WorldWideScience

Sample records for neurite length-dependent manner

  1. Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner.

    Science.gov (United States)

    Frink, Robin E; Peyton, Michael; Schiller, Joan H; Gazdar, Adi F; Shay, Jerry W; Minna, John D

    2016-05-31

    Telomerase was evaluated as a therapeutic oncotarget by studying the efficacy of the telomerase inhibitor imetelstat in non-small cell lung cancer (NSCLC) cell lines to determine the range of response phenotypes and identify potential biomarkers of response. A panel of 63 NSCLC cell lines was studied for telomere length and imetelstat efficacy in inhibiting colony formation and no correlation was found with patient characteristics, tumor histology, and oncogenotypes. While there was no overall correlation between imetelstat efficacy with initial telomere length (ranging from 1.5 to 20 kb), the quartile of NSCLC lines with the shortest telomeres was more sensitive than the quartile with the longest telomeres. Continuous long-term treatment with imetelstat resulted in sustained telomerase inhibition, progressive telomere shortening and eventual growth inhibition in a telomere-length dependent manner. Cessation of imetelstat therapy before growth inhibition was followed by telomere regrowth. Likewise, in vivo imetelstat treatment caused tumor xenograft growth inhibition in a telomere-length dependent manner. We conclude from these preclinical studies of telomerase as an oncotarget tested by imetelstat response that imetelstat has efficacy across the entire oncogenotype spectrum of NSCLC, continuous therapy is necessary to prevent telomere regrowth, and short telomeres appears to be the best treatment biomarker.

  2. Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner.

    Science.gov (United States)

    He, Yue; Wu, Chengfei; Li, Jiahong; Li, Hongli; Sun, Zhenghua; Zhang, Hao; de Vos, Paul; Pan, Li-Long; Sun, Jia

    2017-01-01

    -light-chain-enhancer of activated B cells (NF-κB) p65 (p-NF-κB p65) nuclear translocation and activation in the pancreas. Our findings demonstrate a clear chain length-dependent effect of inulin on AP. The attenuating effects are caused by modulating effects of long-chain inulin on the pancreatic-gut immunity via the pancreatic IRAK-4/p-JNK/p-NF-κBp65 signaling pathway and on prevention of disruption of the gut barrier.

  3. Inulin-Type Fructans Modulates Pancreatic–Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner

    Science.gov (United States)

    He, Yue; Wu, Chengfei; Li, Jiahong; Li, Hongli; Sun, Zhenghua; Zhang, Hao; de Vos, Paul; Pan, Li-Long; Sun, Jia

    2017-01-01

    -light-chain-enhancer of activated B cells (NF-κB) p65 (p-NF-κB p65) nuclear translocation and activation in the pancreas. Our findings demonstrate a clear chain length-dependent effect of inulin on AP. The attenuating effects are caused by modulating effects of long-chain inulin on the pancreatic–gut immunity via the pancreatic IRAK-4/p-JNK/p-NF-κBp65 signaling pathway and on prevention of disruption of the gut barrier. PMID:29018453

  4. Understanding the length dependence of molecular junction thermopower

    DEFF Research Database (Denmark)

    Karlström, Sven Olov Harald; Strange, Mikkel; Solomon, Gemma

    2014-01-01

    Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding...... model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length......-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find...

  5. Stalk-length-dependence of the contractility of Vorticella convallaria

    Science.gov (United States)

    Gul Chung, Eun; Ryu, Sangjin

    2017-12-01

    Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm‑1. These observed length-dependencies of Vorticella’s key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.

  6. Length-dependent thermal transport and ballistic thermal conduction

    Directory of Open Access Journals (Sweden)

    Bor-Woei Huang

    2015-05-01

    Full Text Available Probing length-dependent thermal conductivity of a given material has been considered as an important experimental method to determine the length of ballistic thermal conduction, or equivalently, the averaged phonon mean free path (l. However, many previous thermal transport measurements have focused on varying the lateral dimensions of samples, rendering the experimental interpretation indirect. Moreover, deducing l is model-dependent in many optical measurement techniques. In addition, finite contact thermal resistances and variations of sample qualities are very likely to obscure the effect in practice, leading to an overestimation of l. We point out that directly investigating one-dimensional length-dependent (normalized thermal resistance is a better experimental method to determine l. In this regard, we find that no clear experimental data strongly support ballistic thermal conduction of Si or Ge at room temperature. On the other hand, data of both homogeneously-alloyed SiGe nanowires and heterogeneously-interfaced Si-Ge core-shell nanowires provide undisputed evidence for ballistic thermal conduction over several micrometers at room temperature.

  7. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Directory of Open Access Journals (Sweden)

    Buford Mary

    2009-12-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere is relatively inert when internalized into a biological model system (in vivo or in vitro. For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension Results TiO2 nanospheres, short ( 15 μm nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  8. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity.

    Science.gov (United States)

    Hamilton, Raymond F; Wu, Nianqiang; Porter, Dale; Buford, Mary; Wolfarth, Michael; Holian, Andrij

    2009-12-31

    Titanium dioxide (TiO(2)) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO(2 )(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO(2 )nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension 15 mum) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO(2 )nanomaterial into a fibre structure of greater than 15 mum creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO(2 )nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  9. Characterization of BASP1-mediated neurite outgrowth

    DEFF Research Database (Denmark)

    Korshunova, Irina; Caroni, Pico; Kolkova, Kateryna

    2008-01-01

    The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated...... in PC12E2 cells and primary hippocampal neurons. BASP1 overexpression stimulated neurite outgrowth in both cell types. The effects of BASP1 and trans-homophilic NCAM interactions were additive, and BASP1-induced neurite outgrowth was not inhibited by ectopic expression of cytoplasmic NCAM domains...... on neurite outgrowth. Finally, coexpression experiments with dominant negative and wild-type versions of GAP-43 and BASP1 demonstrated that the two proteins could substitute for each other with respect to induction of NCAM-independent neurite outgrowth, whereas BASP1 was unable to replace the stimulatory...

  10. Boundary condition-selective length dependence of the flexural rigidity of microtubules

    Science.gov (United States)

    Zhang, Jin; Wang, Chengyuan

    2017-07-01

    Length-dependent flexural rigidity (FR) is observed experimentally for microtubules (MTs) subjected to certain boundary conditions. To shed some light on this unique feature, we have studied the FR of MTs with different boundary conditions. A molecular structural mechanics method is employed to accurately describe the real boundary conditions imposed on MTs in experiments. Some of component protofilaments of MTs are blocked at the ends while others are free. In addition, linked kinesin is treated as an elastic body rather than a rigid body. Our simulations show that for relatively long MTs having a length comparable to those measured in experiments the length-dependent rigidity is detected only for those with fixed-free and fixed-fixed ends, which is consistent with the experimental observation. To capture the physics leading to the above phenomenon, Timoshenko beam model is adopted accounting for both transverse shear effect (TSE) and imperfect boundary effect (IBE). Comparison between TSE and IBE indicates that the boundary condition-selective length-dependence achieved for the FR of relatively long MTs is primarily a result of the influence of IBE rather than TSE.

  11. Conversion Disorder Presenting As Neuritic Leprosy

    Directory of Open Access Journals (Sweden)

    Sayal SK

    2000-01-01

    Full Text Available Conversion disorder is not normally listed amongst the conditions in differential diagnosis of leprosy neuropathy. A case conversion reaction who was initially diagnosed as neuritic leprosy is reported. Patient responded to narcosuggestion and psychotherapy.

  12. Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures

    Science.gov (United States)

    Khankan, Rana R.; Wanner, Ina B.; Phelps, Patricia E.

    2015-01-01

    The regenerative capacity of the adult CNS neurons after injury is strongly inhibited by the spinal cord lesion site environment that is composed primarily of the reactive astroglial scar and invading meningeal fibroblasts. Olfactory ensheathing cell (OEC) transplantation facilitates neuronal survival and functional recovery after a complete spinal cord transection, yet the mechanisms by which this recovery occurs remain unclear. We used a unique multicellular scar-like culture model to test if OECs promote neurite outgrowth in growth inhibitory areas. Astrocytes were mechanically injured and challenged by meningeal fibroblasts to produce key inhibitory elements of a spinal cord lesion. Neurite outgrowth of postnatal cerebral cortical neurons was assessed on three substrates: quiescent astrocyte control cultures, reactive astrocyte scar-like cultures, and scar-like cultures with OECs. Initial results showed that OECs enhanced total neurite outgrowth of cortical neurons in a scar-like environment by 60%. We then asked if the neurite growth-promoting properties of OECs depended on direct alignment between neuronal and OEC processes. Neurites that aligned with OECs were nearly three times longer when they grew on inhibitory meningeal fibroblast areas and twice as long on reactive astrocyte zones compared to neurites not associated with OECs. Our results show that OECs can independently enhance neurite elongation and that direct OEC-neurite cell contact can provide a permissive substrate that overcomes the inhibitory nature of the reactive astrocyte scar border and the fibroblast-rich spinal cord lesion core. PMID:25863021

  13. Smooth muscle length-dependent PI(4,5)P2 synthesis and paxillin tyrosine phosphorylation.

    Science.gov (United States)

    Sul, D; Baron, C B; Broome, R; Coburn, R F

    2001-07-01

    We studied effects of increasing the length of porcine trachealis muscle on 5.5 microM carbachol (CCh)-evoked phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] synthesis and other parameters of phosphatidylinositol (PI) turnover. PI(4,5)P2 resynthesis rates in muscle held at 1.0 optimal length (L(o)), measured over the first 6 min of CCh stimulation, were 140 +/- 12 and 227 +/- 14% of values found in muscle held at 0.5 L(o) and in free-floating muscle, respectively. Time-dependent changes in cellular masses of PI(4,5)P2, PI, and phosphatidic acid, and PI resynthesis rates, were also altered by the muscle length at which contraction occurred. In free-floating muscle, CCh did not evoke increases in tyrosine-phosphorylated paxillin (PTyr-paxillin), an index of beta1-integrin signaling; however, there were progressive increases in PTyr-paxillin in muscle held at 0.5 and 1.0 L(o) during contraction, which correlated with increases in PI(4,5)P2 synthesis rates. These data indicate that PI(4,5)P2 synthesis rates and other parameters of CCh-stimulated inositol phospholipid turnover are muscle length-dependent and provide evidence that supports the hypothesis that length-dependent beta1-integrin signals may exert control on CCh-activated PI(4,5)P2 synthesis.

  14. Chain length dependent alkane/β-cyclodextrin nonamphiphilic supramolecular building blocks.

    Science.gov (United States)

    Zhou, Chengcheng; Huang, Jianbin; Yan, Yun

    2016-02-07

    In this work we report the chain length dependent behavior of the nonamphiphilic supramolecular building blocks based on the host-guest inclusion complexes of alkanes and β-cyclodextrins (β-CD). (1)H NMR, ESI-MS, and SAXS measurements verified that upon increasing the chain length of alkanes, the building blocks for vesicle formation changed from channel type 2alkane@2β-CD via channel type alkane@2β-CD to non-channel type 2alkane@2β-CD. FT-IR and TGA experiments indicated that hydrogen bonding is the extensive driving force for vesicle formation. It revealed that water molecules are involved in vesicle formation in the form of structural water. Upon changing the chain length, the average number of water molecules associated with per building block is about 16-21, depending on the chain length.

  15. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Sarah K Brennan

    2010-09-01

    Full Text Available Plasma cells constitute the majority of tumor cells in multiple myeloma (MM but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC. These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1 as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.

  16. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors.

    Directory of Open Access Journals (Sweden)

    Tamaki Ishima

    Full Text Available In addition to both the α1 adrenergic receptor and N-methyl-D-aspartate (NMDA receptor antagonists, ifenprodil binds to the sigma receptor subtypes 1 and 2. In this study, we examined the effects of ifenprodil on nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Ifenprodil significantly potentiated NGF-induced neurite outgrowth, in a concentration-dependent manner. In contrast, the α1 adrenergic receptor antagonist, prazosin and the NMDA receptor NR2B antagonist, Ro 25-6981 did not alter NGF-induced neurite outgrowth. Potentiation of NGF-induced neurite outgrowth mediated by ifenprodil was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist, NE-100, but not the sigma-2 receptor antagonist, SM-21. Similarly, ifenprodil enhanced NGF-induced neurite outgrowth was again significantly reduced by the inositol 1,4,5-triphosphate (IP(3 receptor antagonists, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB treatment. Furthermore, BAPTA-AM, a chelator of intracellular Ca(2+, blocked the effects of ifenprodil on NGF-induced neurite outgrowth, indicating the role of intracellular Ca(2+ in the neurite outgrowth. These findings suggest that activation at sigma-1 receptors and subsequent interaction with IP(3 receptors may mediate the pharmacological effects of ifenprodil on neurite outgrowth.

  17. Pure neuritic leprosy: Current status and relevance.

    Science.gov (United States)

    Rao, P Narasimha; Suneetha, Sujai

    2016-01-01

    Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS) for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients.

  18. Pure neuritic leprosy: Current status and relevance

    Directory of Open Access Journals (Sweden)

    P Narasimha Rao

    2016-01-01

    Full Text Available Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients.

  19. Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    MacIntosh Brian R

    2002-12-01

    Full Text Available Abstract Background It has been reported that potentiation of a skeletal muscle twitch response is proportional to muscle length with a negative slope during staircase, and a positive slope during posttetanic potentiation. This study was done to directly compare staircase and posttetanic responses with measurement of sarcomere length to compare their length-dependence. Methods Mouse extensor digitorum longus (EDL muscles were dissected to small bundles of fibers, which permit measurement of sarcomere length (SL, by laser diffraction. In vitro fixed-end contractions of EDL fiber bundles were elicited at 22°C and 35°C at sarcomere lengths ranging from 2.35 μm to 3.85 μm. Twitch contractions were assessed before and after 1.5 s of 75 Hz stimulation at 22°C or during 10 s of 10 Hz stimulation at 22°C or 35°C. Results Staircase potentiation was greater at 35°C than 22°C, and the relative magnitude of the twitch contraction (Pt*/Pt was proportional to sarcomere length with a negative slope, over the range 2.3 μm – 3.7 μm. Linear regression yielded the following: Pt*/Pt = -0.59·SL+3.27 (r2 = 0.74; Pt*/Pt = -0.39·SL+2.34 (r2 = 0.48; and Pt*/Pt = -0.50·SL+2.45 (r2 = 0.80 for staircase at 35°C, and 22°C and posttetanic response respectively. Posttetanic depression rather than potentiation was present at long SL. This indicates that there may be two processes operating in these muscles to modulate the force: one that enhances and a second that depresses the force. Either or both of these processes may have a length-dependence of its mechanism. Conclusion There is no evidence that posttetanic potentiation is fundamentally different from staircase in these muscles.

  20. Inulin-Type Fructans Modulates PancreaticGut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner

    NARCIS (Netherlands)

    He, Yue; Wu, Chengfei; Li, Jiahong; Li, Hongli; Sun, Zhenghua; Zhang, Hao; de Vos, Paul; Pan, Li-Long; Sun, Jia

    2017-01-01

    Acute pancreatitis (AP) is a common abdominal inflammatory disorder and one of the leading causes of hospital admission for gastrointestinal disorders. No specific pharmacological or nutritional therapy is available but highly needed. Inulin-type fructans (ITFs) are capable of modifying gut immune

  1. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    Science.gov (United States)

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  2. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges

    KAUST Repository

    Bilić, Ante

    2013-01-01

    Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.

  3. Chain Length Dependence of the Dielectric Constant and Polarizability in Conjugated Organic Thin Films.

    Science.gov (United States)

    Van Dyck, Colin; Marks, Tobin J; Ratner, Mark A

    2017-06-27

    Dielectric materials are ubiquitous in optics, electronics, and materials science. Recently, there have been new efforts to characterize the dielectric performance of thin films composed of molecular assemblies. In this context, we investigate here the relationship between the polarizability of the constituent molecules and the film dielectric constant, using periodic density functional theory (DFT) calculations, for polyyne and saturated alkane chains. In particular, we explore the implication of the superlinear chain length dependence of the polarizability, a specific feature of conjugated molecules. We show and explain from DFT calculations and a simple depolarization model that this superlinearity is attenuated by the collective polarization. However, it is not completely suppressed. This confers a very high sensitivity of the dielectric constant to the thin film thickness. This latter can increase by a factor of 3-4 at reasonable coverages, by extending the molecular length. This significantly limits the decline of the thin film capacitance with the film thickness. Therefore, the conventional fit of the capacitance versus thickness is not appropriate to determine the dielectric constant of the film. Finally, we show that the failures of semilocal approximations of the exchange-correlation functional lead to a very significant overestimation of this effect.

  4. Length dependence of rectification in organic co-oligomer spin rectifiers

    Science.gov (United States)

    Gui-Chao, Hu; Zhao, Zhang; Ying, Li; Jun-Feng, Ren; Chuan-Kui, Wang

    2016-05-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. Project supported by the National Natural Science Foundation of China (Grant No. 11374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), the Taishan Scholar Project of Shandong Province, China, and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  5. Addressing the path-length-dependency confound in white matter tract segmentation.

    Directory of Open Access Journals (Sweden)

    Matthew G Liptrot

    Full Text Available We derive the Iterative Confidence Enhancement of Tractography (ICE-T framework to address the problem of path-length dependency (PLD, the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either approximated the complete white-matter compartment (too low threshold or failed to propagate through complex regions (too high threshold. The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to provide tract segmentations for tract based analysis, or for brain network analysis.

  6. Neuritic Patient at Sanglah General Hospital Denpasar

    Directory of Open Access Journals (Sweden)

    Ni Putu Dita-Rinjani

    2012-05-01

    Full Text Available Objective: Treatment of optic neuritic as recommended by the Optic Neuritic Treatment Trial (ONTT was intravenous methylprednisolon followed by oral prednisone. This study aims to describe  characteristics and response to intravenous methylprednisolon followed by oral prednisone treatment of optic neuritic patient in Sanglah General Hospital Denpasar. Method: This report is an analytical cross sectional study. Data were collected retrospectively from medical report of optic neuritic patient who came to Sanglah General Hospital during a period of January 1st 2010 until December 31st 2011. Patient characteristics were analyzed with descriptive analyses and presented as frequency, percentage, mean and standar deviation. Visual acuity and contrast sensitivity improvement after intravenous methylprednisolon followed by oral prednisone treatment were statistically analyzed with Wilcoxon test Results:  Optic neuritic were found in twenty-three patients (33 eyes, majority was in age group of 15-40 years (56.5% with female predominance (65.2% and unilateral involvement was 56.3%. Mean onset patient presented to the hospital was 21.7±2.21 days and the most common symptom was decreasing vision (87.9%.  The majority of patient presented with papillitis (54.5%, totally color blindness found in 39.4% eyes, and the type of visual field defect at presentation was central scotoma (18.2%. All cases show lesion of optic nerve from visual evoked potential (VEP examination and magnetic resonance imaging (MRI shows normal results (39.1% patient. The mean of pretreatment logMAR visual acuity and contrast sensitivity were significant improve after treatment from 1.59±0.47 to 0.59±0.62 (p=0.0001 and 0.31±0.56 to 1.25±0.56 (p=0.0001, respectively. All cases in this study were idiopathic. Recurrences were seen in 2 eyes and none of patient had clinical features suggestive of multiple sclerosis. Conclusions: Visual acuity and contrast sensitivity improvement

  7. Terpenoids with neurite outgrowth-promoting activity from the branches and leaves of Illicium merrillianum.

    Science.gov (United States)

    Tian, Xin-Hui; Yue, Rong-Cai; Fang, Xin; Zhang, Jian-Ping; Wang, Guo-Wei; Shan, Lei; Zhang, Wei-Dong; Shen, Yun-Heng

    2016-05-01

    Eighteen terpenoids (1-18) were isolated from Illicium merrillianum. Compound 1 was identified as new compound, and its structure was established by comprehensive spectroscopic analysis and single-crystal X-ray diffraction. All compounds were evaluated for nerve growth factor (NGF)-mediated neurite outgrowth activity using rat pheochromocytoma (PC12) cells as a model system of neuronal differentiation. Compounds 1, 3, 18 showed significant neurite outgrowth-promoting activity in the presence of 20 ng/ml NGF in a dose-dependent manner at concentrations of 1-100 μM after 24-h treatment. Subtle difference of functional groups at C-2 position in hopane-type triterpene resulted in enormous bioactivity difference, compound 1 was neurotrophic but 2 was cytotoxic.

  8. The combinatorics of neurite self-avoidance.

    Science.gov (United States)

    Forbes, Elizabeth M; Hunt, Jonathan J; Goodhill, Geoffrey J

    2011-11-01

    During neural development in Drosophila, the ability of neurite branches to recognize whether they are from the same or different neurons depends crucially on the molecule Dscam1. In particular, this recognition depends on the stochastic acquisition of a unique combination of Dscam1 isoforms out of a large set of possible isoforms. To properly interpret these findings, it is crucial to understand the combinatorics involved, which has previously been attempted only using stochastic simulations for some specific parameter combinations. Here we present closed-form solutions for the general case. These reveal the relationships among the key variables and how these constrain possible biological scenarios.

  9. Pea3 transcription factor promotes neurite outgrowth

    Directory of Open Access Journals (Sweden)

    BASAK eKANDEMIR

    2014-06-01

    Full Text Available Pea3 subfamily of ETS transcription factors consist of three major proteins, Pea3, ERM and ER81. Although important for many different tissues that exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3.

  10. Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Hotaka Kobayashi

    2014-08-01

    Full Text Available Small GTPase Rab35 is an important molecular switch for endocytic recycling that regulates various cellular processes, including cytokinesis, cell migration, and neurite outgrowth. We previously showed that active Rab35 promotes nerve growth factor (NGF-induced neurite outgrowth of PC12 cells by recruiting MICAL-L1, a multiple Rab-binding protein, to Arf6-positive recycling endosomes. However, the physiological significance of the multiple Rab-binding ability of MICAL-L1 during neurite outgrowth remained completely unknown. Here we report that Rab35 and MICAL-L1 promote the recruitment of Rab8, Rab13, and Rab36 to Arf6-positive recycling endosomes during neurite outgrowth. We found that Rab35 functions as a master Rab that determines the intracellular localization of MICAL-L1, which in turn functions as a scaffold for Rab8, Rab13, and Rab36. We further showed by functional ablation experiments that each of these downstream Rabs regulates neurite outgrowth in a non-redundant manner downstream of Rab35 and MICAL-L1, e.g. by showing that knockdown of Rab36 inhibited recruitment of Rab36-specific effector JIP4 to Arf6-positive recycling endosomes, and caused inhibition of neurite outgrowth without affecting accumulation of Rab8 and Rab13 in the same Arf6-positive area. Our findings suggest the existence of a novel mechanism that recruits multiple Rab proteins at the Arf6-positive compartment by MICAL-L1.

  11. Transient analysis of a queue with queue-length dependent MAP and its application to SS7 network

    Directory of Open Access Journals (Sweden)

    Bong Dae Choi

    1999-01-01

    Full Text Available We analyze the transient behavior of a Markovian arrival queue with congestion control based on a double of thresholds, where the arrival process is a queue-length dependent Markovian arrival process. We consider Markov chain embedded at arrival epochs and derive the one-step transition probabilities. From these results, we obtain the mean delay and the loss probability of the nth arrival packet. Before we study this complex model, first we give a transient analysis of an MAP/M/1 queueing system without congestion control at arrival epochs. We apply our result to a signaling system No. 7 network with a congestion control based on thresholds.

  12. Mechanical stress activates neurites and somata of myenteric neurons

    Directory of Open Access Journals (Sweden)

    Eva Maria Kugler

    2015-09-01

    Full Text Available The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN is undoubted but many of their basic features remain to be studied. In this study, we used ultra-fast neuroimaging to record activity of primary cultured myenteric neurons of guinea pig and human intestine after von Frey hair evoked deformation of neurites and somata. Independent component analysis was applied to reconstruct neuronal morphology and follow neuronal signals. Of the cultured neurons 45% (114 out of 256, 30 guinea pigs responded to neurite probing with a burst spike frequency of 13.4 Hz. Action potentials generated at the stimulation site invaded the soma and other neurites. Mechanosensitive sites were expressed across large areas of neurites. Many mechanosensitive neurites appeared to have afferent and efferent functions as those that responded to deformation also conducted spikes coming from the soma. Mechanosensitive neurites were also activated by nicotine application. This supported the concept of multifunctional MEN. 14% of the neurons (13 out of 96, 18 guinea pigs responded to soma deformation with burst spike discharge of 17.9 Hz. Firing of MEN adapted rapidly (RAMEN, slowly (SAMEN or ultra-slowly (USAMEN. The majority of MEN showed SAMEN behavior although significantly more RAMEN occurred after neurite probing. Cultured myenteric neurons from human intestine had similar properties. Compared to MEN, dorsal root ganglion neurons were activated by neurite but not by soma deformation with slow adaptation of firing. We demonstrated that MEN exhibit specific features very likely reflecting adaptation to their specialized functions in the gut.

  13. Lysophosphatidylinositol causes neurite retraction via GPR55, G13 and RhoA in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Yutaro Obara

    Full Text Available GPR55 was recently identified as a putative receptor for certain cannabinoids, and lysophosphatidylinositol (LPI. Recently, the role of cannabinoids as GPR55 agonists has been disputed by a number of reports, in part, because studies investigating GPR55 often utilized overexpression systems, such as the GPR55-overexpressing HEK293 cells, which make it difficult to deduce the physiological role of endogenous GPR55. In the present study, we found that PC12 cells, a neural model cell line, express endogenous GPR55, and by using these cells, we were able to examine the role of endogenous GPR55. Although GPR55 mRNA and protein were expressed in PC12 cells, neither CB(1 nor CB(2 mRNA was expressed in these cells. GPR55 was predominantly localized on the plasma membrane in undifferentiated PC12 cells. However, GPR55 was also localized in the growth cones or the ruffled border in differentiated PC12 cells, suggesting a potential role for GPR55 in the regulation of neurite elongation. LPI increased intracellular Ca(2+ concentration and RhoA activity, and induced ERK1/2 phosphorylation, whereas endogenous and synthetic cannabinoids did not, thereby suggesting that cannabinoids are not GPR55 agonists. LPI also caused neurite retraction in a time-dependent manner accompanied by the loss of neurofilament light chain and redistribution of actin in PC12 cells differentiated by NGF. This LPI-induced neurite retraction was found to be G(q-independent and G(13-dependent. Furthermore, inactivation of RhoA function via C3 toxin and GPR55 siRNA knockdown prevented LPI-induced neurite retraction. These results suggest that LPI, and not cannabinoids, causes neurite retraction in differentiated PC12 cells via a GPR55, G(13 and RhoA signaling pathway.

  14. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells.

    Science.gov (United States)

    Phan, Chia-Wei; Wong, Wei-Lun; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2012-07-19

    Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom's aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be

  15. Merlin inhibits neurite outgrowth in the CNS.

    Science.gov (United States)

    Schulz, Alexander; Geissler, Katja J; Kumar, Sujeet; Leichsenring, Gregor; Morrison, Helen; Baader, Stephan L

    2010-07-28

    The neurofibromatosis type 2 gene product merlin is known to provoke gliogenic tumors as a result of its mutagenic loss. Merlin's physiological anti-mitogenic function makes it unique among its ezrin-radixin-moesin (ERM) family members. Although ERM proteins and merlin are known to be expressed in glial cells of the peripheral nervous system and CNS, the neuronal expression pattern and function of merlin have been less well investigated. We report here expression of merlin in developing and mature neurons of the murine CNS. Within cerebellar Purkinje cells (PCs), merlin was localized in the soma, sprouting dendrites and axons. Merlin expression in PCs was high during the period of initial dendrite regression and declined during later phases of dendrite elongation. Consistently, merlin expression in vivo was increased in Engrailed-2-overexpressing PCs, which are characterized by a reduced dendritic extension. Furthermore, overexpression of merlin in dissociated cerebellar cultures and in neurogenic P19 cells caused a significant decline in neurite outgrowth, while, conversely, inhibition of merlin expression increased process formation. This effect was dependent on phosphorylation of serine 518 and involved the inactivation of the growth-promoting GTPase Rac. We thus provide evidence that merlin plays a pivotal role in controlling the neuronal wiring in the developing CNS.

  16. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Directory of Open Access Journals (Sweden)

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  17. High-content neurite development study using optically patterned substrates.

    Directory of Open Access Journals (Sweden)

    Jonathan M Bélisle

    Full Text Available The study of neurite guidance in vitro relies on the ability to reproduce the distribution of attractive and repulsive guidance molecules normally expressed in vivo. The identification of subtle variations in the neurite response to changes in the spatial distribution of extracellular molecules can be achieved by monitoring the behavior of cells on protein gradients. To do this, automated high-content screening assays are needed to quantify the morphological changes resulting from growth on gradients of guidance molecules. Here, we present the use of laser-assisted protein adsorption by photobleaching (LAPAP to allow the fabrication of large-scale substrate-bound laminin-1 gradients to study neurite extension. We produced thousands of gradients of different slopes and analyzed the variations in neurite attraction of neuron-like cells (RGC-5. An image analysis algorithm processed bright field microscopy images, detecting each cell and quantifying the soma centroid and the initiation, terminal and turning angles of the longest neurite.

  18. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  19. SP-PLP-EPR Investigations into the Chain-Length-Dependent Termination of Methyl Methacrylate Bulk Polymerization.

    Science.gov (United States)

    Barth, Johannes; Buback, Michael

    2009-11-02

    Termination kinetics of methyl methacrylate (MMA) bulk polymerization has been studied via the single pulsed laser polymerization-electron paramagnetic resonance method. MMA-d(8) has been investigated to enhance the signal-to-noise quality of microsecond time-resolved measurement of radical concentration. Chain-length-dependent termination rate coefficients of radicals of identical size, k ti,i, are reported for 5-70 °C and up to i = 100. k ti,i decreases according to the power-law expression $k_{\\rm t}^{i,i} = k_{\\rm t}^{{\\rm 1,1}} \\cdot i^{ - \\alpha }$. At 5 °C, k(t) for two MMA radicals of chain-length unity is k t1,1 = (5.8 ± 1.3) · 10(8)  L · mol(-1)  · s(-1) . The associated activation energy and power-law exponent are: E(A) (k t1,1) ≈ 9 ± 2 kJ · mol(-1) and α ≈ 0.63 ± 0.15, respectively. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Shoc2/Sur8 protein regulates neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Gonzalo Leon

    Full Text Available The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.

  1. Fine Needle Aspiration Cytology in Diagnosis of Pure Neuritic Leprosy

    Directory of Open Access Journals (Sweden)

    Bipin Kumar

    2011-01-01

    Full Text Available Leprosy is a chronic infection affecting mainly the skin and peripheral nerve. Pure neuritic form of this disease manifests by involvement of the nerve in the absence of skin lesions. Therefore, it can sometimes create a diagnostic problem. It often requires a nerve biopsy for diagnosis, which is an invasive procedure and may lead to neural deficit. Fine needle aspiration cytology (FNAC of an affected nerve can be a valuable and less invasive procedure for the diagnosis of such cases. We report five suspected cases of pure neuritic Hansen's disease involving the common and superficial peroneal, ulnar, and median nerve, who underwent FNAC. Smears revealed nerve fibers infiltrated by chronic inflammatory cells in all cases, presence of epithelioid cells granulomas, and Langhans giant cells in three cases, and acid fast bacilli in two cases. In conclusion, FNAC is a safe, less invasive, and time saving procedure for the diagnosis of pure neuritic leprosy.

  2. Fine Needle Aspiration Cytology in Diagnosis of Pure Neuritic Leprosy

    Science.gov (United States)

    Kumar, Bipin; Pradhan, Anju

    2011-01-01

    Leprosy is a chronic infection affecting mainly the skin and peripheral nerve. Pure neuritic form of this disease manifests by involvement of the nerve in the absence of skin lesions. Therefore, it can sometimes create a diagnostic problem. It often requires a nerve biopsy for diagnosis, which is an invasive procedure and may lead to neural deficit. Fine needle aspiration cytology (FNAC) of an affected nerve can be a valuable and less invasive procedure for the diagnosis of such cases. We report five suspected cases of pure neuritic Hansen's disease involving the common and superficial peroneal, ulnar, and median nerve, who underwent FNAC. Smears revealed nerve fibers infiltrated by chronic inflammatory cells in all cases, presence of epithelioid cells granulomas, and Langhans giant cells in three cases, and acid fast bacilli in two cases. In conclusion, FNAC is a safe, less invasive, and time saving procedure for the diagnosis of pure neuritic leprosy. PMID:21660285

  3. Genetic susceptibility for Alzheimer disease neuritic plaque pathology.

    Science.gov (United States)

    Shulman, Joshua M; Chen, Kewei; Keenan, Brendan T; Chibnik, Lori B; Fleisher, Adam; Thiyyagura, Pradeep; Roontiva, Auttawut; McCabe, Cristin; Patsopoulos, Nikolaos A; Corneveaux, Jason J; Yu, Lei; Huentelman, Matthew J; Evans, Denis A; Schneider, Julie A; Reiman, Eric M; De Jager, Philip L; Bennett, David A

    2013-09-01

    While numerous genetic susceptibility loci have been identified for clinical Alzheimer disease (AD), it is important to establish whether these variants are risk factors for the underlying disease pathology, including neuritic plaques. To investigate whether AD susceptibility loci from genome-wide association studies affect neuritic plaque pathology and to additionally identify novel risk loci for this trait. Candidate analysis of single-nucleotide polymorphisms and genome-wide association study in a joint clinicopathologic cohort, including 725 deceased subjects from the Religious Orders Study and the Rush Memory and Aging Project (2 prospective, community-based studies), followed by targeted validation in an independent neuroimaging cohort, including 114 subjects from multiple clinical and research centers. A quantitative measure of neuritic plaque pathologic burden, based on assessments of silver-stained tissue averaged from multiple brain regions. Validation based on β-amyloid load by immunocytochemistry, and replication with fibrillar β-amyloid positron emission tomographic imaging with Pittsburgh Compound B or florbetapir. Besides the previously reported APOE and CR1 loci, we found that the ABCA7 (rs3764650; P = .02) and CD2AP (rs9349407; P = .03) AD susceptibility loci are associated with neuritic plaque burden. In addition, among the top results of our genome-wide association study, we discovered a novel variant near the amyloid precursor protein gene (APP, rs2829887) that is associated with neuritic plaques (P = 3.3 × 10-6). This polymorphism was associated with postmortem β-amyloid load as well as fibrillar β-amyloid in 2 independent cohorts of adults with normal cognition. These findings enhance understanding of AD risk factors by relating validated susceptibility alleles to increased neuritic plaque pathology and implicate common genetic variation at the APP locus in the earliest, presymptomatic stages of AD.

  4. Neuroprotective copper bis(thiosemicarbazonato complexes promote neurite elongation.

    Directory of Open Access Journals (Sweden)

    Laura Bica

    Full Text Available Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD, Parkinson's disease (PD, and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato-copper complex, Cu(II(gtsm on neuritogenesis and neurite elongation (neurogenerative outcomes in PC12 neuronal-related cultures. We found that Cu(II(gtsm induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato complex, Cu(II(atsm, but at a higher concentration. Induction of neurite elongation by Cu(II(gtsm was restricted to neurites within the length range of 75-99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM Cu(II(gtsm treatment. The mechanism of neurogenerative action was investigated and revealed that Cu(II(gtsm inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor resulted in analogous elongation of neurites compared to 50 nM Cu(II(gtsm, suggesting a potential link between Cu(II(gtsm-mediated phosphatase inhibition and neurogenerative outcomes.

  5. The effects of microenvironment on the redifferentiation of regenerating neurones: neurite architecture, acetylcholine receptors and Ca2+ channel distribution.

    Science.gov (United States)

    Spira, M E; Zeldes, D; Hochner, B; Dormann, A

    1987-09-01

    Severed adult neurones, which are capable of regrowth, encounter different microenvironments from those encountered during development. Moreover, adult neurones may respond in a different manner from developing neurones to the same environmental cues. Thus, the recovery of the integrative and transmission capabilities (which depend on the neuronal architecture, passive and active membrane properties, and synaptic receptor distribution) by a regenerating adult neurone may not be complete. In the present review, we examine several aspects of the outcome of the interaction between the microenvironment and regrowing neurones using the cockroach giant interneurones (GINs) as a model system. We demonstrate that whereas extrinsic cues govern the morphological redifferentiation and distribution of synaptic receptors, the distribution of voltage-dependent Ca2+ channels is to a large extent determined by intrinsic factors. The pathway of regrowth and the architecture of regenerating GINs were studied by examination of intracellularly stained fibres. The environments provided by the connectives and ganglia are different. The elongating sprouts in the connective appeared as smooth cylinders. Within the ganglionic domain, the main longitudinal sprouts emitted neurites which extended and branched into the neuropile. The local cues for branching of neurites were eliminated by freezing and thawing of the ganglia prior to the arrival of the growing tips. The failure to extend neurites under these conditions is attributed to the elimination of extrinsic signals for morphological redifferentiation of the fibres, since the same fibres emit neurites in anterior ganglia which have not been subjected to freezing and thawing. The distribution of acetylcholine receptors (AChRs) on the GINs was mapped by ionophoretic application of ACh. In both the intact and regenerating GINs receptors were located only on the neurites. Freezing and thawing of a ganglion eliminated the local signals for

  6. Glial membranes at the node of Ranvier prevent neurite outgrowth

    DEFF Research Database (Denmark)

    Huang, Jeffrey K; Phillips, Greg R; Roth, Alejandro D

    2005-01-01

    Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors...... of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes...

  7. SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Bakalyar, D; McKenney, S [Henry Ford Health System, Detroit, MI (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)

    2015-06-15

    Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distribution function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.

  8. The effects of hematopoietic growth factors on neurite outgrowth.

    Science.gov (United States)

    Su, Ye; Cui, Lili; Piao, Chunshu; Li, Bin; Zhao, Li-Ru

    2013-01-01

    Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF) has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF) production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity.

  9. The effects of hematopoietic growth factors on neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Ye Su

    Full Text Available Stem cell factor (SCF and granulocyte colony-stimulating factor (G-CSF are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity.

  10. Discovery of pyrroloimidazoles as agents stimulating neurite outgrowth

    NARCIS (Netherlands)

    Beck, Barbara; Leppert, Christian A.; Mueller, Bernhard K.; Dömling, Alexander

    2006-01-01

    A diverse library of substituted pyrroloimidazoles was assembled by a multicomponent reaction (MCR) of tosylmethyl isocyanides (TOSMIC), indole carbaldehydes and primary amines in a van Leusen reaction. A library of this scaffold was screened in a phenotypic assay for neurite outgrowth. Several

  11. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology

    Directory of Open Access Journals (Sweden)

    Jui-Heng Tseng

    2017-08-01

    Full Text Available The initiating events that promote tau mislocalization and pathology in Alzheimer’s disease (AD are not well defined, partly because of the lack of endogenous models that recapitulate tau dysfunction. We exposed wild-type neurons to a neuroinflammatory trigger and examined the effect on endogenous tau. We found that tau re-localized and accumulated within pathological neuritic foci, or beads, comprised of mostly hypo-phosphorylated, acetylated, and oligomeric tau. These structures were detected in aged wild-type mice and were enhanced in response to neuroinflammation in vivo, highlighting a previously undescribed endogenous age-related tau pathology. Strikingly, deletion or inhibition of the cytoplasmic shuttling factor HDAC6 suppressed neuritic tau bead formation in neurons and mice. Using mass spectrometry-based profiling, we identified a single neuroinflammatory factor, the metalloproteinase MMP-9, as a mediator of neuritic tau beading. Thus, our study uncovers a link between neuroinflammation and neuritic tau beading as a potential early-stage pathogenic mechanism in AD.

  12. TERAHERTZ RADIATION INFLUENCE ON THE GROWING OF NEURITES

    Directory of Open Access Journals (Sweden)

    M. V. Tsurkan

    2013-01-01

    Full Text Available Our research was devoted to the impact of broadband pulsed THz radiation in the frequency range of 0.05 to 2 THz on the neurite growth in the sensory ganglia of 10-12-day chicken embryos. Dependence of changes in functional responses of cells on the average output power has been found.

  13. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    Directory of Open Access Journals (Sweden)

    Katharina Leitmeyer

    2015-01-01

    Full Text Available Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR by blocking the mTOR complex 1 (mTORC1. mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp. are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  14. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels.

    Science.gov (United States)

    Sheng, Lifu; Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2015-01-28

    Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders. Copyright © 2015 the authors 0270-6474/15/351739-14$15.00/0.

  15. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity.

    Science.gov (United States)

    Wright, K T; Seabright, R; Logan, A; Lilly, A J; Khanim, F; Bunce, C M; Johnson, W E B

    2010-07-16

    The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Neurite outgrowth in human iPSC-derived neurons

    Science.gov (United States)

    Data on morphology of rat and human neurons in cell cultureThis dataset is associated with the following publication:Druwe, I., T. Freudenrich , K. Wallace , T. Shafer , and W. Mundy. Comparison of Human Induced PluripotentStem Cell-Derived Neurons and Rat Primary CorticalNeurons as In Vitro Models of Neurite Outgrowth. Applied In vitro Toxicology. Mary Ann Liebert, Inc., Larchmont, NY, USA, 2(1): 26-36, (2016).

  17. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  18. Neurite outgrowth on fluorinated polyimide film micropatterned by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Y.; Sato, M.; Nagaoka, S.; Kawakami, H. E-mail: kawakami-hiroyoshi@c.metro-u.ac.jp; Suzuki, Y.; Iwaki, M

    2003-05-01

    In this study, we investigated neurite outgrowth on a fluorinated polyimide film micropatterned by ion irradiation. We used the fluorinated polyimide because of its excellent thermal and mechanical properties and biocompatibility. Rattus norvegicus chromaphin (PC12) cells were used for in vitro studies. The polyimide films were irradiated with He{sup +}, Ne{sup +} or Kr{sup +} at 1 x 10{sup 14} ions/cm{sup 2} using an ion-beam mask. The lines in the mask were 120 and 160 {mu}m wide and 120-160 {mu}m apart. PC12 cells were selectively adhered on the polyimide film micropatterned by Kr{sup +}-irradiation. However, the neurite length on the film irradiated by Kr{sup +} was shorter than that determined in the film irradiated by He{sup +}. On the other hand, neurite outgrowth on the polyimide film micropatterned by He{sup +}-irradiation was at least 100 {mu}m in length. This initial study indicated the enhanced outgrowth of PC12 cells on the fluorinated polyimide film micropatterned by ion irradiation.

  19. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    Science.gov (United States)

    Matsumoto, K.; Sato, C.; Naka, Y.; Whitby, R.; Shimizu, N.

    2010-03-01

    Low concentrations (0.11-1.7 µg ml - 1) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 µg ml - 1 CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  20. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials.

    Science.gov (United States)

    Hannan, Md Abdul; Kang, Ji-Young; Mohibbullah, Md; Hong, Yong-Ki; Lee, Hyunsook; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2014-02-27

    Moringa oleifera Lam. (Moringaceae) by virtue of its high nutritional as well as ethnomedical values has been gaining profound interest both in nutrition and medicinal research. The leaf of this plant is used in ayurvedic medicine to treat paralysis, nervous debility and other nerve disorders. In addition, research evidence also suggests the nootropic as well as neuroprotective roles of Moringa oleifera leaf in animal models. The aim of the present study was to evaluate the effect of Moringa oleifera leaf in the primary hippocampal neurons regarding its neurotrophic and neuroprotective properties. The primary culture of embryonic hippocampal neurons was incubated with the ethanol extract of Moringa oleifera leaf (MOE). After an indicated time, cultures were either stained directly with a lipophilic dye, DiO, or fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for neurite maturation and synaptogenesis were performed using Image J software. Neuronal viability was evaluated using trypan blue exclusion and lactate dehydrogenase assays. MOE promoted neurite outgrowth in a concentration-dependent manner with an optimal concentration of 30 μg/mL. As a very initial effect, MOE significantly promoted the earlier stages of neuronal differentiation. Subsequently, MOE significantly increased the number and length of dendrites, the length of axon, and the number and length of both dendrite and axonal branches, and eventually facilitated synaptogenesis. The β-carotene, one major compound of MOE, promoted neuritogensis, but the increase was not comparable with the effect of MOE. In addition, MOE supported neuronal survival by protecting neurons from naturally occurring cell death in vitro. Our findings indicate that MOE promotes axodendritic maturation as well as provides neuroprotection suggesting a promising pharmacological importance of this nutritionally and ethnomedically important plant for the well-being of nervous system. Copyright

  1. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways.

    Directory of Open Access Journals (Sweden)

    Tomoko Nishimura

    Full Text Available BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists. METHODS AND FINDINGS: The effects of three SSRIs (fluvoxamine, sertraline, paroxetine and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl piperidine (PPBP, and dehydroepiandrosterone (DHEA-sulfate on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP(3 receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP(3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-gamma, phosphatidylinositol 3-kinase (PI3K, p38MAPK, c-Jun N-terminal kinase (JNK, and the Ras/Raf/mitogen-activated protein kinase (MAPK

  2. Large-scale analysis of neurite growth dynamics on micropatterned substrates

    OpenAIRE

    Wissner-Gross, Zachary D.; Scott, Mark Andrew; Ku, David L.; Ramaswamy, Priya

    2010-01-01

    During both development and regeneration of the nervous system, neurons display complex growth dynamics, and several neurites compete to become the neuron's single axon. Numerous mathematical and biophysical models have been proposed to explain this competition, which remain experimentally unverified. Large-scale, precise, and repeatable measurements of neurite dynamics have been difficult to perform, since neurons have varying numbers of neurites, which themselves have complex morphologies. ...

  3. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.

    Science.gov (United States)

    Du, Jintang; Campau, Erica; Soragni, Elisabetta; Jespersen, Christine; Gottesfeld, Joel M

    2013-12-20

    Myotonic dystrophy type 1 (DM1) is an inherited dominant muscular dystrophy caused by expanded CTG·CAG triplet repeats in the 3' untranslated region of the DMPK1 gene, which produces a toxic gain-of-function CUG RNA. It has been shown that the severity of disease symptoms, age of onset and progression are related to the length of the triplet repeats. However, the mechanism(s) of CTG·CAG triplet-repeat instability is not fully understood. Herein, induced pluripotent stem cells (iPSCs) were generated from DM1 and Huntington's disease patient fibroblasts. We isolated 41 iPSC clones from DM1 fibroblasts, all showing different CTG·CAG repeat lengths, thus demonstrating somatic instability within the initial fibroblast population. During propagation of the iPSCs, the repeats expanded in a manner analogous to the expansion seen in somatic cells from DM1 patients. The correlation between repeat length and expansion rate identified the interval between 57 and 126 repeats as being an important length threshold where expansion rates dramatically increased. Moreover, longer repeats showed faster triplet-repeat expansion. However, the overall tendency of triplet repeats to expand ceased on differentiation into differentiated embryoid body or neurospheres. The mismatch repair components MSH2, MSH3 and MSH6 were highly expressed in iPSCs compared with fibroblasts, and only occupied the DMPK1 gene harboring longer CTG·CAG triplet repeats. In addition, shRNA silencing of MSH2 impeded CTG·CAG triplet-repeat expansion. The information gained from these studies provides new insight into a general mechanism of triplet-repeat expansion in iPSCs.

  4. Polyglutamine length-dependent toxicity from α1ACT in Drosophila models of spinocerebellar ataxia type 6

    Directory of Open Access Journals (Sweden)

    Wei-Ling Tsou

    2016-12-01

    Full Text Available Spinocerebellar ataxia type 6 (SCA6 is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes degeneration in mice. We recently described the first Drosophila models of SCA6 that express α1ACT with a normal (11Q or hyper-expanded (70Q polyQ. Here, we report additional α1ACT transgenic flies, which express full-length α1ACT with a 33Q repeat. We show that α1ACT33Q is toxic in Drosophila, but less so than the 70Q version. When expressed everywhere, α1ACT33Q-expressing adults die earlier than flies expressing the normal allele. α1ACT33Q causes retinal degeneration and leads to aggregated species in an age-dependent manner, but at a slower pace than the 70Q counterpart. According to western blots, α1ACT33Q localizes less readily in the nucleus than α1ACT70Q, providing clues into the importance of polyQ tract length on α1ACT localization and its site of toxicity. We expect that these new lines will be highly valuable for future work on SCA6.

  5. Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites.

    Science.gov (United States)

    Wang, Yingjie; Dong, Yingying; Song, Honghua; Liu, Yan; Liu, Mei; Yuan, Ying; Ding, Fei; Gu, Xiaosong; Wang, Yongjun

    2012-12-01

    SNARE complex mediates cellular membrane fusion events essential for neurotransmitter release and synaptogenesis. SNAP25, a member of the SNARE proteins, plays critical roles during the development of the central nervous system via regulation by alternative splicing and protein kinase phosphorylation. To date, little information is available regarding the protein in the spinal cord regeneration, especially for the postnatal highly expressed isoform SNAP25b. In the present study, we characterized gecko SNAP25b, which shared high identity with those of other vertebrates. Expression of gecko SNAP25b was temporally upregulated in both neurons of spinal cord and forming ependymal tube following tail amputation, coinciding with the occurrence of regenerate re-innervation. Overexpression of gecko wild type SNAP25b in the SH-SY5Y and undifferentiated PC12 cells promoted the elongation and outgrowth of neurites, while mutant constructs at Serine(187) resulted in differential effects for which S187A had a promoting role. Knockdown of endogenous SNAP25b affected the formation of neurites, which could be rescued by overexpression of SNAP25b. FM1-43 staining revealed that transfection of S187E mutant construct reduced the recruitment of vesicles. In addition, transfection of gecko SNAP25b in the astrocyte, which is absent from neuronal specific VAMP2, was capable of enhancing process elongation, indicating a potential for various alternative protein combinations. Taken together, our data suggest that gecko SNAP25b is involved in spinal cord regeneration by promoting outgrowth and elongation of neurites in a more extensive protein binding manner. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer

    Science.gov (United States)

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-08-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer--oxidized polypyrrole (PP)--has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(L-lactic acid) (PLA), and poly(lactic acid-coglycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μ m (n = 5643) compared with 9.5 μ m (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-coglycolic acid).

  7. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site.

    Science.gov (United States)

    Tang, S; Shen, Y J; DeBellard, M E; Mukhopadhyay, G; Salzer, J L; Crocker, P R; Filbin, M T

    1997-09-22

    Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity. Alone, sialic acid-dependent binding of MAG to neurons is insufficient to effect inhibition of axonal growth. Thus, while soluble MAG-Fc (MAG extracellular domain fused to Fc), a truncated form of MAG-Fc missing Ig-domains 4 and 5, MAG(d1-3)-Fc, and another sialic acid binding protein, sialoadhesin, each bind to neurons in a sialic acid- dependent manner, only full-length MAG-Fc inhibits neurite outgrowth. These results suggest that a second site must exist on MAG which elicits this response. Consistent with this model, mutation of arginine 118 (R118) in MAG to either alanine or aspartate abolishes its sialic acid-dependent binding. However, when expressed at the surface of either CHO or Schwann cells, R118-mutated MAG retains the ability to inhibit axonal outgrowth. Hence, MAG has two recognition sites for neurons, the sialic acid binding site at R118 and a distinct inhibition site which is absent from the first three Ig domains.

  8. Myelin-associated Glycoprotein Interacts with Neurons via a Sialic Acid Binding Site at ARG118 and a Distinct Neurite Inhibition Site

    Science.gov (United States)

    Tang, Song; Shen, Ying Jing; DeBellard, Maria Elena; Mukhopadhyay, Gitali; Salzer, James L.; Crocker, Paul R.; Filbin, Marie T.

    1997-01-01

    Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity. Alone, sialic acid–dependent binding of MAG to neurons is insufficient to effect inhibition of axonal growth. Thus, while soluble MAG-Fc (MAG extracellular domain fused to Fc), a truncated form of MAG-Fc missing Ig-domains 4 and 5, MAG(d1-3)-Fc, and another sialic acid binding protein, sialoadhesin, each bind to neurons in a sialic acid– dependent manner, only full-length MAG-Fc inhibits neurite outgrowth. These results suggest that a second site must exist on MAG which elicits this response. Consistent with this model, mutation of arginine 118 (R118) in MAG to either alanine or aspartate abolishes its sialic acid–dependent binding. However, when expressed at the surface of either CHO or Schwann cells, R118-mutated MAG retains the ability to inhibit axonal outgrowth. Hence, MAG has two recognition sites for neurons, the sialic acid binding site at R118 and a distinct inhibition site which is absent from the first three Ig domains. PMID:9298990

  9. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain.

    Science.gov (United States)

    Flynn, Kevin C; Hellal, Farida; Neukirchen, Dorothee; Jacob, Sonja; Tahirovic, Sabina; Dupraz, Sebastian; Stern, Sina; Garvalov, Boyan K; Gurniak, Christine; Shaw, Alisa E; Meyn, Liane; Wedlich-Söldner, Roland; Bamburg, James R; Small, J Victor; Witke, Walter; Bradke, Frank

    2012-12-20

    Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Growth, collapse, and stalling in a mechanical model for neurite motility

    CERN Document Server

    Recho, Pierre; Goriely, Alain

    2015-01-01

    Neurites, the long cellular protrusions that form the routes of the neuronal network are capable to actively extend during early morphogenesis or to regenerate after trauma. To perform this task, they rely on their cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states arise from an interplay between the physical forces driven by growth of the microtubule-rich inner core of the neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear as a mechanical traction/compression balance of these two parallel structures. The model predicts how the response of a neurite to a towing force depends on the force magnitude and recovers the response of neurites to several drug treatments that modulate the cytoskeleton active and passive properties.

  11. Mapping dynamic branch displacements: A versatile method to quantify spatiotemporal neurite dynamics

    Directory of Open Access Journals (Sweden)

    Masaki eHiramoto

    2011-09-01

    Full Text Available AbstractQuantification of the movement of axons and dendrites is essential to study circuit formation. Several methods have been developed to quantify the movement of neurites in simplified systems, however these quantification methods are specialized for a limited type of predicted movements in the particular assay systems. The movement of neurites in vivo includes many unexpected rearrangements. Establishment of a method that can detect and quantify a variety of patterning events will reveal novel phenomena in circuit formation and make it possible to conduct deeper investigation of the molecular and cellular bases of these events. Here we present a versatile method that represents a quantitative analysis of the integrated movement of neurites on a spatial map. We show that the method is useful to analyze several types of neurite behaviors, such as changes in the directionality of neurite movements, fasciculation of axons or changes in territories of dendritic fields.

  12. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura.

    Science.gov (United States)

    Murphy, Fiona A; Poland, Craig A; Duffin, Rodger; Al-Jamal, Khuloud T; Ali-Boucetta, Hanene; Nunes, Antonio; Byrne, Fiona; Prina-Mello, Adriele; Volkov, Yuri; Li, Shouping; Mather, Stephen J; Bianco, Alberto; Prato, Maurizio; Macnee, William; Wallace, William A; Kostarelos, Kostas; Donaldson, Ken

    2011-06-01

    The fibrous shape of carbon nanotubes (CNTs) raises concern that they may pose an asbestos-like inhalation hazard, leading to the development of diseases, especially mesothelioma. Direct instillation of long and short CNTs into the pleural cavity, the site of mesothelioma development, produced asbestos-like length-dependent responses. The response to long CNTs and long asbestos was characterized by acute inflammation, leading to progressive fibrosis on the parietal pleura, where stomata of strictly defined size limit the egress of long, but not short, fibers. This was confirmed by demonstrating clearance of short, but not long, CNT and nickel nanowires and by visualizing the migration of short CNTs from the pleural space by single-photon emission computed tomographic imaging. Our data confirm the hypothesis that, although a proportion of all deposited particles passes through the pleura, the pathogenicity of long CNTs and other fibers arises as a result of length-dependent retention at the stomata on the parietal pleura. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. AMPK over-activation leads to accumulation of α-synuclein oligomers and decrease of neurites

    Science.gov (United States)

    Jiang, Peizhou; Gan, Ming; Ebrahim, Abdul Shukkur; Castanedes-Casey, Monica; Dickson, Dennis W.; Yen, Shu-Hui C.

    2012-01-01

    Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin treated mice. Since previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared to age-matched controls, and in mice treated with MPTP, we tested the effects of lactate exposure on α-syn in a cell based-study. We demonstrated that (i) lactate treatment led to α-syn accumulation and oligomerization in a time- and concentration-dependent manner, (ii) such alterations were mediated via adenosine-monophosphate activated protein kinase (AMPK) and associated with increasing cytoplasmic phosphorylated AMPK levels, (iii) AMPK activation facilitated α-syn accumulation and phosphorylation, (iv) lactate treatment or overexpression of active form of AMPK decreased α-syn turnover and neurite outgrowth and (v) Lewy body-bearing neurons displayed abnormal cytoplasmic distribution of phosphorylated AMPK, which normally is located in nuclei. Together, our results suggest that chronic neuronal accumulation of α-syn induced by lactate-triggered AMPK activation in aging brains may be a novel mechanism underlying α-synucleionpathies in PD and related disorders. PMID:23200460

  14. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Wright, K.T. [Keele University at the RJAH Orthopaedic Hospital, Oswestry, Shropshire (United Kingdom); Seabright, R.; Logan, A. [Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, Birmingham University, Birmingham (United Kingdom); Lilly, A.J.; Khanim, F.; Bunce, C.M. [Biosciences, Birmingham University, Birmingham (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [Life and Health Sciences, Aston University, Birmingham (United Kingdom)

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  15. Dual pathways regulate neurite outgrowth in enteric ganglia.

    Science.gov (United States)

    Simeone, D M; Romanchuk, G; Mulholland, M W

    1994-10-01

    Primary cultures of guinea pig myenteric plexus ganglia were used to examine the ability of agents that activate adenylate cyclase or mimic intracellular adenosine 3',5'-cyclic monophosphate (cAMP) to stimulate morphological growth. Dose-dependent increases in neurite length and density were produced in enteric neuronal cultures by forskolin (212% of control), cholera toxin (356% of control), or the permeant cAMP analogues 8-bromoadenosine 3',5'-cyclic monophosphate and dibutyryl cAMP. (R)-p-adenosine 3',5'-cyclic monophosphorothioate, an inhibitor of cAMP-dependent kinases, blocked the growth-promoting effects of cAMP analogues but not of nerve growth factor (NGF). Activation of cAMP-dependent signaling pathways also increased production of mRNA for alpha-tubulin and microtubule-associated protein 2. Dual pathways, regulated by NGF and cAMP-dependent protein kinases, influence growth signaling in enteric ganglia.

  16. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    Directory of Open Access Journals (Sweden)

    Tingting Gu

    2013-12-01

    Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions. During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen, that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO, stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.

  17. Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT).

    Science.gov (United States)

    Radotić, Viktorija; Braeken, Dries; Kovačić, Damir

    2017-12-01

    Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.

  18. CHLORHEXIDINE INHIBITS L1 CELL ADHESION MOLECULE MEDIATED NEURITE OUTGROWTH IN VITRO

    Science.gov (United States)

    Milstone, Aaron M.; Bamford, Penny; Aucott, Susan W.; Tang, Ningfeng; White, Kimberly R.; Bearer, Cynthia F.

    2013-01-01

    Background Chlorhexidine is a skin disinfectant that reduces skin and mucous membrane bacterial colonization and inhibits organism growth. Despite numerous studies assessing chlorhexidine safety in term infants, residual concerns have limited its use in hospitalized neonates, especially low birth weight preterm infants. The aim of this study was to assess the potential neurotoxicity of chlorhexidine on the developing central nervous system using a well-established in vitro model of neurite outgrowth that includes laminin and L1 cell adhesion molecule (L1) as neurite outgrowth promoting substrates. Methods Cerebellar granule neurons are plated on either poly L-lysine, L1 or laminin. Chlorhexidine, hexachlorophene or their excipients are added to the media. Neurons are grown for 24 h, then fixed and neurite length measured. Results Chlorhexidine significantly reduced the length of neurites grown on L1 but not laminin. Chlorhexidine concentrations as low as 125 ng/ml statistically significantly reduced neurite length on L1. Hexachlorophene did not affect neurite length. Conclusion Chlorhexidine at concentrations detected in the blood following topical applications in preterm infants specifically inhibited L1 mediated neurite outgrowth of cerebellar granule neurons. It is now vital to determine whether the blood brain barrier is permeable to chlorhexidine in preterm infants. PMID:24126818

  19. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling.

    Science.gov (United States)

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal; Pertz, Olivier

    2016-01-04

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. © 2016 Fusco et al.

  20. AMP N1-Oxide, a Unique Compound of Royal Jelly, Induces Neurite Outgrowth from PC12 Vells via Signaling by Protein Kinase A Independent of that by Mitogen-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Noriko Hattori

    2010-01-01

    Full Text Available Earlier we identified adenosine monophosphate (AMP N1-oxide as a unique compound of royal jelly (RJ that induces neurite outgrowth (neuritegenesis from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK but also that of cAMP/calcium-response element-binding protein (CREB in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.

  1. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    DEFF Research Database (Denmark)

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct......Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact...

  2. ANALYSIS OF THE STRUCTURE OF MAGNETIC FIELDS THAT INDUCED INHIBITION OF STIMULATED NEURITE OUTGROWTH

    Science.gov (United States)

    The important experiments showing nonlinear amplitude dependences of the neurite outgrowth in pheochromocytoma nerve cells due to ELF magnetic field exposure had been carried out in a nonuniform ac magnetic field. The nonuniformity entailed larger than expected variances in magne...

  3. Comparison of neurite density measured by MRI and histology after TBI.

    Directory of Open Access Journals (Sweden)

    Shiyang Wang

    Full Text Available Functional recovery after brain injury in animals is improved by marrow stromal cells (MSC which stimulate neurite reorganization. However, MRI measurement of neurite density changes after injury has not been performed. In this study, we investigate the feasibility of MRI measurement of neurite density in an animal model of traumatic brain injury (TBI with and without MSC treatment.Fifteen male Wistar rats, were treated with saline (n = 6 or MSCs (n = 9 and were sacrificed at 6 weeks after controlled cortical impact (CCI. Healthy non-CCI rats (n = 5, were also employed. Ex-vivo MRI scans were performed two days after the rats were sacrificed. Multiple-shell hybrid diffusion imaging encoding scheme and spherical harmonic expansion of a two-compartment water diffusion displacement model were used to extract neurite related parameters. Bielshowski and Luxol Fast blue was used for staining axons and myelin, respectively. Modified Morris water maze and neurological severity score (mNSS test were performed for functional evaluation. The treatment effects, the correlations between neurite densities measured by MRI and histology, and the correlations between MRI and functional variables were calculated by repeated measures analysis of variance, the regression correlation analysis tests, and spearman correlation coefficients.Neurite densities exhibited a significant correlation (R(2>0.80, p<1E-20 between MRI and immuno-histochemistry measurements with 95% lower bound of the intra-correlation coefficient (ICC as 0.86. The conventional fractional anisotropy (FA correlated moderately with histological neurite density (R(2 = 0.59, P<1E-5 with 95% lower bound of ICC as 0.76. MRI data revealed increased neurite reorganization with MSC treatment compared with saline treatment, confirmed by histological data from the same animals. mNSS were significantly correlated with MRI neurite density in the hippocampus region.The present studies

  4. Botanical drug puerarin coordinates with nerve growth factor in the regulation of neuronal survival and neuritogenesis via activating ERK1/2 and PI3K/Akt signaling pathways in the neurite extension process.

    Science.gov (United States)

    Zhao, Jia; Cheng, Yuan-Yuan; Fan, Wen; Yang, Chuan-Bin; Ye, Shui-Fen; Cui, Wei; Wei, Wei; Lao, Li-Xing; Cai, Jing; Han, Yi-Fan; Rong, Jian-Hui

    2015-01-01

    Nerve growth factor (NGF) regulates neuronal survival and differentiation by activating extracellular signal-regulated-kinases (ERK) 1/2 and phosphoinositide-3-kinase (PI3K)/Akt pathways in two distinct processes: latency process and neurite extension process. This study was designed to investigate whether botanical drug C-glucosylated isoflavone puerarin coordinates with NGF to regulate neuritogenesis via activating ERK1/2 and PI3K/Akt in neurite extension process. We investigated the neuroprotective and neurotrophic activities of puerarin in MPTP-lesioned mice and dopaminergic PC12 cells. The effects of puerarin on ERK1/2, Akt, Nrf2, and HO-1 were assessed by Western blotting. The neurite outgrowth was assayed by neurite outgrowth staining kit. Puerarin protected dopaminergic cells and ameliorated the behavioral impairments in MPTP-lesioned mice. Puerarin potentiated the effect of NGF on neuritogenesis in PC12 cells by >10-fold. Mechanistic studies revealed: (1) puerarin rapidly activated ERK1/2 and Akt, leading to the activation of Nrf2/heme oxygenase-1 (HO-1) pathways; (2) ERK1/2, PI3K/Akt, and HO-1 inhibitors attenuated the neuritogenic activity of puerarin. Notably, puerarin enhanced NGF-induced neuritogenesis in a timing-dependent manner. Puerarin effectively coordinated with NGF to stimulate neuritogenesis via activating ERK1/2 and PI3K/Akt pathways in neurite extension process. These results demonstrated a general mechanism supporting the therapeutic application of puerarin-related compounds in neurodegenerative diseases. © 2014 John Wiley & Sons Ltd.

  5. LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin.

    Science.gov (United States)

    Stiles, Travis L; Dickendesher, Travis L; Gaultier, Alban; Fernandez-Castaneda, Anthony; Mantuano, Elisabetta; Giger, Roman J; Gonias, Steven L

    2013-01-01

    In the injured adult mammalian central nervous system (CNS), products are generated that inhibit neuronal sprouting and regeneration. In recent years, most attention has focused on the myelin-associated inhibitory proteins (MAIs) Nogo-A, OMgp, and myelin-associated glycoprotein (MAG). Binding of MAIs to neuronal cell-surface receptors leads to activation of RhoA, growth cone collapse, and neurite outgrowth inhibition. In the present study, we identify low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) as a high-affinity, endocytic receptor for MAG. In contrast with previously identified MAG receptors, binding of MAG to LRP1 occurs independently of terminal sialic acids. In primary neurons, functional inactivation of LRP1 with receptor-associated protein, depletion by RNA interference (RNAi) knock-down, or LRP1 gene deletion is sufficient to significantly reverse MAG and myelin-mediated inhibition of neurite outgrowth. Similar results are observed when LRP1 is antagonized in PC12 and N2a cells. By contrast, inhibiting LRP1 does not attenuate inhibition of neurite outgrowth caused by chondroitin sulfate proteoglycans. Mechanistic studies in N2a cells showed that LRP1 and p75NTR associate in a MAG-dependent manner and that MAG-mediated activation of RhoA may involve both LRP1 and p75NTR. LRP1 derivatives that include the complement-like repeat clusters CII and CIV bind MAG and other MAIs. When CII and CIV were expressed as Fc-fusion proteins, these proteins, purified full-length LRP1 and shed LRP1 all attenuated the inhibition of neurite outgrowth caused by MAG and CNS myelin in primary neurons. Collectively, our studies identify LRP1 as a novel MAG receptor that functions in neurite outgrowth inhibition.

  6. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue.

    Science.gov (United States)

    Ekman, Mari; Zhu, Baoyi; Swärd, Karl; Uvelius, Bengt

    2017-07-01

    Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies. Copyright © 2017. Published by Elsevier B.V.

  7. The polysialic acid mimetics idarubicin and irinotecan stimulate neuronal survival and neurite outgrowth and signal via protein kinase C.

    Science.gov (United States)

    Loers, Gabriele; Astafiev, Steven; Hapiak, Yuliya; Saini, Vedangana; Mishra, Bibhudatta; Gul, Sheraz; Kaur, Gurcharan; Schachner, Melitta; Theis, Thomas

    2017-08-01

    Polysialic acid (PSA) is a large, negatively charged, linear homopolymer of alpha2-8-linked sialic acid residues. It is generated by two polysialyltransferases and attached to N- and/or O-linked glycans, and its main carrier is the neural cell adhesion molecule (NCAM). PSA controls the development and regeneration of the nervous system by enhancing cell migration, axon pathfinding, synaptic targeting, synaptic plasticity, by regulating the differentiation of progenitor cells and by modulating cell-cell and cell-matrix adhesions. In the adult, PSA plays a role in the immune system, and PSA mimetics promote functional recovery after nervous system injury. In search for novel small molecule mimetics of PSA that are applicable for therapy, we identified idarubicin, an antineoplastic anthracycline, and irinotecan, an antineoplastic agent of the topoisomerase I inhibitor class, as PSA mimetics using a competition enzyme-linked immunosorbent assay. Idarubicin and irinotecan compete with the PSA-mimicking peptide and colominic acid, the bacterial analog of PSA, for binding to the PSA-specific monoclonal antibody 735. Idarubicin and irinotecan stimulate neurite outgrowth and survival of cultured cerebellar neurons after oxidative stress via protein kinase C and Erk1/2 in a similar manner as colominic acid, whereas Fyn, casein kinase II and the phosphatase and tensin homolog are only involved in idarubicin and irinotecan-stimulated neurite outgrowth. These novel results show that the structure and function of PSA can be mimicked by the small organic compounds irinotecan and idarubicin which trigger the same signaling cascades as PSA, thus introducing the possibility of retargeting these drugs to treat nervous system injuries. © 2017 International Society for Neurochemistry.

  8. Analysis of Queue-Length Dependent Vacations and P-Limited Service in BMAP/G/1/N Systems: Stationary Distributions and Optimal Control

    Directory of Open Access Journals (Sweden)

    A. D. Banik

    2013-01-01

    Full Text Available We consider a finite-buffer single server queueing system with queue-length dependent vacations where arrivals occur according to a batch Markovian arrival process (BMAP. The service discipline is P-limited service, also called E-limited with limit variation (ELV where the server serves until either the system is emptied or a randomly chosen limit of L customers has been served. Depending on the number of customers present in the system, the server will monitor his vacation times. Queue-length distributions at various epochs such as before, arrival, arbitrary and after, departure have been obtained. Several other service disciplines like Bernoulli scheduling, nonexhaustive service, and E-limited service can be treated as special cases of the P-limited service. Finally, the total expected cost function per unit time is considered to determine locally optimal values N* of N or a maximum limit L^* of L^ as the number of customers served during a service period at a minimum cost.

  9. Quinoidal Oligo(9,10-anthryl)s with Chain-Length-Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release

    KAUST Repository

    Lim, Zhenglong

    2015-11-12

    Quinoidal π-conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10-anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10-anthryl dimer 1 has a closed-shell ground state, whereas the tri- (2) and tetramers (3) both have an open-shell diradical ground state with a small singlet-triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed-shell quinoidal form that drives the molecule to a flexible open-shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed-shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain-length dependence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time.

    Science.gov (United States)

    Weber, C; Frank, C; Bommel, S; Rukat, T; Leitenberger, W; Schäfer, P; Schreiber, F; Kowarik, S

    2012-05-28

    We compare the growth dynamics of the three n-alkanes C(36)H(74), C(40)H(82), and C(44)H(90) on SiO(2) using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required.

  11. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion.

    Science.gov (United States)

    Toepfer, Christopher N; West, Timothy G; Ferenczi, Michael A

    2016-09-15

    Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr ) at submaximal [Ca(2+) ]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca(2+) ]-activated cardiac trabecula accelerates ktr . Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85-1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank-Starling is evident at maximal [Ca(2+) ] activation and therefore does not necessarily require length-dependent change in [Ca(2+) ]-sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank-Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction. Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin-associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr ) in maximally activating [Ca(2+) ]. Activation was achieved by rapidly increasing the temperature (temperature-jump of 0.5-20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85-1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC-exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained

  12. Chain length-dependent effects of inulin-type fructan dietary fiber on human systemic immune responses against hepatitis-B.

    Science.gov (United States)

    Vogt, Leonie M; Elderman, Marlies E; Borghuis, Theo; de Haan, Bart J; Faas, Marijke M; de Vos, Paul

    2017-10-01

    In vivo studies demonstrating that only specific dietary-fibers contribute to immunity are still inconclusive, as measuring immune effects in healthy humans remains difficult. We applied a relatively inefficacious vaccination-challenge to study chain length-dependent effects of inulin-type fructan (ITF) dietary fibers on human immunity. ITFs with two different 'degree of polymerization-' (DP)-profiles were tested in vitro for effects on PBMC-cytokines and TLR2 activation. In a double-blind placebo-controlled trial, 40 healthy volunteers (18-29 years) were divided into three groups and supplemented from day 1 to day 14 with DP10-60 ITF, DP2-25 ITF (both n = 13), or fructose placebo (n = 14), 8 g/day. On day 7, all volunteers were vaccinated against hepatitis B. Anti-HbsAg-titer development and lymphocyte subsets were studied. In vitro, DP10-60 ITFs stimulated a Th1-like cytokine profile and stimulated TLR2 more strongly than DP2-25 ITFs. In vivo, DP10-60 increased anti-HBsAg titers, Th1-cells, and transitional B-cells. Both ITFs increased CD45ROhi CTLs at day 35, and CD161+ cytokine producing NK-cells at day 21 and 35. Support of immunity is determined by the chain length of ITFs. Only long-chain ITFs support immunity against pathogenic hepB-epitopes introduced by vaccination. Our findings demonstrate that specific dietary fibers need to be selected for immunity support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Micropatterned coumarin polyester thin films direct neurite orientation.

    Science.gov (United States)

    McCormick, Aleesha M; Maddipatla, Murthy V S N; Shi, Shuojia; Chamsaz, Elaheh A; Yokoyama, Hiroshi; Joy, Abraham; Leipzig, Nic D

    2014-11-26

    Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (pdistribution for both emergence angle (from the body of the cell) and orientation angle (at the tip of the growth cone) confirming alignment on patterned surfaces compared to control substrates (unpatterned polymer and glass surfaces). The expected frequency distribution for parallel alignment (≤15°) is 14% and the two micropatterned groups ranged from 42 to 49% alignment for emergence and orientation angle measurements, where the control groups range from 12 to 22% for parallel alignment. Despite depths being 15 to 20 nm, cell processes could sense these topographical changes and preferred to align to certain features of the micropatterns like the plateau/channel interface. As a result this initial study in utilizing these new DMD micropatterned coumarin polyester thin films has proven beneficial as an axon guidance platform for future nervous system

  14. CD11b+GR1+ Myeloid Cells Secrete NGF and Promote Trigeminal Ganglion Neurite Growth: Implications for Corneal Nerve Regeneration

    Science.gov (United States)

    Sarkar, Joy; Chaudhary, Shweta; Jassim, Sarmad H.; Ozturk, Okan; Chamon, Wallace; Ganesh, Balaji; Tibrewal, Sapna; Gandhi, Sonal; Byun, Yong-Soo; Hallak, Joelle; Mahmud, Dolores L.; Mahmud, Nadim; Rondelli, Damiano; Jain, Sandeep

    2013-01-01

    Purpose. We characterized fluorescent bone marrow cells (YFP+ BMCs) in the thy1-YFP mouse and determine if they promote trigeminal ganglion (TG) cell neurite growth. Methods. Excimer laser annular keratectomy was performed in thy1-YFP mice, and corneas were imaged. BMCs were harvested from femur and tibia, and the expression of surface markers on YFP+ BMCs was analyzed by flow cytometry. The immunosuppressive action of BMCs (YFP+ and YFP−) was evaluated in an allogenic mixed lymphocyte reaction (MLR). Neurotrophic action of BMCs (YFP+ and YFP−) was determined in compartmental and transwell cultures of dissociated TG cells. Results. Following annular keratectomy, YFP+ BMCs infiltrated the cornea. YFP+ BMCs shared surface markers (CD11b+Gr1+Ly6C+Ly6G-F4/80low) with monocytic myeloid-derived suppressor cells (MDSCs), had similar morphology, and suppressed T-cell proliferation in allogenic MLR in a dose-dependent manner. YFP+ BMCs, but not YFP− BMCs, significantly increased growth of TG neurites in vitro. When cultured in a transwell with TG neurites, YFP+ BMCs expressed neurotrophins and secreted nerve growth factor (NGF) in conditioned medium. YFP+ BMCs that infiltrated the cornea maintained their phenotype and actions (neuronal and immune). Conclusions. YFP+ BMCs in thy1-YFP mice have immunophenotypic features of MDSCs. They secrete NGF and promote neuroregeneration. Their immunosuppressive and neurotrophic actions are preserved after corneal infiltration. These findings increase our understanding of the beneficial roles played by leukocyte trafficking in the cornea and may lead to therapeutic strategies that use NGF-secreting myeloid cells to repair diseased or injured neurons. PMID:23942970

  15. Effects of organophosphates on cholinesterase activity and neurite regeneration in Aplysia.

    Science.gov (United States)

    Srivatsan, M

    1999-05-14

    In Aplysia, a marine mollusc, acetylcholinesterase (AChE) is present in cholinergic and non-cholinergic neurons and in hemolymph. Aplysia hemolymph has a very high level of AChE which promotes neurite growth in primary cultures of dopaminergic neurons via a non-catalytic mechanism. In contrast, AChE is known to facilitate neurite growth in cholinoceptive neurons by hydrolyzing ACh which inhibits neurite growth. In order to test whether AChE's site-specific neurotrophic action varies with the neuronal phenotype, we investigated the effects of active-site inhibited hemolymph AChE on neurite growth of cholinergic neurons of Aplysia in primary culture. Organophosphates being long-acting active site inhibitors of AChE were chosen for this study. The effects of active site inhibited hemolymph AChE was tested on large cholinergic neurons, R2 (abdominal ganglion) and LPL1 (left pleural ganglion) as well as small cholinergic neurons (buccal ganglion) of Aplysia, maintained in culture. Partially purified hemolymph AChE was inhibited by either 10 microM of echothiophate or 5 microM of paraoxon. Neurons were maintained in (1) L15 (defined medium) alone; (2) L15 + echothiophate; (3) L-15 + paraoxon; (4) L-15 + hemolymph AChE; (5) L15 + hemolymph AChE + echothiophate; and (6) L-15 + hemolymph AChE + paraoxon. Addition of uninhibited hemolymph AChE significantly increased neurite growth of cultured neurons compared to L15 alone. In the presence of echothiophate-inhibited or praoxon-inhibited AChE, neurite growth was significantly reduced when compared to L15 + uninhibited AChE. While the presence of echothiophate by itself did not reduce survival or neurite growth when compared to L-15 alone, the presence of paraoxon by itself markedly reduced survival and neurite growth of cultured neurons. The results show that AChE's catalytic action contributes to enhance neurite growth in cholinergic neurons and the effects of paraoxon appears to differ from that of echothiophate on

  16. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China); Feng, Xudong, E-mail: xudong.feng@childrens.harvard.edu [Department of Medicine, Children' s Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (United States); Xia, Qing, E-mail: xqing@hsc.pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  17. Lignosus rhinocerus (Cooke Ryvarden: A Medicinal Mushroom That Stimulates Neurite Outgrowth in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Lee-Fang Eik

    2012-01-01

    Full Text Available A national treasure mushroom, Lignosus rhinocerus, has been used to treat variety of ailments by local and indigenous communities in Malaysia. The aim of this study was to investigate the potential of the most valuable part of L. rhinocerus, the sclerotium, on neurite outgrowth activity by using PC-12Adh cell line. Differentiated cells with one thin extension at least double the length of the cell diameter were scored positive. Our results showed that aqueous sclerotium L. rhinocerus extract induced neurite outgrowths of 24.4% and 42.1% at 20 μg/mL (w/v of aqueous extract alone and a combination of 20 μg/mL (w/v aqueous extract and 30 ng/mL (w/v of NGF, respectively. Combination of NGF and sclerotium extract had additive effects and enhanced neurite outgrowth. Neuronal differentiation was demonstrated by indirect immunofluorescence of neurofilament protein. Aqueous sclerotium extract contained neuroactive compounds that stimulated neurite outgrowth in vitro. To our knowledge this is the first report on neurite-stimulating activities of L. rhinocerus.

  18. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    Science.gov (United States)

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study

  19. The role of the cytoskeleton in volume regulation and beading transitions in PC12 neurites

    CERN Document Server

    Fernandez, Pablo

    2010-01-01

    We present investigations on volume regulation and beading shape transitions in PC12 neurites conducted using a flow-chamber technique. By disrupting the cell cytoskeleton with specific drugs we investigate the role of its individual components in the volume regulation response. We find that microtubule disruption increases both swelling rate and maximum volume attained, but does not affect the ability of the neurite to recover its initial volume. In addition, investigation of axonal beading --also known as pearling instability-- provides additional clues on the mechanical state of the neurite. We conclude that the initial swelling phase is mechanically slowed down by microtubules, while the volume recovery is driven by passive diffusion of osmolites. Our experiments provide a framework to investigate the role of cytoskeletal mechanics in volume homeostasis.

  20. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Flaskos, J., E-mail: flaskos@vet.auth.gr [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Nikolaidis, E. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Harris, W. [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Sachana, M. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hargreaves, A.J., E-mail: alan.hargreaves@ntu.ac.uk [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  1. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  2. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  3. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity

    Science.gov (United States)

    Leach, Jennie B.; Brown, Xin Q.; Jacot, Jeffrey G.; Di Milla, Paul A.; Wong, Joyce Y.

    2007-06-01

    Rationally designed matrices for nerve tissue engineering and encapsulated cell therapies critically rely on a comprehensive understanding of neural response to biochemical as well as biophysical cues. Whereas biochemical cues are established mediators of neuronal behavior (e.g., outgrowth), physical cues such as substrate stiffness have only recently been recognized to influence cell behavior. In this work, we examine the response of PC12 neurites to substrate stiffness. We quantified and controlled fibronectin density on the substrates and measured multiple neurite behaviors (e.g., growth, branching, neurites per cell, per cent cells expressing neurites) in a large sample population. We found that PC12 neurons display a threshold response to substrate stiffness. On the softest substrates tested (shear modulus ~10 Pa), neurites were relatively few, short in length and unbranched. On stiffer substrates (shear modulus ~102-104 Pa), neurites were longer and more branched and a greater percentage of cells expressed neurites; significant differences in these measures were not found on substrates with a shear modulus >102 Pa. Based on these data and comparisons with published neurobiology and neuroengineering reports of neurite mechanotransduction, we hypothesize that results from studies of neuronal response to compliant substrates are cell-type dependent and sensitive to ligand density, sample size and the range of stiffness investigated.

  4. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  5. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging.

    Science.gov (United States)

    Timmers, Inge; Zhang, Hui; Bastiani, Matteo; Jansma, Bernadette M; Roebroeck, Alard; Rubio-Gozalbo, M Estela

    2015-03-01

    White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) was used to estimate density and orientation dispersion of neurites in a group of eight patients (aged 16-21 years) and eight healthy controls (aged 15-20 years). Extensive white matter abnormalities were found: neurite density index (NDI) was lower in the patient group in bilateral anterior areas, and orientation dispersion index (ODI) was increased mainly in the left hemisphere. These specific regional profiles are in agreement with the cognitive profile observed in galactosemia, showing higher order cognitive impairments, and language and motor impairments, respectively. Less favourable white matter properties correlated positively with age and age at onset of diet, and negatively with behavioural outcome (e.g. visual working memory). To conclude, this study provides evidence of white matter pathology regarding density and dispersion of neurites in these patients. The results are discussed in light of suggested pathophysiological mechanisms.

  6. Adhesion and neurite development of cortical neurons on micropatterns of polyethylenimine and fluorcarbon

    NARCIS (Netherlands)

    Ruardij, T.G.; Goedbloed, M.H.; Rutten, Wim

    2000-01-01

    This study aims on the preparation of isolated islands of cortical neurons on modified glass surfaces. Isolated islands of cortical neurons were obtained with a combination of neuron-adhesive polyethylenimine (PEI) and neuron-repellent plasma-deposited fluorocarbon (FC). Neurite development and

  7. Mechanosensitivity of Embryonic Neurites Promotes Their Directional Extension and Schwann Cells Progenitors Migration

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-11-01

    Full Text Available Background/Aims: Migration of Schwann cells (SCs progenitors and neurite outgrowth from embryonic dorsal root ganglions (DRGs are two central events during the development of the peripheral nervous system (PNS. How these two enthralling events preceding myelination are promoted is of great relevance from basic research and clinical aspects alike. Recent evidence demonstrates that biophysical cues (extracellular matrix stiffness and biochemical signaling act in concert to regulate PNS myelination. Microenvironment stiffness of SCs progenitors and embryonic neurites dynamically changes during development. Methods: DRG explants were isolated from day 12.5 to 13.5 mice embryos and plated on laminin-coated substrates with varied stiffness values. After 4 days in culture and immunostaining with specific markers, neurite outgrowth pattern, SCs progenitors migration, and growth cone shape and advance were analyzed with confocal fluorescence microscopy. Results: We found out that growing substrate stiffness promotes directional neurite outgrowth, SCs progenitors migration, growth cone advance and presumably axons fasciculation. Conclusions: DRG explants are in vitro models for the research of PNS development, myelination and regeneration. Consequently, we conclude the following: Our observations point out the importance of mechanosensitivity for the PNS. At the same time, they prompt the investigation of the important yet unclear links between PNS biomechanics and inherited neuropathies with myelination disorders such as Charcot-Marie-Tooth 1A and hereditary neuropathy with liability to pressure palsies. Finally, they encourage the consideration of mechanosensitivity in bioengineering of scaffolds to aid nerve regeneration after injury.

  8. Nerve growth factor promotes neurite outgrowth in guinea pig myenteric plexus ganglia.

    Science.gov (United States)

    Mulholland, M W; Romanchuk, G; Lally, K; Simeone, D M

    1994-10-01

    Nerve growth factor (NGF) has important developmental actions in both central and peripheral nervous systems. Primary cultures of neonatal guinea pig myenteric plexus ganglia were used to examine the ability of NGF to stimulate morphological development in enteric neurons. NGF, in the presence of a serum-free medium, produced dose-dependent increases in neurite density, significant at 1 ng/ml and maximal at 100 ng/ml (4.5-fold increase vs. control). Maximum neurite length was also significantly increased at 1 ng/ml, with maximal effects at 100 ng/ml. Coincubation of NGF (50 ng/ml) with monoclonal NGF antibodies abolished increases in both neurite density (128 +/- 19 processes/mm for control, 369 +/- 19 for NGF, 183 +/- 28 for NGF+monoclonal antibodies) and neurite length. Exposure of enteric neurons to low concentrations of NGF (1 ng/ml) was also associated with increased mRNA levels for cytoskeletal genes. alpha-Tubulin mRNA levels were increased 3.9 +/- 0.7 times basal at 48 h. mRNA levels for microtubule-associated protein 2 were increased threefold at 48 h of NGF incubation. NGF demonstrates activities in cultured enteric ganglia that stimulate morphological development.

  9. Stochastic continuous time neurite branching models with tree and segment dependent rates

    NARCIS (Netherlands)

    van Elburg, Ronald A. J.

    2011-01-01

    In this paper we introduce a continuous time stochastic neurite branching model closely related to the discrete time stochastic BES-model. The discrete time BES-model is underlying current attempts to simulate cortical development, but is difficult to analyze. The new continuous time formulation

  10. Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Lian-Fang Lin

    Full Text Available Luteolin (3',4',5,7-tetrahydroxyflavone, a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132 in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB, which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA and MAPK/ERK kinase 1/2 (MEK1/2 inhibitors but not by protein kinase C (PKC or calcium/calmodulin-dependent protein kinase II (CaMK II inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.

  11. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Shahrzad Shirazi Fard

    Full Text Available Nerve Growth Factor (NGF-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP, but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF.

  12. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.

    Science.gov (United States)

    McMurtrey, Richard J

    2014-12-01

    Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative

  13. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures.

    Science.gov (United States)

    Sygnecka, Katja; Heine, Claudia; Scherf, Nico; Fasold, Mario; Binder, Hans; Scheller, Christian; Franke, Heike

    2015-02-01

    Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1μM and 1μM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10μM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis.

    Science.gov (United States)

    Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D

    2017-11-15

    Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to

  15. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation

    Science.gov (United States)

    Winans, Amy M; Collins, Sean R; Meyer, Tobias

    2016-01-01

    Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI: http://dx.doi.org/10.7554/eLife.12387.001 PMID:26836307

  16. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-01-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal

  17. Pituitary adenylate cyclase-activating peptide stimulates neurite growth in PC12 cells.

    Science.gov (United States)

    Hernandez, A; Kimball, B; Romanchuk, G; Mulholland, M W

    1995-01-01

    The ability of PACAP-38 to stimulate morphological development was studied using rat pheochromocytoma PC12 cells. PACAP-38 produced concentration-dependent increases in percentage of cells exhibiting neurite extension. Similar increases were produced by forskolin (28 +/- 2% at 96 h) and 8-bromo cAMP (30 +/- 2%). Vasoactive intestinal peptide and alpha-calcitonin gene-related peptide were without effect. PACAP-38 produced significant increases in PC12 cell cAMP content and inositol phosphate turnover. Intracellular [Ca2+] increased from 169 +/- 14 nM to 560 +/- 58 nM in response to 1 microM PACAP-38. PACAP-stimulated neurite outgrowth was abolished by RpcAMPS, an inhibitor of cAMP-dependent kinases but was unaffected by the protein kinase C antagonist H7.

  18. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Science.gov (United States)

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  19. Mechanisms involved in the regulation of neuropeptide-mediated neurite outgrowth: a minireview

    Directory of Open Access Journals (Sweden)

    Lestanova Z.

    2016-04-01

    Full Text Available The present knowledge, regarding the neuronal growth and neurite extension, includes neuropeptide action in the central nervous system. Research reports have brought much information about the multiple intracellular signaling pathways of neuropeptides. However, regardless of the differences in the local responses elicited by neuropeptides, there exist certain functional similarities in the effects of neuropeptides, mediated by their receptors. In the present review, data of the relevant studies, focused on G protein-coupled receptors activated by neuropeptides, are summarized. Particularly, receptors that activate phosphatidylinositol-calcium system and protein kinase C pathways, resulting in the reorganization of the neuronal cytoskeleton and changes in the neuronal morphology, are discussed. Based on our data received, we are showing that oxytocin increases the gene expression of GTPase cell division cycle protein 42 (Cdc42, implicated in many aspects of the neuronal growth and morphology. We are also paying a special attention to neurite extension and retraction in the context of neuropeptide regulation.

  20. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    Science.gov (United States)

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  1. Rewiring Neuronal Circuits: A New Method for Fast Neurite Extension and Functional Neuronal Connection.

    Science.gov (United States)

    Magdesian, Margaret H; Anthonisen, Madeleine; Lopez-Ayon, G Monserratt; Chua, Xue Ying; Rigby, Matthew; Grütter, Peter

    2017-06-13

    Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Here a procedure is described to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved reach over 1.2 mm/h, 30-60 times faster than the in vivo rates of the fastest growing axons from the peripheral nervous system (0.02 to 0.04 mm/h)(28) and 10 times faster than previously reported for the same neuronal type at an earlier stage of development(4). First, isolated populations of rat hippocampal neurons are grown for 2-3 weeks in microfluidic devices to precisely position the cells, enabling easy micromanipulation and experimental reproducibility. Next, beads coated with poly-D-lysine (PDL) are placed on neurites to form adhesive contacts and pipette micromanipulation is used to move the resulting bead-neurite complex. As the bead is moved, it pulls out a new neurite that can be extended over hundreds of micrometers and functionally connected to a target cell in less than 1 h. This process enables experimental reproducibility and ease of manipulation while bypassing slower chemical strategies to induce neurite growth. Preliminary measurements presented here demonstrate a neuronal growth rate far exceeding physiological ones. Combining these innovations allows for the precise establishment of neuronal networks in culture with an unprecedented degree of control. It is a novel method that opens the door to a plethora of information and insights into signal transmission and communication within the neuronal network as well as being a playground in which to explore the limits of neuronal growth. The potential applications and experiments are widespread with direct implications for therapies that aim to reconnect neuronal circuits after trauma or in neurodegenerative diseases.

  2. Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites.

    Science.gov (United States)

    Morelli, Sabrina; Salerno, Simona; Piscioneri, Antonella; Papenburg, Bernke J; Di Vito, Anna; Giusi, Giuseppina; Canonaco, Marcello; Stamatialis, Dimitrios; Drioli, Enrico; De Bartolo, Loredana

    2010-09-01

    In neuronal tissue engineering many efforts are focused on creating biomaterials with physical and chemical pathways for controlling cellular proliferation and orientation. Neurons have the ability to respond to topographical features in their microenvironment causing among others, axons to proliferate along surface features such as substrate grooves in micro-and nanoscales. As a consequence these neuronal elements are able to correctly adhere, migrate and orient within their new environment during growth. Here we explored the polarization and orientation of hippocampal neuronal cells on nonpatterned and micro-patterned biodegradable poly(l-lactic acid) (PLLA) membranes with highly selective permeable properties. Dense and porous nonpatterned and micro-patterned membranes were prepared from PLLA by Phase Separation Micromolding. The micro-patterned membranes have a three-dimensional structure consisting of channels and ridges and of bricks of different widths. Nonpatterned and patterned membranes were used for hippocampal neuronal cultures isolated from postnatal days 1-3 hamsters and the neurite length, orientation and specific functions of cells were investigated up to 12 days of culture. Neurite outgrowth, length plus orientation tightly overlapped the pattern of the membrane surface. Cell distribution occurred only in correspondence to membrane grooves characterized by continuous channels whereas on membranes with interconnected channels, cells not only adhered to and elongated their cellular processes in the grooves but also in the breaking points. High orientation degrees of cells were determined particularly on the patterned porous membranes with channel width of 20 mum and ridges of 17 mum whereas on dense nonpatterned membranes as well as on polystyrene culture dish (PSCD) controls, a larger number of primary developed neurites were distributed. Based on these results, PLLA patterned membranes may directly improve the guidance of neurite extension and

  3. NIR-responsive upconversion nanoparticles stimulate neurite outgrowth in PC12 cells.

    Science.gov (United States)

    Guan, Yijia; Li, Meng; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2014-09-24

    Nerve regeneration is of diagnostic importance in neuroscience in regards to the treatment of degenerative disease. Owing to the ability to release rare-earth ions and produce ROS during upconversion process, upconversion nanoparticles are first reported for promoting neurite outgrowth. Different charged coating materials which play a critical role in cell attachment, can further lead to different effects on cell differentiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ethanol-induced disruption of Golgi apparatus morphology, primary neurite number and cellular orientation in developing cortical neurons.

    Science.gov (United States)

    Powrozek, Teresa A; Olson, Eric C

    2012-11-01

    Prenatal ethanol exposure disrupts cortical neurite initiation and outgrowth, but prior studies have reported both ethanol-dependent growth promotion and inhibition. To resolve this ambiguity and better approximate in vivo conditions, we quantitatively analyzed neuronal morphology using a new, whole hemisphere explant model. In this model, Layer 6 (L6) cortical neurons migrate, laminate and extend neurites in an organotypic fashion. To selectively label L6 neurons, we performed ex utero electroporation of a GFP expression construct at embryonic day 13 and allowed the explants to develop for 2 days in vitro. Explants were exposed to (400 mg/dL) ethanol for either 4 or 24 h prior to fixation. Complete 3-D reconstructions were made of >80 GFP-positive neurons in each experimental condition. Acute responses to ethanol exposure included compaction of the Golgi apparatus accompanied by elaboration of supernumerary primary apical neurites, as well as a modest (∼15%) increase in higher order apical neurite length. With longer exposure time, ethanol exposure leads to a consistent, significant disorientation of the cell (cell body, primary apical neurite, and Golgi) with respect to the pial surface. The effects on cellular orientation were accompanied by decreased expression of cytoskeletal elements, microtubule-associated protein 2 and F-actin. These findings indicate that upon exposure to ethanol, developing L6 neurons manifest disruptions in Golgi apparatus and cytoskeletal elements which may in turn trigger selective and significant perturbations to primary neurite formation and neuronal polarity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min Jee; Nam, Yoonkey [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); Namgung, Seon; Hong, Seunghun, E-mail: seunghun@snu.ac.kr, E-mail: ynam@kaist.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2010-06-11

    Researchers have made extensive efforts to mimic or reverse-engineer in vivo neural circuits using micropatterning technology. Various surface chemical cues or topographical structures have been proposed to design neuronal networks in vitro. In this paper, we propose a carbon nanotube (CNT)-based network engineering method which naturally mimics the structure of extracellular matrix (ECM). On CNT patterned substrates, poly-L-lysine (PLL) was coated, and E18 rat hippocampal neurons were cultured. In the early developmental stage, soma adhesion and neurite extension occurred in disregard of the surface CNT patterns. However, later the majority of neurites selectively grew along CNT patterns and extended further than other neurites that originally did not follow the patterns. Long-term cultured neuronal networks had a strong resemblance to the in vivo neural circuit structures. The selective guidance is possibly attributed to higher PLL adsorption on CNT patterns and the nanomesh structure of the CNT patterns. The results showed that CNT patterned substrates can be used as novel neuronal patterning substrates for in vitro neural engineering.

  6. Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy

    Science.gov (United States)

    Baumann, Bernhard; Woehrer, Adelheid; Ricken, Gerda; Augustin, Marco; Mitter, Christian; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2017-03-01

    One major hallmark of Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (Aβ). In AD, degeneration of neurons is preceded by the formation of Aβ plaques, which show different morphological forms. Most of them are birefringent owing to the parallel arrangement of amyloid fibrils. Here, we present polarization sensitive optical coherence microscopy (PS-OCM) for imaging mature neuritic Aβ plaques based on their birefringent properties. Formalin-fixed, post-mortem brain samples of advanced stage AD patients were investigated. In several cortical brain regions, neuritic Aβ plaques were successfully visualized in tomographic and three-dimensional (3D) images. Cortical grey matter appeared polarization preserving, whereas neuritic plaques caused increased phase retardation. Consistent with the results from PS-OCM imaging, the 3D structure of senile Aβ plaques was computationally modelled for different illumination settings and plaque sizes. Furthermore, the birefringent properties of cortical and meningeal vessel walls in CAA were investigated in selected samples. Significantly increased birefringence was found in smaller vessels. Overall, these results provide evidence that PS-OCM is able to assess amyloidosis based on intrinsic birefringent properties.

  7. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging.

    Science.gov (United States)

    Merluzzi, Andrew P; Dean, Douglas C; Adluru, Nagesh; Suryawanshi, Gaurav S; Okonkwo, Ozioma C; Oh, Jennifer M; Hermann, Bruce P; Sager, Mark A; Asthana, Sanjay; Zhang, Hui; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B

    2016-07-01

    Human aging is accompanied by progressive changes in executive function and memory, but the biological mechanisms underlying these phenomena are not fully understood. Using neurite orientation dispersion and density imaging, we sought to examine the relationship between age, cellular microstructure, and neuropsychological scores in 116 late middle-aged, cognitively asymptomatic participants. Results revealed widespread increases in the volume fraction of isotropic diffusion and localized decreases in neurite density in frontal white matter regions with increasing age. In addition, several of these microstructural alterations were associated with poorer performance on tests of memory and executive function. These results suggest that neurite orientation dispersion and density imaging is capable of measuring age-related brain changes and the neural correlates of poorer performance on tests of cognitive functioning, largely in accordance with published histological findings and brain-imaging studies of people of this age range. Ultimately, this study sheds light on the processes underlying normal brain development in adulthood, knowledge that is critical for differentiating healthy aging from changes associated with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Song Song

    2010-08-01

    Full Text Available One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the Frizzled receptors CFZ-2 and MIG-1, the co-receptor CAM-1/Ror, and the downstream component Dishevelled/DSH-1. Among these, CWN-2 acts as a local attractive cue for neurite outgrowth, and its activity can be partially substituted with other Wnts, suggesting that spatial distribution plays a role in the functional specificity of Wnts. As a co-receptor, CAM-1 functions cell-autonomously in neurons and, together with CFZ-2 and MIG-1, transmits the Wnt signal to downstream effectors. Yeast two-hybrid screening identified DSH-1 as a binding partner for CAM-1, indicating that CAM-1 could facilitate CWN-2/Wnt signaling by its physical association with DSH-1. Our study reveals an important role of a Wnt-Frz/Ror-Dsh pathway in regulating neurite A/P outgrowth.

  9. Non-Obese Diabetic Mice Rapidly Develop Dramatic Sympathetic Neuritic Dystrophy

    Science.gov (United States)

    Schmidt, Robert E.; Dorsey, Denise A.; Beaudet, Lucie N.; Frederick, Kathy E.; Parvin, Curtis A.; Plurad, Santiago B.; Levisetti, Matteo G.

    2003-01-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites (“neuritic dystrophy”) in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  10. Target deletion of the cytoskeleton-associated protein palladin does not impair neurite outgrowth in mice.

    Directory of Open Access Journals (Sweden)

    Run-Zhe Shu

    Full Text Available Palladin is an actin cytoskeleton-associated protein which is crucial for cell morphogenesis and motility. Previous studies have shown that palladin is localized to the axonal growth cone in neurons and may play an important role in axonal extension. Previously, we have generated palladin knockout mice which display cranial neural tube closure defect and embryonic lethality before embryonic day 15.5 (E15.5. To further study the role of palladin in the developing nervous system, we examined the innervation of palladin-deficient mouse embryos since the 200 kd, 140 kd, 90-92 kd and 50 kd palladin isoforms were undetectable in the mutant mouse embryo brain. Contrary to the results of previous studies, we found no inhibition of the axonal extension in palladin-deficient mouse embryos. The cortical neurons derived from palladin-deficient mice also showed no significant difference in neurite outgrowth as compared with those from wild-type mice. Moreover, no difference was found in neurite outgrowth of neural stem cell derived-neurons between palladin-deficient mice and wild-type mice. In conclusion, these results suggest that palladin is dispensable for normal neurite outgrowth in mice.

  11. LINGO-1 Interacts with WNK1 to Regulate Nogo-induced Inhibition of Neurite Extension*

    Science.gov (United States)

    Zhang, Zhaohuan; Xu, Xiaohui; Zhang, Yong; Zhou, Jianfeng; Yu, Zhongwang; He, Cheng

    2009-01-01

    LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123–510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension. PMID:19363035

  12. LINGO-1 interacts with WNK1 to regulate nogo-induced inhibition of neurite extension.

    Science.gov (United States)

    Zhang, Zhaohuan; Xu, Xiaohui; Zhang, Yong; Zhou, Jianfeng; Yu, Zhongwang; He, Cheng

    2009-06-05

    LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123-510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.

  13. Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels.

    Science.gov (United States)

    Koppes, A N; Keating, K W; McGregor, A L; Koppes, R A; Kearns, K R; Ziemba, A M; McKay, C A; Zuidema, J M; Rivet, C J; Gilbert, R J; Thompson, D M

    2016-07-15

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: (1) nanofillers influence neurite extension and (2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10-100-μg/mL) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. Novel biomedical devices delivering electrical stimulation are being developed to mitigate symptoms of Parkinson's, treat drug-resistant depression, control movement or enhance verve regeneration. Carbon

  14. Going “old school”: From bedside manner to deskside manner

    Directory of Open Access Journals (Sweden)

    David Fleischman

    2015-08-01

    Full Text Available Interaction between tertiary educators and students, we contend, improves trust and betters student responses to emotional distress while at university. Therefore, we introduce the “Deskside Manner Framework” as an emerging practice in the tertiary teaching and learning context to aid student transition success. Based on concepts and practice that originated primarily in the medical profession and later in other high credence professional contexts, the deskside manner framework includes: show respect, critical listening, the four Bs and follow up. Deskside manner is transferrable and we aim to facilitate it through workshops and by developing a digital repository of educator-student interaction stories.  

  15. Inhibitory effects of brain-derived neurotrophic factor precursor on viability and neurite growth of murine hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Jia CHEN

    2014-10-01

    Full Text Available Objective To explore the mediation effect of p75 neurotrophin receptor (p75NTR in the effect of brainderived neurotrophic factor precursor (proBDNF on viability and neurite growth of murine hippocampal neurons. Methods  Hippocampal neurons were obtained from p75NTR+/+ and p75NTR-/- 18-day mice and primarily cultured. For p75NTR+/+ neurons, three experimental groups were set, i.e. control, proBDNF (30ng/ml, and proBDNF (30ng/ml+p75/Fc (30µg/ml groups. For p75NTR-/- neurons, two experimental groups were set, i.e. control and proBDNF (30ng/ml groups. MTT assays were performed after 24h to examine the viability of neonatal primary neurons. Immunofluorescent staining was conducted after 72h to investigate the neurite length. Results With MAP2 and DAPI double fluorescent staining it was identified that the neonatal hippocampal neurons were successfully cultured in vitro with high purity. For viability assay of p75NTR+/+ neurons, it was found that the absorbance value at 570nm (A570 in proBDNF group was significantly lower than that in control group (P0.05. With neurite growth assay of p75NTR+/+ neurons, it was found that the neurite length in proBDNF group was significantly shorter than that in control group (P0.05. With neurite growth assay of p75NTR-/- neurons, no difference in neurite length was observed between proBDNF group and control group. Conclusion proBDNF may inhibit the neuronal viability and neurite growth via p75NTR. DOI: 10.11855/j.issn.0577-7402.2014.09.03

  16. Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling.

    Science.gov (United States)

    Roloff, Frank; Scheiblich, Hannah; Dewitz, Carola; Dempewolf, Silke; Stern, Michael; Bicker, Gerd

    2015-01-01

    Axonal injury in the adult human central nervous system often results in loss of sensation and motor functions. Promoting regeneration of severed axons requires the inactivation of growth inhibitory influences from the tissue environment and stimulation of the neuron intrinsic growth potential. Especially glial cell derived factors, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, and myelin in general, prevent axon regeneration. Most of the glial growth inhibiting factors converge onto the Rho/ROCK signaling pathway in neurons. Although conditions in the injured nervous system are clearly different from those during neurite outgrowth in vitro, here we use a chemical approach to manipulate Rho/ROCK signalling with small-molecule agents to encourage neurite outgrowth in cell culture. The development of therapeutic treatments requires drug testing not only on neurons of experimental animals, but also on human neurons. Using human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA (Ras homolog gene family, member A GTPase) activation and promotes neurite growth. Inhibition of the downstream effector Rho kinase by the drug Y-27632 results in a strong increase in neurite outgrowth. Conversely, activation of the Rho pathway by lysophosphatidic acid results in growth cone collapse and eventually to neurite retraction. Finally, we show that blocking of Rho kinase, but not RhoA results in an increase in neurons bearing neurites. Due to its anti-inflammatory and neurite growth promoting action, the use of a pharmacological treatment of damaged neural tissue with Ibuprofen should be explored.

  17. Enhanced neurite outgrowth of human model (NT2 neurons by small-molecule inhibitors of Rho/ROCK signaling.

    Directory of Open Access Journals (Sweden)

    Frank Roloff

    Full Text Available Axonal injury in the adult human central nervous system often results in loss of sensation and motor functions. Promoting regeneration of severed axons requires the inactivation of growth inhibitory influences from the tissue environment and stimulation of the neuron intrinsic growth potential. Especially glial cell derived factors, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, and myelin in general, prevent axon regeneration. Most of the glial growth inhibiting factors converge onto the Rho/ROCK signaling pathway in neurons. Although conditions in the injured nervous system are clearly different from those during neurite outgrowth in vitro, here we use a chemical approach to manipulate Rho/ROCK signalling with small-molecule agents to encourage neurite outgrowth in cell culture. The development of therapeutic treatments requires drug testing not only on neurons of experimental animals, but also on human neurons. Using human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA (Ras homolog gene family, member A GTPase activation and promotes neurite growth. Inhibition of the downstream effector Rho kinase by the drug Y-27632 results in a strong increase in neurite outgrowth. Conversely, activation of the Rho pathway by lysophosphatidic acid results in growth cone collapse and eventually to neurite retraction. Finally, we show that blocking of Rho kinase, but not RhoA results in an increase in neurons bearing neurites. Due to its anti-inflammatory and neurite growth promoting action, the use of a pharmacological treatment of damaged neural tissue with Ibuprofen should be explored.

  18. Ginsenoside-Rd Promotes Neurite Outgrowth of PC12 Cells through MAPK/ERK- and PI3K/AKT-Dependent Pathways.

    Science.gov (United States)

    Wu, Song-Di; Xia, Feng; Lin, Xue-Mei; Duan, Kang-Li; Wang, Fang; Lu, Qing-Li; Cao, Huan; Qian, Yi-Hua; Shi, Ming

    2016-01-29

    Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng's biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the effect of Rd on neurite outgrowth, a crucial process associated with neuronal repair. PC12 cells, which respond to nerve growth factor (NGF) and serve as a model for neuronal cells, were treated with different concentrations of Rd, and then their neurite outgrowth was evaluated. Our results showed that 10 μM Rd significantly increased the percentages of long neurite- and branching neurite-bearing cells, compared with respective controls. The length of the longest neurites and the total length of neurites in Rd-treated PC12 cells were much longer than that of respective controls. We also showed that Rd activated ERK1/2 and AKT but not PKC signalings, and inhibition of ERK1/2 by PD98059 or/and AKT by LY294002 effectively attenuated Rd-induced neurite outgrowth. Moreover, Rd upregulated the expression of GAP-43, a neuron-specific protein involved in neurite outgrowth, while PD98059 or/and LY294002 decreased Rd-induced increased GAP-43 expression. Taken together, our results provided the first evidence that Rd may promote the neurite outgrowth of PC12 cells by upregulating GAP-43 expression via ERK- and ARK-dependent signaling pathways.

  19. Sialylation of neurites inhibits complement-mediated macrophage removal in a human macrophage-neuron co-culture system

    Science.gov (United States)

    Linnartz-Gerlach, Bettina; Schuy, Christine; Shahraz, Anahita; Tenner, Andrea J.; Neumann, Harald

    2015-01-01

    The complement system has been implicated in the removal of dysfunctional synapses and neurites during development and in disease processes in the mouse, but it is unclear how far the mouse data can be transferred to humans. Here, we co-cultured macrophages derived from human THP1 monocytes and neurons derived from human induced pluripotent stem cells, to study the role of the complement system in a human model. Components of the complement system were expressed by the human macrophages and human neuronal culture, while receptors of the complement cascade were expressed by human macrophages as shown via gene transcript analysis and flow cytometry. We mimicked pathological conditions leading to an altered glycocalyx by treatment of human neurons with sialidases. Desialylated human neurites were opsonized by the complement component C1q. Furthermore, human neurites with an intact sialic acid cap remained untouched, while desialylated human neurites were removed and ingested by human macrophages. While blockage of the complement receptor 1 (CD35) had no effect, blockage of CD11b as part of the complement receptor 3 (CR3) reversed the effect on macrophage phagocytosis of desialylated human neurites. Data demonstrate that in the human system sialylation of the neuronal glycocalyx serves as an inhibitory flag for complement binding and CR3 mediated phagocytosis by macrophages. PMID:26257016

  20. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.

    Science.gov (United States)

    Chen, Yi-Ting; Tai, Chin-Yin

    2017-05-01

    Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation.

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    Full Text Available Diffusion tensor imaging (DTI studies of human brain development have consistently shown widespread, but nonlinear increases in white matter anisotropy through childhood, adolescence, and into adulthood. However, despite its sensitivity to changes in tissue microstructure, DTI lacks the specificity to disentangle distinct microstructural features of white and gray matter. Neurite orientation dispersion and density imaging (NODDI is a recently proposed multi-compartment biophysical model of brain microstructure that can estimate non-collinear properties of white matter, such as neurite orientation dispersion index (ODI and neurite density index (NDI. In this study, we apply NODDI to 66 healthy controls aged 7-63 years to investigate changes of ODI and NDI with brain maturation, with comparison to standard DTI metrics. Using both region-of-interest and voxel-wise analyses, we find that NDI exhibits striking increases over the studied age range following a logarithmic growth pattern, while ODI rises following an exponential growth pattern. This novel finding is consistent with well-established age-related changes of FA over the lifespan that show growth during childhood and adolescence, plateau during early adulthood, and accelerating decay after the fourth decade of life. Our results suggest that the rise of FA during the first two decades of life is dominated by increasing NDI, while the fall in FA after the fourth decade is driven by the exponential rise of ODI that overcomes the slower increases of NDI. Using partial least squares regression, we further demonstrate that NODDI better predicts chronological age than DTI. Finally, we show excellent test-retest reliability of NODDI metrics, with coefficients of variation below 5% in all measured regions of interest. Our results support the conclusion that NODDI reveals biologically specific characteristics of brain development that are more closely linked to the microstructural features of white

  2. Low-frequency dielectric dispersion of brain tissue due to electrically long neurites

    Science.gov (United States)

    Monai, Hiromu; Inoue, Masashi; Miyakawa, Hiroyoshi; Aonishi, Toru

    2012-12-01

    The dielectric properties of brain tissue are important for understanding how neural activity is related to local field potentials and electroencephalograms. It is known that the permittivity of brain tissue exhibits strong frequency dependence (dispersion) and that the permittivity is very large in the low-frequency region. However, little is known with regard to the cause of the large permittivity in the low-frequency region. Here, we postulate that the dielectric properties of brain tissue can be partially accounted for by assuming that neurites are of sufficient length to be “electrically long.” To test this idea, we consider a model in which a neurite is treated as a long, narrow body, and it is subjected to a stimulus created by electrodes situated in the region external to it. With regard to this electric stimulus, the neurite can be treated as a passive cable. Assuming adequate symmetry so that the tissue packed with multiple cables is equivalent to an isolated system consisting of a single cable and a surrounding extracellular resistive medium, we analytically calculate the extracellular potential of the tissue in response to such an externally created alternating-current electric field using a Green's function that we obtained previously. Our results show that brain tissue modeled by such a cable existing within a purely resistive extracellular medium exhibits a large effective permittivity in the low-frequency region. Moreover, we obtain results suggesting that an extremely large low-frequency permittivity can coexist with weak low-pass filter characteristics in brain tissue.

  3. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells

    Science.gov (United States)

    Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development. PMID:24869783

  4. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells.

    Science.gov (United States)

    Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou

    2014-05-29

    A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.

  5. β-Hydroxy-β-Methylbutyrate (HMB Promotes Neurite Outgrowth in Neuro2a Cells.

    Directory of Open Access Journals (Sweden)

    Rafael Salto

    Full Text Available β-Hydroxy-β-methylbutyrate (HMB has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2 signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2 family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1 and 3 (GLUT3, and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.

  6. Two new dendrocandins with neurite outgrowth-promoting activity from Dendrobium officinale.

    Science.gov (United States)

    Yang, Liu; Liu, Shou-Jin; Luo, Huai-Rong; Cui, Juan; Zhou, Jun; Wang, Xuan-Jun; Sheng, Jun; Hu, Jiang-Miao

    2015-01-01

    Two new bibenzyl derivatives, dendrocandin T (1) and dendrocandin U (2), together with eight known bibenzyls, were isolated from the stems of Dendrobium officinale. Those compounds were sent for the first time for central nervous system-related bioassay and the results indicated that compounds 3, 4, and 5 have a certain degree of neurite outgrowth-promoting activity, and compounds 1, 2, 6, and 7 also have weak activity. The results indicated that D. officinale used as health food and traditional Chinese medicine "Tiepi Shihu" has a health function of neurotrophic effects.

  7. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ya-Yun [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Tseng, Yu-Ting [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Lo, Yi-Ching, E-mail: yichlo@kmu.edu.tw [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2013-11-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  8. Inhibition of lysophosphatidic acid-induced neurite retraction and cell rounding by SR 57746A.

    Science.gov (United States)

    Magazin, M; Schiltz, P; Zachayus, J L; Cavrois, E; Caput, D; Ferrara, P

    1998-01-01

    Rapid neurite retraction and transient rounding of serum-starved NG108-15 and PC12 cells by lysophosphatidic acid (LPA) is retarded and reduced by pre-incubation of the cells with the small non-peptidic molecule, SR 57746A, which exhibits neurotrophic properties. The compound also antagonizes the redistribution of filamentous actin by LPA in both cell types. We hypothesize that the SR 57746A attenuation of LPA-induced effects may account for at least some of the neuroprotective properties of this molecule.

  9. Wave length dependence of photomorphogenesis in plants

    NARCIS (Netherlands)

    Stolwijk, J.A.J.

    1954-01-01

    Light of various spectral regions (at low or high intensities) supplemented a short day (SD) in white light, or was used alone at high intensity. Two types of relation of wave length to photoperiodic reaction were found: Crucifers were sensitive to blue and infrared (even SD exposure promoted

  10. Stimulation of myenteric plexus neurite outgrowth by insulin and insulin-like growth factors I and II.

    Science.gov (United States)

    Mulholland, M W; Romanchuk, G; Simeone, D M; Flowe, K

    1992-01-01

    A defined culture medium containing insulin, insulin-like growth factor I (IGF-I) or insulin-like growth factor II (IGF-II) supported morphological development of myenteric plexus neurons derived from neonatal guinea pigs. Insulin increased neurite outgrowth 3-fold at concentrations as low as 0.2 nM. Similar significant and dose-dependent increases in neurite outgrowth were noted with IGF-I and IGF-II. Stimulation of neurite outgrowth was abolished by exposure to cytosine arabinofuranoside, an agent toxic to non-neuronal cells, implying that trophic effects of insulin or insulin-like growth factors require the presence of non-neuronal elements in culture.

  11. Phosphatidylinositol 4-phosphate 5-kinase α negatively regulates nerve growth factor-induced neurite outgrowth in PC12 cells.

    Science.gov (United States)

    Liu, Tian; Lee, Sang Yoon

    2013-03-29

    Neurite outgrowth, a cell differentiation process involving membrane morphological changes, is critical for neuronal network and development. The membrane lipid, phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), is a key regulator of many important cell surface events of membrane signaling, trafficking and dynamics. This lipid is produced mainly by the type I PI 4-phosphate 5-kinase (PIP5K) family members. In this study, we addressed whether PIP5Kα, an isoform of PIP5K, could have a role in neurite outgrowth induced by nerve growth factor (NGF). For this purpose, we knocked down PIP5Kα in PC12 rat pheochromocytoma cells by stable expression of PIP5Kα microRNA that significantly reduced PIP5Kα expression and PIP2 level. Interestingly, NGF-induced neurite outgrowth was more prominent in PIP5Kα-knockdown (KD) cells than in control cells. Conversely, add-back of PIP5Kα into PIP5Kα KD cells abrogated the effect of NGF on neurite outgrowth. NGF treatment activated PI 3-kinase (PI3K)/Akt pathway, which seemed to be associated with reactive oxygen species generation. Similar to the changes in neurite outgrowth, the PI3K/Akt activation by NGF was potentiated by PIP5Kα KD, but was attenuated by the reintroduction of PIP5Kα. Moreover, exogenously applied PIP2 to PIP5Kα KD cells also suppressed Akt activation by NGF. Together, our results suggest that PIP5Kα acts as a negative regulator of NGF-induced neurite outgrowth by inhibiting PI3K/Akt signaling pathway in PC12 cells.

  12. Orexin A Inhibits Propofol-Induced Neurite Retraction by a Phospholipase D/Protein Kinase Cε-Dependent Mechanism in Neurons

    Science.gov (United States)

    Björnström, Karin; Turina, Dean; Strid, Tobias; Sundqvist, Tommy; Eintrei, Christina

    2014-01-01

    Background The intravenous anaesthetic propofol retracts neurites and reverses the transport of vesicles in rat cortical neurons. Orexin A (OA) is an endogenous neuropeptide regulating wakefulness and may counterbalance anaesthesia. We aim to investigate if OA interacts with anaesthetics by inhibition of the propofol-induced neurite retraction. Methods In primary cortical cell cultures from newborn rats’ brains, live cell light microscopy was used to measure neurite retraction after propofol (2 µM) treatment with or without OA (10 nM) application. The intracellular signalling involved was tested using a protein kinase C (PKC) activator [phorbol 12-myristate 13-acetate (PMA)] and inhibitors of Rho-kinase (HA-1077), phospholipase D (PLD) [5-fluoro-2-indolyl des-chlorohalopemide (FIPI)], PKC (staurosporine), and a PKCε translocation inhibitor peptide. Changes in PKCε Ser729 phosphorylation were detected with Western blot. Results The neurite retraction induced by propofol is blocked by Rho-kinase and PMA. OA blocks neurite retraction induced by propofol, and this inhibitory effect could be prevented by FIPI, staurosporine and PKCε translocation inhibitor peptide. OA increases via PLD and propofol decreases PKCε Ser729 phosphorylation, a crucial step in the activation of PKCε. Conclusions Rho-kinase is essential for propofol-induced neurite retraction in cortical neuronal cells. Activation of PKC inhibits neurite retraction caused by propofol. OA blocks propofol-induced neurite retraction by a PLD/PKCε-mediated pathway, and PKCε maybe the key enzyme where the wakefulness and anaesthesia signal pathways converge. PMID:24828410

  13. Oligomerization of ZFYVE27 (Protrudin is necessary to promote neurite extension.

    Directory of Open Access Journals (Sweden)

    D V Krishna Pantakani

    Full Text Available ZFYVE27 (Protrudin was originally identified as an interacting partner of spastin, which is most frequently mutated in hereditary spastic paraplegia. ZFYVE27 is a novel member of FYVE family, which is implicated in the formation of neurite extensions by promoting directional membrane trafficking in neurons. Now, through a yeast two-hybrid screen, we have identified that ZFYVE27 interacts with itself and the core interaction region resides within the third hydrophobic region (HR3 of the protein. We confirmed the ZFYVE27's self-interaction in the mammalian cells by co-immunoprecipitation and co-localization studies. To decipher the oligomeric nature of ZFYVE27, we performed sucrose gradient centrifugation and showed that ZFYVE27 oligomerizes into dimer/tetramer forms. Sub-cellular fractionation and Triton X-114 membrane phase separation analysis indicated that ZFYVE27 is a peripheral membrane protein. Furthermore, ZFYVE27 also binds to phosphatidylinositol 3-phosphate lipid moiety. Interestingly, cells expressing ZFYVE27(ΔHR3 failed to produce protrusions instead caused swelling of cell soma. When ZFYVE27(ΔHR3 was co-expressed with wild-type ZFYVE27 (ZFYVE27(WT, it exerted a dominant negative effect on ZFYVE27(WT as the cells co-expressing both proteins were also unable to induce protrusions and showed cytoplasmic swelling. Altogether, it is evident that a functionally active form of oligomer is crucial for ZFYVE27 ability to promote neurite extensions.

  14. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    Science.gov (United States)

    Lee, Jong Ho; Kang, Seok Hee; Hwang, Eun Young; Hwang, Yu-Shik; Lee, Mi Hee; Park, Jong-Chul

    2014-01-01

    Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs), that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay), intracellular oxidative stress (with ROS assay), and membrane integrity (with LDH assay). Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine. PMID:24592382

  15. Neuroprotective and neuroregenerative effects of nimodipine in a model system of neuronal differentiation and neurite outgrowth.

    Science.gov (United States)

    Bork, Kaya; Wurm, Franziska; Haller, Hannes; Strauss, Christian; Scheller, Christian; Gnanapragassam, Vinayaga S; Horstkorte, Rüdiger

    2015-01-09

    Nimodipine is a Ca2+-channel antagonist mainly used for the management of aneurysmal subarachnoid hemorrhage (aSAH) to prevent cerebral vasospasms. However, it is not clear if the better outcome of nimodipine-treated patients is mainly due to vasodilatation or whether other cellular neuroprotective or neuregenerative effects of nimodipine are involved. We analysed PC12 cells after different stress stimuli with or without nimodipine pretreatment. Cytotoxicity of 200 mM EtOH and osmotic stress (450 mosmol/L) was significantly reduced with nimodipine pretreatment, while nimodipine has no influence on the hypoxia-induced cytotoxicity in PC12 cells. The presence of nimodipine also increased the NGF-induced neurite outgrowth in PC12 cells. However, nimodipine alone was not able to induce neurite outgrowth in PC12 cells. These results support the idea that nimodipine has general neuroprotective or neuregenerative effect beside its role in vasodilatation and is maybe useful also in other clinical applications beside aSAH.

  16. Neuroprotective and Neuroregenerative Effects of Nimodipine in a Model System of Neuronal Differentiation and Neurite Outgrowth

    Directory of Open Access Journals (Sweden)

    Kaya Bork

    2015-01-01

    Full Text Available Nimodipine is a Ca2+-channel antagonist mainly used for the management of aneurysmal subarachnoid hemorrhage (aSAH to prevent cerebral vasospasms. However, it is not clear if the better outcome of nimodipine-treated patients is mainly due to vasodilatation or whether other cellular neuroprotective or neuregenerative effects of nimodipine are involved. We analysed PC12 cells after different stress stimuli with or without nimodipine pretreatment. Cytotoxicity of 200 mM EtOH and osmotic stress (450 mosmol/L was significantly reduced with nimodipine pretreatment, while nimodipine has no influence on the hypoxia-induced cytotoxicity in PC12 cells. The presence of nimodipine also increased the NGF-induced neurite outgrowth in PC12 cells. However, nimodipine alone was not able to induce neurite outgrowth in PC12 cells. These results support the idea that nimodipine has general neuroprotective or neuregenerative effect beside its role in vasodilatation and is maybe useful also in other clinical applications beside aSAH.

  17. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy.

    Science.gov (United States)

    Tian, Jian; Tu, Chunlong; Liang, Yitao; Zhou, Jian; Ye, Xuesong

    2015-09-30

    Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  19. Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth.

    Science.gov (United States)

    Li, Jing; Yan, Bing; Si, Hongjiang; Peng, Xu; Zhang, Shenyuan L; Hu, Junjie

    2017-02-27

    Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by a class of dynamin-like GTPases known as atlastin (ATL). Depletion of or mutations in ATL cause an unbranched ER morphology and hereditary spastic paraplegia (HSP), a neurodegenerative disease characterized by axon shortening in corticospinal motor neurons and progressive spasticity of the lower limbs. How ER shaping is linked to neuronal defects is poorly understood. Here, we show that dominant-negative mutants of ATL1 in PC-12 cells inhibit nerve growth factor (NGF)-induced neurite outgrowth. Overexpression of wild-type or mutant ATL1 or depletion of ATLs alters ER morphology and affects store-operated calcium entry (SOCE) by decreasing STIM1 puncta formation near the plasma membrane upon calcium depletion of the ER. In addition, blockage of the STIM1-Orai pathway effectively abolishes neurite outgrowth of PC-12 cells stimulated by NGF. These results suggest that SOCE plays an important role in neuronal regeneration, and mutations in ATL1 may cause HSP, partly by undermining SOCE.

  20. Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension

    Science.gov (United States)

    Gomez, Natalia; Schmidt, Christine E.

    2010-01-01

    Biomaterials that present multiple stimuli are attractive for a number of biomedical applications. In particular, electrical and biological cues are important factors to include in interfaces with neurons for applications such as nerve conduits and neural probes. Here, we report the combination of these two stimuli, by immobilizing nerve growth factor (NGF) on the surface of the electrically conducting polymer polypyrrole (PPy). NGF was immobilized using an intermediate linker provided by a layer of polyallylamine conjugated to an arylazido functional group. Upon exposure to UV light and activation of the azido groups, NGF was fixed to the substrate. Three different surface concentrations were obtained (0.21–0.98 ng/mm2) and similar levels of neurite extension were observed on immobilized NGF as with soluble NGF. Additionally, electrical stimulation experiments were conducted with the modified polymer and revealed a 50% increase in neurite outgrowth in PC12 cells compared to experiments without electrical stimulation. This novel modification of PPy provides both electrical and biological stimulation, by presenting tethered growth factors and only producing a small decrease in the material's properties (conductivity ~10 S cm−1) when compared to other modification techniques (conductivity ~10−3–10−6 S cm−1. PMID:17111407

  1. RA-RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression.

    Science.gov (United States)

    Puttagunta, Radhika; Schmandke, André; Floriddia, Elisa; Gaub, Perrine; Fomin, Natalie; Ghyselinck, Norbert B; Di Giovanni, Simone

    2011-06-27

    After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal through the neuronal membrane-bound Nogo receptor (NgR) complex. In this paper, we show that a neuronal transcriptional pathway can interfere with extrinsic inhibitory myelin-dependent signaling, thereby promoting neurite outgrowth. Specifically, retinoic acid (RA), acting through the RA receptor β (RAR-β), inhibited myelin-activated NgR signaling through the transcriptional repression of the NgR complex member Lingo-1. We show that suppression of Lingo-1 was required for RA-RAR-β to counteract extrinsic inhibition of neurite outgrowth. Furthermore, we confirm in vivo that RA treatment after a dorsal column overhemisection injury inhibited Lingo-1 expression, specifically through RAR-β. Our findings identify a novel link between RA-RAR-β-dependent proaxonal outgrowth and inhibitory NgR complex-dependent signaling, potentially allowing for the development of molecular strategies to enhance axonal regeneration after a central nervous system injury.

  2. RA–RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression

    Science.gov (United States)

    Puttagunta, Radhika; Schmandke, André; Floriddia, Elisa; Gaub, Perrine; Fomin, Natalie; Ghyselinck, Norbert B.

    2011-01-01

    After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal through the neuronal membrane–bound Nogo receptor (NgR) complex. In this paper, we show that a neuronal transcriptional pathway can interfere with extrinsic inhibitory myelin-dependent signaling, thereby promoting neurite outgrowth. Specifically, retinoic acid (RA), acting through the RA receptor β (RAR-β), inhibited myelin-activated NgR signaling through the transcriptional repression of the NgR complex member Lingo-1. We show that suppression of Lingo-1 was required for RA–RAR-β to counteract extrinsic inhibition of neurite outgrowth. Furthermore, we confirm in vivo that RA treatment after a dorsal column overhemisection injury inhibited Lingo-1 expression, specifically through RAR-β. Our findings identify a novel link between RA–RAR-β–dependent proaxonal outgrowth and inhibitory NgR complex–dependent signaling, potentially allowing for the development of molecular strategies to enhance axonal regeneration after a central nervous system injury. PMID:21690307

  3. A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling

    Science.gov (United States)

    Chen, Chun-Hao; Liao, Chien-Po

    2017-01-01

    Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/β-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity. PMID:28384160

  4. MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES

    Science.gov (United States)

    MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,Research Triangle Park, North Caro...

  5. Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals in vitro

    Science.gov (United States)

    Goldstein, Robert H.; Katz, Ben; Lev, Shaya; Binshtok, Alexander M.

    2017-07-01

    Pain signals are detected by terminals of nociceptive peripheral fibers situated among the keratinocytes and epithelial cells. Despite being key structures for pain-related stimuli detection and transmission, little is known about the functional organization of terminals. This is mainly due to their minute size, rendering them largely inaccessible by conventional experimental approaches. Here, we report the implementation of an ultrafast optical recording approach for studying cultured neurite terminals, which are readily accessible for assay manipulations. Using this approach, we were able to study capsaicin-induced calcium and sodium dynamics in the nociceptive processes, at a near-action potential time resolution. The approach was sensitive enough to detect differences in latency, time-to-peak, and amplitude of capsaicin-induced ion transients along the terminal neurites. Using this approach, we found that capsaicin evokes distinctive calcium signals along the neurite. At the terminal, the signal was insensitive to voltage-gated sodium channel blockers, and showed slower kinetics and smaller signal amplitudes, compared with signals that were measured further up the neurite. These latter signals were mainly abolished by sodium channel blockers. We propose this ultrafast optical recording approach as a model for studying peripheral terminal signaling, forming a basis for studying pain mechanisms in normal and pathological states.

  6. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A

    2000-01-01

    The neural cell adhesion molecule NCAM is involved in axonal outgrowth and target recognition in the developing nervous system. In vitro, NCAM-NCAM binding has been shown to induce neurite outgrowth, presumably through an activation of fibroblast growth factor receptors (FGFRs). We have recently...

  7. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice.

    Directory of Open Access Journals (Sweden)

    Verity Johnson

    Full Text Available In the retina blood vessels are required to support a high metabolic rate, however, uncontrolled vascular growth can lead to impaired vision and blindness. Subretinal vascularization (SRV, one type of pathological vessel growth, occurs in retinal angiomatous proliferation and proliferative macular telangiectasia. In these diseases SRV originates from blood vessels within the retina. We use mice with a targeted disruption in the Vldl-receptor (Vldlr gene as a model to study SRV with retinal origin. We find that Vldlr mRNA is strongly expressed in the neuroretina, and we observe both vascular and neuronal phenotypes in Vldlr-/- mice. Unexpectedly, horizontal cell (HC neurites are mistargeted prior to SRV in this model, and the majority of vascular lesions are associated with mistargeted neurites. In Foxn4-/- mice, which lack HCs and display reduced amacrine cell (AC numbers, we find severe defects in intraretinal capillary development. However, SRV is not suppressed in Foxn4-/-;Vldlr-/- mice, which reveals that mistargeted HC neurites are not required for vascular lesion formation. In the absence of VLDLR, the intraretinal capillary plexuses form in an inverse order compared to normal development, and subsequent to this early defect, vascular proliferation is increased. We conclude that SRV in the Vldlr-/- model is associated with mistargeted neurites and that SRV is preceded by altered retinal vascular development.

  8. Manipulation of gene expression in the mammalian nervous system: application in the study of neurite outgrowth and neuroregeneration related proteins

    NARCIS (Netherlands)

    Gispen, W.H.; Holtmaat, A.J.G.D.; Oestreicher, A.B.; Verhaagen, J.

    1998-01-01

    A fundamental issue in neurobiology entails the study of the formation of neuronal connections and their potential to regenerate following injury. In recent years, an expanding number of gene families has been identified involved in different aspects of neurite outgrowth and regeneration. These

  9. Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells.

    Science.gov (United States)

    Roggenkamp, Dennis; Falkner, Susanne; Stäb, Franz; Petersen, Marlen; Schmelz, Martin; Neufang, Gitta

    2012-07-01

    Skin of patients suffering from atopic eczema displays a higher epidermal nerve fiber density, associated with neurogenic inflammation and pruritus. Using an in vitro coculture system, allowing a spatially compartmented culture of somata from porcine dorsal root ganglion neurons and human primary skin cells, we investigated the influence of dermal fibroblasts and keratinocytes on neurite outgrowth. In comparison with dermal fibroblasts, keratinocytes induced more branched and less calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers. By adding neutralizing antibodies, we showed that nerve growth factor (NGF) and glial cell-line-derived neurotrophic factor (GDNF) are pivotal neurotrophic factors of skin cell-induced neurite outgrowth. Keratinocytes and dermal fibroblasts secreted different ratios of neurotrophic factors, influencing morphology and CGRP immunoreactivity of neurites. To investigate changes of the peripheral nervous system in the pathogenesis of atopic eczema in vitro, we analyzed neurite outgrowth mediated by atopic skin cells. Atopic keratinocytes produced elevated levels of NGF and mediated an increased outgrowth of CGRP-positive sensory fibers. Our results demonstrate the impact of dermal fibroblasts and keratinocytes on skin innervation and emphasize the role of keratinocytes as key players of hyperinnervation in atopic eczema.

  10. Turning Death to Growth: Hematopoietic Growth Factors Promote Neurite Outgrowth through MEK/ERK/p53 Pathway.

    Science.gov (United States)

    Gao, Mei; Zhao, Li-Ru

    2017-11-08

    Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are the essential hematopoietic growth factors to control hematopoiesis. However, the role of SCF and G-CSF in the central nervous system remains poorly understood. Here, we have demonstrated the involvement of MEK/ERK/p53 signaling in SCF + G-CSF-enhanced neurite extension. Cortical neurons dissected from embryonic rat brains were seeded onto the membranes of transwell inserts, and neurite outgrowth was determined by using both the neurite outgrowth quantification assay kit and immunostaining of β III tubulin. Quantitative RT-PCR and western blotting were used for determining gene and protein expression of ERK and p53, respectively. p53 small interfering RNA (siRNAs) were introduced into neurons for examining the involvement of p53 in SCF + G-CSF-mediated neurite outgrowth. We observed that both SCF and G-CSF alone increased activation of MEK/ERK and gene expression of p53, while SCF + G-CSF synergistically activated the MEK/ERK signaling and upregulated p53 expression. MEK specific inhibitors (PD98059 and U0126) blocked the SCF + G-CSF-increased ERK phosphorylation and p53 gene and protein expression, and the MEK specific inhibitors also eliminated the SCF + G-CSF-promoted neurite outgrowth. p53 siRNAs knocked down the SCF + G-CSF-elevated p53 protein and prevented the SCF + G-CSF-enhanced neurite outgrowth. These findings suggest that activation of MEK/ERK/p53 signaling is required for SCF + G-CSF-promoted neurite outgrowth. Through the pro-apoptotic pathway of the MEK/ERK/p53, SCF + G-CSF turns neuronal fate from apoptotic commitment toward neural network generation. This observation provides novel insights into the putative role of SCF + G-CSF in supporting generation of neural connectivity during CNS development and in brain repair under pathological or neurodegenerative conditions.

  11. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells.

    Science.gov (United States)

    Ishima, Tamaki; Fujita, Yuko; Hashimoto, Kenji

    2014-03-15

    The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect. Copyright © 2014 Elsevier B.V. All

  12. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available Cilostazol, a type-3 phosphodiesterase (PDE3 inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3 receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK, and the Ras/Raf/ERK/MAPK significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.

  13. Functional role of a specific ganglioside in neuronal migration and neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Mendez-Otero R.

    2003-01-01

    Full Text Available Cell migration occurs extensively during mammalian brain development and persists in a few regions in the adult brain. Defective migratory behavior of neurons is thought to be the underlying cause of several congenital disorders. Knowledge of the dynamics and molecular mechanisms of neuronal movement could expand our understanding of the normal development of the nervous system as well as help decipher the pathogenesis of neurological developmental disorders. In our studies we have identified and characterized a specific ganglioside (9-O-acetyl GD3 localized to the membrane of neurons and glial cells that is expressed in regions of cell migration and neurite outgrowth in the developing and adult rat nervous system. In the present article we review our findings that demonstrate the functional role of this molecule in neuronal motility.

  14. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity

    Science.gov (United States)

    Gilbert, James; Man, Heng-Ye

    2017-01-01

    Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. Highlights Autism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States.ASDs are highly heterogeneous in their genetic basis.ASDs share common features at the cellular and molecular levels in the brain.Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function. PMID:29209173

  15. Rit contributes to neurite outgrowth triggered by the alpha subunit of Go.

    Science.gov (United States)

    Kim, Seung Hyun; Kim, Soyeon; Ghil, Sung Ho

    2008-03-26

    Heterotrimeric GTP-binding protein transduce signals initiated by a variety of hormones and neurotransmitters. Go, a member of the Go/Gi family, is the most abundant heterotrimeric GTP-binding protein in nervous tissues and has been implicated in neuronal differentiation. The mechanism by which Go modulates neuronal differentiation has not been, however, fully elucidated. Here, we identified small GTPase Rit as an interacting partner of the alpha-subunit of Go (Goalpha). The biochemical characterizations of Goalpha::Rit interaction revealed that Rit is a candidate downstream effector for Goalpha. Furthermore, dominant negative Rit inhibited Goalpha-induced neurite outgrowth and Erk phosphorylation in Neuro2a cells. These results suggest that Rit may be involved in the signaling pathway for Goalpha-mediated neuronal differentiation.

  16. Do children with obesity have worse table manners? Associations between child table manners, weight status and weight gain.

    Science.gov (United States)

    Briones, Naomi F; Cesaro, Robert J; Appugliese, Danielle P; Miller, Alison L; Rosenblum, Katherine L; Pesch, Megan H

    2018-01-31

    Children with obesity experience stigma stemming from stereotypes, one such stereotype is that people with obesity are "sloppy" or have poor manners. Teaching children "proper table manners" has been proposed as an obesity prevention strategy. Little is known about the association between children's weight status and table manners. To examine correlates of child table manners and to examine the association of child table manners with child obese weight status and prospective change in child body mass index z-score (BMIz). Mother-child dyads (N = 228) participated in a videotaped laboratory eating task with cupcakes. Coding schemes to capture child table manners (making crumbs, chewing with mouth open, getting food on face, shoving food in mouth, slouching, and getting out of seat), and maternal attentiveness to child table manners, were reliably applied. Anthropometrics were measured at baseline and at follow-up two years later. Regression analyses examined the association of participant characteristics with child table manners, as well as the associations of child table manners with child obese weight status, and prospective change in BMIz/year. Predictors of poorer child table manners were younger child age, greater cupcake consumption, and greater maternal attentiveness to child table manners. Poorer child table manners were not associated with child obese (vs. not) weight status, but were associated with a prospective decrease in BMIz/year in children with overweight/obesity. Obesity interventions to improve table manners may be perpetuating unfavorable stereotypes and stigma. Future work investigating these associations is warranted to inform childhood obesity guidelines around table manners. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Icariin improves memory impairment in Alzheimer's disease model mice (5xFAD) and attenuates amyloid β-induced neurite atrophy.

    Science.gov (United States)

    Urano, Takuya; Tohda, Chihiro

    2010-11-01

    Essential therapeutic drugs for Alzheimer's disease (AD) have not been developed. Since the neuritic atrophy leading to synaptic losses is one of the critical causes of memory impairment in AD, the effects of several constituents in tonic herbal medicines on neuritic atrophy and memory deficits have been studied. The present study investigated the effects of icariin, a main constituent in Epimedii Herba, a well known tonic crude drug, in an in vitro AD model and transgenic mouse AD model (5xFAD). Amyloid β(1-42)-induced atrophies of axons and dendrites were restored by post-treatment with icariin in rat cortical neurons. Administration of icariin for 8 days (p.o.) improved spatial memory impairment in 5xFAD mice. These novel findings suggest that icariin may improve memory dysfunction in AD and have a potential to extend neurites even when amyloid β-induced neurite atrophy has already occurred. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Myelin-associated Glycoprotein Interacts with Neurons via a Sialic Acid Binding Site at ARG118 and a Distinct Neurite Inhibition Site

    OpenAIRE

    Tang, Song; Shen, Ying Jing; DeBellard, Maria Elena; Mukhopadhyay, Gitali; Salzer, James L.; Crocker, Paul R.; Filbin, Marie T.

    1997-01-01

    Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity. Alone, sialic acid–dependent binding of MAG to neurons is insufficient to effect inhibition of axon...

  19. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    OpenAIRE

    Phan, Chia-Wei; David, Pamela; Naidu, Murali; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (...

  20. Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway

    DEFF Research Database (Denmark)

    Hansen, Raino Kristian; Christensen, Claus; Korshunova, Irina

    2007-01-01

    and ENFIN11) were confirmed to bind to F3I-F3II of NCAM by surface plasmon resonance. The peptides induced neurite outgrowth in primary cerebellar neurons and PC12E2 cells, but had no apparent neuroprotective properties. NCAM is known to activate different intracellular pathways, including signaling through......A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I-F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2...... the fibroblast growth factor receptor, the Src-related non-receptor tyrosine kinase Fyn, and heterotrimeric G-proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin...

  1. Morphine enhances HIV-1SF162-mediated neuron death and delays recovery of injured neurites.

    Science.gov (United States)

    Masvekar, Ruturaj R; El-Hage, Nazira; Hauser, Kurt F; Knapp, Pamela E

    2014-01-01

    HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup) was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10-500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting unique interactions

  2. Morphine enhances HIV-1SF162-mediated neuron death and delays recovery of injured neurites.

    Directory of Open Access Journals (Sweden)

    Ruturaj R Masvekar

    Full Text Available HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10-500 pg/ml. Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml, and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting

  3. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    Science.gov (United States)

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  4. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  5. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    Science.gov (United States)

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man.

  6. Protective Effects of Rosa damascena and Its Active Constituent on Aβ(25–35-Induced Neuritic Atrophy

    Directory of Open Access Journals (Sweden)

    Suresh Awale

    2011-01-01

    Full Text Available Dementia is a clinical syndrome characterized by multiple cognitive deficits and causes progressive neurodegeneration leading eventually to death. The incidence of dementia is increasing worldwide with the increase in ageing population. However, no effective treatment is available yet. It has been hypothesized that drugs activating neurite outgrowth might induce neuronal reconstruction and help in the recovery of brain function. Working on this hypothesis, we recently observed that the chloroform extract of the Rosa damascena significantly induced the neurite outgrowth activity and inhibited the Aβ(25–35-induced atrophy and cell death. Further workup led the isolation of a very long polyunsaturated fatty acid having molecular formula C37H64O2 as an active constituent. The structure of this compound was established by extensive analysis of fragmentations observed in EI-MS mode. The isolated compound protected Aβ(25–35-induced atrophy and displayed strong neurite outgrowth activity. The length of dendrite in the cells treated with this compound were comparable to those of nerve growth factor (NGF treated cells.

  7. Protective Effects of Rosa damascena and Its Active Constituent on Aβ(25-35)-Induced Neuritic Atrophy.

    Science.gov (United States)

    Awale, Suresh; Tohda, Chihiro; Tezuka, Yasuhiro; Miyazaki, Makoto; Kadota, Shigetoshi

    2011-01-01

    Dementia is a clinical syndrome characterized by multiple cognitive deficits and causes progressive neurodegeneration leading eventually to death. The incidence of dementia is increasing worldwide with the increase in ageing population. However, no effective treatment is available yet. It has been hypothesized that drugs activating neurite outgrowth might induce neuronal reconstruction and help in the recovery of brain function. Working on this hypothesis, we recently observed that the chloroform extract of the Rosa damascena significantly induced the neurite outgrowth activity and inhibited the Aβ(25-35)-induced atrophy and cell death. Further workup led the isolation of a very long polyunsaturated fatty acid having molecular formula C(37)H(64)O(2) as an active constituent. The structure of this compound was established by extensive analysis of fragmentations observed in EI-MS mode. The isolated compound protected Aβ(25-35)-induced atrophy and displayed strong neurite outgrowth activity. The length of dendrite in the cells treated with this compound were comparable to those of nerve growth factor (NGF) treated cells.

  8. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Science.gov (United States)

    Xiong, Yi; Zhu, Ji-Xiang; Fang, Zheng-Yu; Zeng, Cheng-Guang; Zhang, Chao; Qi, Guo-Long; Li, Man-Hui; Zhang, Wei; Quan, Da-Ping; Wan, Jun

    2012-01-01

    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury. PMID:22619535

  9. Diffusion Tensor Imaging Tractography in Pure Neuritic Leprosy: First Experience Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Michele R. Colonna

    2016-01-01

    Full Text Available Five years after both right ulnar and median nerve decompression for paraesthesias and palsy, a patient, coming from Nigeria but living in Italy, came to our unit claiming to have persistent pain and combined median and ulnar palsy. Under suspicion of leprosy, skin and left sural nerve biopsy were performed. Skin tests were negative, but Schwann cells resulted as positive for acid-fast bacilli (AFB, leading to the diagnosis of Pure Neuritic Leprosy (PNL. The patient was given PB multidrug therapy and recovered from pain in two months. After nine months both High Resolution Ultrasonography (HRUS and Magnetic Resonance Imaging (MRI were performed, revealing thickening of the nerves. Since demyelination is common in PNL, the Authors started to use Diffusion Tensor Imaging Tractography (DTIT to get better morphological and functional data about myelination than does the traditional imaging. DTIT proved successful in showing myelin discontinuity, reorganization, and myelination, and the Authors suggest that it can give more information about the evolution of the disease, as well as further indications for surgery (nerve decompression, nerve transfers, and babysitting for distal effector protection, and should be added to traditional imaging tools in leprosy.

  10. 21 CFR 1306.05 - Manner of issuance of prescriptions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Manner of issuance of prescriptions. 1306.05 Section 1306.05 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE PRESCRIPTIONS General Information § 1306.05 Manner of issuance of prescriptions. Link to an amendment published at 75 FR...

  11. Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Huang Lin-Chien

    2012-12-01

    Full Text Available Abstract Background During development, excess synapses form between the central and peripheral nervous systems that are then eliminated to achieve correct connectivity. In the peripheral auditory system, the developing type I spiral ganglion afferent fibres undergo a dramatic re-organisation, initially forming connections with both sensory inner hair cells (IHCs and outer hair cells (OHCs. The OHC connections are then selectively eliminated, leaving sparse innervation by type II afferent fibres, whilst the type I afferent synapses with IHCs are consolidated. Results We examined the molecular makeup of the synaptic contacts formed onto the IHCs and OHCs during this period of afferent fibre remodelling. We observed that presynaptic ribbons initially form at all the afferent neurite contacts, i.e. not only at the expected developing IHC-type I fibre synapses but also at OHCs where type I fibres temporarily contact. Moreover, the transient contacts forming onto OHCs possess a broad set of pre- and postsynaptic proteins, suggesting that functional synaptic connections are formed prior to the removal of type I fibre innervation. AMPA-type glutamate receptor subunits were transiently observed at the base of the OHCs, with their downregulation occurring in parallel with the withdrawal of type I fibres, dispersal of presynaptic ribbons, and downregulation of the anchoring proteins Bassoon and Shank. Conversely, at developing type I afferent IHC synapses, the presence of pre- and postsynaptic scaffold proteins was maintained, with differential plasticity in AMPA receptor subunits observed and AMPA receptor subunit composition changing around hearing onset. Conclusions Overall our data show a differential balance in the patterns of synaptic proteins at developing afferent IHC versus OHC synapses that likely reflect their stable versus transient fates.

  12. Restriction spectrum imaging reveals decreased neurite density in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Loi, Richard Q; Leyden, Kelly M; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J; Paul, Brianna M; Dale, Anders M; White, Nathan S; McDonald, Carrie R

    2016-11-01

    Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI's ability to separate intraaxonal diffusion (i.e., neurite density; ND) from diffusion associated with extraaxonal factors (e.g., inflammation; crossing fibers). RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic-hindered (IH) and isotropic-free (IF) water, and crossing fibers (CFs) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Reductions in FA were seen primarily in frontotemporal white matter in TLE, and they were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white

  13. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons.

    Science.gov (United States)

    Cohen, Matthew R; Johnson, William M; Pilat, Jennifer M; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E; Moiseenkova-Bell, Vera Y

    2015-12-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. cAMP response element-binding protein and Yes-associated protein form a feedback loop that promotes neurite outgrowth.

    Science.gov (United States)

    Chen, Lei; Feng, Peimin; Peng, Anjiao; Qiu, Xiangmiao; Zhu, Xi; He, Shixu; Zhou, Dong

    2017-08-31

    The cAMP response element-binding (CREB) protein is a member of the CREB/activating transcription factor family that is activated by various extracellular stimuli. It has been shown that CREB-dependent transcription stimulation plays a key role in neuronal differentiation and plasticity, but the underlying mechanisms remain largely elusive. Here, we show that Yes-associated protein (YAP) is a direct target induced by CREB upon retinoic acid (RA)-induced neurite outgrowth stimuli in N2a cells. Interestingly, YAP knockout using the CRISPR/Cas9 system inhibits neuronal differentiation and reduced neurite length. We further show that YAP could directly bind to CREB via its N-terminal region, and loss of YAP results in instability of phosphorylated CREB upon neurite outgrowth stimuli. Transient expression of YAP could largely restore CREB expression and neurite outgrowth in YAP knockout cells. Together, our results suggest that CREB and YAP form a positive feedback loop that is critical to maintain the stability of phosphorylated CREB and promote neurite outgrowth. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Maternal obesity and IL-6 lead to aberrant developmental gene expression and deregulated neurite growth in the fetal arcuate nucleus.

    Science.gov (United States)

    Sanders, Tessa R; Kim, Dong Won; Glendining, Kelly A; Jasoni, Christine L

    2014-07-01

    Maternal obesity during pregnancy increases the risk of obesity in the offspring. Several observations have pointed to a causative role for the proinflammatory cytokine IL-6, but whether it is present in the fetal circulation and how it acts on the developing fetus are unclear. We first observed that postnatal day 0 offspring from obese mothers had significantly reduced neuropeptide Y (NPY) innervation of the paraventricular nucleus (PVN) compared with that for offspring of normal-weight controls. Thus, the growth of NPY neurites from the arcuate nucleus (ARC) was impaired in the fetal brain by maternal obesity. The neurite growth regulator, Netrin-1, was expressed in the ARC and PVN and along the pathway between the two at gestational day (GD) 17.5 in normal animals, making it likely to be involved in the development of NPY ARC-PVN projections. In addition, the expression of Dcc and Unc5d, receptors for Netrin-1, were altered in the GD17.5 ARC in obese but not normal weight pregnancies. Thus, this important developmental pathway is perturbed by maternal obesity and may explain the defect in NPY innervation of the PVN that occurs in fetuses developing in obese mothers. To investigate whether IL-6 may play a role in these developmental changes, we found first that IL-6 was significantly elevated in the fetal and maternal circulation in pregnancies of obese mice compared with those of normal-weight mice. In addition, treatment of GD17.5 ARC tissue with IL-6 in vitro significantly reduced ARC neurite outgrowth and altered developmental gene expression similar to maternal obesity in vivo. These findings demonstrate that maternal obesity may alter the way in which fetal ARC NPY neurons respond to key developmental signals that regulate normal prenatal neural connectivity and suggest a causative role for elevated IL-6 in these changes.

  16. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.

    Science.gov (United States)

    Vernon, Claire G; Swanson, Geoffrey T

    2017-03-22

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and

  17. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival.

    Directory of Open Access Journals (Sweden)

    Keming Yu

    Full Text Available BACKGROUND: Bone marrow stromal cells (BMSCs are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1, as a putative mechanistic agent acting on RGCs. METHODS AND FINDINGS: The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-beta expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-beta in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. CONCLUSIONS: Our data suggest that the TSP-1 signaling pathway might have an important

  18. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly

  19. Textual conditioning in the evolution of manner adverbs in -mente

    Directory of Open Access Journals (Sweden)

    Concepción Company Company

    2012-06-01

    Full Text Available The paper analyzes the evolution of manner adverbs in -mente in Spanish. These adverbs constitute a peculiar learned construction not only in their formation but also in their evolution. The variables examined are: the difference between written and spoken texts; the genre or textual conditioning of the syntactic-semantic change of manner adverbs; the early and fast inhibition of the vernacular variant -miente and the various causes of the generalization of -mente. The paper shows the statistical significance of the variables studied.

  20. Optimized Culture System to Induce Neurite Outgrowth From Retinal Ganglion Cells in Three-Dimensional Retinal Aggregates Differentiated From Mouse and Human Embryonic Stem Cells.

    Science.gov (United States)

    Maekawa, Yuki; Onishi, Akishi; Matsushita, Keizo; Koide, Naoshi; Mandai, Michiko; Suzuma, Kiyoshi; Kitaoka, Takashi; Kuwahara, Atsushi; Ozone, Chikafumi; Nakano, Tokushige; Eiraku, Mototsugu; Takahashi, Masayo

    2016-04-01

    To establish a practical research tool for studying the pathogenesis of retinal ganglion cell (RGC) diseases, we optimized culture procedures to induce neurite outgrowth from three-dimensional self-organizing optic vesicles (3D-retinas) differentiated in vitro from mouse and human embryonic stem cells (ESCs). The developing 3D-retinas isolated at various time points were placed on Matrigel-coated plates and cultured in media on the basis of the 3D-retinal culture or the retinal organotypic culture protocol. The number, length, and morphology of the neurites in each culture condition were compared. First, we confirmed that Venus-positive cells were double-labeled with a RGC marker, Brn3a, in the 3D-retina differentiated from Fstl4::Venus mouse ESCs, indicating specific RGC-subtype differentiation. Second, Venus-positive neurites grown from these RGC subsets were positive for beta-III tubulin and SMI312 by immunohistochemistry. Enhanced neurite outgrowth was observed in the B27-supplemented Neurobasal-A medium on Matrigel-coated plates from the optic vesicles isolated after 14 days of differentiation from mouse ESCs. For the differentiated RGCs from human ESCs, we obtained neurite extension of >4 mm by modifying Matrigel coating and the culture medium from the mouse RGC culture. We successfully optimized the culture conditions to enhance lengthy and high-frequency neurite outgrowth in mouse and human models. The procedure would be useful for not only developmental studies of RGCs, including maintenance and projection, but also clinical, pathological, and pharmacological studies of human RGC diseases.

  1. ShcA regulates neurite outgrowth stimulated by neural cell adhesion molecule but not by fibroblast growth factor 2: evidence for a distinct fibroblast growth factor receptor response to neural cell adhesion molecule activation

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Lundfald, Line; Ditlevsen, Dorte K

    2004-01-01

    Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells...

  2. Kihi-to, a herbal traditional medicine, improves Abeta(25–35-induced memory impairment and losses of neurites and synapses

    Directory of Open Access Journals (Sweden)

    Joyashiki Eri

    2008-08-01

    Full Text Available Abstract Background We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the in vivo and in vitro effects of Kihi-to on memory, neurite growth and synapse reconstruction. Methods Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Aβ(25–35-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons. Results Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Aβ(25–35-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Aβ(25–35 treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H and microtubule-associated protein (MAP2-positive neurites. Aβ(25–35-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP are substrates of calpain, and calpain is known to be involved in Aβ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Aβ(25–35-evoked increase in

  3. Kihi-to, a herbal traditional medicine, improves Abeta(25-35)-induced memory impairment and losses of neurites and synapses.

    Science.gov (United States)

    Tohda, Chihiro; Naito, Rie; Joyashiki, Eri

    2008-08-16

    We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the in vivo and in vitro effects of Kihi-to on memory, neurite growth and synapse reconstruction. Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Abeta(25-35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons. Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Abeta(25-35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Abeta(25-35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Abeta(25-35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Abeta-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Abeta(25-35)-evoked increase in the calpain level and decrease in the

  4. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Colgan, N

    2015-10-23

    Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.

  5. Involvement of vimentin in neurite outgrowth damage induced by fipronil in SH-SY5Y cells.

    Science.gov (United States)

    Ruangjaroon, Theetat; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Svasti, Jisnuson; Paricharttanakul, N Monique

    2017-05-06

    Fipronil, a phenylpyrazole insecticide, is more selective in its potency towards insects than humans and is thus commonly used. In this study, we demonstrated that exposure to fipronil may pose a human health risk. We observed in vitro the shortening of neurite outgrowths of SH-SY5Y neuroblastoma cells upon treatment with fipronil, even at a non-cytotoxic concentration. Fipronil induced apoptosis involving caspase-6, which is an apoptotic effector highly implicated in neurodegenerative diseases. Moreover, at a concentration that did not induce apoptosis, mitochondrial dysfunction and autophagic vacuole formation were detected. Interestingly using proteomics, we identified vimentin to be dramatically expressed by SH-SY5Y cells as a response to fipronil treatment. Not only did the expression of total vimentin increase, different isoforms were observed, indicating alterations in post-translational modifications. Vimentin was localized at the neurite outgrowth, possibly to repair the damage in cellular structure. However at high concentrations of fipronil, vimentin was found in less defined fibrils, in bridge-like formation, and dense surrounding vacuoles. In all, our results indicate that vimentin plays an important role in fipronil-induced neurotoxicity in SH-SY5Y cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    Science.gov (United States)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  7. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    Science.gov (United States)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  8. Major vault protein is expressed along the nucleus-neurite axis and associates with mRNAs in cortical neurons.

    Science.gov (United States)

    Paspalas, Constantinos D; Perley, Casey C; Venkitaramani, Deepa V; Goebel-Goody, Susan M; Zhang, YongFang; Kurup, Pradeep; Mattis, Joanna H; Lombroso, Paul J

    2009-07-01

    Major Vault Protein (MVP), the main constituent of the vault ribonucleoprotein particle, is highly conserved in eukaryotic cells and upregulated in a variety of tumors. Vaults have been speculated to function as cargo transporters in several cell lines, yet no work to date has characterized the protein in neurons. Here we first describe the cellular and subcellular expression of MVP in primate and rodent cerebral cortex, and in cortical neurons in vitro. In prefrontal, somatosensory and hippocampal cortices, MVP was predominantly expressed in pyramidal neurons. Immunogold labeled free and attached ribosomes, and structures reminiscent of vaults on the rough endoplasmic reticulum and the nuclear envelope. The nucleus was immunoreactive in association with nucleopores. Axons and particularly principal dendrites expressed MVP along individual microtubules, and in pre- and postsynaptic structures. Synapses were not labeled. Colocalization with microtubule-associated protein-2, tubulin, tau, and phalloidin was observed in neurites and growth cones in culture. Immunoprecipitation coupled with reverse transcription PCR showed that MVP associates with mRNAs that are known to be translated in response to synaptic activity. Taken together, our findings provide the first characterization of neuronal MVP along the nucleus-neurite axis and may offer new insights into its possible function(s) in the brain.

  9. Grand Manner Aesthetics in Landscape: From Canvas to Celluloid

    Science.gov (United States)

    Auger, Emily E.

    2009-01-01

    The methods by which environmental issues are aestheticized in late-twentieth-century film is directly and historically related to those established for grand manner painters by Nicholas Poussin (1594-1665) and taught at the French academy from the seventeenth through the nineteenth centuries. That these fundamentals were part of the training of…

  10. 26 CFR 1.853-4 - Manner of making election.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) INCOME TAXES Regulated Investment Companies and Real Estate Investment Trusts § 1.853-4 Manner of... investment company must file a statement of election as part of its Federal income tax return for the taxable year. The statement of election must state that the regulated investment company elects the application...

  11. 47 CFR 76.62 - Manner of carriage.

    Science.gov (United States)

    2010-10-01

    ... provided in § 76.64. (b) Each digital television broadcast signal carried shall be carried without material... material. (h) If a digital television broadcast signal is carried in accordance with § 76.62(b) and either... CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals § 76.62 Manner of carriage. (a) Cable...

  12. Methods and Manners of Interpretation of Criminal Norms

    African Journals Online (AJOL)

    Simeneh Kiros Assefa

    Methods and Manners of Interpretation of Criminal Norms. 89. Introduction. In the past few decades, a different theory of the nature of law has evolved –law is seen as an institution.1 This is a middle way between the normative and the realist view of law. A different view of the criminal justice system has also evolved.

  13. Improving the livelihoods of wool producers in a sustainable manner ...

    African Journals Online (AJOL)

    Improving the livelihoods of wool producers in a sustainable manner by optimizing the woolled sheep production systems within the communal farming area of the Eastern Cape. “A vision that is future directed”. L De Beer, SE Terblanché ...

  14. ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner.

    Science.gov (United States)

    Kohama, Chihiro; Kato, Hidemasa; Numata, Koji; Hirose, Michiko; Takemasa, Tohru; Ogura, Atsuo; Kiyosawa, Hidenori

    2012-03-15

    Genomic imprinting is a phenomenon whereby monoallelic gene expression occurs in a parent-of-origin-specific manner. A subset of imprinted genes acquires a tissue-specific imprinted status during the course of tissue development, and this process can be analyzed by means of an in vitro differentiation system utilizing embryonic stem (ES) cells. In neurons, the gene Ube3a is expressed from the maternal allele only, and a paternally expressed non-coding, antisense RNA has been implicated in the imprinting process in mice and humans. Here, to study the genomic imprinting mechanism, we established F1 hybrid ES cells derived from two sub-species of Mus musculus and established an in vitro neuronal differentiation system in which neuron-specific imprinting of Ube3a was recapitulated. With this system, we revealed that the switch from biallelic expression to maternal, monoallelic expression of Ube3a occurs late in neuronal development, during the neurite outgrowth period, and that the expression of endogenous antisense transcript from the Ube3a locus is up-regulated several hundred-fold during the same period. Our results suggest that evaluation of the quality of ES cells by studying their differentiation in vitro should include evaluation of epigenetic aspects, such as a comparison with the genomic imprinting status found in tissues in vivo, in addition to the evaluation of differentiation gene markers and morphology. Our F1 hybrid ES cells and in vitro differentiation system will allow researchers to investigate complex end-points such as neuron-specific genomic imprinting, and our F1 hybrid ES cells are a useful resource for other tissue-specific genomic imprinting and epigenetic analyses.

  15. NARRATIVE PERSPECTIVE MEDIATED BY MANNER OF MOTION VERBS

    Directory of Open Access Journals (Sweden)

    Olesea BODEAN-VOZIAN

    2016-12-01

    Full Text Available There is typological variation in the way languages encode manner as an element of a motion event. Languages like English view it as relevant, and the lexicalization of the variety of ways to move results in a rich class of motion verbs, contrary to other types of languages, like Romanian, which leave the manner element to be encoded by verbids or adverbs (for these reasons some linguists refer to the first type as manner-rich and second type as manner-poor languages. Still, several studies contrasting typologically different languages showed that languages of the latter type are not so poor in manner-of-motion verbs. The question then might rather be: which manner components are more likely to be lexicalized?For research purposes, we distinguish manner in terms of objective elements (medium, speed or intensity and subjective elements (attitude, intention. The aim of the study is to focus on the manner-of-motion verbs that embed an evaluative or qualitative dimension of motion and to examine the way these verbs encode somebody’s perspective in a narrative. The first question in such a case is whose evaluation or point of view is being represented. The second one is how the subjective point of view (narrative perspective mediated through manner-of-motion verbs in an English narrative (The Lord of the Rings, by J.R.R. Tolkien is translated into Romanian, supposedly a manner-poor or low-manner language.PERSPECTIVA NARATIVĂ MEDIATĂ DE VERBELE DE MIŞCARE DE MODExistă o variaţie tipologică în felul în care limbile codifică modul ca element al unui eveniment de mişcare. Limbile precum engleza îl percep drept unul relevant, iar lexicalizarea gamei de mijloace de redare a mişcării a dat naştere unei clase bogate de verbe de mişcare, contrar altor tipuri de limbi, aşa ca româna, în care elementul ce redă modul este codificat de gerunziu sau adverbe. Din aceasta cauză, unii lingvişti numesc primul tip limbi bogate în verbe de mod (

  16. A new manner of reporting pressure results after glaucoma surgery

    Directory of Open Access Journals (Sweden)

    Bordeianu CD

    2011-12-01

    Full Text Available Constantin-Dan Bordeianu1, Cristina-Eugenia Ticu21Department of Ophthalmology, Emergency Hospital, Ploiesti, Romania; 2Provisional Candidate for PhD, Edmonton, AB, CanadaPurpose: To evaluate to what extent contemporary glaucoma abstracts offer complete information and to suggest a new manner of pressure results reporting.Materials, methods, and results: Most of the 36 relevant surgical glaucoma abstracts found in one issue of International Glaucoma Review contain insufficient data-supported statements. Such abstracts cannot offer a clear picture of the study essence if economic, linguistic, or political barriers prevent access to the full text. In order to enrich abstract content and to avoid typographic space waste, a formula is suggested to provide, in one single line of symbols and figures, all the necessary data for statistical interpretation at two evolution moments: the first significative control (6 months and the final one.Conclusion: The current manner of results reporting in surgical glaucoma abstracts is subject to too little standardization, allowing insufficiently data-supported statements. Abstracts, especially those printed in small-circulation language journals, should be conceived and standardized in such a manner that any abstract review reader is capable of grasping the essence of the study at first glance. The suggested manner of reporting results would bring satisfaction to all areas of the process. Publishers would save typographic space, readers would find all the necessary data for statistical analysis and comparison with other studies, and authors would be convinced that the essence of their work would penetrate in spite of any economic, linguistic, or political barriers.Keywords: glaucoma, reporting results, IOP, abstract construction, standardization formula

  17. MANNER OF STOCKS SORTING USING CLUSTER ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Jana Halčinová

    2014-06-01

    Full Text Available The aim of the present article is to show the possibility of using the methods of cluster analysis in classification of stocks of finished products. Cluster analysis creates groups (clusters of finished products according to similarity in demand i.e. customer requirements for each product. Manner stocks sorting of finished products by clusters is described a practical example. The resultants clusters are incorporated into the draft layout of the distribution warehouse.

  18. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons.

    Science.gov (United States)

    Bai, Yanjing; Tohda, Chihiro; Zhu, Shu; Hattori, Masao; Komatsu, Katsuko

    2011-07-01

    Not only neuronal death but also neuritic atrophy and synaptic loss underlie the pathogenesis of Alzheimer's disease as direct causes of the memory deficit. Extracts of Siberian ginseng (the rhizome of Eleutherococcus senticosus) were shown to have protective effects on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid β (Aβ)(25-35), and eleutheroside B was one of the active constituents. In this study, a comprehensive evaluation of constituents was conducted to explore active components from Siberian ginseng which can protect against neuritic atrophy induced by Aβ(25-35) in cultured rat cortical neurons. The ethyl acetate, n-butanol and water fractions from the methanol extract of Siberian ginseng showed protective effects against Aβ-induced neuritic atrophy. Twelve compounds were isolated from the active fractions and identified. Among them, eleutheroside B, eleutheroside E and isofraxidin showed obvious protective effects against Aβ(25-35)-induced atrophies of axons and dendrites at 1 and 10 μM.

  19. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Radhika C Reddy

    Full Text Available Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN, is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA and cerebral cortex (CTX of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM for 3 days significantly (P < 0.05 increased both total neurite outgrowth (35% and soma size (8% in the HPOA and outgrowth (21% and number of branch points (33% in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain.

  20. Optimisation of a 96-well electroporation assay for postnatal rat CNS neurons suitable for cost-effective medium-throughput screening of genes that promote neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Thomas eHutson

    2011-12-01

    Full Text Available Following an injury, central nervous system (CNS neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterised by their failure to express key regeneration-associated genes (RAGs and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimised a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth-inhibitory chondroitin sulphate proteoglycans. Optimal electroporation parameters resulted in 25% transfection efficiency and 50% viability for postnatal rat cerebellar granule neurons (CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates.

  1. Recreational drugs, 3,4-Methylenedioxymethamphetamine(MDMA), 3,4-methylenedioxyamphetamine (MDA) and diphenylprolinol, inhibit neurite outgrowth in PC12 cells.

    Science.gov (United States)

    Kaizaki, Asuka; Tanaka, Sachiko; Tsujikawa, Kenji; Numazawa, Satoshi; Yoshida, Takemi

    2010-06-01

    3,4-Methylenedioxymethamphetamine (MDMA) is widely abused as a psychoactive recreational drug. It is well known that MDMA induces neurotoxic damage of serotonergic nerve endings. Although drug abuse is increasing among youths, it is unclear whether recreational drugs affect the development of nerve growth. Thus, the present study examined the effect of recreational drugs, such as MDMA, 3,4-methylenedioxyamphetamine (MDA) and diphenylprolinol, a novel recreational drug with a similar chemical structure as that of psychoactive agent pipradrol, on nerve growth factor (NGF)-induced neurite outgrowth. These recreational drugs induced a dose-dependent cell death in PC12 cells. The IC(50) values of MDMA, MDA, R-diphenylprolinol and S-diphenylprolinol were 4.11 mM, 2.75 mM, 1.00 mM and 0.77 mM, respectively, at 24 hr. To examine the effects of these recreational drugs on NGF-induced neurite outgrowth, PC12 cells were treated with NGF together with MDMA, MDA, S-diphenylprolinol or R-diphenylprolinol at low toxic concentrations. The recreational drugs significantly suppressed neurite outgrowth of PC12 cells induced by NGF. The results suggest that these psychoactive recreational drugs may inhibit neurite growth and thus be implicated in their elicited neurotoxicity.

  2. Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways.

    Science.gov (United States)

    Tao, Tao; Feng, Jin-Zhou; Xu, Guang-Hui; Fu, Jie; Li, Xiao-Gang; Qin, Xin-Yue

    2017-04-01

    Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.

  3. Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130.

    Science.gov (United States)

    Quarta, Serena; Baeumer, Bastian E; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E; Kress, Michaela

    2014-09-24

    After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons. Copyright © 2014 the authors 0270-6474/14/3413222-12$15.00/0.

  4. Co-administration of ciliary neurotrophic factor with its soluble receptor protects against neuronal death and enhances neurite outgrowth.

    Science.gov (United States)

    Ozog, Mark A; Modha, Geetanjalee; Church, John; Reilly, Rayne; Naus, Christian C

    2008-03-07

    Attempts to promote neuronal survival and repair with ciliary neurotrophic factor (CNTF) have met with limited success. The variability of results obtained with CNTF may, in part, reflect the fact that some of the biological actions of the cytokine are mediated by a complex formed between CNTF and its specific receptor, CNTFRalpha, which exists in both membrane-bound and soluble forms. In this study, we compared the actions of CNTF alone and CNTF complexed with soluble CNTFRalpha (hereafter termed "Complex") on neuronal survival and growth. Although CNTF alone produced limited effects, Complex protected against glutamate-mediated excitotoxicity via gap junction-dependent and -independent mechanisms. Further examination revealed that only Complex promoted neurite outgrowth. Differential gene expression analysis revealed that, compared with CNTF alone, Complex differentially regulates several neuroprotective and neurotrophic genes. Collectively, these findings indicate that CNTF exerts more robust effects on neuronal survival and growth when applied in combination with its soluble receptor.

  5. Peptides modeled after the alpha-domain of metallothionein induce neurite outgrowth and promote survival of cerebellar granule neurons

    DEFF Research Database (Denmark)

    Asmussen, Johanne Wirenfeldt; Ambjørn, Malene; Bock, Elisabeth

    2009-01-01

    Metallothionein (MT) is a metal-binding protein capable of preventing oxidative stress and apoptotic cell death in the central nervous system of mammals, and hence is of putative therapeutic value in the treatment of neurodegenerative disorders. Recently, we demonstrated that a peptide modeled...... after the beta-domain of MT, EmtinB, induced neurite outgrowth and increased neuronal survival through binding to receptors of the low-density lipoprotein receptor family (LDLR). The present study identified two MT alpha-domain-derived peptide sequences termed EmtinAn and EmtinAc, each consisting of 14...... amino acids, as potent stimulators of neuronal differentiation and survival of primary neurons. In addition, we show that a peptide derived from the N-terminus of the MT beta-domain, EmtinBn, promotes neuronal survival. The neuritogenic and survival promoting effects of EmtinAc, similar to MT and Emtin...

  6. Sialidase NEU4 hydrolyzes polysialic acids of neural cell adhesion molecules and negatively regulates neurite formation by hippocampal neurons.

    Science.gov (United States)

    Takahashi, Kohta; Mitoma, Junya; Hosono, Masahiro; Shiozaki, Kazuhiro; Sato, Chihiro; Yamaguchi, Kazunori; Kitajima, Ken; Higashi, Hideyoshi; Nitta, Kazuo; Shima, Hiroshi; Miyagi, Taeko

    2012-04-27

    Modulation of levels of polysialic acid (polySia), a sialic acid polymer, predominantly associated with the neural cell adhesion molecule (NCAM), influences neural functions, including synaptic plasticity, neurite growth, and cell migration. Biosynthesis of polySia depends on two polysialyltransferases ST8SiaII and ST8SiaIV in vertebrate. However, the enzyme involved in degradation of polySia in its physiological turnover remains uncertain. In the present study, we identified and characterized a murine sialidase NEU4 that catalytically degrades polySia. Murine NEU4, dominantly expressed in the brain, was found to efficiently hydrolyze oligoSia and polySia chains as substrates in sialidase in vitro assays, and also NCAM-Fc chimera as well as endogenous NCAM in tissue homogenates of postnatal mouse brain as assessed by immunoblotting with anti-polySia antibodies. Degradation of polySia by NEU4 was also evident in neuroblastoma Neuro2a cells that were co-transfected with Neu4 and ST8SiaIV genes. Furthermore, in mouse embryonic hippocampal primary neurons, the endogenously expressed NEU4 was found to decrease during the neuronal differentiation. Interestingly, GFP- or FLAG-tagged NEU4 was partially co-localized with polySia in neurites and significantly suppressed their outgrowth, whereas silencing of NEU4 showed the acceleration together with an increase in polySia expression. These results suggest that NEU4 is involved in regulation of neuronal function by polySia degradation in mammals.

  7. The adaptor protein SH2B3 (Lnk negatively regulates neurite outgrowth of PC12 cells and cortical neurons.

    Directory of Open Access Journals (Sweden)

    Tien-Cheng Wang

    Full Text Available SH2B adaptor protein family members (SH2B1-3 regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.

  8. Optimal Power Flow Solution Using Ant Manners for Electrical Network

    Directory of Open Access Journals (Sweden)

    ALLAOUA, B.

    2009-02-01

    Full Text Available This paper presents ant manners and the collective intelligence for electrical network. Solutions for Optimal Power Flow (OPF problem of a power system deliberate via an ant colony optimization metaheuristic method. The objective is to minimize the total fuel cost of thermal generating units and also conserve an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. Simulation results on the IEEE 30-bus electrical network show that the ant colony optimization method converges quickly to the global optimum.

  9. Reading Glimpses of Life and Manners: A Textual Practice

    Directory of Open Access Journals (Sweden)

    Farah Ghaderi

    2012-07-01

    Full Text Available Through a textual scrutiny of Mary Sheil’s Glimpses of Life and Manners in Persia, this paper aims to examine the ways she represents the Persian women in her travel narrative.  Nineteenth century, as the high noon of British imperialism, saw the emergence of a huge corpus of colonial travel literature on Persia purported to be eye-witness accounts of the journeys made by their writers. Likewise, Mary Sheil claims that her narrative is an innocent transcription of the life and manners in Persia. However, a close analysis of her text reveals that the representations of women are informed by circulating discourses of the time in keeping with British imperialist ideologies. Further, it exposes the power structure embedded in Sheil’s scripting of Persian women. Far from being a monolithic picture, the text presents an ambivalent tableau of Persian women as objects of both derision and admiration. For its analytical framework, this study follows three successive readings focusing on the representation of the Persian women. The interpretation of the passages is guided by theories from Edward Said and Homi K. Bhabha among others.

  10. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells.

    Science.gov (United States)

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. The formation of AuNPs was characterized by UV-visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV-visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20-40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2-2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water

  11. Manners of killing and rituals in Apulian mafia murders.

    Science.gov (United States)

    De Donno, Antonio; Santoro, Valeria; Rossi, Anna Paola; Grattagliano, Ignazio; Introna, Francesco

    2009-07-01

    The Apulian (South of Italy) territory saw the birth of a criminal organization called Sacra Corona Unita (SCU, United Holy Crown) which transformed the rules of traditional mafia organizations. This work examined 83 victims of the SCU between 1980 and 2000. The bodies were mainly of SCU members and in some cases, of police and law enforcement officers and other citizens caught in the crossfire. Some of these were discovered; thanks to the collaboration of "repented" SCU members who became police informers. The condition of the bodies varied in relation to the date and manner of killing. In some cases anthropometric research methods were necessary. In 73% of the cases, lesions of the head were the only marks left on the body. In conclusion, the existence of some social aspects connected with the symbolisms and membership rites that characterized the origin, evolution, and decline of the SCU is stressed.

  12. Botanical Drug Puerarin Coordinates with Nerve Growth Factor in the Regulation of Neuronal Survival and Neuritogenesis via Activating ERK1/2 and PI3K/Akt Signaling Pathways in the Neurite Extension Process

    National Research Council Canada - National Science Library

    Zhao, Jia; Cheng, Yuan‐Yuan; Fan, Wen; Yang, Chuan‐Bin; Ye, Shui‐Fen; Cui, Wei; Wei, Wei; Lao, Li‐Xing; Cai, Jing; Han, Yi‐Fan; Rong, Jian‐Hui

    2015-01-01

    .... This study was designed to investigate whether botanical drug C-glucosylated isoflavone puerarin coordinates with NGF to regulate neuritogenesis via activating ERK1/2 and PI3K/Akt in neurite extension process...

  13. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease.

    Science.gov (United States)

    Sosna, Justyna; Philipp, Stephan; Albay, Ricardo; Reyes-Ruiz, Jorge Mauricio; Baglietto-Vargas, David; LaFerla, Frank M; Glabe, Charles G

    2018-03-01

    Besides the two main classical features of amyloid beta aggregation and tau-containing neurofibrillary tangle deposition, neuroinflammation plays an important yet unclear role in the pathophysiology of Alzheimer's disease (AD). Microglia are believed to be key mediators of neuroinflammation during AD and responsible for the regulation of brain homeostasis by balancing neurotoxicity and neuroprotective events. We have previously reported evidence that neuritic plaques are derived from dead neurons that have accumulated intraneuronal amyloid and further recruit Iba1-positive cells, which play a role in either neuronal demise or neuritic plaque maturation or both. To study the impact of microglia on neuritic plaque development, we treated two-month-old 5XFAD mice with a selective colony stimulation factor 1 receptor (CSF1R) inhibitor, PLX3397, for a period of 3 months, resulting in a significant ablation of microglia. Directly after this treatment, we analyzed the amount of intraneuronal amyloid and neuritic plaques and performed behavioral studies including Y-maze, fear conditioning and elevated plus maze. We found that early long-term PLX3397 administration results in a dramatic reduction of both intraneuronal amyloid as well as neuritic plaque deposition. PLX3397 treated young 5XFAD mice also displayed a significant decrease of soluble fibrillar amyloid oligomers in brain lysates, a depletion of soluble pre-fibrillar oligomers in plasma and an improvement in cognitive function measured by fear conditioning tests. Our findings demonstrate that CSF1R signaling, either directly on neurons or mediated by microglia, is crucial for the accumulation of intraneuronal amyloid and formation of neuritic plaques, suggesting that these two events are serially linked in a causal pathway leading to neurodegeneration and neuritic plaque formation. CSF1R inhibitors represent potential preventative or therapeutic approach that target the very earliest stages of the formation of

  14. c-SRC mediates neurite outgrowth through recruitment of Crk to the scaffolding protein Sin/Efs without altering the kinetics of ERK activation

    DEFF Research Database (Denmark)

    Yang, Liang-Tung; Alexandropoulos, Konstantina; Sap, Jan

    2002-01-01

    SRC family kinases have been consistently and recurrently implicated in neurite extension events, yet the mechanism underlying their neuritogenic role has remained elusive. We report that epidermal growth factor (EGF) can be converted from a non-neuritogenic into a neuritogenic factor through...... moderate activation of endogenous SRC by receptor-protein-tyrosine phosphatase alpha (a physiological SRC activator). We show that such a qualitative change in the response to EGF is not accompanied by changes in the extent or kinetics of ERK induction in response to this factor. Instead, the pathway...... of a dominant negative version of Sin interfered with receptor-protein-tyrosine phosphatase alpha/EGF- as well as fibroblast growth factor-induced neurite outgrowth. These observations uncouple neuritogenic signaling in PC12 cells from sustained activation of ERK kinases and for the first time identify...

  15. Peptides derived from the solvent-exposed loops 3 and 4 of BDNF bind TrkB and p75(NTR) receptors and stimulate neurite outgrowth and survival

    DEFF Research Database (Denmark)

    Fobian, Kristina; Owczarek, Sylwia; Budtz, Christian

    2010-01-01

    to produce more specific compounds without side effects, small peptides mimicking protein function have been developed. The present study characterized two mimetic peptides, Betrofin 3 and Betrofin 4, derived from the BDNF sequence. Both Betrofins bound the cognate BDNF receptors, TrkB and p75(NTR......), and induced neurite outgrowth and enhanced neuronal survival, probably by inducing signaling through tha Akt and MAPK pathways. Distinct, charged residues within the Betrofin sequences were identified as important for generating the neuritogenic response, which was also inhibited when BDNF was added together...... with either Betrofin, indicating partial agonistic effects of the peptides. Thus, two peptides derived from BDNF induced neurite outgrowth and enhanced neuronal survival, probably through binding to BDNF receptors....

  16. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely...... that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells....... This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13...

  17. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma......), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently...... propose a model of NCAM signaling involving two pathways: NCAM-Ras-MAP kinase and NCAM-FGF receptor-PLCgamma-PKC, and we propose that PKC serves as the link between the two pathways activating Raf and thereby creating the sustained activity of the MAP kinases necessary for neuronal differentiation....

  18. NF-κB activation via tyrosine phosphorylation of IκB-α is crucial for CNTF-promoted neurite growth from developing neurons

    OpenAIRE

    Gallagher, Denis; Gutierrez, Humberto; O'Keeffe, Gerard; Gavalda, Nuria; Hay, Ron; Davies, Alun M.

    2007-01-01

    The cytokine CNTF (ciliary neurotrophic factor) promotes the growth of neural processes from many kinds of neurons in the developing and regenerating adult nervous system, but the intracellular signalling mechanisms mediating this important function of CNTF are poorly understood. Here we show that CNTF activates the NF-κB transcriptional system in neonatal sensory neurons and that blocking NF-κB-dependent transcription inhibits CNTF-promoted neurite growth. Selectively blocking NF-κB activati...

  19. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line.

    OpenAIRE

    Fenteany, G; Standaert, R F; Reichard, G A; Corey, E J; Schreiber, S L

    1994-01-01

    Lactacystin, a microbial natural product, induces neurite outgrowth in Neuro 2A mouse neuroblastoma cells and inhibits progression of synchronized Neuro 2A cells and MG-63 human osteosarcoma cells beyond the G1 phase of the cell cycle. A related beta-lactone, clasto-lactacystin beta-lactone, formally the product of elimination of N-acetylcysteine from lactacystin, is also active, whereas the corresponding clastolactacystin dihydroxy acid is completely inactive. Structural analogs of lactacyst...

  20. Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575

    Directory of Open Access Journals (Sweden)

    Golde Todd E

    2009-05-01

    Full Text Available Abstract The γ-secretase complex is a major therapeutic target for the prevention and treatment of Alzheimer's disease. Previous studies have shown that treatment of young APP mice with specific inhibitors of γ-secretase prevented formation of new plaques. It has not yet been shown directly whether existing plaques would be affected by γ-secretase inhibitor treatment. Similarly, alterations in neuronal morphology in the immediate vicinity of plaques represent a plaque-specific neurotoxic effect. Reversal of these alterations is an important endpoint of successful therapy whether or not a treatment affects plaque size. In the present study we used longitudinal imaging in vivo with multiphoton microscopy to study the effects of the orally active γ-secretase inhibitor LY-411575 in 10–11 month old APP:PS1 mice with established amyloid pathology and neuritic abnormalities. Neurons expressed YFP allowing fluorescent detection of morphology whereas plaques were labelled with methoxy-XO4. The same identified neurites and plaques were followed in weekly imaging sessions in living mice treated daily (5 mg/kg for 3 weeks with the compound. Although LY-411575 reduced Aβ levels in plasma and brain, it did not have an effect on the size of existing plaques. There was also no effect on the abnormal neuritic curvature near plaques, or the dystrophies in very close proximity to senile plaques. Our results suggest that therapeutics aimed at inhibition of Aβ generation are less effective for reversal of existing plaques than for prevention of new plaque formation and have no effect on the plaque-mediated neuritic abnormalities, at least under these conditions where Aβ production is suppressed but not completely blocked. Therefore, a combination therapy of Aβ suppression with agents that increase clearance of amyloid and/or prevent neurotoxicity might be needed for a more effective treatment in patients with pre-existing pathology.

  1. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3.

    Science.gov (United States)

    Phan, Chia-Wei; David, Pamela; Naidu, Murali; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2013-10-11

    Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health.

  2. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    Science.gov (United States)

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  3. Abnormal Paraplegin Expression in Swollen Neurites, τ- and α-Synuclein Pathology in a Case of Hereditary Spastic Paraplegia SPG7 with an Ala510Val Mutation.

    Science.gov (United States)

    Thal, Dietmar R; Züchner, Stephan; Gierer, Stephan; Schulte, Claudia; Schöls, Ludger; Schüle, Rebecca; Synofzik, Matthis

    2015-10-21

    Mutations in the SPG7 gene are the most frequent cause of autosomal recessive hereditary spastic paraplegias and spastic ataxias. Ala510Val is the most common SPG7 mutation, with a frequency of up to 1% in the general population. Here we report the clinical, genetic, and neuropathological findings in a homozygous Ala510Val SPG7 case with spastic ataxia. Neuron loss with associated gliosis was found in the inferior olivary nucleus, the dentate nucleus of the cerebellum, the substantia nigra and the basal nucleus of Meynert. Neurofilament and/or paraplegin accumulation was observed in swollen neurites in the cerebellar and cerebral cortex. This case also showed subcortical τ-pathology in an unique distribution pattern largely restricted to the brainstem. α-synuclein containing Lewy bodies (LBs) were observed in the brainstem and the cortex, compatible with a limbic pattern of Braak LB-Disease stage 4. Taken together, this case shows that the spectrum of pathologies in SPG7 can include neuron loss of the dentate nucleus and the inferior olivary nucleus as well as neuritic pathology. The progressive supranuclear palsy-like brainstem predominant pattern of τ pathology and α-synuclein containing Lewy bodies in our SPG7 cases may be either coincidental or related to SPG7 in addition to neuron loss and neuritic pathology.

  4. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient.

    Science.gov (United States)

    Mosley, Matthew C; Lim, Hyun Ju; Chen, Jing; Yang, Yueh-Hsun; Li, Shenglan; Liu, Ying; Smith Callahan, Laura A

    2017-03-01

    Mechanotransduction in neural cells involves multiple signaling pathways that are not fully understood. Differences in lineage and maturation state are suggested causes for conflicting reports on neural cell mechanosensitivity. To optimize matrices for use in stem cell therapy treatments transplanting human induced pluripotent stem cell derived neural stem cells (hNSC) into lesions after spinal cord injury, the effects of Young's Modulus changes on hNSC behavior must be understood. The present study utilizes polyethylene glycol hydrogels containing a continuous gradient in Young's modulus to examine changes in the Young's Modulus of the culture substrate on hNSC neurite extension and neural differentiation. Changes in the Young's Modulus of the polyethylene glycol hydrogels was found to affect neurite extension and cellular organization on the matrices. hNSC cultured on 907 Pa hydrogels were found to extend longer neurites than hNSC cultured on other tested Young's Moduli hydrogels. The gene expression of β tubulin III and microtubule-associated protein 2 in hNSC was affected by changes in the Young's Modulus of the hydrogel. The combinatory method approach used in the present study demonstrates that hNSC are mechanosensitive and the matrix Young's Modulus should be a design consideration for hNSC transplant applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 824-833, 2017. © 2016 Wiley Periodicals, Inc.

  5. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells.

    Science.gov (United States)

    Irie, Tomohiko; Kawakami, Tsuyoshi; Sato, Kaoru; Usami, Makoto

    2017-01-01

    Nanomaterials have been extensively used in our daily life, and may also induce health effects and toxicity. Nanomaterials can translocate from the outside to internal organs, including the brain. For example, both nano-ZnO and nano-TiO2 translocate into the brain via the olfactory pathway in rodents, possibly leading to toxic effects on the brain. Although the effects of nano-ZnO and nano-TiO2 on neuronal viability or neuronal excitability have been studied, no work has focused on how these nanomaterials affect neuronal differentiation and development. In this study, we investigated the effects of nano-ZnO and nano-TiO2 on neurite outgrowth of PC12 cells, a useful model system for neuronal differentiation. Surprisingly, the number, length, and branching of differentiated PC12 neurites were significantly suppressed by the 7-day exposure to nano-ZnO (in the range of 1.0 × 10-4 to 1.0 × 10-1 µg/mL), at which the cell viability was not affected. The number and length were also significantly inhibited by the 7-day exposure to nano-TiO2 (1.0 × 10-3 to 1.0 µg/mL), which did not have cytotoxic effects. These results demonstrate that the neurite outgrowth in differentiated PC12 cells was suppressed by sub-cytotoxic concentrations of nano-ZnO or nano-TiO2.

  6. Abnormal Paraplegin Expression in Swollen Neurites, τ- and α-Synuclein Pathology in a Case of Hereditary Spastic Paraplegia SPG7 with an Ala510Val Mutation

    Directory of Open Access Journals (Sweden)

    Dietmar R. Thal

    2015-10-01

    Full Text Available Mutations in the SPG7 gene are the most frequent cause of autosomal recessive hereditary spastic paraplegias and spastic ataxias. Ala510Val is the most common SPG7 mutation, with a frequency of up to 1% in the general population. Here we report the clinical, genetic, and neuropathological findings in a homozygous Ala510Val SPG7 case with spastic ataxia. Neuron loss with associated gliosis was found in the inferior olivary nucleus, the dentate nucleus of the cerebellum, the substantia nigra and the basal nucleus of Meynert. Neurofilament and/or paraplegin accumulation was observed in swollen neurites in the cerebellar and cerebral cortex. This case also showed subcortical τ-pathology in an unique distribution pattern largely restricted to the brainstem. α-synuclein containing Lewy bodies (LBs were observed in the brainstem and the cortex, compatible with a limbic pattern of Braak LB-Disease stage 4. Taken together, this case shows that the spectrum of pathologies in SPG7 can include neuron loss of the dentate nucleus and the inferior olivary nucleus as well as neuritic pathology. The progressive supranuclear palsy-like brainstem predominant pattern of τ pathology and α-synuclein containing Lewy bodies in our SPG7 cases may be either coincidental or related to SPG7 in addition to neuron loss and neuritic pathology.

  7. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line.

    Science.gov (United States)

    Fenteany, G; Standaert, R F; Reichard, G A; Corey, E J; Schreiber, S L

    1994-04-12

    Lactacystin, a microbial natural product, induces neurite outgrowth in Neuro 2A mouse neuroblastoma cells and inhibits progression of synchronized Neuro 2A cells and MG-63 human osteosarcoma cells beyond the G1 phase of the cell cycle. A related beta-lactone, clasto-lactacystin beta-lactone, formally the product of elimination of N-acetylcysteine from lactacystin, is also active, whereas the corresponding clastolactacystin dihydroxy acid is completely inactive. Structural analogs of lactacystin altered only in the N-acetylcysteine moiety are active, while structural or stereochemical modifications of the gamma-lactam ring or the hydroxyisobutyl group lead to partial or complete loss of activity. The inactive compounds do not antagonize the effects of lactacystin in either neurite outgrowth or cell cycle progression assays. The response to lactacystin involves induction of a predominantly bipolar morphology that is maximal 16-32 h after treatment and is distinct from the response to several other treatments that result in morphological differentiation. Neurite outgrowth in response to lactacystin appears to be dependent upon microtubule assembly, actin polymerization, and de novo protein synthesis. The observed structure-activity relationships suggest that lactacystin and its related beta-lactone may act via acylation of one or more relevant target molecule(s) in the cell.

  8. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2015-12-08

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most-common genetic determinants of Parkinson's disease (PD). The G2019S mutation is detected most frequently and is associated with increased kinase activity. Whereas G2019S mutant dopamine neurons exhibit neurite elongation deficits, the effect of G2019S on other neuronal subtypes is unknown. As PD patients also suffer from non-motor symptoms that may be unrelated to dopamine neuron loss, we used induced pluripotent stem cells (iPSCs) to assess morphological and functional properties of peripheral sensory neurons. LRRK2 G2019S iPSC-derived sensory neurons exhibited normal neurite length but had large microtubule-containing neurite aggregations. Additionally, LRRK2 G2019S iPSC-derived sensory neurons displayed altered calcium dynamics. Treatment with LRRK2 kinase inhibitors resulted in significant, but not complete, morphological and functional rescue. These data indicate a role for LRRK2 kinase activity in sensory neuron structure and function, which when disrupted, may lead to sensory neuron deficits in PD. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    Science.gov (United States)

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  10. Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth.

    Science.gov (United States)

    Miyamoto, Yuki; Yamauchi, Junji; Sanbe, Atsushi; Tanoue, Akito

    2007-02-15

    Small GTPases of the Rho family, Rho, Rac, and Cdc42, are critical regulators of the changes in the actin cytoskeleton. Rho GTPases are typically activated by Dbl-homology (DH)-domain-containing guanine nucleotide exchange factors (GEFs). Recent genetic and biochemical studies revealed a new type of GEF for the Rho GTPases. This family is composed of 11 genes, designated as Dock1 to Dock11, and is structurally divided into four classes Dock-A, -B, -C, and -D. Dock-A and -B subfamilies are typically GEFs specific for Rac1, while the Dock-D subfamily is specific for Cdc42. Here we show that Dock6, a member of the Dock-C subfamily, exchanges GDP for GTP for Rac1 and Cdc42 in vitro and in vivo. Furthermore, we find that, in mouse N1E-115 neuroblastoma cells, expression of Dock6 is increased following differentiation. Transfection of the catalytic Dock Homology Region-2 (DHR-2) domain of Dock6 promotes neurite outgrowth mediated by Rac1 and Cdc42. Conversely, knockdown of endogenous Dock6 by small interference RNA reduces activation of Rac1 and Cdc42 and neurite outgrowth. Taken together, these results suggest that Dock6 differs from all of the identified Dock180-related proteins, in that it is the GEF specific for both Rac1 and Cdc42 and may be one of physiological regulators of neurite outgrowth.

  11. Oxytocin reverses osteoporosis in a sex dependent manner

    Directory of Open Access Journals (Sweden)

    Guillaume E Beranger

    2015-05-01

    Full Text Available The increase of life expectancy has led to the increase of age-related diseases such as osteoporosis. Osteoporosis is characterized by bone weakening promoting the occurrence of fractures with defective bone regeneration. Men aged over 50 have a prevalence for osteoporosis of 20% which is related to a decline in sex hormones occurring during andropause or surgical orchidectomy. As we previously demonstrated in a mouse model for menopause in women that treatment with the neurohypophyseal peptide hormone oxytocin (OT normalizes body weight and prevents the development of osteoporosis, herein we addressed the effects of OT in male osteoporosis.Thus, we treated orchidectomized mice, an animal model suitable for the study of male osteoporosis, for 8 weeks with OT and then analyzed trabecular and cortical bone parameters as well as fat mass using micro-computed tomography. Orchidectomized mice displayed severe bone loss, muscle atrophy accompanied by fat mass gain as expected in andropause. Interestingly, OT treatment in male mice normalized fat mass as it did in female mice. However, although OT treatment led to a normalization of bone parameters in ovariectomized mice, this did not happen in orchidectomized mice. Moreover, loss of muscle mass was not reversed in orchidectomized mice upon OT treatment. All of these observations indicate that OT acts on fat physiology in both sexes, but in a sex specific manner with regard to bone physiology.

  12. Length dependent potentiation in electrically stimulated human ankle dorsiflexor muscles

    NARCIS (Netherlands)

    Mela, P.; Veltink, P.H.; Huijing, P.A.J.B.M.

    2002-01-01

    The purpose of this study was to investigate the short-term history effect of a decreasing frequency train on force and the influence of joint angle on such effect in human dorsiflexor muscles. Six able-bodied and three spinal cord injured (SCI) subjects took part in the study. Their isometric left

  13. Concentration and length dependence of DNA looping in transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Lin Han

    2009-05-01

    Full Text Available In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage, to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.

  14. Length dependence of active force production in skeletal muscle.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R; Herzog, W

    1999-05-01

    The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.

  15. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms.

    Science.gov (United States)

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly A

    2013-02-15

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells.

    Science.gov (United States)

    Zhang, Cheng-Chen; Yin, Xia; Cao, Chen-Yu; Wei, Jing; Zhang, Qiang; Gao, Jin-Ming

    2015-11-15

    One new meroterpenoid, named hericenone K (11), along with 10 known compounds (1-10), ergosterol peroxide (1), cerevisterol (2), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3), inoterpene A (4), astradoric acid C (5), betulin (6), oleanolic acid (7), ursolic acid (8), hemisceramide (9), and 3,4-dihydro-5-methoxy-2-methyl-2-(4'-methyl-2'-oxo-3'-pentenyl)-9(7H)-oxo-2H-furo[3,4-h]benzopyran (10), was isolated from the fruiting bodies of the mushroom Hericium erinaceus. Their structures were characterized on the basis of spectroscopic methods, as well as through comparison with previously reported data. Compounds 3-6, 8, and 9 were isolated from Hericium species for the first time. Compounds 10 and 11 was suggested to be racemic by the CD spectrum data and specific rotations, which ware resolved by chiral HPLC into respective enantiomers. Compounds 1-3, (±)-10, (-)-10 and (+)-10 in the presence of NGF (20 ng/mL) exerted a significant increase in neurite-bearing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2

    Directory of Open Access Journals (Sweden)

    Yunjia Zhang

    2016-06-01

    Full Text Available ABSTRACT MicroRNAs (miRNAs are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.

  18. Piperine-like alkamides from Piper nigrum induce BDNF promoter and promote neurite outgrowth in Neuro-2a cells.

    Science.gov (United States)

    Yun, Young Sook; Noda, Sachie; Takahashi, Shigeru; Takahashi, Yuji; Inoue, Hideshi

    2018-01-01

    Black pepper (Piper nigrum) contains a variety of alkamides. Among them, piperine has been reported to have antidepressant-like effects in chronically stressed mice, but little is known about the biological activity of other alkamides. In this study, we investigated the effects of alkamides from white pepper (P. nigrum) on neuronal cells. Twelve alkamides were isolated from white pepper MeOH extracts, and their chemical structures were identified by NMR and MS analyses. The compounds were subjected to assays using the luciferase-reporter gene under the control of the BDNF promoter or cAMP response element in mouse neuroblastoma Neuro-2a cells. In both assays, marked reporter-inducing activity was observed for piperine (1), piperettine (2) and piperylin (7), all of which have in common an (E)-5-(buta-1,3-dien-1-yl)benzo[d] [1, 3] dioxole moiety. Piperettine (2) and piperylin (7) tended to increase endogenous BDNF protein levels. Furthermore, piperylin (7) promoted retinoic acid-induced neurite outgrowth. These results suggest that piperylin (7), or analogues thereof, may have a beneficial effect on disorders associated with dysregulation of BDNF expression, such as depression.

  19. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    Science.gov (United States)

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  20. Fine needle aspiration cytology as an aid to diagnosis, categorization and treatment when pure neuritic leprosy presents as nerve abscess

    Science.gov (United States)

    Kiran, C M; Menon, Roshni

    2013-01-01

    Background: Pure neuritic leprosy (PNL) usually presents with neurological symptoms without skin involvement. Fine needle aspiration can play an important role in the management of PNL cases presenting as nerve abscesses. Aim: To assess the role of fine needle aspiration cytology (FNAC) in diagnosing and categorizing PNL cases presenting as nerve abscesses in the absence of neurological symptoms. Materials and Methods: Five patients with subcutaneous nerve related swellings without clinically evident neurological deficits were subjected to FNAC. As the cytological features were suggestive of nerve abscesses due to leprosy, Fite stain was performed in all cases. As none of the patients had any leprosy skin lesions, they were diagnosed as cases of PNL. Features like cellularity, caseous necrosis, presence or absence of lymphocytes, macrophages, epithelioid cells, granulomas, Langhans giant cells and nerve elements were analyzed with the bacteriological index, to categorize PNL according to the Ridley-Jopling classification. Results: Based on the cytological features and bacteriological indices, 3 cases were cytologically categorized into tuberculoid (TT)/borderline tuberculoid (BT) leprosy and the other two, as BT/borderline lepromatous (BL) and BL leprosy respectively in spite of having similar clinical presentation. Based on the cytological diagnoses, category-specific treatment could be instituted with clinical improvement. Conclusions: The simple and minimally invasive FNAC procedure allows diagnosis and a reasonably accurate categorization of PNL presenting as nerve abscess and therefore, highly useful in its clinical management. PMID:24648666

  1. [Perception manner of the father of an obese child].

    Science.gov (United States)

    Radoszewska, Joanna

    2010-01-01

    The child's representation in the father is understood as an experience manner of itself. There are specific relation properties of the father to the obese child. The aim of this article is an attempt to explain/find out what is a mental representation of a child experienced by fathers of obese girls and boys. 30 fathers were investigated: 15 fathers of obese children (8 girls and 7 boys) and 15 fathers of children with normal body mass (8 girls and 7 boys). The mean age of the obese children of the investigated fathers was 8.23, and for normal body mass children of the investigated fathers it was 8.47. All fathers were investigated by a clinical interview with 15 questions concerning a mental child's representation. The obtained results were analyzed in relation to: 1. the contents of a mental father's representation of the child: cognitive, emotional, social, sexual, certificate, behavioral and somatic. 2. Access to a mental father's representation of the child. 3. Differentiation of a mental father's representation of the child. 4. Continuity of a mental father's representation of the child. 1. There are differences in a mental child's representation in fathers of obese and of normal body mass children. There are also differences in a mental child's representation in fathers of obese girls and boys 2. Fathers of obese children more often than the fathers of children with the normal body mass identify with the external contents of a mental child's representation. 1. A mental representation of an obese child in the father often contains external, not mental properties. 2. The representation of an obese child in the father contains deficit of mental properties. 3. Specific difficulties in the experience of a mental representation of an obese child in the father like f.e. emotional emptiness or dependence were pointed out.

  2. Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2.

    Directory of Open Access Journals (Sweden)

    Kazuki Terada

    Full Text Available Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX. Exogenous glucocorticoids and their synthetic derivatives can also adversely affect the development of the central nervous system. Although neurite extension from rat pheochromocytoma-derived PC12 cells and a variety of primary neurons is stimulated by nerve growth factor (NGF, and signaling pathways triggered by the binding of NGF to tyrosine kinase receptor type 1 (TrkA function in both neurite outgrowth and neuronal survival, the effect of DEX on the activation of regulatory proteins and pathways downstream of TrkA has not been well characterized. To analyze the influence of DEX on NGF-induced neurite outgrowth and signaling, PC12 cells, a widely utilized model of neuronal differentiation, were pretreated with the glucocorticoid prior to NGF induction. NGF-induced neurite outgrowth was attenuated by pretreatment with DEX, even in the absence of DEX after the addition of NGF. Moreover, DEX suppressed the phosphorylation of Akt and extracellular-regulated kinase 1/2 (ERK1/2 in the neurite outgrowth signaling cascade initiated by NGF. Finally, the glucocorticoid receptor (GR antagonist, RU38486, counteracted the inhibitory effect of DEX pretreatment, not only on the phosphorylation of Akt and ERK1/2, but also on neurite extension from PC12 cells. These results suggest that DEX binding to the GR impairs NGF-promoted neurite outgrowth by interfering with the activation/phosphorylation of Akt and ERK1/2. These novel findings are likely to be useful for elucidating the central nervous system depressive mechanism(s of action of DEX and other glucocorticoids.

  3. Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2.

    Science.gov (United States)

    Terada, Kazuki; Kojima, Yoshitsugu; Watanabe, Takayuki; Izumo, Nobuo; Chiba, Koji; Karube, Yoshiharu

    2014-01-01

    Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX). Exogenous glucocorticoids and their synthetic derivatives can also adversely affect the development of the central nervous system. Although neurite extension from rat pheochromocytoma-derived PC12 cells and a variety of primary neurons is stimulated by nerve growth factor (NGF), and signaling pathways triggered by the binding of NGF to tyrosine kinase receptor type 1 (TrkA) function in both neurite outgrowth and neuronal survival, the effect of DEX on the activation of regulatory proteins and pathways downstream of TrkA has not been well characterized. To analyze the influence of DEX on NGF-induced neurite outgrowth and signaling, PC12 cells, a widely utilized model of neuronal differentiation, were pretreated with the glucocorticoid prior to NGF induction. NGF-induced neurite outgrowth was attenuated by pretreatment with DEX, even in the absence of DEX after the addition of NGF. Moreover, DEX suppressed the phosphorylation of Akt and extracellular-regulated kinase 1/2 (ERK1/2) in the neurite outgrowth signaling cascade initiated by NGF. Finally, the glucocorticoid receptor (GR) antagonist, RU38486, counteracted the inhibitory effect of DEX pretreatment, not only on the phosphorylation of Akt and ERK1/2, but also on neurite extension from PC12 cells. These results suggest that DEX binding to the GR impairs NGF-promoted neurite outgrowth by interfering with the activation/phosphorylation of Akt and ERK1/2. These novel findings are likely to be useful for elucidating the central nervous system depressive mechanism(s) of action of DEX and other glucocorticoids.

  4. 45 CFR 1621.4 - Complaints by clients about manner or quality of legal assistance.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Complaints by clients about manner or quality of...) LEGAL SERVICES CORPORATION CLIENT GRIEVANCE PROCEDURES § 1621.4 Complaints by clients about manner or... clients about the manner or quality of legal assistance that has been rendered by the recipient to the...

  5. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    Energy Technology Data Exchange (ETDEWEB)

    Marzinke, Mark A. [Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544 (United States); Clagett-Dame, Margaret, E-mail: dame@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544 (United States); Pharmaceutical Science Division, University of Wisconsin-Madison, Madison, WI 53705-2222 (United States)

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  6. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis.

    Science.gov (United States)

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-03-30

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.

  7. Surface Microstructures on Planar Substrates and Textile Fibers Guide Neurite Outgrowth: A Scaffold Solution to Push Limits of Critical Nerve Defect Regeneration?

    Science.gov (United States)

    Weigel, Stefan; Tobler, Ursina; Yao, Li; Wiesli, Manuel; Lehnert, Thomas; Pandit, Abhay; Bruinink, Arie

    2012-01-01

    The treatment of critical size peripheral nerve defects represents one of the most serious problems in neurosurgery. If the gap size exceeds a certain limit, healing can't be achieved. Connection mismatching may further reduce the clinical success. The present study investigates how far specific surface structures support neurite outgrowth and by that may represent one possibility to push distance limits that can be bridged. For this purpose, growth cone displacement of fluorescent embryonic chicken spinal cord neurons was monitored using time-lapse video. In a first series of experiments, parallel patterns of polyimide ridges of different geometry were created on planar silicon oxide surfaces. These channel-like structures were evaluated with and without amorphous hydrogenated carbon (a-C:H) coating. In a next step, structured and unstructured textile fibers were investigated. All planar surface materials (polyimide, silicon oxide and a-C:H) proved to be biocompatible, i.e. had no adverse effect on nerve cultures and supported neurite outgrowth. Mean growth cone migration velocity measured on 5 minute base was marginally affected by surface structuring. However, surface structure variability, i.e. ridge height, width and inter-ridge spacing, significantly enhanced the resulting net velocity by guiding the growth cone movement. Ridge height and inter-ridge distance affected the frequency of neurites crossing over ridges. Of the evaluated dimensions ridge height, width, and inter-ridge distance of respectively 3, 10, and 10 µm maximally supported net axon growth. Comparable artificial grooves, fabricated onto the surface of PET fibers by using an excimer laser, showed similar positive effects. Our data may help to further optimize surface characteristics of artificial nerve conduits and bioelectronic interfaces. PMID:23251379

  8. Surface microstructures on planar substrates and textile fibers guide neurite outgrowth: a scaffold solution to push limits of critical nerve defect regeneration?

    Directory of Open Access Journals (Sweden)

    Stefan Weigel

    Full Text Available The treatment of critical size peripheral nerve defects represents one of the most serious problems in neurosurgery. If the gap size exceeds a certain limit, healing can't be achieved. Connection mismatching may further reduce the clinical success. The present study investigates how far specific surface structures support neurite outgrowth and by that may represent one possibility to push distance limits that can be bridged. For this purpose, growth cone displacement of fluorescent embryonic chicken spinal cord neurons was monitored using time-lapse video. In a first series of experiments, parallel patterns of polyimide ridges of different geometry were created on planar silicon oxide surfaces. These channel-like structures were evaluated with and without amorphous hydrogenated carbon (a-C:H coating. In a next step, structured and unstructured textile fibers were investigated. All planar surface materials (polyimide, silicon oxide and a-C:H proved to be biocompatible, i.e. had no adverse effect on nerve cultures and supported neurite outgrowth. Mean growth cone migration velocity measured on 5 minute base was marginally affected by surface structuring. However, surface structure variability, i.e. ridge height, width and inter-ridge spacing, significantly enhanced the resulting net velocity by guiding the growth cone movement. Ridge height and inter-ridge distance affected the frequency of neurites crossing over ridges. Of the evaluated dimensions ridge height, width, and inter-ridge distance of respectively 3, 10, and 10 µm maximally supported net axon growth. Comparable artificial grooves, fabricated onto the surface of PET fibers by using an excimer laser, showed similar positive effects. Our data may help to further optimize surface characteristics of artificial nerve conduits and bioelectronic interfaces.

  9. The proinflammatory cytokine, interleukin-17A, augments mitochondrial function and neurite outgrowth of cultured adult sensory neurons derived from normal and diabetic rats.

    Science.gov (United States)

    Habash, Tarek; Saleh, Ali; Roy Chowdhury, Subir K; Smith, Darrell R; Fernyhough, Paul

    2015-11-01

    Diabetic neuropathy comprises dying back of nerve endings that reflects impairment in axonal plasticity and regenerative nerve growth. Metabolic changes in diabetes can lead to a dysregulation of hormonal mediators, such as cytokines, that may constrain distal nerve fiber growth. Interleukin-17 (IL-17A), a proinflammatory and neurotropic cytokine produced by T-cells, was significantly reduced in sciatic nerve of streptozotocin (STZ)-diabetic rats. Thus we studied the effect of IL-17A on the phenotype of sensory neurons derived from age matched control or type 1 diabetic rats. The aims were to determine the ability of IL-17A to enhance neurite outgrowth in cultured sensory neurons, investigate the signaling pathways activated by IL-17A, study the role of mitochondria and mechanistically link to neurite outgrowth. IL-17A (10 ng/ml; psensory neurons derived from both control and streptozotocin (STZ)-diabetic rats. This enhancement was mediated by IL-17A-dependent activation of extracellular-regulated protein kinase (ERK) and phosphoinositide-3 kinase (PI-3K) signal transduction pathways. Pharmacological blockade of one of these activated pathways triggered complete inhibition of neurite outgrowth. IL-17A augmented mitochondrial bioenergetic function of sensory neurons derived from control or diabetic rats and this was also mediated via ERK or PI-3K. IL-17A-dependent elevation of bioenergetic function was associated with augmented expression of proteins of the mitochondrial electron transport system complexes. IL-17A enhanced axonal plasticity through activation of ERK and PI-3K pathways and was associated with augmented mitochondrial bioenergetic function in sensory neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons

    DEFF Research Database (Denmark)

    Neiiendam, Johanne Louise; Køhler, Lene Boding; Christensen, Claus

    2004-01-01

    factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III...... of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival....

  11. Lion's Mane, Hericium erinaceus and Tiger Milk, Lignosus rhinocerotis (Higher Basidiomycetes) Medicinal Mushrooms Stimulate Neurite Outgrowth in Dissociated Cells of Brain, Spinal Cord, and Retina: An In Vitro Study.

    Science.gov (United States)

    Samberkar, Snehlata; Gandhi, Sivasangkary; Naidu, Murali; Wong, Kah-Hui; Raman, Jegadeesh; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative disease is defined as a deterioration of the nervous system in the intellectual and cognitive capabilities. Statistics show that more than 80-90 million individuals age 65 and above in 2050 may be affected by neurodegenerative conditions like Alzheimer's and Parkinson's disease. Studies have shown that out of 2000 different types of edible and/or medicinal mushrooms, only a few countable mushrooms have been selected until now for neurohealth activity. Hericium erinaceus is one of the well-established medicinal mushrooms for neuronal health. It has been documented for its regenerative capability in peripheral nerve. Another mushroom used as traditional medicine is Lignosus rhinocerotis, which has been used for various illnesses. It has been documented for its neurite outgrowth potential in PC12 cells. Based on the regenerative capabilities of both the mushrooms, priority was given to select them for our study. The aim of this study was to investigate the potential of H. erinaceus and L. rhinocerotis to stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina from chick embryo when compared to brain derived neurotrophic factor (BDNF). Neurite outgrowth activity was confirmed by the immu-nofluorescence method in all tissue samples. Treatment with different concentrations of extracts resulted in neuronal differentiation and neuronal elongation. H. erinaceus extract at 50 µg/mL triggered neurite outgrowth at 20.47%, 22.47%, and 21.70% in brain, spinal cord, and retinal cells. L. rhinocerotis sclerotium extract at 50 µg/mL induced maximum neurite outgrowth of 20.77% and 24.73% in brain and spinal cord, whereas 20.77% of neurite outgrowth was observed in retinal cells at 25 µg/mL, respectively.

  12. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway

    Directory of Open Access Journals (Sweden)

    Cheng-Chen Zhang

    2017-07-01

    Full Text Available Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound (6 and one new natural product (2 together with five known compounds (1,3–5,7 were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester (1 and a cyathane diterpenoid, erincine A (3, not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3-promoted NGF-induced neurite outgrowth in PC12 cells.

  13. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway.

    Science.gov (United States)

    Zhang, Cheng-Chen; Cao, Chen-Yu; Kubo, Miwa; Harada, Kenichi; Yan, Xi-Tao; Fukuyama, Yoshiyasu; Gao, Jin-Ming

    2017-07-30

    Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound ( 6 ) and one new natural product ( 2 ) together with five known compounds ( 1 , 3 - 5 , 7 ) were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester ( 1 ) and a cyathane diterpenoid, erincine A ( 3 ), not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3 -promoted NGF-induced neurite outgrowth in PC12 cells.

  14. Neurite growth acceleration of adult Dorsal Root Ganglion neurons illuminated by low-level Light Emitting Diode light at 645 nm.

    Science.gov (United States)

    Burland, Marion; Paris, Lambert; Quintana, Patrice; Bec, Jean-Michel; Diouloufet, Lucie; Sar, Chamroeun; Boukhaddaoui, Hassan; Charlot, Benoit; Braga Silva, Jefferson; Chammas, Michel; Sieso, Victor; Valmier, Jean; Bardin, Fabrice

    2015-06-01

    The effect of a 645 nm Light Emitting Diode (LED) light irradiation on the neurite growth velocity of adult Dorsal Root Ganglion (DRG) neurons with peripheral axon injury 4-10 days before plating and without previous injury was investigated. The real amount of light reaching the neurons was calculated by taking into account the optical characteristics of the light source and of media in the light path. The knowledge of these parameters is essential to be able to compare results of the literature and a way to reduce inconsistencies. We found that 4 min irradiation of a mean irradiance of 11.3 mW/cm(2) (corresponding to an actual irradiance reaching the neurons of 83 mW/cm(2)) induced a 1.6-fold neurite growth acceleration on non-injured neurons and on axotomized neurons. Although the axotomized neurons were naturally already in a rapid regeneration process, an enhancement was found to occur while irradiating with the LED light, which may be promising for therapy applications. Dorsal Root Ganglion neurons (A) without previous injury and (B) subjected to a conditioning injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    Science.gov (United States)

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-11-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.

  16. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons.

    Science.gov (United States)

    Woodward, Nicholas C; Pakbin, Payam; Saffari, Arian; Shirmohammadi, Farimah; Haghani, Amin; Sioutas, Constantinos; Cacciottolo, Mafalda; Morgan, Todd E; Finch, Caleb E

    2017-05-01

    Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young- and middle-aged mice (3 and 18 months female C57BL/6J) were exposed to nanoscale-PM (nPM, changes in the hippocampal CA1 region, with neurite atrophy (-25%), decreased MBP (-50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (-40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age-ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer's disease. We propose that TRAP-associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 40 CFR 141.204 - Tier 3 Public Notice-Form, manner, and frequency of notice.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Tier 3 Public Notice-Form, manner, and... Drinking Water Violations § 141.204 Tier 3 Public Notice—Form, manner, and frequency of notice. (a) Which violations or situations require a Tier 3 public notice? Table 1 of this section lists the violation...

  18. Point of View: Manner of Realising The Matter in Adichie's Half of A ...

    African Journals Online (AJOL)

    This study aims at examining point of view as a technique or manner available to Adichie in Half of a Yellow Sun, in order to demonstrate how it has helped her to discover meaning or matter. To this end, the concept of point of view or manner as resource for realising matter or meaning has been defined. There is also an ...

  19. 26 CFR 1.871-1 - Classification and manner of taxing alien individuals.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Classification and manner of taxing alien... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Nonresident Aliens and Foreign Corporations § 1.871-1 Classification and manner of taxing alien individuals. (a) Classes of aliens. For purposes of the income tax...

  20. Benford's Law for Quality Assurance of Manner of Death Counts in Small and Large Databases.

    Science.gov (United States)

    Daniels, Jeremy; Caetano, Samantha-Jo; Huyer, Dirk; Stephen, Andrew; Fernandes, John; Lytwyn, Alice; Hoppe, Fred M

    2017-09-01

    To assess if Benford's law, a mathematical law used for quality assurance in accounting, can be applied as a quality assurance measure for the manner of death determination. We examined a regional forensic pathology service's monthly manner of death counts (N = 2352) from 2011 to 2013, and provincial monthly and weekly death counts from 2009 to 2013 (N = 81,831). We tested whether each dataset's leading digit followed Benford's law via the chi-square test. For each database, we assessed whether number 1 was the most common leading digit. The manner of death counts first digit followed Benford's law in all the three datasets. Two of the three datasets had 1 as the most frequent leading digit. The manner of death data in this study showed qualities consistent with Benford's law. The law has potential as a quality assurance metric in the manner of death determination for both small and large databases. © 2017 American Academy of Forensic Sciences.

  1. Model technical and tactical training karate «game» manner of conducting a duel

    Directory of Open Access Journals (Sweden)

    Natalya Boychenko

    2015-04-01

    Full Text Available Purpose: optimization of technical and tactical training karate «gaming» the manner of conducting a duel. Material and Methods: analysis and compilation of scientific and methodological literature, interviews with coaches for shock combat sports, video analysis techniques, teacher observations. Results: the model of technical and tactical training karate «game» manner of conducting a duel. Selection was done complexes jobs matching techniques to improve athletes 'game' in the manner of conducting a duel «Kyokushin» karate. Conclusion: the model of technical and tactical training fighters "game" manner of conducting a duel, which reveals the particular combination technique karate style «Kyokushin». Selection was done complexes jobs matching techniques to improve athletes 'game' in the manner of conducting a duel «Kyokushin» karate, aimed at improving the combinations with the action on the response of the enemy.

  2. Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Roland; Fransson, Anette; Fjord-Larsen, Lone

    2012-01-01

    properties in vitro, combined with the restricted inner ear expression during development, we further investigated Cometin in relation to deafness. In neomycin deafened guinea pigs, two weeks intracochlear infusion of recombinant Cometin supports spiral ganglion neuron survival and function. In contrast......Neurotrophic factors are secreted proteins responsible for migration, growth and survival of neurons during development, and for maintenance and plasticity of adult neurons. Here we present a novel secreted protein named Cometin which together with Meteorin defines a new evolutionary conserved...... protein family. During early mouse development, Cometin is found exclusively in the floor plate and from E13.5 also in dorsal root ganglions and inner ear but apparently not in the adult nervous system. In vitro, Cometin promotes neurite outgrowth from dorsal root ganglion cells which can be blocked...

  3. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons

    Directory of Open Access Journals (Sweden)

    Mitchell D’Rozario

    2016-04-01

    Full Text Available Proneural proteins of the class I/II basic-helix-loop-helix (bHLH family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.

  4. Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway.

    Science.gov (United States)

    Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L

    2017-02-01

    Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Novel Small Molecule GDNF Receptor RET Agonist, BT13, Promotes Neurite Growth from Sensory Neurons in Vitro and Attenuates Experimental Neuropathy in the Rat

    Directory of Open Access Journals (Sweden)

    Yulia A. Sidorova

    2017-06-01

    Full Text Available Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimulate regeneration after nerve damage. Two candidate targets are glial cell line-derived neurotrophic factor (GDNF and artemin (ARTN, as these GDNF family ligands (GFLs show efficacy in animal models of neuropathic pain (Boucher et al., 2000; Gardell et al., 2003; Wang et al., 2008, 2014. As these protein ligands have poor drug-like properties and are expensive to produce for clinical use, we screened 18,400 drug-like compounds to develop small molecules that act similarly to GFLs (GDNF mimetics. This screening identified BT13 as a compound that selectively targeted GFL receptor RET to activate downstream signaling cascades. BT13 was similar to NGF and ARTN in selectively promoting neurite outgrowth from the peptidergic class of adult sensory neurons in culture, but was opposite to ARTN in causing neurite elongation without affecting initiation. When administered after spinal nerve ligation in a rat model of neuropathic pain, 20 and 25 mg/kg of BT13 decreased mechanical hypersensitivity and normalized expression of sensory neuron markers in dorsal root ganglia. In control rats, BT13 had no effect on baseline mechanical or thermal sensitivity, motor coordination, or weight gain. Thus, small molecule BT13 selectively activates RET and offers opportunities for developing novel disease-modifying medications to treat neuropathic pain.

  6. Extracellular vesicles from a muscle cell line (C2C12 enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34

    Directory of Open Access Journals (Sweden)

    Roger D. Madison

    2014-02-01

    Full Text Available Introduction: There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. Background: When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. Methods: We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? Conclusion: Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival.

  7. Upregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro.

    Science.gov (United States)

    Koch, Jan C; Solis, Gonzalo P; Bodrikov, Vsevolod; Michel, Uwe; Haralampieva, Deana; Shypitsyna, Aleksandra; Tönges, Lars; Bähr, Mathias; Lingor, Paul; Stuermer, Claudia A O

    2013-03-01

    The ability of fish retinal ganglion cells (RGCs) to regenerate their axons was shown to require the re-expression and function of the two proteins reggie-1 and -2. RGCs in mammals fail to upregulate reggie expression and to regenerate axons after lesion suggesting the possibility that induced upregulation might promote regeneration. In the present study, RGCs in adult rats were induced to express reggie-1 by intravitreal injection of adeno-associated viral vectors (AAV2/1) expressing reggie-1 (AAV.R1-EGFP) 14d prior to optic nerve crush. Four weeks later, GAP-43-positive regenerating axons had crossed the lesion and grown into the nerve at significantly higher numbers and length (up to 5mm) than the control transduced with AAV.EGFP. Consistently, after transduction with AAV.R1-EGFP as opposed to AAV.EGFP, primary RGCs in vitro grew long axons on chondroitin sulfate proteoglycan (CSPG) and Nogo-A, both glial cell-derived inhibitors of neurite growth, suggesting that reggie-1 can provide neurons with the ability to override inhibitors of neurite growth. This reggie-1-mediated enhancement of growth was reproduced in mouse hippocampal and N2a neurons which generated axons 40-60% longer than their control counterparts. This correlates with the reggie-1-dependent activation of Src and PI3 kinase (PI3K), of the Rho family GTPase Rac1 and downstream effectors such as cofilin. This increased growth also depends on TC10, the GTPase involved in cargo delivery to the growth cone. Thus, the upregulation of reggie-1 in mammalian neurons provides nerve cells with neuron-intrinsic properties required for axon growth and successful regeneration in the adult mammalian CNS. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  9. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.

    Science.gov (United States)

    Zeng, Xiang; Ma, Yuan-Huan; Chen, Yuan-Feng; Qiu, Xue-Cheng; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-08-01

    Extracellular matrix (ECM) expression is temporally and spatially regulated during the development of stem cells. We reported previously that fibronectin (FN) secreted by bone marrow mesenchymal stem cells (MSCs) was deposited on the surface of gelatin sponge (GS) soon after culture. In this study, we aimed to assess the function of accumulated FN on neuronal differentiating MSCs as induced by Schwann cells (SCs) in three dimensional transwell co-culture system. The expression pattern and amount of FN of differentiating MSCs was examined by immunofluorescence, Western blot and immunoelectron microscopy. The results showed that FN accumulated inside GS scaffold, although its mRNA expression in MSCs was progressively decreased during neural induction. MSC-derived neuron-like cells showed spindle-shaped cell body and long extending processes on FN-decorated scaffold surface. However, after blocking of FN function by application of monoclonal antibodies, neuron-like cells showed flattened cell body with short and thick neurites, together with decreased expression of integrin β1. In vivo transplantation study revealed that autocrine FN significantly facilitated endogenous nerve fiber regeneration in spinal cord transection model. Taken together, the present results showed that FN secreted by MSCs in the early stage accumulated on the GS scaffold and promoted the neurite elongation of neuronal differentiating MSCs as well as nerve fiber regeneration after spinal cord injury. This suggests that autocrine FN has a dynamic influence on MSCs in a three dimensional culture system and its potential application for treatment of traumatic spinal cord injury. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1902-1911, 2016. © 2016 Wiley Periodicals, Inc.

  10. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34).

    Science.gov (United States)

    Madison, Roger D; McGee, Christopher; Rawson, Renee; Robinson, Grant A

    2014-01-01

    There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival.

  11. The impact of detectives' manner of questioning on rape victims' disclosure.

    Science.gov (United States)

    Patterson, Debra

    2011-11-01

    Research has documented that few reported rapes are prosecuted by the legal system. The purpose of this study is to explain how the interactions between victims and detectives can strengthen or weaken the investigation itself. Twenty rape victims were interviewed to examine how law enforcement detectives' manner of questioning affects rape victims' level of disclosure. Using qualitative methodology, the results show that the detectives' manner of questioning can play a role in victims' disclosure. Detectives using a gentle manner of questioning with victims can help produce stronger victim statements and thus build stronger cases for prosecution.

  12. Syllabus Design and Manner of Delivery Impacts on Content Memory and Impressions

    Science.gov (United States)

    2015-05-15

    syllabus design and layout are not the only factors that might influence student attention, memory, and impressions. Communication by the instructor...Lauren F.V. Scharff Title: Syllabus Design and Manner of Delivery Impacts on Content Memory and Impressions Description: The article is based on a...middle of the syllabus ) and targeted content style (textual vs. graphic), in conjunction with instructor manner of delivery (verbal overview of

  13. Gunshot wounds: a review of firearm type, range, and location as pertaining to manner of death.

    Science.gov (United States)

    Molina, D Kimberley; DiMaio, Vincent; Cave, Rowena

    2013-12-01

    Many studies have examined the characteristics of gunshot wounds by manner of death; however, no published study has directly compared these characteristics for the different types of firearms. This study was designed to address that deficiency. Existing data sets of nonaccidental deaths by handguns, shotguns, and rifles were reviewed. The victim data were analyzed by age and sex of the victims, wound location, range of fire, manner of death, and type of firearm. Handguns were the most common firearm used in both suicides and homicides, followed by rifles and then shotguns. For both homicides and suicides, there were significant differences between the firearm types for age of victims, range of fire, and wound locations. Possible reasons for those differences are discussed. It is concluded that information about the type of firearm is crucial to have when examining the nature of a firearm injury and determining the manner of death.

  14. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity: Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Shida, Miharu; Mikami, Tadahisa; Tamura, Jun-Ichi; Kitagawa, Hiroshi

    2017-06-03

    Chondroitin sulfate (CS) is a class of sulfated glycosaminoglycan (GAG) chains that consist of repeating disaccharide unit composed of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc). CS chains are found throughout the pericellular and extracellular spaces and contribute to the formation of functional microenvironments for numerous biological events. However, their structure-function relations remain to be fully characterized. Here, a fucosylated CS (FCS) was isolated from the body wall of the sea cucumber Apostichopus japonicus. Its promotional effects on neurite outgrowth were assessed by using isolated polysaccharides and the chemically synthesized FCS trisaccharide β-D-GalNAc(4,6-O-disulfate) (1-4)[α-l-fucose (2,4-O-disulfate) (1-3)]-β-D-GlcA. FCS polysaccharides contained the E-type disaccharide unit GlcA-GalNAc(4,6-O-disulfate) as a CS major backbone structure and carried distinct sulfated fucose branches. Despite their relatively lower abundance of E unit, FCS polysaccharides exhibited neurite outgrowth-promoting activity comparable to squid cartilage-derived CS-E polysaccharides, which are characterized by their predominant E units, suggesting potential roles of the fucose branch in neurite outgrowth. Indeed, the chemically synthesized FCS trisaccharide was as effective as CS-E tetrasaccharide in stimulating neurite elongation in vitro. In conclusion, FCS trisaccharide units with 2,4-O-disulfated fucose branches may provide new insights into understanding the structure-function relations of CS chains. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Co-development of manner and path concepts in language, action, and eye-gaze behavior.

    Science.gov (United States)

    Lohan, Katrin S; Griffiths, Sascha S; Sciutti, Alessandra; Partmann, Tim C; Rohlfing, Katharina J

    2014-07-01

    In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human

  16. Functionalized Collagen Scaffold Neutralizing the Myelin-Inhibitory Molecules Promoted Neurites Outgrowth in Vitro and Facilitated Spinal Cord Regeneration in Vivo.

    Science.gov (United States)

    Li, Xing; Han, Jin; Zhao, Yannan; Ding, Wenyong; Wei, Jianshu; Han, Sufang; Shang, Xianping; Wang, Bin; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2015-07-01

    Research has demonstrated that many myelin-associated inhibitory molecules jointly contribute to the failure of adult spinal cord regeneration. Therapies comprehensively targeting the multiple inhibitory nature of the injured spinal cord are being concerned. Here, two collagen-binding proteins, CBD-EphA4LBD and CBD-PlexinB1LBD, were constructed, respectively, to neutralize the axon guidance molecules ephrinB3 and sema4D that inhibit the regeneration of nerve fibers. The two neutralizing proteins have proven their ability to specifically bind collagen and to continuously release from collagen scaffolds. They could also promote neurites outgrowth of cerebellar granular neurons and dorsal root ganglion neurons in vitro. Subsequently, the functionalized collagen scaffolds by physically absorbing NEP1-40 and immobilizing CBD-EphA4LBD and CBD-PlexinB1LBD were transplanted into a rat T10 complete spinal cord transection model. Our results showed that rats that received the treatment of transplanting the functionalized collagen scaffold exhibited great advantage on axonal regeneration and locomotion recovery after spinal cord injury.

  17. Development of a cell permeable competitive antagonist of RhoA and CRMP4 binding, TAT-C4RIP, to promote neurite outgrowth.

    Science.gov (United States)

    Khazaei, Mohammad R; Montcalm, Samuel; Di Polo, Adriana; Fournier, Alyson E; Durocher, Yves; Ong Tone, Stephan

    2015-02-01

    Neurons fail to re-extend their processes within the central nervous system environment in vivo, and this is partly because of inhibitory proteins expressed within myelin debris and reactive astrocytes that actively signal to the injured nerve cells to limit their growth. The ability of the trans-acting activator of transcription (TAT) protein transduction domain (PTD) to transport macromolecules across biological membranes raises the possibility of developing it as a therapeutic delivery tool for nerve regeneration. Most studies have produced TAT PTD fusion protein in bacteria, which can result in problems such as protein solubility, the formation of inclusion bodies and the lack of eukaryotic posttranslational modifications. While some groups have investigated the production of TAT PTD fusion protein in mammalian cells, these strategies are focused on generating TAT PTD fusions that are targeted to the secretory pathway, where furin protease as well as other proteases can cleave the TAT PTD. As an alternative to mutating the furin cleavage site in the TAT PTD, we describe a novel method to generate cytosolic TAT PTD fusion proteins and purify them from cell lysates. Here, we use this method to generate TAT-C4RIP, a cell permeable competitive antagonist of binding between the small GTPase RhoA and the cytosolic phosphoprotein Collapsin response mediator protein 4 (CRMP4). We demonstrate that TAT-C4RIP transduces cells in vitro and in vivo and retains its biological activity to attenuate myelin inhibition in an in vitro neurite outgrowth assay.

  18. Pure neuritic leprosy: Resolving diagnostic issues in acid fast bacilli (AFB)-negative nerve biopsies: A single centre experience from South India.

    Science.gov (United States)

    Hui, Monalisa; Uppin, Megha S; Challa, Sundaram; Meena, A K; Kaul, Subhash

    2015-01-01

    Demonstration of lepra bacilli is essential for definite or unequivocal diagnosis of pure neuritic leprosy (PNL) on nerve biopsy. However, nerves always do not show bacilli owing to the changes of previous therapy or due to low bacillary load in tuberculoid forms. In absence of granuloma or lepra bacilli, other morphologic changes in endoneurium and perineurium can be of help in making a probable diagnosis of PNL and treating the patient with multidrug therapy. Forty-six biopsies of PNL were retrospectively reviewed and histologic findings were compared with 25 biopsies of non leprosy neuropathies (NLN) including vasculitic neuropathy and chronic inflammatory demyelinating polyneuropathy (CIDP). The distribution of endoneurial infiltrate and fibrosis, perineurial thickening, and myelin abnormalities were compared between PNL and NLN biopsies and analyzed by Chi-square test. Out of 46 PNL casses, 24 (52.17 %) biopsies were negative for acid fast bacilli (AFB). In these cases, the features which favor a diagnosis of AFB-negative PNL were endoneurial infiltrate (51.1%), endoneurial fibrosis (54.2%), perineurial thickening (70.8%), and reduced number of myelinated nerve fibers (75%). Nerve biopsy is an efficient tool to diagnose PNL and differentiate it from other causes of NLN. In absence of AFB, the diagnosis of PNL is challenging. In this article, we have satisfactorily evaluated the various hisopthological features and found that endoneurial inflammation, dense fibrosis, and reduction in the number of myelinated nerve fibers are strong supportive indicators of PNL regardless of AFB positivity.

  19. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth.

    Science.gov (United States)

    Roffé, Martín; Hajj, Glaucia N M; Azevedo, Hátylas F; Alves, Viviane S; Castilho, Beatriz A

    2013-04-12

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.

  20. IMPACT Is a Developmentally Regulated Protein in Neurons That Opposes the Eukaryotic Initiation Factor 2α Kinase GCN2 in the modulation of Neurite Outgrowth*

    Science.gov (United States)

    Roffé, Martín; Hajj, Glaucia N. M.; Azevedo, Hátylas F.; Alves, Viviane S.; Castilho, Beatriz A.

    2013-01-01

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system. PMID:23447528

  1. 12 CFR 1703.37 - Manner in which documents will be produced.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Manner in which documents will be produced... documents will be produced. (a) An employee's authorization to produce official documents is limited to the... documents authorized by the Director to be released under this subpart will be provided upon request. ...

  2. Rheological properties of a nematic cell oriented in a planar manner

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, G., E-mail: giovanni.barbero@polito.i [Dipartimento di Fisica and C. N. I. S. M., Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)] [Universite de Picardie Jules Verne, Laboratoire de Physique des Systemes Complexes, 33 rue Saint-Leu 80039, Amiens (France); Meyer, C.; Lelidis, I. [Universite de Picardie Jules Verne, Laboratoire de Physique des Systemes Complexes, 33 rue Saint-Leu 80039, Amiens (France)

    2010-05-17

    We propose a simple model to investigate the rheological properties of a nematic cell oriented in a planar manner. The storage and loss modulus are evaluated in the case of strong and weak anchoring conditions. The contribution of the surface viscosity to the rheological parameters is also considered.

  3. Globalized conflicts, globalized responses. Changing manners of contestation among indigenous communities

    DEFF Research Database (Denmark)

    Benyei, Petra; Turreira Garcia, Nerea; Orta-Martínez, Martí

    2017-01-01

    In a globalized world, environmental conflicts affecting indigenous communities (including hunter-gatherer groups) have intensified and grown in their transnational character. These changes have affected the choice of manners of contestation of these groups, favouring in some cases the emergence...

  4. Silence and table manners : When environments activate norms (Retracted article. See vol. 38, pg. 1378, 2012)

    NARCIS (Netherlands)

    Joly, Janneke F.; Stapel, Diederik A.; Lindenberg, Siegwart M.

    Two studies tested the conditions under which an environment (e. g., library, restaurant) raises the relevance of environment-specific social norms (e. g., being quiet, using table manners). As hypothesized, the relevance of such norms is raised when environments are goal relevant ("I am going there

  5. Weighting of Acoustic Cues to a Manner Distinction by Children with and without Hearing Loss

    Science.gov (United States)

    Nittrouer, Susan; Lowenstein, Joanna H.

    2015-01-01

    Purpose: Children must develop optimal perceptual weighting strategies for processing speech in their first language. Hearing loss can interfere with that development, especially if cochlear implants are required. The three goals of this study were to measure, for children with and without hearing loss: (a) cue weighting for a manner distinction,…

  6. 26 CFR 1.6015-5 - Time and manner for requesting relief.

    Science.gov (United States)

    2010-04-01

    ... is filed for a tax year prior to the receipt of a notification of an audit or a letter or notice from... several liability for the self-employment tax liability because he has received a notification of an audit... TAX (CONTINUED) INCOME TAXES Tax Returns Or Statements § 1.6015-5 Time and manner for requesting...

  7. Lewd, crude, and rude behavior: the impact of manners and etiquette in the general hospital.

    Science.gov (United States)

    Silverman, Benjamin C; Stern, Thomas W; Gross, Anne F; Rosenstein, Donald L; Stern, Theodore A

    2012-01-01

    Lewd, crude, and rude behaviors of patients and staff members have the potential to complicate care; unfortunately, the medical literature on manners and etiquette is sparse. We sought to understand the impact of lewd, crude, and rude behaviors in the general hospital and to provide a context in which to educate clinicians about the management of troublesome behaviors of patients and staff members. We reviewed the history of etiquette in the general hospital, and discuss the ethical ramifications and clinical management of inappropriate behaviors. Lewd, crude, and rude language and behaviors are often heard and seen in the general hospital; such behaviors can be understood in a biopsychosocial context. Teaching trainees about manners and etiquette can help them identify and manage offensive behaviors and can facilitate the provision of effective and ethical care. Copyright © 2012 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  8. Caracterização etiológica e clínica das neurites ópticas infecciosas Etiological and clinical characteristics of infectious optic neuritis

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Lana-Peixoto

    1997-06-01

    Full Text Available As neurites ópticas infecciosas (NOI foram estudadas em relação aos aspectos etiológicos, epidemiológicos e clínicos, com o intuito de detectar características que possam diferencia-las das neurites ópticas desmielinizantes (NOD, que apresentam nítida tendência para conversão em esclerose múltipla. Entre 105 casos de NOI, 51 não apresentavam qualquer evidência de envolvimento da coróide ou retina e poderiam ser confundidos com NOD. Envolvimento bilateral foi encontrado em 23 pacientes (45,1%, sendo simultâneo em 18 (78,3% casos. A relação entre sexos foi 2M: IF. As idades variaram ente 1 a 82 anos, com mediana de 34,8 anos. Um terço dos pacientes tinha idades até 20 anos, e em um terço dos pacientes as idades eram igual ou maior que 50 anos. Sífilis foi encontrada em 19 pacientes sendo a causa mais comum das NOI, enquanto infecções virais diversas foram responsabilizadas em 41,2%. A acuidade visual foi gravemente afetada na maioria dos casos, sendo pior que 20/200 em 57,3% dos olhos acometidos. Distúrbios da visão cromática foram encontrados em 91,8%, enquanto o exame do campo visual revelou anormalidades em 92,6% dos olhos, predominando os defeitos centrais (40,7%. O disco óptico estava anormal em 90,5% dos olhos examinados, sendo atrofia óptica o principal achado fundoscópico. O presente estudo demonstra que a maior tendência a bilateralidade e simultaneidade das NOI, sua maior prevalência no sexo masculino, na infância e em adultos após os 50 anos de idade, assim como a maior severidade do comprometimento das funções visuais diferem substancialmente das características relatadas nas NOD. O conhecimento destas diferenças pode auxiliar na diferente abordagem terapêutica e prognostica das duas distintas condições.Fifty-one patients with infectious optic neuritis (ION with no associated choroidal or retinal involvement were studied in relation to the etiologic agents, and to the epidemiological and

  9. Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism

    Science.gov (United States)

    Nagy, J; Kobolák, J; Berzsenyi, S; Ábrahám, Z; Avci, H X; Bock, I; Bekes, Z; Hodoscsek, B; Chandrasekaran, A; Téglási, A; Dezső, P; Koványi, B; Vörös, E T; Fodor, L; Szél, T; Németh, K; Balázs, A; Dinnyés, A; Lendvai, B; Lévay, G; Román, V

    2017-01-01

    The aim of the present study was to establish an in vitro Kleefstra syndrome (KS) disease model using the human induced pluripotent stem cell (hiPSC) technology. Previously, an autism spectrum disorder (ASD) patient with Kleefstra syndrome (KS-ASD) carrying a deleterious premature termination codon mutation in the EHMT1 gene was identified. Patient specific hiPSCs generated from peripheral blood mononuclear cells of the KS-ASD patient were differentiated into post-mitotic cortical neurons. Lower levels of EHMT1 mRNA as well as protein expression were confirmed in these cells. Morphological analysis on neuronal cells differentiated from the KS-ASD patient-derived hiPSC clones showed significantly shorter neurites and reduced arborization compared to cells generated from healthy controls. Moreover, density of dendritic protrusions of neuronal cells derived from KS-ASD hiPSCs was lower than that of control cells. Synaptic connections and spontaneous neuronal activity measured by live cell calcium imaging could be detected after 5 weeks of differentiation, when KS-ASD cells exhibited higher sensitivity of calcium responses to acetylcholine stimulation indicating a lower nicotinic cholinergic tone at baseline condition in KS-ASD cells. In addition, gene expression profiling of differentiated neuronal cells from the KS-ASD patient revealed higher expression of proliferation-related genes and lower mRNA levels of genes involved in neuronal maturation and migration. Our data demonstrate anomalous neuronal morphology, functional activity and gene expression in KS-ASD patient-specific hiPSC-derived neuronal cultures, which offers an in vitro system that contributes to a better understanding of KS and potentially other neurodevelopmental disorders including ASD. PMID:28742076

  10. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  11. Rostro-caudal maturation of glial cells in the accessory olfactory system during development: involvement in outgrowth of GnRH neurites.

    Science.gov (United States)

    Geller, Sarah; Lomet, Didier; Caraty, Alain; Tillet, Yves; Duittoz, Anne; Vaudin, Pascal

    2017-10-03

    During mammalian embryonic development, GnRH neurones differentiate from the nasal placode and migrate through the nasal septum towards the forebrain. We previously showed that a category of glial cells, the olfactory ensheathing cells (OEC), forms the microenvironment of migrating GnRH neurones. Here, to characterize the quantitative and qualitative importance of this glial, we investigated the spatiotemporal maturation of glial cells in situ and the role of maturing glia in GnRH neurones development ex vivo. More than 90% of migrating GnRH neurones were found to be associated with glial cells. There was no change in the cellular microenvironment of GnRH neurones in the regions crossed during embryonic development as glial cells formed the main microenvironment of these neurones (53.4%). However, the phenotype of OEC associated with GnRH neurones changed across regions. The OEC progenitors immunoreactive to brain lipid binding protein formed the microenvironment of migrating GnRH neurones from the vomeronasal organ to the telencephalon and were also present in the diencephalon. However, during GnRH neurone migration, maturation of OEC to [GFAP+] state (glial fibrillary acid protein) was only observed in the nasal septum. Inducing depletion of OEC in maturation, using transgenic mice expressing herpes simplex virus thymidine kinase driven by the GFAP promoter, had no impact on neurogenesis or on triggering GnRH neurones migration in nasal explant culture. Nevertheless, depletion of [GFAP+] cells decreased GnRH neurites outgrowth by 57.4%. This study suggests that specific maturation of OEC in the nasal septum plays a role in morphological differentiation of GnRH neurones. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells.

    Directory of Open Access Journals (Sweden)

    See-Ying Tam

    Full Text Available Nerve growth factor (NGF binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5 is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.

  13. Pure neuritic leprosy: Resolving diagnostic issues in acid fast bacilli (AFB-negative nerve biopsies: A single centre experience from South India

    Directory of Open Access Journals (Sweden)

    Monalisa Hui

    2015-01-01

    Full Text Available Background and Purpose: Demonstration of lepra bacilli is essential for definite or unequivocal diagnosis of pure neuritic leprosy (PNL on nerve biopsy. However, nerves always do not show bacilli owing to the changes of previous therapy or due to low bacillary load in tuberculoid forms. In absence of granuloma or lepra bacilli, other morphologic changes in endoneurium and perineurium can be of help in making a probable diagnosis of PNL and treating the patient with multidrug therapy. Materials and Methods: Forty-six biopsies of PNL were retrospectively reviewed and histologic findings were compared with 25 biopsies of non leprosy neuropathies (NLN including vasculitic neuropathy and chronic inflammatory demyelinating polyneuropathy (CIDP. The distribution of endoneurial infiltrate and fibrosis, perineurial thickening, and myelin abnormalities were compared between PNL and NLN biopsies and analyzed by Chi-square test. Results: Out of 46 PNL casses, 24 (52.17 % biopsies were negative for acid fast bacilli (AFB. In these cases, the features which favor a diagnosis of AFB-negative PNL were endoneurial infiltrate (51.1%, endoneurial fibrosis (54.2%, perineurial thickening (70.8%, and reduced number of myelinated nerve fibers (75%. Interpretation and Conclusion: Nerve biopsy is an efficient tool to diagnose PNL and differentiate it from other causes of NLN. In absence of AFB, the diagnosis of PNL is challenging. In this article, we have satisfactorily evaluated the various hisopthological features and found that endoneurial inflammation, dense fibrosis, and reduction in the number of myelinated nerve fibers are strong supportive indicators of PNL regardless of AFB positivity.

  14. Neurotrophic effect of citrus 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone: promotion of neurite outgrowth via cAMP/PKA/CREB pathway in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Hui-Chi Lai

    Full Text Available 5-Hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF, a hydroxylated polymethoxyflavone, is found exclusively in the Citrus genus, particularly in the peels of sweet orange. In this research, we report the first investigation of the neurotrophic effects and mechanism of 5-OH-HxMF in PC12 pheochromocytoma cells. We found that 5-OH-HxMF can effectively induce PC12 neurite outgrowth accompanied with the expression of neuronal differentiation marker protein growth-associated protein-43(GAP-43. 5-OH-HxMF caused the enhancement of cyclic AMP response element binding protein (CREB phosphorylation, c-fos gene expression and CRE-mediated transcription, which was inhibited by 2-naphthol AS-E phosphate (KG-501, a specific antagonist for the CREB-CBP complex formation. Moreover, 5-OH-HxMF-induced both CRE transcription activity and neurite outgrowth were inhibited by adenylate cyclase and protein kinase A (PKA inhibitor, but not MEK1/2, protein kinase C (PKC, phosphatidylinositol 3-kinase (PI3K or calcium/calmodulin-dependent protein kinase (CaMK inhibitor. Consistently, 5-OH-HxMF treatment increased the intracellular cAMP level and downstream component, PKA activity. We also found that addition of K252a, a TrKA antagonist, significantly inhibited NGF- but not 5-OH-HxMF-induced neurite outgrowth. These results reveal for the first time that 5-OH-HxMF is an effective neurotrophic agent and its effect is mainly through a cAMP/PKA-dependent, but TrKA-independent, signaling pathway coupling with CRE-mediated gene transcription. A PKC-dependent and CREB-independent pathway was also involved in its neurotrophic action.

  15. Plasmin-driven fibrinolysis facilitates skin tumor growth in a gender-dependent manner

    DEFF Research Database (Denmark)

    Hald, Andreas; Eickhardt, Hanne; Maerkedahl, Rasmus Baadsgaard

    2012-01-01

    Rearrangement of the skin during wound healing depends on plasmin and plasminogen, which serve to degrade fibrin depositions in the provisional matrix and thereby facilitate keratinocyte migration. In the current study, we investigated whether plasmin and plasminogen likewise played a role during...... by maintaining patency of the tumor vasculature.-Hald, A., Eickhardt, H., Maerkedahl, R. B., Feldborg, C. W., Egerod, K. L., Engelholm. L. H., Laerum, O. D., Lund, L. R., Rønø, B. Plasmin-driven fibrinolysis facilitates skin tumor growth in a gender-dependent manner....

  16. Multiple effects of consonant manner of articulation and intonation type on F0 in English

    Science.gov (United States)

    Xu, Yi; Wallace, Andrew

    2004-05-01

    In this study we examine how consonant manner of articulation interacts with intonation type in shaping the F0 contours in English. Native speakers of American English read aloud words differing in vowel length, consonant manner of articulation and consonant position in word. They produced each word in either a statement or question carrier. F0 contours of their speech were extracted by measuring every complete vocal period. Preliminary results based on graphic analysis of three speakers' data suggest that there are three distinct consonantal effects: F0 interruption due to devoicing, a large but brief (10-40 ms) F0 raising at the onset of voicing, and a smaller but longer-lasting F0 raising throughout a large proportion of the preceding and following vowels. These effects appear to be imposed on a continuously changing F0 curve that is either rising-falling or falling-rising, depending on whether the carrier sentence is a statement or a question. Further analysis will test the hypothesis that these continuous curves result from local pitch targets that are assigned to individual syllables and implemented with them in synchrony regardless of their segmental composition. [Work supported by NIDCD Grant No. R01 DC03902.

  17. Dysfunctional remembered parenting in oncology outpatients affects psychological distress symptoms in a gender-specific manner.

    Science.gov (United States)

    Kouzoupis, Anastasios V; Lyrakos, Dimitrios; Kokras, Nikolaos; Panagiotarakou, Meropi; Syrigos, Kostas N; Papadimitriou, George N

    2012-12-01

    Evidence suggests that gender differences appear in a variety of biological and psychological responses to stress and perhaps in coping with acute and chronic illness as well. Dysfunctional parenting is also thought to be involved in the process of coping with stress and illness; hence, the present study aimed to verify whether dysfunctional remembered parenting would influence psychological distress in a gender-specific manner in patients suffering from cancer. Patients attending an outpatient oncology clinic completed the Remembered Relationships with Parents (RRP), Hospital Anxiety and Depression and Spielberger's State-Trait Anxiety Inventory scales and the National Cancer Center Network Distress Thermometer. Although no baseline gender differences were detected, a multivariate analysis confirmed that anxiety and depression symptoms of men and women suffering from cancer are differentially affected by the RRP Control and Alienation scores. Women with remembered parental alienation and overprotection showed significantly more anxiety symptoms than men, whereas men were more vulnerable to remembered alienation than overprotection with regard to the Distress Thermometer scores. These results suggest that remembered dysfunctional parenting is crucially, and in a gender-specific manner, involved in the coping strategy adopted by male and female cancer patients. Copyright © 2012 John Wiley & Sons, Ltd.

  18. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Science.gov (United States)

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  19. Biochanin a and Daidzein Influence Meiotic Maturation of Pig Oocytes in a Different Manner

    Directory of Open Access Journals (Sweden)

    Hošková K.

    2014-09-01

    Full Text Available The aim of the study was to determine the influence of different concentrations of phytoestrogens biochanin A (BIO A; 20, 40, 50μg ml-1 and daidzein (DAI; 10, 20, 40, 50μg ml-1 on the course of meiotic maturation of pig oocytes. After a 24-hour cultivation, a stage of nuclear maturation was achieved and the areas of cumulus-oocyte complexes (COCs, as an indicator of cumulus expansion, were evaluated. The effects of both contaminants on oocytes were mani - fested from the lowest concentration used. Nuclear maturation was inhibited in a dose-dependent manner in the case of BIO A. Effects of DAI reached a plateau at a concentration of 20μg ml-1.Possible relationship to limited solubility of DAI was excluded because limits of DAI solubility in culture medium were confirmed at 50 μg ml-1.The cumulus expansion was also influenced in a different manner - reduction of the COC’s area by BIO A was dose-dependent, whereas DAI had the strongest effect on CCs in the lowest and highest concentrations used. Both phytoestrogens negatively influence the meiotic maturation of porcine oocytes but there are significant differences in their concrete effects which could relate to the diverse mechanisms of their acting on target cells.

  20. A top-down manner-based DCNN architecture for semantic image segmentation.

    Directory of Open Access Journals (Sweden)

    Kai Qiao

    Full Text Available Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN and FCN with conditional random field (DeepLab-CRF as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  1. Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells via non-G protein-coupled receptor (GPCR) signaling.

    Science.gov (United States)

    Kasubuchi, Mayu; Watanabe, Keita; Hirano, Kanako; Inoue, Daisuke; Li, Xuan; Terasawa, Kazuya; Konishi, Morichika; Itoh, Nobuyuki; Kimura, Ikuo

    2017-07-12

    Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via non-genomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system.

  2. Performance of [18F]flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Salloway, Stephen; Gamez, Jose E; Singh, Upinder; Sadowsky, Carl H; Villena, Teresa; Sabbagh, Marwan N; Beach, Thomas G; Duara, Ranjan; Fleisher, Adam S; Frey, Kirk A; Walker, Zuzana; Hunjan, Arvinder; Escovar, Yavir M; Agronin, Marc E; Ross, Joel; Bozoki, Andrea; Akinola, Mary; Shi, Jiong; Vandenberghe, Rik; Ikonomovic, Milos D; Sherwin, Paul F; Farrar, Gill; Smith, Adrian P L; Buckley, Christopher J; Thal, Dietmar Rudolf; Zanette, Michelle; Curtis, Craig

    2017-01-01

    Performance of the amyloid tracer [ 18 F]flutemetamol was evaluated against three pathology standard of truth (SoT) measures including neuritic plaques (CERAD "original" and "modified" and the amyloid component of the 2012 NIA-AA guidelines). After [ 18 F]flutemetamol imaging, 106 end-of-life patients who died underwent postmortem brain examination for amyloid plaque load. Blinded positron emission tomography scan interpretations by five independent electronically trained readers were compared with pathology measures. By SoT, sensitivity and specificity of majority image interpretations were, respectively, 91.9% and 87.5% with "original CERAD," 90.8% and 90.0% with "modified CERAD," and 85.7% and 100% with the 2012 NIA-AA criteria. The high accuracy of either CERAD criteria suggests that [ 18 F]flutemetamol predominantly reflects neuritic amyloid plaque density. However, the use of CERAD criteria as the SoT can result in some false-positive results because of the presence of diffuse plaques, which are accounted for when the positron emission tomography read is compared with the 2012 NIA-AA criteria.

  3. Brucella alters the immune response in a prpA-dependent manner

    Science.gov (United States)

    Spera, Juan M.; Comerci, Diego J.; Ugalde, Juan E.

    2014-01-01

    Brucellosis, a disease caused by the gram-negative bacterium Brucella sp, is a widespread zoonosis that inflicts important animal and human health problems, especially in developing countries. One of the hallmarks of Brucella infection is its capacity to establish a chronic infection, characteristic that depends on a wide repertoire of virulence factors among which are immunomodulatory proteins such as PrpA (encoding the proline racemase protein A or hydroxyproline-2-epimerase), involved in the establishment of the chronic phase of the infectious process that we have previously identified and characterized. We report here that, in vivo, B. abortus prpA is responsible for an increment in the B-cell number and in the specific antibody response and that these antibodies promote cell infection. We additionally found that Brucella alters the cytokine levels of IFN-γ, IL-10, TGFβ1 and TNFα during the acute phase of the infectious process in a prpA dependent manner. PMID:24508400

  4. Treatment of Solanum torvum seeds improves germination in a batch-dependent manner

    Directory of Open Access Journals (Sweden)

    Luan Cutti

    2016-12-01

    Full Text Available The Solanum torvum species can grow in soils with a heavy load of nematodes and pathogenic fungi. It is currently much in demand in intensive agriculture as a rootstock of Solanaceae species, such as eggplant and tomato. This study aimed at comparing treatments, in order to determine the best method to accelerate the germination of S. torvum seed batches. Three seed batches were submitted to four treatments to overcome dormancy (water, potassium nitrate, gibberellic acid and pre-imbibition in gibberellic acid. The first germination count, germination percentage, germination speed index, mean germination time and mean germination speed were assessed. Treatments with gibberellic acid, with either pre-imbibition or only moistened substrate, exhibited the best germination speed index, mean germination time and mean germination speed. The final germination percentage showed a significant interaction between treatments and seed batches. Therefore, the treatments affect the final germination in a batch-dependent manner.

  5. FtsK-dependent XerCD-dif recombination unlinks replication catenanes in a stepwise manner.

    Science.gov (United States)

    Shimokawa, Koya; Ishihara, Kai; Grainge, Ian; Sherratt, David J; Vazquez, Mariel

    2013-12-24

    In Escherichia coli, complete unlinking of newly replicated sister chromosomes is required to ensure their proper segregation at cell division. Whereas replication links are removed primarily by topoisomerase IV, XerC/XerD-dif site-specific recombination can mediate sister chromosome unlinking in Topoisomerase IV-deficient cells. This reaction is activated at the division septum by the DNA translocase FtsK, which coordinates the last stages of chromosome segregation with cell division. It has been proposed that, after being activated by FtsK, XerC/XerD-dif recombination removes DNA links in a stepwise manner. Here, we provide a mathematically rigorous characterization of this topological mechanism of DNA unlinking. We show that stepwise unlinking is the only possible pathway that strictly reduces the complexity of the substrates at each step. Finally, we propose a topological mechanism for this unlinking reaction.

  6. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners.

    Science.gov (United States)

    Zhang, Ling; Liu, Shuming; Liu, Wenjun

    2014-02-01

    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC

  7. Portrayals of professionalism by the media: trends in etiquette and bedside manners as seen on television.

    Science.gov (United States)

    Gross, Anne F; Stern, Thomas W; Silverman, Benjamin C; Stern, Theodore A

    2012-01-01

    Critics of current healthcare argue that professionalism, as manifest by etiquette and bedside manners, has been eroding, in part as a consequence of portrayals on television (TV) and in the media. We sought to identify changing patterns of physicians' behaviors as shown on TV (as these interactions have often served as models for physicians-in-training) over the last 30 years. We selected popular TV shows that portrayed practicing physicians and analyzed doctor-family, doctor-doctor, and doctor-nurse interactions as well as methods of disclosing errors to identify changing behavioral trends. We found that difficult news was more commonly delivered while standing, and that handshakes were rarely offered to patients. Male physicians were seen raising their voices toward, disclosing errors to, as well as inappropriately touching, peers or subordinates. In comparison, female physicians were identified as raising their voices toward, disclosing errors to, as well as inappropriately touching, their supervisors. Over the past several decades, official salutations between physicians and nurses have become less common; physicians have started to address nurses solely by their first names. More recently, sexual banter and sexual activity have been portrayed as occurring predominantly between male physicians and female nurses. While shifts in behavioral patterns (in etiquette, bedside manners, and professionalism) of physicians as seen on television have not been radical, potentially concerning trends were identified. Media portrayals may change patients' perceptions of physicians, hospitals, and the health care profession as well as influence behaviors of medical trainees. Moreover, TV and the media can be used as teaching tools about professionalism in healthcare providers. Published by Elsevier Inc.

  8. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  9. Oral protein supplementation alone improves anabolism in a dose-dependent manner in chronic hemodialysis patients.

    Science.gov (United States)

    Sundell, Mary B; Cavanaugh, Kerri L; Wu, Pingsheng; Shintani, Ayumi; Hakim, Raymond M; Ikizler, T Alp

    2009-09-01

    We examined the protein anabolic effects of Pro-Stat 64, a high nitrogen-containing, enzyme-hydrolyzed, tryptophan-fortified, collagen protein supplement administrated during hemodialysis, at two different dosing regimens. This was a randomized, controlled, prospective study with 3 different groups: control, single dose of supplementation, and double dose of supplementation. This study was performed at a clinical research center. Six prevalent chronic hemodialysis (HD) patients were enrolled: 5 males, 1 female, 4 African Americans, and 2 Caucasians. Their mean age was 45 +/- 11 years (S.D.). Two patients were diabetic. Protein turnover studies were performed using amino-acid (AA) balance and primed constant infusion of L-(1-(13)C) leucine. Whole-body protein balance was determined according to substrate kinetics. There were no statistically significant difference at any time point between protocols for blood chemistries and hormonal markers, except for minor variations in plasma glucose. All plasma AA groups displayed decreases during a control study, in which no supplementation was given. Compared with the control group, plasma nonessential AA and total AA concentrations were statistically significantly higher during HD after both single and double doses of supplementation. The forearm arteriovenous AA balance was statistically significantly better for essential, nonessential, and total AA uptake after both single-dose and double-dose supplementation compared with the control group, except for nonessential AA, which was significantly better only after a double dose. Whole-body protein breakdown and net protein balance were statistically significantly better during HD with a double-dose administration in a dose-dependent manner, compared with the control and single-dose groups. Oral AA supplementation alone improves whole-body and skeletal muscle protein anabolism in a dose-dependent manner in chronic HD patients. These data should be taken into account during

  10. [A mathematic analysis of different manners of replacement fluid infusion in continuous veno-venous hemofiltration].

    Science.gov (United States)

    Wu, Yunzhen; Wang, Chunting

    2015-05-01

    To establish a mathematical formula for choosing the manner of replacement fluid infusion in continuous renal replacement therapy (CRRT), so as to provide the basis for improving the treatment effect. A mathematical formula for choosing the manner of replacement fluid infusion with continuous veno-venous hemofiltration (CVVH) was taken as an example, and it was compared with the result of standard replacement fluid in order to analyze the effect of different manners of infusion. (1) Comparison parameters: the plasma volume ("Vreturn") and some electrolyte concentration ("Creturn") in back way of CRRT ( if other thing was solute, filter coefficient should be 1.0). (2) Research objects: the actual replacement fluid (for example, the most complex should be sorted into A and B type) mode (pre or post) was compared with the standard replacement fluid (the A and B in one). (3) Based on the formula of standard replacement, four equations in different conditions were derived: pre-dilution and post-dilution mode; same direction and same ratio; same direction and different ratio; different direction and same ratio; different direction and different ratio. The calculated results of "Vreturn" (except hematocrit) and "Creturn" were same to the standard only following the rule of same direction and ratio for A and B no matter pre-dilution mode or post-dilution mode, and it was different from the standard in others. In pre-dilution mode and post-dilution mode, it showed: (1) A and B in same direction and different ratio: "Vreturn" and "Creturn" were different from the standard for the alterative ratio of B. (2) A and B in different direction and same ratio: "Vreturn" was same to the standard, but "Creturn" was different from the standard for the completely different and more complex computational formula. (3) A and B in different direction and different ratio: both "Vreturn" and "Creturn" were different from the standard. The different "Vreturn" was due to the different ratio of

  11. Trisomy 21 Alters DNA Methylation in Parent-of-Origin-Dependent and -Independent Manners.

    Directory of Open Access Journals (Sweden)

    Antônio Francisco Alves da Silva

    Full Text Available The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte-derived allele methylation at a differentially methylated region (DMR of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21 and TMEM131 (chromosome 2 CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the

  12. The Relationship between Students Problematic Internet Usage and Their Anger Expression Manner

    Directory of Open Access Journals (Sweden)

    Elvan Emine Ata

    2011-08-01

    Full Text Available AIM: The research was carried out analytically to examine the relationship between students problematic internet usage and their anger expression manners. METHOD : The population sample of the research consists of 360 students, selected among 1592 students with stratified sampling, that are studying in Educational Faculty, Vocational School and Health School of Agri Ibrahim Cecen University in 2008�2009 academic year. A determined number of students, selected from each school according to basic random sampling method, is included in the research. In the research, �Personal Information Form�, �Problematic Internet Usage Scale� (PIUS and �Trait Anger and Anger Expression Scale� are used. The data are analyzed by means of frequency distribution and correlation analysis. FINDINGS: %74,5 of students were 18�22 age range, %55 of them men, %69,7 had nuclear family, %71,1 has well economic conditions and %49,4 were living with their families during education. The average PIUS of students is 60.6119.50, and when the subgroup point averages are considered, the internet negative consequences point average is calculated as 26.4510.37, social benefit/ social welfare point average as 18.837.31 and excessive usage point average is calculated as 15.35.20. Trait anger point average of students is determines as 22.336.43, anger control point averages as 21.104.83, interior anger point averages as 16.634.04 and exterior anger point average is determined as 15.814.35. A positive relationship is detected between students` problematic internet usage scale total point and trait anger (r=0.27, p=0.00, interior anger (r= 0.18, p=0.00, exterior anger (r= 014, p= 0.00 point averages. RESULT: A meaningful lower relationship is found proportionately between students� problematic internet usage and their anger expression manner. [TAF Prev Med Bull 2011; 10(4.000: 473-480

  13. Habitual Chocolate Consumption May Increase Body Weight in a Dose-Response Manner

    Science.gov (United States)

    Greenberg, James A.; Buijsse, Brian

    2013-01-01

    Objective Habitual chocolate intake was recently found to be associated with lower body weight in three cross-sectional epidemiological studies. Our objective was to assess whether these cross-sectional results hold up in a more rigorous prospective analysis. Methods We used data from the Atherosclerosis Risk in Communities cohort. Usual dietary intake was assessed by questionnaire at baseline (1987–98), and after six years. Participants reported usual chocolate intake as the frequency of eating a 1-oz (∼28 g) serving. Body weight and height were measured at the two visits. Missing data were replaced by multiple imputation. Linear mixed-effects models were used to evaluate cross-sectional and prospective associations between chocolate intake and adiposity. Results Data were from 15,732 and 12,830 participants at the first and second visit, respectively. More frequent chocolate consumption was associated with a significantly greater prospective weight gain over time, in a dose-response manner. For instance, compared to participants who ate a chocolate serving less often than monthly, those who ate it 1–4 times a month and at least weekly experienced an increase in Body Mass Index (kg/m2) of 0.26 (95% CI 0.08, 0.44) and 0.39 (0.23, 0.55), respectively, during the six-year study period. In cross-sectional analyses the frequency of chocolate consumption was inversely associated with body weight. This inverse association was attenuated after excluding participants with preexisting obesity-related illness. Compared to participants without such illness, those with it had higher BMI and reported less frequent chocolate intake, lower caloric intake, and diets richer in fruits and vegetables. They tended to make these dietary changes after becoming ill. Conclusions Our prospective analysis found that a chocolate habit was associated with long-term weight gain, in a dose-response manner. Our cross-sectional finding that chocolate intake was associated with lower body

  14. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner

    Directory of Open Access Journals (Sweden)

    Simon Lecoutre

    2017-08-01

    Conclusions: Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.

  15. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner

    Directory of Open Access Journals (Sweden)

    Chih-I Tai

    2014-09-01

    Full Text Available Stat3 is essential for mouse embryonic stem cell (mESC self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary “on/off” manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.

  16. Metformin, Independent of AMPK, Inhibits mTORC1 In a Rag GTPase-Dependent Manner

    Science.gov (United States)

    Kalender, Adem; Selvaraj, Anand; Kim, So Young; Gulati, Pawan; lé, Sophie Br; Viollet, Benoit; Kemp, Bruce; Bardeesy, Nabeel; Dennis, Patrick; Schlager, John J.; Marette, André; Kozma, Sara C.; Thomas, George

    2010-01-01

    Dysfunctional mTORC1 signaling is associated with a number of human pathologies owing to its central role in controlling cell growth, proliferation, and metabolism. Regulation of mTORC1 is achieved by the integration of multiple inputs, including those of mitogens, nutrients, and energy. It is thought that agents that increase the cellular AMP/ATP ratio, such as the anti-diabetic biguanides metformin and phenformin, inhibit mTORC1 through AMPK activation of TSC1/2-dependent or -independent mechanisms. Unexpectedly, we found that biguanides inhibit mTORC1 signaling, not only in the absence of TSC1/2, but also in the absence of AMPK. Consistent with these observations, in two distinct pre-clinical models of cancer and diabetes, metformin acts to suppress mTORC1 signaling in an AMPK-independent manner. We found that the ability of biguanides to inhibit mTORC1 activation and signaling is, instead, dependent on the Rag GTPases. PMID:20444419

  17. Handgun wounds: a review of range and location as pertaining to manner of death.

    Science.gov (United States)

    Molina, D Kimberley; DiMaio, Vincent J M; Cave, Rowena

    2013-12-01

    Citizens of the United States own more firearms than those in any other country, and the majority of the firearms owned are handguns. Given such prevalence, surprisingly few studies have been published describing the characteristics of deaths due to handguns. To address this gap, nonaccidental handgun deaths examined at the Bexar County Medical Examiner's Office between 2000 and 2010 were reviewed. A total of 1450 cases were identified, including 797 suicides and 653 homicides. Age, range of fire, location of wound, and manner of death were analyzed. The average age of suicide victims (46.7 years) was found to be greater than that of homicides (34.3 years). Suicidal wounds tended to be contact wounds to the head; abdominal, extremity, back, and multiple wound locations were more common in homicides as were distant and intermediate wounds. Handgun wounds to the forehead, side of head, submental, and intraoral locations were significantly more common in suicide, whereas those to the face, apex of the head, and back of the head were more common in homicides. Where possible, likelihood ratios were calculated to determine relative likelihood of suicide or homicide for specific wound locations and ranges. While each death should be analyzed based on its unique circumstances and not solely its statistical probability, these data may help inform the pathologist's conclusions.

  18. Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner.

    Science.gov (United States)

    Ketzef, Maya; Spigolon, Giada; Johansson, Yvonne; Bonito-Oliva, Alessandra; Fisone, Gilberto; Silberberg, Gilad

    2017-05-17

    Parkinson's disease (PD) is a movement disorder caused by the loss of dopaminergic innervation, particularly to the striatum. PD patients often exhibit sensory impairments, yet the underlying network mechanisms are unknown. Here we examined how dopamine (DA) depletion affects sensory processing in the mouse striatum. We used the optopatcher for online identification of direct and indirect pathway projection neurons (MSNs) during in vivo whole-cell recordings. In control mice, MSNs encoded the laterality of sensory inputs with larger and earlier responses to contralateral than ipsilateral whisker deflection. This laterality coding was lost in DA-depleted mice due to adaptive changes in the intrinsic and synaptic properties, mainly, of direct pathway MSNs. L-DOPA treatment restored laterality coding by increasing the separation between ipsilateral and contralateral responses. Our results show that DA depletion impairs bilateral tactile acuity in a pathway-dependent manner, thus providing unexpected insights into the network mechanisms underlying sensory deficits in PD. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Gastric cancer and breast cancer have a clear tendency toward metastasis and invasion to the microenvironment predominantly composed of adipocytes. Oleic acid is an abundant monounsaturated fatty acid that releases from adipocytes and impinges on different energy metabolism responses. The effect and underlying mechanisms of oleic acid on highly metastatic cancer cells are not completely understood. We reported that AMP-activated protein kinase (AMPK was obviously activated in highly aggressive carcinoma cell lines treated by oleic acid, including gastric carcinoma HGC-27 and breast carcinoma MDA-MB-231 cell lines. AMPK enhanced the rates of fatty acid oxidation and ATP production and thus significantly promoted cancer growth and migration under serum deprivation. Inactivation of AMPK attenuated these activities of oleic acid. Oleic acid inhibited cancer cell growth and survival in low metastatic carcinoma cells, such as gastric carcinoma SGC7901 and breast carcinoma MCF-7 cell lines. Pharmacological activation of AMPK rescued the cell viability by maintained ATP levels by increasing fatty acid β-oxidation. These results indicate that highly metastatic carcinoma cells could consume oleic acid to maintain malignancy in an AMPK-dependent manner. Our findings demonstrate the important contribution of fatty acid oxidation to cancer cell function.

  20. Comprehending non-native speakers: theory and evidence for adjustment in manner of processing.

    Science.gov (United States)

    Lev-Ari, Shiri

    2014-01-01

    Non-native speakers have lower linguistic competence than native speakers, which renders their language less reliable in conveying their intentions. We suggest that expectations of lower competence lead listeners to adapt their manner of processing when they listen to non-native speakers. We propose that listeners use cognitive resources to adjust by increasing their reliance on top-down processes and extracting less information from the language of the non-native speaker. An eye-tracking study supports our proposal by showing that when following instructions by a non-native speaker, listeners make more contextually-induced interpretations. Those with relatively high working memory also increase their reliance on context to anticipate the speaker's upcoming reference, and are less likely to notice lexical errors in the non-native speech, indicating that they take less information from the speaker's language. These results contribute to our understanding of the flexibility in language processing and have implications for interactions between native and non-native speakers.

  1. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner.

    Science.gov (United States)

    Binder, Natalie K; Beard, Sally A; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen; Hannan, Natalie J; Gardner, David K

    2015-05-01

    Fetal growth restriction (FGR) is a major obstetric complication stemming from poor placental development. We have previously demonstrated that paternal obesity in mice is associated with impaired embryo development and significantly reduced fetal and placental weights. We hypothesised that the FGR observed in our rodent model of paternal diet-induced obesity is associated with alterations in metabolic, cell signalling and stress pathways. Male C57BL/6 mice were fed either a normal or high-fat diet for 10 weeks before sperm collection for IVF and subsequent embryo transfer. On embryonic day 14, placentas were collected and RNA extracted from both male and female placentas to assess mRNA expression of 24 target genes using custom RT-qPCR arrays. Peroxisome proliferator-activated receptor alpha (Ppara) and caspase-12 (Casp12) expression were significantly altered in male placentas from obese fathers compared with normal (Pobese fathers compared with normal (Pobesity is associated with changes in gene expression and methylation status of extraembryonic tissue in a sex-specific manner. These findings reinforce the negative consequences of paternal obesity before conception, and emphasise the need for more lifestyle advice for prospective fathers. © 2015 Society for Reproduction and Fertility.

  2. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner.

    Science.gov (United States)

    Ramirez-Carrozzi, Vladimir; Sambandam, Arivazhagan; Luis, Elizabeth; Lin, Zhongua; Jeet, Surinder; Lesch, Justin; Hackney, Jason; Kim, Janice; Zhou, Meijuan; Lai, Joyce; Modrusan, Zora; Sai, Tao; Lee, Wyne; Xu, Min; Caplazi, Patrick; Diehl, Lauri; de Voss, Jason; Balazs, Mercedesz; Gonzalez, Lino; Singh, Harinder; Ouyang, Wenjun; Pappu, Rajita

    2011-10-12

    Interleukin 17C (IL-17C) is a member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. Here we show that IL-17C functioned in a unique autocrine manner, binding to a receptor complex consisting of the receptors IL-17RA and IL-17RE, which was preferentially expressed on tissue epithelial cells. IL-17C stimulated epithelial inflammatory responses, including the expression of proinflammatory cytokines, chemokines and antimicrobial peptides, which were similar to those induced by IL-17A and IL-17F. However, IL-17C was produced by distinct cellular sources, such as epithelial cells, in contrast to IL-17A, which was produced mainly by leukocytes, especially those of the T(H)17 subset of helper T cells. Whereas IL-17C promoted inflammation in an imiquimod-induced skin-inflammation model, it exerted protective functions in dextran sodium sulfate-induced colitis. Thus, IL-17C is an essential autocrine cytokine that regulates innate epithelial immune responses.

  3. COMPREHENDING NON-NATIVE SPEAKERS: THEORY AND EVIDENCE FOR ADJUSTMENT IN MANNER OF PROCESSING

    Directory of Open Access Journals (Sweden)

    Shiri eLev-Ari

    2015-01-01

    Full Text Available Non-native speakers have lower linguistic competence than native speakers, which renders their language less reliable in conveying their intentions. We suggest that expectations of lower competence lead listeners to adapt their manner of processing when they listen to non-native speakers. We propose that listeners use cognitive resources to adjust by increasing their reliance on top-down processes and extracting less information from the language of the non-native speaker. An eye-tracking study supports our proposal by showing that when following instructions by a non-native speaker, listeners make more contextually-induced interpretations. Those with relatively high working memory also increase their reliance on context to anticipate the speaker’s upcoming reference, and are less likely to notice lexical errors in the non-native speech, indicating that they take less information from the speaker’s language. These results contribute to our understanding of the flexibility in language processing and have implications for interactions between native and non-native speakers.

  4. Ageing and muscular dystrophy differentially affect murine pharyngeal muscles in a region-dependent manner

    Science.gov (United States)

    Randolph, Matthew E; Luo, Qingwei; Ho, Justin; Vest, Katherine E; Sokoloff, Alan J; Pavlath, Grace K

    2014-01-01

    The inability to swallow, or dysphagia, is a debilitating and life-threatening condition that arises with ageing or disease. Dysphagia results from neurological or muscular impairment of one or more pharyngeal muscles, which function together to ensure proper swallowing and prevent the aspiration of food or liquid into the lungs. Little is known about the effects of age or disease on pharyngeal muscles as a group. Here we show ageing affected pharyngeal muscle growth and atrophy in wild-type mice depending on the particular muscle analysed. Furthermore, wild-type mice also developed dysphagia with ageing. Additionally, we studied pharyngeal muscles in a mouse model for oculopharyngeal muscular dystrophy, a dysphagic disease caused by a polyalanine expansion in the RNA binding protein, PABPN1. We examined pharyngeal muscles of mice overexpressing either wild-type A10 or mutant A17 PABPN1. Overexpression of mutant A17 PABPN1 differentially affected growth of the palatopharyngeus muscle dependent on its location within the pharynx. Interestingly, overexpression of wild-type A10 PABPN1 was protective against age-related muscle atrophy in the laryngopharynx and prevented the development of age-related dysphagia. These results demonstrate that pharyngeal muscles are differentially affected by both ageing and muscular dystrophy in a region-dependent manner. These studies lay important groundwork for understanding the molecular and cellular mechanisms that regulate pharyngeal muscle growth and atrophy, which may lead to novel therapies for individuals with dysphagia. PMID:25326455

  5. Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner.

    Science.gov (United States)

    Tao, Shasha; Rojo de la Vega, Montserrat; Quijada, Hector; Wondrak, Georg T; Wang, Ting; Garcia, Joe G N; Zhang, Donna D

    2016-01-05

    Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2(+/+) but not in Nrf2(-/-) mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment.

  6. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding

    Science.gov (United States)

    Vuković, Lidija D.; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A.; Levy, Daniel L.

    2016-01-01

    ABSTRACT Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. PMID:26823604

  7. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  8. A time-dependent degeneration manner of condyle in rat CFA-induced inflamed TMJ.

    Science.gov (United States)

    Xu, Liqin; Guo, Huilin; Li, Cheng; Xu, Jie; Fang, Wei; Long, Xing

    2016-01-01

    Temporomandibular joint (TMJ) inflammation is a potential risk factor of osteoarthritis (OA) but the detailed degenerative changes in the inflamed TMJ remain unclear. In this study, we evaluated the changes of condylar cartilage and subchondral bone in rat inflamed TMJ induced by Freund's complete adjuvant (CFA). Articular cavity was injected with CFA and the TMJ samples were collected 1, 2, 3, and 4-week post-injection. Hematoxylin & Eosin (H&E) staining, toluidine blue (TB) staining, Safranin O (S.O) staining, Masson trichrome staining and micro-CT were used to assess TMJ degeneration during inflammation. Osteoclast and osteoblast activities were analyzed by tartrate-resistant acid phosphatase (TRAP) staining and osteocalcin (OCN) immunohistochemistry staining respectively. The expression of receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG) in condylar cartilage and subchondral bone was also evaluated through immunohistochemistry and RANKL/OPG ratio was evaluated. Reduced cartilage thickness, decreased number of chondrocytes, and down-regulated proteoglycan expression were observed in the condylar cartilage in the inflamed TMJ. Enhanced osteoclast activity, and expanded bone marrow cavity were reached the peak in the 2-week after CFA-injection. Meanwhile the RANKL/OPG ratio in the cartilage and subchondral bone also increased in the 2-week CFA-injection. Immature, unmineralized new bones with irregular trabecular bone structure, atypical condylar shape, up-regulated OCN expression, and decreased bone mineral density (BMD) were found in the inflamed TMJ. The time-dependent degeneration manner of TMJ cartilage and subchondral bone was found in CFA-induced arthritis rat model. The degeneration in the TMJ with inflammation might be a risk factor and should be concerned.

  9. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner.

    Science.gov (United States)

    Sandrini, Michael P B; Clausen, Anders R; On, Stephen L W; Aarestrup, Frank M; Munch-Petersen, Birgitte; Piskur, Jure

    2007-09-01

    To investigate the bactericidal activity of antiviral and anticancer nucleoside analogues against a variety of pathogenic bacteria and characterize the activating enzymes, deoxyribonucleoside kinases (dNKs). Several FDA-approved nucleoside analogue drugs were screened for their potential bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes. These genes were tested for their ability to increase the susceptibility of a dNK-deficient E. coli strain to various analogues. We overexpressed, purified and characterized the substrate specificity and kinetic properties of the recombinant enzymes from S. enterica and B. cereus. The tested Gram-negative bacteria were susceptible to 3'-azido-3'-deoxythymidine (AZT) in the concentration range 0.032-31.6 microM except for a single E. coli isolate and two Pseudomonas aeruginosa isolates which were resistant to the tested AZT concentrations. Purified recombinant S. enterica thymidine kinase phosphorylated AZT efficiently with a Km of 73.3 microM and k(cat)/Km of 6.6 x 10(4) s(-1) M(-1) and is the activator of this drug in vivo. 2',2'-Difluoro-2'-deoxycytidine (gemcitabine) was a potent antibiotic against Gram-positive bacteria in the concentration range between 0.001 and 1.0 microM. The B. cereus deoxyadenosine kinase had a Km for gemcitabine of 33.5 microM and k(cat)/Km of 5.1 x 10(3) s(-1) M(-1) and activates gemcitabine in vivo. S. enterica and B. cereus are now amongst the first bacteria with a completely characterized set of dNK enzymes. Bacterial dNKs efficiently activate nucleoside analogues in a species-specific manner. Therefore, nucleoside analogues have a potential to be employed as antibiotics in the fight against emerging multiresistant bacteria.

  10. Listeria monocytogenes alters mast cell phenotype, mediator and osteopontin secretion in a listeriolysin-dependent manner.

    Directory of Open Access Journals (Sweden)

    Catherine E Jobbings

    Full Text Available Whilst mast cells participate in the immune defence against the intracellular bacterium Listeria monocytogenes, there is conflicting evidence regarding the ability of L. monocytogenes to infect mast cells. It is known that the pore-forming toxin listeriolysin (LLO is important for mast cell activation, degranulation and the release of pro-inflammatory cytokines. Mast cells, however, are a potential source of a wide range of cytokines, chemokines and other mediators including osteopontin, which contributes to the clearing of L. monocytogenes infections in vivo, although its source is unknown. We therefore aimed to resolve the controversy of mast cell infection by L. monocytogenes and investigated the extent of mediator release in response to the bacterium. In this paper we show that the infection of bone marrow-derived mast cells by L. monocytogenes is inefficient and LLO-independent. LLO, however, is required for calcium-independent mast cell degranulation as well as for the transient and selective downregulation of cell surface CD117 (c-kit on mast cells. We demonstrate that in addition to the key pro-inflammatory cytokines TNF-α and IL-6, mast cells release a wide range of other mediators in response to L. monocytogenes. Osteopontin, IL-2, IL-4, IL-13 and granulocyte macrophage colony-stimulating factor (GM-CSF, and chemokines including CCL2, CCL3, CCL4 and CCL5 are released in a MyD88-dependent manner. The wide range of mediators released by mast cells in response to L. monocytogenes may play an important role in the recruitment and activation of a variety of immune cells in vivo. The cocktail of mediators, however, is unlikely to skew the immune response to a particular effector response. We propose that mast cells provide a hitherto unreported source of osteopontin, and may provide an important role in co-ordinating the immune response during Listeria infection.

  11. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner.

    Science.gov (United States)

    Zeng, Jing; Wu, Yang; Liao, Qingjiao; Li, Lixia; Chen, Xinwen; Chen, Xulin

    2012-09-01

    Hepatitis C virus (HCV) is a major human pathogen that causes many serious diseases, including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Treatments for this virus are inadequate, and improved antiviral therapies are necessary. Although the precise mechanisms regulating HCV entry into hepatic cells are still unknown, the low-density lipoprotein receptor (LDLR) has been shown to be essential for entry of infectious HCV particles. Liver X receptors (LXR) were recently reported to control LDLR expression through the regulation of the expression of the Idol (inducible degrader of the LDLR) protein, which could trigger the ubiquitination and degradation of LDLR. In this study, we analyzed the antiviral effect of Idol in vitro. The results demonstrated that Huh7.5.1 cells that exogenously expressed Idol were resistant to HCV infection. Next, the treatment of HCV-infected Huh7.5.1 cells with either synthetic LXR agonists (GW3965 or T0901317) or the natural LXR ligand 24(S),25-epoxycholesterol inhibited HCV infection in a dose-dependent manner. Furthermore, a combination of LXR agonists and HCV RNA replication inhibitors exerted additive effects against HCV, as revealed by isobologram analysis. In conclusion, our data indicate that molecules such as LXR agonists, which could stimulate the expression of Idol, represent a new class of potential anti-HCV compounds, and these compounds could be developed for therapeutic use against HCV infection, either as a monotherapy, or in combination with other anti-HCV drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Caffeine stimulates cytochrome oxidase expression and activity in the striatum in a sexually dimorphic manner.

    Science.gov (United States)

    Jones, Frederick S; Jing, Jie; Stonehouse, Anthony H; Stevens, Anthony; Edelman, Gerald M

    2008-09-01

    Epidemiological studies indicate that caffeine consumption reduces the risk of Parkinson's disease (PD) in men, and antagonists of the adenosine 2A receptor ameliorate the motor symptoms of PD. These findings motivated us to identify proteins whose expression is regulated by caffeine in a sexually dimorphic manner. Using mass spectroscopy, we found that Cox7c, a nuclear-encoded subunit of the mitochondrial enzyme cytochrome oxidase, is up-regulated in the striatum of male but not female mice after receiving a single dose of caffeine. The expression of two other Cox subunits, Cox1 and Cox4, was also stimulated by caffeine in a male-specific fashion. This up-regulation of Cox subunits by caffeine was accompanied by an increase in Cox enzyme activity in the male striatum. Caffeine-induced stimulation of Cox expression and activity were reproduced using the adenosine 2A receptor (A2AR)-specific antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-epsilon]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261), and coadministration of the A2AR-specific agonist 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) counteracted the elevation of Cox expression and activity by caffeine. Caffeine also increased Cox activity in PC-12 cells. In contrast, small interfering RNA (siRNA) knockdown of Cox7c expression in PC-12 cells blunted Cox activity, and this was counteracted by caffeine treatment. Caffeine was also found to increase Cox7c mRNA expression in the striatum and in PC-12 cells. This occurred at the level of transcription and was mediated by a segment of the Cox7c promoter. Overall, these findings indicate that cytochrome oxidase is a metabolic target of caffeine and that stimulation of Cox activity by caffeine via blockade of A2AR signaling may be an important mechanism underlying the therapeutic benefits of caffeine in PD.

  13. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

    Science.gov (United States)

    Nanbo, Asuka; Imai, Masaki; Watanabe, Shinji; Noda, Takeshi; Takahashi, Kei; Neumann, Gabriele; Halfmann, Peter; Kawaoka, Yoshihiro

    2010-09-23

    Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.

  14. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

    Directory of Open Access Journals (Sweden)

    Asuka Nanbo

    2010-09-01

    Full Text Available Ebolavirus (EBOV is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs, both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX 5, a marker of macropinocytosis-specific endosomes (macropinosomes. Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.

  15. Proliferation marker pKi-67 affects the cell cycle in a self-regulated manner.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-01-01

    The proliferation marker pKi-67 is commonly used in research and pathology to detect proliferating cells. In a previous work, we found the protein to be associated with regulators of the cell cycle, controlling S-phase progression, as well as entry into and exit from mitosis. Here we investigate whether pKi-67 has a regulative effect on the cell cycle itself. For that purpose we cloned four fragments of pKi-67, together representing nearly the whole protein, and an N-terminal pKi-67 antisense oligonucleotide into a tetracycline inducible gene expression system. The sense fragments were C-terminally modified by addition of either a nuclear localization sequence (NLS) or a STOP codon to address the impact of their intracellular distribution. FACS based cell cycle analysis revealed that expression of nearly all pKi-67 domains and the antisense oligonucleotide led to a decreased amount of cells in S-phase and an increased number of cells in G(2)/M- and G(1)-phase. Subsequent analysis of the endogenous pKi-67 mRNA and protein levels revealed that the constructs with the most significant impact on the cell cycle were able to silence pKi-67 transcription as well. We conclude from the data that pKi-67 influences progression of S-phase and mitosis in a self-regulated manner and, therefore, effects the cell cycle checkpoints within both phases. Furthermore, we found pKi-67 mediates an anti-apoptotic effect on the cell and we verified that this marker, although it is a potential ribosomal catalyst, is not expressed in differentiated tissues with a high transcriptional activity. Copyright 2002 Wiley-Liss, Inc.

  16. Blueberry Consumption Affects Serum Uric Acid Concentrations in Older Adults in a Sex-Specific Manner

    Directory of Open Access Journals (Sweden)

    Carol L. Cheatham

    2016-11-01

    Full Text Available Blueberries are rich in antioxidants and may protect against disease. Uric acid accounts for about 50% of the antioxidant properties in humans. Elevated levels of serum uric acid (SUA or hyperuricemia is a risk factor for cardiovascular disease (CVD. The aim was to determine the effect of blueberries on SUA in older adults. Participants (n = 133, 65–80 years experiencing mild cognitive impairment (MCI were randomized in a double-blind 6-month clinical trial to either blueberry or placebo. A reference group with no MCI received no treatment. The mean (SD SUA at baseline were 5.45 (0.9, 6.4 (1.3 and 5.8 (1.4 mg/dL in reference, placebo, and treatment groups, respectively. Baseline SUA was different in men and women (6.25 (1.1 vs. 5.35 (1.1, p = 0.001. During the first three months, SUA decreased in the blueberry group and was significantly different from the placebo group in both men and women (p < 0.0003. Sex-specific differences became apparent after 3 months, when only men showed an increase in SUA in the blueberry group and not in the placebo (p = 0.0006 between 3 and 6 months. At 6 months SUA had rebounded in both men and women and returned to baseline levels. Baseline SUA was correlated with CVD risk factors, waist circumference and triglycerides (p < 0.05, but differed by sex. Overall, 6 m SUA changes were negatively associated with triglycerides in men, but not in women. Group-wise association between 6 m SUA changes and CVD risk factors showed associations with diastolic blood pressure, triglycerides and high-density lipoprotein (HDL cholesterol in women of the Blueberry group but not in men or any sex in the placebo group. In summary, blueberries may affect SUA and its relationship with CVD risk in a sex-specific manner.

  17. Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways.

    Science.gov (United States)

    Phan, Chia-Wei; Lee, Guan-Serm; Hong, Sok-Lai; Wong, Yuin-Teng; Brkljača, Robert; Urban, Sylvia; Abd Malek, Sri Nurestri; Sabaratnam, Vikineswary

    2014-12-01

    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.

  18. Chain-length dependent para-phenyelene film- and needle-growth on dielectrics

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2004-01-01

    Surface unit cells of vacuum grown ultrathin films of blue-light emitting para-phenylene oligomers on alkali halides and on muscovite mica have been determined using low energy electron diffraction. Both, films from upright and from laying molecules are grown on alkali halide (1 0 0) and mica (0...

  19. The MX/G/1 queue with queue length dependent service times

    Directory of Open Access Journals (Sweden)

    Bong Dae Choi

    2001-01-01

    Full Text Available We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given.

  20. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gleichweit, Christoph; Amende, Max; Bauer, Udo; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P. A.; Zhao, Wei; Bachmann, Philipp; Papp, Christian, E-mail: christian.papp@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Müller, Michael; Koch, Marcus [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Wasserscheid, Peter [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Libuda, Jörg; Steinrück, Hans-Peter [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2014-05-28

    The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H{sub 12}-NEC), dodecahydro-N-propylcarbazole (H{sub 12}-NPC), and dodecahydro-N-butylcarbazole (H{sub 12}-NBC), on Pt(111) and on Al{sub 2}O{sub 3}-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C–N bond of the alkyl chain starting at 380–390 K. On Pt/Al{sub 2}O{sub 3}, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

  1. Ribosome reinitiation can explain length-dependent translation of messenger RNA.

    Science.gov (United States)

    Rogers, David W; Böttcher, Marvin A; Traulsen, Arne; Greig, Duncan

    2017-06-01

    Models of mRNA translation usually presume that transcripts are linear; upon reaching the end of a transcript each terminating ribosome returns to the cytoplasmic pool before initiating anew on a different transcript. A consequence of linear models is that faster translation of a given mRNA is unlikely to generate more of the encoded protein, particularly at low ribosome availability. Recent evidence indicates that eukaryotic mRNAs are circularized, potentially allowing terminating ribosomes to preferentially reinitiate on the same transcript. Here we model the effect of ribosome reinitiation on translation and show that, at high levels of reinitiation, protein synthesis rates are dominated by the time required to translate a given transcript. Our model provides a simple mechanistic explanation for many previously enigmatic features of eukaryotic translation, including the negative correlation of both ribosome densities and protein abundance on transcript length, the importance of codon usage in determining protein synthesis rates, and the negative correlation between transcript length and both codon adaptation and 5' mRNA folding energies. In contrast to linear models where translation is largely limited by initiation rates, our model reveals that all three stages of translation-initiation, elongation, and termination/reinitiation-determine protein synthesis rates even at low ribosome availability.

  2. Comment on "Length-dependent translation of messenger RNA by ribosomes"

    CERN Document Server

    Zhang, Yunxin

    2011-01-01

    In recent paper [Phys. Rev. E {\\bf 83}, 042903 (2011)], a simple model for the translation of messenger RNA by ribosomes is provided, and the expression of translational ratio of protein is given. In this comments, varied methods to get this ratio are addressed. Depending on a different method, we find that, roughly speaking, this translational ratio decays exponentially with mRNA length in prokaryotic cell, and reciprocally with mRNA length in eukaryotic cells.

  3. An uncommon cause of bifacial weakness and non-length-dependent demyelinating neuropathy

    Directory of Open Access Journals (Sweden)

    Madhu Nagappa

    2015-01-01

    Full Text Available Tangier disease is a rare metabolic disorder that causes neuropathy in half of the affected individuals. We present the clinical, electrophysiological, and histopathological findings in a middle-aged gentleman of Tangier disease who was initially diagnosed as leprosy and treated with antileprosy drugs. The presence of a demyelinating electrophysiology in a patient with predominant upper limb involvement and facial diplegia should raise the suspicion of Tangier disease. Estimation of serum lipids should form a part of routine evaluation in order to avoid misdiagnosis.

  4. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

    Science.gov (United States)

    Gleichweit, Christoph; Amende, Max; Bauer, Udo; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P. A.; Zhao, Wei; Müller, Michael; Koch, Marcus; Bachmann, Philipp; Wasserscheid, Peter; Libuda, Jörg; Steinrück, Hans-Peter; Papp, Christian

    2014-05-01

    The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H12-NEC), dodecahydro-N-propylcarbazole (H12-NPC), and dodecahydro-N-butylcarbazole (H12-NBC), on Pt(111) and on Al2O3-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C-N bond of the alkyl chain starting at 380-390 K. On Pt/Al2O3, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

  5. Length-dependent thermal conductivity in suspended single-layer graphene.

    Science.gov (United States)

    Xu, Xiangfan; Pereira, Luiz F C; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T L; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros

    2014-04-16

    Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

  6. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    KAUST Repository

    Bilić, Ante

    2012-09-06

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green\\'s function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction. © 2012 American Physical Society.

  7. Length-dependent conformational transitions of polyglutamine repeats as molecular origin of fibril initiation.

    Science.gov (United States)

    Heck, Benjamin S; Doll, Franziska; Hauser, Karin

    2014-01-01

    Polyglutamine (polyQ) sequences are found in a variety of proteins with normal function. However, their repeat expansion is associated with a number of neurodegenerative diseases, also called polyQ diseases. The length of the polyQ sequence, varying in the number of consecutive glutamines among different diseases, is critical for inducing fibril formation. We performed a systematic spectroscopic study to analyze the conformation of polyQ model peptides in dependence of the glutamine sequence lengths (K2QnK2 with n=10, 20, 30). Complementary FTIR- and CD-spectra were measured in a wide concentration range and repeated heating and cooling cycles revealed the thermal stability of formed β-sheets. The shortest glutamine sequence K2Q10K2 shows solely random structure for concentrations up to 10 mg/ml. By increasing the peptide length to K2Q20K2, a significant fraction of β-sheet is observed even at low concentrations of 0.01 mg/ml. The higher the concentration, the more the structural composition is dominated by the intermolecular β-sheet. The formation of highly thermostable β-sheet is much more pronounced in K2Q30K2. K2Q30K2 precipitates at a concentration of 0.3 mg/ml. Our spectroscopic study shows that the aggregation tendency is enhanced with increased glutamine repeat expansion and that the concentration plays another critical factor in the β-sheet formation. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The DTH8-Hd1 Module Mediates Day-Length-Dependent Regulation of Rice Flowering.

    Science.gov (United States)

    Du, Anping; Tian, Wei; Wei, Menghao; Yan, Wei; He, Hang; Zhou, Da; Huang, Xi; Li, Shigui; Ouyang, Xinhao

    2017-07-05

    Photoperiodic flowering is one of the most important pathways to govern flowering in rice (Oryza sativa), in which Heading date 1 (Hd1), an ortholog of the Arabidopsis CONSTANS gene, encodes a pivotal regulator. Hd1 promotes flowering under short-day conditions (SD) but represses flowering under long-day conditions (LD) by regulating the expression of Heading date 3a (Hd3a), the FLOWERING LOCUS T (FT) ortholog in rice. However, the molecular mechanism of how Hd1 changes its regulatory activity in response to day length remains largely unknown. In this study, we demonstrated that the repression of flowering in LD by Hd1 is dependent on the transcription factor DAYS TO HEADING 8 (DTH8). Loss of DTH8 function results in the activation of Hd3a by Hd1, leading to early flowering. We found that Hd1 directly interacts with DTH8 and that the formation of the DTH8-Hd1 complex is necessary for the transcriptional repression of Hd3a by Hd1 in LD, implicating that the switch of Hd1 function is mediated by DTH8 in LD rather than in SD. Furthermore, we revealed that DTH8 associates with the Hd3a promoter to modulate the level of H3K27 trimethylation (H3K27me3) at the Hd3a locus. In the presence of the DTH8-Hd1 complex, the H3K27me3 level was increased at Hd3a, whereas loss of DTH8 function resulted in decreased H3K27me3 level at Hd3a. Taken together, our findings indicate that, in response to day length, DTH8 plays a critical role in mediating the transcriptional regulation of Hd3a by Hd1 through the DTH8-Hd1 module to shape epigenetic modifications in photoperiodic flowering. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  9. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  10. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Koumoutsakos, Petros

    , for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simulations for up to 500nm long CNTs and observe a previously unseen dependence of the flow enhancement rates......Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2nm-diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate...

  11. Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study

    CERN Document Server

    Heimel, G; Oehzelt, M; Hummer, K; Koppelhuber-Bitschnau, B; Porsch, F; Ambrosch-Draxl, C; Resel, R

    2003-01-01

    We report on pressure-induced structural changes in crystalline oligo(para-phenylenes) containing two to six phenyl rings. The results are discussed with particular emphasis put on the implications these changes in intermolecular distances and molecular arrangement have on important bulk properties of this class of materials, such as optical response and charge transport. We performed energy dispersive x-ray diffraction in a systematic study on polycrystalline powders of biphenyl, para-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl under hydrostatic pressure up to 60 kbar. Revisiting the crystal structures at ambient conditions reveals details in the packing principle. A linear relationship between the density at ambient conditions and the number of phenyl rings is found. High pressure data not only yields pressure-dependent lattice parameters and hints towards pressure-induced changes in the molecular arrangement but also allows for an analysis of the equations of state of these substances as a ...

  12. Conductance of Conjugated Molecular Wires: Length Dependence, Anchoring Groups, and Band Alignment

    DEFF Research Database (Denmark)

    Peng, Guowen; Strange, Mikkel; Thygesen, Kristian Sommer

    2009-01-01

    . In comparison, the corresponding values for amine-terminated thiophene are calculated to be β = 0.160 Å−1 and Gc = 0.038G0. These results show that (1) the contact resistance is mainly determined by the anchoring group and (2) the decay constant, which determines the conductance in the long wire limit......, is not solely determined by the intrinsic band gap of the molecular wire but also depends on the anchoring group. This is because the alignment of the metal Fermi level with respect to the molecular levels is controlled by charge transfer and interface dipoles which in turn are determined by the local chemistry...

  13. Observation of Query Pulse Length Dependent Ramsey Interference in Rubidium Vapor Using Pulsed Raman Excitation

    Science.gov (United States)

    2011-11-07

    diode laser, AOM for generating Raman beams and a buffer gas filled Rb cell. FCL: fiber collimating lens, FCP: fiber coupler , NDF: neutral density...filter, OF: optical fiber, P: prism (out-of-plane as discussed in the text), PP: prism polarizer, PBS: polarizing beam splitter, PD: photodiode, and HWP...interference can also be observed without the prism polarizer since the effect is manifested in both Raman beams. The prism polarizer allows us to observe

  14. GestuRe and ACtion Exemplar (GRACE) video database: stimuli for research on manners of human locomotion and iconic gestures.

    Science.gov (United States)

    Aussems, Suzanne; Kwok, Natasha; Kita, Sotaro

    2017-09-15

    Human locomotion is a fundamental class of events, and manners of locomotion (e.g., how the limbs are used to achieve a change of location) are commonly encoded in language and gesture. To our knowledge, there is no openly accessible database containing normed human locomotion stimuli. Therefore, we introduce the GestuRe and ACtion Exemplar (GRACE) video database, which contains 676 videos of actors performing novel manners of human locomotion (i.e., moving from one location to another in an unusual manner) and videos of a female actor producing iconic gestures that represent these actions. The usefulness of the database was demonstrated across four norming experiments. First, our database contains clear matches and mismatches between iconic gesture videos and action videos. Second, the male actors and female actors whose action videos matched the gestures in the best possible way, perform the same actions in very similar manners and different actions in highly distinct manners. Third, all the actions in the database are distinct from each other. Fourth, adult native English speakers were unable to describe the 26 different actions concisely, indicating that the actions are unusual. This normed stimuli set is useful for experimental psychologists working in the language, gesture, visual perception, categorization, memory, and other related domains.

  15. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling.

    Science.gov (United States)

    Lozano-Velasco, Estefanía; Hernández-Torres, Francisco; Daimi, Houria; Serra, Selma A; Herraiz, Adela; Hove-Madsen, Leif; Aránega, Amelia; Franco, Diego

    2016-01-01

    Atrial fibrillation (AF) is the most common type of arrhythmia in humans, yet the genetic cause of AF remains elusive. Genome-wide association studies (GWASs) have reported risk variants in four distinct genetic loci, and more recently, a meta-GWAS has further implicated six new loci in AF. However, the functional role of these AF GWAS-related genes in AF and their inter-relationship remain elusive. To get further insights into the molecular mechanisms driven by Pitx2, calcium handling and novel AF GWAS-associated gene expression were analysed in two distinct Pitx2 loss-of-function models with distinct basal electrophysiological defects; a novel Pitx2 conditional mouse line, Sox2CrePitx2, and our previously reported atrial-specific NppaCrePitx2 line. Molecular analyses of the left atrial appendage in NppaCrePitx2(+/-) and NppaCrePitx2(-/-) adult mice demonstrate that AF GWAS-associated genes such as Zfhx3, Kcnn3, and Wnt8a are severely impaired but not Cav1, Synpo2l, nor Prrx1. In addition, multiple calcium-handling genes such as Atp2a2, Casq2, and Plb are severely altered in atrial-specific NppaCrePitx2 mice in a dose-dependent manner. Functional assessment of calcium homeostasis further underscores these findings. In addition, multiple AF-related microRNAs are also impaired. In vitro over-expression of Wnt8, but not Zfhx3, impairs calcium handling and modulates microRNA expression signature identified in Pitx2 loss-of-function models. Our data demonstrate a dose-dependent relation between Pitx2 expression and the expression of AF susceptibility genes, calcium handling, and microRNAs and identify a complex regulatory network orchestrated by Pitx2 with large impact on atrial arrhythmogenesis susceptibility. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  16. Raloxifene inhibits cloned Kv4.3 channels in an estrogen receptor-independent manner.

    Science.gov (United States)

    Chae, Yun Ju; Kim, Dae Hun; Lee, Hong Joon; Sung, Ki-Wug; Kwon, Oh-Joo; Hahn, Sang June

    2015-08-01

    Raloxifene is widely used for the treatment and prevention of postmenopausal osteoporosis. We examined the effects of raloxifene on the Kv4.3 currents expressed in Chinese hamster ovary (CHO) cells using the whole-cell patch-clamp technique and on the long-term modulation of Kv4.3 messenger RNA (mRNA) by real-time PCR analysis. Raloxifene decreased the Kv4.3 currents with an IC50 of 2.0 μM and accelerated the inactivation and activation kinetics in a concentration-dependent manner. The inhibitory effects of raloxifene on Kv4.3 were time-dependent: the association and dissociation rate constants for raloxifene were 9.5 μM(-1) s(-1) and 23.0 s(-1), respectively. The inhibition by raloxifene was voltage-dependent (δ = 0.13). Raloxifene shifted the steady-state inactivation curves in a hyperpolarizing direction and accelerated the closed-state inactivation of Kv4.3. Raloxifene slowed the time course of recovery from inactivation, thus producing a use-dependent inhibition of Kv4.3. β-Estradiol and tamoxifen had little effect on Kv4.3. A preincubation of ICI 182,780, an estrogen receptor antagonist, for 1 h had no effect on the inhibitory effect of raloxifene on Kv4.3. The metabolites of raloxifene, raloxifene-4'-glucuronide and raloxifene-6'-glucuronide, had little or no effect on Kv4.3. Coexpression of KChIP2 subunits did not alter the drug potency and steady-state inactivation of Kv4.3 channels. Long-term exposure to raloxifene (24 h) significantly decreased the expression level of Kv4.3 mRNA. This effect was not abolished by the coincubation with ICI 182,780. Raloxifene inhibited Kv4.3 channels by interacting with their open state during depolarization and with the closed state at subthreshold potentials. This effect was not mediated via an estrogen receptor.

  17. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Directory of Open Access Journals (Sweden)

    Liu Lei

    2008-12-01

    Full Text Available Abstract Background Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites" in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD can utilize directly infused or systemic neurotoxins. Results We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+ and UB-(+ aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes. Conclusion Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a

  18. BIODEGRADATION AND DENTIN BONDING EFFECTIVENESS OF ONE "UNIVERSAL" SELF-ETCH ADHESIVE USED IN MULTI-MODE MANNER

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2017-03-01

    Full Text Available A new type of one-step self-etch adhesives classified as "Universal" or "multi-mode" adhesives appeared in recent years. The idea is that these adhesives can be applied simultaneously with both techniques - etch and rinse and with self-etching technique, without compromising the bonding effectiveness. The aim of this study is to evaluate the micro-tensile adhesive bond strength to dentin of permanent teeth achieved after application of Single Bond Universal (3M ESPE adhesive system used in multi-mode manner. The results of our study show that the use of this universal adhesive system in multi-mode manner will not lead to the same results regarding the achieved bond strength with dentin. The additional etching with 37% phosphoric acid as well as the application of the adhesive in several layers deteriorates the bond strength right after application and after six months storage in artificial saliva medium (SAGF.

  19. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner

    DEFF Research Database (Denmark)

    Halling, Jens Frey; Jørgensen, Stine Ringholm; Olesen, Jesper

    2017-01-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effect...... evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner....

  20. Serum Amyloid A, but Not C-Reactive Protein, Stimulates Vascular Proteoglycan Synthesis in a Pro-Atherogenic Manner

    Science.gov (United States)

    Wilson, Patricia G.; Thompson, Joel C.; Webb, Nancy R.; de Beer, Frederick C.; King, Victoria L.; Tannock, Lisa R.

    2008-01-01

    Inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) are predictive of cardiac disease and are proposed to play causal roles in the development of atherosclerosis, in which the retention of lipoproteins by vascular wall proteoglycans is critical. The purpose of this study was to determine whether SAA and/or CRP alters vascular proteoglycan synthesis and lipoprotein retention in a pro-atherogenic manner. Vascular smooth muscle cells were stimulated with either SAA or CRP (1 to 100 mg/L) and proteoglycans were then isolated and characterized. SAA, but not CRP, increased proteoglycan sulfate incorporation by 50 to 100% in a dose-dependent manner (P proteoglycans; P proteoglycan synthesis in vivo, ApoE−/− mice were injected with an adenovirus expressing human SAA-1, a null virus, or saline. Mice that received adenovirus expressing SAA had increased TGF-β concentrations in plasma and increased aortic biglycan content compared with mice that received either null virus or saline. Thus, SAA alters vascular proteoglycans in a pro-atherogenic manner via the stimulation of TGF-β and may play a causal role in the development of atherosclerosis. PMID:18974302

  1. Why do some neurons in cortex respond to information in a selective manner? Insights from artificial neural networks.

    Science.gov (United States)

    Bowers, Jeffrey S; Vankov, Ivan I; Damian, Markus F; Davis, Colin J

    2016-03-01

    Why do some neurons in hippocampus and cortex respond to information in a highly selective manner? It has been hypothesized that neurons in hippocampus encode information in a highly selective manner in order to support fast learning without catastrophic interference, and that neurons in cortex encode information in a highly selective manner in order to co-activate multiple items in short-term memory (STM) without suffering a superposition catastrophe. However, the latter hypothesis is at odds with the widespread view that neural coding in the cortex is highly distributed in order to support generalization. We report a series of simulations that characterize the conditions in which recurrent Parallel Distributed Processing (PDP) models of immediate serial can recall novel words. We found that these models learned localist codes when they succeeded in generalizing to novel words. That is, just as fast learning may explain selective coding in hippocampus, STM and generalization may help explain the existence of selective codes in cortex. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dark, cold, and hungry, but full of mutual trust: Manners among the 2011 Great East Japan Earthquake victims

    Directory of Open Access Journals (Sweden)

    Abe Tsuneyuki

    2014-03-01

    Full Text Available It was reported with praise by the worldwide media that victims of the 2011 Great East Japan Earthquake and tsunami disaster endured the aftermath in a civil manner. We analyzed official crime statistics and investigated data that were collected from residents in disaster-stricken areas. Official statistics showed that crime decreased during the disaster period. Collected data suggest that criminal and deviant behavior were extremely rare, and that the victims helped each other, apparently altruistically. Further research on actual behavior in post-disaster environments is necessary in order to sufficiently prepare for future disasters.

  3. Vico and Literary Mannerism

    DEFF Research Database (Denmark)

    Catana, Leo

    Reviews: Scott Samuelson, New Vico studies, vol. 18 (2000), pp. 111-115; Maurizio Martirano, Sesto contribuito alla bibliografia vichiana (1996-2000); Alfredo Guida Editore: ?, (2002), p. 70 (Studi vichiani, vol. 37)......Reviews: Scott Samuelson, New Vico studies, vol. 18 (2000), pp. 111-115; Maurizio Martirano, Sesto contribuito alla bibliografia vichiana (1996-2000); Alfredo Guida Editore: ?, (2002), p. 70 (Studi vichiani, vol. 37)...

  4. Effect of incorporation manner of Mn promoter on the performances of iron-based catalysts in Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tao Zhi-chao; Yang Yong; Li Ting-zhen; Wan Hai-jun; An Xia; Xiang Hong-wei; Li Yong-wang [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    2008-07-01

    A series of spherical iron-based (Fe/Mn/K) catalysts were prepared by the combination of coprecipitation and spray drying method; the influences of the incorporation manner of Mn promoter on their crystallite structure, reduction and carburization behaviors and performances in Fischer-Tropsch synthesis were investigated though H{sub 2} differential thermo gravimetric analysis (H{sub 2}-DTG), CO temperature-programmed reduction (COOTPR), Moessbauer spectroscopy as well as catalytic tests. The catalysts were evaluated in a slurry reactor under the industrially relevant reaction conditions of 250{sup o}C, 1.5 MPa, H{sub 2}/CO = 0.67 and a space velocity of 2.0 L/gcat-h. The results illustrated that the addition of precipitated Mn brings on a stronger Fe-Mn interaction than other incorporation manners; this may suppress the reduction and carburization of the catalyst, decrease the catalytic activity but enhance the catalytic stability. The addition of partial precipitated and binder Mn promotes the reduction and carburization of the catalyst, improves the catalytic activity but speeds up the catalyst deactivation. Compared with the precipitated Mn-promoted catalyst, the addition of partial precipitated and binder Mn can enhance the selectivity of heavy hydrocarbons and olefins and restrain the formation of oxygenates. 26 refs., 6 figs., 5 tabs.

  5. RAGE and ICAM-1 differentially control leukocyte recruitment during acute inflammation in a stimulus-dependent manner

    Directory of Open Access Journals (Sweden)

    Nawroth Peter P

    2011-10-01

    Full Text Available Abstract Background The receptor for advanced glycation endproducts, RAGE, is involved in the pathogenesis of many inflammatory conditions, which is mostly related to its strong activation of NF-κB but also due to its function as ligand for the β2-integrin Mac-1. To further dissect the stimulus-dependent role of RAGE on leukocyte recruitment during inflammation, we investigated β2-integrin-dependent leukocyte adhesion in RAGE-/- and Icam1-/- mice in different cremaster muscle models of inflammation using intravital microscopy. Results We demonstrate that RAGE, but not ICAM-1 substantially contributes to N-formyl-methionyl-leucyl-phenylalanine (fMLP-induced leukocyte adhesion in TNF-α-pretreated cremaster muscle venules in a Mac-1-dependent manner. In contrast, fMLP-stimulated leukocyte adhesion in unstimulated cremaster muscle venules is independent of RAGE, but dependent on ICAM-1 and its interaction with LFA-1. Furthermore, chemokine CXCL1-stimulated leukocyte adhesion in surgically prepared cremaster muscle venules was independent of RAGE but strongly dependent on ICAM-1 and LFA-1 suggesting a differential and stimulus-dependent regulation of leukocyte adhesion during inflammation in vivo. Conclusion Our results demonstrate that RAGE and ICAM-1 differentially regulate leukocyte adhesion in vivo in a stimulus-dependent manner.

  6. RAGE and ICAM-1 differentially control leukocyte recruitment during acute inflammation in a stimulus-dependent manner.

    Science.gov (United States)

    Frommhold, David; Kamphues, Anna; Dannenberg, Susanne; Buschmann, Kirsten; Zablotskaya, Victoria; Tschada, Raphaela; Lange-Sperandio, Baerbel; Nawroth, Peter P; Poeschl, Johannes; Bierhaus, Angelika; Sperandio, Markus

    2011-10-04

    The receptor for advanced glycation endproducts, RAGE, is involved in the pathogenesis of many inflammatory conditions, which is mostly related to its strong activation of NF-κB but also due to its function as ligand for the β2-integrin Mac-1. To further dissect the stimulus-dependent role of RAGE on leukocyte recruitment during inflammation, we investigated β2-integrin-dependent leukocyte adhesion in RAGE-/- and Icam1-/- mice in different cremaster muscle models of inflammation using intravital microscopy. We demonstrate that RAGE, but not ICAM-1 substantially contributes to N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced leukocyte adhesion in TNF-α-pretreated cremaster muscle venules in a Mac-1-dependent manner. In contrast, fMLP-stimulated leukocyte adhesion in unstimulated cremaster muscle venules is independent of RAGE, but dependent on ICAM-1 and its interaction with LFA-1. Furthermore, chemokine CXCL1-stimulated leukocyte adhesion in surgically prepared cremaster muscle venules was independent of RAGE but strongly dependent on ICAM-1 and LFA-1 suggesting a differential and stimulus-dependent regulation of leukocyte adhesion during inflammation in vivo. Our results demonstrate that RAGE and ICAM-1 differentially regulate leukocyte adhesion in vivo in a stimulus-dependent manner.

  7. An audit of the toxicology findings in 555 medico-legal autopsies finds manner of death changed in 5 cases.

    Science.gov (United States)

    Langlois, Neil E I; Gilbert, John D; Heath, Karen J; Winskog, Calle; Kostakis, Chris

    2013-03-01

    An audit of toxicological analysis in Coronial autopsies performed at Forensic Science South Australia was conducted on the cases of three pathologists. Toxicological analysis had been performed in 555 (68 %) from a total of 815 autopsies. It was found that the proffered manner of death was changed from the provisional report (provided immediately after the post-mortem examination) in five cases (just under 1 %) as a consequence of the toxicological findings. This is a limited study as it is retrospective, not all cases had toxicological analysis and the findings are constrained by the range of the substances that could be detected. Nonetheless, the audit supports the application of toxicological analysis in medico-legal death investigation and suggests that an inclusive policy should be adopted.

  8. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner.

    Science.gov (United States)

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui

    2015-09-23

    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  9. Repeated restraint stress enhances cue-elicited conditioned freezing and impairs acquisition of extinction in an age-dependent manner

    Science.gov (United States)

    Zhang, Wei; Rosenkranz, J. Amiel

    2013-01-01

    Affective disorders are believed to involve dysfunction within the amygdala, a key structure for processing emotional information. Chronic stress may contribute to affective disorders such as depression and anxiety via its effects on the amygdala. Previous research has shown that chronic stress increases amygdala neuronal activity in an age-dependent manner. However, whether these distinct changes in amgydala neuronal activity are accompanied by age-dependent changes in amygdala-dependent affective behavior is unclear. In this study, we investigated how chronic stress impacts amgydala-dependent auditory fear conditioning in adolescent and adult rats in a repeated restraint model. We found that repeated restraint enhanced conditioned freezing in both adolescent and adult rats. But repeated restraint led to impaired acquisition of fear extinction only in adolescent rats. Along with previous findings, these results suggest that chronic stress may precipitate affective disorders via differential mechanisms, with different outcomes at different ages. PMID:23538069

  10. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner.

    Science.gov (United States)

    Lecoutre, Simon; Oger, Frederik; Pourpe, Charlène; Butruille, Laura; Marousez, Lucie; Dickes-Coopman, Anne; Laborie, Christine; Guinez, Céline; Lesage, Jean; Vieau, Didier; Junien, Claudine; Eberlé, Delphine; Gabory, Anne; Eeckhoute, Jérôme; Breton, Christophe

    2017-08-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates predispose offspring to white adipose tissue (WAT) accumulation. In rodents, adipogenesis mainly develops during lactation. The mechanisms underlying the phenomenon known as developmental programming remain elusive. We previously reported that adult rat offspring from high-fat diet-fed dams (called HF) exhibited hypertrophic adipocyte, hyperleptinemia and increased leptin mRNA levels in a depot-specific manner. We hypothesized that leptin upregulation occurs via epigenetic malprogramming, which takes place early during development of WAT. As a first step, we identified in silico two potential enhancers located upstream and downstream of the leptin transcription start site that exhibit strong dynamic epigenomic remodeling during adipocyte differentiation. We then focused on epigenetic modifications (methylation, hydroxymethylation, and histone modifications) of the promoter and the two potential enhancers regulating leptin gene expression in perirenal (pWAT) and inguinal (iWAT) fat pads of HF offspring during lactation (postnatal days 12 (PND12) and 21 (PND21)) and in adulthood. PND12 is an active period for epigenomic remodeling in both deposits especially in the upstream enhancer, consistent with leptin gene induction during adipogenesis. Unlike iWAT, some of these epigenetic marks were still observable in pWAT of weaned HF offspring. Retained marks were only visible in pWAT of 9-month-old HF rats that showed a persistent "expandable" phenotype. Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.

  11. Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner.

    Science.gov (United States)

    Lee, Ju Yup; Kim, Nayoung; Nam, Ryoung Hee; Sohn, Sung Hwa; Lee, Sun Min; Choi, Daeun; Yoon, Hyuk; Kim, Yong Sung; Lee, Hye Seung; Lee, Dong Ho

    2017-01-01

    The colonic response to stress is greater in female rats than in male rats. The aim of this study was to evaluate the effect of probiotics in the repeated water avoidance stress (rWAS)-induced colonic microinflammation model of Wistar rats in a sex-specific manner. The three groups (no-stress, WAS, and WAS with probiotics) were exposed to r-WAS for 1 h daily for 10 days, and Lactobacillus farciminis was administered by oral gavage for 10 days to animals in the probiotics group. The visceromotor response (VMR) to colorectal distension (CRD) was assessed using a barostat and noninvasive manometry before and after WAS exposure. Immunohistochemistry for mast cells and real-time polymerase chain reaction (RT-PCR) for detection of mucosal cytokines were performed using distal colon tissue after the animals were sacrificed. Significant reduction of VMR to CRD (visceral analgesia) was observed at 60 mmHg in the female WAS group (P = 0.045), but not in males. In addition, the female WAS with probiotics group showed a significantly lower colonic mucosal mast cell count in comparison to the female WAS group (P = 0.013), but this phenomenon was not observed in the male group. The colonic mucosal mRNA levels of interferon-γ (IFNR), tumor necrosis factor-α (TNFA), interleukin (IL) 6, and IL17 were higher in the female WAS group than in the male WAS group. The mRNA levels of IFNR, TNFA, and IL6 were significantly decreased in WAS females who received probiotics (all P < 0.050). In conclusion, rWAS is induced in a sex-specific manner. A 10-day-long treatment with L. farciminis is an effective therapy for rWAS-induced colonic microinflammation in female rates, but not in male rats.

  12. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner.

    Science.gov (United States)

    Kakazu, Eiji; Mauer, Amy S; Yin, Meng; Malhi, Harmeet

    2016-02-01

    Nonalcoholic steatohepatitis (NASH) is a lipotoxic disease wherein activation of endoplasmic reticulum (ER) stress response and macrophage-mediated hepatic inflammation are key pathogenic features. However, the lipid mediators linking these two observations remain elusive. We postulated that ER stress-regulated release of pro-inflammatory extracellular vesicles (EVs) from lipotoxic hepatocytes may be this link. EVs were isolated from cell culture supernatants of hepatocytes treated with palmitate (PA) to induce lipotoxic ER stress, characterized by immunofluorescence, Western blotting, electron microscopy, and nanoparticle tracking analysis. Sphingolipids were measured by tandem mass spectrometry. EVs were employed in macrophage chemotaxis assays. PA induced significant EV release. Because PA activates ER stress, we used KO hepatocytes to demonstrate that PA-induced EV release was mediated by inositol requiring enzyme 1α (IRE1α)/X-box binding protein-1. PA-induced EVs were enriched in C16:0 ceramide in an IRE1α-dependent manner, and activated macrophage chemotaxis via formation of sphingosine-1-phosphate (S1P) from C16:0 ceramide. This chemotaxis was blocked by sphingosine kinase inhibitors and S1P receptor inhibitors. Lastly, elevated circulating EVs in experimental and human NASH demonstrated increased C16:0 ceramide. PA induces C16:0 ceramide-enriched EV release in an IRE1α-dependent manner. The ceramide metabolite, S1P, activates macrophage chemotaxis, a potential mechanism for the recruitment of macrophages to the liver under lipotoxic conditions. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Mathematical analysis demonstrates that interferons-β and -γ Interact in a multiplicative manner to disrupt herpes simplex virus replication

    Science.gov (United States)

    Halford, William P.; Halford, Keith J.; Pierce, Amy T.

    2005-01-01

    Several studies suggest that the innate interferons (IFNs), IFN-α and IFN-β, can act in concert with IFN-γto synergistically inhibit the replication of cytomegalovirus and herpes simplex virus type 1 (HSV-1). The significance of this observation is not yet agreed upon in large part because the nature and magnitude of the interaction between IFN-α/β and IFN-γ is not well defined. In the current study, we resolve this issue by demonstrating three points. First, the hyperbolic tangent function, tanh (x  ), can be used to describe the individual effects of IFN-β or IFN-γ on HSV-1 replication over a 320,000-fold range of IFN concentration. Second, pharmacological methods prove that IFN-β and IFN-γ interact in a greater-than-additive manner to inhibit HSV-1 replication. Finally, the potency with which combinations of IFN-β and IFN-γ inhibit HSV-1 replication is accurately predicted by multiplying the individual inhibitory effects of each cytokine. Thus, IFN-β and IFN-γ interact in a multiplicative manner. We infer that a primary antiviral function of IFN-γ lies in its capacity to multiply the potency with which IFN-α/β restricts HSV-1 replication in vivo. This hypothesis has important ramifications for understanding how T lymphocyte-secreted cytokines such as IFN-γ can force herpesviruses into a latent state without destroying the neurons or leukocytes that continue to harbor these viral infections for the lifetime of the host.

  14. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; He, Lingyun; Tan, Bie; Deng, Jinping; Kong, Xiangfeng; Li, Yinghui; Geng, Meimei; Yin, Yulong; Wu, Guoyao

    2015-04-14

    Skeletal muscle is a major site for the oxidation of fatty acids (FA) in mammals, including humans. Using a swine model, we tested the hypothesis that dietary protein intake regulates the expression of key genes for lipid metabolism in skeletal muscle. A total of ninety-six barrows (forty-eight pure-bred Bama mini-pigs (fatty genotype) and forty-eight Landrace pigs (lean genotype)) were fed from 5 weeks of age to market weight. Pigs of fatty or lean genotype were randomly assigned to one of two dietary treatments (low- or adequate-protein diet), with twenty-four individually fed pigs per treatment. Our data showed that dietary protein levels affected the expression of genes involved in the anabolism and catabolism of lipids in the longissimus dorsi and biceps femoris muscles in a genotype-dependent manner. Specifically, Bama mini-pigs had more intramuscular fat, SFA and MUFA, as well as elevated mRNA expression levels of lipogenic genes, compared with Landrace pigs. In contrast, Bama mini-pigs had lower mRNA expression levels of lipolytic genes than Landrace pigs fed an adequate-protein diet in the growing phase. These data are consistent with higher white-fat deposition in Bama mini-pigs than in Landrace pigs. In conclusion, adequate provision of dietary protein (amino acids) plays an important role in regulating the expression of key lipogenic genes, and the growth of white adipose tissue, in a genotype- and tissue-specific manner. These findings have important implications for developing novel dietary strategies in pig production.

  15. The Correlation between Managers’ Delegation of Authority with the Manner of Employee Direction in Hospitals of Qom Province

    Directory of Open Access Journals (Sweden)

    Maleki M.R

    2011-08-01

    Full Text Available Background and Objectives: The destructive effect of centralized management can be found throughout each organization, which is a barrier for delegation of authority and productivity leading to administrative violence increase and compression and frigidity of affairs. With attention to the importance of delegation of authority this research aimed at determining the correlation between the manager's delegation of authority with the manner of employee direction in Qom hospitals, designed for contributing to improvement of managers’ performance in hospitals.Methods: This correlational and cross-sectional research, was carried out on all the employees under the control of managers and chiefs of Qom province hospitals (N=2167. Sampling was done by cluster sampling method through the use of Cokran sampling based on Morgan and kerjsi chart. 998 samples with the confidence level of %95 and permitted errors of 0.05 were randomly selected. Data were collected via questionnaires which were answered by self-report method. The data were then analyzed by the Pearson correlation coefficient, variance's test F analyses, multiple variant regression and T-test.Results: The mean score of the manager's non-delegation of authority was (32.4. Among the indicators of the direction, there was a significant relationship between the motivation (mean= 61.44 and organizational communication (49.39, also there was a significant relationship between the managers’ delegation of authority and the manner of their employees direction (non-delegation of authority R=-0.13. Conclusion: Due to the meaningful and direct relationship between most of direction variables with the managers’ delegation of authority, increasing the delegation of authority and deconcentration can lead to an increase in employee motivation and (vertical and formal communication and improved performance of affairs.

  16. Intermittent intense exercise protects against cognitive decline in a similar manner to moderate exercise in chronically stressed mice.

    Science.gov (United States)

    Lee, Hyunjin; Nagata, Kazufumi; Nakajima, Sanae; Ohno, Makoto; Ohta, Shigeo; Mikami, Toshio

    2018-01-18

    It is well known that regular low or mild exercise helps to improve and maintain cognition. On the other hand, ever thought many people prefer high-intensity exercise (e.g., running, swimming, biking, soccer, basketball, etc.) to get rid of stress or improve their health, the previous studies reported that intense exercise either impairs cognition or has no effect on cognitive function. However, we previously showed that intermittent intense exercise prevents stress-induced depressive behavior in mice in a similar manner to moderate exercise. On the basis of this finding, we investigated the effect of intermittent intense exercise on cognitive deficit in chronically stressed mice. A total of forty mice were evenly divided into control, stressed, stressed with moderate exercise, and stressed with intense exercise groups. The stressed mice were chronically exposed a restraint stress (10 h/day, 6 days/week for 7 weeks). The exercised mice were subjected to intermittent intense or endurance moderate running on the treadmill three times a week. Cognition was evaluated using the Morris water maze test and the object recognition test. Chronic stress decreased cognition, and newborn cell survival and blood vessel density in the hippocampus. However, both regular intense and moderate exercise prevented decrease of cognition, improved newborn cell survival and blood vessel density. These findings suggest that intermittent intense exercise may protect against decrease of cognition in a similar manner to moderate exercise and that both exercise-induced protection of decrease of cognition is closely related to newborn cell survival and angiogenesis in the hippocampus. Copyright © 2018. Published by Elsevier B.V.

  17. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease

    OpenAIRE

    Sun Xuan; Reyes M Gabriela; Johnston Tom H; Koprich James B; Brotchie Jonathan M

    2010-01-01

    Abstract Background The pathological hallmarks of Parkinson's disease (PD) include the presence of alpha-synuclein (α-syn) rich Lewy bodies and neurites and the loss of dopaminergic (DA) neurons of the substantia nigra (SN). Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been ...

  18. The Correlation between Managers’ Delegation of Authority with the Manner of Employee Direction in Hospitals of Qom Province

    Directory of Open Access Journals (Sweden)

    M.R Maleki

    2012-05-01

    Full Text Available

    Background and Objectives: The destructive effect of centralized management can be found throughout each organization, which is a barrier for delegation of authority and productivity leading to administrative violence increase and compression and frigidity of affairs. With attention to the importance of delegation of authority this research aimed at determining the correlation between the manager's delegation of authority with the manner of employee direction in Qom hospitals, designed for contributing to improvement of managers’ performance in hospitals.

     

    Methods: This correlational and cross-sectional research, was carried out on all the employees under the control of managers and chiefs of Qom province hospitals (N=2167. Sampling was done by cluster sampling method through the use of Cokran sampling based on Morgan and kerjsi chart. 998 samples with the confidence level of 95% and permitted errors of 0.05 were randomly selected. Data were collected via questionnaires which were answered by self-report method. The data were then analyzed by the Pearson correlation coefficient, variance's test F analyses, multiple variant regression and T-test.

     

    Results: The mean score of the manager's non-delegation of authority was (32.4. Among the indicators of the direction, there was a significant relationship between the motivation (mean= 61.44 and organizational communication (49.39, also there was a significant relationship between the managers’ delegation of authority and the manner of their employees direction (non-delegation of authority R=-0.13.

     

    Conclusion: Due to the meaningful and direct relationship between most of direction variables with the managers’ delegation of authority, increasing the delegation of authority and deconcentration can lead to an increase

  19. [Evaluation of nutrition manner and nutritional status of girls during the period of adolescence, including girls who apply slimming diets].

    Science.gov (United States)

    Goluch-Koniuszy, Zuzanna; Fugiel, Joanna

    2009-01-01

    The purpose of the research was the evaluation of nutrition methods and the nutrition status of girls in the age ranging between 15 and 16, who had body substance, height, waist measurements taken; and the BMI, WC, and WHtR indicators were calculated. Three day menus were also evaluated and an inquiry containing questionnaire concerning the manner of apply slimming diets. It has also been ascertained that 40.8% of fifteen year old and 31% of sixteen year old girls apply slimming diets. It was discovered that only in 76% of younger girls and in 71% of older girls the value of the BMI indicator was proper. The problem of accumulation of fat tissue (WC > or = 95 c) around the waist concerned 4% younger girls and 10% older. It was discovered that the values of WHtR > or = 90 c were almost 10% and 23% in the cases of younger and older girls, respectively. Analysis of nutrition of the girls showed low energy value of the diet, too low total protein level, too low of complex carbohydrates, minerals (K, Ca, Mg, Cu, Zn) and vitamins (A, E, B group) and also liquids shortage. The girls have been educated in the form of workshops in the matter concerning healthy nutrition.

  20. Dietary fat and fiber interactively modulate apoptosis and mitochondrial bioenergetic profiles in mouse colon in a site-specific manner.

    Science.gov (United States)

    Fan, Yang-Yi; Vaz, Frederic M; Chapkin, Robert S

    2017-07-01

    We have demonstrated that the combination of bioactive components generated by fish oil (containing n-3 polyunsaturated fatty acids) and fermentable fiber (leading to butyrate production) act coordinately to protect against colon cancer. This is, in part, the result of an enhancement of apoptosis at the base of the crypt across all stages (initiation, promotion, and progression) of colon tumorigenesis. As mitochondria are key organelles capable of regulating the intrinsic apoptotic pathway and mediating programmed cell death, we investigated the effects of diet on mitochondrial function by measuring mucosal cardiolipin composition, mitochondrial respiratory parameters, and apoptosis in isolated crypts from the proximal and distal colon. C57BL/6 mice (n=15/treatment) were fed one of two dietary fats (corn oil and fish oil) and two fibers (pectin and cellulose) for 4 weeks in a 2×2 factorial design. In general, diet modulated apoptosis and the mucosal bioenergetic profiles in a site-specific manner. The fish/pectin diet promoted a more proapoptotic phenotype - for example, increased proton leak (Pinteraction=0.002) - compared with corn/cellulose (control) only in the proximal colon. With respect to the composition of cardiolipin, a unique phospholipid localized to the mitochondrial inner membrane where it mediates energy metabolism, fish oil feeding indirectly influenced its molecular species with a combined carbon number of C68 or greater, suggesting compensatory regulation. These data indicate that dietary fat and fiber can interactively modulate the mitochondrial metabolic profile and thereby potentially modulate apoptosis and subsequent colon cancer risk.

  1. Anti-Inflammatory Functions of Protein C Require RAGE and ICAM-1 in a Stimulus-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Natascha Braach

    2014-01-01

    Full Text Available By binding β2-integrins both ICAM-1 and the receptor for advanced glycation end products (RAGE mediate leukocyte recruitment in a stimulus-dependent manner. Using different inflammatory mouse models we investigated how RAGE and ICAM-1 are involved in anti-inflammatory functions of protein C (PC; Ceprotin, 100 U/kg. We found that, depending on the stimulus, RAGE and ICAM-1 are cooperatively involved in PC-induced inhibition of leukocyte recruitment in cremaster models of inflammation. During short-term proinflammatory stimulation (trauma, fMLP, and CXCL1, ICAM-1 is more important for mediation of anti-inflammatory effects of PC, whereas RAGE plays a major role after longer proinflammatory stimulation (TNFα. In contrast to WT and Icam-1−/− mice, PC had no effect on bronchoalveolar neutrophil emigration in RAGE−/− mice during LPS-induced acute lung injury, suggesting that RAGE critically mediates PC effects during acute lung inflammation. In parallel, PC treatment effectively blocked leukocyte recruitment and improved survival of WT mice and Icam-1-deficient mice in LPS-induced endotoxemia, but failed to do so in RAGE-deficient mice. Exploring underlying mechanisms, we found that PC is capable of downregulating intracellular RAGE and extracellular ICAM-1 in endothelial cells. Taken together, our data show that RAGE and ICAM-1 are required for the anti-inflammatory functions of PC.

  2. Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice.

    Science.gov (United States)

    Liu, Xiao-Long; Luo, Liu; Mu, Rong-Hao; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao

    2015-11-02

    Previous studies have demonstrated that the mammalian target of rapamycin (mTOR) signaling pathway has an important role in ketamine-induced, rapid antidepressant effects despite the acute administration of fluoxetine not affecting mTOR phosphorylation in the brain. However, the effects of long-term fluoxetine treatment on mTOR modulation have not been assessed to date. In the present study, we examined whether fluoxetine, a type of commonly used antidepressant agent, alters mTOR signaling following chronic administration in different brain regions, including the frontal cortex, hippocampus, amygdala and hypothalamus. We also investigated whether fluoxetine enhanced synaptic protein levels in these regions via the activation of the mTOR signaling pathway and its downstream regulators, p70S6K and 4E-BP-1. The results indicated that chronic fluoxetine treatment attenuated the chronic, unpredictable, mild stress (CUMS)-induced mTOR phosphorylation reduction in the hippocampus and amygdala of mice but not in the frontal cortex or the hypothalamus. Moreover, the CUMS-decreased PSD-95 and synapsin I levels were reversed by fluoxetine, and these effects were blocked by rapamycin only in the hippocampus. In conclusion, our findings suggest that chronic treatment with fluoxetine can induce synaptic protein expression by activating the mTOR signaling pathway in a region-dependent manner and mainly in the hippocampus.

  3. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    Science.gov (United States)

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2017-08-04

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Amyloid β oligomers elicit mitochondrial transport defects and fragmentation in a time-dependent and pathway-specific manner.

    Science.gov (United States)

    Rui, Yanfang; Zheng, James Q

    2016-08-17

    Small oligomeric forms of amyloid-β (Aβ) are believed to be the culprit for declined brain functions in AD in part through their impairment of neuronal trafficking and synaptic functions. However, the precise cellular actions of Aβ oligomers and underlying mechanisms in neurons remain to be fully defined. Previous studies have identified mitochondria as a major target of Aβ toxicity contributing to early cognitive decline and memory loss in neurodegenerative diseases including Alzheimer's disease (AD). In this study, we report that Aβ oligomers acutely elicit distinct effects on the transport and integrity of mitochondria. We found that acute exposure of hippocampal neurons to Aβ oligomers from either synthetic peptides or AD brain homogenates selectively impaired fast transport of mitochondria without affecting the movement of late endosomes and lysosomes. Extended exposure of hipoocampal neurons to Aβ oligomers was found to result in mitochondrial fragmentation. While both mitochondrial effects induced by Aβ oligomers can be abolished by the inhibition of GSK3β, they appear to be independent from each other. Aβ oligomers impaired mitochondrial transport through HDAC6 activation whereas the fragmentation involved the GTPase Drp-1. These results show that Aβ oligomers can acutely disrupt mitochondrial transport and integrity in a time-dependent and pathway-specific manner. These findings thus provide new insights into Aβ-induced mitochondrial defects that may contribute to neuronal dysfunction and AD pathogenesis.

  5. Individual Differences in Good Manners Rather Than Compassion Predict Fair Allocations of Wealth in the Dictator Game.

    Science.gov (United States)

    Zhao, Kun; Ferguson, Eamonn; Smillie, Luke D

    2017-04-01

    One of the most common tools for studying pro-sociality is the dictator game, in which allocations to one's partner are often described in terms of altruism. However, the motivations driving these allocations may represent either emotional concern for others (compassion), adherence to social norms regarding fairness (politeness), or both. In this article, we apply personality psychology to the study of behavior in the dictator game, in which we examine the discriminant validity of distinct pro-social constructs from the Big Five and HEXACO models in relation to allocations of wealth. Across four studies (Study 1: N = 192; Study 2: N = 212; Study 3: N = 304; Study 4: N = 90) utilizing both hypothetical and incentivized designs, we found that the politeness-but not compassion-aspect of Big Five Agreeableness, as well as HEXACO Honesty-Humility, uniquely predicted dictator allocations within their respective personality models. These findings contribute to a growing literature indicating that the standard dictator game measures "good manners" or adherence to norms concerning fairness, rather than pure emotional concern or compassionate motives, and have important implications for how this paradigm is used and interpreted in psychological research. © 2015 Wiley Periodicals, Inc.

  6. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul

    2014-05-09

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  7. Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner

    Directory of Open Access Journals (Sweden)

    Saskia Windisch

    2017-06-01

    Full Text Available Previous studies conducted on a unique field site comprising three contrasting soils (diluvial sand DS, alluvial loam AL, loess loam LL under identical cropping history, demonstrated soil type-dependent differences in biocontrol efficiency against Rhizoctonia solani-induced bottom rot disease in lettuce by two bacterial inoculants (Pseudomonas jessenii RU47 and Serratia plymuthica 3Re-4-18. Disease severity declined in the order DS > AL > LL. These differences were confirmed under controlled conditions, using the same soils in minirhizotron experiments. Gas chromatography-mass spectrometry (GC-MS profiling of rhizosphere soil solutions revealed benzoic and lauric acids as antifungal compounds; previously identified in root exudates of lettuce. Pathogen inoculation and pre-inoculation with bacterial inoculants significantly increased the release of antifungal root exudates in a soil type-specific manner; with the highest absolute levels detected on the least-affected LL soil. Soil type-dependent differences were also recorded for the biocontrol effects of the two bacterial inoculants; showing the highest efficiency after double-inoculation on the AL soil. However, this was associated with a reduction of shoot growth and root hair development and a limited micronutrient status of the host plants. Obviously, disease severity and the expression of biocontrol effects are influenced by soil properties with potential impact on reproducibility of practical applications.

  8. Macrophage Bactericidal Activities against Staphylococcus aureus Are Enhanced In Vivo by Selenium Supplementation in a Dose-Dependent Manner.

    Science.gov (United States)

    Aribi, Mourad; Meziane, Warda; Habi, Salim; Boulatika, Yasser; Marchandin, Hélène; Aymeric, Jean-Luc

    2015-01-01

    Dietary selenium is of fundamental importance to maintain optimal immune function and enhance immunity during infection. To this end, we examined the effect of selenium on macrophage bactericidal activities against Staphylococcus aureus. Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured with S. aureus and different concentrations of selenium. Infected and selenium-supplemented animals have significantly decreased levels of serum nitric oxide (NO) production when compared with infected but non-selenium-supplemented animals at day 7 post-infection (p selenium induced a significant decrease in macrophage NO production, but significant increase in hydrogen peroxide (H2O2) levels (respectively, p = 0.009, p selenium; the optimal macrophage activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced a significant decrease in the bacterial arginase activity but a significant increase in the macrophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of bacterial growth (p Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and bacterial killing suggesting that inadequate doses may cause a loss of macrophage bactericidal activities and that selenium supplementation could enhance the in vivo control of immune response to S. aureus.

  9. Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner.

    Science.gov (United States)

    Malashicheva, Anna; Bogdanova, Maria; Zabirnyk, Arsenii; Smolina, Natalia; Ignatieva, Elena; Freilikhman, Olga; Fedorov, Anton; Dmitrieva, Renata; Sjöberg, Gunnar; Sejersen, Thomas; Kostareva, Anna

    2015-01-01

    Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear structures and components of cell nucleus but also control cell fate and differentiation. In our study we assessed the effect of various LMNA mutations on the expression profile of mesenchymal multipotent stem cells (MMSC) during adipogenic and osteogenic differentiation. We used lentiviral approach to modify human MMSC with LMNA-constructs bearing mutations associated with different laminopathies--G465D, R482L, G232E, R527C, and R471C. The impact of various mutations on MMSC differentiation properties and expression profile was assessed by colony-forming unit analysis, histological staining, expression of the key differentiation markers promoting adipogenesis and osteogenesis followed by the analysis of the whole set of genes involved in lineage-specific differentiation using PCR expression arrays. We demonstrate that various LMNA mutations influence the differentiation efficacy of MMSC in mutation-specific manner. Each LMNA mutation promotes a unique expression pattern of genes involved in a lineage-specific differentiation and this pattern is shared by the phenotype-specific mutations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Non-redundant functional groups of chemokines operate in a coordinate manner during the inflammatory response in the lung.

    Science.gov (United States)

    Gutierrez-Ramos, J C; Lloyd, C; Kapsenberg, M L; Gonzalo, J A; Coyle, A J

    2000-10-01

    The understanding of the relative contribution of particular chemokines to the selective accumulation of leukocyte subsets to an organ site during an inflammatory response is made difficult by the simultaneous presence of multiple chemokines with partially overlapping functions at the inflammatory site. The study of several chemokine pathways (expression and function) during the development of a mouse model of allergic airway disease (AAD) has revealed differential expression regulation with distinct cellular sources for individual chemokines with functional bias for the recruitment/localization of regulatory and/or effector leukocyte subsets. In the present review, we propose that distinct functional groups of chemokines co-operate to generate the complete inflammatory response in the lung during AAD. We will also extend these concepts to the specific recruitment of a key cellular subset such as T helper type 2 (Th2) lymphocytes. We propose that the long term recruitment of antigen-specific Th2 cells to target organs, such as airways during chronic lung inflammation, is the result the sequential involvement of several chemotactic axes. Specifically, the CCR3/eotaxin and the CCR4/MDC pathway act in a coordinated co-operative manner, with the CCR3/eotaxin pathway being critical in the acute/early stages of a response, followed by the CCR4/MDC pathway, which ultimately dominates in the recruitment of antigen-specific Th2 cells. Other chemokines/receptors participate in this process possibly by amplifying/priming the Th2 recruitment response.

  11. Induced Treg Cells Augment the Th17-Mediated Intestinal Inflammatory Response in a CTLA4-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Nobumasa Watanabe

    Full Text Available Th17 cells and Foxp3+ regulatory T cells (Tregs are thought to promote and suppress inflammatory responses, respectively. However, whether they counteract each other or synergize in regulating immune reactions remains controversial. To determine their interactions, we describe the results of experiments employing mouse models of intestinal inflammation by transferring antigen-specific Th cells (Th1, Th2, and Th17 differentiated in vitro followed by the administration of the cognate antigen via enema. We show that cotransfer of induced Tregs (iTregs suppressed Th1- and Th2-mediated colon inflammation. In contrast, colon inflammation induced by transfer of Th17 cells, was augmented by the cotransfer of iTregs. Furthermore, oral delivery of antigen potentiated Th17-mediated colon inflammation. Administration of a blocking antibody against cytotoxic T lymphocyte-associated antigen 4 (CTLA4 abrogated the effects of cotransfer of iTregs, while the injection of a soluble recombinant immunoglobulin (Ig fusion protein, CTLA4-Ig substituted for the cotransfer of iTregs. These results suggest that antigen-specific activation of iTregs in a local environment stimulates the Th17-mediated inflammatory response in a CTLA4-dependent manner.

  12. Promoting health and improving health care in a cost-effective manner through a military digital library.

    Science.gov (United States)

    Stoloff, Peter H; D'Alessandro, Michael P; D'Alessandro, Donna M; Bakalar, Richard S

    2006-01-01

    The Virtual Naval Hospital (VNH) is a digital library designed to meet the information needs of U.S. Navy medical professionals. The goal of this study was to determine whether the VNH promoted health and improved patient care in a cost-effective manner. An economic analysis determining the costs and benefits from the perspective of the U.S. Navy was conducted. As part of this analysis, medical professionals were surveyed from February to August 2000. Respondents used the VNH for a variety of professional activities (average, 8.2 h/wk). Respondents (70%) thought that VNH usage improved patient care. Medical providers thought it improved their diagnosis (70%) and treatment (60%). Respondents stated that the VNH affected 81 medical evacuations and 668 sick-in-quarter days. Overall content satisfaction was 94%. The VNH had a net savings of $143,848/yr and a cost/benefit ratio of 55.9%. The VNH has a beneficial impact on the Navy's health care system by improving health promotion and patient care and by being economically cost-effective.

  13. Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner.

    Science.gov (United States)

    de Jong, Simone; Chepelev, Iouri; Janson, Esther; Strengman, Eric; van den Berg, Leonard H; Veldink, Jan H; Ophoff, Roel A

    2012-09-06

    Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.

  14. Plasma-arc generated light inhibits proliferation and induces apoptosis of human gingival fibroblasts in a dose-dependent manner.

    Science.gov (United States)

    Hwang, In-Yong; Son, Young-Ok; Kim, Ji-Hae; Jeon, Young-Mi; Kim, Jong-Ghee; Lee, Choon-Bong; Park, Jong-Sun; Lee, Jeong-Chae

    2008-08-01

    This study examined the effects of blue light exposure on the proliferation and cytotoxicity of human gingival fibroblasts (HGF). Cellular mechanism by which blue light causes cytotoxic effects was also investigated. HGF were exposed to the plasma-arc generated blue light with various energy densities ranging from 2 to 48J/cm(2). After light exposure of the cells, they were processed for analyzing tritium incorporation, succinate dehydrogenase (SDH) activity, trypan blue exclusion, and DNA fragmentation. In addition, possible mechanism of the light-mediated cytotoxicity was investigated through flow cytometric and Western blot analyses. Blue light exposure significantly inhibited proliferation and SDH activity of HGF in a dose-dependent manner; exposure more than 12J/cm(2) had a toxic effect on the cells. The blue light-induced cytotoxicity of the cells resulted from apoptosis, as proven by the migration of many cells to the sub-G(1) phase of cell cycle and the appearance of DNA ladders. Additional experiments revealed that blue light induces apoptosis of HGF through mitochondrial stress and poly (ADP ribose) polymerase cleavage. This study suggests that plasma-arc generated blue light exerts some harm to cells, particularly damaging effect to DNA, and thus a long curing time more than recommended can cause biological damage on the oral tissue.

  15. ADF/cofilin binds phosphoinositides in a multivalent manner to act as a PIP(2)-density sensor.

    Science.gov (United States)

    Zhao, Hongxia; Hakala, Markku; Lappalainen, Pekka

    2010-05-19

    Actin-depolymerizing-factor (ADF)/cofilins have emerged as key regulators of cytoskeletal dynamics in cell motility, morphogenesis, endocytosis, and cytokinesis. The activities of ADF/cofilins are regulated by membrane phospholipid PI(4,5)P(2) in vitro and in cells, but the mechanism of the ADF/cofilin-PI(4,5)P(2) interaction has remained controversial. Recent studies suggested that ADF/cofilins interact with PI(4,5)P(2) through a specific binding pocket, and that this interaction is dependent on pH. Here, we combined systematic mutagenesis with biochemical and spectroscopic methods to elucidate the phosphoinositide-binding mechanism of ADF/cofilins. Our analysis revealed that cofilin does not harbor a specific PI(4,5)P(2)-binding pocket, but instead interacts with PI(4,5)P(2) through a large, positively charged surface of the molecule. Cofilin interacts simultaneously with multiple PI(4,5)P(2) headgroups in a cooperative manner. Consequently, interactions of cofilin with membranes and actin exhibit sharp sensitivity to PI(4,5)P(2) density. Finally, we show that cofilin binding to PI(4,5)P(2) is not sensitive to changes in the pH at physiological salt concentration, although the PI(4,5)P(2)-clustering activity of cofilin is moderately inhibited at elevated pH. Collectively, our data demonstrate that ADF/cofilins bind PI(4,5)P(2) headgroups through a multivalent, cooperative mechanism, and suggest that the actin filament disassembly activity of ADF/cofilin can be accurately regulated by small changes in the PI(4,5)P(2) density at cellular membranes. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Ultrabithorax and abdominal-A specify the abdominal appendage in a dosage-dependent manner in silkworm, Bombyx mori.

    Science.gov (United States)

    Tong, X L; Fu, M Y; Chen, P; Chen, L; Xiang, Z H; Lu, C; Dai, F Y

    2017-06-01

    In insects, there is a considerable diversity in leg distribution on the body, including number, segmental arrangement, morphological identity and consequent function, but the genetic basis for these differences is not well understood. Here by positional cloning, we showed that a ~355 kb region, including Bombyx mori Ultrabithorax (BmUbx) and abdominal-A (Bmabd-A), was responsible for the silkworm mutant Kh-extra-crescents-like (E(Kh)-l) that displayed additional thoracic limb-like legs on the first abdominal segment (A1) and occasionally on the second abdominal segment (A2). We found that BmUbx gene was downregulated at both messenger RNA level and protein level in E(Kh)-l embryo, while its expression domain in the E(Kh)-l embryo was almost the same as that in the wild type. Whereas Bmabd-A was upregulated at both levels and was ectopically overexpressed on the supernumerary leg-bearing segments in E(Kh)-l. Compared with the previously reported E(cs)-l mutant in which increased expression of both BmUbx and Bmabd-A gave rise to ectopic proleg-like appendages on the same segments, we propose that overexpressed Bmabd-A gene is capable to promote the outgrowth of extra leg appendages on A1 and A2 segments, whereas BmUbx gene is required to specify accurate morphologies of the ectopic legs in a dosage-dependent manner in silkworm. These results provide insights into how these hox genes regulate the leg morphologic diversity on the same segments.

  17. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse.

    Science.gov (United States)

    Ruskin, David N; Fortin, Jessica A; Bisnauth, Subrina N; Masino, Susan A

    2017-01-01

    The core symptoms of autism spectrum disorder are poorly treated with current medications. Symptoms of autism spectrum disorder are frequently comorbid with a diagnosis of epilepsy and vice versa. Medically-supervised ketogenic diets are remarkably effective nonpharmacological treatments for epilepsy, even in drug-refractory cases. There is accumulating evidence that supports the efficacy of ketogenic diets in treating the core symptoms of autism spectrum disorders in animal models as well as limited reports of benefits in patients. This study tests the behavioral effects of ketogenic diet feeding in the EL mouse, a model with behavioral characteristics of autism spectrum disorder and comorbid epilepsy. Male and female EL mice were fed control diet or one of two ketogenic diet formulas ad libitum starting at 5weeks of age. Beginning at 8weeks of age, diet protocols continued and performance of each group on tests of sociability and repetitive behavior was assessed. A ketogenic diet improved behavioral characteristics of autism spectrum disorder in a sex- and test-specific manner; ketogenic diet never worsened relevant behaviors. Ketogenic diet feeding improved multiple measures of sociability and reduced repetitive behavior in female mice, with limited effects in males. Additional experiments in female mice showed that a less strict, more clinically-relevant diet formula was equally effective in improving sociability and reducing repetitive behavior. Taken together these results add to the growing number of studies suggesting that ketogenic and related diets may provide significant relief from the core symptoms of autism spectrum disorder, and suggest that in some cases there may be increased efficacy in females. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and -independent manners.

    Directory of Open Access Journals (Sweden)

    Tetsuhiro Chiba

    Full Text Available Tumor-initiating cells (TICs play a central role in tumor development, metastasis, and recurrence. In the present study, we investigated the effect of disulfiram (DSF, an inhibitor of aldehyde dehydrogenase, toward tumor-initiating hepatocellular carcinoma (HCC cells. DSF treatment suppressed the anchorage-independent sphere formation of both HCC cells. Flow cytometric analyses showed that DSF but not 5-fluorouracil (5-FU drastically reduces the number of tumor-initiating HCC cells. The sphere formation assays of epithelial cell adhesion molecule (EpCAM(+ HCC cells co-treated with p38-specific inhibitor revealed that DSF suppresses self-renewal capability mainly through the activation of reactive oxygen species (ROS-p38 MAPK pathway. Microarray experiments also revealed the enrichment of the gene set involved in p38 MAPK signaling in EpCAM(+ cells treated with DSF but not 5-FU. In addition, DSF appeared to downregulate Glypican 3 (GPC3 in a manner independent of ROS-p38 MAPK pathway. GPC3 was co-expressed with EpCAM in HCC cell lines and primary HCC cells and GPC3-knockdown reduced the number of EpCAM(+ cells by compromising their self-renewal capability and inducing the apoptosis. These results indicate that DSF impaired the tumorigenicity of tumor-initiating HCC cells through activation of ROS-p38 pathway and in part through the downregulation of GPC3. DSF might be a promising therapeutic agent for the eradication of tumor-initiating HCC cells.

  19. Cytopathogenesis of vesicular stomatitis virus is regulated by the PSAP motif of M protein in a species-dependent manner.

    Science.gov (United States)

    Irie, Takashi; Liu, Yuliang; Drolet, Barbara S; Carnero, Elena; García-Sastre, Adolfo; Harty, Ronald N

    2012-09-01

    Vesicular stomatitis virus (VSV) is an important vector-borne pathogen of bovine and equine species, causing a reportable vesicular disease. The matrix (M) protein of VSV is multifunctional and plays a key role in cytopathogenesis, apoptosis, host protein shut-off, and virion assembly/budding. Our previous findings indicated that mutations of residues flanking the (37)PSAP(40) motif within the M protein resulted in VSV recombinants having attenuated phenotypes in mice. In this report, we characterize the phenotype of VSV recombinant PS > A4 (which harbors four alanines (AAAA) in place of the PSAP motif without disruption of flanking residues) in both mice, and in Aedes albopictus C6/36 mosquito and Culicoides sonorensis KC cell lines. The PS > A4 recombinant displayed an attenuated phenotype in infected mice as judged by weight loss, mortality, and viral titers measured from lung and brain samples of infected animals. However, unexpectedly, the PS > A4 recombinant displayed a robust cytopathic phenotype in insect C6/36 cells compared to that observed with control viruses. Notably, titers of recombinant PS > A4 were approximately 10-fold greater than those of control viruses in infected C6/36 cells and in KC cells from Culicoides sonorensis, a known VSV vector species. In addition, recombinant PS > A4 induced a 25-fold increase in the level of C3 caspase activity in infected C6/36 cells. These findings indicate that the PSAP motif plays a direct role in regulating cytopathogenicity in a species-dependent manner, and suggest that the intact PSAP motif may be important for maintaining persistence of VSV in an insect host.

  20. The anthocyanin cyanidin-3-O-β-glucoside modulates murine glutathione homeostasis in a manner dependent on genetic background.

    Science.gov (United States)

    Norris, Katie M; Okie, Whitney; Yakaitis, Claire L; Pazdro, Robert

    2016-10-01

    Anthocyanins are a class of phytochemicals that have generated considerable interest due to their reported health benefits. It has been proposed that commonly consumed anthocyanins, such as cyandin-3-O-β-glucoside (C3G), confer cellular protection by stimulating biosynthesis of glutathione (GSH), an endogenous antioxidant. Currently, it is unknown whether the health effects of dietary anthocyanins are genetically determined. We therefore tested the hypothesis that anthocyanin-induced alterations in GSH homeostasis vary by genetic background. Mice representing five genetically diverse inbred strains (A/J, 129S1/SvImJ, CAST/EiJ, C57BL/6J, and NOD/ShiLtJ) were assigned to a control or 100mg/kg C3G diet (n=5/diet/strain) for six weeks. GSH and GSSG levels were quantified in liver, kidney, heart, pancreas, and brain samples using HPLC. The C3G diet promoted an increase in renal GSH concentrations, hepatic GSH/GSSG, and cardiac GSH/GSSG in CAST/EiJ mice. C3G treatment also induced an increase in pancreatic GSH/GSSG in C57BL/6J mice. In contrast, C3G did not affect GSH homeostasis in NOD/ShiLtJ mice. Surprisingly, the C3G-diet caused a decrease in hepatic GSH/GSSG in A/J and 129S1/SvImJ mice compared to controls; C3G-treated 129S1/SvImJ mice also exhibited lower total glutathione in the heart. Overall, we discovered that C3G modulates the GSH system in a strain- and tissue-specific manner. To our knowledge, this study is the first to show that the redox effects of anthocyanins are determined by genetic background. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamin-dependent manner.

    Science.gov (United States)

    Waly, Mostafa I; Kharbanda, Kusum K; Deth, Richard C

    2011-02-01

    Methionine synthase (MS) is a ubiquitous enzyme that requires vitamin B12 (cobalamin) and 5-methyl-tetrahydrofolate for the methylation of homocysteine to methionine. Previous studies have shown that acute or chronic ethanol (ETOH) administration results in the inhibition of MS and depletion of glutathione (GSH), and it has been proposed that GSH is required for the synthesis of methylcobalamin (MeCbl). We measured GSH levels and investigated the ability of different cobalamin cofactors [cyano- (CNCbl), glutathionyl- (GSCbl), hydroxo- (OHCbl), and MeCbl] to support MS activity in liver and brain cortex from control and ETOH-treated rats. In control animals, MS activity was higher in liver than in cortex for all cobalamins and MeCbl-based activity was higher than for other cofactors. S-adenosylmethionine (SAM) was required for OHCbl, CNCbl, and GSCbl-based activity, but not for MeCbl. Feeding an ETOH-containing diet for four weeks caused a significant decrease in liver MS activity, in a cobalamin-dependent manner (OHCbl ≥ CNCbl > GSCbl > MeCbl). In brain cortex, OHCbl, CNCbl, and GSCbl-based activity was reduced by ETOH treatment, but MeCbl-based activity was unaffected. GSH levels were reduced by ETOH treatment in both liver and cortex homogenates, and addition of GSH restored OHCbl-based MS activity to control levels. Betaine administration had no significant effect on GSH levels or MS activity in either control or ETOH-fed groups. The ETOH-induced decrease in OHCbl-based MS activity is secondary to decreased GSH levels and a decreased ability to synthesize MeCbl. The ability of MeCbl to completely offset ETOH inhibition in brain cortex, but not liver, suggests tissue-specific differences in the GSH-dependent regulation of MS activity. Copyright © 2010 by the Research Society on Alcoholism.

  2. Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner.

    Science.gov (United States)

    Machiya, Youhei; Hara, Susumu; Arawaka, Shigeki; Fukushima, Shingo; Sato, Hiroyasu; Sakamoto, Masahiro; Koyama, Shingo; Kato, Takeo

    2010-12-24

    α-Synuclein (a-Syn) is a major component of fibrillar aggregates in Lewy bodies (LBs), a characteristic hallmark of Parkinson disease. Almost 90% of a-Syn deposited in LBs is phosphorylated at Ser-129. However, the role of Ser-129-phosphorylated a-Syn in the biogenesis of LBs remains unclear. Here, we investigated the metabolism of Ser-129-phosphorylated a-Syn. In SH-SY5Y cells, inhibition of protein phosphatase 2A/1 by okadaic acid, and inhibition of the proteasome pathway by MG132 or lactacystin accumulated Ser-129-phosphorylated a-Syn. However, these inhibitions did not alter the amounts of total a-Syn within the observation time. Inhibition of the autophagy-lysosome pathway by 3-methyladenine or chloroquine accumulated Ser-129-phosphorylated a-Syn in parallel to total a-Syn during longer incubations. Experiments using cycloheximide showed that Ser-129-phosphorylated a-Syn diminished rapidly (t(½) = 54.9 ± 6.4 min), in contrast to the stably expressed total a-Syn. The short half-life of Ser-129-phosphorylated a-Syn was blocked by MG132 to a greater extent than okadaic acid. In rat primary cortical neurons, either MG132, lactacystin, or okadaic acid accumulated Ser-129-phosphorylated a-Syn. Additionally, we did not find that phosphorylated a-Syn was ubiquitinated in the presence of proteasome inhibitors. These data show that Ser-129-phosphorylated a-Syn is targeted to the proteasome pathway in a ubiquitin-independent manner, in addition to undergoing dephosphorylation. The proteasome pathway may play a role in the biogenesis of Ser-129-phosphorylated a-Syn-rich LBs.

  3. Phosphorylated α-Synuclein at Ser-129 Is Targeted to the Proteasome Pathway in a Ubiquitin-independent Manner*

    Science.gov (United States)

    Machiya, Youhei; Hara, Susumu; Arawaka, Shigeki; Fukushima, Shingo; Sato, Hiroyasu; Sakamoto, Masahiro; Koyama, Shingo; Kato, Takeo

    2010-01-01

    α-Synuclein (a-Syn) is a major component of fibrillar aggregates in Lewy bodies (LBs), a characteristic hallmark of Parkinson disease. Almost 90% of a-Syn deposited in LBs is phosphorylated at Ser-129. However, the role of Ser-129-phosphorylated a-Syn in the biogenesis of LBs remains unclear. Here, we investigated the metabolism of Ser-129-phosphorylated a-Syn. In SH-SY5Y cells, inhibition of protein phosphatase 2A/1 by okadaic acid, and inhibition of the proteasome pathway by MG132 or lactacystin accumulated Ser-129-phosphorylated a-Syn. However, these inhibitions did not alter the amounts of total a-Syn within the observation time. Inhibition of the autophagy-lysosome pathway by 3-methyladenine or chloroquine accumulated Ser-129-phosphorylated a-Syn in parallel to total a-Syn during longer incubations. Experiments using cycloheximide showed that Ser-129-phosphorylated a-Syn diminished rapidly (t½ = 54.9 ± 6.4 min), in contrast to the stably expressed total a-Syn. The short half-life of Ser-129-phosphorylated a-Syn was blocked by MG132 to a greater extent than okadaic acid. In rat primary cortical neurons, either MG132, lactacystin, or okadaic acid accumulated Ser-129-phosphorylated a-Syn. Additionally, we did not find that phosphorylated a-Syn was ubiquitinated in the presence of proteasome inhibitors. These data show that Ser-129-phosphorylated a-Syn is targeted to the proteasome pathway in a ubiquitin-independent manner, in addition to undergoing dephosphorylation. The proteasome pathway may play a role in the biogenesis of Ser-129-phosphorylated a-Syn-rich LBs. PMID:20959456

  4. Sialylation of Glycosylphosphatidylinositol (GPI) Anchors of Mammalian Prions Is Regulated in a Host-, Tissue-, and Cell-specific Manner*

    Science.gov (United States)

    Katorcha, Elizaveta; Srivastava, Saurabh; Klimova, Nina; Baskakov, Ilia V.

    2016-01-01

    Prions or PrPSc are proteinaceous infectious agents that consist of misfolded, self-replicating states of the prion protein or PrPC. PrPC is posttranslationally modified with N-linked glycans and a sialylated glycosylphosphatidylinositol (GPI) anchor. Conformational conversion of PrPC gives rise to glycosylated and GPI-anchored PrPSc. The question of the sialylation status of GPIs within PrPSc has been controversial. Previous studies that examined scrapie brains reported that both sialo- and asialo-GPIs were present in PrPSc, with the majority being asialo-GPIs. In contrast, recent work that employed cultured cells claimed that only PrPC with sialylo-GPIs could be recruited into PrPSc, whereas PrPC with asialo-GPIs inhibited conversion. To resolve this controversy, we analyzed the sialylation status of GPIs within PrPSc generated in the brain, spleen, or cultured N2a or C2C12 myotube cells. We found that recruiting PrPC with both sialo- and asialo-GPIs is a common feature of PrPSc. The mixtures of sialo- and asialo-GPIs were observed in PrPSc universally regardless of prion strain as well as host, tissue, or type of cells that produced PrPSc. Remarkably, the proportion of sialo- versus asialo-GPIs was found to be controlled by host, tissue, and cell type but not prion strain. In summary, this study found no strain-specific preferences for selecting PrPC with sialo- versus asialo-GPIs. Instead, this work suggests that the sialylation status of GPIs within PrPSc is regulated in a cell-, tissue-, or host-specific manner and is likely to be determined by the specifics of GPI biosynthesis. PMID:27317661

  5. Circumventing Cellular Control of PP2A by Methylation Promotes Transformation in an Akt-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Jennifer B. Jackson

    2012-07-01

    Full Text Available Heterotrimeric protein phosphatase 2A (PP2A consists of catalytic C (PP2Ac, structural A, and regulatory B-type subunits, and its dysfunction has been linked to cancer. Reversible methylation of PP2Ac by leucine carboxyl methyltransferase 1 (LCMT-1 and protein phosphatase methylesterase 1 (PME-1 differentially regulates B-type subunit binding and thus PP2A function. Polyomavirus middle (PyMT and small (PyST tumor antigens and SV40 small tumor antigen (SVST are oncoproteins that block PP2A function by replacing certain B-type subunits, resulting in cellular transformation. Whereas the B-type subunits replaced by these oncoproteins seem to exhibit a binding preference for methylated PP2Ac, PyMT does not. We hypothesize that circumventing the normal cellular control of PP2A by PP2Ac methylation is a general strategy for ST- and MT-mediated transformation. Two predictions of this hypothesis are (1 that PyST and SVST also bind PP2A in a methylation-insensitive manner and (2 that down-regulation of PP2Ac methylation will activate progrowth and prosurvival signaling and promote transformation. We found that SVST and PyST, like PyMT, indeed form PP2A heterotrimers independently of PP2Ac methylation. In addition, reducing PP2Ac methylation through LCMT-1 knockdown or PME-1 overexpression enhanced transformation by activating the Akt and p70/p85 S6 kinase (S6K pathways, pathways also activated by MT and ST oncoproteins. These results support the hypothesis that MT and ST oncoproteins circumvent cellular control of PP2A by methylation to promote transformation. They also implicate LCMT-1 as a negative regulator of Akt and p70/p85 S6K. Therefore, disruption of PP2Ac methylation may contribute to cancer, and modulation of this methylation may serve as an anticancer target.

  6. The Enterohemorrhagic Escherichia coli Effector EspW Triggers Actin Remodeling in a Rac1-Dependent Manner.

    Science.gov (United States)

    Sandu, Pamela; Crepin, Valerie F; Drechsler, Hauke; McAinsh, Andrew D; Frankel, Gad; Berger, Cedric N

    2017-09-01

    Enterohemorrhagic Escherichia coli (EHEC) is a diarrheagenic pathogen that colonizes the gut mucosa and induces attaching-and-effacing lesions. EHEC employs a type III secretion system (T3SS) to translocate 50 effector proteins that hijack and manipulate host cell signaling pathways, which allow bacterial colonization and subversion of immune responses and disease progression. The aim of this study was to characterize the T3SS effector EspW. We found espW in the sequenced O157:H7 and non-O157 EHEC strains as well as in Shigella boydii Furthermore, a truncated version of EspW, containing the first 206 residues, is present in EPEC strains belonging to serotype O55:H7. Screening a collection of clinical EPEC isolates revealed that espW is present in 52% of the tested strains. We report that EspW modulates actin dynamics in a Rac1-dependent manner. Ectopic expression of EspW results in formation of unique membrane protrusions. Infection of Swiss cells with an EHEC espW deletion mutant induces a cell shrinkage phenotype that could be rescued by Rac1 activation via expression of the bacterial guanine nucleotide exchange factor, EspT. Furthermore, using a yeast two-hybrid screen, we identified the motor protein Kif15 as a potential interacting partner of EspW. Kif15 and EspW colocalized in cotransfected cells, while ectopically expressed Kif15 localized to the actin pedestals following EHEC infection. The data suggest that Kif15 recruits EspW to the site of bacterial attachment, which in turn activates Rac1, resulting in modifications of the actin cytoskeleton that are essential to maintain cell shape during infection. Copyright © 2017 Sandu et al.

  7. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner

    Science.gov (United States)

    Wang, Jing; Long, Cheng; Zhang, Haijun; Zhang, Yanan; Wang, Hao; Yue, Hongyuan; Wang, Xiaocui; Wu, Shugeng; Qi, Guanghai

    2016-01-01

    Genetic variant T329S in flavin-containing monooxygenase 3 (FMO3) impairs trimethylamine (TMA) metabolism in birds. The TMA metabolism that under complex genetic and dietary regulation, closely linked to cardiovascular disease risk. We determined whether the genetic defects in TMA metabolism may change other metabolic traits in birds, determined whether the genetic effects depend on diets, and to identify genes or gene pathways that underlie the metabolic alteration induced by genetic and diet factors. We used hens genotyped as FMO3 c.984 A>T as well as those with the homozygous normal genotype. For each genotype, hens were provided with either a corn-soybean meal basal diets (SM), which contains lower levels of TMA precursor, or the basal diets supplemented with 21% of rapeseed meal (RM), which contains higher levels of TMA precursor. An integrative analysis of metabolomic and transcriptomic was used to explore the metabolic patterns of FMO3 genetic variant in hens that were fed the two defined diets. In birds that consumed SM diets, the T329S mutation increased levels of plasma TMA and lipids, FMO3 mRNA levels, and the expression of genes involved in long chain polyunsaturated fatty acid biosynthesis. In birds that consumed RM diets, the T329S mutation induced fishy odor syndrome, a repression in LXR pathway and a reciprocal change in lipid metabolism. Variations in TMA and lipid metabolism were linked to the genetic variant in FMO3 in a diet-specific manner, which suggest FMO3 functions in TMA metabolism and lipid homeostasis. LXR pathway and polyunsaturated fatty acid metabolism are two possible mechanisms of FMO3 action in response to dietary TMA precursor. PMID:27877090

  8. Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner.

    Science.gov (United States)

    Prince, Calais S; Maloyan, Alina; Myatt, Leslie

    2017-01-01

    Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. BDNF signaling was measured in placentas from lean (pre-pregnancy BMI 30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Letrozole regulates actin cytoskeleton polymerization dynamics in a SRC-1 dependent manner in the hippocampus of mice.

    Science.gov (United States)

    Zhao, Yangang; Yu, Yanlan; Zhang, Yuanyuan; He, Li; Qiu, Linli; Zhao, Jikai; Liu, Mengying; Zhang, Jiqiang

    2017-03-01

    In the hippocampus, local estrogens (E2) derived from testosterone that is catalyzed by aromatase play important roles in the regulation of hippocampal neural plasticity, but the underlying mechanisms remain unclear. The actin cytoskeleton contributes greatly to hippocampal synaptic plasticity; however, whether it is regulated by local E2 and the related mechanisms remain to be elucidated. In this study, we first examined the postnatal developmental profiles of hippocampal aromatase and specific proteins responsible for actin cytoskeleton dynamics. Then we used aromatase inhibitor letrozole (LET) to block local E2 synthesis and examined the changes of these proteins and steroid receptor coactivator-1 (SRC-1), the predominant coactivator for steroid nuclear receptors. Finally, SRC-1 specific RNA interference was used to examine the effects of SRC-1 on the expression of these actin remodeling proteins. The results showed a V-type profile for aromatase and increased profiles for actin cytoskeleton proteins in both male and female hippocampus without obvious sex differences. LET treatment dramatically decreased the F-actin/G-actin ratio, the expression of Rictor, phospho-AKT (ser473), Profilin-1, phospho-Cofilin (Ser3), and SRC-1 in a dose-dependent manner. In vitro studies demonstrated that LET induced downregulation of these proteins could be reversed by E2, and E2 induced increase of these proteins were significantly suppressed by SRC-1 shRNA interference. These results for the first time clearly demonstrated that local E2 inhibition could induce aberrant actin polymerization; they also showed an important role of SRC-1 in the mediation of local E2 action on hippocampal synaptic plasticity by regulation of actin cytoskeleton dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. How to gather information from talkative patients in a respectful and efficient manner: a qualitative study of GPs' communication strategies.

    Science.gov (United States)

    Giroldi, Esther; Veldhuijzen, Wemke; Dijkman, Annika; Rozestraten, Maxime; Muris, Jean; van der Vleuten, Cees; van der Weijden, Trudy

    2016-02-01

    Gathering information from talkative patients presents a challenge to clinicians. Empirical evidence on how to effectively deal with this challenge is scant. This study explores communication strategies and their underlying mechanisms that GPs consider effective when gathering information from talkative patients in order to inform the development of best practices. We conducted a qualitative study with experienced GPs. We held individual stimulated-recall interviews (SRIs) with six GPs using their videotaped consultations as a stimulus. The transcripts that ensued were triangulated with data from three focus-group discussions (FGs). We performed a thematic network analysis during an iterative process of data collection and analysis. To deal with talkative patients during consultations, GPs first try to pinpoint the cause of patients' talkativeness before deciding on the approach to take. Moreover, they resort to the familiar communication strategies, however, in doing so adopt take a more directive attitude. To prevent such attitude from damaging the relationship, GPs take a stepped approach in which they try not to be overly directive, make the patient co-responsible for efficient time management and make use of empathic interrupting. In the absence of evidence, this description of GPs' communication strategies can guide clinicians, residents and students in gathering information from talkative patients in an efficient, yet empathic and respectful manner. When developing best practices, heed should be paid to the causes of patients' talkativeness and the tension between taking a directive approach and building a doctor-patient relationship. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tao; Meng, Lingjun [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States); Tsai, Robert Y.L., E-mail: rtsai@ibt.tamhsc.edu [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States)

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  12. Plasma choline metabolites associate with metabolic stress among young overweight men in a genotype-specific manner.

    Science.gov (United States)

    Yan, J; Winter, L B; Burns-Whitmore, B; Vermeylen, F; Caudill, M A

    2012-10-08

    We aimed to test the hypotheses that (i) plasma choline metabolites differ between normal (body mass index (BMI)men, and (ii) an elevated BMI alters associations between plasma choline metabolites and indicators of metabolic stress. This was a cross-sectional study. A one-time fasting blood sample was obtained for measurements of the choline metabolites and metabolic stress indicators (that is, serum alanine aminotransferase (ALT), glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and homocysteine), and for genotype determination. The analysis was conducted with 237 Mexican American men with a median age of 22 years. Compared with men with a normal BMI (n=98), those with an elevated BMI (n=139) had 6% lower (P=0.049) plasma betaine and an 11% lower (P=0.002) plasma betaine to choline ratio. Among men with an elevated BMI, plasma betaine and the plasma betaine to choline ratio positively associated (P0.044) with a favorable serum cholesterol profile, and inversely associated (P=0.001) with serum ALT, a marker of liver dysfunction. The phosphatidylethanolamine N-methyltransferase (PEMT) 5465GA (rs7946) genotype interacted (P0.007) with the plasma betaine to choline ratio to modulate indicators of metabolic stress with stronger inverse associations observed among overweight men with the PEMT 5465GG genotype. Plasma choline metabolites predict metabolic stress among overweight men often in a genotype-specific manner. The diminished betaine among overweight men coupled with the inverse association between betaine and metabolic stress suggest that betaine supplementation may be effective in mitigating some of the metabolic insults arising from lipid overload.

  13. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner.

    Science.gov (United States)

    Geisseler, Olivia; Pflugshaupt, Tobias; Bezzola, Ladina; Reuter, Katja; Weller, David; Schuknecht, Bernhard; Brugger, Peter; Linnebank, Michael

    2016-01-01

    Cognitive impairment is as an important feature of Multiple Sclerosis (MS), and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters - including cortical thinning and T2 lesion load - to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal - but not figural - fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  14. Galactomyces fermentation filtrate prevents T helper 2-mediated reduction of filaggrin in an aryl hydrocarbon receptor-dependent manner.

    Science.gov (United States)

    Takei, K; Mitoma, C; Hashimoto-Hachiya, A; Takahara, M; Tsuji, G; Nakahara, T; Furue, M

    2015-10-01

    The aryl hydrocarbon receptor (AhR) recognizes diverse small molecules such as dioxins, tryptophan photoproducts and phytochemicals. It also plays crucial roles in epidermal homeostasis by upregulating epidermal barrier proteins. In preliminary screening, we found that Galactomyces fermentation filtrate (GFF), a cosmetic compound, was capable of activating AhR. To examine whether GFF upregulates the expression of the filaggrin and loricrin genes, FLG and LOR, in an AhR-dependent manner. The activation (cytoplasmic to nuclear translocation) of AhR was confirmed by immunofluorescence study and by upregulation of an AhR-specific marker, cytochrome P450-1A1 (CYP1A1). Gene expression levels were compared by quantitative reverse transcription PCR with or without GFF, interleukin (IL)-4 or IL-13 in normal human keratinocytes. AhR or control knockdown was carried out by transfection with AhR or control small interfering RNA. The protein expression of FLG and LOR was examined by immunohistochemistry using a three-dimensional epidermal equivalent treated with or without GFF or T helper (Th)2 cytokines. GFF induced the nuclear translocation of AhR with significant and dose-dependent upregulation of CYP1A1, FLG and LOR gene expression. The enhancing effects of GFF were abolished in AhR-knockdown keratinocytes. Th2 cytokines decreased expression of genes for FLG and LOR, and this expression was completely restored in the presence of GFF. The downregulated expression of the FLG gene with its restoration by GFF was also evident in the epidermal equivalent. GFF also upregulated the gene expression of genes encoding occludin, claudin-1 and 4, and kallikrein 5 and 7. Use of GFF is feasible to prevent the Th2-mediated reduction of FLG in an AhR-dependent fashion. © 2015 The Authors Clinical and Experimental Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists, North American Clinical Dermatologic Society and St Johns Dermatological

  15. Platelets induce apoptosis during sepsis in a contact-dependent manner that is inhibited by GPIIb/IIIa blockade.

    Directory of Open Access Journals (Sweden)

    Matthew Sharron

    Full Text Available PURPOSE: End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS, especially where platelets accumulate (e.g. spleen and lung. We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s of and mechanism(s by which platelet granzyme B induces end-organ apoptosis in sepsis. METHODS: End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score. MEASUREMENTS AND MAIN RESULTS: There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008. Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice. CONCLUSIONS: In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis.

  16. Platelets Induce Apoptosis during Sepsis in a Contact-Dependent Manner That Is Inhibited by GPIIb/IIIa Blockade

    Science.gov (United States)

    Sharron, Matthew; Hoptay, Claire E.; Wiles, Andrew A.; Garvin, Lindsay M.; Geha, Mayya; Benton, Angela S.; Nagaraju, Kanneboyina; Freishtat, Robert J.

    2012-01-01

    Purpose End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS), especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which platelet granzyme B induces end-organ apoptosis in sepsis. Methods End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score. Measurements and Main Results There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice. Conclusions In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis. PMID:22844498

  17. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner.

    Science.gov (United States)

    Gralka, Ewa; Luchinat, Claudio; Tenori, Leonardo; Ernst, Barbara; Thurnheer, Martin; Schultes, Bernd

    2015-12-01

    Obesity is associated with multiple diseases. Bariatric surgery is the most effective therapy for severe obesity that can reduce body weight and obesity-associated morbidity. The metabolic alterations associated with obesity and respective changes after bariatric surgery are incompletely understood. We comprehensively assessed metabolic alterations associated with severe obesity and distinct bariatric procedures. In our longitudinal observational study, we applied a (1)H-nuclear magnetic resonance-based global, untargeted metabolomics strategy on human serum samples that were collected before and repeatedly ≤1 y after distinct bariatric procedures [i.e., a sleeve gastrectomy, proximal Roux-en Y gastric bypass (RYGB), and distal RYGB]. For comparison, we also analyzed serum samples from normal-weight and less-obese subjects who were matched for 1-y postoperative body mass index (BMI) values of the surgical groups. We identified a metabolomic fingerprint in obese subjects that was clearly discriminated from that of normal-weight subjects. Furthermore, we showed that bariatric surgery (sleeve gastrectomy and proximal and distal RYGB) dynamically affected this fingerprint in a procedure-dependent manner, thereby establishing new fingerprints that could be discriminated from those of BMI-matched and normal-weight control subjects. Metabolites that largely contributed to the metabolomic fingerprints of severe obesity were aromatic and branched-chain amino acids (elevated), metabolites related to energy metabolism (pyruvate and citrate; elevated), and metabolites suggested to be derived from gut microbiota (formate, methanol, and isopropanol; all elevated). Our data indicate that bariatric surgery, irrespective of the specific kind of procedure used, reverses most of the metabolic alterations associated with obesity and suggest profound changes in gut microbiome-host interactions after the surgery. This trial was registered at clinicaltrials.gov as NCT02480322. © 2015

  18. X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner.

    Science.gov (United States)

    Srivastava, Sarika; McMillan, Ryan; Willis, Jeffery; Clark, Helen; Chavan, Vrushali; Liang, Chen; Zhang, Haiyan; Hulver, Matthew; Mukherjee, Konark

    2016-03-31

    The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK ((+/-))). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK ((+/-)) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK ((+/-)) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic

  19. Macrophage Bactericidal Activities against Staphylococcus aureus Are Enhanced In Vivo by Selenium Supplementation in a Dose-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Mourad Aribi

    Full Text Available Dietary selenium is of fundamental importance to maintain optimal immune function and enhance immunity during infection. To this end, we examined the effect of selenium on macrophage bactericidal activities against Staphylococcus aureus.Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured with S. aureus and different concentrations of selenium.Infected and selenium-supplemented animals have significantly decreased levels of serum nitric oxide (NO production when compared with infected but non-selenium-supplemented animals at day 7 post-infection (p < 0.05. A low dose of 5 ng/mL selenium induced a significant decrease in macrophage NO production, but significant increase in hydrogen peroxide (H2O2 levels (respectively, p = 0.009, p < 0.001. The NO production and H2O2 levels were significantly increased with increasing concentrations of selenium; the optimal macrophage activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced a significant decrease in the bacterial arginase activity but a significant increase in the macrophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of bacterial growth (p < 0.0001 and a significant increase in macrophage phagocytic activity, NO production/arginase balance and S. aureus killing (for all comparisons, p < 0.001.Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and bacterial killing suggesting that inadequate doses may cause a loss of macrophage bactericidal activities and that selenium supplementation could enhance the in vivo control of immune response to S. aureus.

  20. Moringa oleifera's Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner.

    Science.gov (United States)

    Madi, Niveen; Dany, Mohammed; Abdoun, Salah; Usta, Julnar

    2016-01-01

    Moringa oleifera (MO) is an important dietary component for many populations in West Africa and the Indian subcontinent. In addition to its highly nutritious value, almost all parts of this plant have been widely used in folk medicine in curing infectious, cardiovascular, gastrointestinal, hepatic, and other diseases. Evidence-based research supported its versatile medicinal properties; however, more rigorous research is required to establish it in cancer therapy. As such, in this study we aim to investigate the in vitro anticancerous effect of Moringa oleifera's aqueous leaf extract. Moringa extract was prepared by soaking pulverized leaves in hot water mimicking the people's mode of the leaf drink preparation. Several assays were used to study the effect of different percentage concentrations of the extract on viability of A549 cells; levels of adenosine triphosphate (ATP), reactive oxygen species (ROS), and glutathione (GSH) generated; as well as percentage of lactate dehydrogenase (LDH) released at different time points. In addition to mitochondrial membrane potential, apoptotic events were assessed using western blotting for apoptotic markers and immunoflourescent flourescent labeled inhibitor of caspases (FLICA) assay. MO extract treatment resulted in a significant decrease in mitochondrial membrane potential (1 hour) and ATP levels (3 hours), followed by an increase in (6 hours) ROS, caspase activation, proapoptotic proteins expression (p53, SMAC/Diablo, AIF), and PARP-1 cleavage. This eventually resulted in decreased GSH levels and a decrease in viability. The cytotoxic effect was prevented upon pretreatment with antioxidant N-acetyl-cysteine. MO decreased as well the viability of HepG2, CaCo2, Jurkat, and HEK293 cells. Our findings identify a plant extract with an anticancerous effect on cancer cell lines. MO extract exerts its cytotoxic effect in A549 cancer cells by affecting mitochondrial viability and inducing apoptosis in an ROS-dependent manner.

  1. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  2. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    Science.gov (United States)

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  3. Postexercise Dietary Protein Ingestion Increases Whole-Body Leucine Balance in a Dose-Dependent Manner in Healthy Children.

    Science.gov (United States)

    Volterman, Kimberly A; Moore, Daniel R; Breithaupt, Peter; Godin, Jean-Philippe; Karagounis, Leonidas G; Offord, Elizabeth A; Timmons, Brian W

    2017-05-01

    Background: Protein ingestion is important in enhancing whole-body protein balance in children. The effect of discrete bolus protein ingestion on acute postexercise recovery has yet to be determined.Objective: This study determined the effect of increasing doses of ingested protein on postexercise whole-body leucine balance in healthy, active children.Methods: Thirty-five children (26 boys, 9 girls; age range: 9-13 y; weight mean ± SD: 44.9 ± 10.6 kg) underwent a 5-d adaptation diet (0.95 g protein ⋅ kg-1 ⋅ d-1) before performing 20 min of cycling 3 times with a concurrent, primed, constant infusion of [13C]leucine. After exercise, participants consumed an isoenergetic beverage (140 kcal) containing variable amounts of bovine skim-milk protein and carbohydrates (sucrose) (0, 5, 10, and 15 g protein made up with 35, 30, 25, and 20 g carbohydrates, respectively). Blood and breath samples were taken over the 3 h of recovery to determine non-steady state whole-body leucine oxidation (LeuOX) and net leucine balance (LeuBAL).Results: LeuOX (secondary outcome) peaked 60 min after beverage ingestion and demonstrated a relative dose-response over the 3 h of recovery (15 g = 10 > 5 > 0 g; P 10 g (11.6 ± 4.3 mg/kg) > 5 g (5.7 ± 1.9 mg/kg) > 0 g (-3.0 ± 1.7 mg/kg); all P balance in healthy, active children. Moreover, LeuBAL increased in a dose-dependent manner within the protein range studied. Children should consider consuming a source of dietary protein after physical activity to enhance whole-body anabolism. This trial was registered at clinicaltrials.gov as NCT01598935. © 2017 American Society for Nutrition.

  4. Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner

    Directory of Open Access Journals (Sweden)

    Chen Chu

    2011-01-01

    Full Text Available Abstract Background Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-S-transferase (GST gene family encodes several enzymes which catalyze ITC degradation in vivo. Methods We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome" change in response to cruciferous vegetable feeding in individuals of different GSTM1 genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data. Results After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their GSTM1 genotype (i.e., GSTM1+ or GSTM1- null. When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 m/z and 9565 m/z were identified as an isoform of transthyretin (TTR and a fragment of zinc α2-glycoprotein (ZAG, respectively. Conclusions Cruciferous vegetable intake in GSTM1+ individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the GSTM1

  5. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus.

    Science.gov (United States)

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M K; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O'Connor, Sarah E; Courdavault, Vincent

    2013-12-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.

  6. A Poly Adenine-Mediated Assembly Strategy for Designing Surface-Enhanced Resonance Raman Scattering Substrates in Controllable Manners.

    Science.gov (United States)

    Zhu, Ying; Jiang, Xiangxu; Wang, Houyu; Wang, Siyi; Wang, Hui; Sun, Bin; Su, Yuanyuan; He, Yao

    2015-07-07

    In this article, we introduce a Poly adenine (Poly A)-assisted fabrication method for rationally designing surface-enhanced resonance Raman scattering (SERRS) substrates in controllable and reliable manners, enabling construction of core-satellite SERRS assemblies in both aqueous and solid phase (e.g., symmetric core (Au)-satellite (Au) nanoassemblies (Au-Au NPs), and asymmetric Ag-Au NPs-decorated silicon wafers (Ag-Au NPs@Si)). Of particular significance, assembly density is able to be controlled by varying the length of the Poly A block (e.g., 10, 30, and 50 consecutive adenines at the 5' end of DNA sequence, Poly A10/A30/A50), producing the asymmetric core-satellite nanoassemblies with adjustable surface density of Au NPs assembly on core NPs surface. Based on quantitative interrogation of the relationship between SERRS performance and assemble density, the Ag-Au NPs@Si featuring the strongest SERRS enhancement factor (EF ≈ 10(7)) and excellent reproducibility can be achieved under optimal conditions. We further employ the resultant Ag-Au NPs@Si as a high-performance SERRS sensing platform for the selective and sensitive detection of mercury ions (Hg(2+)) in a real system, with a low detection limit of 100 fM, which is ∼5 orders of magnitude lower than the United States Environmental Protection Agency (USEPA)-defined limit (10 nM) in drinkable water. These results suggest the Poly A-mediated assembly method as new and powerful tools for designing high-performance SERRS substrates with controllable structures, facilitating improvement of sensitivity, reliability, and reproducibility of SERRS signals.

  7. Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner.

    Science.gov (United States)

    Quiros, Roderick M; Valianou, Matthildi; Kwon, Youngjoo; Brown, Kimberly M; Godwin, Andrew K; Cukierman, Edna

    2008-07-01

    Due to a lack of experimental systems, little is known about ovarian stroma. Here, we introduce an in vivo-like 3-D system of mesenchymal stromal progression during ovarian tumorigenesis to support the study of stroma permissiveness in human ovarian neoplasias. To sort 3-D cultures into 'normal,' 'primed' and 'activated' stromagenic stages, 29 fibroblastic cell lines from 5 ovarian tumor samples (tumor ovarian fibroblasts, TOFs) and 14 cell lines from normal prophylactic oophorectomy samples (normal ovarian fibroblasts, NOFs) were harvested and characterized for their morphological, biochemical and 3-D culture features. Under 2-D conditions, cells displayed three distinct morphologies: spread, spindle, and intermediate. We found that spread and spindle cells have similar levels of alpha-SMA, a desmoplastic marker, and consistent ratios of pFAKY(397)/totalFAK. In 3-D intermediate cultures, alpha-SMA levels were virtually undetectable while pFAKY(397)/totalFAK ratios were low. In addition, we used confocal microscopy to assess in vivo-like extracellular matrix topography, nuclei morphology and alpha-SMA features in the 3-D cultures. We found that all NOFs presented 'normal' characteristics, while TOFs presented both 'primed' and 'activated' features. Moreover, immunohistochemistry analyses confirmed that the 3-D matrix-dependent characteristics are reminiscent of those observed in in vivo stromal counterparts. We conclude that primary human ovarian fibroblasts maintain in vivo-like (staged) stromal characteristics in a 3-D matrix-dependent manner. Therefore, our stromal 3-D system offers a tool that can enhance the understanding of both stromal progression and stroma-induced ovarian tumorigenesis. In the future, this system could also be used to develop ovarian stroma-targeted therapies.

  8. Anxiety and Depression Increase in a Stepwise Manner in Parallel With Multiple FGIDs and Symptom Severity and Frequency.

    Science.gov (United States)

    Pinto-Sanchez, Maria Ines; Ford, Alexander C; Avila, Christian A; Verdu, Elena F; Collins, Stephen M; Morgan, David; Moayyedi, Paul; Bercik, Premysl

    2015-07-01

    Anxiety and depression occur frequently in patients with functional gastrointestinal disorders (FGIDs), but their precise prevalence is unknown. We addressed this issue in a large cohort of adult patients and determined the underlying factors. In total, 4,217 new outpatients attending 2 hospitals in Hamilton, Ontario, Canada completed questionnaires evaluating FGIDs and anxiety and depression (Hospital Anxiety and Depression scale). Chart review was performed in a random sample of 2,400 patients. Seventy-six percent of patients fulfilled Rome III criteria for FGIDs, but only 57% were diagnosed with FGIDs after excluding organic diseases, and the latter group was considered for the analysis. Compared with patients not meeting the criteria, prevalence of anxiety (odds ratio (OR) 2.66, 95% confidence interval (CI): 1.62-4.37) or depression (OR 2.04, 95% CI: 1.03-4.02) was increased in patients with FGIDs. The risk was comparable to patients with organic disease (anxiety: OR 2.12, 95% CI: 1.24-3.61; depression: OR 2.48, 95% CI: 1.21-5.09). The lowest prevalence was observed in asymptomatic patients (OR 1.37; 95% CI 0.58-3.23 and 0.51; 95% CI 0.10-2.48; for both conditions, respectively). The prevalence of anxiety and depression increased in a stepwise manner with the number of co-existing FGIDs and frequency and/or severity of gastrointestinal (GI) symptoms. Psychiatric comorbidity was more common in females with FGIDs compared with males (anxiety OR 1.73; 95% CI 1.35-2.28; depression OR 1.52; 95% CI 1.04-2.21). Anxiety and depression were formally diagnosed by the consulting physician in only 22% and 9% of patients, respectively. Psychiatric comorbidity is common in patients referred to a secondary care center but is often unrecognized. The prevalence of both anxiety and depression is influenced by gender, presence of organic diseases, and FGIDs, and it increases with the number of coexistent FGIDs and frequency and severity of GI symptoms.

  9. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  10. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  11. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats.

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich

    Full Text Available Retinal ischemia and reperfusion injuries (IRI permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC of the rat's eye.IRI was performed on the left eyes of rats (n = 8 with or without inhaled Argon postconditioning (25, 50 and 75 Vol% for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours. Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001. Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01, as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001. Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option.

  12. S-Nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner

    Directory of Open Access Journals (Sweden)

    Mönkkönen Kati S

    2005-04-01

    show for the first time in a broader general context that RSNOs are capable of modulating GPCR signaling in a reversible and highly receptor-specific manner. Given that the enzymatic machinery responsible for endogenous NO production is located in close proximity with the GPCR signaling complex, especially with that for several receptors whose signaling is shown here to be modulated by exogenous RSNOs, our data suggest that GPCR signaling in vivo is likely to be subject to substantial, and highly receptor-specific modulation by NO-derived RSNOs.

  13. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Science.gov (United States)

    Pino, Jessica M. V.; da Luz, Marcio H. M.; Antunes, Hanna K. M.; Giampá, Sara Q. de Campos; Martins, Vilma R.; Lee, Kil S.

    2017-01-01

    findings show that nutritional iron deficiency produces these molecular alterations in a region-specific manner and provide new insight into the variety of molecular pathways that can lead to distinct neurological symptoms upon iron deficiency. Thus, adequate iron supplementation is essential for brain health and prevention of neurological diseases. PMID:28567002

  14. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    disorders. Our findings show that nutritional iron deficiency produces these molecular alterations in a region-specific manner and provide new insight into the variety of molecular pathways that can lead to distinct neurological symptoms upon iron deficiency. Thus, adequate iron supplementation is essential for brain health and prevention of neurological diseases.

  15. Human decidual stromal cells secrete soluble pro-apoptotic factors during decidualization in a cAMP-dependent manner.

    Science.gov (United States)

    Leno-Durán, E; Ruiz-Magaña, M J; Muñoz-Fernández, R; Requena, F; Olivares, E G; Ruiz-Ruiz, C

    2014-10-10

    Is there a relationship between decidualization and apoptosis of decidual stromal cells (DSC)? Decidualization triggers the secretion of soluble factors that induce apoptosis in DSC. The differentiation and apoptosis of DSC during decidualization of the receptive decidua are crucial processes for the controlled invasion of trophoblasts in normal pregnancy. Most DSC regress in a time-dependent manner, and their removal is important to provide space for the embryo to grow. However, the mechanism that controls DSC death is poorly understood. The apoptotic response of DSC was analyzed after exposure to different exogenous agents and during decidualization. The apoptotic potential of decidualized DSC supernatants and prolactin (PRL) was also evaluated. DSC lines were established from samples of decidua from first trimester pregnancies. Apoptosis was assayed by flow cytometry. PRL production, as a marker of decidualization, was determined by enzyme-linked immunosorbent assay. DSCs were resistant to a variety of apoptosis-inducing substances. Nevertheless, DSC underwent apoptosis during decidualization in culture, with cAMP being essential for both apoptosis and differentiation. In addition, culture supernatants from decidualized DSC induced apoptosis in undifferentiated DSC, although paradoxically these supernatants decreased the spontaneous apoptosis of decidual lymphocytes. Exogenously added PRL did not induce apoptosis in DSC and an antibody that neutralized the PRL receptor did not decrease the apoptosis induced by supernatants. Further studies are needed to examine the involvement of other soluble factors secreted by decidualized DSC in the induction of apoptosis. The present results indicate that apoptosis of DSC occurs in parallel to differentiation, in response to decidualization signals, with soluble factors secreted by decidualized DSC being responsible for triggering cell death. These studies are relevant in the understanding of how the regression of decidua

  16. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

    Directory of Open Access Journals (Sweden)

    Youn-Bok Lee

    2013-12-01

    Full Text Available The GGGGCC (G4C2 intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.

  17. A queueing system with queue length dependent service times, with applications to cell discarding in ATM networks

    Directory of Open Access Journals (Sweden)

    Doo Il Choi

    1999-01-01

    Full Text Available A queueing system (M/G1,G2/1/K is considered in which the service time of a customer entering service depends on whether the queue length, N(t, is above or below a threshold L. The arrival process is Poisson, and the general service times S1 and S2 depend on whether the queue length at the time service is initiated is

  18. Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length dependent way

    NARCIS (Netherlands)

    Echteld, C.J.A. van; Kruijff, B. de; Verkleij, A.J.; Leunissen-Bijvelt, J.; Gier, J. de

    1982-01-01

    The hydrophobic peptide gramicidin is shown by 31P-NMR, freeze-fracture electron microscopy and small-angle X-ray diffraction, to induce a hexogonal HII-phase lipid organization when incorporated in liquid crystalline saturated and unsaturated synthetic and natural phosphatidylcholines if the length

  19. n-alkanes on Pt(111) and on C(0001)/Pt(111): Chain Length Dependence of Kinetic Desorption Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Tait, Steven L.; Dohnalek, Zdenek; Campbell, Charles T.; Kay, Bruce D.

    2006-12-21

    We have measured the desorption of seven small n-alkanes (CNH2N+2, N = 1-4, 6, 8, 10) from the Pt(111) and C(0001) surfaces by temperature programmed desorption. We compare these results to our recent study of the desorption kinetics of these molecules on MgO(100) [J. Chem. Phys. 122, 164708 (2005)]. There we showed an increase in the desorption pre-exponential factor by several orders of magnitude with increasing n-alkane chain length and a linear desorption energy scaling with a small y-intercept value. We suggest that the significant increase in desorption prefactor with chain length is not particular to the MgO(100) surface, but is a general effect for desorption of the small n-alkanes. This argument is supported by statistical mechanical arguments for the increase in the entropy gain of the molecules upon desorption. In this work, we demonstrate that this hypothesis holds true on both a metal surface and a graphite surface. We observe an increase in prefactor by five orders of magnitude over the range of n-alkane chain lengths studied here. On each surface, the desorption energies of the n-alkanes are found to increase linearly with the molecule chain length and have a small y-intercept value. Prior results of other groups have yielded a linear desorption energy scaling with chain length that has unphysically large y-intercept values. We demonstrate that by allowing the prefactor to increase according to our model, a reanalysis of their data resolves this y-intercept problem to some degree.

  20. Tangier′s disease: An uncommon cause of facial weakness and non-length dependent demyelinating neuropathy

    Directory of Open Access Journals (Sweden)

    Madhu Nagappa

    2016-01-01

    Full Text Available Tangier disease is an autosomal recessive disorder characterized by an abnormal accumulation of cholesterol esters in various organs secondary to adenotriphosphate binding cassette transporter A-1 (ABCA-1 transporter deficiency and disrupted reverse cholesterol transport. It causes neuropathy in half of the affected individuals. We present the clinical, electrophysiological, and histopathological findings in a middle aged gentleman of Tangier disease who was initially misdiagnosed leprosy and treated with antileprosy drugs. The presence of a demyelinating neuropathy on electrophysiology in a patient with predominant upper limb involvement and facial diplegia should raise the suspicion of Tangier disease. The characteristic lipid profile of Tangier disease was noted in this patient viz. extremely low high density lipoprotein (HDL, elevated triglyceride (TG, and reduced apolipoprotein A1. Estimation of serum lipids should form a part of routine evaluation in order to avoid misdiagnosis.

  1. Chain length dependence of the helix orientation in Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Ardana, Aditya; Vorenkamp, Eltjo J.; ten Brinke, Gerrit; Schouten, Arend J.

    2010-01-01

    The effect of chain length on the helix orientation of alpha-helical diblock copolypeptides in Langmuir and Langmuir-Blodgett monolayers is reported for the first time. Amphiphilic diblock copolypeptides (PLGA-b-PMLGSLGs) of poly(alpha-L-glutamic acid) (PLGA) and

  2. Muscle length-dependent contribution of motoneuron Cav1.3 channels to force production in model slow motor unit.

    Science.gov (United States)

    Kim, Hojeong

    2017-07-01

    Persistent inward current (PIC)-generating Cav1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity.NEW & NOTEWORTHY Cav1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Cav1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Cav1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem. Copyright © 2017 the American Physiological Society.

  3. CONTROL OF VIRAL DISEASES TRANSMITTED IN A PERSISTENT MANNER BY THRIPS IN PEPPER (TOMATO SPOTTED WILT VIRUS).

    Science.gov (United States)

    Fanigliulo, A; Viggiano, A; Gualco, A; Crescenzi, A

    2014-01-01

    Tomato spotted wilt disease is caused by Tomato Spotted Wilt Virus (TSWV) (Tospovirus, Bunyaviridae), a virus that severely damages and reduces the yield of many economically important plants worldwide and actually it is a major disease affecting the production of tomato and pepper in Italy. Due to the non-predictive nature of its outbreaks combined with the lack of forecasting, adoption of preventive measures have not always been practical, in fact the disease cycle has proven to be extremely difficult to break because of the wide and often overlapping host range of both the virus and the thrips vectors, which transmit the virus in a persistent, circulative, and propagative manner. Moreover recently, resistance breaking (RB) isolates of TSWV that overcome the resistance conferred by the Tsw gene in different pepper hybrids have been recovered in different locations in Italy and also in Brazil, USA, Spain and Australia, and this occurrence raises the question on the importance of a new approach of integrated pest management for TSWV management, including both control of its insect vector and the induction of the plant's resistance against viral infection. In this perspective, a study was performed in 2012 and 2013 with the purpose of evaluating the efficacy of the insecticide Cyantraniliprole alone or combined with Acibenzolar-S-Methyl (ASM), inducer of systemic acquired resistance, in the control of tomato spotted wilt disease in pepper. The experiment was performed in laboratory, in a thermo-conditioned greenhouse, into separate insect-proof cages and consisted of 5 treatments and 2 applications (plus a pre-transplant application for treatments were ASM was used. Variables were the mode of application of ASM in pre-transplant (by foliar or by drench) and the duration of the exposure time of the treated plants to viruliferous insects. Pepper cv. Corno di Toro, devoid of any resistance to TSWV, was used. Plants were observed daily to record any symptom induced by

  4. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner.

    Science.gov (United States)

    Rharass, Tareck; Lantow, Margareta; Gbankoto, Adam; Weiss, Dieter G; Panáková, Daniela; Lucas, Stéphanie

    2017-10-16

    increased WNT/β-catenin signaling output i.e. MYC mRNA level, whereas RuR attenuated it. Moreover, AA improved neurogenesis as much as LiCl as both TUBB3-positive cell yield and TUBB3 mRNA level increased, while NAC or RuR attenuated neurogenesis. Markedly, the neurogenesis outputs between the short and the full treatment with either NAC or AA were found unchanged, supporting our model that neuronal yield is altered by events taking place at the early phase of differentiation. Our findings demonstrate that AA treatment elevates ROS metabolism in a non-lethal manner prior to the NPCs commitment to their neuronal fate. Such effect stimulates the redox-sensitive DVL2 activation and WNT/β-catenin signaling response that would enhance the ensuing neuronal cell differentiation.

  5. Epicutaneous Administration of Papain Induces IgE and IgG Responses in a Cysteine Protease Activity-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Hideo Iida

    2014-01-01

    Conclusions: We demonstrated that the epicutaneous administration of protease not only disrupted skin barrier function, but also induced IgE and IgG responses in a manner dependent on its protease activity. These results suggest that protease activity contained in environmental sources contributes to sensitization through an epicutaneous route.

  6. 26 CFR 301.9100-5T - Time and manner of making certain elections under the Tax Equity and Fiscal Responsibility Act of...

    Science.gov (United States)

    2010-04-01

    ... under the Tax Equity and Fiscal Responsibility Act of 1982. 301.9100-5T Section 301.9100-5T Internal... manner of making certain elections under the Tax Equity and Fiscal Responsibility Act of 1982. (a... elections provided under the Tax Equity and Fiscal Responsibility Act of 1982. Section of act Section of...

  7. Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    necessary steps to reduce energy consumption and resource usage of their data centers, such as identifying and monitoring the amount of energy used at their facilities. We concluded that Headquarters programs offices (which are part of the Department of Energy's Common Operating Environment) as well as field sites had not developed and/or implemented policies and procedures necessary to ensure that information technology equipment and supporting infrastructure was operated in an energy-efficient manner and in a way that minimized impact on the environment. For example, although required by the Department, sites had not enabled computer equipment power management features designed to reduce energy consumption. In addition, officials within Headquarters programs and at the sites reviewed had not effectively monitored performance or taken steps to fully evaluate available reductions in energy usage at their facilities. Without improvements, the Department will not be able to take advantage of opportunities to reduce energy consumption and realize cost savings of nearly $23 million over the next five years at just the seven sites reviewed. We noted that the potential for reduced energy consumption at these sites alone was equivalent to the annual power requirements of over 2,400 homes or, alternatively, removing about 3,000 cars from the road each year. Many of the available energy reduction strategies, such as fully utilizing energy-efficient settings on the many computers used by the Department and its contractors, are 'low hanging fruit' in that they will provide immediate tangible energy savings at little or no cost. Others, such as a shift to thin-client computing, an environment that transfers the processing capabilities from an individual's desk to a shared server environment, will require some level of investment which can, based on available literature, be successfully recovered through reduced acquisition and support costs. In our judgment, given

  8. Indução da neurite autoimune experimental (NAE) em camundongos SJL/J através de injeção de proteína P2 da mielina do nervo periférico (MNP)

    OpenAIRE

    Vania Alice de Aguiar Mendes

    2012-01-01

    A neurite auto-imune experimental (NAE) é uma polineuropatia desmielinizante monofásica do sistema nervoso periférico (SNP). A NAE é considerada modelo experimental da síndrome de Guillain-Barré (SGB). Por se tratar de uma doença autoimune, pode ser induzida experimentalmente em camundongos geneticamente susceptíveis, através da imunização com componentes da mielina de nervos periféricos. Para a indução da NAE podem ser utilizados P0 e P2, proteínas da mielina do nervo periférico, ou sequênci...

  9. SM = SM: The Interface of Systems Medicine and Sexual Medicine for Facing Non-Communicable Diseases in a Gender-Dependent Manner.

    Science.gov (United States)

    Jannini, Emmanuele A

    2017-07-01

    Complex non-communicable diseases (NCDs), including cancer, cardiovascular disease, obesity, diabetes, and chronic respiratory disorders, are major causes of morbidity and mortality globally. The complexity of NCDs requires innovative, integrated, and interdisciplinary approaches for diagnosis, treatment, and prevention by adopting the new paradigm called systems medicine. A growing body of evidence suggests that sexual dysfunction in general and erectile and lubrication dysfunctions in particular are, in a sex-dependent manner, efficient predictors of overall systemic well-being. However, the relation between systems medicine and sexual medicine is not well defined. To demonstrate that in combating the major NCDs, sexual health can be used as a surrogate marker of systemic health and can facilitate the diagnosis, treatment, and prevention of NCDs. A comprehensive review of peer-reviewed publications on the topic was performed through a PubMed search. Because there is a strong biological basis for the developmental origins of health and disease not only in the early phases of development but also later in life, the identification of appropriate biomarkers is essential for monitoring these timelines and trajectories for better understanding NCD processes, risk stratification for NCD intervention, and prevention. In this review, I propose a novel approach in which sexual medicine can be used as a new tool to understand and manage NCDs and as a marker of systemic health. Moreover, the multipronged application of systems medicine to pathophysiologic changes leading to sexual dysfunction might sustain the growth of a young science such as sexual medicine. This multilevel approach has the potential to suggest novel avenues for the comprehensive management of NCDs and sexual dysfunction in a sex-dependent manner. Jannini EA. SM = SM: The Interface of Systems Medicine and Sexual Medicine for Facing Non-Communicable Diseases in a Gender-Dependent Manner. Sex Med Rev 2017

  10. [Different manners to learning nursing].

    Science.gov (United States)

    Hernández Pina, Fuensanta; Gómez García, Carmen; García Sanz, Ma Paz; Maquilón, Sánchez Javier

    2006-01-01

    After presenting how research on student learning has changed significantly over the years, depending on the quantitative or qualitative viewpoint used, the authors concentrate on three focuses: superficial, profound and high yield, studying which of these focuses dominates in the learning among nursing students at the University School of Nursing in Murcia. As a result, the authors pose the following question: Why from first year to second year courses is there a positive evolution regarding the profound focus which changes to a negative evolution from second to third year courses which favor the superficial focus?

  11. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease.

    Science.gov (United States)

    Koprich, James B; Johnston, Tom H; Reyes, M Gabriela; Sun, Xuan; Brotchie, Jonathan M

    2010-10-28

    The pathological hallmarks of Parkinson's disease (PD) include the presence of alpha-synuclein (α-syn) rich Lewy bodies and neurites and the loss of dopaminergic (DA) neurons of the substantia nigra (SN). Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV), or green fluorescent protein (GFP), the latter to control for the possibility that high levels of protein in themselves might contribute to damage. We show that following a single 2 μl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%), and to a lesser extent by GFP (24%), compared to EV controls (both P AAV1/2-A53T α-syn injection produced dystrophic neurites and a significant reduction in tyrosine hydroxylase levels (by 53%, P AAV1/2-GFP condition. In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and

  12. dSir2 in the Adult Fat Body, but Not in Muscles, Regulates Life Span in a Diet-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Kushal Kr. Banerjee

    2012-12-01

    Full Text Available Sir2, an evolutionarily conserved NAD+-dependent deacetylase, has been implicated as a key factor in mediating organismal life span. However, recent contradictory findings have brought into question the role of Sir2 and its orthologs in regulating organismal longevity. In this study, we report that Drosophila Sir2 (dSir2 in the adult fat body regulates longevity in a diet-dependent manner. We used inducible Gal4 drivers to knock down and overexpress dSir2 in a tissue-specific manner. A diet-dependent life span phenotype of dSir2 perturbations (both knockdown and overexpression in the fat body, but not muscles, negates the effects of background genetic mutations. In addition to providing clarity to the field, our study contrasts the ability of dSir2 in two metabolic tissues to affect longevity. We also show that dSir2 knockdown abrogates fat-body dFOXO-dependent life span extension. This report highlights the importance of the interplay between genetic factors and dietary inputs in determining organismal life spans.

  13. PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners

    Directory of Open Access Journals (Sweden)

    Dong-Il Kim

    2015-01-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is involved in the progression of diabetic retinopathy. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs has emerged as an important histone modification involved in diverse diseases. Sirtuin (SIRT1 is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H2O2-induced oxidative stress. H2O2 treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H2O2 treatment, PRMT1 or PRMT4 overexpression increased RPE cell damage. Moreover, the H2O2-induced RPE cell damage was attenuated by PRMT1 or PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4 in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased SIRT1 could be therapeutic approaches for diabetic retinopathy.

  14. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing (China); Ming, Jia [Department of Breast, Thyroid and Pancreas Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xu, Yan [Department of Breast and Thyroid Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing (China); Zhang, Yi, E-mail: zy53810@163.com [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing (China); Jiang, Jun, E-mail: Jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing (China)

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.

  15. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ–dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Kai; Qu, Bo; Liao, Dongfa; Liu, Da; Wang, Cairu; Zhou, Jingsong; Pan, Xianming, E-mail: xianmingpanxj@163.com

    2016-09-09

    MicroRNAs (miRNAs) play significant roles in multiple diseases by regulating the expression of their target genes. Type 2 diabetes mellitus (T2DM) is a chronic endocrine and metabolic disease with complex mechanisms. T2DM can result in diabetic osteoporosis (DO), which is characterized by bone loss, decreased bone mineral density and increased bone fractures. The promotion of osteogenic differentiation of osteoblasts is an effective way to treat osteoporosis. In the present study, high glucose (HG) and free fatty acids (FFA) were employed to mimic T2DM in MC3T3-E1 cells. To induce osteogenic differentiation, MC3T3-E1 cells were cultured in osteogenic medium. The results showed that osteogenic differentiation was significantly suppressed by HG and FFA. We found that miR-132 expression was significantly upregulated and much higher in HG-FFA–induced cells than other selected miRNAs, indicating that miR-132 might play an important role in DO. Furthermore, overexpression of miR-132 markedly inhibited the expression of key markers of osteogenic differentiation and alkaline phosphatase (ALP) activity. Reciprocally, inhibition of miR-132 restored osteogenic differentiation, even under treatment with HG-FFA. We also showed that Sirtuin 1 (Sirt1) was one of the target genes of miR-132, whose expression was controlled by miR-132. Ectopic expression of Sirt1 reversed the decrease in osteogenic differentiation caused by miR-132 and HG-FFA. These results demonstrated the direct role of miR-132 in suppressing osteogenic differentiation through downregulating Sirt1. Moreover, we demonstrated that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) was a downstream molecule of Sirt1, and its knockout by PPARβ/δ siRNA significantly abolished the promotive effects of Sirt1 on osteogenic differentiation, indicating that Sirt1 functioned in a PPARβ/δ–dependent manner. Taken together, we provide crucial evidence that miR-132 plays a key role in regulating osteogenic

  16. Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay.

    Science.gov (United States)

    Yu, Xinzi; Machesky, Laura M

    2012-01-01

    The ability of tumor cells to invade is one of the hallmarks of the metastatic phenotype. To elucidate the mechanisms by which tumor cells acquire an invasive phenotype, in vitro assays have been