposed. Findings. It is found out that in case when the auxiliary machines of AC electric trains work under asymmetry factor of the voltage 10% or more and feeding voltage deviation from the nominal order 0.6 relative unit then it is possible the overheat of their isolation, even if it has class H. Originality. For the first time the issue of the total insulation heating under such boundary parameters combinations of energy quality, when each of them contributes to the heating insulation increase as compared to the nominal regime of the "rotating phase splitter−auxiliary machinery" system was illuminated. Practical value. Conducted research allow us to establish the boundary parameter values of feeding energy quality (asymmetry factor, feeding voltage deviations from the nominal value, at which additional isolation overheating of this class under the effect of specified factors will not exceed the agreed value.

  6. Wire Electrical Discharge Machining of a Hybrid Composite: Evaluation of Kerf Width and Surface Roughness

    Directory of Open Access Journals (Sweden)

    Abdil KUŞ

    2016-06-01

    Full Text Available In this study, the machinability characteristics of Al/B4C-Gr hybrid composite were investigated using wire electrical discharge machining (WEDM. In the experiments, the machining parameters of wire speed, pulse-on time and pulse-off time were varied in order to explaiın their effects on machining performance, including the width of slit (kerf and surface roughness values (Rz and Rt. According to the Taguchi quality design concept, a L18 (21×32 orthogonal array was used to determine the S/N ratio, and analysis of variance (ANOVA and the F-test were used to indicate the significant machining parameters affecting the machining performance. From the ANOVA and F-test results, the significant factors were determined for each of the machining performance criteria of kerf, Rz and Rt. The variations of kerf, Rz and Rt with the machining parameters were statistically modeled via the regression analysis method. The optimum levels of the control factors for kerf, Rz and Rt were specified as A1B1C1, A1B1C2 and A1B1C2, respectively. The correlation coefficients of the predictive equations developed for kerf, Rz and Rt were calculated as 0.98, 0.828 and 0.855, respectively.

  7. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    CERN Document Server

    Chau, K T; Chan, C C; Shen, W X

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.

  8. Chaotic Neuro-Computer

    Science.gov (United States)

    Horio, Yoshihiko; Aihara, Kazuyuki

    This chapter describes mixed analog/digital circuit implementations of a chaotic neuro-computer system. The chaotic neuron model is implemented with a switched-capacitor (SC) integrated circuit technique. The analog SC circuit can handle real numbers electrically in the sense that the state variables of the analog circuits are continuous. Therefore, chaotic dynamics can be faithfully replicated with the SC chaotic neuron circuit. The synaptic connections, on the other hand, are realized with digital circuits to accommodate a vast number of synapses. We propose a memory-based digital synapse circuit architecture that draws upon the table look-up method to achieve rapid calculation of a large number of weighted summations. The first generation chaotic neuro-computer with 16 SC neurons and 256 synapses is reviewed. Finally, a large-scale system with 10000 neurons and 100002 synapses is described.

  9. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  10. Impacts of Interior Permanent Magnet Machine Technology for Electric Vehicles

    Science.gov (United States)

    2012-01-01

    corrosion constraints of magnets  Minimum gear and more direct drive  Regenerative braking and short charging cycle of batteries  Impulse...be found in limited applications such as, antilock braking system (ABS) of the vehicles. Considering the performance enhancement and reliability of... system forms the backbone of modern society. Electricity and its accessibility is one of the major engineering achievements. In order to maintain and

  11. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  12. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  13. Implementation of algorithms based on support vector machine (SVM for electric systems: topic review

    Directory of Open Access Journals (Sweden)

    Jefferson Jara Estupiñan

    2016-06-01

    Full Text Available Objective: To perform a review of implementation of algorithms based on support vectore machine applied to electric systems. Method: A paper search is done mainly on Biblio­graphic Indexes (BI and Bibliographic Bases with Selection Committee (BBSC about support vector machine. This work shows a qualitative and/or quan­titative description about advances and applications in the electrical environment, approaching topics such as: electrical market prediction, demand predic­tion, non-technical losses (theft, alternative energy source and transformers, among others, in each work the respective citation is done in order to guarantee the copy right and allow to the reader a dynamic mo­vement between the reading and the cited works. Results: A detailed review is done, focused on the searching of implemented algorithms in electric sys­tems and innovating application areas. Conclusion: Support vector machines have a lot of applications due to their multiple benefits, however in the electric energy area; they have not been tota­lly applied, this allow to identify a promising area of researching.

  14. System and method for smoothing a salient rotor in electrical machines

    Science.gov (United States)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.

    2016-12-13

    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  15. Development of an Electric Motor Powered Low Cost Coconut Deshelling Machine

    Science.gov (United States)

    Mondal, Imdadul Hoque; Prasanna Kumar, G. V.

    2016-06-01

    An electric motor powered coconut deshelling machine was developed in line with the commercially available unit, but with slight modifications. The machine worked on the principle that the coconut shell can be caused to fail in shear and compressive forces. It consisted of a toothed wheel, a deshelling rod, an electric motor, and a compound chain drive. A bevelled 16 teeth sprocket with 18 mm pitch was used as the toothed wheel. Mild steel round bar of 18 mm diameter was used as the deshelling rod. The sharp edge tip of the deshelling rod was inserted below the shell to apply shear force on the shell, and the fruit was tilted toward the rotary toothed wheel to apply the compressive force on the shell. The speed of rotation of the toothed wheel was set at 34 ± 2 rpm. The output capacity of the machine was found to be 24 coconuts/h with 95 % of the total time effectively used for deshelling. The labour requirement was found to be 43 man-h/1000 nuts. About 13 % of the kernels got scraped and about 7 % got sliced during the operation. The developed coconut deshelling machine was recommended for the minimum annual use of 200 h or deshelling of 4700 coconuts per year. The cost of operation for 200 h of annual use was found to be about ` 47/h. The developed machine was found to be simple, easy to operate, energy efficient, safe and reduce drudgery involved in deshelling by conventional methods.

  16. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-03-01

    Full Text Available An electric commutated frog-leg winding permanent-magnet (PM DC machine is proposed in this paper. It has a semi-closed slotted stator with a classical type of mesh winding introduced from the conventional brushed DC machine and a polyphase electric commutation besides a PM excitation rotor and a circular arrayed Hall position sensor. Under the cooperation between the position sensor and the electric commutation, the proposed machine is basically operated on the same principle of the brushed one. Because of its simplex frog-leg winding, the combination between poles and slots is designed as 4/22, and the number of phases is set as 11. By applying an exact analytical method, which is verified comparable with the finite element analyses (FEA, to the prediction of its instantaneous magnetic field, electromotive force (EMF, cogging torque and output torque, it is well designed with a series of parameters in dimension aiming at the lowest cogging torque. A 230 W, 4-pole, and 22-slot new machine is prototyped and tested to verify the analysis.

  17. Support Vector Machines for decision support in electricity markets׳ strategic bidding

    DEFF Research Database (Denmark)

    Pinto, Tiago; Sousa, Tiago M.; Praça, Isabel

    2015-01-01

    by being included in ALBidS and then compared with the application of an Artificial Neural Network (ANN), originating promising results: an effective electricity market price forecast in a fast execution time. The proposed approach is tested and validated using real electricity markets data from MIBEL......׳ research group has developed a multi-agent system: Multi-Agent System for Competitive Electricity Markets (MASCEM), which simulates the electricity markets environment. MASCEM is integrated with Adaptive Learning Strategic Bidding System (ALBidS) that works as a decision support system for market players....... The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...

  18. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xing Yan

    2015-01-01

    Full Text Available Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP, but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM based midterm forecasting model of the electricity MCP is proposed in this paper. The first stage is utilized to separate the input data into corresponding price zones by using a single SVM. Then, the second stage is applied utilizing four parallel designed SVMs to forecast the electricity price in four different price zones. Compared to the forecasting model using a single SVM, the proposed model showed improved forecasting accuracy in both peak prices and overall system. PJM interconnection data are used to test the proposed model.

  19. Effect of Carbon in the Dielectric Fluid and Workpieces on the Characteristics of Recast Layers Machined by Electrical Discharge Machining

    Science.gov (United States)

    Muttamara, Apiwat; Kanchanomai, Chaosuan

    2016-06-01

    Electrical discharge machining (EDM) is a popular non-traditional machining technique that is usually performed in kerosene. Carbon from the kerosene is mixed into the recast layer during EDM, increasing its hardness. EDM can be performed in deionized water, which causes decarburization. We studied the effects of carbon in the dielectric fluid and workpiece on the characteristics of recast layers. Experiments were conducted using gray cast iron and mild steel workpieces in deionized water or kerosene under identical operating conditions. Scanning electron microscopy revealed that the recast layer formed on gray iron was rougher than that produced on mild steel. Moreover, the dispersion of graphite flakes in the gray iron seemed to cause subsurface cracks, even when EDM was performed in deionized water. Dendritic structures and iron carbides were found in the recast layer of gray iron treated in deionized water. Kerosene caused more microcracks to form and increased surface roughness compared with deionized water. The microcrack length per unit area of mild steel treated in deionized water was greater than that treated in kerosene, but the cracks formed in kerosene were wider. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.

  20. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  1. Scope for electric field assisted removal of ablated debris from laser machined features in silicon

    Science.gov (United States)

    Coyne, Edward; Mannion, Paul; O'Connor, Gerard M.; Favre, Sebastian; Glynn, Thomas J.

    2005-04-01

    The problem created by the re-deposition of ablated material when laser machining structures in silicon wafers is investigated. The study focuses on the specific case of machining wafer grade silicon with femtosecond pulses centered at a wavelength of 775 nm. Based on the evidence that a highly ionised plasma state exists immediately after laser ablation, this work explores the potential of using electric fields to channel the debris out of the laser machined feature before it becomes deposited. To this extent the work discusses the step-by-step development of different experimental arrangements, by first evaluating its effects, then identifying its limitations and finally by proposing and investigating potential solutions. It is found that a reduction in the amount of re-deposited debris is observed when a carrier-depleted region is generated in silicon materials.

  2. Method for providing slip energy control in permanent magnet electrical machines

    Science.gov (United States)

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  3. Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads

    Science.gov (United States)

    Parlos, Alexander G.; Toliyat, Hamid A.

    2005-01-01

    An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.

  4. The characteristics of chromized 1020 steel with electrical discharge machining and Ni electroplating pretreatments

    Science.gov (United States)

    Bai, Ching-Yuan; Lee, Jeou-Long; Wen, Tse-Min; Hou, Kung-Hsu; Wu, Min-Sheng; Ger, Ming-Der

    2011-02-01

    A uniform and continuous chromized coating on AISI 1020 steel is produced by low-temperature pack chromization (LTPC) with electrical discharge machining and Ni electroplating pretreatments. The anticorrosive performance of the chromized steels is investigated in a 0.5 M H2SO4 solution at room temperature. The testing results indicate that the chromized specimen with electrical discharge machining and Ni electroplating pretreatments exhibits the lowest corrosion current density, 2.16 × 10-8 A cm-2, among the tested specimens. The corrosion resistance of all tested specimens are in the order of bare 1020 1020-Cr(700-2) 1020-Ni-Cr(700-2) 1020-EDM-Ni-Cr(700-2). Moreover, the 1020-Ni-Cr(700-2) specimen have the best conductivity as a result of the less amount of oxides in the superficial coating.

  5. Effect of electric discharge machining on the fatigue life of Inconel 718

    Science.gov (United States)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  6. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... or more actual values (110, 111)of one or more parameters for a given superconductive winding (102; 103), each parameter representing a physical condition of the given superconductive winding (102; 103), and to dynamically derive one or more electrical current values to be maintained in the given...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  7. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  8. Heat production in the windings of the stators of electric machines under stationary condition

    Science.gov (United States)

    Alebouyeh Samami, Behzad; Pieper, Martin; Breitbach, Gerd; Hodapp, Josef

    2014-12-01

    In electric machines due to high currents and resistive losses (joule heating) heat is produced. To avoid damages by overheating the design of effective cooling systems is required. Therefore the knowledge of heat sources and heat transfer processes is necessary. The purpose of this paper is to illustrate a good and effective calculation method for the temperature analysis based on homogenization techniques. These methods have been applied for the stator windings in a slot of an electric machine consisting of copper wires and resin. The key quantity here is an effective thermal conductivity, which characterizes the heterogeneous wire resin-arrangement inside the stator slot. To illustrate the applicability of the method, the analysis of a simplified, homogenized model is compared with the detailed analysis of temperature behavior inside a slot of an electric machine according to the heat generation. We considered here only the stationary situation. The achieved numerical results are accurate and show that the applied homogenization technique works in practice. Finally the results of simulations for the two cases, the original model of the slot and the homogenized model chosen for the slot (unit cell), are compared to experimental results.

  9. EXPERIMENTAL INVESTIGATION ON ELECTRICAL DISCHARGE MACHINING OF TITANIUM ALLOY USING COPPER, BRASS AND ALUMINUM ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. DHANABALAN

    2015-01-01

    Full Text Available In the present study, an evaluation has been done on Material Removal Rate (MRR, Surface Roughness (SR and Electrode Wear Rate (EWR during Electrical Discharge Machining (EDM of titanium alloy using copper, brass and aluminum electrodes. Analyzing previous work in this field, it is found that electrode wear and material removal rate increases with an increase current. It is also found that the electrode wear ratio increases with an increase in current. The higher wear ratio is found during machining of titanium alloy using a brass electrode. An attempt has been made to correlate the thermal conductivity and melting point of electrode with the MRR and electrode wear. The MRR is found to be high while machining titanium alloy using brass electrode. During machining of titanium alloy using copper electrodes, a comparatively smaller quantity of heat is absorbed by the work material due to low thermal conductivity. Due to the above reason, the MRR becomes very low. Duringmachining of titanium alloy using aluminium electrodes, the material removal rate and electrode wear rate are only average value while machining of titanium alloy using brass and copper electrodes.

  10. Experimental study of surface roughness in Electric Discharge Machining (EDM based on Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Mat Deris Ashanira

    2016-01-01

    Full Text Available Electric Discharge Machining (EDM is one of the modern machining which is capable in handling hard and difficult-to-machine material. The successful of EDM basically depends on its performances such as surface roughness (Ra, material removal rate (MRR, electrode wear rate (EWR and dimensional accuracy (DA. Ra is considered as the most important performance due to it role as a technological quality measurement for a product and also a factor that significantly affects the manufacturing process. This paper presents the experimental study of surface roughness in die sinking EDM using stainless steel SS316L with copper impregnated graphite electrode. The machining experimental is conducted based on the two levels full factorial design of design of experiment (DOE with five machining parameters which are peak current, servo voltage, servo speed, pulse on time and pulse off time. The results were analyzed using grey relational analysis (GRA and it was found that pulse on time and servo voltage give the most influence to the Ra value.

  11. Machining and Surface Characteristics of AISI 304L After Electric Discharge Machining for Copper and Graphite Electrodes in Different Dielectric Liquids

    Directory of Open Access Journals (Sweden)

    S. Anjum

    2017-08-01

    Full Text Available In Electric Discharge Machining (EDM, the thermal energy used for material erosion depends on the intensity of electric sparks, the thermal conductivities of electrode material and the dielectric liquid. In this paper, the effect of EDM on AISI 304L steel is studied using copper and graphite electrodes and distilled water and kerosene oil as dielectric liquids. Material Removal Rates (MRR, Tool Wear Rates (TWR and surface conditions are calculated for four different combinations with the two electrode materials and the two dielectric liquids. These investigations are carried out at different pulse currents. Machined surfaces are evaluated by morphological studies, energy dispersive spectrographs (EDS and white layer thickness using Scanning Electron Microscopy (SEM. It is found that a transfer of carbon takes place from the kerosene oil and the graphite electrodes into the machined surface which alters the metallurgical characteristics, depending on the electrical and thermal conductivities of the electrode material and the dielectric liquid.

  12. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    Science.gov (United States)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  13. Dual-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications

    DEFF Research Database (Denmark)

    Han, Peng; Cheng, Ming; Chen, Zhe

    2017-01-01

    This paper presents a dual-electrical-port control scheme for four-quadrant operation of cascaded doubly-fed induction machine (CDFIM), which has conventionally been used as a variable-speed drive or variable-speed constant-frequency generator for limited-speed-range applications. The proposed......-electrical-port control scheme. It is for the first time revealed that the CDFIM drive that indirectly couples PW and CW through induction behavior can be readily controlled like a conventional induction motor to achieve the highest torque density. The torque density-speed region of the CDFIM falls within...... that of the power machine in singly-fed operation mode, and only a half of that of the power machine in doubly-fed operation mode, which shows the urgent need for torque density enhancement of brushless doubly-fed machines for electric vehicle/hybrid electric vehicle applications. Computer simulations...

  14. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  15. The assessment of energy efficiency of electric machines for domestic appliances drive

    Directory of Open Access Journals (Sweden)

    Bogusz Piotr

    2017-01-01

    Full Text Available In the paper, the division of domestic appliances into categories connected with input power was presented. The authors discussed issues connected with energy efficiency of these devices. An example of such a device power consumption of which affects considerably on overall power consumption from the mains is a vacuum cleaner. Vacuum cleaners are used in almost all households and they were covered by the EU regulations which introduced limitations in power consumption from the mains. In the paper, the assessment of energy efficiency of classic electric motors for vacuum cleaners drive was presented. Results of practical tests of chosen vacuum cleaners were presented. The digital power meter was used to measure electric parameters of tested vacuum cleaners and the PC was used to collect measuring data. The assessment of input power influence on energy consumption and energy efficiency was conducted based on tests results. It was shown in conclusions that the one of development directions of domestic appliances, which can cause improvement of energy efficiency, are alternative technologies of electric machines with much higher efficiency i.e. energy-saving electric machines with electronic commutation.

  16. Regulation of unbalanced electromagnetic moment in mutual loading systems of electric machines of traction rolling stock and multiple unit of mainline and industrial transport

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-12-01

    Full Text Available Purpose. The research data are aimed to identify the regulatory principles of unbalanced electromagnetic moment of mutually loaded electric machines of traction rolling stock and multiple unit of main and industrial transport. The purpose of this study is energy efficiency increase of the testing of traction electric machines of direct and pulse current using the improvement methods of their mutual loading, including the principles of automatic regulation of mutual loading system. Methodology. The general theoretical provisions and principles of system approach to the theoretical electric engineering, the theory of electric machines and theoretical mechanics are the methodological basis of this research. The known methods of analysis of electromagnetic and electromechanical processes in electrical machines of direct and pulse current are used in the study. Methods analysis of loading modes regulation of traction electric machines was conducted using the generalized scheme of mutual loading. It is universal for all known methods to cover the losses of idling using the electric power. Findings. The general management principles of mutual loading modes of the traction electric machines of direct and pulse current by regulating their unbalanced electric magnetic moment were developed. Regulatory options of unbalanced electromagnetic moment are examined by changing the difference of the magnetic fluxes of mutually loaded electric machines, the current difference of electric machines anchors, the difference of the angular velocities of electric machines shafts. Originality. It was obtained the scientific basis development to improve the energy efficiency test methods of traction electric machines of direct and pulse current. The management principles of mutual loading modes of traction electric machines were formulated. For the first time it is introduced the concept and developed the principles of regulation of unbalanced electromagnetic moment in

  17. Mathematic model of three-phase induction machine connected to advanced inverter for traction system for electric trolley

    OpenAIRE

    BOCII,LIVIU S.; MULLER Valentin

    2013-01-01

    This paper establishes a mathematical model of induction machine connected to a frequency inverter necessary to adjust the electric motor drive. The mathematical model based on the Park's theory allows the analysis of the whole spectrum (electric car – frequency inverter) to drive the electric trolley bus made on ASTRA Bus Arad (Romania). To remove higher order harmonics, the PWM waveform of supply voltage is used, set in the general case. Operating characteristics of electric motor dri...

  18. Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems

    Science.gov (United States)

    Cablea, Georgia; Granjon, Pierre; Bérenguer, Christophe

    2017-08-01

    The current paper proposes a method to detect mechanical faults in rotating machines using three-phase electrical currents analysis. The proposed fault indicator relies on the use of instantaneous symmetrical components (ISCs), followed by a demodulation step enhancing the small modulations generated in electrical signals by mechanical faults. The limitations due to the multi-component nature of electrical signals, as well as to the noise naturally present in the measured signals are studied and taken into account in order to elaborate a proper and efficient algorithm to compute a mechanical fault indicator. It is theoretically shown that the ISCs based approach results in an increase of the signal-to-noise ratio compared to a single-phase approach, finally leading to an improvement of early fault detection capabilities. This result is validated using both synthetic and experimental signals where the proposed method is used to detect bearing faults and the obtained results are compared to single-phase results.

  19. Research of the possibility of using an electrical discharge machining metal powder in selective laser melting

    Science.gov (United States)

    Golubeva, A. A.; Sotov, A. V.; Agapovichev, A. V.; Smelov, V. G.; Dmitriev, V. N.

    2017-02-01

    In this paper the research of a Ni-20Cr-10Fe-3Ti (heat-resistant) alloy metal powder conducted for use in a selective laser melting technology. This metal powder is the slime after electric discharge machining. The technology of cleaning and melting the powder discussed in this article. As a control input of the powder, immediately before 3D printing, dimensional analysis, surface morphology and the internal structure of the powder particles after the treatment were examined using optical and electron microscopes. The powder granules are round, oval, of different diameters with non-metallic inclusions. The internal structure of the particles is solid with no apparent defects. The content of the required diameter of the total volume of test powder granules was 15%. X-ray fluorescence analysis of the powder materials carried out. The possibility of powder melting was investigated in the selective laser melting machine ‘SLM 280HL’. A selection of the melting modes based on the physical properties of the Ni-20Cr-10Fe-3Ti alloy, data obtained from similar studies and a mathematical model of the process. Conclusions on the further investigation of the possibility of using electric discharge machining slime were made.

  20. The birth of the electric machines: a commentary on Faraday (1832) 'Experimental researches in electricity'.

    Science.gov (United States)

    Al-Khalili, Jim

    2015-04-13

    The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  1. Modeling and optimization of Electrical Discharge Machining (EDM using statistical design

    Directory of Open Access Journals (Sweden)

    Hegab Husein A.

    2015-01-01

    Full Text Available Modeling and optimization of nontraditional machining is still an ongoing area of research. The objective of this work is to optimize Electrical Discharge Machining process parameters of Aluminum-multiwall carbon Nanotube composites (AL-CNT model. Material Removal Rate (MRR, Wear Electrode Ratio (EWR and Average Surface Roughness (Ra are primary objectives. The Machining parameters are machining-on time (sec, discharge current (A, voltage (V, total depth of cut (mm, and %wt. CNT added. Mathematical models for all responses as function of significant process parameters are developed using Response Surface Methodology (RSM. Experimental results show optimum levels for material removal rate are %wt. CNT (0%, high level of discharge current (6A and low level of voltage (50 V while optimum levels for Electrode wear ratio are %wt. CNT (5%, high level of discharge current (6A and optimum levels for average surface roughness are %wt. CNT (0%, low level of discharge current (2A and high level of depth of cut (1 mm. Single-objective optimization is formulated and solved via Genetic Algorithm. Multi-objective optimization model is then formulated for the three responses of interest. This methodology gathers experimental results, builds mathematical models in the domain of interest and optimizes the process models. As such, process analysis, modeling, design and optimization are achieved.

  2. Delivering key signals to the machine: seeking the electric signal that muscles emanate

    Science.gov (United States)

    Bani Hashim, A. Y.; Maslan, M. N.; Izamshah, R.; Mohamad, I. S.

    2014-11-01

    Due to the limitation of electric power generation in the human body, present human-machine interfaces have not been successful because of the nature of standard electronics circuit designs, which do not consider the specifications of signals that resulted from the skin. In general, the outcomes and applications of human-machine interfaces are limited to custom-designed subsystems, such as neuroprosthesis. We seek to model the bio dynamical of sub skin into equivalent mathematical definitions, descriptions, and theorems. Within the human skin, there are networks of nerves that permit the skin to function as a multi dimension transducer. We investigate the nature of structural skin. Apart from multiple networks of nerves, there are other segments within the skin such as minute muscles. We identify the segments that are active when there is an electromyography activity. When the nervous system is firing signals, the muscle is being stimulated. We evaluate the phenomena of biodynamic of the muscles that is concerned with the electromyography activity of the nervous system. In effect, we design a relationship between the human somatosensory and synthetic systems sensory as the union of a complete set of the new domain of the functional system. This classifies electromyogram waveforms linked to intent thought of an operator. The system will become the basis for delivering key signals to machine such that the machine is under operator's intent, hence slavery.

  3. Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-01-01

    Full Text Available Accurate electric power demand forecasting plays a key role in electricity markets and power systems. The electric power demand is usually a non-linear problem due to various unknown reasons, which make it difficult to get accurate prediction by traditional methods. The purpose of this paper is to propose a novel hybrid forecasting method for managing and scheduling the electricity power. EEMD-SCGRNN-PSVR, the proposed new method, combines ensemble empirical mode decomposition (EEMD, seasonal adjustment (S, cross validation (C, general regression neural network (GRNN and support vector regression machine optimized by the particle swarm optimization algorithm (PSVR. The main idea of EEMD-SCGRNN-PSVR is respectively to forecast waveform and trend component that hidden in demand series to substitute directly forecasting original electric demand. EEMD-SCGRNN-PSVR is used to predict the one week ahead half-hour’s electricity demand in two data sets (New South Wales (NSW and Victorian State (VIC in Australia. Experimental results show that the new hybrid model outperforms the other three models in terms of forecasting accuracy and model robustness.

  4. The evolution of neuroArm.

    Science.gov (United States)

    Sutherland, Garnette R; Wolfsberger, Stefan; Lama, Sanju; Zarei-nia, Kourosh

    2013-01-01

    Intraoperative imaging disrupts the rhythm of surgery despite providing an excellent opportunity for surgical monitoring and assessment. To allow surgery within real-time images, neuroArm, a teleoperated surgical robotic system, was conceptualized. The objective was to design and manufacture a magnetic resonance-compatible robot with a human-machine interface that could reproduce some of the sight, sound, and touch of surgery at a remote workstation. University of Calgary researchers worked with MacDonald, Dettwiler and Associates engineers to produce a requirements document, preliminary design review, and critical design review, followed by the manufacture, preclinical testing, and clinical integration of neuroArm. During the preliminary design review, the scope of the neuroArm project changed to performing microsurgery outside the magnet and stereotaxy inside the bore. neuroArm was successfully manufactured and installed in an intraoperative magnetic resonance imaging operating room. neuroArm was clinically integrated into 35 cases in a graded fashion. As a result of this experience, neuroArm II is in development, and advances in technology will allow microsurgery within the bore of the magnet. neuroArm represents a successful interdisciplinary collaboration. It has positive implications for the future of robotic technology in neurosurgery in that the precision and accuracy of robots will continue to augment human capability.

  5. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor

    Science.gov (United States)

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-01

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect—using electric current shape analysis—for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between “does-not-need-to-be-replaced” and “needs-to-be-replaced” shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification. PMID:28146057

  6. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor.

    Science.gov (United States)

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-29

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

  7. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining.

    Science.gov (United States)

    Ramulu, M; Spaulding, Mathew

    2016-09-01

    An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  8. Drilling of Hybrid Titanium Composite Laminate (HTCL with Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    M. Ramulu

    2016-09-01

    Full Text Available An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR, tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  9. Electrical measurement system in milling balance machine based on embedded optimization

    Science.gov (United States)

    Wang, Yijun; Mei, Yushan

    2015-12-01

    Electrical measurement system in milling balance machine currently consists of micro-controller and peripheral devices. The structure has the problems which include low integration, single signal processing algorithms and great measurement error. Therefore, electrical measurement system in milling balance machine based on embedded optimization is presented in the paper. Firstly, the device control electrical measuring system by ARM subsystem of OMAP dual-core architecture and DSP subsystem realizes digital signal processing and unbalance computing. Also, the low-pass filtering circuit is designed for solving frequency interference. Secondly, the system implement digital band-pass tracking filter based on harmonic wavelet packet. Thirdly, the system extracts any period of weak signal characteristics using the unlimited segmentation features harmonic for wavelet packet signal in the frequency domain. Simulation results show that the system effectively inhibits nearly frequency signal interference, improves signal to noise ratio, and reduces the initial imbalance signal characteristics. And test results improve that precision indexes and technical specifications could meet the design goals.

  10. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  11. Effect of Micro Electrical Discharge Machining Process Conditions on Tool Wear Characteristics: Results of an Analytic Study

    DEFF Research Database (Denmark)

    Puthumana, Govindan; P., Rajeev

    2016-01-01

    Micro electrical discharge machining is one of the established techniques to manufacture high aspect ratio features on electrically conductive materials. This paper presents the results and inferences of an analytical study for estimating theeffect of process conditions on tool electrode wear...

  12. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kozak, Joseph P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tomerlin, Jeff J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  13. Bidding strategy with forecast technology based on support vector machine in the electricity market

    Science.gov (United States)

    Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Wan, Qiulan; Zhou, Jian

    2008-06-01

    The participants in the electricity market are concerned very much with the market price evolution. Various technologies have been developed for price forecasting. The SVM (Support Vector Machine) has shown its good performance in market price forecasting. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecasting accuracy, with which the rejection risk is defined. The other takes into account the impact of the producer’s own bid. The risks associated with the bidding are controlled by the parameter settings. The proposed approaches have been tested on a numerical example.

  14. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles.

    Science.gov (United States)

    Wu, Zhihong; Lu, Ke; Zhu, Yuan

    2015-01-01

    The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.

  15. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  16. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    Science.gov (United States)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  17. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  18. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chung, Meng-Yun; Chang, Chaur-Yang

    2017-06-02

    In this study, the Electric Spark Discharge Method (ESDM) was employed with micro-electrical discharge machining (m-EDM) to create an electric arc that melted two electrodes in deionized water (DW) and fabricated nano-Au colloids through pulse discharges with a controlled on-off duration (T ON -T OFF ) and a total fabrication time of 1 min. A total of six on-off settings were tested under normal experimental conditions and without the addition of any chemical substances. Ultraviolet-visible spectroscopy (UV-Vis), Zetasizer Nano measurements, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analyses suggested that the nano-Au colloid fabricated at 10-10 µs (10 µs on, 10 µs off) had higher concentration and suspension stability than products made at other T ON -T OFF settings. The surface plasmon resonance (SPR) of the colloid was 549 nm on the first day of fabrication and stabilized at 532 nm on the third day. As the T ON -T OFF period increased, the absorbance (i.e., concentration) of all nano-Au colloids decreased. Absorbance was highest at 10-10 µs. The SPR peaks stabilized at 532 nm across all T ON -T OFF periods. The Zeta potential at 10-10 µs was -36.6 mV, indicating that no nano-Au agglomeration occurred and that the particles had high suspension stability.

  19. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation.

    Science.gov (United States)

    Ajoudani, Arash; Erfanian, Abbas

    2009-07-01

    During the past several years, several strategies have been proposed for control of joint movement in paraplegic subjects using functional electrical stimulation (FES), but developing a control strategy that provides satisfactory tracking performance, to be robust against time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, muscle fatigue, and external disturbances, and to be easy to apply without any re-identification of plant dynamics during different experiment sessions is still an open problem. In this paper, we propose a novel control methodology that is based on synergistic combination of neural networks with sliding-mode control (SMC) for controlling FES. The main advantage of SMC derives from the property of robustness to system uncertainties and external disturbances. However, the main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. To eliminate the chattering, we couple two neural networks with online learning without any offline training into the SMC. A recurrent neural network is used to model the uncertainties and provide an auxiliary equivalent control to keep the uncertainties to low values, and consequently, to use an SMC with lower switching gain. The second neural network consists of a single neuron and is used as an auxiliary controller. The control law will be switched from the SMC to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. Extensive simulations and experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed neuroadaptive SMC. The results show that the neuro-SMC provides accurate tracking control with fast convergence for different reference trajectories and could generate control signals to compensate the muscle fatigue and reject the external disturbance.

  20. Methodology for testing a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available A laboratory system for remote monitoring and control of an asynchronous motor controlled by a soft starter and contemporary measuring and control devices has been developed and built. This laboratory system is used for research and in teaching. A study of the principles of operation, setting up and examination of intelligent energy meters, soft starters and PLC has been made as knowledge of the relevant software products is necessary. This is of great importance because systems for remote monitoring and control of energy consumption, efficiency and proper operation of the controlled objects are very often used in different spheres of industry, in building automation, transport, electricity distribution network, etc. Their implementation in electric vehicles for remote monitoring and control on auxiliary machines is also possible and very useful. In this paper, a methodology of tests is developed and some experiments are presented. Thus, an experimental verification of the developed methodology is made.

  1. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    Science.gov (United States)

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-09-08

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.

  2. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  3. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-09-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  4. Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Weiwei Gu

    2015-12-01

    Full Text Available In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs. In the first step, the initial permanent magnet (PM brushless machine is designed based on the consideration of the maximum speed and performance specifications in the entire operation region. Then, on the basis of increasing d-axis inductance, and meanwhile maintaining constant permanent magnet flux linkage, the PM brushless machine is optimized. The corresponding performance of the initial and optimal PM brushless machines are analyzed and compared by the finite-element method (FEM. Several tests are carried out in an EV simulation model based on the urban dynamometer driving schedule (UDDS for evaluation. Both theoretical analysis and simulation results verify the validity of the proposed design and optimization method.

  5. Combination of power electronic models with the two-dimensional finite element analysis of electrical machines

    Science.gov (United States)

    Vaeaenaenen, J.

    1994-04-01

    An analysis method for power electronic drives of electrical machines is presented. The machine is modeled by a two dimensional finite element method which allows the presence of magnetically nonlinear materials and the motion of the rotor. The power electronic device connected to the machine is modeled by a nonlinear circuit model. The field and the circuit equations are coupled together as a system of equations. The power electronic circuit can have a general topology given by a net-list type input file. Specific attention is paid to the numerical stability and efficiency of the combined field-circuit formulation. The computational efficiency and the numerical reliability of the method is investigated with the aid of theoretical cases. According to results, the inclusion of the nonlinear circuit model does not increase the computational costs significantly, provided that the sparsity of the system equations is preserved. The method is tested with three practical examples. The results obtained by the method are compared with the measured ones. The first example is a permanent magnet generator feeding a diode-rectifier. In the second example, a filter circuit is added in parallel with the rectifier. The third example is a cage-induction motor fed by a static frequency converter. The computed results agree well with the measured ones.

  6. Hybrid Swarm Algorithms for Parameter Identification of an Actuator Model in an Electrical Machine

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2011-01-01

    Full Text Available Efficient identification and control algorithms are needed, when active vibration suppression techniques are developed for industrial machines. In the paper a new actuator for reducing rotor vibrations in electrical machines is investigated. Model-based control is needed in designing the algorithm for voltage input, and therefore proper models for the actuator must be available. In addition to the traditional prediction error method a new knowledge-based Artificial Fish-Swarm optimization algorithm (AFA with crossover, CAFAC, is proposed to identify the parameters in the new model. Then, in order to obtain a fast convergence of the algorithm in the case of a 30 kW two-pole squirrel cage induction motor, we combine the CAFAC and Particle Swarm Optimization (PSO to identify parameters of the machine to construct a linear time-invariant(LTI state-space model. Besides that, the prediction error method (PEM is also employed to identify the induction motor to produce a black box model with correspondence to input-output measurements.

  7. Mechanical characteristics of a double-fed machine in asynchronous mode and prospects of its application in the electric drive of mining machines

    Science.gov (United States)

    Ostrovlyanchik, V. Yu; Popolzin, I. Yu; Kubarev, V. A.; Marshev, D. A.

    2017-09-01

    The concept of a double-fed machine as an asynchronous motor with a phase rotor and a source of additional voltage is defined. Based on the analysis of a circuit replacing the double-fed machine, an expression is derived relating the moment, slip, amplitude and phase of additional voltage across the rotor. The conditions maximizing the moment with respect to amplitude and phase of additional voltage in the rotor circuit are also obtained, the phase surface of function of machine electromagnetic moment is constructed. The analysis of basic equation of electric drive motion in relation to electric drive of mine hoisting installations and the conclusion about the necessity of work in all four quadrants of coordinate plane “moment-slip” are made. Family of mechanical characteristics is constructed for a double-fed machine and its achievable speed control range in asynchronous mode is determined. Based on the type of mechanical characteristics and the calculated range of speed control, the conclusion is made about the suitability of using a dual-fed asynchronous machine for driving mine mechanisms with a small required speed control range and the need for organizing a combined operating mode for driving mine hoisting installations and other mechanisms with a large speed control range.

  8. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  9. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  10. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  11. Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2015-12-01

    Full Text Available In this paper, a co-axial dual-mechanical ports flux-switching permanent magnet (CADMP-FSPM machine for hybrid electric vehicles (HEVs is proposed and investigated, which is comprised of two conventional co-axial FSPM machines, namely one high-speed inner rotor machine and one low-speed outer rotor machine and a non-magnetic ring sandwiched in between. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced; secondly, the control system of the proposed electronically-controlled continuously-variable transmission (E-CVT system is given; thirdly, the key design specifications of the CADMP-FSPM machine are determined based on a conventional dual-mechanical ports (DMP machine with a wound inner rotor. Fourthly, the performances of the CADMP-FSPM machine and the normal DMP machine under the same overall volume are compared, and the results indicate that the CADMP-FSPM machine has advantages over the conventional DMP machine in the elimination of brushes and slip rings, improved thermal dissipation conditions for the inner rotor, direct-driven operation, more flexible modes, lower cogging torque and torque ripple, lower total harmonic distortion (THD values of phase PM flux linkage and phase electro-motive force (EMF, higher torque output capability and is suitable for the E-CVT systems. Finally, the pros and cons of the CADMP-FSPM machine are highlighted. This paper lays a theoretical foundation for further research on CADMP-FSPM machines used for HEVs.

  12. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    Science.gov (United States)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  13. Effect of electrical discharge machining on dental Y-TZP ceramic-resin bonding.

    Science.gov (United States)

    Rona, Nergiz; Yenisey, Murat; Kucukturk, Gokhan; Gurun, Hakan; Cogun, Can; Esen, Ziya

    2017-04-01

    The study determined (i) the effects of electrical discharge machining (EDM) on the shear-bond strength (SBS) of the bond between luting resin and zirconia ceramic and (ii) zirconia ceramic's flexural strength with the three-point bending (TPB) test. Sixty 4.8mm×4.8mm×3.2mm zirconia specimens were fabricated and divided into four groups (n=15): SBG: sandblasted+silane, TSCG: tribochemical silica coated+silane, LTG: Er:YAG laser treated+silane, EDMG: EDM+silane. The specimens were then bonded to a composite block with a dual-cure resin cement and thermal cycled (6000 times) prior to SBS testing. The SBS tests were performed in a universal testing machine. The SBS values were statistically analyzed using ANOVA and Tukey's test. To determine flexural strength, sixty zirconia specimens were prepared and assigned to the same groups (n=15) mentioned earlier. After surface treatment TPB tests were performed in a universal testing machine (ISO 6872). The flexural strength values were statistically analyzed using ANOVA and Tukey's test (α=0.05). The bond strengths for the four test groups (mean±SD; MPa) were as follows: SBG (Control), 12.73±3.41, TSCG, 14.99±3.14, LTG, 7.93±2.07, EDMG, 17.05±2.71. The bond strength of the EDMG was significantly higher than those of the SBG and LTG (p0.05). The EDM process improved the SBS. In addition, there was no significant adverse effect of EDM on the flexural strength of zirconia. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Computational modelling for type-II superconductivity and the investigation of high temperature superconducting electrical machines

    CERN Document Server

    Barnes, G J

    2000-01-01

    are clearly revealed. Once this has been achieved, further studies indicate the most desirable parameters which are expected to optimise the performance. In recent years, the possibility of incorporating type-ll superconducting materials into engineering power applications such as motors, generators, bearings and levitation systems has attracted much attention. However, in order to fully develop the potential of using these relatively new materials in such applications, suitable computational modelling is required. The aim of the research presented in this thesis was to further the development of electrical machines incorporating high temperature superconductors (HTSs) by formulating and then implementing mathematical models. After identifying and justifying necessary assumptions, two such models are developed: the first deriving from the ideas of fluxon motion leading to a finite difference scheme, and the second deriving from more fundamental macroscopic ideas of induced currents leading to a finite element...

  15. Modeling and measurements of circular and trapezoidal shape HTS coils for electrical machines applications

    Science.gov (United States)

    Messina, G.; Morici, L.; Besi Vetrella, U.; Celentano, G.; Marchetti, M.; Viola, R.; Sabatino, P.

    2014-05-01

    Axial Flux Electrical Machines (AFEM) with good power-to-weight and diameter-to-length ratio and high efficiency are very attractive for most industrial and power applications. Investigations with both theoretical and experimental methods of ac losses are important for a reliable prediction of dissipation mechanisms in AFEM. In this paper, simulated and measured results for both critical current (Ic) and transport current losses (Ploss), obtained on HTS coils, are reported. To investigate shape effects, double pancake coils with variable turns and shapes have been manufacted. Commercial grade ReBa2Cu3O7-x (Re = Y or rare earths, ReBCO) tape and epoxy resin has been used for coil winding. A magneto-static 2D finite element model (FEM) for the coils cross section, and a lumped model for AC losses estimations, have been implemented. The agreement among measured and simulated results are satisfactory.

  16. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A. [European Organization for Nuclear Research, Geneva (Switzerland); McInturff, A. [Lawrence Berkeley Lab., CA (United States)

    1995-06-21

    Tests have been carried out on a string prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by ``cold diodes`` and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed.

  17. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A. [CERN, Geneva (Switzerland); McInturff, A. [Lawrence Berkeley Lab., CA (United States)

    1996-07-01

    Tests have been carried out on a string of prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by cold diodes and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed.

  18. Performance Optimization of Electrical Discharge Machining (Die Sinker for Al-6061 via Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Muhammad Qaiser Saleem

    2015-04-01

    Full Text Available This paper parametrically optimizes the EDM (Electrical Discharge Machining process in die sinking mode for material removal rate, surface roughness and edge quality of aluminum alloy Al-6061. The effect of eight parameters namely discharge current, pulse on-time, pulse off-time, auxiliary current, working time, jump time distance, servo speed and work piece hardness are investigated. Taguchi's orthogonal array L18 is employed herein for experimentation. ANOVA (Analysis of Variance with F-ratio criterion at 95% confidence level is used for identification of significant parameters whereas SNR (Signal to Noise Ratio is used for determination of optimum levels. Optimization obtained for Al-6061 with parametric combination investigated herein is validated by the confirmation run.

  19. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods.

    Science.gov (United States)

    Kalvoy, Havard; Tronstad, Christian; Ullensvang, Kyrre; Steinfeldt, Thorsten; Sauter, Axel R

    2017-07-01

    In an ongoing project for electrical impedance-based needle guidance we have previously showed in an animal model that intraneural needle positions can be detected with bioimpedance measurement. To enhance the power of this method we in this study have investigated whether an early detection of the needle only touching the nerve also is feasible. Measurement of complex impedance during needle to nerve contact was compared with needle positions in surrounding tissues in a volunteer study on 32 subjects. Classification analysis using Support-Vector Machines demonstrated that discrimination is possible, but that the sensitivity and specificity for the nerve touch algorithm not is at the same level of performance as for intra-neuralintraneural detection.

  20. OPTIMIZATION OF ELECTRICAL DISCHARGE MACHINING PARAMETERS OF ALUMINIUM HYBRID COMPOSITES USING TAGUCHI METHOD

    Directory of Open Access Journals (Sweden)

    N. RADHIKA

    2014-08-01

    Full Text Available Metal matrix composites utilises the combined properties of the constituent material that finds applications in various fields. The present study investigates the influence of peak current, flushing pressure and pulse-on time on Electrical Discharge Machining of AlSi10Mg alloy reinforced with 3 wt% graphite and 9 wt% alumina hybrid metal matrix composites. Taguchi’s Design of Experiment was used to analyse the machining characteristics of hybrid composites. Analysis of Variance and Signal-to-Noise ratio were used to determine the influence of input process parameters on the surface roughness, material removal rate and tool wear rate. Signal to Noise ratio and Analysis of Variance revealed that peak current was the most influential parameter on surface roughness followed by pulse on time and flushing pressure. For material removal rate, the major parameter was flushing pressure followed by peak current and pulse on time. The most significant parameter of tool wear rate was pulse on time followed by peak current and flushing pressure. Interaction terms also have significant effect on their output responses.

  1. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    Science.gov (United States)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  2. Impact of equalizing currents on losses and torque ripples in electrical machines with fractional slot concentrated windings

    Science.gov (United States)

    Toporkov, D. M.; Vialcev, G. B.

    2017-10-01

    The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.

  3. International Conference on Small and Special Electrical Machines, 2nd, London, England, September 22-24, 1981, Proceedings

    Science.gov (United States)

    Papers are presented on recent research concerning small and special electrical machines, including machine selection and environmental aspects; induction motors; stepping motors and drives; actuators, torque motors, and couplers; hysteresis and reluctance motors; synchronous motors and generators (including permanent magnet); control schemes and servo machines; and dc motors (including permanent magnet and brushless). Topics examined include the reliability of small ironless rotor dc motors, a new form of induction motor for fan drives, a study of the components of interbar voltage and magnetic field at the surface of small skewed diecast aluminum rotors, the microprocessor control of a step motor with various inertia loads, the synchronization of reluctance motor without pole-slipping, and the normal force in linear stepping motors. Also discussed are a direct simulation method using magnetic equivalent circuits for converter-fed reluctance machines, the synchronous performance of a single-phase machine with induced excitation, the application of design and analysis in small machines for aircraft, the microprocessor control of an inverter-driven reluctance motor, an electric main propulsion drive for a remotely piloted vehicle, and small dc motors with controllable electronic commutators. No individual items are abstracted in this volume

  4. Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application

    Science.gov (United States)

    Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.

    2017-08-01

    Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.

  5. Methodology for Diagnostics of Transformers and D.C. Electric Machines

    Directory of Open Access Journals (Sweden)

    I. I. Branovitsky

    2009-01-01

    Full Text Available The paper considers methods for testing electric power equipment with reference to power transformers and electric direct current machines by measuring complex of their parameters. The above-mentioned methods have been realized in the devices DST-1M and IPEM, respectively.An influence of inductive and capacitive elements included as components of low frequency filters in a measuring device on a value of an extra phase displacement between measured input currents and voltages being caused by them has been analyzed in the paper. The paper reveals that the extra phase displacement is initiated by oscillations of actual inductive and capacitive element values relative to their nominal values. Dependence of root-mean-square deviation of power measurement error due to phase displacement angle under load conditions at various tolerance values of the indicated elements and distribution of actual values of their nominal ones within these tolerances according to a normal low   has been calculated in the paper

  6. Effect of Electric Discharge Machining on Material Removal Rate and White Layer Composition

    Directory of Open Access Journals (Sweden)

    SHAHID MEHMOOD

    2017-01-01

    Full Text Available In this study the MRR (Material Removal Rate of the aerospace grade (2024 T6 aluminum alloy 2024 T6 has been determined with copper electrode and kerosene oil is used as dielectric liquid. Discharge energy is controlled by electric current while keeping Pulse-ON time and Pulse-OFF time as constant. The characteristics of the EDMed (Electric Discharge Machined surface are discussed. The sub-surface defect due to arcing has been explained. As the surface material of tool electrode and workpiece melts simultaneously and there are chances of the contamination of both surfaces by the contents of each other. Therefore, the EDS (Energy Dispersive Spectroscopy of the white layer and base material of the workpiece was performed by SEM (Scanning Electron Microscope at the discharge currents of 3, 6 and 12 amperes. It was conformed that the contamination of the surface of the workpiece material occurred by carbon, copper and oxygen contents. The quantitative analysis of these contents with respect to the discharge current has been presented in this paper.

  7. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev; Batish, Ajay [Thapar University, Patiala (India); Singh, Rupinder [GNDEC, Ludhiana (India); Singh, T. P. [Symbiosis Institute of Technology, Pune (India)

    2014-07-15

    In the present study, electric discharge machining process was used for machining of titanium alloys. Eight process parameters were varied during the process. Experimental results showed that current and pulse-on-time significantly affected the performance characteristics. Artificial neural network coupled with Taguchi approach was applied for optimization and prediction of surface roughness. The experimental results and the predicted results showed good agreement. SEM was used to investigate the surface integrity. Analysis for migration of different chemical elements and formation of compounds on the surface was performed using EDS and XRD pattern. The results showed that high discharge energy caused surface defects such as cracks, craters, thick recast layer, micro pores, pin holes, residual stresses and debris. Also, migration of chemical elements both from electrode and dielectric media were observed during EDS analysis. Presence of carbon was seen on the machined surface. XRD results showed formation of titanium carbide compound which precipitated on the machined surface.

  8. Investigation of the influence of air gap thickness and eccentricity on the noise of the rotating electrical machine

    Directory of Open Access Journals (Sweden)

    Donát M.

    2013-12-01

    Full Text Available This article deals with the numerical modelling of the dynamic response of the rotating electrical machine on the application of the magnetic forces. The special attention is paid to the modelling of the magnetic forces that act on the stator winding of the machine and the computational model of the modal properties of the stator winding. The created computational model was used to investigation of the influence of the nominal air gap thickness and the air gap eccentricity on the sound power radiated by outer surface of the stator of the machine. The obtained results show that the nominal air gap thickness has slightly greater influence on the sound power of the machine than eccentricity of the air gap.

  9. The study on the atomic force microscopy base nanoscale electrical discharge machining.

    Science.gov (United States)

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study proposes an innovative atomic force microscopy (AFM) based nanoscale electrical discharge machining (AFM-based nanoEDM) system which combines an AFM with a self-produced metallic probe and a high-voltage generator to create an atmospheric environment AFM-based nanoEDM system and a deionized water (DI water) environment AFM-based nanoEDM system. This study combines wire-cut processing and electrochemical tip sharpening techniques on a 40-µm thick stainless steel sheet to produce a high conductive AFM probes, the production can withstand high voltage and large current. The tip radius of these probes is approximately 40 nm. A probe test was executed on the AFM using probes to obtain nanoscales morphology of Si wafer surface. The silicon wafer was as a specimen to carry out AFM-base nanoEDM process in atmospheric and DI water environments by AFM-based nanoEDM system. After experiments, the results show that the atmospheric and DI water environment AFM-based nanoEDM systems operate smoothly. From experimental results, it can be found that the electric discharge depth of the silicon wafer at atmospheric environments is a mere 14.54 nm. In a DI water environment, the depth of electric discharge of the silicon wafer can reach 25.4 nm. This indicates that the EDM ability of DI water environment AFM-based nanoEDM system is higher than that of atmospheric environment AFM-based nanoEDM system. After multiple nanoEDM process, the tips become blunt. After applying electrochemical tip sharpening techniques, the tip radius can return to approximately 40 nm. Therefore, AFM probes produced in this study can be reused. © Wiley Periodicals, Inc.

  10. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    Science.gov (United States)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  11. Alternating current multi-circuit electric machines a new approach to the steady-state parameter determination

    CERN Document Server

    Asanbayev, Valentin

    2015-01-01

    This book details an approach for realization of the field decomposition concept. The book presents the  methods as well as techniques and procedures for establishing electric machine circuit-loops and determining their parameters. The methods developed have been realized using the models of machines with laminated and solid rotor having classical structure. The use of such models are well recognized and simplifies practical implementation of the obtained results. This book also: ·         Includes methods for a construction of electric machine equivalent circuits that allows the replacement of the field models of the machine with simple circuit models ·         Demonstrates the practical implementation of the proposed techniques and procedures ·         Presents parameters of the circuit-loops in the form most convenient for practical implementation ·         Uses methods based on machine models widely used in practice

  12. Power distribution of a co-axial dual-mechanical-port flux-switching permanent magnet machine for fuel-based extended range electric vehicles

    Science.gov (United States)

    Zhou, Lingkang; Hua, Wei; Zhang, Gan

    2017-05-01

    In this paper, power distribution between the inner and outer machines of a co-axial dual-mechanical-port flux-switching permanent magnet (CADMP-FSPM) machine is investigated for fuel-based extended range electric vehicle (ER-EV). Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced, which consist of an inner FSPM machine used for high-speed, an outer FSPM machine for low-speed, and a magnetic isolation ring between them. Then, the magnetic field coupling of the inner and outer FSPM machines is analyzed with more attention paid to the optimization of the isolation ring thickness. Thirdly, the power-dimension (PD) equations of the inner and outer FSPM machines are derived, respectively, and thereafter, the PD equation of the whole CADMP-FSPM machine can be given. Finally, the PD equations are validated by finite element analysis, which supplies the guidance on the design of this type of machines.

  13. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process.

    Science.gov (United States)

    Jose, Mathew; Sivapirakasam, S P; Surianarayanan, M

    2010-01-01

    The safety and environmental aspects of a manufacturing process are important due to increased environmental regulations and life quality. In this paper, the concentration of aerosols in the breathing zone of the operator of Electrical Discharge Machining (EDM), a commonly used non traditional manufacturing process is presented. The pattern of aerosol emissions from this process with varying process parameters such as peak current, pulse duration, dielectric flushing pressure and the level of dielectric was evaluated. Further, the HAZOP technique was employed to identify the inherent safety aspects and fire risk of the EDM process under different working conditions. The analysis of aerosol exposure showed that the concentration of aerosol was increased with increase in the peak current, pulse duration and dielectric level and was decreased with increase in the flushing pressure. It was also found that at higher values of peak current (7A) and pulse duration (520 micros), the concentration of aerosols at breathing zone of the operator was above the permissible exposure limit value for respirable particulates (5 mg/m(3)). HAZOP study of the EDM process showed that this process is vulnerable to fire and explosion hazards. A detailed discussion on preventing the fire and explosion hazard is presented in this paper. The emission and risk of fire of the EDM process can be minimized by selecting proper process parameters and employing appropriate control strategy.

  14. NOTE: Effects of powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining

    Science.gov (United States)

    Yeo, S. H.; Tan, P. C.; Kurnia, W.

    2007-11-01

    The effects of using powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining (PSD micro-EDM) are investigated through the conduct of single RC discharge experiments at low discharge energies of 2.5 µJ, 5 µJ and 25 µJ. Through the introduction of additive particles into the dielectric, results of the single discharge experiments show the formation of craters with smaller diameters and depths, and having more consistent circular shapes than those produced in dielectric without additive. These craters also possess a noticeable morphological difference compared to those generated in dielectric without additive. In addition, discharge current measurements show a smaller amount of charges flowing between the tool electrode and workpiece, and at a slower flow rate when additives are present in the dielectric. Furthermore, based on the experimental results and findings from studies done in nanofluids, a hypothesis is made on the effects of powder suspended dielectric on the crater formation mechanism. The increased viscosity and enhanced thermal conductivity of a powder suspended dielectric lower the plasma heat flux into the electrode and raise the rate of heat dissipation away from the molten cavity. As a result, a smaller-sized crater having a larger amount of resolidified material within the crater cavity is formed.

  15. Mathematical modeling and multi-criteria optimization of rotary electrical discharge machining process

    Science.gov (United States)

    Shrinivas Balraj, U.

    2015-12-01

    In this paper, mathematical modeling of three performance characteristics namely material removal rate, surface roughness and electrode wear rate in rotary electrical discharge machining RENE80 nickel super alloy is done using regression approach. The parameters considered are peak current, pulse on time, pulse off time and electrode rotational speed. The regression approach is very much effective in mathematical modeling when the performance characteristic is influenced by many variables. The modeling of these characteristics is helpful in predicting the performance under a given set of combination of input process parameters. The adequacy of developed models is tested by correlation coefficient and Analysis of Variance. It is observed that the developed models are adequate in establishing the relationship between input parameters and performance characteristics. Further, multi-criteria optimization of process parameter levels is carried using grey based Taguchi method. The experiments are planned based on Taguchi's L9 orthogonal array. The proposed method employs single grey relational grade as a performance index to obtain optimum levels of parameters. It is found that peak current and electrode rotational speed are influential on these characteristics. Confirmation experiments are conducted to validate optimal parameters and it reveals the improvements in material removal rate, surface roughness and electrode wear rate as 13.84%, 12.91% and 19.42% respectively.

  16. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  17. Preliminary Numerical Investigations of Entropy Generation in Electric Machines Based on a Canonical Configuration

    Directory of Open Access Journals (Sweden)

    Toni Eger

    2015-12-01

    Full Text Available The present paper analyzes numerically the entropy generation induced by forced convection in a canonical configuration. The configuration itself includes two well known fluid dynamic problems: (1 an external flow (flow around a cylinder, Kármán flow; and (2 an internal flow (flow between two concentric rotating cylinders, Couette flow. In many daily engineering issues (e.g., cooling of electric machines, a combination of these problems occurs and has to be investigated. Using the canonical configuration, the fields of entropy generation are analyzed in this work for a constant wall heat flux but varying two key parameters (Reynolds numbers Re∞ and Re0. The entropy generation due to conduction shows an absolute minimum around Re0 = 10,000. The same minima can be found by a detailed analysis of the temperature profile. Thus, entropy generation seems to be a suitable indicator for optimizing heat exchange processes and delivers a large amount of information concerning fluid and heat transport.

  18. Measurement of Heat Losses on The Milking Machine Electric Motor at Various Regulations of Vacuum Using Methods of Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Jan Kudělka

    2014-01-01

    Full Text Available To ensure the desirable vacuum in the milking machines, use is currently made predominantly of rotary vacuum pumps. These vacuum pumps are driven by a squirrel-cage induction motor. Until recently, the vacuum in the system to achieve the required value was controlled by a main control valve sucking in ambient air into the system. During the milking process itself and during other activities (flushing, sanitation, this control method consumed a large amount of electricity. The technical solution to electricity demand reduction was introduced with the emergence and development of frequency converters. The frequency converters control the operation of the asynchronous electric motor so that the actual delivery of the vacuum pumps equals the volume of air sucked into the vacuum pipe. The motor supply by the frequency converter brings about a host of adverse phenomena. This paper is dedicated to motor heating and heat losses on the surface of the electric motor at different regulations of vacuum in milking machines. The objective of the paper is to determine the immediate specific heat flows along the surface of the electric motor of the milking machine during milking using a control valve regulation and a control using the frequency converter, and compare the resulting value. The specific heat flows were determined by means of a non-traditional method of temperature field measurement using a system of thermal imagery. The calculated and measured data obtained from both these systems were statistically evaluated and compared. Use was made of a milking machine located in the cooperative Hospodářské obchodní družstvo (HOD Jabloňov.

  19. 15 CFR 700.31 - Metalworking machines.

    Science.gov (United States)

    2010-01-01

    ... Drilling and tapping machines Electrical discharge, ultrasonic and chemical erosion machines Forging machinery and hammers Gear cutting and finishing machines Grinding machines Hydraulic and pneumatic presses...

  20. NeuroMorpho

    Data.gov (United States)

    U.S. Department of Health & Human Services — NeuroMorpho.Org is a centrally curated inventory of digitally reconstructed neurons associated with peer-reviewed publications. It contains contributions from over...

  1. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    Science.gov (United States)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  2. An experimental study on the effect of parameters on the depth of crater machined by electrostatic field–induced electrolyte jet micro electrical discharge machining

    Directory of Open Access Journals (Sweden)

    Yaou Zhang

    2016-04-01

    Full Text Available Electrostatic field–induced electrolyte jet micro electrical discharge machining depends on heat generated by the periodic pulsed discharge between the workpiece and the electrolyte fine jet from the tip of Taylor cone, induced by the intense electric field, to erode the material from the workpiece. To further investigate the characteristics of this discharge process, with the NaCl solution as the electrostatic field–induced electrolyte jet electrolyte and the silicon wafer as the workpiece, the governing factors of machining polarity, nozzle-to-workpiece distance, voltage applied between positive and negative polarities, and the effect of concentration of the electrolyte on the depth of crater after a single electrostatic field–induced electrolyte jet discharge have been studied. The experimental results show that the average depth of crater increases with the increase in the voltage applied between the nozzle and the workpiece, and increases with the increase in the concentration of the electrolyte, but decreases with the increase in the distance between the nozzle and the workpiece. The results have also demonstrated that the polarity has no clear influence on the average depth of crater after a single discharge.

  3. MRR and TWR evaluation on electrical discharge machining of Ti-6Al-4V using tungsten : copper composite electrode

    Science.gov (United States)

    Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.

    2017-05-01

    In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.

  4. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

    Science.gov (United States)

    Prakash, Chander; Kansal, H. K.; Pabla, B. S.; Puri, Sanjeev

    2015-09-01

    Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

  5. Misfit of suprastructures on implants processed by electrical discharge machining or the Cresco method.

    Science.gov (United States)

    Fischer, Jens; Thoma, Andrea; Suter, Ana; Lüthy, Heinz; Luder, Hans-Ulrich; Hämmerle, Christoph Hans-Franz

    2009-06-01

    To assess the accuracy of fit of frameworks on implants processed with electrical discharge machining (EDM) or the Cresco technique (Astra Tech). On 12 identical master casts with implants at positions 9(21), 11(23), and 13(25), high-gold alloy frameworks were produced by standard casting procedure. Six frameworks were used for the Cresco technique (group CRE) by employing specific fixed partial denture supports. The remaining 6 frameworks were cast with prefabricated gold copings and served as control. The finished frameworks were screwed onto implant 25 of the corresponding master cast. Dimensions of the marginal gaps were measured at 4 locations on each implant under the scanning electron microscope, applying the replica technique. Subsequently, the control group was processed by EDM (SAE EDM 2000) (group EDM) and analyzed alike. Statistical analysis of the results was performed with Kruskal-Wallis and Mann-Whitney U tests. The mean marginal gaps were measured as follows (CRE/EDM/control): position 25: 0.0 microm/1.0 +/- 1.6 microm/1.5 +/- 2.1 microm; position 23: 5.2 +/- 5.6 microm/18.7 +/- 29.3 microm/23.6 +/- 30.7 microm; and position 21: 36.0 +/- 21.6 microm/40.7 +/- 31.0 microm/46.0 +/- 41.1 microm. The only statistically significant difference was found at location 23 between group CRE on one side and both group EDM and control on the other side. The strong increase of misfit for group CRE from location 23 to location 21 indicates that laser welding is the crucial parameter in this technique. The Cresco technique has a potential to reduce the marginal gap between implants and suprastructures.

  6. Neuro-fuzzy-wavelet network for detection and classification of the voltage disturbances in electrical power system; Rede neuro-fuzzy-wavelet para deteccao e classificacao de anomalias de tensao em sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Malange, Fernando C.V. [Universidade do Estado de Mato Grosso (UEMT), Caceres, MT (Brazil). Dept. de Computacao], E-mail: fmalange@gmail.com; Minussi, Carlos R. [Universidade Estadual Paulista (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], E-mail: minussi@dee.feis.unesp.br

    2009-07-01

    A methodology for identifying and classifying voltage disturbances (harmonics, voltage sag, etc.) using fuzzy ARTMAP neural networks is presented. It is an ART (adaptive resonance theory) architecture family neural network that presents the stability and plasticity properties, which are fundamental requests for developing a reliable electrical systems with reduced processing time. Stability means a guarantee of good solutions; plasticity allows realize the training without restart the system every time there are new patterns to be stored in a weight matrix of the neural network. The training is realized from the wave forms provided by the acquisition data system, using the wavelets theory to generate the coefficients that constitute the input patterns of the neural network. Results from simulations show that the accuracy index is nearly 100%. (author)

  7. Diagnosis of rotor fault using neuro-fuzzy inference system | Merabet ...

    African Journals Online (AJOL)

    Also the calculation of the value of relative energy for each level of signal decomposition using package wavelet, which will be useful as data input of adaptive Neuro-Fuzzy inference system (ANFIS). In this method, fuzzy logic is used to make decisions about the machine state. The adaptive Neuro-Fuzzy inference system is ...

  8. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  9. Suggestion for a hybrid neuro genetic system as an alternative for the assessment of electric power consumption curves; Sugestao de um sistema hibrido neuro-genetico como alternativa a avaliacao de curvas de consumo de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Masselli, Yvo Marcelo Chiaradia; Torres, Germano Lambert [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)]. E-mails: ymcm@unifei.edu.br; germano@unifei.edu.br

    2006-07-01

    Increase the electrical distribution network quality it's a permanent interesting of energy companies. Therefore, quality services with acceptable values must be offers. In direct form this involves to manage efficiently all distribution system. Nowadays, this supervision is carried out with Geographic Information System (GIS) tools associate with calculation of demands transformers, result of correlation curve kWh versus KV A. Simple linear regression is used to estimate this curve, which make the process not too accuracy. To estimate consumers loads, the traditional methodology consider only end consumption, refusing the characteristic of different kinds of consumers: residential, commercial, industrial, rural and others. This paper present a model based hybridism between Artificial Neural Network (ANN) and Genetic Algorithm (GA), that can identify on load curve acquired any point of distribution system, the portions of consumption relatives to each one of main consumers sectors in that point. Besides, is suggested to the same application an ANN type Multi-Layer Perceptron, with the purpose to compare the showing results and to verify the advantages of hybridism use. The Hybrid System proposed use GA to the ANN training, in other words, the determination of best values to the ANN synaptic weights. Definite the work methodology, the practical valuation of the model starts, and the results presented by hybrid system are compared with those generates by ANN training by the conventional method well-know Back propagation Error (BP). The practical application propose that load curve acquired been analyze in any point of distribution system. Knowing this curve, the system should identify instant consumption quantities, relative to each one of main consumers sectors: industrial, commercial and residential. Subsequently are consider oscillations about these curves, in way to approach the real situation. The initial result indicated a best performance of conventional

  10. Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method

    Science.gov (United States)

    Matsusaka, S.; Kobayakawa, T.; Hidai, H.; Morita, N.

    2012-08-01

    In order to improve the laser micro-machinability of borosilicate glass, the glass surface was doped with metal (silver or copper) ions by an electric field-assisted ion-exchange method. Doped ions drifted and diffused into the glass substrate under a DC electric field. The concentration of metal ions within the doped area was approximately constant because the ion penetration was caused by substitution between dopant metal and inherent sodium ions. Nanosecond ultraviolet laser irradiation of metal-containing regions produced flat, smooth and defect-free holes. However, the shapes of holes were degraded when the processed hole bottoms reached ion penetration depths. A numerical analysis of ionic drift-diffusion behaviour in glass material under an electric field was also carried out. The calculated results for penetration depth and ionic flux showed good agreement with the measured values.

  11. Machine Learning Algorithms for Smart Electricity Markets : Essays on autonomous electricity broker design, probabilistic preference modeling, and competitive benchmarking

    NARCIS (Netherlands)

    M. Peters (Markus)

    2015-01-01

    markdownabstract__Abstract__ The shift towards sustainable electricity systems is one of the grand challenges of the twenty-first century. Decentralized production from renewable sources, electric mobility, and related advances are at odds with traditional power systems where central large-scale

  12. INVESTIGATION OF SURFACE PROPERTIES IN MANGANESE POWDER MIXED ELECTRICAL DISCHARGE MACHINING OF OHNS AND D2 DIE STEELS

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2010-12-01

    Full Text Available The electrical discharge machining (EDM process is used for generating accurate internal profiles in hardened materials. An powder additive in the hydrocarbon dielectric affects the energy distribution and sparking efficiency, and consequently the surface finish and micro-hardness. In this paper the Taguchi approach has been used to optimize and compare the surface properties in manganese powder-mixed EDM of oil-hardening non-shrinkable (OHNS and high-carbon high-chromium (D2 die steels. The results of the study show an improvement of 73% and 71.6% in the micro-hardness of OHNS and D2 die steels, respectively. The machining parameters for the best value of micro-hardness are found to be the same for both work materials. A scanning electron microscopy and X-ray diffraction analysis of the machined surfaces show a transfer of manganese and carbon from the plasma channel in the form of manganese carbide. The chemical composition of the machined surface has been further checked on an optical emission spectrometer to verify and quantify the results.

  13. Modeling and Control of a Flux-Modulated Compound-Structure Permanent-Magnet Synchronous Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-01-01

    Full Text Available The compound-structure permanent-magnet synchronous machine (CS-PMSM, comprising a double rotor machine (DRM and a permanent-magnet (PM motor, is a promising electronic-continuously variable transmission (e-CVT concept for hybrid electric vehicles (HEVs. By CS-PMSM, independent speed and torque control of the vehicle engine is realized without a planetary gear unit. However, the slip rings and brushes of the conventional CS-PMSM are considered a major drawback for vehicle application. In this paper, a brushless flux-modulated CS-PMSM is investigated. The operating principle and basic working modes of the CS-PMSM are discussed. Mathematical models of the CS-PMSM system are given, and joint control of the two integrated machines is proposed. As one rotor of the DRM is mechanically connected with the rotor of the PM motor, special rotor position detection and torque allocation methods are required. Simulation is carried out by Matlab/Simulink, and the feasibility of the control system is proven. Considering the complexity of the controller, a single digital signal processor (DSP is used to perform the interconnected control of dual machines instead of two separate ones, and a typical hardware implementation is proposed.

  14. NeuroQuiz

    DEFF Research Database (Denmark)

    Brent, Mikkel Bo; Emmanuel, Thomas

    2016-01-01

    NeuroQuiz er en quiz-app udviklet til neuroanatomi. Den består af mere end 1500 spørgsmål og over 350 anatomiske billeder. Alle spørgsmål tager udgangspunkt i lærebogen Neuroanatomi af Carsten Reidies Bjarkam.......NeuroQuiz er en quiz-app udviklet til neuroanatomi. Den består af mere end 1500 spørgsmål og over 350 anatomiske billeder. Alle spørgsmål tager udgangspunkt i lærebogen Neuroanatomi af Carsten Reidies Bjarkam....

  15. Model and Simulation of Permanent Magnets Synchronous Machine (PMSM of the Electric Power Supply System (EPS, in Accordance with the Concept of a More Electric Aircraft (MEA

    Directory of Open Access Journals (Sweden)

    Setlak Lucjan

    2018-01-01

    Full Text Available Based on the mathematical model of synchronous electric machine, basing on permanent magnets, presented in this paper, the key importance of alternator AC power sources in the form of generator (for conventional aircraft and in the form of integrated unit starter/AC synchronous generator S/G AC (with respect to advanced aircraft concept in the field of more/all electric power MEA/AEA was highlighted. In addition, through the analysis and selected simulations of the power supply system of a modern aircrafts, sources of onboard electrical energy (synchronous generator, integrated unit starter/AC generator were located in board autonomic power system ASE (EPS, PES. Key components of this system are the electro-energetic power system EPS and the energo-electronic power system PES. Additionally, the analysis and exemplary simulations of key electricity sources based on mathematical models have contributed to highlighting the main practical applications in line with the trend of a more electric aircraft.

  16. A novel five-phase fault-tolerant modular in-wheel permanent-magnet synchronous machine for electric vehicles

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Wu, Fan; Wang, Pengfei; Cheng, Luming; Zhu, Jianguo

    2015-05-01

    This paper describes a five-phase fault-tolerant modular in-wheel permanent-magnet synchronous machine (PMSM) for electric vehicles. By adopting both the analytical and finite-element methods, the magnetic isolation abilities of some typical slot/pole combinations are analyzed, and a new fractional-slot concentrated winding topology that features hybrid single/double-layer concentrated windings and modular stator structure is developed. For the proposed hybrid single/double-layer concentrated windings, feasible slot/pole combinations are studied for three-, four-, and five-phase PMSMs. A five-phase in-wheel PMSM that adopts the proposed winding topology is designed and compared with the conventional PMSM, and the proposed machine shows advantages of large output torque, zero mutual inductances, low short-circuit current, and high magnetic isolation ability. Some of the analysis results are verified by experiments.

  17. Single-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications

    DEFF Research Database (Denmark)

    Han, Peng; Cheng, Ming; Chen, Zhe

    2017-01-01

    A single-electrical-port control scheme, for four-quadrant operation of cascaded doubly-fed induction machine (CDFIM), which has long been conceived as a motor or generator only suitable for limited two-quadrant operation, is proposed and theoretically demonstrated. The drive system is configured...... as a master/slave architecture, that is, the power winding is supplied with a constant-voltage constant-frequency inverter, termed as the master inverter, in an open-loop way, while the control winding is fed by a closed-loop field-oriented-controlled (FOC) variable-voltage variable-frequency inverter, termed...... as slave inverter. With this configuration, the control emphasis is placed on the slave inverter, yielding reduced control complexity and cost, and the inaccuracy of flux estimation in conventional FOC for singly-fed induction machines is avoided at very low or even zero speed. It is found that the doubly...

  18. 5th International Conference on Fuzzy and Neuro Computing

    CERN Document Server

    Panigrahi, Bijaya; Das, Swagatam; Suganthan, Ponnuthurai

    2015-01-01

    This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering e...

  19. Design and setting up of a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available Systems for remote monitoring and control of the proper operation, energy consumption, and efficiency of the controlled objects are very often used in different spheres of industry, in the electricity distribution network, etc. Various types of intelligent energy meters, PLCs and other control devices are involved in such systems. Proper operation of the auxiliary machines in electric vehicles is of great importance and implementation of a system for their remote monitoring and control is useful and ensures reliability and increased efficiency. A system has been designed and built using contemporary devices. An asynchronous motor is controlled by a soft starter and opportunities for remote monitoring (by an intelligent energy meter and control (by a PLC and Touch panel have been provided. Soft starters are widely used in industry for control on asynchronous drives when speed regulation is not a mandatory requirement. They are cheaper than inverters and frequency converters and allow for temporal reduction of the torque and current surge during start-up, as well as smooth deceleration. Therefore they can also be used in electric vehicles to control auxiliary machines (pumps, fans, air coolers, compressors, etc.. The present paper presents a methodology for their design and setting up.

  20. Design of a high-torque machine with two integrated motors axes reducing the electric vehicle consumption

    Directory of Open Access Journals (Sweden)

    M. Chaieb

    2008-03-01

    Full Text Available The motorization of electric vehicle needs to work at a constant power on a wide range of speed. In order to be able to satisfy these requirements, we describe in this paper a solution, which consists in modifying of a simple structure of a permanent magnet motor by a double rotor structure integrating two motor axes into the same machine. This article describes, then, a design methodology of a permanent magnet motor with double rotor, radial flux, and strong starting torque for electric vehicles. This work consists on the analytical dimensioning of the motor by taking into account several operation constraints followed by a modelling by the finite elements method. This study is followed by the comparison between this motor and a motor with one rotor. A global model of the motor- converter is developed for the purpose to answer several optimisation problems

  1. The Study of Permanent Magnets Synchronous Machine (PMSM of the Autonomous Electric Power Supply System (ASE, compatible with the Concept of a More Electric Aircraft (MEA

    Directory of Open Access Journals (Sweden)

    Setlak Lucjan

    2018-01-01

    Full Text Available Based on the analysis and mathematical models of synchronous electric machines (motor/generator, basing on permanent magnets, presented in this paper, the main importance of alternator AC power sources in the form of starter/generator (for conventional aircraft and in the form of integrated unit starter (motor/AC synchronous generator S/G AC (with respect to advanced aircraft concept in terms of more electric aircraft was highlighted. Additionally, through the analysis and selected simulations of the on-board autonomous power supply system of the modern aircrafts, sources of electrical energy (synchronous motor/generator, integrated unit starter/AC generator were located in board autonomic power system ASE (EPS, PES. Main components of this system are the electro-energetic power system EPS and the energo-electronic power system PES. In addition, the analysis and exemplary simulations of main electricity sources based on mathematical models have contributed to highlighting the main practical applications in accordance with the concept of MEA.

  2. Electrical Trees in a Composite Insulating System Consisted of Epoxy Resin and Mica: The Case of Multiple Mica Sheets For Machine Insulation

    Directory of Open Access Journals (Sweden)

    V. A. Kioussis

    2014-08-01

    Full Text Available Epoxy resin and mica sheets consist the essential insulation of rotating machine stator bars. Such an insulation, although very resistant to partial discharges, is subjected to considerable electrical stresses and consequently electrical trees may ensue. In this paper, an effort is made to simulate electrical tree propagation in multiple epoxy resin/mica sheets with the aid of Cellular Automata (CA. An attempt to compare the simulation results with experimental results is also made.

  3. A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Abdul’Azeez Abdu Aliyu

    2017-01-01

    Full Text Available Surface treatment remained a key solution to numerous problems of synthetic hard tissues. The basic methods of implant surface modification include various physical and chemical deposition techniques. However, most of these techniques have several drawbacks such as excessive cost and surface cracks and require very high sintering temperature. Additive mixed-electric discharge machining (AM-EDM is an emerging technology which simultaneously acts as a machining and surface modification technique. Aside from the mere molds, dies, and tool fabrication, AM-EDM is materializing to finishing of automobiles and aerospace, nuclear, and biomedical components, through the concept of material migrations. The mechanism of material transfer by AM-EDM resembles electrophoretic deposition, whereby the additives in the AM-EDM dielectric fluids are melted and migrate to the machined surface, forming a mirror-like finishing characterized by extremely hard, nanostructured, and nanoporous layers. These layers promote the bone in-growth and strengthen the cell adhesion. Implant shaping and surface treatment through AM-EDM are becoming a key research focus in recent years. This paper reports and summarizes the current advancement of AM-EDM as a potential tool for orthopedic and dental implant fabrication. Towards the end of this paper, the current challenges and future research trends are highlighted.

  4. Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration

    Science.gov (United States)

    Ahmad, S.; Lajis, M. A.

    2013-12-01

    This experimental work is an attempt to investigate the performance of Copper electrode when EDM of Nickel Based Super Alloy, Inconel 718 is at higher peak current and pulse duration. Peak current, Ip and pulse duration (pulse on-time), ton are selected as the most important electrical pulse parameters. In addition, their influence on material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) are experimentally investigated. The ranges of 10 mm diameter of Copper electrode are used to EDM of Inconel 718. After the experiments, MRR, EWR, and Ra of the machined surfaces need to be measured in order to evaluate the performance of the EDM process. In order to obtain high MRR, higher peak current in range of 20A to 40A and pulse duration in range of 200μs to 400μs were used. Experimental results have shown that machining at a highest peak current used of 40A and the lowest pulse duration of 200μs used for the experiment yields the highest material removal rate (MRR) with value 34.94 mm3/min, whereas machining at a peak current of 20A and pulse duration of 400μs yields the lowest electrode wear rate (EWR) with value -0.0101 mm3/min. The lowest surface roughness (Ra) is 8.53 μm achieved at a lowest peak current used of 20A and pulse duration of 200μs.

  5. Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy Udimet-L605

    Directory of Open Access Journals (Sweden)

    Somvir Singh Nain

    2017-02-01

    Full Text Available This paper presents the behavior of Udimet-L605 after wire electric discharge machining and evaluating the WEDM process using sophisticated machine learning approaches. The experimental work is depicted on the basis of Taguchi orthogonal L27 array, considering six input variables and three interactions. Three models such as support vector machine algorithms based on PUK kernel, non-linear regression and multi-linear regression have been proposed to examine the variance between experimental and predicted outcome and preferred the preeminent model based on its evaluation parameters performance and graph analysis. The grey relational analysis is the relevant approach to obtain the best grouping of input variables for maximum material removal rate and minimum surface roughness. Based on statistical analysis, it has been concluded that pulse-on time, interaction between pulse-on time x pulse-off time, spark-gap voltage and wire tension are the momentous variable for surface roughness while the pulse-on time, spark-gap voltage and pulse-off time are the momentous variables for material removal rate. The micro structural and compositional changes on the surface of work material were examined by means of SEM and EDX analysis. The thickness of the white layer and the recast layer formation increases with increases in the pulse-on time duration.

  6. The release of nickel and other trace elements from electric kettles and coffee machines

    DEFF Research Database (Denmark)

    Berg, T.; Petersen, Annette; Pedersen, Gitte Alsing

    2000-01-01

    was improved. Two of these ten kettles still released more than 50 mu g/l nickel to water under the test conditions. These two kettles, however, were subsequently withdrawn from the market. Coffee machines tested similarly did not release aluminium, lead, chromium or nickel in quantities of any significance....

  7. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  8. Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2012-11-01

    Full Text Available The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA, generalized regression neural network (GRNN and regression model.

  9. Mathematic model of three-phase induction machine connected to advanced inverter for traction system for electric trolley

    Directory of Open Access Journals (Sweden)

    LIVIU S. BOCÎI

    2013-06-01

    Full Text Available This paper establishes a mathematical model of induction machine connected to a frequency inverter necessary to adjust the electric motor drive. The mathematical model based on the Park's theory allows the analysis of the whole spectrum (electric car – frequency inverter to drive the electric trolley bus made on ASTRA Bus Arad (Romania. To remove higher order harmonics, the PWM waveform of supply voltage is used, set in the general case. Operating characteristics of electric motor drive are set to sub-nominal frequency (f Bele 2007.Este documento estabelece um modelo matemático de máquina de indução conectado a um inversor de frequência necessário para ajustar o motor de acionamento elétrico. O modelo matemático baseado na Teoria de Park permite a análise de todo o espectro (carro elétrico com inversor de frequência para dirigir o ônibus elétrico feito em ASTRA Bus Arad (Romênia. Para remover harmônicas de ordem mais alta, a forma de onda da tensão de alimentação PWM é utilizado, definido no caso geral. Características de funcionamento do motor de acionamento elétrico são definidas para frequência sub-nominal (f

  10. RSM and ANN Modeling of Micro Wire Electrical Discharge Machining of AL 2024 T351

    Directory of Open Access Journals (Sweden)

    Sivaprakasam Palani

    2015-01-01

    Full Text Available This paper presents modeling and analysis of machining characteristics of Micro Wire Electro Discharge Machining (Micro-WEDM process on Aluminium alloy (AL 2024 T351 using the Response Surface Methodology (RSM and Artificial Neural Network (ANN. The input variables of Micro-WEDM process were voltage, capacitance and feed rate. The surface roughness and material removal rate are considered as a response variables. Experiments were carried out on Aluminium alloy using Central Composite Design (CCD. The RSM and ANN models have been developed based on experimental designs. Analysis of variance (ANOVA has been employed to test the significance of RSM model. It has been found out that all the three process parameters are significant and their interaction effects are also significant on the surface roughness and material removal rate. Finally predicted values were compared with ANN.

  11. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    Science.gov (United States)

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  12. Monocoil reciprocating permanent magnet electric machine with self-centering force

    Science.gov (United States)

    Bhate, Suresh K. (Inventor); Vitale, Nicholas G. (Inventor)

    1989-01-01

    A linear reciprocating machine has a tubular outer stator housing a coil, a plunger and an inner stator. The plunger has four axially spaced rings of radially magnetized permanent magnets which cooperate two at a time with the stator to complete first or second opposite magnetic paths. The four rings of magnets and the stators are arranged so that the stroke of the plunger is independent of the axial length of the coil.

  13. Power distribution of a co-axial dual-mechanical-port flux-switching permanent magnet machine for fuel-based extended range electric vehicles

    Directory of Open Access Journals (Sweden)

    Lingkang Zhou

    2017-05-01

    Full Text Available In this paper, power distribution between the inner and outer machines of a co-axial dual-mechanical-port flux-switching permanent magnet (CADMP-FSPM machine is investigated for fuel-based extended range electric vehicle (ER-EV. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced, which consist of an inner FSPM machine used for high-speed, an outer FSPM machine for low-speed, and a magnetic isolation ring between them. Then, the magnetic field coupling of the inner and outer FSPM machines is analyzed with more attention paid to the optimization of the isolation ring thickness. Thirdly, the power-dimension (PD equations of the inner and outer FSPM machines are derived, respectively, and thereafter, the PD equation of the whole CADMP-FSPM machine can be given. Finally, the PD equations are validated by finite element analysis, which supplies the guidance on the design of this type of machines.

  14. Prognostic and Fault Tolerant Reconfiguration Strategies for Aerospace Power Electronic Controllers and Electric Machines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies proposes to develop a real-time prognostic and fault/failure accommodation system of critical electric power system components including power...

  15. Features of torque production of synchronous electric drive with direct torque control of mining machines

    Science.gov (United States)

    Shishkov, A. N.; Sychev, D. A.; Savosteenko, N. V.

    2017-10-01

    In article, the direct torque control method of the synchronous electric drive is considered. This control method is characterized by high performance, robustness and small frequency of switching of keys of the converter. The algorithms and structure of direct torque control of the synchronous electric drive allow creating its operation modes by impact on the form of a triangle with sides: flux linkage of the stator, a rotor, and resultant flux linkage.

  16. Driving cycle suitable layout of permanent magnet synchronous machines for hybrid vehicles and electric powered vehicles; Fahrzyklusgerechte Auslegung von permanentmagneterregten Synchronmaschinen fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Finken, Thomas

    2011-07-01

    An increasing environmental awareness and the prospect of a shortage of fossil resources will result in a development of efficient vehicles with a lower consumption of fuel. In addition to the hybrid electric vehicle, the electric powered vehicle increasingly is focused in the development of vehicles. A good efficiency is the most important demand on the electrical machine. The author of the book under consideration reports on exemplary operating point distributions for various vehicle concepts and user profiles. After comparing the most common types of machine in terms of the use in electrified powertrains, the permanent magnet synchronous machine is selected and discussed in detail. A table shows the advantages and disadvantages of all considered geometries and variations. Thus, a suitable combination of geometry for a given vehicle concept and its requirements are selected.

  17. Adaptive Neuro-Fuzzy Controller Experimental Design for DC Motor Connected to Unbalanced Load

    OpenAIRE

    Reza Nejati; Rahmat Hooshamnd

    2007-01-01

    In two recent decades, fuzzy controllers have been used in controlling different systems successfully. In this article, a new method is given for controlling of permanent magnetic DC motor connected to unbalanced load. Imbalance of load leads to machine vibrations, fluctuation of power, making exhaustion in machine shaft, and equipment depreciation. In this article neuro-fuzzy controllers are used for controlling unbalanced load. Because of non-linear nature of load and machine, machine fluct...

  18. Analysis of the effect of ultrasonic vibrations on the performance of micro-electrical discharge machining of A2 tool steel

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    a systematic analysis of the influence of kinetic effects of the ultrasonic vibrations on the material removal rate (MRR) and tool electrode wear rate (TWR). The tool wear ratio was estimated for the process at all processing conditions. The maximum variation in tool wear ratio is observed to be 82%. Therefore......The application of ultrasonic vibrations to a workpiece or tool is a novel hybrid approach in micro-electrical discharge machining. The advantages of this method include effective flushing out of debris, higher machining efficiency and lesser short-circuits during machining. This paper presents...

  19. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle

    Science.gov (United States)

    Wang, Aimeng; Guo, Jiayu

    2017-12-01

    A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.

  20. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  1. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-05-01

    Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.

  2. Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yan Hong Chen

    2016-01-01

    Full Text Available This paper proposes a new electric load forecasting model by hybridizing the fuzzy time series (FTS and global harmony search algorithm (GHSA with least squares support vector machines (LSSVM, namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied to model the resultant series, which is optimized by GHSA. Finally, a real-world example is adopted to test the performance of the proposed model. In this investigation, the proposed model is verified using experimental datasets from the Guangdong Province Industrial Development Database, and results are compared against autoregressive integrated moving average (ARIMA model and other algorithms hybridized with LSSVM including genetic algorithm (GA, particle swarm optimization (PSO, harmony search, and so on. The forecasting results indicate that the proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.

  3. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle

    Science.gov (United States)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  4. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Science.gov (United States)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  5. Influence of Different Rotor Teeth Shapes on the Performance of Flux Switching Permanent Magnet Machines Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2014-12-01

    Full Text Available This paper investigated a 12-slot/11-pole flux switching permanent magnet (FSPM machine used for electric vehicles (EVs. Five novel rotor teeth shapes are proposed and researched to reduce the cogging torque and torque ripple of the FSPM machine. These rotor teeth shapes are notched teeth, stepped teeth, eccentric teeth, combination of notched and stepped teeth, and combination of notched and eccentric teeth. They are applied on the rotor and optimized, respectively. The influences of different rotor teeth shapes on cogging torque, torque ripple and electromagnetic torque are analyzed by the 2-D finite-element method (FEM. Then, the performance of FSPMs with different rotor teeth shapes are compared and evaluated comprehensively from the points of view of cogging torque, torque ripple, electromagnetic torque, flux linkage, back electromotive force (EMF, and so on. The results show that the presented rotor teeth shapes, especially the combination of stepped and notched teeth, can greatly reduce the cogging torque and torque ripple with only slight changes in the average electromagnetic torque.

  6. Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid

    Science.gov (United States)

    Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.

    2018-01-01

    This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

  7. APPLICATION OF PBL IN THE COURSE FLUID AND ELECTRICAL DRIVE SYSTEMS, CASE STUDY: MANUFACTURING AN AUTOMATED PUNCH MACHINE

    Directory of Open Access Journals (Sweden)

    Ahmad Sedaghat

    2017-01-01

    Full Text Available The PBL unit of fluid and electrical drive systems is taught in final semester of undergraduates in mechanical engineering department of the Australian College of Kuwait (ACK. The recent project on an automated punching machine is discovered more appealing to both students and instructors in triggering new ideas and satisfaction end results. In this case study, the way this PBL unit is coordinated and facilitated is explained. Two examples of student works are presented. The aim is to expose the students to real world engineering problems but in a satisfying manner. Similar to real life problems for engineers, restrictions are applied for the students on costs, availability of ACK facilities, and application of automation tools. Students are directly engaged by using technical standards on punching heads and dies, standard tensile testing of plates, and so on. Arduino microprocessor programming, an open-source hardware and software electronic platform, and electro-pneumatic devices are adopted for developing the automated punching machine. The goal of the PBL course is to acquaint students learning based on the concepts of team working, engineering design, professional manufacturing, and sequential testing of the end product. It is found that students achieved their best and developed new skills in this PBL unit as reflected in their portfolios.

  8. Price forecast in the competitive electricity market by support vector machine

    Science.gov (United States)

    Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Cheng, Haozhong

    2007-08-01

    The electricity market has been widely introduced in many countries all over the world and the study on electricity price forecast technology has drawn a lot of attention. In this paper, with different parameter C i and ε i assigned to each training data, the flexible C i Support Vector Regression (SVR) model is developed in terms of the particularity of the price forecast in electricity market. For Day Ahead Market (DAM) price forecast, the load, time of use index and index of day type are taken as the major factors to characterize the market price, therefore, they are selected as the inputs for the flexible SVR forecast model. For the long-term price forecast, we take the reserve margin Rm, HHI and the fuel price index as the inputs, since they are the major factors that drive the market price variation in long run. For short-term price forecast, besides the detailed analysis with the young Italian electricity market, the new model is tested on the experimental stage of the Spanish market, the New York market and the New England market. The long-term forecast with the SVR model presented is justified by the forecast with the data from the Long Run Market Simulator (LREMS).

  9. An Influence of Parameters of Micro-Electrical Discharge Machining On Wear of Tool Electrode

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    To achieve better precision of features generated using the micro-electrical dischargemachining (micro-EDM), there is a necessity to minimize the wear of the toolelectrode, because a change in the dimensions of the electrode is reflected directly orindirectly on the feature. This paper presents...

  10. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  11. Machine Vision System for Characterizing the Electric Field for the 225 Ra EDM Experiment

    Science.gov (United States)

    Sanchez, Andrew

    2017-09-01

    If an atom or fundamental particle possesses an electric dipole moment (EDM), that would imply time-reversal violation. At our current capability, if an EDM is detected in such a particle, that would suggest the discovery of beyond the standard model (BSM) physics. The unique structure of 225 Ra makes its atomic EDM favorable in the BSM search. An upgraded Ra-EDM apparatus will increase experimental sensitivity and the target electric field of 150 kV/cm will more than double the electric field used in previous experiments. To determine the electric field, the potential difference and electrode separation distance must be known. The optical method I have developed is a high-precision, non-invasive technique to measure electrode separation without making contact with the sensitive electrode surfaces. A digital camera utilizes a bi-telecentric lens to reduce parallax error and produce constant magnification throughout the optical system, regardless of object distance. A monochrome LED backlight enhances sharpness of the electrode profile, reducing uncertainty in edge determination and gap width. A program utilizing an edge detection algorithm allows precise, repeatable measurement of the gap width to within 1% and measurement of the relative angle of the electrodes. This work (SAM, Ra EDM) is supported by Michigan State University. This work (REU Program) is supported by U.S. National Science Foundation under Grant Number #1559866.

  12. The Effect of NeuroMuscular Electrical Stimulation on Quadriceps Strength and Knee Function in Professional Soccer Players: Return to Sport after ACL Reconstruction

    Directory of Open Access Journals (Sweden)

    J. Taradaj

    2013-01-01

    Full Text Available The aim of this study was to assess the clinical efficacy and safety of NMES program applied in male soccer players (after ACL reconstruction on the quadriceps muscle. The 80 participants (NMES = 40, control = 40 received an exercise program, including three sessions weekly. The individuals in NMES group additionally received neuromuscular electrical stimulation procedures on both right and left quadriceps (biphasic symmetric rectangular pulses, frequency of impulses: 2500 Hz, and train of pulses frequency: 50 Hz three times daily (3 hours of break between treatments, 3 days a week, for one month. The tensometry, muscle circumference, and goniometry pendulum test (follow-up after 1 and 3 months were applied. The results of this study show that NMES (in presented parameters in experiment is useful for strengthening the quadriceps muscle in soccer athletes. There is an evidence of the benefit of the NMES in restoring quadriceps muscle mass and strength of soccer players. In our study the neuromuscular electrical stimulation appeared to be safe for biomechanics of knee joint. The pathological changes in knee function were not observed. This trial is registered with Australian and New Zealand Clinical Trials Registry ACTRN12613001168741.

  13. Non invasive sensors for monitoring the efficiency of AC electrical rotating machines.

    Science.gov (United States)

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer.

  14. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq

    2010-08-01

    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  15. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Science.gov (United States)

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  16. A STUDY ON CAPABILITIES OF DIFFERENT ELECTRODE MATERIALS DURING ELECTRICAL DISCHARGE MACHINING (EDM

    Directory of Open Access Journals (Sweden)

    Muataz Hazza Faizi Al Hazza

    2017-12-01

    Full Text Available Electrode material inelectro discharge machining EDM process plays an important role in terms of material removal rate (MRR, electrode wear rate (EWR and surface roughness (Ra. The purpose of this research is to investigate the capability of different electrode materials: copper, aluminum and graphite in EDM of AISI 304 stainless steel as a work piece. The research focuses on three current settings: 2.5A, 4.5A and 6.5A using kerosene as dielectric fluid. The experiment is planned and analyzed using full factorial of the experimental design using response surface methodology (RSM. two outputs have been investigated: MRR and EWR. The results indicated that the responses increased with the increase in current. Finally the desirability function method have been used to determine the optimum values. The resulat show that the maximum MRR and  the minimum EWR were achieved by using graphite electrode at current 6.5A.

  17. Finite-element analysis of eddy currents in the form-wound multi-conductor windings of electrical machines

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M. J.

    2009-07-01

    The aim of this research was to develop comprehensive numerical models for considering eddy currents and circulating currents in the form-wound multi-conductor windings of electrical machines and to study the effects of eddy currents and circulating currents. Time-harmonic and time-discretised finite-element methods were developed. The methods were applied to the stator winding of a 1250-kW cage induction motor and in both the stator and rotor windings of a 1.7-MW doubly-fed induction generator (DFIG). The series and parallel connections of the winding were taken into account. The Newton-Raphson iteration method was used to solve the system of non-linear equations. In time-harmonic FEM, the system of equations was solved iteratively just once for the steady-state solution. In time-discretised FEM, the system of equations was solved iteratively at every time step. The backward Euler method was used for the time discretisation. The radial distance of the stator bars from the air gap has a remarkable effect on losses and was found to be an important design parameter. A significant amount of stator-winding eddy-current loss can be reduced by considering this design parameter. A transposition of the conductors was implemented to reduce the circulating currents between the parallel stator conductors. The eddy-current effects in the form-wound multi-conductor windings of electrical machines were studied for both a sinusoidal and non-sinusoidal supply. A pulse-width-modulated (PWM) voltage supply was achieved by sinus triangle comparison and used as a non-sinusoidal supply for the machine. A PWM supply produced a significant amount of additional eddy-current losses in the form-wound stator winding of the cage induction motor when compared to the sinusoidal supply. The fundamental harmonic voltages of the sinusoidal and PWM supplies were equal for comparing the results. Similar sinusoidal and PWM voltages were used to supply the rotor winding of the DFIG as well. The

  18. Urgences en neuro-ophtalmologie

    DEFF Research Database (Denmark)

    Caignard, A.; Leruez, S.; Milea, D.

    2017-01-01

    Neuro-ophthalmic emergencies can cause life-threatening or sight-threatening complications. Various conditions may have acute neuro-ophthalmic manifestations, including inflammatory or ischemic processes, as well as tumoral, aneurysmal compression or metabolic and systemic diseases. Diplopia rela...

  19. Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation

    Directory of Open Access Journals (Sweden)

    Chan-Uk Yeom

    2017-10-01

    Full Text Available This paper discusses short-term electricity-load forecasting using an extreme learning machine (ELM with automatic knowledge representation from a given input-output data set. For this purpose, we use a Takagi-Sugeno-Kang (TSK-based ELM to develop a systematic approach to generating if-then rules, while the conventional ELM operates without knowledge information. The TSK-ELM design includes a two-phase development. First, we generate an initial random-partition matrix and estimate cluster centers for random clustering. The obtained cluster centers are used to determine the premise parameters of fuzzy if-then rules. Next, the linear weights of the TSK fuzzy type are estimated using the least squares estimate (LSE method. These linear weights are used as the consequent parameters in the TSK-ELM design. The experiments were performed on short-term electricity-load data for forecasting. The electricity-load data were used to forecast hourly day-ahead loads given temperature forecasts; holiday information; and historical loads from the New England ISO. In order to quantify the performance of the forecaster, we use metrics and statistical characteristics such as root mean squared error (RMSE as well as mean absolute error (MAE, mean absolute percent error (MAPE, and R-squared, respectively. The experimental results revealed that the proposed method showed good performance when compared with a conventional ELM with four activation functions such sigmoid, sine, radial basis function, and rectified linear unit (ReLU. It possessed superior prediction performance and knowledge information and a small number of rules.

  20. Statistical investigations into the erosion of material from the tool in micro-electrical discharge machining

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    This paper presents a statistical study of the erosion of material from the tool electrode in a micro-electrical dischargemachining process. The work involves Analysis of Variance and Analysis of Means approaches on the results of the toolelectrode wear rate obtained based on design of experiments...... ) and discharge frequency (f ) control the erosion of material from the tool electrode. The Material Erosion dfrom the tool electrode increases linearly with the discharge frequency. As the current index increases from 20 to 35,the M decreases linearly, by 29% and then increases by of 36%. The current index of 35...... gives the minimum material eerosion from the tool. It is observed that none of the two-factor interactions are significant in controlling the erosion ofmaterial from the Tool....

  1. Effect of Abrasive Machining on the Electrical Properties Cu86Mn12Ni₂ Alloy Shunts.

    Science.gov (United States)

    Misti, Siti Nabilah; Birkett, Martin; Penlington, Roger; Bell, David

    2017-07-29

    This paper studies the effect of abrasive trimming on the electrical properties of Cu 86 Mn 12 Ni₂ Manganin alloy shunt resistors. A precision abrasive trimming system for fine tuning the resistance tolerance of high current Manganin shunt resistors is proposed. The system is shown to be capable of reducing the resistance tolerance of 100 μΩ shunts from their standard value of ±5% to <±1% by removing controlled amounts of Manganin material using a square cut trim geometry. The temperature coefficient of resistance (TCR), high current, and high temperature performance of the trimmed shunts was compared to that of untrimmed parts to determine if trimming had any detrimental effect on these key electrical performance parameters of the device. It was shown that the TCR value was reduced following trimming with typical results of +106 ppm/°C and +93 ppm/°C for untrimmed and trimmed parts respectively. When subjected to a high current of 200 A the trimmed parts showed a slight increase in temperature rise to 203 °C, as compared to 194 °C for the untrimmed parts, but both had significant temporary increases in resistance of up to 1.3 μΩ. The results for resistance change following high temperature storage at 200 °C for 168 h were also significant for both untrimmed and trimmed parts with shifts of 1.85% and 2.29% respectively and these results were related to surface oxidation of the Manganin alloy which was accelerated for the freshly exposed surfaces of the trimmed part.

  2. Effect of Abrasive Machining on the Electrical Properties Cu86Mn12Ni2 Alloy Shunts

    Directory of Open Access Journals (Sweden)

    Siti Nabilah Misti

    2017-07-01

    Full Text Available This paper studies the effect of abrasive trimming on the electrical properties of Cu86Mn12Ni2 Manganin alloy shunt resistors. A precision abrasive trimming system for fine tuning the resistance tolerance of high current Manganin shunt resistors is proposed. The system is shown to be capable of reducing the resistance tolerance of 100 μΩ shunts from their standard value of ±5% to <±1% by removing controlled amounts of Manganin material using a square cut trim geometry. The temperature coefficient of resistance (TCR, high current, and high temperature performance of the trimmed shunts was compared to that of untrimmed parts to determine if trimming had any detrimental effect on these key electrical performance parameters of the device. It was shown that the TCR value was reduced following trimming with typical results of +106 ppm/°C and +93 ppm/°C for untrimmed and trimmed parts respectively. When subjected to a high current of 200 A the trimmed parts showed a slight increase in temperature rise to 203 °C, as compared to 194 °C for the untrimmed parts, but both had significant temporary increases in resistance of up to 1.3 μΩ. The results for resistance change following high temperature storage at 200 °C for 168 h were also significant for both untrimmed and trimmed parts with shifts of 1.85% and 2.29% respectively and these results were related to surface oxidation of the Manganin alloy which was accelerated for the freshly exposed surfaces of the trimmed part.

  3. Neuro-ophthalmology update.

    Science.gov (United States)

    Weber, Konrad P; Straumann, Dominik

    2014-07-01

    This review summarizes the most relevant articles from the field of neuro-ophthalmology published in the Journal of Neurology from January 2012 to July 2013. With the advent of video-oculography, several articles describe new applications for eye movement recordings as a diagnostic tool for a wide range of disorders. In myasthenia gravis, anti-Kv1.4 and anti-Lrp4 have been characterized as promising novel autoantibodies for the diagnosis of hitherto 'seronegative' myasthenia gravis. Several articles address new diagnostic and therapeutic approaches to neuromyelitis optica, which further sharpen its profile as a distinct entity. Additionally, 4-aminopyridine has become a standard therapeutic for patients with cerebellar downbeat nystagmus. Finally, revised diagnostic criteria have been proposed for chronic relapsing inflammatory optic neuropathy based on a careful literature review over the last decade.

  4. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  5. Neuro-ophthalmology as a career

    Science.gov (United States)

    Spitze, Arielle; Al-Zubidi, Nagham; Lam, Peter; Yalamanchili, Sushma; Lee, Andrew G

    2014-01-01

    This essay was written to discuss the reasoning behind the personal decisions made by 2 current neuro-ophthalmology fellows to pursue neuro-ophthalmology as a career. It is meant to enlighten the reader about what role neuro-ophthalmologists play in clinical practice, what makes neuro-ophthalmology unique to all other sub-specialties, and how this contributes to making neuro-ophthalmology not only one of the most medically interesting, yet rewarding sub-specialties in ophthalmology. PMID:25449937

  6. Neuro-ophthalmology as a career.

    Science.gov (United States)

    Spitze, Arielle; Al-Zubidi, Nagham; Lam, Peter; Yalamanchili, Sushma; Lee, Andrew G

    2014-10-01

    This essay was written to discuss the reasoning behind the personal decisions made by 2 current neuro-ophthalmology fellows to pursue neuro-ophthalmology as a career. It is meant to enlighten the reader about what role neuro-ophthalmologists play in clinical practice, what makes neuro-ophthalmology unique to all other sub-specialties, and how this contributes to making neuro-ophthalmology not only one of the most medically interesting, yet rewarding sub-specialties in ophthalmology.

  7. Machine Learning for Identifying Demand Patterns of Home Energy Management Systems with Dynamic Electricity Pricing

    Directory of Open Access Journals (Sweden)

    Derck Koolen

    2017-11-01

    Full Text Available Energy management plays a crucial role in providing necessary system flexibility to deal with the ongoing integration of volatile and intermittent energy sources. Demand Response (DR programs enhance demand flexibility by communicating energy market price volatility to the end-consumer. In such environments, home energy management systems assist the use of flexible end-appliances, based upon the individual consumer’s personal preferences and beliefs. However, with the latter heterogeneously distributed, not all dynamic pricing schemes are equally adequate for the individual needs of households. We conduct one of the first large scale natural experiments, with multiple dynamic pricing schemes for end consumers, allowing us to analyze different demand behavior in relation with household attributes. We apply a spectral relaxation clustering approach to show distinct groups of households within the two most used dynamic pricing schemes: Time-Of-Use and Real-Time Pricing. The results indicate that a more effective design of smart home energy management systems can lead to a better fit between customer and electricity tariff in order to reduce costs, enhance predictability and stability of load and allow for more optimal use of demand flexibility by such systems.

  8. [Neuro-rehabilitation for neurological disease].

    Science.gov (United States)

    Hara, Yukihiro

    2011-11-01

    Our understanding of motor learning, neuro-plasticity and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience provided stimuli for research in motor rehabilitation. Electrical stimulation can be applied in a variety of ways to the neurological impairment. Especially, electromyography (EMG) initiated electrical muscle stimulation improves motor dysfunction of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than non-triggered electrical stimulation in facilitating upper extremity motor recovery. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up. Daily power-assisted FES home program therapy with the novel equipment has been able to improve wrist, finger extension and shoulder flexion effectively. Combined modulation of voluntary movement, proprioceptional sensory feedback and electrical stimulation might play an important role to facilitate impaired sensory-motor integration in power-assisted FES therapy. It is recognized that increased cerebral blood flow in the sensory-motor cortex area on the injured side during power-assisted FES session compared to simple active movement or simple electrical stimulation in a multi-channels Near-infrared spectroscopy (NIRS) study to non-invasively and dynamically measure hemoglobin levels in the brain during functional activity.

  9. Evaluation of performance and magnetic characteristics of a radial-radial flux compound-structure permanent-magnet synchronous machine used for hybrid electric vehicle

    Science.gov (United States)

    Zheng, Ping; Liu, Ranran; Shen, Lin; Li, Lina; Fan, Weiguang; Wu, Qian; Zhao, Jing

    2008-04-01

    A breed of compound-structure permanent-magnet synchronous machine (CS-PMSM) is used for power-split hybrid electric vehicles (HEVs). It can help to fulfill both the speed and torque control of the internal combustion engine and, thus, realize the optimum operation of the HEV. In this paper, a radial-radial flux CS-PMSM, which is integrated by two machines radially [one stator machine (SM) and one double-rotor machine (DRM)], is designed and investigated. The machine performance is evaluated with finite-element method (FEM) and satisfactory results are obtained. The back electromotive force curves of the two machines are somewhat similar to sinusoidal ones; the average torques both meet the requirements; and due to the adoption of skewed slots, the cogging torques and torque ripples are quite small. The inductance parameter is calculated with a phasor diagram based two-dimensional FEM and the magnetic saturation and cross-magnetization effect are discussed. It is concluded that the SM is slightly saturated with no or little cross-magnetization phenomenon, whereas the DRM has deep-degree magnetic saturation and the cross-magnetization effect is notable.

  10. NIH NeuroBioBank

    Data.gov (United States)

    Federal Laboratory Consortium — The NIH NeuroBioBank (NBB), supported by the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, and the Eunice Kennedy...

  11. The neuro-ophthalmological examination.

    Science.gov (United States)

    Rucker, Janet C; Kennard, Christopher; Leigh, R John

    2011-01-01

    The neuro-ophthalmological examination constitutes one of the most refined and exact components of the clinical examination, often allowing precise diagnosis and formulation of a treatment plan even within the compass of the first visit. This chapter briefly highlights important features in the neuro-ophthalmological history and then presents detailed information on the important components of a comprehensive neuro-ophthalmological examination. Covered examination topics include visual acuity, visual field testing, color vision, external eye exam, pupils, ophthalmoscopy, and eye movements. The final section discusses ancillary tests that supplement the bedside neuro-ophthalmological examination, including formal visual field analysis, electroretinography, fluorescein angiography, ocular coherence tomography, visual-evoked potentials, neuroimaging, and quantitative eye movement recordings. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. [Neuro-Ophthalmological History Taking].

    Science.gov (United States)

    Wilhelm, Helmut

    2017-11-01

    Neuro-ophthalmological history may be very complex and difficult. This article provides 14 hints about how to construct history taking efficiently and how to avoid collecting unnecessary information. Georg Thieme Verlag KG Stuttgart · New York.

  13. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  14. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Stráský, Josef, E-mail: josef.strasky@gmail.com [Charles University, Department of Physics of Materials (Czech Republic); Havlíková, Jana; Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic (Czech Republic); Harcuba, Petr [Charles University, Department of Physics of Materials (Czech Republic); Mhaede, Mansour [Clausthal University of Technology, Institute of Materials Science and Engineering (Germany); Faculty of Engineering, Zagazig University (Egypt); Janeček, Miloš [Charles University, Department of Physics of Materials (Czech Republic)

    2013-09-15

    Presented work aims at multi-method characterization of combined surface treatment of Ti–6Al–4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  15. Characterization of particle size distribution of mainstream cigarette smoke generated by smoking machine with an electrical low pressure impactor.

    Science.gov (United States)

    Li, Xiang; Kong, Haohui; Zhang, Xinying; Peng, Bin; Nie, Cong; Shen, Guanglin; Liu, Huimin

    2014-04-01

    Cigarette smoking is a particle-related exposure. Studying the characteristics of the particle size distribution of cigarette smoke can aid in providing knowledge of smoke aerosol attributes. We used an electrical low pressure impactor (ELPI) to measure the particle size distribution of mainstream cigarette smoke generated by a smoking machine and provided a continuum of particle sizes of cigarette smoke from a whole cigarette. The results showed that the aerodynamic diameters (D, geometric mean of a channel) of particles ranged from 0.021 to 1.956 μm, and the number concentrations were on the order of 10(5)-10(9) cm(-3) for different sizes of particles. The particle number of the size category below 0.1 μm approximated that of the category 0.1-2.0 μm, and the particles in the size category of 0.1-2.0 μm contributed extremely heavily to total particulate mass. In addition, the results with small samples indicated that the tar yields normalized per milligram of nicotine showed an approximately linear increase with increasing concentration of total particles. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Grupos electrógenos y calidad de la energía; Reciprocating Machines and Power Quality

    Directory of Open Access Journals (Sweden)

    Marielys Francisco Fernández

    2011-02-01

    Full Text Available Entre las tecnologías de mayor difusión que hoy día se utilizan dentro de la generación distribuida (GDestán los grupos electrógenos (GE. La presencia de los GE en cualquiera de sus formas de explotación,exige un análisis de los problemas que puedan presentarse por su presencia; uno de estos problemas estárelacionado con la calidad de la energía eléctrica (CEL. El presente trabajo expone los primeros resultadosde un estudio que va dirigido a buscar respuestas sobre este tema ante diferentes tipos de perturbacionesque pueden presentarse en la red: Cortocircuito y variación de la tensión en los terminales del GE y ladesconexión súbita de la carga (rechazo de carga. Reciprocating machine (RM is one of the technology more used on distributed generation (DG. Thepresence of RM not manner its operation form need an analysis about differents problems: One of them isrelated with power quality (PQ. First results obained inside one study directed to obtain answers aboutdifferents perturbations for the RM presence like shortcircuit and voltage variation on RM termianls andrejected charge is presented in this paper. 

  17. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining.

    Science.gov (United States)

    Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto

    2016-01-01

    The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P  .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    Science.gov (United States)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  19. Electrical Discharge Machining of Al (6351-5% SiC-10% B4C Hybrid Composite: A Grey Relational Approach

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available The goal of the present experimental work is to optimize the electrical discharge machining (EDM parameters of aluminum alloy (Al 6351 matrix reinforced with 5 wt.% silicon carbide (SiC and 10 wt.% boron carbide (B4C particles fabricated through the stir casting route. Multiresponse optimization was carried out through grey relational analysis (GRA with an objective to minimize the machining characteristics, namely electrode wear ratio (EWR, surface roughness (SR and power consumption (PC. The optimal combination of input parameters is identified, which shows the significant enhancement in process characteristics. Contributions of each machining parameter to the responses are calculated using analysis of variance (ANOVA. The result shows that the pulse current contributes more (83.94% to affecting the combined output responses.

  20. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  1. Neuro Linguistic Programming

    Directory of Open Access Journals (Sweden)

    Suzana Padežanin

    1996-12-01

    Full Text Available The paper is in fact an introduction to the field known as neuro-linguistic programming or NLP. It describes the origins of thi s method and funda­ mental assumptions about NLP -current perception of reality, establishment of rapport, and  development of our unique potential in order to understand the world. The paper furthermore provides insight into how we use our inner senses for reflection , how language and thought interact, and how we can determine the way other people think. The NLP method simultaneousl y takes into consideration all of the personality signals - bod y a nd speech signals, and visua l pattems. NLP assumes tha t the usual framework of interpretation and criticism needs to be transcended in order for us to be able to see matters ina different light, and thus develop better al ternatives for achieving our original goals. The paper emphasizes the inner processing of information, which is captured by certain NLP diagnostic models, thus providing the starting point for change.

  2. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel

    2017-01-01

    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  3. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  4. Recycling rotating electrical machines

    Directory of Open Access Journals (Sweden)

    Rafael Hernández-Millán

    2017-01-01

    Full Text Available Este trabajo establece los principios de diseño para el reciclaje de máquinas eléctricas rotativas (sincrónicas y de inducción, en otras palabras, las máquinas eléctricas y sus componentes pueden ser reutilizados. Además, se cubren temas tecnológicos surgidos de las siguientes componentes de la máquina: núcleo del estator y rotor, devanados del estator y rotor, cojinetes, ejes, y carcasas. Los principios de diseño discutidos pueden extenderse a los transformadores. Este trabajo no consideró materiales de aislamiento en devanados de alta tensión. La economía de reciclaje no se discute ni consecuencias ambientales. Las máquinas rotativas consideradas en el presente estudio son de un rango de potencia entre 0,1 kW a 400 kW, frecuencias de 50 hertz y 60 hertz y polos 2, 4 y 6, aunque los conceptos generales podrían aplicarse a otras máquinas. Se discuten las normas de máquina necesarios para lograr estos objetivos, que abarca: velocidad, tensión nominal, capacidades, formas, dimensiones, de aislamiento, de los devanados, cojinetes, ejes y carcasas.

  5. Memristive Neuro-Fuzzy System.

    Science.gov (United States)

    Merrikh-Bayat, Farnood; Shouraki, Saeed Bagheri

    2013-02-01

    In this paper, a novel neuro-fuzzy computing system is proposed where its learning is based on the creation of fuzzy relations by using a new implication method without utilizing any exact mathematical techniques. Then, a simple memristor crossbar-based analog circuit is designed to implement this neuro-fuzzy system which offers very interesting properties. In addition to high connectivity between neurons and being fault tolerant, all synaptic weights in our proposed method are always non-negative, and there is no need to adjust them precisely. Finally, this structure is hierarchically expandable, and it can do fuzzy operations in real time since it is implemented through analog circuits. Simulation results confirm the efficiency and applicability of our neuro-fuzzy computing system. They also indicate that this system can be a good candidate to be used for creating artificial brain.

  6. Field weakening capability investigation of an axial flux permanent-magnet synchronous machine with radially sliding permanent magnets used for electric vehicles

    Science.gov (United States)

    Zhao, Jing; Cheng, Dansong; Zheng, Ping; Liu, Xiangdong; Tong, Chengde; Song, Zhiyi; Zhang, Lu

    2012-04-01

    Due to the advantage of high power density compared with the conventional radial flux machines, the axial flux permanent-magnet synchronous machines (PMSMs) are very suitable candidates for the power train of electric vehicles (EVs). In this paper, a new axial flux PMSM adopting radially sliding permanent magnets (PMs) to fulfill field-weakening control and to improve the operating speed range is investigated. The field-weakening structure and principle of the axial flux PMSM with radially sliding PMs are proposed and analyzed. The influence of radially sliding PMs on electromagnetic performances and parameters is analyzed based on FEM. The field-weakening method with radially sliding PMs, which is a mechanical method, is compared and combined with traditional electrical method. Due to the optimized combination of the two methods, the field-weakening capability of the machine is much improved and the maximum speed can reach up to six times of the base speed with constant power, which is very satisfying for EV drive application.

  7. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    High Temperature Superconducting (HTS) electrical machines have the potential to offer outstanding technical performance with regards to efficiency and power density. However, the industry needs to address a large number of challenges in the attempt to harvest the full potential of HTS machines...... machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...... details and experimental results are shown together with discussions about their implication for scaled up HTS machines....

  8. Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission

    Directory of Open Access Journals (Sweden)

    Yi Liang

    2016-11-01

    Full Text Available The power industry is the main battlefield of CO2 emission reduction, which plays an important role in the implementation and development of the low carbon economy. The forecasting of electricity demand can provide a scientific basis for the country to formulate a power industry development strategy and further promote the sustained, healthy and rapid development of the national economy. Under the goal of low-carbon economy, medium and long term electricity demand forecasting will have very important practical significance. In this paper, a new hybrid electricity demand model framework is characterized as follows: firstly, integration of grey relation degree (GRD with induced ordered weighted harmonic averaging operator (IOWHA to propose a new weight determination method of hybrid forecasting model on basis of forecasting accuracy as induced variables is presented; secondly, utilization of the proposed weight determination method to construct the optimal hybrid forecasting model based on extreme learning machine (ELM forecasting model and multiple regression (MR model; thirdly, three scenarios in line with the level of realization of various carbon emission targets and dynamic simulation of effect of low-carbon economy on future electricity demand are discussed. The resulting findings show that, the proposed model outperformed and concentrated some monomial forecasting models, especially in boosting the overall instability dramatically. In addition, the development of a low-carbon economy will increase the demand for electricity, and have an impact on the adjustment of the electricity demand structure.

  9. Neuro-oncology biotech industry progress report.

    Science.gov (United States)

    Chakraborty, Shamik; Bodhinayake, Imithri; Chiluwal, Amrit; Langer, David J; Ruggieri, Rosamaria; Symons, Marc; Boockvar, John A

    2016-05-01

    The Brain Tumor Biotech Center at the Feinstein Institute for Medical Research, in collaboration with Voices Against Brain Cancer hosted The Brain Tumor Biotech Summit at in New York City in June 2015. The focus was once again on fostering collaboration between neuro-oncologist, neurosurgeons, scientists, leaders from biotechnology and pharmaceutical industries, and members of the financial community. The summit highlighted the recent advances in the treatment of brain tumor, and specifically focused on targeting of stem cells and EGFR, use of prophage and immunostimulatory vaccines, retroviral vectors for drug delivery, biologic prodrug, Cesium brachytherapy, and use of electric field to disrupt tumor cell proliferation. This article summarizes the current progress in brain tumor research as presented at 2015 The Brain Tumor Biotech Summit.

  10. Chips of Hope: Neuro-Electronic Hybrids for Brain Repair

    Science.gov (United States)

    Ben-Jacob, Eshel

    2010-03-01

    The field of Neuro-Electronic Hybrids kicked off 30 years ago when researchers in the US first tweaked the technology of recording and stimulation of networks of live neurons grown in a Petri dish and interfaced with a computer via an array of electrodes. Since then, many researchers have searched for ways to imprint in neural networks new ``memories" without erasing old ones. I will describe our new generation of Neuro-Electronic Hybrids and how we succeeded to turn them into the first learning Neurochips - memory and information processing chips made of live neurons. To imprint multiple memories in our new chip we used chemical stimulation at specific locations that were selected by analyzing the networks activity in real time according to our new information encoding principle. Currently we develop new-generation of neuro chips using special carbon nano tubes (CNT). These electrodes enable to engineer the networks topology and efficient electrical interfacing with the neurons. This advance bears the promise to pave the way for building a new experimental platform for testing new drugs and developing new methods for neural networks repair and regeneration. Looking into the future, the development brings us a step closer towards the dream of Brain Repair by implementable Neuro-Electronic hybrid chips.

  11. Neuro-ophthalmology as a career

    Directory of Open Access Journals (Sweden)

    Arielle Spitze

    2014-01-01

    Full Text Available This essay was written to discuss the reasoning behind the personal decisions made by 2 current neuro-ophthalmology fellows to pursue neuro-ophthalmology as a career. It is meant to enlighten the reader about what role neuro-ophthalmologists play in clinical practice, what makes neuro-ophthalmology unique to all other sub-specialties, and how this contributes to making neuro-ophthalmology not only one of the most medically interesting, yet rewarding sub-specialties in ophthalmology.

  12. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Science.gov (United States)

    Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.

    2011-04-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  13. Recent Advances on Permanent Magnet Machines

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.

  14. A Study on the Effect of Electrical Stimulation as a User Stimuli for Motor Imagery Classification in Brain-Machine Interface.

    Science.gov (United States)

    Bhattacharyya, Saugat; Clerc, Maureen; Hayashibe, Mitsuhiro

    2016-06-13

    Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one.

  15. Neuro-ophthalmology and neuro-otology update.

    Science.gov (United States)

    Gold, Daniel R; Zee, David S

    2015-12-01

    This review summarizes topical papers from the fields of neuro-ophthalmology and neuro-otology published from August 2013 to February 2015. The main findings are: (1) diagnostic criteria for pseudotumor cerebri have been updated, and the Idiopathic Intracranial Hypertension Treatment Trial evaluated the efficacy of acetazolamide in patients with mild vision loss, (2) categorization of vestibular disorders through history and ocular motor examination is particularly important in the acute vestibular syndrome, where timely distinction between a central or peripheral localization is essential, (3) the newly described "sagging eye syndrome" provides a mechanical explanation for an isolated esodeviation that increases at distance in the aging population and (4) eye movement recordings better define how cerebellar dysfunction and/or sixth nerve palsy may play a role in other patients with esodeviations that increase at distance.

  16. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    Science.gov (United States)

    Sudhakara, Dara; Prasanthi, Guvvala

    2017-04-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  17. Locating High-Impedance Fault Section in Electric Power Systems Using Wavelet Transform, k-Means, Genetic Algorithms, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2015-01-01

    Full Text Available High-impedance faults (HIFs caused by downed conductors in electric power systems are in general difficult to be detected using traditional protection relays due to small fault currents. The energized downed conductor can pose a safety risk to the public and cause a fire hazard. This paper presents a new method for locating the line (feeder section of the HIF with the help of limited measurements in electric power systems. The discrete wavelet transform is used to extract the features of transients caused by HIFs. A modified k-means algorithm associated with genetic algorithms is then utilized to determine the placement of measurement facilities. The signal energies attained by wavelet coefficients serve as inputs to the support vector machine for locating the HIF line section. The simulation results obtained from an 18-busbar distribution system show the applicability of the proposed method.

  18. A novel Neuro-fuzzy classification technique for data mining

    Directory of Open Access Journals (Sweden)

    Soumadip Ghosh

    2014-11-01

    Full Text Available In our study, we proposed a novel Neuro-fuzzy classification technique for data mining. The inputs to the Neuro-fuzzy classification system were fuzzified by applying generalized bell-shaped membership function. The proposed method utilized a fuzzification matrix in which the input patterns were associated with a degree of membership to different classes. Based on the value of degree of membership a pattern would be attributed to a specific category or class. We applied our method to ten benchmark data sets from the UCI machine learning repository for classification. Our objective was to analyze the proposed method and, therefore compare its performance with two powerful supervised classification algorithms Radial Basis Function Neural Network (RBFNN and Adaptive Neuro-fuzzy Inference System (ANFIS. We assessed the performance of these classification methods in terms of different performance measures such as accuracy, root-mean-square error, kappa statistic, true positive rate, false positive rate, precision, recall, and f-measure. In every aspect the proposed method proved to be superior to RBFNN and ANFIS algorithms.

  19. Physics 30 Program Machine-Scorable Open-Ended Questions: Unit 2: Electric and Magnetic Forces. Diploma Examinations Program.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton.

    This document outlines the use of machine-scorable open-ended questions for the evaluation of Physics 30 in Alberta. Contents include: (1) an introduction to the questions; (2) sample instruction sheet; (3) fifteen sample items; (4) item information including the key, difficulty, and source of each item; (5) solutions to items having multiple…

  20. Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite

    Directory of Open Access Journals (Sweden)

    Gangadharudu Talla

    2015-09-01

    Full Text Available Low material removal rate (MRR and high surface roughness values hinder large-scale application of electro discharge machining (EDM in the fields like automobile, aerospace and medical industry. In recent years, however, EDM has gained more significance in these industries as the usage of difficult-to-machine materials including metal matrix composites (MMCs increased. In the present work, an attempt has been made to fabricate and machine aluminum/alumina MMC using EDM by adding aluminum powder in kerosene dielectric. Results showed an increase in MRR and decrease in surface roughness (Ra compared to those for conventional EDM. Semi empirical models for MRR and Ra based on machining parameters and important thermo physical properties were established using a hybrid approach of dimensional and regression analysis. A multi response optimization was also performed using principal component analysis-based grey technique (Grey-PCA to determine optimum settings of process parameters for maximum MRR and minimum Ra within the experimental range. The recommended setting of process parameters for the proposed process has been found to be powder concentration (Cp = 4 g/l, peak current (Ip = 3 A, pulse on time (Ton = 150 μs and duty cycle (Tau = 85%.

  1. Electrical efficiency: case study of electric motors at machines room of a slaughterhouse in the state of Sao Paulo; Eficiencia eletrica: estudo de caso dos motores eletricos da sala de maquinas de um frigorifico no estado de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Luiz A. [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Conselho Integrado de Infraestrutura Rural], E-mail: rossi@agri.unicamp.br; Silva, Roberto P.B. da; Barros, Regiane S. de [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    To estimate the potential for energy saving in cold compressor motor of a food industry, a study was conducted in a slaughterhouse in the state of Sao Paulo. It was analyzed only the engine room of the company because according to measurements this one corresponds approximately 97% of all electricity consumption of the unit. It was found that the electrical efficiency indices were low, demonstrating the possibilities for adoption of conservation measures and the rationalization of electric energy. It was evident that the establishment of an efficiency study to change the electrical equipment used was feasible and, therefore, was demonstrated and proposed a new arrangement for the current system. Soon after the diagnosis of the use of electricity was found that from the six Machinery, five were oversized. Then it was suggested to replace these machines by others with lower power and greater efficiency, as well as conducted an analysis of technical and economic feasibility of the project, demonstrating the possibilities for the rational use of energy and the optimization of financial resources company (author)

  2. A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico [Department of Nuclear Engineering, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)], E-mail: enrico.zio@polimi.it; Gola, Giulio [Department of Nuclear Engineering, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)

    2009-01-15

    Malfunctions in machinery are often sources of reduced productivity and increased maintenance costs in various industrial applications. For this reason, machine condition monitoring is being pursued to recognise incipient faults. In this paper, the fault diagnostic problem is tackled within a neuro-fuzzy approach to pattern classification. Besides the primary purpose of a high rate of correct classification, the proposed neuro-fuzzy approach also aims at obtaining an easily interpretable classification model. The efficiency of the approach is verified with respect to a literature problem and then applied to a case of motor bearing fault classification.

  3. An Investigation of the Micro-Electrical Discharge Machining of Nickel-Titanium Shape Memory Alloy Using Grey Relations Coupled with Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Mustufa Haider Abidi

    2017-11-01

    Full Text Available Shape memory alloys (SMAs are advanced engineering materials which possess shape memory effects and super-elastic properties. Their high strength, high wear-resistance, pseudo plasticity, etc., makes the machining of Ni-Ti based SMAs difficult using traditional techniques. Among all non-conventional processes, micro-electric discharge machining (micro-EDM is considered one of the leading processes for micro-machining, owing to its high aspect ratio and capability to machine hard-to-cut materials with good surface finish.The selection of the most appropriate input parameter combination to provide the optimum values for various responses is very important in micro-EDM. This article demonstrates the methodology for optimizing multiple quality characteristics (overcut, taper angle and surface roughness to enhance the quality of micro-holes in Ni-Ti based alloy, using the Grey–Taguchi method. A Taguchi-based grey relational analysis coupled with principal component analysis (Grey-PCA methodology was implemented to investigate the effect of three important micro-EDM process parameters, namely capacitance, voltage and electrode material.The analysis of the individual responses established the importance of multi-response optimization. The main effects plots for the micro-EDM parameters and Analysis of Variance (ANOVA indicate that every parameter does not produce same effect on individual responses, and also that the percent contribution of each parameter to individual response is highly varied. As a result, multi-response optimization was implemented using Grey-PCA. Further, this study revealed that the electrode material had the strongest effect on the multi-response parameter, followed by the voltage and capacitance. The main effects plot for the Grey-PCA shows that the micro-EDM parameters “capacitance” at level-2 (i.e., 475 pF, “discharge voltage” at level-1 (i.e., 80 V and the “electrode material” Cu provided the best multi-response.

  4. Neuro magnetic stimulation: Engineering aspects

    Science.gov (United States)

    Al-Mutawaly, Nafia

    Magnetic nerve stimulation has proven to be an effective, non-invasive technique to excite peripheral and central nervous systems. In this technique, the excitement of the neural tissue depends on exposure to a transient magnetic field generated by passing a high pulse of current through a coil. By positioning the coil in a specific orientation over the targeted tissue, the transient magnetic field will induce an electric field in the conductive milieu of the body. If this field reaches a certain threshold within a specific time period, neural depolarization is then evident. The primary objective of this thesis is the development and testing of new coil designs that can focus the magnetic field more effectively. Two such coils have been built. The first coil has an air core, while the other has a magnetic core. The magnetic fields of these coils, applied to the human upper limb, have been determined theoretically, and the results compared to the field generated by the most common commercial coil, the Figure-8 coil. To design these coils and to test them experimentally, a current pulse generator has been designed and built. Further, a novel measurement system using surface mount inductances and a computer based data acquisition system has been designed and built. The experimental results confirm the theoretical findings, that the air core coil is slightly better than the Figure-8, as far as field strength and focality are concerned. In addition, the experimental results, prove that the coil with the ferromagnetic core, is superior. The second objective is to investigate the effect of stimulus waveforms theoretically, experimentally, and through in vivo study. The goals of the study are to establish a quantitative relationship among various waveforms and to investigate the effect of these waveforms in determining the site of stimulation. Accordingly, a multi subject trial was conducted: a Figure-8 coil was applied to the median nerve of ten subjects at the upper limb

  5. Neuro-Sweet Disease Causing Orbital Inflammation.

    Science.gov (United States)

    Taravati, Parisa

    2015-02-01

    Neuro-Sweet disease is a rare condition causing encephalitis or meningitis in addition to the erythematous skin plaques of Sweet syndrome. Neuro-Sweet disease has been associated with several ocular manifestations, including ocular movement disorders, episcleritis, conjunctivitis, uveitis, and optic disc oedema. The author reports a patient with orbital inflammation, cranial neuropathies, and a skin rash in the setting of myelodysplastic syndrome. Biopsy of her skin lesion confirmed the diagnosis of neuro-Sweet disease. To the author's knowledge, this is the first reported case of neuro-Sweet disease causing orbital inflammation. Her ocular inflammation resolved with the use of systemic corticosteroid treatment.

  6. Neuro-epistemology: A Post-modernist Analysis of the Neuro-sciences

    African Journals Online (AJOL)

    support

    Keywords: neuro-epistemology; neuro-sciences; mental health; discourse; epistemology. ABSTRACT. This paper ... of neuro-science, including the assumptive framework upon which the dominant discourse in this field is based, which ultimately ...... human language, “attack” on Piaget's sensory-motor theory, and the focus ...

  7. Electrical Evaluation Of Welding Machines Based On The Arc Properties. Application To SMAW, GMAW And GTAW Processes

    Science.gov (United States)

    Miguel, V.; Martínez, A.; Manjabacas, M. C.; Coello, J.; Calatayud, A.

    2009-11-01

    In this work, a methodology to obtain the electrical behavior of arc welding equipments is presented. The method is based on the electrical arc fundamentals and it is applied to Shielding Metal Arc Welding and to Gas Metal Arc Welding processes. For the first one, different arc points are achieved by practicing several arc lengths. For MIG process, different arc lengths are made by changing the feel wire velocity. Arc current and voltage are measured for the different arc length in both cases. Finally, a Gas Tungsten Arc Welding equipment has been used to obtain the electrical arc characteristics as a function of arc length. Different considerations about the thermal and electrical principles related to the arc behavior have been made.

  8. The TCSC (Thyristor Controlled Series Compensator) in a multi machine electric power system: the effects on the synchronizing power; O TCSC em um sistema de energia eletrica multimaquinas: os efeitos sobre a potencia sincronizante

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.C.; Colvara, L.D. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: jadiel_silva@hotmail.com, laurence@dee.feis.unesp.br

    2009-07-01

    The problem of stability of electric power systems, from the standpoint of ability to sync and how FACTS (Flexible Alternating Current Transmission Systems) devices affect this ability in particular the TSCS (Thyristor Controlled Series Compensator) inserted into an environment multi machine, is addressed. The effects of this device on the power synchronizing are considered through analysis of the matrix admittance of the bar, focusing on the transfer admittances between machines.

  9. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation.

    Science.gov (United States)

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-04-12

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers.

  10. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    Science.gov (United States)

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  11. A Neuro-Fuzzy Approach in the Classification of Students’ Academic Performance

    Directory of Open Access Journals (Sweden)

    Quang Hung Do

    2013-01-01

    Full Text Available Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  12. A neuro-fuzzy approach in the classification of students' academic performance.

    Science.gov (United States)

    Do, Quang Hung; Chen, Jeng-Fung

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  13. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

    Science.gov (United States)

    Gangsar, Purushottam; Tiwari, Rajiv

    2017-09-01

    This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

  14. Refrigerating machine oil

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  15. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2017-06-01

    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  16. Advanced Analysis of Nontraditional Machining

    CERN Document Server

    Tsai, Hung-Yin

    2013-01-01

    Nontraditional machining utilizes thermal, chemical, electrical, mechanical and optical sources of energy to form and cut materials. Advanced Analysis of Nontraditional Machining explains in-depth how each of these advanced machining processes work, their machining system components, and process variables and industrial applications, thereby offering advanced knowledge and scientific insight. This book also documents the latest and frequently cited research results of a few key nonconventional machining processes for the most concerned topics in industrial applications, such as laser machining, electrical discharge machining, electropolishing of die and mold, and wafer processing for integrated circuit manufacturing. This book also: Fills the gap of the advanced knowledge of nonconventional machining between industry and research Documents latest and frequently cited research of key nonconventional machining processes for the most sought after topics in industrial applications Demonstrates advanced multidisci...

  17. Neuro-ophthalmology in the Horse.

    Science.gov (United States)

    Myrna, Kathern E

    2017-12-01

    This article provides a brief, clinically relevant review of neurologic disorders of the eye. A description of the neuro-ophthalmic examination is provided. Stepwise descriptions of the most common neuro-ophthalmic abnormalities are provided along with common rule outs. Published by Elsevier Inc.

  18. Research of physical and mechanical properties of electric steel, providing for the grate bars of the roasting and sintering machines improved operational stability

    Directory of Open Access Journals (Sweden)

    Олександр Давидович Учитель

    2016-07-01

    Full Text Available The grate bars of the conveyor roasting and sintering machines work in severe, aggressive dust and gaseous medium, under cyclic modes «heating-cooling», as well as under the load of iron ore agglomerates what results in bending stress in the body of the grate bar. Consequently, electric steel grate bar must be resistant to chemical and erosion processes, high cyclically changing temperature and have high mechanical properties. The paper discusses the conditions of the grate bars of conveyor roasting and sintering machines wear, depending on the adopted loading schemes. The materials to be processed can be loaded directly from the hopper (direct download or through the use of a feeder (drum-type feeder, roller, etc.. A simplified method to predict the grate bars surface wear on the strength of a number of assumptions has been developed: normal reaction of the pallet surface to the impact of the batch is assumed constant, equal to the maximum of its value when the pallet is in horizontal position; a layer of the batch moves as a rigid body; surface batch layer sliding velocity as related to the pallet surface is taken medium during the relative motion of the layer and equal to the linear velocity of the pallets; the side faces of the grate bars wear is related to related to the surface wear by linear dependence. The dependence of the wear on the friction forces and the steel wear resistance coefficient has been found out

  19. The birth of the electric machines: a commentary on Faraday (1832) ‘Experimental researches in electricity’

    Science.gov (United States)

    Al-Khalili, Jim

    2015-01-01

    The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject—the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750145

  20. NeuroAIDS in Africa.

    Science.gov (United States)

    Robertson, Kevin; Liner, Jeff; Hakim, James; Sankalé, Jean-Louis; Grant, Igor; Letendre, Scott; Clifford, David; Diop, Amadou Gallo; Jaye, Assan; Kanmogne, Georgette; Njamnshi, Alfred; Langford, T Dianne; Weyessa, Tufa Gemechu; Wood, Charles; Banda, Mwanza; Hosseinipour, Mina; Sacktor, Ned; Nakasuja, Noeline; Bangirana, Paul; Paul, Robert; Joska, John; Wong, Joseph; Boivin, Michael; Holding, Penny; Kammerer, Betsy; Van Rie, Annelies; Ive, Prudence; Nath, Avindra; Lawler, Kathy; Adebamowo, Clement; Royal, Walter; Joseph, Jeymohan

    2010-05-01

    In July 2009, the Center for Mental Health Research on AIDS at the National Institute of Mental Health organized and supported the meeting "NeuroAIDS in Africa." This meeting was held in Cape Town, South Africa, and was affiliated with the 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention. Presentations began with an overview of the epidemiology of HIV in sub-Saharan Africa, the molecular epidemiology of HIV, HIV-associated neurocognitive disorders (HANDs), and HAND treatment. These introductory talks were followed by presentations on HAND research and clinical care in Botswana, Cameroon, Ethiopia, The Gambia, Kenya, Malawi, Nigeria, Senegal, South Africa, Uganda, and Zambia. Topics discussed included best practices for assessing neurocognitive disorders, patterns of central nervous system (CNS) involvement in the region, subtype-associated risk for HAND, pediatric HIV assessments and neurodevelopment, HIV-associated CNS opportunistic infections and immune reconstitution syndrome, the evolving changes in treatment implementation, and various opportunities and strategies for NeuroAIDS research and capacity building in the region.

  1. Development of a motor driven rowing machine with automatic functional electrical stimulation controller for individuals with paraplegia; a preliminary study.

    Science.gov (United States)

    Jung, Da-Woon; Park, Dae-Sung; Lee, Bum-Suk; Kim, Min

    2012-06-01

    To examine the cardiorespiratory responses of patients with spinal cord injury (SCI) paraplegia using a motor driven rowing machine. Ten SCI patients with paraplegia [A (n=6), B (n=1), and C (n=3) by the American Spinal Injury Association impairment scale] were selected. Two rowing techniques were used. The first used a fixed seat with rowing achieved using only upper extremity movement (fixed rowing). The second used an automatically moving seat, facilitating active upper extremity movement and passive lower extremity movement via the motorized seat (motor rowing). Each patient performed two randomly assigned rowing exercise stress tests 1-3 days apart. The work rate (WR), time, respiratory exchange ratio (R), oxygen consumption (VO(2)), heart rate (HR), metabolic equivalents (METs), and rating of perceived exertion (RPE) were recorded. WR, time, VO(2), and METs were significantly higher after the motor rowing test than after fixed motor rowing test (prowing was significantly lower than fixed rowing (prowing for people with paraplegic SCI.

  2. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  3. From 'Hard' Neuro-Tools to 'Soft' Neuro-Toys? Refocussing the Neuro-Enhancement Debate.

    Science.gov (United States)

    Brenninkmeijer, Jonna; Zwart, Hub

    2017-01-01

    Since the 1990's, the debate concerning the ethical, legal and societal aspects of 'neuro-enhancement' has evolved into a massive discourse, both in the public realm and in the academic arena. This ethical debate, however, tends to repeat the same sets of arguments over and over again. Normative disagreements between transhumanists and bioconservatives on invasive or radical brain stimulators, and uncertainties regarding the use and effectivity of nootropic pharmaceuticals dominate the field. Building on the results of an extensive European project on responsible research and innovation in neuro-enhancement (NERRI), we observe and encourage that the debate is now entering a new and, as we will argue, more realistic and societally relevant stage. This new stage concerns those technologies that enter the market as ostensibly harmless contrivances that consumers may use for self-care or entertainment. We use the examples and arguments of participants in NERRI debates to describe three case studies of such purportedly innocent 'toys'. Based upon this empirical material, we argue that these 'soft' enhancement gadgets are situated somewhere in the boundary zone between the internal and the external, between the intimate and the intrusive, between the familiar and the unfamiliar, between the friendly and the scary and, in Foucauldian terms, between technologies of the self and technologies of control. Therefore, we describe their physiognomy with the help of a term borrowed from Jacques Lacan, namely as "extimate" technologies.

  4. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  5. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    Science.gov (United States)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  6. Some Observations on the Dielectric Breakdown and the Importance of Cavities in Insulating Materials used for Cables and Electrical Machines

    Directory of Open Access Journals (Sweden)

    KARLIS, A. D.

    2011-05-01

    Full Text Available Partial discharges (PD contribute greatly to the ageing and the breakdown of solid insulating materials. In the present paper, some conductivity measurements are performed relating the conductivity of inner walls of an enclosed cavity to the behaviour of PD in the case of polyethylene and of epoxy resin. The temporary decrease of the PD magnitude is explained in terms of the increase of the cavity inner wall conductivity. The PD behaviour is studied in epoxy resin samples and is explained with the aid of Pedersen's model. Scanning Electron Microscope (SEM photographs indicate the sort of damage suffered by the cavity walls under electrical stress.

  7. [Actively promote the development of neuro-ophthalmology in China].

    Science.gov (United States)

    Wei, Shi-hui; Zhao, Jia-liang

    2010-12-01

    Neuro-ophthalmology is a medical subspecialty concerned on the nervous system diseases with ocular manifestations, this could be both sensory and motor, including ocular movements, papillary responses, and the structure changes of the brain and nervous system with ocular manifestations. Although neuro-ophthalmology in China has achieved some progress, certain problems still exist, such as the professional neuro-ophthalmology team and related academic organization are still absent in China; neuro-ophthalmology knowledge has not been popularized; the new technologies for diagnosis and treatment in neuro-ophthalmology have not been absorbed and applied; the coordination and cooperation with other related disciplines are not enough. We should actively promote the development of neuro-ophthalmology in China, including organization of a professional team of neuro-ophthalmology, popularization of neuro-ophthalmology knowledge to the ophthalmologists, development of research work in neuro-ophthalmology and the collaboration with international neuro-ophthalmologists.

  8. High efficiency electric radiant holding furnaces on diecasting machines. Demonstration project at Fry's Diecastings Ltd. (London)

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Savings of over pound 19,000, in direct fuel costs, were achieved at the London foundry of Fry's Diecastings Limited in the first year following the replacement of eight conventional crucible holding furnaces by electric radiant units. In addition, the total cost of replacement parts was reduced by an estimated pound 6,000 pa, to give total savings of over pound 25,000 pa. This represents a payback of 2.5 years on the company's investment. The gross energy saving in the first year of operation was 7,290 GJ equivalent to an 83% reduction in energy use. It is considered that these figures would be typical of other sites in the pressure diecasting sector where similar furnaces are operated for 1,500 production hours per year. (author).

  9. Optimization of Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    M. Sarosa

    2007-05-01

    Full Text Available Neuro-fuzzy system has been shown to provide a good performance on chromosome classification but does not offer a simple method to obtain the accurate parameter values required to yield the best recognition rate. This paper presents a neuro-fuzzy system where its parameters can be automatically adjusted using genetic algorithms. The approach combines the advantages of fuzzy logic theory, neural networks, and genetic algorithms. The structure consists of a four layer feed-forward neural network that uses a GBell membership function as the output function. The proposed methodology has been applied and tested on banded chromosome classification from the Copenhagen Chromosome Database. Simulation result showed that the proposed neuro-fuzzy system optimized by genetic algorithms offers advantages in setting the parameter values, improves the recognition rate significantly and decreases the training/testing time which makes genetic neuro-fuzzy system suitable for chromosome classification.

  10. Society of NeuroInterventional Surgery

    Science.gov (United States)

    ... NeuroInterventional Surgery is dedicated to excellence in comprehensive, minimally-invasive care of patients with stroke, brain aneurysms, and other diseases in the head, neck and spine. In the Spotlight Physicians Call on States to ...

  11. NEURO-VASCULAR INJURIES ASSOCIATED WITH LIMB ...

    African Journals Online (AJOL)

    hi-tech

    2000-12-01

    Dec 1, 2000 ... Results: Road traffic accidents were the main cause of fractures associated with neuro- vascular ... the patients with vascular or nerve injury associated with fractures .... of traumatic aorto-iliac dissection injury in a child with.

  12. A feasibility study of full-bridge type superconducting fault current controller on electric machine power stability

    Science.gov (United States)

    Jang, J. Y.; Hwang, Y. J.; Lee, J.; Ko, T. K.

    2016-02-01

    Recently, because of the advent of Smart Grid and integration of distributed generations, electrical power grids are facing uncountable challenges. Increase of fault current is one of such serious challenges and there are some fault current limiters (FCLs) that can limit the fault current. Existing grid protection FCLs, however, simply limit the fault current passively and can allow the existing protection coordination schemes to fail. This phenomenon leads to catastrophic failure in the complex system and may cause unpredictable power grid operation. Unlike a FCL, a superconducting fault current controller (SFCC) employs a full-bridge thyristor rectifier, a high temperature superconducting (HTS) DC reactor, and an embedded control unit to maintain the fault current level at a proper value by adjusting the phase angle of thyristors. This paper contains experimental and numerical analysis to design and fabricate a SFCC system for protection and stability improvement in power grids. At first, fundamental characteristics of a SFCC system were introduced. System circuit diagram and operational principles were proposed. Secondly, the developed small-scale SFCC system was introduced and verified. A 40 Vrms/30 Arms class prototype SFCC employing HTS DC reactor was fabricated and short circuit tests that simulate various fault conditions were implemented to verify the control performance of the fault current. Finally, the practical feasibility of application of the SFCC system to the power system was studied. The problems caused by three-phase faults from the power grid were surveyed and transient stability analysis of the power system was conducted by simulations. From the experimental and simulation results, we can verify the feasibility of the SFCC in power system.

  13. Avaliação clínico-neuro-psicológica de trabalhadores expostos a mercúrio metálico em indústria de lâmpadas elétricas Neuro-psychological clinical assessment of workers in an electric lamp factory exposed to metallic mercury

    Directory of Open Access Journals (Sweden)

    Cecília Zavariz

    1992-10-01

    Full Text Available Objetivou-se estudar a intoxicação por mercúrio metálico em trabalhadores de uma indústria de lâmpadas elétricas no Estado de São Paulo, Brasil. Foram investigados 71 trabalhadores, dos quais 61 (85,92% apresentaram quadro de intoxicação crônica por mercúrio. O tempo de exposição dos trabalhadores estudados variou de 4 meses a 30 anos. Dentre os intoxicados foram detectadas alterações de coordenação motora em 57 (80,30%, neurológicas, em 56 (78,88%, de memória, em 51 (71,83%, no exame clínico, em 47 (66,20%, psiquiátricas, em 45 (63,38% e da atenção concentrada, em 37 (52,10%.This research project was undertaken for the purpose of studying poisoning by metallic mercury among workers of an electric lamp factory located in S.Paulo (Brazil. 71 workers were investigated, of whom 61 (85,92% were chronically poisoned. Exposure period ranged from 4 months to 30 years. The 57 (80.30% of chronically poisoned workers showed poor psychomotor co-ordination, 56 (78.88% showed neurological impairments, 51 (71.83% decreases in memory capacity, 47 (66.20% pathological findings in the clinical exam, 45 (63.38% psychiatric disturbances and 37 (52.10% poor performance in the concentration test.

  14. Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox

    Science.gov (United States)

    Breit, Markus; Stepniewski, Martin; Grein, Stephan; Gottmann, Pascal; Reinhardt, Lukas; Queisser, Gillian

    2016-01-01

    The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic, or reconstruction) to the simulation platform UG 4 (which harbors a neuroscientific portfolio) and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g., new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations. PMID:26903818

  15. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  16. Fundamentals of electrical drives

    CERN Document Server

    Veltman, André; De Doncker, Rik W

    2007-01-01

    Provides a comprehensive introduction to various aspects of electrical drive systems. This volume provides a presentation of dynamic generic models that cover all major electrical machine types and modulation/control components of a drive as well as dynamic and steady state analysis of transformers and electrical machines.

  17. 23 February 2010 - Polish Under Secretary of State, Ministry of Science and Higher Education, J. Szwed visiting CERN installations with sLHC Project Office T. Kurtyka and Machine Protection and Electrical Integrity Group Leader A. Siemko.

    CERN Document Server

    Michel Blanc

    2010-01-01

    Tirage 1002023-01: In LHCb experimental area with Machine Protection and Electrical Integrity Group Leader A. Siemko; Mission Counselor M. Cichucka; Counselor to the Minister M. Klimkiewicz, Under Secretary of State J. Szwed; LHCb Collaboration, national group leader, Henryk Niewodniczanski Institut of Nuclear Physics G. Polok, Collaboration Spokesperson A. Golutvin and Delegate to CERN Council A. Zalewska. Tirage 28: Visiting the Computing Centre with IT Department Head F. Hemmer Tirage 49: In CMS Control centre, buiding 354 with Collaboration Spokesperson G. Tonelli and CMS Collaboration, national group leader, University of Warsaw J. Krolikowski. Tirage 62: visiting ALICE exhibition area and counting room with Collaboration Spokesperson J. Schukraft. Tirage 82-99: Under Secretary of State address to the Polish Community Tirage 82: Machine Protection and Electrical Integrity Group Leader A. Siemko Tirage 83: Polish Delegate to CERN Council A. Zalewska. Tirage 85: Directorate Office E. Rondio Tirage 86: ATLA...

  18. The NeuroDevNet vision.

    Science.gov (United States)

    Goldowitz, Dan; McArthur, Dawn

    2011-03-01

    The NeuroDevNet Network of Centres of Excellence has created the first trans-Canada effort devoted to the study of brain development from basic to clinical to societal perspectives. NeuroDevNet's vision is to accelerate efforts to (i) understand normal brain development; (ii) enhance our ability to make diagnoses of when normal development goes awry; and (iii) develop interventions to improve or prevent neurodevelopmental disorders. An early diagnosis coupled with the right therapies, The NeuroDevNet Network of Centres of Excellence has created the first trans-Canada effort devoted to the study of brain development from basic to clinical to societal perspectives. NeuroDevNet's vision is to accelerate efforts to (i) understand normal brain development; (ii) enhance our ability to make diagnoses of when normal development goes awry; and (iii) develop interventions to improve or prevent neurodevelopmental disorders. An early diagnosis coupled with the right therapies, Demonstration Projects. Funds were also allocated for an Opportunities Initiative. There is a wide of expertise amongst NeuroDevNet members. Researchers are supported by the management centre, three Platforms (Imaging; Genetics/ Epigenetics; Animal Models) and three Cores (Neuroethics; Neuroinformatics; Knowledge Translation). We emphasize multidisciplinary training of young researchers to advance the understanding of brain disorders that affect children. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Control strategy minimizing the converter-alternating current motor losses: application to electric traction; Strategies de commande minimisant les pertes d'un ensemble convertisseur - machine alternative: application a la traction electrique

    Energy Technology Data Exchange (ETDEWEB)

    Bastiani, Ph.

    2001-02-01

    Improving the efficiency of the converter-alternating current motor system is a major task in electric traction. Global energy optimisation implies a specific approach at system scale. To reach this goal, we have chosen an algebraic method using sub-system models. To start with, a synchronous machine Park model is developed to take account magnetic saturation and iron losses. Then, an averaged model of the voltage inverter is used in order to obtain a simplified model of the losses to be implemented in our optimisation method. This is how the global model is built including losses in the synchronous machine along with the losses of the power converter. Experimental results are there to validate our approach. This study proposes a method based on algebraic formulation of the general laws to control torque. Algorithms take into account magnetic circuits saturation and power losses in both the machine and its converter. Here again, experimental results validate the algorithm on several test benches. Achieved efficiency improvement is important compared to existing usual control strategies. The proposed method can be generalised to other machine-converter systems. As a matter of fact we have extended our study to the induction machine. As a complement ti this study we have looked at the effects natural limitations of voltages and currents in the torque-speed plane. Therefore algebraic formulation of the torque-speed plane and optimisation strategies are proposed including those constraints. (author)

  20. The Danish Neuro-Oncology Registry

    DEFF Research Database (Denmark)

    Hansen, Steinbjørn

    2016-01-01

    advantage of reporting indicators is the related multidisciplinary discussions giving a better understanding of what actually is going on, thereby facilitating the work on adjusting the national guidelines in the Danish Neuro-Oncology Group. CONCLUSION: The establishment of DNOR has optimized the quality...... in handling primary brain tumor patients in Denmark by reporting indicators and facilitating a better multidisciplinary collaboration at a national level. DNOR provides a valuable resource for research.......AIM OF DATABASE: The Danish Neuro-Oncology Registry (DNOR) was established by the Danish Neuro-Oncology Group as a national clinical database. It was established for the purpose of supporting research and development in adult patients with primary brain tumors in Denmark. STUDY POPULATION: DNOR has...

  1. The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khazraji

    2016-09-01

    Full Text Available This paper deals with studying the effect of powder mixing electrical discharge machining (PMEDM parameters using copper and graphite electrodes on the white layer thickness (WLT, the total heat flux generated and the fatigue life. Response surface methodology (RSM was used to plan and design the experimental work matrices for two groups of experiments: for the first EDM group, kerosene dielectric was used alone, whereas the second was treated by adding the SiC micro powders mixing to dielectric fluid (PMEDM. The total heat flux generated and fatigue lives after EDM and PMEDM models were developed by FEM using ANSYS 15.0 software. The graphite electrodes gave a total heat flux higher than copper electrodes by 82.4%, while using the SiC powder and graphite electrodes gave a higher total heat flux than copper electrodes by 91.5%. The lowest WLT values of 5.0 µm and 5.57 µm are reached at a high current and low current with low pulse on time using the copper and graphite electrodes and the SiC powder, respectively. This means that there is an improvement in WLT by 134% and 110%, respectively, when compared with the use of same electrodes and kerosene dielectric alone. The graphite electrodes with PMEDM and SiC powder improved the experimental fatigue safety factor by 7.30% compared with the use of copper electrodes and by 14.61% and 18.61% compared with results using the kerosene dielectric alone with copper and graphite electrodes, respectively.

  2. VLSI design of universal approximator neuro-fuzzy systems

    OpenAIRE

    Baturone, I.; Sánchez-Solano, Santiago; Barriga, Angel; Jiménez Fernández, Carlos Jesús; Senhadji, Raouf; López, D. R.

    2001-01-01

    Neuro-fuzzy systems can theoretically solve any problem since they are universal approximators. Besides, they combine the advantages of the neuro and fuzzy paradigms. This paper describes and compares the different strategies that can be adopted to implement the learning and inference mechanisms involved in a neuro-fuzzy system. CAD tools, most of them integrated into the fuzzy system development environment Xfuzzy 2.0, have been developed to assist the designer in the implementation of neuro...

  3. Prolonged treatment with transcutaneous electrical nerve stimulation (TENS) modulates neuro-gastric motility and plasma levels of vasoactive intestinal peptide (VIP), motilin and interleukin-6 (IL-6) in systemic sclerosis.

    Science.gov (United States)

    McNearney, Terry A; Sallam, Hanaa S; Hunnicutt, Sonya E; Doshi, Dipti; Chen, Jiande D Z

    2013-01-01

    We assessed the effects of transcutaneous electrical nerve stimulation (TENS) on neurogastric functioning in scleroderma patients. Seventeen SSc patients underwent 30 min TENS treatment >10Hz at GI acupuncture points PC6 and ST36, once (acute TENS) and then after two weeks of TENS sessions for 30 min twice daily (prolonged TENS). Data collected at Visits 1 and 2 included gastric myoelectrical activity (GMA) by surface electrogastrography (EGG), heart rate variability (HRV) by surface electrocardiography (EKG), GI specific symptoms and health related SF-36 questionnaires. Plasma VIP, motilin and IL-6 levels were determined. Statistical analyses were performed by Student's t-test, Spearman Rank and p-values TENS, the percentages of normal slow waves and average slow wave coupling (especially channels 1, 2 reflecting gastric pacemaker and corpus regions) were significantly increased; 2. the percentage of normal slow waves was significantly correlated to sympathovagal balance; 3. Mean plasma VIP and motilin levels were significantly decreased after acute TENS, (vs. baseline), generally maintained in the prolonged TENS intervals. Compared to baseline, mean plasma IL-6 levels were significantly increased after acute TENS, but significantly decreased after prolonged TENS. 4. After prolonged TENS, the frequency of awakening due to abdominal pain and abdominal bloating were significantly and modestly decreased, respectively. In SSc patients, two weeks of daily TENS improved patient GMA scores, lowered plasma VIP, motilin and IL-6 levels and improved association between GMA and sympathovagal balance. This supports the therapeutic potential of prolonged TENS to enhance gastric myoelectrical functioning in SSc.

  4. Treatment of neuro-ophthalmic sarcoidosis.

    Science.gov (United States)

    Frohman, Larry P

    2015-03-01

    Because of the rarity of neuro-ophthalmic sarcoidosis, there are no therapeutic guidelines based on evidence-based medicine for this disorder. Review of literature combined with personal experience. Corticosteroids are the preferred initial therapy for neuro-ophthalmic sarcoidosis. If patients cannot tolerate the requisite dose of corticosteroid needed to control their disease, or if corticosteroids fail to adequately control the disease process, the choices of a second agent are based on the consideration of rapidity of clinical response and the safety profile. Although methotrexate and mycophenolate mofetil are the medications that are often selected after corticosteroid failure, more rapidly acting agents that have been used are infliximab and intravenous cyclophosphamide.

  5. Expert system to predict effects of noise pollution on operators of power plant using neuro-fuzzy approach.

    Science.gov (United States)

    Ahmed, Hameed Kaleel; Zulquernain, Mallick

    2009-01-01

    Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems. Among them, adaptive neuro-fuzzy inference system provides a systematic and directed approach for model building and gives the best possible design parameters in minimum possible time. This study aims to develop a neuro-fuzzy model to predict the effects of noise pollution on human work efficiency as a function of noise level, exposure time, and age of the operators doing complex type of task.

  6. From ‘Hard’ Neuro-Tools to ‘Soft’ Neuro-Toys? : Refocussing the Neuro-Enhancement Debate

    NARCIS (Netherlands)

    Brenninkmeijer, Jonna; Zwart, Hub

    2016-01-01

    Since the 1990’s, the debate concerning the ethical, legal and societal aspects of ‘neuro-enhancement’ has evolved into a massive discourse, both in the public realm and in the academic arena. This ethical debate, however, tends to repeat the same sets of arguments over and over again. Normative

  7. A neuro-fuzzy system for characterization of arm movements.

    Science.gov (United States)

    Balbinot, Alexandre; Favieiro, Gabriela

    2013-02-21

    The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours).

  8. A Neuro-Fuzzy System for Characterization of Arm Movements

    Directory of Open Access Journals (Sweden)

    Alexandre Balbinot

    2013-02-01

    Full Text Available The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours.

  9. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.

  10. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  11. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  12. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  13. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  14. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    National Research Council Canada - National Science Library

    Topor Marcel; Marignetti Fabrizio; Deaconu Sorin Ioan; Tutelea Lucian Nicolae

    2017-01-01

    This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control...

  15. Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2012-01-01

    in graphical and text format. Within the paper examples of real faults are provided, showing the capabilities of the method proposed. The method can be applied both to existing and new built turbines without the need of any additional hardware installation or manufacturers input.......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...

  16. Integrated Electrode Arrays for Neuro-Prosthetic Implants

    Science.gov (United States)

    Brandon, Erik; Mojarradi, Mohammede

    2003-01-01

    Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or

  17. Electric Machines with Non-Radially Mounted Rectangular Permanent Magnets / Elektriskās Mašīnas Ar Prizmatiskiem Neradiāli Novietotiem Pastāvīgajiem Magnētiem

    Science.gov (United States)

    Levin, N.; Pugachev, V.; Dirba, J.; Lavrinovicha, L.

    2013-04-01

    The authors analyze the advantages and disadvantages of brushless synchronous electric machines with radially and non-radially mounted rectangular permanent magnets. The results show that the proposed nonradial mounting of permanent magnets considered in the paper, in several cases (e.g. multi-pole brushless generators with tooth windings of the armature) allows achievement of the following advantages: better technology of manufacturing the electric machine owing to simple packing of the stator winding in the stator open slots, which also increases the copper slot fillfactor; reduction in the mass-and-size of permanent magnets at least twice; significantly lower cost of the electric machine; and, finally, its greater specific power. Darbā tiek analizētas priekšrocības un trūkumi sinhronām bezkontaktu mašīnām ar radiāli un neradiāli novietotiem prizmatiskiem pastāvīgajiem magnētiem. Parādīts, ka vairākos gadījumos, piemēram, daudzpolu bezkontaktu sinhronajos ģeneratoros ar zobu tinumiem, neradiāls pastāvīgo magnētu izvietojums nodrošina vairākas priekšrocības: uzlabojas mašīnas izgatavošanas tehnoloģija, jo statora atvērtajās rievās vieglāk novietot tinumus un iespējams sasniegt augstāku rievas aizpildījuma koeficientu; samazinās pastāvīgo magnētu masa un izmaksas; palielinās mašīnas īpatnēja jauda.

  18. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  19. Neuro-oncology of CNS tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, J.C. [Klinikum Grosshadern, Muenchen (Germany). Dept. of Neurosurgery; Westphal, M. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Neurochirurgische Klinik; Rutka, J.T. [Toronto Univ. Hospital for Sick Children, ON (Canada). Div. of Neurosurgery; Grossmann, S.A. (eds.) [Johns Hopkins Oncology Center Neuro-Oncology, Baltimore, MD (United States)

    2006-07-01

    Diagnosis and treatment modalities for neuro-oncologic diseases have made considerable advances in recent years. There is hardly a segment of the field of solid tumours that is experiencing such dynamic development with regard to basic scientific findings and clinical results. In the present book the world's leading experts have compiled the current practice-relevant knowledge of neuro-oncologic diseases. The book's clear structure and the uniform presentation of all chapters make this volume a valuable reference, especially for practice-oriented activities, allowing swift access to information about current treatment standards. Hence it will be of great value to both clinicians and researchers. (orig.)

  20. A Multivariate Approach to Functional Neuro Modeling

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.

    1998-01-01

    exists. - Model visualization and interpretation techniques. The simplicity of this task for linear models contrasts the difficulties involved when dealing with nonlinear models. Finally, a visualization technique for nonlinear models is proposed. A single observation emerges from the thesis......This Ph.D. thesis, A Multivariate Approach to Functional Neuro Modeling, deals with the analysis and modeling of data from functional neuro imaging experiments. A multivariate dataset description is provided which facilitates efficient representation of typical datasets and, more importantly......, provides the basis for a generalization theoretical framework relating model performance to model complexity and dataset size. Briefly summarized the major topics discussed in the thesis include: - An introduction of the representation of functional datasets by pairs of neuronal activity patterns...

  1. Neuro-imaging in Patients Referred to a Neuro-ophthalmology Service: The Rates of Appropriateness and Concordance in Interpretation

    Science.gov (United States)

    McClelland, Collin; Van Stavern, Gregory P.; Shepherd, J. Banks; Gordon, Mae; Huecker, Julia

    2012-01-01

    Objective Neuro-imaging studies are frequently ordered to investigate neuro-ophthalmic symptoms. When misused these studies are expensive and time-consuming. This study aimed to describe the type and frequency of neuro-imaging errors in patients referred to an academic neuro-ophthalmology service and to measure how frequently these neuro-imaging studies were re-interpreted. Design Prospective cohort study Participants 84 consecutive patients referred to an academic neuro-ophthalmology practice Methods From November 2009 through July 2010 we prospectively enrolled 84 consecutive new patients who had received a neuro-imaging study in the last 12 months specifically in evaluation of their presenting neuro-ophthalmic symptoms. Participants then underwent a complete neuro-ophthalmic evaluation followed by a review of prior neuro-imaging. Questions regarding appropriateness of the most recent imaging, concordance of radiological interpretation, and re-evaluation of referring diagnoses were answered by the attending physician. Main Outcome Measures 1. The frequency and types of errors committed in the utilization of neuro-imaging. 2. The frequency of re-interpretation of pre-referral neuro-imaging studies following neuro-ophthalmic history and examination. Results Most study participants (84.5%; 71/84) underwent magnetic resonance imaging (MRI) prior to referral; 15.5% (13/84) underwent only computed tomography (CT). The rate of sub-optimal neuro-imaging studies was 38.1% (32/84). The three most common reasons for sub-optimal studies were incomplete area of imaging (34.4%; 11/32), wrong study type (28.1%; 9/32), and poor image quality (21.9%; 7/32). 24 of 84 subjects (28.6%) required additional neuro-imaging. We agreed with the radiology interpretation of the prior neuro-imaging studies in the majority (77.4%; 65/84) of patients. The most common anatomic locations for discordance in interpretation were the intraorbital optic nerve (35%; 7/20) and the brainstem (20%; 4

  2. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  3. A Groundwork for Allostatic Neuro-Education

    OpenAIRE

    Lee eGerdes; Tegeler, Charles H; Sung eLee

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive cr...

  4. A groundwork for allostatic neuro-education

    OpenAIRE

    Gerdes, Lee; Tegeler, Charles H; Lee, Sung W

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive cr...

  5. MANIFESTATIONS NEURO-OPHTHALMOLOGIQUES DE LA ...

    African Journals Online (AJOL)

    L\\'oedème papillaire (17%) et les paralysies des nerfs oculo-moteurs (6%) touchant principalement le nerf oculo-moteur externe étaient les manifestations neuro-ophtalmologiques les plus fréquentes. L\\'amputation du champs visuel, la cécité corticale et le nystagmus étaient observés respectivement chez 5, 2 et 1 patient.

  6. Arquivos de Neuro-Psiquiatria: 75 years.

    Science.gov (United States)

    Teive, Hélio A Ghizoni; Caramelli, Paulo

    2018-01-01

    This year marks the 75th year of publication of Arquivos de Neuro-Psiquiatria (ANP), the official journal of the Brazilian Academy of Neurology and one of the most important neuroscience journals in Latin America. ANP was initially edited by Oswaldo Lange, its founder, and subsequently by Antonio Spina-França Netto and, in recent years, by José Antonio Livramento and Luís dos Ramos Machado.

  7. Characterizing the Effects of Micro Electrical Discharge Machining Parameters on Material Removal Rate during Micro EDM Drilling of Tungsten Carbide (WC-Co)

    Science.gov (United States)

    Hourmand, Mehdi; Sarhan, Ahmed A. D.; Sayuti, Mohd

    2017-10-01

    Micro-dies, molds and miniaturized products can be manufactured using micro EDM process. In this research, EDM machine and on-machine fabricated CuW micro-electrode were utilized to produce the micro holes in WC-16%Co. The effects of voltage, current, pulse ON time, pulse OFF time, capacitor and rotating speed on Material removal rate (MRR) during micro EDM drilling of WC-16% Co was analyzed using fractional factorial design method. ANOVA analysis shows that increasing current, rotating speed, capacitor and decreasing voltage and pulse ON time lead to the amplify in MRR. It was found that out of all the factors, current and capacitor had the most significant effect on MRR, while the effect of capacitor was more than current. Eventually, it can be concluded that micro holes can be produced using EDM machine.

  8. Primal Domain Decomposition Method with Direct and Iterative Solver for Circuit-Field-Torque Coupled Parallel Finite Element Method to Electric Machine Modelling

    Directory of Open Access Journals (Sweden)

    Daniel Marcsa

    2015-01-01

    Full Text Available The analysis and design of electromechanical devices involve the solution of large sparse linear systems, and require therefore high performance algorithms. In this paper, the primal Domain Decomposition Method (DDM with parallel forward-backward and with parallel Preconditioned Conjugate Gradient (PCG solvers are introduced in two-dimensional parallel time-stepping finite element formulation to analyze rotating machine considering the electromagnetic field, external circuit and rotor movement. The proposed parallel direct and the iterative solver with two preconditioners are analyzed concerning its computational efficiency and number of iterations of the solver with different preconditioners. Simulation results of a rotating machine is also presented.

  9. Input coding for neuro-electronic hybrid systems.

    Science.gov (United States)

    George, Jude Baby; Abraham, Grace Mathew; Singh, Katyayani; Ankolekar, Shreya M; Amrutur, Bharadwaj; Sikdar, Sujit Kumar

    2014-12-01

    Liquid State Machines have been proposed as a framework to explore the computational properties of neuro-electronic hybrid systems (Maass et al., 2002). Here the neuronal culture implements a recurrent network and is followed by an array of linear discriminants implemented using perceptrons in electronics/software. Thus in this framework, it is desired that the outputs of the neuronal network, corresponding to different inputs, be linearly separable. Previous studies have demonstrated this by either using only a small set of input stimulus patterns to the culture (Hafizovic et al., 2007), large number of input electrodes (Dockendorf et al., 2009) or by using complex schemes to post-process the outputs of the neuronal culture prior to linear discriminance (Ortman et al., 2011). In this study we explore ways to temporally encode inputs into stimulus patterns using a small set of electrodes such that the neuronal culture's output can be directly decoded by simple linear discriminants based on perceptrons. We demonstrate that network can detect the timing and order of firing of inputs on multiple electrodes. Based on this, we demonstrate that the neuronal culture can be used as a kernel to transform inputs which are not linearly separable in a low dimensional space, into outputs in a high dimension where they are linearly separable. Thus simple linear discriminants can now be directly connected to outputs of the neuronal culture and allow for implementation of any function for such a hybrid system. Copyright © 2014. Published by Elsevier Ireland Ltd.

  10. Minimal approach to neuro-inspired information processing

    Directory of Open Access Journals (Sweden)

    Miguel C. Soriano

    2015-06-01

    Full Text Available To learn and mimic how the brain processes information has been a major research challenge for decades. Despite the efforts, little is known on how we encode, maintain and retrieve our memories. One of the hypothesis assumes that transient states are generated in our intricate network of neurons when the brain is stimulated by a sensory input. Based on this idea, powerful computational schemes have been developed. These schemes, known as machine-learning techniques, include artificial neural networks, support vector machine and reservoir computing, among others.In this paper, we concentrate on the reservoir computing (RC technique using delay-coupled systems. Unlike traditional RC, where the information is processed in large recurrent networks of interconnected artificial neurons, we choose a minimal design, implemented via a simple nonlinear dynamical system subject to a self-feedback loop with delay. This design is not intended to represent an actual brain circuit, but aims at finding the minimum ingredients that allow developing an efficient information processor. This simple scheme not only allows us to address fundamental questions but also permits simple hardware implementations. By reducing the neuro-inspired reservoir computing approach to its bare essentials, we find that nonlinear transient responses of the simple dynamical system enable the processing of information with excellent performance and at unprecedented speed. We specifically explore different hardware implementations and, by that, we learn about the role of nonlinearity, noise, system responses, connectivity structure, and the quality of projection onto the required high-dimensional state space. Besides the relevance for the understanding of basic mechanisms, this scheme opens direct technological opportunities that could not be addressed with previous approaches.

  11. Neuro-fuzzy system for prostate cancer diagnosis.

    Science.gov (United States)

    Benecchi, Luigi

    2006-08-01

    To develop a neuro-fuzzy system to predict the presence of prostate cancer. Neuro-fuzzy systems harness the power of two paradigms: fuzzy logic and artificial neural networks. We compared the predictive accuracy of our neuro-fuzzy system with that obtained by total prostate-specific antigen (tPSA) and percent free PSA (%fPSA). The data from 1030 men (both outpatients and hospitalized patients) were used. All men had a tPSA level of less than 20 ng/mL. Of the 1030 men, 195 (18.9%) had prostate cancer. A neuro-fuzzy system was developed using the coactive neuro-fuzzy inference system model. The mean area under the receiver operating characteristic curve for the neuro-fuzzy system output was 0.799 +/- 0.029 (95% confidence interval 0.760 to 0.835), for tPSA, it was 0.724 +/- 0.032 (95% confidence interval 0.681 to 0.765), and for %fPSA, 0.766 +/- 0.024 (95% confidence interval 0.725 to 0.804). Furthermore, pairwise comparison of the area under the curves evidenced differences among %fPSA, tPSA, and neuro-fuzzy system's output (tPSA versus neuro-fuzzy system's output, P = 0.008; %fPSA versus neuro-fuzzy system's output, P = 0.032). The comparison at 95% sensitivity showed that the neuro-fuzzy system had the best specificity (31.9%). This study presented a neuro-fuzzy system based on both serum data (tPSA and %fPSA) and clinical data (age) to enhance the performance of tPSA to discriminate prostate cancer. The predictive accuracy of the neuro-fuzzy system was superior to that of tPSA and %fPSA.

  12. Permutation Machines.

    Science.gov (United States)

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems.

  13. Anaesthesia machine: Checklist, hazards, scavenging

    Directory of Open Access Journals (Sweden)

    Umesh Goneppanavar

    2013-01-01

    Full Text Available From a simple pneumatic device of the early 20 th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc. more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  14. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.

    Science.gov (United States)

    Malosio, Matteo; Negri, Simone Pio; Pedrocchi, Nicola; Vicentini, Federico; Caimmi, Marco; Molinari Tosatti, Lorenzo

    2012-01-01

    The ankle represents a fairly complex bone structure, resulting in kinematics that hinders a flawless robot-assisted recovery of foot motility in impaired subjects. The paper proposes a novel device for ankle-foot neuro-rehabilitation based on a mechatronic redesign of the remarkable Agile Eye spherical robot on the basis of clinical requisites. The kinematic design allows the positioning of the ankle articular center close to the machine rotation center with valuable benefits in term of therapy functions. The prototype, named PKAnkle, Parallel Kinematic machine for Ankle rehabilitation, provides a 6-axes load cell for the measure of subject interaction forces/torques, and it integrates a commercial EMG-acquisition system. Robot control provides active and passive therapeutic exercises.

  15. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  16. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M.

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  17. Loss Prediction and Thermal Analysis of Surface-Mounted Brushless AC PM Machines for Electric Vehicle Application Considering Driving Duty Cycle

    Directory of Open Access Journals (Sweden)

    Tianxun Chen

    2016-01-01

    Full Text Available This paper presents a computationally efficient loss prediction procedure and thermal analysis of surface-mounted brushless AC permanent magnet (PM machine considering the UDDS driving duty cycle by using a lumped parameters’ thermal model. The accurate prediction of loss and its variation with load are essential for thermal analysis. Employing finite element analysis (FEA to determine loss at every load point would be computationally intensive. Here, the finite element analysis and/or experiment based computationally efficient winding copper and iron loss and permanent magnet (PM power loss models are employed to calculate the electromagnetic loss at every operation point, respectively. Then, the lumped parameter thermal method is used to analyse the thermal behaviour of the driving PM machine. Experiments have been carried out to measure the temperature distribution in a motor prototype. The calculation and experiment results are compared and discussed.

  18. INFLUENCE OF POWER SPENT ON OVERCOMING CUTTING RESISTANCE FORCES ON ELECTRIC MOTOR POWER IN SYSTEM OF AUTOMATIC MACHINE CONTROL WITH NUMERICAL PROGRAMMED CONTROL

    Directory of Open Access Journals (Sweden)

    Shuxin Xu

    2009-01-01

    Full Text Available If a defect unexpectedly arises in the direction of supply while working a «free» curve being distinguished by a arbitrary curvature and small value twisting from the given ones then there will be worsening of cutting process that will lead to surface defects of the machined surface or tool break down. A method of wave analysis has been used for an experimental study of power in specific frequency bands and a minimum cutter damage has been obtained which with power on a drive motor makes it possible to control supply, restoring the condition of cutting. A technical novelty of automatic control method has been proposed according to instantaneous defect by means wave change on a drive motor. The problem of quantitative assessment of machined surface defects has been successfully solved in the paper.

  19. Neuro-epistemology: a post-modernist analysis of the neuro ...

    African Journals Online (AJOL)

    This paper examines the theoretical framework in which we construct our terms of reference when examining patients from an integrated Meyerian biopsychosocial perspective. We coin the term iยDneuro-epistemologylo, defining the frame for scientific inquiry into the nature and status of knowledge in neuro-sciences, ...

  20. [To strengthen the education on basic knowledge and skills of neuro-ophthalmology].

    Science.gov (United States)

    Zhang, Xiao-jun; Wang, Ning-li

    2011-12-01

    Basic knowledge and skills are cornerstone of the diagnosis and treatment of neuro-ophthalmology diseases in ophthalmology practice. Due to the interdisciplinary features of neuro-ophthalmology, neuro-anatomy, neuro-physiology related to eyes, neuro-image and neuro-electrodiagnosis, these should be included in the education for the ophthalmologist. Special attention should be paid to training on capability of logically thinking in neuro-ophthalmology. Multiple ways can be used for the education of ophthalmologists and neurologists for the enhancement of basic knowledge and skills of neuro-ophthalmology in China.

  1. The Danish Neuro-Oncology Registry

    Directory of Open Access Journals (Sweden)

    Hansen S

    2016-10-01

    Full Text Available Steinbjørn Hansen Department of Oncology, Odense University Hospital and Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark Aim of database: The Danish Neuro-Oncology Registry (DNOR was established by the Danish Neuro-Oncology Group as a national clinical database. It was established for the purpose of supporting research and development in adult patients with primary brain tumors in Denmark. Study population: DNOR has registered clinical data on diagnostics and treatment of all adult patients diagnosed with glioma since January 1, 2009, which numbers approximately 400 patients each year. Main variables: The database contains information about symptoms, presurgical magnetic resonance imaging (MRI characteristics, performance status, surgical procedures, residual tumor on postsurgical MRI, postsurgical complications, diagnostic and histology codes, radiotherapy, and chemotherapy. Descriptive data: DNOR publishes annual reports on descriptive data. During the period of registration, postoperative MRI is performed in a higher proportion of the patients (Indicator II, and a higher proportion of patients have no residual tumor after surgical resection of the primary tumor (Indicator IV. Further data are available in the annual reports. The indicators reflect only minor elements of handling brain tumor patients. Another advantage of reporting indicators is the related multidisciplinary discussions giving a better understanding of what actually is going on, thereby facilitating the work on adjusting the national guidelines in the Danish Neuro-Oncology Group. Conclusion: The establishment of DNOR has optimized the quality in handling primary brain tumor patients in Denmark by reporting indicators and facilitating a better multidisciplinary collaboration at a national level. DNOR provides a valuable resource for research. Keywords: brain neoplasms, brain cancer, glioma, clinical quality indicators

  2. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  3. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  4. Advanced MR Imaging in Neuro-oncology.

    Science.gov (United States)

    Radbruch, A; Bendszus, M

    2015-10-01

    The value of magnetic resonance (MR) imaging for the clinical management of brain tumour patients has greatly increased in recent years through the introduction of functional MR sequences. Previously, MR imaging for brain tumours relied for the most part on contrast-enhanced T1-weighted MR sequences but today with the help of advanced functional MR sequences, the pathophysiological aspects of tumour growth can be directly visualised and investigated. This article will present the pathophysiological background of the MR sequences relevant to neuro-oncological imaging as well as potential clinical applications. Ultimately, we take a look at possible future developments for ultra-high-field MR imaging.

  5. Monel Machining

    Science.gov (United States)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  6. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  7. Roles of neuro-exocytotic proteins at the neuromuscular junction

    NARCIS (Netherlands)

    Sons-Michel, Michèle S.

    2011-01-01

    The aim of the studies described in the thesis was to elucidate the roles of several neuro-exocytotic proteins at the motor nerve terminal in neuromuscular synaptic transmission, making use of genetic knockout (KO) mice, each missing one (or more) neuro-exocytotic proteins. In addition, it was

  8. Neuro-flow Dynamics and the Learning Processes

    OpenAIRE

    Tatsuno, M.; Aizawa, Y.

    1997-01-01

    A new description of the neural activity is introduced by the neuro-flow dynamics and the extended Hebb rule. The remarkable characteristics of the neuro-flow dynamics, such as the primacy and the recency effect during awakeness or sleep, are pointed out.

  9. Improving English Instruction through Neuro-Linguistic Programming

    Science.gov (United States)

    Helm, David Jay

    2009-01-01

    This study examines the background information and numerous applications of neuro-linguistic programming as it applies to improving English instruction. In addition, the N.L.P. modalities of eye movement, the use of predicates, and posturing are discussed. Neuro-linguistic programming presents all students of English an opportunity to reach their…

  10. A Review of Neuro-ophthalmologic Emergencies | Fiebai | Nigerian ...

    African Journals Online (AJOL)

    Method: The available literature on neuro-ophthalmologic emergencies was reviewed, using available journals and internet based search engines and resources. Keywords employed were Neuro-ophthalmology Emergency and Ocular Morbidity. Result: The incidence of this group of emergencies is lower than that of other ...

  11. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Science.gov (United States)

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  12. Neuro-pharmacological functional MRI of epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji [Okayama Univ. (Japan). School of Medicine; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-03-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  13. Electric field analysis

    CERN Document Server

    Chakravorti, Sivaji

    2015-01-01

    This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.

  14. Updates from the 2013 Society for Neuro-Oncology annual and World Federation for Neuro-Oncology quadrennial meeting.

    Science.gov (United States)

    Lukas, Rimas V; Amidei, Christina

    2014-01-01

    We present an overview of a number of key clinical studies in infiltrating gliomas presented at the 2013 Society for Neuro-Oncology and World Federation of Neuro-Oncology joint meeting. This review focuses on efficacy results, including quality of life studies, from larger clinical trials in both high- and low-grade infiltrating gliomas.

  15. The effect of the variable frequency drive of the CNC roll grinding machine on the operation of other devices in low-voltage electrical installation

    Directory of Open Access Journals (Sweden)

    Simić Ninoslav

    2016-01-01

    Full Text Available This paper presents one of the observations that have been collected during the years of testing of electrical installations. A typical case from industrial plant in which are installed loads with variable frequency regulation is analyzed. We propose a simple way by measuring the frequency of the voltage in the objects, to establish the existence of possible irregularities in the operation of the individual units and analyze the influence of the current and voltage signal shape of one load to the work of other loads in the plant. The need for verification of electrical installations immediately upon receipt and installation of electrical equipment is emphasized and the use of the latest standards in the design and selection of equipment, in order to avoid unplanned expenses is recommended.

  16. Feasibility study on production of Metal Matrix Composite (MMC material for Electrical Discharge Machining (EDM tools using Rapid Prototyping (RP technique

    Directory of Open Access Journals (Sweden)

    Shamsudin S.

    2017-01-01

    Full Text Available In common practice, tools for EDM have traditionally been made by machining copper or graphite to the required profile using CNC machines. Increasing the degree of complexity of any tooling design for any operations results in a corresponding increase in time and cost required. With the advent of rapid prototyping techniques, the problem of making tools with complex shapes becomes much simpler and easy. The main aim of this research was to develop new EDM electrode material through a novel approach by rapid prototyping (RP technique. In this study, the potential application of copper (Cu reinforced alumina (Al2O3 fabricated with various compositions as an EDM electrode was investigated. The electrodes were fabricated by Canon PIXMA IP 1800 printer and underwent sintering temperature at 85 % and 95 % melting point of copper. The EDMed workpiece was aluminium and the electrodes surface was analyzed through scanning electron microscope (SEM. Findings showed that the electrode with Cu - 0 vol. %Al2O3 composite and sintered at temperature 977 °C resulted in highest metal removal rate (MRR and lowest electrode wear rate (EWR while Cu – 10 vol. %Al2O3 composite and sintered at temperature 977 °C revealed a better surface finish than other electrodes. An increase in Al2O3 content in general will increase the hardness of tool, as a trade-off, the conductivity was reduced.

  17. Brain-like functor control machine for general humanoid biodynamics

    OpenAIRE

    Vladimir Ivancevic; Nicholas Beagley

    2005-01-01

    A novel, brain-like, hierarchical (affine-neuro-fuzzy-topological) control for biomechanically realistic humanoid-robot biodynamics (HB), formulated previously in [15, 16], is proposed in the form of a tensor-invariant, “meta-cybernetic” functor machine. It represents a physiologically inspired, three-level, nonlinear feedback controller of muscular-like joint actuators. On the spinal level, nominal joint-trajectory tracking is formulated as an affine Hamiltonian control system, resembl...

  18. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

    OpenAIRE

    Kupiec Emil; Przyborowski Włodzimierz

    2015-01-01

    Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation syste...

  19. Machine Protection

    CERN Document Server

    Zerlauth, Markus; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  20. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  1. Online Dynamic Parameter Estimation of Synchronous Machines

    Science.gov (United States)

    West, Michael R.

    Traditionally, synchronous machine parameters are determined through an offline characterization procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the fundamental characteristics and behaviors of a given machine. These characteristics and behaviors can be used to develop and understand machine models that accurately reflect the machine's performance. To perform such tests, the machine is required to be removed from service. Characterizing a machine offline can result in economic losses due to down time, labor expenses, etc. Such losses may be mitigated by implementing online characterization procedures. Historically, different approaches have been taken to develop methods of calculating a machine's electrical characteristics, without removing the machine from service. Using a machine's input and response data combined with a numerical algorithm, a machine's characteristics can be determined. This thesis explores such characterization methods and strives to compare the IEEE 115 standard for offline characterization with the least squares approximation iterative approach implemented on a 20 h.p. synchronous machine. This least squares estimation method of online parameter estimation shows encouraging results for steady-state parameters, in comparison with steady-state parameters obtained through the IEEE 115 standard.

  2. The human resource crisis in neuro-ophthalmology.

    Science.gov (United States)

    Frohman, Larry P

    2008-09-01

    Neuro-ophthalmology is facing a serious human resource issue. Few are entering the subspecialty, which is perceived as being poorly compensated compared with other subspecialties of ophthalmology. The low compensation comes from the fact that 1) non-procedural encounters remain undervalued, 2) efforts that benefit other medical specialists are not counted, and 3) the relatively low expenses of neuro-ophthalmologists are not factored into compensation formulas. Mission-based budgeting, which forces academic departments to be financially accountable without the expectation of fiscal relief from medical schools or practice plans, has exacerbated the compensation issue. Solutions must come from within neuro-ophthalmology, academic departments, medical schools, and medical practice plans. They include 1) providing educational resources so that neuro-ophthalmologists need not spend so much time teaching the basics, 2) factoring into compensation the impact of neuro-ophthalmologists in teaching and on revenue generation by procedure-based specialists, 3) improving the efficiency of neuro-ophthalmologists in their consultative practices by providing ample clerical support and other measures, 4) providing contractual salary compensation by departments such as neurosurgery to recognize the contributions made by neuro-ophthalmologists, and 5) reorganizing the academic clinical effort as multidisciplinary rather than departmental.

  3. Generative NeuroEvolution for Deep Learning

    OpenAIRE

    Verbancsics, Phillip; Harguess, Josh

    2013-01-01

    An important goal for the machine learning (ML) community is to create approaches that can learn solutions with human-level capability. One domain where humans have held a significant advantage is visual processing. A significant approach to addressing this gap has been machine learning approaches that are inspired from the natural systems, such as artificial neural networks (ANNs), evolutionary computation (EC), and generative and developmental systems (GDS). Research into deep learning has ...

  4. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    Science.gov (United States)

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  6. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...

  7. Paraneoplastic Syndromes in Neuro-Ophthalmology.

    Science.gov (United States)

    Gordon, Lynn K

    2015-09-01

    Paraneoplastic syndromes that affect the visual pathways and present with neuro-ophthalmologic signs or symptoms may involve the afferent or efferent systems. Afferent syndromes may involve the optic nerve or retina and, in some cases, these may be associated with systemic neurologic disease. Efferent symptoms typically affect eye movements and may involve the neuromuscular junction or involuntary eye movements. Literature review and personal clinical and research experience. Diagnosis of paraneoplastic syndromes relies on clinical and laboratory evaluations. In the appropriate clinical setting, the presence of specific antibodies may help confirm the diagnosis. In some cases, the visual pathway disturbance precedes a diagnosis of malignancy. Astute observation and selective evaluation and management are critical to establish the correct diagnosis and institute therapeutic approaches that can be sight or life saving.

  8. Diagnostic imaging in neuro-ophthalmology.

    Science.gov (United States)

    Vela Marín, A C; Seral Moral, P; Bernal Lafuente, C; Izquierdo Hernández, B

    2018-01-20

    Neuro-ophthalmology is a field combining neurology and ophthalmology that studies diseases that affect the visual system and the mechanisms that control eye movement and pupil function. Imaging tests make it possible to thoroughly assess the relevant anatomy and disease of the structures that make up the visual pathway, the nerves that control eye and pupil movement, and the orbital structures themselves. This article is divided into three sections (review of the anatomy, appropriate imaging techniques, and evaluation of disease according to clinical symptoms), with the aim of providing useful tools that will enable radiologists to choose the best imaging technique for the differential diagnosis of patients' problems to reach the correct diagnosis of their disease. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Visual displays and Neuro-Linguistic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A. [Argonne National Lab., Idaho Falls, ID (United States); VanHoozer, W.R. [Tranceformations Unlimited, Rigby, ID (United States)

    1994-10-01

    Advancement of computer technology is forthcoming at such a rapid pace that the research concerning the interplay of humans and computer technology is lagging far behind. One area of particular concern is the design of visual displays that are pragmatic, ``user friendly,`` and ``user assisting.`` When engineers design visual displays, they generally do so methodically and logically, but only from within their own individual perspective or ``model of the world.`` They select the human aspects which make sense to them and not necessarily to non-engineers, operators, and others. The model design is what the engineer chooses to relate, based on his or her perspective of reality. These choices limit the model design thereby excluding the users` perspective. A set of techniques which can be used to assist the designers in expanding their choices and include the users` model is Neuro-Linguistic Programming (NLP).

  10. The Danish Neuro-Oncology Registry

    DEFF Research Database (Denmark)

    Hansen, Steinbjørn; Nielsen, Jan; Laursen, René J

    2016-01-01

    BACKGROUND: The Danish Neuro-Oncology Registry (DNOR) is a nationwide clinical cancer database that has prospectively registered data on patients with gliomas since January 2009. The purpose of this study was to describe the establishment of the DNOR and further to evaluate the database...... Pathology Registry. The data validity of important clinical variables was evaluated by a random sample of 100 patients from the DNOR using the medical records as reference. RESULTS: A total of 2241 patients were registered in the DNOR by December 2014 with an overall patient completeness of 92 %, which...... of patient registration was very high (92 %) and the validity of the most important patient data was good. The DNOR is a newly established national database, which is a reliable source for future scientific studies and clinical quality assessments among patients with gliomas....

  11. Designing Flexible Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation Systems

    OpenAIRE

    Zahra Mohammadi; Mohammad Teshnehlab; Mahdi Aliyari Shoorehdeli

    2011-01-01

    This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then we use two types of flexible neuro-fuzzy systems as controllers. Basic flexible OR-type neuro-fuzzy...

  12. A Groundwork for Allostatic Neuro-Education

    Directory of Open Access Journals (Sweden)

    Lee eGerdes

    2015-08-01

    Full Text Available We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change. The result is a groundwork for allostatic neuro-education (GANE. Education as development encompasses practices including the organic (homeschooling and related traditions, cognitive acquisition (emphasis on standards and testing, and the constructivist (aimed to support adaptive creativity for both learner and society. Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused exclusively on testing, or neuroscience based on homeostasis (stability through constancy. The GANE perspective is to view the learner in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner; and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger’s Syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the twenty-first century.

  13. A groundwork for allostatic neuro-education

    Science.gov (United States)

    Gerdes, Lee; Tegeler, Charles H.; Lee, Sung W.

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger’s syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century. PMID:26347688

  14. A groundwork for allostatic neuro-education.

    Science.gov (United States)

    Gerdes, Lee; Tegeler, Charles H; Lee, Sung W

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger's syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century.

  15. Neuro-inflammation, blood-brain barrier, seizures and autism

    Directory of Open Access Journals (Sweden)

    Theoharides Theoharis C

    2011-11-01

    Full Text Available Abstract Many children with Autism Spectrum Diseases (ASD present with seizure activity, but the pathogenesis is not understood. Recent evidence indicates that neuro-inflammation could contribute to seizures. We hypothesize that brain mast cell activation due to allergic, environmental and/or stress triggers could lead to focal disruption of the blood-brain barrier and neuro-inflammation, thus contributing to the development of seizures. Treating neuro-inflammation may be useful when anti-seizure medications are ineffective.

  16. The differential induction machine: Theory and performance

    Indian Academy of Sciences (India)

    Differential drive; electric vehicle drive; induction machine. 1. Introduction. The concept of a differential motor was presented (Crelerot et al 1993), but was never anal- ysed in detail nor verified experimentally. This paper presents the theory, construction and performance of the machine, based on experimental results from a ...

  17. Dynamic Performances of Asynchronous Machines | Ubeku ...

    African Journals Online (AJOL)

    The dynamic performance of electrical machines is affected by low and unbalanced voltages, frequency variations in its supply systems and pulsating load torques. In this paper the d-q axis model in the synchronous reference frame is used in the dynamic analysis on the performance of an asynchronous machine working ...

  18. Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.

    Directory of Open Access Journals (Sweden)

    Georgina Cosma

    Full Text Available The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA level, the biopsy most common tumor pattern (Primary Gleason pattern and the second most common tumor pattern (Secondary Gleason pattern in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD or Extra-Prostatic Disease (ED using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC, with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812. The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR

  19. Robust control decentralized by sliding ways of electrical of power multi-machines systems; Control robusto descentralizado por modos deslizantes de sistemas electricos de potencia multimaquinas

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Avila, Hector

    2008-09-15

    This work deals with the problem of robust decentralized control of multimachine electric power systems. These systems are subject to different perturbations, such as short circuits, connection and/or disconnection of loads, lines generators, mechanical torque variations, etc. Then, it is necessary controllers which guarantee robustness under those perturbations to provide electrical energy to the loads with admissible stability margins. Moreover, the controller must be robust under parametric variations due to model uncertainties, and other physical reasons. The electrical power systems are modeled as complex great scale nonlinear systems. Then, the controller design is a challenging problem. Thus, the decentralized control schemes enable to avoid these problems. This work proposes three novel robust nonlinear techniques. The first one is based on the block control and integral sliding modes. The second obtains a sliding manifold from the Hamiltonian model of a nonlinear system to use this manifold in the integral sliding modes. The third technique enables to apply the sliding mode technique to a nonlinear block controllable system, by using Lyapunov function in each block. Then, four control schemes for electric power systems are designed. The four control schemes are robust under the perturbations of electric power systems mentioned above. The controllers proposed can be implemented in any electric power system with n generators, m lines and k loads. [Spanish] Este trabajo esta dedicado al diseno de esquemas de control robustos descentralizados que sean capaces de responder satisfactoriamente en sistemas electricos de potencia multimaquinas. Estos sistemas estan sujetos a perturbaciones de diferentes tipos, como cortos circuitos, entrada y salida de lineas de cargas o de generadores. Es evidente la necesidad de controladores que puedan rechazar estas perturbaciones para proveer energia de calidad y sin interrupciones a todos los usuarios conectados a la red

  20. The UC Davis/NIH NeuroMab Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the UC Davis/NIH NeuroMab facility is to generate and distribute high quality, validated mouse monoclonal antibodies against molecular targets found...

  1. 2nd International Conference on NeuroRehabilitation

    CERN Document Server

    Andersen, Ole; Akay, Metin

    2014-01-01

    The book is the proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR 2014), held 24th-26th June 2014 in Aalborg, Denmark. The conference featured the latest highlights in the emerging and interdisciplinary field of neural rehabilitation engineering and identified important healthcare challenges the scientific community will be faced with in the coming years. Edited and written by leading experts in the field, the book includes keynote papers, regular conference papers, and contributions to special and innovation sessions, covering the following main topics: neuro-rehabilitation applications and solutions for restoring impaired neurological functions; cutting-edge technologies and methods in neuro-rehabilitation; and translational challenges in neuro-rehabilitation. Thanks to its highly interdisciplinary approach, the book will not only be a  highly relevant reference guide for academic researchers, engineers, neurophysiologists, neuroscientists, physicians and physiotherapists workin...

  2. Neuro-fuzzy controller for active ankle foot orthosis

    Directory of Open Access Journals (Sweden)

    Rishabh Kochhar

    2016-09-01

    Full Text Available The ankle foot orthosis (AFO is as an assistive device used in foot disability for gait improvement. The objective of this paper was to design a neuro fuzzy controller for an AFO. Adaptive neuro fuzzy inference system (ANFIS was selected after a detailed study of existing neuro-fuzzy architectures. Data of gait pattern was collected with the help of analog gyro sensors. This data was fed to the ANFIS and a fuzzy rule base was created to complete the neuro-fuzzy system which was used to control the gait pattern. Angular velocity and angle of feet served as inputs to the controller and the output was actuation. The results obtained showed sigmoidal membership functions for the various inputs and outputs due to their close resemblance with the normal human gait. Output of the ANFIS showcased the initial data which was fed to the system; the modified data; changed membership functions and error after training.

  3. Fullerene Machines

    Science.gov (United States)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Fullerenes possess remarkable properties and many investigators have examined the mechanical, electronic and other characteristics of carbon SP2 systems in some detail. In addition, C-60 can be functionalized with many classes of molecular fragments and we may expect the caps of carbon nanotubes to have a similar chemistry. Finally, carbon nanotubes have been attached to t he end of scanning probe microscope (Spill) tips. Spills can be manipulated with sub-angstrom accuracy. Together, these investigations suggest that complex molecular machines made of fullerenes may someday be created and manipulated with very high accuracy. We have studied some such systems computationally (primarily functionalized carbon nanotube gears and computer components). If such machines can be combined appropriately, a class of materials may be created that can sense their environment, calculate a response, and act. The implications of such hypothetical materials are substantial.

  4. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  5. Perspectives on psycho-neuro-immunology in oncology

    Directory of Open Access Journals (Sweden)

    Vallath Nandini

    2006-01-01

    Full Text Available Psycho-oncology and psycho-neuro-immunology are both powerful new disciplines. Although a lot of literature exists in both of these fields the evidence is often controversial. This paper gives a brief perspective on the origins of psycho-neuro-immunology and discusses how our current understanding of this subject can be translated into clinical practice in an Indian setting.

  6. Neuroæstetik eller kunst på hjernen

    DEFF Research Database (Denmark)

    Clasen, Mathias

    2009-01-01

    Neuroæstetikken kombinerer hjerneforskning, æstetikforskning og eksperimentel psykologi -- alt sammen for at forstå en af Homo sapiens' mest bizarre hobbyer: kunst. Forskning i kunstens neurobiologi griber om sig.......Neuroæstetikken kombinerer hjerneforskning, æstetikforskning og eksperimentel psykologi -- alt sammen for at forstå en af Homo sapiens' mest bizarre hobbyer: kunst. Forskning i kunstens neurobiologi griber om sig....

  7. Aplikasi Neuro Fuzzy Controller Pada Sistem Titrasi Pengolah Limbah Cair

    OpenAIRE

    Fatkhurrozi, Bagus

    2007-01-01

    This research is aimed at planning and measuriang the system of liquid waste processing devide with ply neutral reaction that is controlled by computer based on neuro fuzzy controller, in which the system control is fuzzy logical system than can improve control out put response based on nervous net imitation. In this system, it can be seen that computer has a very important role that is to control the proless of all activities in waste processing. Key ward. PH, Neuro fuzzy controller

  8. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  9. A system-on-chip development of a neuro-fuzzy embedded agent for ambient-intelligence environments.

    Science.gov (United States)

    del Campo, Inés; Basterretxea, Koldo; Echanobe, Javier; Bosque, Guillermo; Doctor, Faiyaz

    2012-04-01

    This paper presents the development of a neuro-fuzzy agent for ambient-intelligence environments. The agent has been implemented as a system-on-chip (SoC) on a reconfigurable device, i.e., a field-programmable gate array. It is a hardware/software (HW/SW) architecture developed around a MicroBlaze processor (SW partition) and a set of parallel intellectual property cores for neuro-fuzzy modeling (HW partition). The SoC is an autonomous electronic device able to perform real-time control of the environment in a personalized and adaptive way, anticipating the desires and needs of its inhabitants. The scheme used to model the intelligent agent is a particular class of an adaptive neuro-fuzzy inference system with piecewise multilinear behavior. The main characteristics of our model are computational efficiency, scalability, and universal approximation capability. Several online experiments have been performed with data obtained in a real ubiquitous computing environment test bed. Results obtained show that the SoC is able to provide high-performance control and adaptation in a life-long mode while retaining the modeling capabilities of similar agent-based approaches implemented on larger computing machines.

  10. NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail.

    Science.gov (United States)

    Gleeson, Padraig; Crook, Sharon; Cannon, Robert C; Hines, Michael L; Billings, Guy O; Farinella, Matteo; Morse, Thomas M; Davison, Andrew P; Ray, Subhasis; Bhalla, Upinder S; Barnes, Simon R; Dimitrova, Yoana D; Silver, R Angus

    2010-06-17

    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience.

  11. NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail

    Science.gov (United States)

    Gleeson, Padraig; Crook, Sharon; Cannon, Robert C.; Hines, Michael L.; Billings, Guy O.; Farinella, Matteo; Morse, Thomas M.; Davison, Andrew P.; Ray, Subhasis; Bhalla, Upinder S.; Barnes, Simon R.; Dimitrova, Yoana D.; Silver, R. Angus

    2010-01-01

    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience. PMID:20585541

  12. Neuro-Otological and Peripheral Nerve Involvement in Fabry Disease.

    Science.gov (United States)

    Carmona, Sergio; Weinschelbaum, Romina; Pardal, Ana; Marchesoni, Cintia; Zuberbuhler, Paz; Acosta, Patricia; Cáceres, Guillermo; Kisinovsky, Isaac; Bayón, Luciana; Reisin, Ricardo

    2017-07-18

    Fabry disease (FD) is an X-linked lysosomal storage disease, with multisystemic glycosphingolipids deposits. Neuro-otological involvement leading to hearing loss and vestibular dysfunctions has been described, but there is limited information about the frequency, site of lesion, or the relationship with peripheral neuropathy. The aim was to evaluate the presence of auditory and vestibular symptoms, and assess neurophysiological involvement of the VIII cranial nerve, correlating these findings with clinical and neurophysiological features of peripheral neuropathy. We studied 36 patients with FD with a complete neurological and neuro-otological evaluation including nerve conduction studies, quantitative sensory testing (to evaluate small fiber by warm and cold threshold detection and cold and heat pain), vestibular evoked myogenic potentials, videonistagmography, audiometry and brainstem auditory evoked potentials. Neuro-otologic symptoms included hearing loss (22.2%), vertigo (27.8%) or both (25%). An involvement of either cochlear or vestibular function was identified in most patients (75%). In 70% of our patients the involvement of both cochlear and vestibular function could not be explained by a neural or vascular mechanism. Small fiber neuropathy was identified in 77.7%. There were no significant associations between neuro-otological and QST abnormalities. Neuro-otologic involvement is frequent and most likely under-recognized in patients with FD. It lacks a specific neural or vascular pattern, suggesting multi-systemic, end organ damage. Small fiber neuropathy is an earlier manifestation of FD, but there is no correlation between the development of neuropathy and neuro-otological abnormalities.

  13. Calculation of electromagnetic field in electric machines through the finite element: Electromagnetic modeling; Calculo de campos electromagneticos en maquinas electricas mediante elemento finito: Modelacion electromagnetica

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, Mario F. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In this article are presented the general characteristics of the electromagnetic phenomena that can be described by means of the software CALIIE-2D of the Instituto de Investigaciones Electricas (IIE) derived from a modeling based in the magnetic and electric potentials, always using the MKS rationalized units system. Closed regions are considered with axial or moving symmetry to incorporate the bi-dimensional behavior of the electromagnetic fields. The possibility of means with movement is also included. [Espanol] En este articulo se presentan las caracteristicas generales de los fenomenos electromagneticos que pueden describirse mediante el programa de computo CALIIE-2D, del Instituto de Investigaciones Electricas (IIE), que provienen de una modelacion basada en los potenciales magnetico y electrico, en esta se utiliza sistema MKS racionalizado de unidades. Se consideran regiones cerradas con simetria axial o traslacional para incorporar el comportamiento bidimensional de los campos electromagneticos, se incluye tambien la posibilidad de medios con movimiento.

  14. Neuro degenerative diseases: clinical concerns; Les maladies neuro-degeneratives: problemes cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, V. [Hopitaux Universitaires de Geneve (HUG), Unite de Neuroimagerie, Dept. de Psychiatrie (Switzerland)

    2005-04-15

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [{sup 18}F]-deoxyglucose and [{sup 18}F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [{sup 18}F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [{sup 18}F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  15. Wavelet decomposition and neuro-fuzzy hybrid system applied to short-term wind power

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Jimenez, L.A.; Mendoza-Villena, M. [La Rioja Univ., Logrono (Spain). Dept. of Electrical Engineering; Ramirez-Rosado, I.J.; Abebe, B. [Zaragoza Univ., Zaragoza (Spain). Dept. of Electrical Engineering

    2010-03-09

    Wind energy has become increasingly popular as a renewable energy source. However, the integration of wind farms in the electrical power systems presents several problems, including the chaotic fluctuation of wind flow which results in highly varied power generation from a wind farm. An accurate forecast of wind power generation has important consequences in the economic operation of the integrated power system. This paper presented a new statistical short-term wind power forecasting model based on wavelet decomposition and neuro-fuzzy systems optimized with a genetic algorithm. The paper discussed wavelet decomposition; the proposed wind power forecasting model; and computer results. The original time series, the mean electric power generated in a wind farm, was decomposing into wavelet coefficients that were utilized as inputs for the forecasting model. The forecasting results obtained with the final models were compared to those obtained with traditional forecasting models showing a better performance for all the forecasting horizons. 13 refs., 1 tab., 4 figs.

  16. Handbook of machine soldering SMT and TH

    CERN Document Server

    Woodgate, Ralph W

    1996-01-01

    A shop-floor guide to the machine soldering of electronics Sound electrical connections are the operational backbone of every piece of electronic equipment-and the key to success in electronics manufacturing. The Handbook of Machine Soldering is dedicated to excellence in the machine soldering of electrical connections. Self-contained, comprehensive, and down-to-earth, it cuts through jargon, peels away outdated notions, and presents all the information needed to select, install, and operate machine soldering equipment. This fully updated and revised volume covers all of the new technologies and processes that have emerged in recent years, most notably the use of surface mount technology (SMT). Supplemented with 200 illustrations, this thoroughly accessible text Describes reflow and wave soldering in detail, including reflow soldering of SMT boards and the use of nitrogen blankets * Explains the setup, operation, and maintenance of a variety of soldering machines * Discusses theory, selection, and control met...

  17. Simulating Turing machines on Maurer machines

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    In a previous paper, we used Maurer machines to model and analyse micro-architectures. In the current paper, we investigate the connections between Turing machines and Maurer machines with the purpose to gain an insight into computability issues relating to Maurer machines. We introduce ways to

  18. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  19. Management of neuro-oncologic emergencies.

    Science.gov (United States)

    Jo, J T; Schiff, D

    2017-01-01

    Patients with brain tumors and systemic malignancies are subject to diverse neurologic complications that require urgent evaluation and treatment. These neurologic conditions are commonly due to the tumor's direct effects on the nervous system, such as cerebral edema, increased intracranial pressure, seizures, spinal cord compression, and leptomeningeal metastases. In addition, neurologic complications can develop as a result of thrombocytopenia, coagulopathy, hyperviscosity syndromes, infection, immune-related disorders, and adverse effects of treatment. Patients may present with typical disease syndromes. However, it is not uncommon for patients to have more subtle, nonlocalizing manifestations, such as alteration of mental status, that could be attributed to other systemic, nonneurologic complications. Furthermore, neurologic complications are at times the initial manifestations of an undiagnosed malignancy. Therefore a high index of suspicion is essential for rapid assessment and management. Timely intervention may prolong survival and improve quality of life. In this chapter, we will discuss the common neuro-oncologic emergencies, including epidemiology, pathophysiology, clinical presentation, diagnosis, and treatment. © 2017 Elsevier B.V. All rights reserved.

  20. The Neuro-Ophthalmology of Mitochondrial Disease

    Science.gov (United States)

    Fraser, J. Alexander; Biousse, Valérie; Newman, Nancy J.

    2010-01-01

    Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Because of the predilection of mitochondrial disorders to involve the optic nerves, extraocular muscles, retina, and even the retrochiasmal visual pathways, the ophthalmologist is often the first physician to be consulted. Disorders caused by mitochondrial dysfunction can result from abnormalities in either the mitochondrial DNA or in nuclear genes which encode mitochondrial proteins. Inheritance of these mutations will follow patterns specific to their somatic or mitochondrial genetics. Genotype-phenotype correlations are inconstant, and considerable overlap may occur among these syndromes. The diagnostic approach to the patient with suspected mitochondrial disease entails a detailed personal and family history, careful ophthalmic, neurologic, and systemic examination, directed investigations, and attention to potentially life-threatening sequelae. Although curative treatments for mitochondrial disorders are currently lacking, exciting research advances are being made, particularly in the area of gene therapy. Leber hereditary optic neuropathy, with its window of opportunity for timely intervention and its accessibility to directed therapy, offers a unique model to study future therapeutic interventions. Most patients and their relatives benefit from informed genetic counseling. PMID:20471050

  1. Neuro-fuzzy modeling in bankruptcy prediction

    Directory of Open Access Journals (Sweden)

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  2. Bariatric Surgery and the Neuro-Ophthalmologist

    Science.gov (United States)

    Moss, Heather E.

    2016-01-01

    Background As the prevalence of obesity increases, so are the prevalences of weight related diseases and the incidence of surgical procedures to promote weight loss. It is important for neuro-ophthalmologists to be familiar with these procedures and possible downstream effects on afferent and efferent visual function. Evidence acquisition Review of ophthalmology, neurology, general surgery, obesity, endocrinology, nutrition, psychiatry and neurosurgery literature. Results Bariatric surgery is a safe and effective treatment for weight loss in obese individuals. There is level IV evidence that it is associated with improvement in idiopathic intracranial hypertension(IIH). Laboratory nutrient deficiencies are common following some types of bariatric procedures. Symptomatic deficiencies are less common but can be devastating. Thiamine deficiency can cause nystagmus and other symptoms in weeks to months following surgery, B12 or copper deficiency can cause optic neuropathy in the years to decades following bariatric surgery. Conclusions Bariatric surgery may be a treatment for IIH. Postoperative vitamin deficiencies may present with nystagmus, optic neuropathy, nyctalopia and/or ophthalmoparesis weeks to years after surgery. PMID:26764529

  3. Wave Forecasting Using Neuro Wavelet Technique

    Directory of Open Access Journals (Sweden)

    Pradnya Dixit

    2014-12-01

    Full Text Available In the present work a hybrid Neuro-Wavelet Technique is used for forecasting waves up to 6 hr, 12 hr, 18 hr and 24 hr in advance using hourly measured significant wave heights at an NDBC station 41004 near the east coast of USA. The NW Technique is employed by combining two methods, Discrete Wavelet Transform and Artificial Neural Networks. The hourly data of previously measured significant wave heights spanning over 2 years from 2010 and 2011 is used to calibrate and test the models. The discrete wavelet transform of NWT analyzes frequency of signal with respect to time at different scales. It decomposes time series into low (approximate and high (detail frequency components. The decomposition of approximate can be carried out up to desired multiple levels in order to provide more detail and approximate components which provides relatively smooth varying amplitude series. The neural network is trained with decorrelated approximate and detail wavelet coefficients. The outputs of networks during testing are reconstructed back using inverse DWT. The results were judged by drawing the wave plots, scatter plots and other error measures. The developed models show reasonable accuracy in prediction of significant wave heights from 6 to 24 hours. To compare the results traditional ANN models were also developed at the same location using the same data and for same time interval.

  4. [How xenon works: neuro and cardioprotection mechanisms].

    Science.gov (United States)

    Morais, Ricardo; Andrade, Luísa; Lourenço, André; Tavares, Jorge

    2014-01-01

    The Xenon, a noble gas, has anesthetics properties, associated with remarkable hemodynamic stability as well as cardioprotective, neuroprotective proprieties. Its physicochemical characteristics give him a quick induction and emergence of anesthesia, being free of deleterious effects in all organs and showing no teratogenicity. Such properties have led to a growing interest in improving the knowledge about this noble gas, in order to assess the mechanisms of neuro and cardioprotection induced and to assess the clinical indications for its use. Qualitative review of clinical trials on anesthesia with xenon. Studies were identified from MEDLINE and by hand-searching, using the following keywords: xenon, xenon anestesia, xenon neuroprotection, xenon cradioprotection. After several studies, including two randomized multicenter controlled trials, the use of xenon as an anesthetic in patients ASA I-II was approved in March 2007. However his use in clinical practice has been strongly limited by it's high price. It seems unlikely that the advantages it offers in relation to other anesthetics justify it's use in patients ASA I-II. Although, xenon may be a valuable asset in the reduction of co-morbilities and mortality in anesthesia of patients ASA III-IV, unfortunately, there are no large randomized control studies to prove it. Unfortunately, there are still no randomized or multicentric studies showing a favourable cost-benefit profile of xenon in ASA III-IV patients vs. other anaesthetics. The usefulness of xenon in Anesthesiology requires more studies to be defined.

  5. Bariatric Surgery and the Neuro-Ophthalmologist.

    Science.gov (United States)

    Moss, Heather E

    2016-03-01

    As the prevalence of obesity increases, so, too, do the prevalences of weight-related diseases and surgical procedures to promote weight loss. It is important for neuro-ophthalmologists to be familiar with these procedures and possible downstream effects on afferent and efferent visual function. Review of ophthalmology, neurology, general surgery, obesity, endocrinology, nutrition, psychiatry, and neurosurgery literature. Bariatric surgery is a safe and effective treatment for weight loss in obese individuals. There is Level IV evidence that it is associated with improvement in idiopathic intracranial hypertension (IIH). Laboratory nutrient deficiencies are common following some types of bariatric procedures. Symptomatic deficiencies are less common but can be devastating. Thiamine deficiency can cause nystagmus and other symptoms in weeks to months after surgery, whereas B12 or copper deficiency can cause optic neuropathy in years to decades following bariatric surgery. Bariatric surgery is a potential treatment for IIH. Postoperative vitamin deficiencies may cause nystagmus, optic neuropathy, nyctalopia, and/or ophthalmoparesis weeks to years after surgery.

  6. Oscillating electrical motors, application and theory

    Energy Technology Data Exchange (ETDEWEB)

    Kudarauskas, S. [Klaipeda University, Department of Electrical Engineering, Klaipeda (Lithuania)

    2000-08-01

    The article analyses classification of electrical machines by the temporal and spatial properties of mechanical movement. It is purposive to group the machines by movement temporal properties thus marking out an independent class of oscillating machines. The article demonstrates operation principles, design diversity and practical utilisation of these machines. Principles of theoretical analysis of main regime (i.e. steady oscillations) are presented. The appendix presents rationale of analogy between electrical circuit and magnetic circuit from energy standpoint. (orig.)

  7. Machine capability index evaluation of machining center

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Won Pyo [Korea Institute of Industrial Technology, Ansan (Korea, Republic of)

    2013-10-15

    Recently, there has been an increasing need to produce more precise products, with only the smallest deviations from a defined target value. Machine capability is the ability of a machine tool to produce parts within the tolerance interval. Capability indices are a statistical way of describing how well a product is machined compared to defined target values and tolerances. Currently, there is no standardized way to acquire a machine capability value. This paper describes how machine capability indices are evaluated in machining centers. After the machining of specimens, straightness, roundness and positioning accuracy were measured using CMM(coordinate measuring machine). These measured values and defined tolerances were used to evaluate the machine capability index. It will be useful for the industry to have standardized ways to choose and calculate machine capability indices.

  8. 30 CFR 18.97 - Inspection of machines; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of machines; minimum requirements... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.97 Inspection of machines; minimum...

  9. Potentiality Studies of Stainless Steel 304 Material for Production of Medical Equipment using Micro Electrical Discharge Machining (micro-EDM) Analysis and Modeling

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    Stainless steel 304 (SS304) is a material widely used for production of medical equipment mainly because of its anti-corrosive properties. It has excellent mechanical properties, strength and reliability because of which it is one of the best materials for fabrication of medical devices. This pap...... and process parameters were developed. Grey relational analysis was used to optimize the micro-EDM quality characteristics, and the highest grey relational grade (GRG) of 0.8021 was obtained at a voltage of 100 V and a capacitance of 0.4 μF....... presents a systematic, scientific analysis, modeling study and optimization of quality characteristics of SS304 material by using micro-electrical discharge drilling process. The analysis of variance, main effects analysis, interactions analysis and study of contour plots were performed for three response....... The interaction plots between voltage and capacitance showed that the lowest tool electrode wear rate is achieved at a capacitance of 0.10 μF at all levels of gap voltage. Capacitance is the only parameter influencing geometrical oversize in micro-EDM of SS304. The model equations for all the response variables...

  10. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  11. Machine consciousness.

    Science.gov (United States)

    Aleksander, Igor

    2005-01-01

    The work from several laboratories on the modeling of consciousness is reviewed. This ranges, on one hand, from purely functional models where behavior is important and leads to an attribution of consciousness to, on the other hand, material work closely derived from the information about the anatomy of the brain. At the functional end of the spectrum, applications are described specifically directed at a job-finding problem, where the person being served should not discern between being served by a conscious human or a machine. This employs an implementation of global workspace theories. At the material end, attempts at modeling attentional brain mechanisms, and basic biochemical processes in children are discussed. There are also general prescriptions for functional schemas that facilitate discussions for the presence of consciousness in computational systems and axiomatic structures that define necessary architectural features without which it would be difficult to represent sensations. Another distinction between these two approaches is whether one attempts to model phenomenology (material end) or not (functional end). The former is sometimes called "synthetic phenomenology." The upshot of this chapter is that studying consciousness through the design of machines is likely to have two major outcomes. The first is to provide a wide-ranging computational language to express the concept of consciousness. The second is to suggest a wide-ranging set of computational methods for building competent machinery that benefits from the flexibility of conscious representations.

  12. Support Spinor Machine

    OpenAIRE

    Kanjamapornkul, Kabin; Pinčák, Richard; Chunithpaisan, Sanphet; Bartoš, Erik

    2017-01-01

    We generalize a support vector machine to a support spinor machine by using the mathematical structure of wedge product over vector machine in order to extend field from vector field to spinor field. The separated hyperplane is extended to Kolmogorov space in time series data which allow us to extend a structure of support vector machine to a support tensor machine and a support tensor machine moduli space. Our performance test on support spinor machine is done over one class classification o...

  13. Ophthalmic and neuro-ophthalmic manifestations of sarcoidosis.

    Science.gov (United States)

    Kefella, Haben; Luther, Daniel; Hainline, Clotilde

    2017-11-01

    Sarcoidosis is a multisystemic inflammatory disease that commonly affects the eye and less often the neuro-ophthalmic pathways. The manifestations can be quite variable but can have characteristic signs and clinical features. This review provides a comprehensive overview of the various ocular and neuro-ophthalmic manifestations of sarcoidosis, emerging diagnostic measures and approach to treatment. Particular focus is given to recent advances in diagnostic approach and available treatment options. Laboratory investigations, chest and nuclear medicine imaging remain important techniques for helping to diagnose sarcoidosis. Recent evidence suggests a role for aqueous humor analysis in the diagnosis of ocular sarcoidosis. Characteristic neuroimaging may help differentiate neurosarcoidosis from other causes. The role of blind conjunctival biopsy for suspected neurosarcoidosis is discussed. The emerging role and use of biologics is delineated for the treatment of both ocular and neuro-ophthalmic sarcoidosis. Sarcoidosis can affect any part of the visual system: the most common ocular manifestation is uveitis and the most common neuro-ophthalmic manifestation is optic neuropathy. Although diagnosis remains challenging, recent advancements in diagnosis are promising. Emerging biologics with particular efficacy for ocular and neuro-ophthalmic disease provide expanding treatment options for sight-threatening disease.

  14. NeuroSim--the prototype of a neurosurgical training simulator.

    Science.gov (United States)

    Beier, Florian; Diederich, Stephan; Schmieder, Kirsten; Männer, Reinhard

    2011-01-01

    We present NeuroSim, the prototype of a training simulator for open surgical interventions on the human brain. The simulator is based on virtual reality and uses real-time simulation algorithms to interact with models generated from MRT- or CT-datasets. NeuroSim provides a native interface by using a real surgical microscope and original instruments tracked by a combination of inertial measurement units and optical tracking. Conclusively an immersive environment is generated. In a first step the navigation in an open surgery setup as well as the hand-eye coordination through a microscope can be trained. Due to its modular design further training modules and extensions can be integrated. NeuroSim has been developed in cooperation with the neurosurgical clinic of the University of Heidelberg and the VRmagic GmbH in Mannheim.

  15. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  16. The Neuro-Complex: Some Comments and Convergences

    Directory of Open Access Journals (Sweden)

    Paul Martin

    2011-10-01

    Full Text Available In this short think-piece we trace the newly emerging and rapidly expanding dimensions and dynamics of the “neuro-complex.” What this amounts to, we suggest, are a series of bio or neuro “convergences” of sorts regarding the brain and mental worlds, which in turn are traceable through what we term the bio-psych, pharma-psych, subjectivity-selves, wellness-enhancement, and the neuroculture-neurofutures relational nexuses. These issues are then illustrated through two brief case studies regarding brain scanning technologies and the problems and prospects of cognitive enhancement. The paper concludes with some final reflections on these matters and a call for further research in this rich and challenging domain as the neuro-complex continues to expand in expected and unexpected, yet equally rich and fascinating, ways.

  17. Primary headache disorders and neuro-ophthalmologic manifestations

    Science.gov (United States)

    Schwartz, Daniel P; Robbins, Matthew S

    2012-01-01

    Headache is an extraordinarily common complaint presenting to medical practitioners in all arenas and specialties, particularly primary care physicians, neurologists, and ophthalmologists. A wide variety of headache disorders may manifest with a myriad of neuro-ophthalmologic symptoms, including orbital pain, disturbances of vision, aura, photophobia, lacrimation, conjunctival injection, ptosis, and other manifestations. The differential diagnosis in these patients is broad and includes both secondary, or symptomatic, and primary headache disorders. Awareness of the headache patterns and associated symptoms of these various disorders is essential to achieve the correct diagnosis. This paper reviews the primary headache disorders that prominently feature neuro-ophthalmologic manifestations, including migraine, the trigeminal autonomic cephalalgias, and hemicrania continua. Migraine variants with prominent neuro-ophthalmologic symptoms including aura without headache, basilar-type migraine, retinal migraine, and ophthalmoplegic migraine are also reviewed. This paper focuses particularly on the symptomatology of these primary headache disorders, but also discusses their epidemiology, clinical features, and treatment. PMID:28539781

  18. Neuro-Otological and Peripheral Nerve Involvement in Fabry Disease

    Science.gov (United States)

    Carmona, Sergio; Weinschelbaum, Romina; Pardal, Ana; Marchesoni, Cintia; Zuberbuhler, Paz; Acosta, Patricia; Cáceres, Guillermo; Kisinovsky, Isaac; Bayón, Luciana; Reisin, Ricardo

    2017-01-01

    Fabry disease (FD) is an X-linked lysosomal storage disease, with multisystemic glycosphingolipids deposits. Neuro-otological involvement leading to hearing loss and vestibular dysfunctions has been described, but there is limited information about the frequency, site of lesion, or the relationship with peripheral neuropathy. The aim was to evaluate the presence of auditory and vestibular symptoms, and assess neurophysiological involvement of the VIII cranial nerve, correlating these findings with clinical and neurophysiological features of peripheral neuropathy. We studied 36 patients with FD with a complete neurological and neuro-otological evaluation including nerve conduction studies, quantitative sensory testing (to evaluate small fiber by warm and cold threshold detection and cold and heat pain), vestibular evoked myogenic potentials, videonistagmography, audiometry and brainstem auditory evoked potentials. Neuro-otologic symptoms included hearing loss (22.2%), vertigo (27.8%) or both (25%). An involvement of either cochlear or vestibular function was identified in most patients (75%). In 70% of our patients the involvement of both cochlear and vestibular function could not be explained by a neural or vascular mechanism. Small fiber neuropathy was identified in 77.7%. There were no significant associations between neuro-otological and QST abnormalities. Neuro-otologic involvement is frequent and most likely under-recognized in patients with FD. It lacks a specific neural or vascular pattern, suggesting multi-systemic, end organ damage. Small fiber neuropathy is an earlier manifestation of FD, but there is no correlation between the development of neuropathy and neuro-otological abnormalities. PMID:28794847

  19. Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality.

    Science.gov (United States)

    Selimovic-Hamza, Senija; Boujon, Céline L; Hilbe, Monika; Oevermann, Anna; Seuberlich, Torsten

    2017-01-18

    Next-generation sequencing (NGS) has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV) CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS) in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections.

  20. Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality

    Directory of Open Access Journals (Sweden)

    Senija Selimovic-Hamza

    2017-01-01

    Full Text Available Next-generation sequencing (NGS has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections.