WorldWideScience

Sample records for neural tissue depending

  1. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  2. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.

    Science.gov (United States)

    De Castro, Sandra C P; Hirst, Caroline S; Savery, Dawn; Rolo, Ana; Lickert, Heiko; Andersen, Bogi; Copp, Andrew J; Greene, Nicholas D E

    2018-03-15

    Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  5. Engineering Human Neural Tissue by 3D Bioprinting.

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2018-01-01

    Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

  6. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  7. Characterization of the central neural projections to brown, white, and beige adipose tissue.

    Science.gov (United States)

    Wiedmann, Nicole M; Stefanidis, Aneta; Oldfield, Brian J

    2017-11-01

    The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue. © FASEB.

  8. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  9. Modeling of light absorption in tissue during infrared neural stimulation

    Science.gov (United States)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  10. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  11. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  12. A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue

    International Nuclear Information System (INIS)

    Warncke, D; Lewis, E; Leahy, M; Lochmann, S

    2009-01-01

    The propagation of light in biological tissue depends on the absorption and reduced scattering coefficient. The aim of this project is the determination of these two optical properties using spatially resolved reflectance measurements. The sensor system consists of five laser sources at different wavelengths, an optical fibre probe and five photodiodes. For these kinds of measurements it has been shown that an often used solution of the diffusion equation can not be applied. Therefore a neural network is being developed to extract the needed optical properties out of the reflectance data. Data sets for the training, validation and testing process are provided by Monte Carlo Simulations.

  13. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    connectivity was strongest between central and cerebellar regions. Our results show that neural coupling within motor networks is modulated in distinct frequency bands depending on the motor task. They provide evidence that dynamic causal modeling in combination with EEG source analysis is a valuable tool......Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the task......-dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  14. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  15. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    2016-11-01

    Full Text Available Recorded potentials in the extracellular space (ECS of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1 the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2 the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii The power spectral density (PSD of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in

  17. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  18. Task-dependent neural bases of perceiving emotionally expressive targets

    Directory of Open Access Journals (Sweden)

    Jamil eZaki

    2012-08-01

    Full Text Available Social cognition is fundamentally interpersonal: individuals’ behavior and dispositions critically affect their interaction partners’ information processing. However, cognitive neuroscience studies, partially because of methodological constraints, have remained largely perceiver-centric: focusing on the abilities, motivations, and goals of social perceivers while largely ignoring interpersonal effects. Here, we address this knowledge gap by examining the neural bases of perceiving emotionally expressive and inexpressive social targets. Sixteen perceivers were scanned using fMRI while they watched targets discussing emotional autobiographical events. Perceivers continuously rated each target’s emotional state or eye-gaze direction. The effects of targets’ emotional expressivity on perceiver’s brain activity depended on task set: when perceivers explicitly attended to targets’ emotions, expressivity predicted activity in neural structures—including medial prefrontal and posterior cingulate cortex—associated with drawing inferences about mental states. When perceivers instead attended to targets’ eye-gaze, target expressivity predicted activity in regions—including somatosensory cortex, fusiform gyrus, and motor cortex—associated with monitoring sensorimotor states and biological motion. These findings suggest that expressive targets affect information processing in manner that depends on perceivers’ goals. More broadly, these data provide an early step towards understanding the neural bases of interpersonal social cognition.

  19. Electric field effects in hyperexcitable neural tissue: A review

    International Nuclear Information System (INIS)

    Durand, D.M.

    2003-01-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)

  20. Adipose tissue-derived stem cells in neural regenerative medicine.

    Science.gov (United States)

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  1. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  2. Outcome dependency alters the neural substrates of impression formation

    Science.gov (United States)

    Ames, Daniel L.; Fiske, Susan T.

    2015-01-01

    How do people maintain consistent impressions of other people when other people are often inconsistent? The present research addresses this question by combining recent neuroscientific insights with ecologically meaningful behavioral methods. Participants formed impressions of real people whom they met in a personally involving situation. fMRI and supporting behavioral data revealed that outcome dependency (i.e., depending on another person for a desired outcome) alters previously identified neural dynamics of impression formation. Consistent with past research, a functional localizer identified a region of dorsomedial PFC previously linked to social impression formation. In the main task, this ROI revealed the predicted patterns of activity across outcome dependency conditions: greater BOLD response when information confirmed (vs. violated) social expectations if participants were outcome-independent and the reverse pattern if participants were outcome-dependent. We suggest that, although social perceivers often discount expectancy-disconfirming information as noise, being dependent on another person for a desired outcome focuses impression-formation processing on the most diagnostic information, rather than on the most tractable information. PMID:23850465

  3. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  4. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  5. Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2017-01-01

    Full Text Available Adipose tissue-derived stromal cells (ADSCs are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9. Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.

  6. Differentiation-Dependent Motility-Responses of Developing Neural Progenitors to Optogenetic Stimulation

    Directory of Open Access Journals (Sweden)

    Tímea Köhidi

    2017-12-01

    Full Text Available During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.

  7. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  8. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  9. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  10. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  11. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  12. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  13. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  14. Neural Control of Hemorrhage-Induced Tissue Cytokine Production

    National Research Council Canada - National Science Library

    Molina, Patrica E

    2007-01-01

    .... Opiate pathway activation favors hemodynamic instability and a pro-inflammatory tissue response while sympathetic nervous system activation counteracts the inflammatory response and contributes...

  15. Micromechanical modeling of rate-dependent behavior of Connective tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2017-03-07

    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    Science.gov (United States)

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  17. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Directory of Open Access Journals (Sweden)

    Naosuke Kamei

    2017-01-01

    Full Text Available Endothelial progenitor cells (EPCs derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+ cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

  18. Vitamin K-dependent carboxylases from non-hepatic tissues

    NARCIS (Netherlands)

    Vermeer, C.; Hendrix, H.; Daemen, M.

    1982-01-01

    The presence of vitamin K-dependent carboxylase was investigated in the microsomal fraction of 20 different types of bovine tissue. Except for muscle, veins, lymphocytes and bone membrane, carboxylase was found in all these preparations, albeit in varying amounts. No differences could be detected

  19. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  20. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  1. Tissue-dependent paired expression of miRNAs

    OpenAIRE

    Ro, Seungil; Park, Chanjae; Young, David; Sanders, Kenton M.; Yan, Wei

    2007-01-01

    It is believed that depending on the thermodynamic stability of the 5′-strand and the 3′-strand in the stem-loop structure of a precursor microRNA (pre-miRNA), cells preferentially select the less stable one (called the miRNA or guide strand) and destroy the other one (called the miRNA* or passenger strand). However, our expression profiling analyses revealed that both strands could be co-accumulated as miRNA pairs in some tissues while being subjected to strand selection in other tissues. Ou...

  2. Stimulus-dependent suppression of chaos in recurrent neural networks

    International Nuclear Information System (INIS)

    Rajan, Kanaka; Abbott, L. F.; Sompolinsky, Haim

    2010-01-01

    Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is a nonmonotonic function of stimulus frequency, revealing a 'resonant' frequency at which the input is most effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly suppressed at frequencies matching the range over which many sensory systems operate.

  3. Artificial neural net system for interactive tissue classification with MR imaging and image segmentation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Silbiger, M.; Naylor, C.; Brown, K.

    1990-01-01

    This paper reports on the development of interactive methods for MR tissue classification that permit mathematically rigorous methods for three-dimensional image segmentation and automatic organ/tumor contouring, as required for surgical and RTP planning. The authors investigate a number of image-intensity based tissue- classification methods that make no implicit assumptions on the MR parameters and hence are not limited by image data set. Similarly, we have trained artificial neural net (ANN) systems for both supervised and unsupervised tissue classification

  4. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  5. Context-Dependent Neural Modulations in the Perception of Duration.

    Science.gov (United States)

    Murai, Yuki; Yotsumoto, Yuko

    2016-01-01

    Recent neuroimaging studies have revealed that distinct brain networks are recruited in the perception of sub- and supra-second timescales, whereas psychophysical studies have suggested that there are common or continuous mechanisms for perceiving these two durations. The present study aimed to elucidate the neural implementation of such continuity by examining the neural correlates of peri-second timing. We measured neural activity during a duration reproduction task using functional magnetic resonance imaging. Our results replicate the findings of previous studies in showing that separate neural networks are recruited for sub-versus supra-second time perception: motor systems including the motor cortex and the supplementary motor area for sub-second perception, and the frontal, parietal, and auditory cortical areas for supra-second perception. We further found that the peri-second perception activated both the sub- and supra-second networks, and that the timing system that processed duration perception in previous trials was more involved in subsequent peri-second processing. These results indicate that the sub- and supra-second timing systems overlap at around 1 s, and cooperate to optimally encode duration based on the hysteresis of previous trials.

  6. Prediction of fracture toughness temperature dependence applying neural network

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Hadraba, Hynek; Chlup, Zdeněk; Šmída, T.

    2011-01-01

    Roč. 11, č. 1 (2011), s. 9-14 ISSN 1451-3749 R&D Projects: GA ČR(CZ) GAP108/10/0466 Institutional research plan: CEZ:AV0Z20410507 Keywords : brittle to ductile transition * fracture toughness * artificial neural network * steels Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  8. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.

    Science.gov (United States)

    Wang, Shuping; Guan, Shui; Xu, Jianqiang; Li, Wenfang; Ge, Dan; Sun, Changkai; Liu, Tianqing; Ma, Xuehu

    2017-09-26

    Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine. Herein, conductive poly(3,4-ethylenedioxythiophene) doped with hyaluronic acid (PEDOT-HA) nanoparticles were firstly synthesized via chemical oxidant polymerization. A three-dimensional (3D) PEDOT-HA/Cs/Gel scaffold was then developed by introducing PEDOT-HA nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. HA, as a bridge, not only was used as a dopant, but also combined PEDOT into the Cs/Gel via chemical crosslinking. The PEDOT-HA/Cs/Gel scaffold was used as a conductive substrate for neural stem cell (NSC) culture in vitro. The results demonstrated that the PEDOT-HA/Cs/Gel scaffold had excellent biocompatibility for NSC proliferation and differentiation. 3D confocal fluorescence images showed cells attached on the channel surface of Cs/Gel and PEDOT-HA/Cs/Gel scaffolds with a normal neuronal morphology. Compared to the Cs/Gel scaffold, the PEDOT-HA/Cs/Gel scaffold not only promoted NSC proliferation with up-regulated expression of Ki67, but also enhanced NSC differentiation into neurons and astrocytes with up-regulated expression of β tubulin-III and GFAP, respectively. It is expected that this electro-active and bio-active PEDOT-HA/Cs/Gel scaffold will be used as a conductive platform to regulate NSC behavior for neural tissue engineering.

  9. Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis.

    Science.gov (United States)

    Barroca, Nathalie; Marote, Ana; Vieira, Sandra I; Almeida, Abílio; Fernandes, Maria H V; Vilarinho, Paula M; da Cruz E Silva, Odete A B

    2018-07-01

    Tissue engineering is evolving towards the production of smart platforms exhibiting stimulatory cues to guide tissue regeneration. This work explores the benefits of electrical polarization to produce more efficient neural tissue engineering platforms. Poly (l-lactic) acid (PLLA)-based scaffolds were prepared as solvent cast films and electrospun aligned nanofibers, and electrically polarized by an in-lab built corona poling device. The characterization of the platforms by thermally stimulated depolarization currents reveals a polarization of 60 × 10 -10 C cm -2 that is stable on poled electrospun nanofibers for up to 6 months. Further in vitro studies using neuroblastoma cells reveals that platforms' polarization potentiates Retinoic Acid-induced neuronal differentiation. Additionally, in differentiating embryonic cortical neurons, poled aligned nanofibers further increased neurite outgrowth by 30% (+70 μm) over non-poled aligned nanofibers, and by 50% (+100 μm) over control conditions. Therefore, the synergy of topographical cues and electrical polarization of poled aligned nanofibers places them as promising biocompatible and bioactive platforms for neural tissue regeneration. Given their long lasting induced polarization, these PLLA poled nanofibrous scaffolds can be envisaged as therapeutic devices of long shelf life for neural repair applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Frequency-dependent oscillatory neural profiles during imitation.

    Science.gov (United States)

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-04-10

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation.

  11. Frequency-dependent oscillatory neural profiles during imitation

    Science.gov (United States)

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-01-01

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation. PMID:28393878

  12. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2018-04-01

    Full Text Available The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.

  13. Effects of detergent on calcium-activated neutral proteinase (CANP) of neural and non-neural tissues in rat. A comparative study

    International Nuclear Information System (INIS)

    Banik, N.L.; Chakrabarti, A.K.; Hogan, E.L.

    1987-01-01

    Homogenates of brain, liver, kidney, heart and skeletal muscle of rat were prepared in 0.32 M-sucrose containing 2 mM EDTA. The CANP activity was assayed using 14 C-azocasein as substrate in 50 mM Tris acetate buffer, pH 7.4, 0.1% Triton X-100 and 5 mM-β-mercaptoethanol, with and without CaCl 2 . Addition to CNS membranes of other non-ionic detergents including sodium deoxycholate, β-D-thiogluco-pyranoside, and cetyltrimethyl-ammonium bromide activated the enzyme to varying extent depending on the detergent concentration. The ionic detergent sodium dodecyl sulfate abolished CANP activity completely in all preparations and this effect could not be reversed by non-ionic detergents. The most interesting feature of the Triton X-100 effect was a ten-fold increase of CNS CANP activity whereas non-neural CANP was not at all induced by Triton. CNS CANP was found mainly in the particulate fraction and only 30% in cytosol. In contrast, non-neural CANP was present mainly in cytosol. These results suggest that the bulk of CANP is membrane bound in CNS and differs from other tissue where it remains cytosolic

  14. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  15. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    International Nuclear Information System (INIS)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung

    2015-01-01

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics

  16. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  17. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    International Nuclear Information System (INIS)

    Shaw, George J; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R; Holland, Christy K

    2007-01-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T ≤ 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E eff of 42.0 ± 0.9 kJ mole -1 . E eff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole -1 . A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies

  18. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, George J [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Dhamija, Ashima [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Bavani, Nazli [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Wagner, Kenneth R [Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Holland, Christy K [Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States)

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T {<=} 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss {delta}m(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E{sub eff} of 42.0 {+-} 0.9 kJ mole{sup -1}. E{sub eff} approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole{sup -1}. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  19. A novel delay-dependent criterion for delayed neural networks of neutral type

    International Nuclear Information System (INIS)

    Lee, S.M.; Kwon, O.M.; Park, Ju H.

    2010-01-01

    This Letter considers a robust stability analysis method for delayed neural networks of neutral type. By constructing a new Lyapunov functional, a novel delay-dependent criterion for the stability is derived in terms of LMIs (linear matrix inequalities). A less conservative stability criterion is derived by using nonlinear properties of the activation function of the neural networks. Two numerical examples are illustrated to show the effectiveness of the proposed method.

  20. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening

    Directory of Open Access Journals (Sweden)

    Michaela Thomas

    2017-11-01

    Full Text Available Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone, and poly(ethylene glycol. This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.

  1. Tissue classification and segmentation of pressure injuries using convolutional neural networks.

    Science.gov (United States)

    Zahia, Sofia; Sierra-Sosa, Daniel; Garcia-Zapirain, Begonya; Elmaghraby, Adel

    2018-06-01

    This paper presents a new approach for automatic tissue classification in pressure injuries. These wounds are localized skin damages which need frequent diagnosis and treatment. Therefore, a reliable and accurate systems for segmentation and tissue type identification are needed in order to achieve better treatment results. Our proposed system is based on a Convolutional Neural Network (CNN) devoted to performing optimized segmentation of the different tissue types present in pressure injuries (granulation, slough, and necrotic tissues). A preprocessing step removes the flash light and creates a set of 5x5 sub-images which are used as input for the CNN network. The network output will classify every sub-image of the validation set into one of the three classes studied. The metrics used to evaluate our approach show an overall average classification accuracy of 92.01%, an average total weighted Dice Similarity Coefficient of 91.38%, and an average precision per class of 97.31% for granulation tissue, 96.59% for necrotic tissue, and 77.90% for slough tissue. Our system has been proven to make recognition of complicated structures in biomedical images feasible. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration.

    Science.gov (United States)

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    Acute traumatic injuries and chronic degenerative diseases represent the world's largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37 °C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration.

  3. Improved Selectivity From a Wavelength Addressable Device for Wireless Stimulation of Neural Tissue

    Directory of Open Access Journals (Sweden)

    Elif Ç. Seymour

    2014-02-01

    Full Text Available Electrical neural stimulation with micro electrodes is a promising technique for restoring lost functions in the central nervous system as a result of injury or disease. One of the problems related to current neural stimulators is the tissue response due to the connecting wires and the presence of a rigid electrode inside soft neural tissue. We have developed a novel, optically activated, microscale photovoltaic neurostimulator based on a custom layered compound semiconductor heterostructure that is both wireless and has a comparatively small volume. Optical activation provides a wireless means of energy transfer to the neurostimulator, eliminating wires and the associated complications. This neurostimulator was shown to evoke action potentials and a functional motor response in the rat spinal cord. In this work, we extend our design to include wavelength selectivity and thus allowing independent activation of devices. As a proof of concept, we fabricated two different microscale devices with different spectral responsivities in the near-infrared region. We assessed the improved addressability of individual devices via wavelength selectivity as compared to spatial selectivity alone through on-bench optical measurements of the devices in combination with an in vivo light intensity profile in the rat cortex obtained in a previous study. We show that wavelength selectivity improves the individual addressability of the floating stimulators, thus increasing the number of devices that can be implanted in close proximity to each other.

  4. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  5. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Directory of Open Access Journals (Sweden)

    Jiansong Xu

    2011-01-01

    Full Text Available The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.We studied 24 healthy participants using functional magnetic resonance imaging (fMRI during a visual target identification task with two perceptual loads (low vs. high. Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN, striatum, thalamus, and extensive sensory cortices at high load.Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  7. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Science.gov (United States)

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  8. Tissue transglutaminase inhibits the TRPV5-dependent calcium transport in an N-glycosylation-dependent manner

    DEFF Research Database (Denmark)

    Boros, Sandor; Xi, Qi; Dimke, Henrik Anthony

    2011-01-01

    Tissue transglutaminase (tTG) is a multifunctional Ca(2+)-dependent enzyme, catalyzing protein crosslinking. The transient receptor potential vanilloid (TRPV) family of cation channels was recently shown to contribute to the regulation of TG activities in keratinocytes and hence skin barrier form......, these observations imply that tTG is a novel extracellular enzyme inhibiting the activity of TRPV5. The inhibition of TRPV5 occurs in an N-glycosylation-dependent manner, signifying a common final pathway by which distinct extracellular factors regulate channel activity....

  9. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  10. Time- and task-dependent non-neural effects of real and sham TMS.

    Directory of Open Access Journals (Sweden)

    Felix Duecker

    Full Text Available Transcranial magnetic stimulation (TMS is widely used in experimental brain research to manipulate brain activity in humans. Next to the intended neural effects, every TMS pulse produces a distinct clicking sound and sensation on the head which can also influence task performance. This necessitates careful consideration of control conditions in order to ensure that behavioral effects of interest can be attributed to the neural consequences of TMS and not to non-neural effects of a TMS pulse. Surprisingly, even though these non-neural effects of TMS are largely unknown, they are often assumed to be unspecific, i.e. not dependent on TMS parameters. This assumption is inherent to many control strategies in TMS research but has recently been challenged on empirical grounds. Here, we further develop the empirical basis of control strategies in TMS research. We investigated the time-dependence and task-dependence of the non-neural effects of TMS and compared real and sham TMS over vertex. Critically, we show that non-neural TMS effects depend on a complex interplay of these factors. Although TMS had no direct neural effects, both pre- and post-stimulus TMS time windows modulated task performance on both a sensory detection task and a cognitive angle judgment task. For the most part, these effects were quantitatively similar across tasks but effect sizes were clearly different. Moreover, the effects of real and sham TMS were almost identical with interesting exceptions that shed light on the relative contribution of auditory and somato-sensory aspects of a TMS pulse. Knowledge of such effects is of critical importance for the interpretation of TMS experiments and helps deciding what constitutes an appropriate control condition. Our results broaden the empirical basis of control strategies in TMS research and point at potential pitfalls that should be avoided.

  11. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  12. A tissue-dependent hypothesis of dental caries.

    Science.gov (United States)

    Simón-Soro, A; Belda-Ferre, P; Cabrera-Rubio, R; Alcaraz, L D; Mira, A

    2013-01-01

    Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity. © 2013 S. Karger AG, Basel.

  13. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  14. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    Science.gov (United States)

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  15. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    Science.gov (United States)

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  16. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania; Rocchi, A.; Cesca, F.; Tan, H.; Miele, E.; Giugni, Andrea; Orlando, M.; Perrone Donnorso, M.; Perozziello, G.; Benfenati, Fabio; Di Fabrizio, Enzo M.

    2018-01-01

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  17. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania

    2018-04-04

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  18. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.

    Science.gov (United States)

    Voorhees, A P; Jan, N-J; Sigal, I A

    2017-08-01

    It is widely considered that intraocular pressure (IOP)-induced deformation within the neural tissue pores of the lamina cribrosa (LC) contributes to neurodegeneration and glaucoma. Our goal was to study how the LC microstructure and mechanical properties determine the mechanical insult to the neural tissues within the pores of the LC. Polarized light microscopy was used to measure the collagen density and orientation in histology sections of three sheep optic nerve heads (ONH) at both mesoscale (4.4μm) and microscale (0.73μm) resolutions. Mesoscale fiber-aware FE models were first used to calculate ONH deformations at an IOP of 30mmHg. The results were then used as boundary conditions for microscale models of LC regions. Models predicted large insult to the LC neural tissues, with 95th percentile 1st principal strains ranging from 7 to 12%. Pores near the scleral boundary suffered significantly higher stretch compared to pores in more central regions (10.0±1.4% vs. 7.2±0.4%; p=0.014; mean±SD). Variations in material properties altered the minimum, median, and maximum levels of neural tissue insult but largely did not alter the patterns of pore-to-pore variation, suggesting these patterns are determined by the underlying structure and geometry of the LC beams and pores. To the best of our knowledge, this is the first computational model that reproduces the highly heterogeneous neural tissue strain fields observed experimentally. The loss of visual function associated with glaucoma has been attributed to sustained mechanical insult to the neural tissues of the lamina cribrosa due to elevated intraocular pressure. Our study is the first computational model built from specimen-specific tissue microstructure to consider the mechanics of the neural tissues of the lamina separately from the connective tissue. We found that the deformation of the neural tissue was much larger than that predicted by any recent microstructure-aware models of the lamina. These results

  19. Bias-dependent hybrid PKI empirical-neural model of microwave FETs

    Science.gov (United States)

    Marinković, Zlatica; Pronić-Rančić, Olivera; Marković, Vera

    2011-10-01

    Empirical models of microwave transistors based on an equivalent circuit are valid for only one bias point. Bias-dependent analysis requires repeated extractions of the model parameters for each bias point. In order to make model bias-dependent, a new hybrid empirical-neural model of microwave field-effect transistors is proposed in this article. The model is a combination of an equivalent circuit model including noise developed for one bias point and two prior knowledge input artificial neural networks (PKI ANNs) aimed at introducing bias dependency of scattering (S) and noise parameters, respectively. The prior knowledge of the proposed ANNs involves the values of the S- and noise parameters obtained by the empirical model. The proposed hybrid model is valid in the whole range of bias conditions. Moreover, the proposed model provides better accuracy than the empirical model, which is illustrated by an appropriate modelling example of a pseudomorphic high-electron mobility transistor device.

  20. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    -depth understanding of the mechanism regulating blood flow and perfusion is necessary if we are to come up with new ideas for intervention and treatment. Method: From fresh born placentas stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end...... and was left untouched in the other end. Then using wire myography they were investigated in terms of contractility and sensitivity to physiological relevant human-like agonists. Results: Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue...... compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries with surrounding tissue, when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion: The perivascular tissue significantly alters stem villi...

  1. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    . Materials and methods. From fresh born placentas, stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end and was left untouched in the other end.Then, using wire myography, they were investigated in terms of contractility...... and sensitivity to physiological relevant human-like agonists. Results. Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries...... with surrounding tissue when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion. The perivascular tissue significantly alters stem villi arteries' sensitivity and force development in a suppressive way. This implicates a new aspect of blood flow regulation...

  2. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  3. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications.

    Science.gov (United States)

    Zarrintaj, Payam; Urbanska, Aleksandra M; Gholizadeh, Saman Seyed; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Mozafari, Masoud

    2018-04-15

    An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10 -5  S/cm which appeared suitable for cellular activities. Cyclic voltammetry was used for electroactivity determination, in which 2 redox states were observed, suggesting that the short chain length and steric hindrance prevented the gel from achieving a fully oxidized state. Rheological data depicted the modulus decreasing with aniline dimer increment due to limited hydrogen bonds accessibility. Though the swelling ratio of pristine gelatin (600%) decreased by the introduction and increasing the concentration of aniline dimer because of its hydrophobic nature, it took the value of 300% at worst, which still seems promising for drug delivery uses. Degradation rate of hydrogel was similarly decreased by adding aniline dimer. Drug release was evaluated in passive and stimulated patterns demonstrating tendency of aniline dimer to form a vesicle that controls the drug release behavior. The optimal cell viability, proper cell attachment and neurite extension was achieved in the case of hydrogel containing 10 wt% aniline dimer. Based on tissue/organ behavior, it was promisingly possible to adjust the characteristics of the hydrogels for an optimal drug release. The outcome of this simple and effective approach can potentially offer additional tunable characteristics for recording and stimulating purposes in neural interfaces. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Dynamic changes in connexin expression following engraftment of neural stem cells to striatal tissue

    International Nuclear Information System (INIS)

    Jaederstad, Johan; Jaederstad, Linda Maria; Herlenius, Eric

    2011-01-01

    Gap-junctional intercellular communication between grafted neural stem cells (NSCs) and host cells seem to be essential for many of the beneficial effects associated with NSC engraftment. Utilizing murine NSCs (mNSCs) grafted into an organotypic ex vivo model system for striatal tissue we examined the prerequisites for formation of gap-junctional couplings between graft and host cells at different time points following implantation. We utilized flow cytometry (to quantify the proportion of connexin (Cx) 26 and 43 expressing cells), immunohistochemistry (for localization of the gap-junctional proteins in graft and host cells), dye-transfer studies with and without pharmacological gap-junctional blockers (assaying the functionality of the formed gap-junctional couplings), and proliferation assays (to estimate the role of gap junctions for NSC well-being) to this end. Immunohistochemical staining and dye-transfer studies revealed that the NSCs already form functional gap junctions prior to engraftment, thereby creating a substrate for subsequent graft and host communication. The expression of Cx43 by grafted NSCs was decreased by neurotrophin-3 overexpression in NSCs and culturing of grafted tissue in serum-free Neurobasal B27 medium. Cx43 expression in NSC-derived cells also changed significantly following engraftment. In host cells the expression of Cx43 peaked following traumatic stimulation and then declined within two weeks, suggesting a window of opportunity for successful host cell rescue by NSC engraftment. Further investigation of the dynamic changes in gap junction expression in graft and host cells and the associated variations in intercellular communication between implanted and endogenous cells might help to understand and control the early positive and negative effects evident following neural stem cell transplantation and thereby optimize the outcome of future clinical NSC transplantation therapies.

  5. Soluble Neural-cadherin as a novel biomarker for malignant bone and soft tissue tumors

    International Nuclear Information System (INIS)

    Niimi, Rui; Matsumine, Akihiko; Iino, Takahiro; Nakazora, Shigeto; Nakamura, Tomoki; Uchida, Atsumasa; Sudo, Akihiro

    2013-01-01

    Neural-cadherin (N-cadherin) is one of the most important molecules involved in tissue morphogenesis, wound healing, and the maintenance of tissue integrity. Recently, the cleavage of N-cadherin has become a focus of attention in the field of cancer biology. Cadherin and their ectodomain proteolytic shedding play important roles during cancer progression. The aims of this study are to investigate the serum soluble N-cadherin (sN-CAD) levels in patients with malignant bone and soft tissue tumors, and to evaluate the prognostic significance of the sN-CAD levels. We examined the level of serum sN-CAD using an ELISA in 80 malignant bone and soft tissue tumors (bone sarcoma, n = 23; soft tissue sarcoma, n = 50; metastatic cancer, n = 7) and 87 normal controls. The mean age of the patients was 51 years (range, 10–85 years) and the mean follow-up period was 43 months (range, 1–115 months). The median serum sN-CAD level was 1,267 ng/ml (range, 135–2,860 ng/ml) in all patients. The mean serum sN-CAD level was 1,269 ng/ml (range, 360–2,860 ng/ml) in sarcoma patients, otherwise 1,246 ng/ml (range, 135–2,140 ng/ml) in cancer patients. The sN-CAD levels in patient were higher than those found in the controls, who had a median serum level of 108 ng/ml (range, 0–540 ng/ml). The patients with tumors larger than 5 cm had higher serum sN-CAD levels than the patients with tumors smaller than 5 cm. The histological grade in the patients with higher serum sN-CAD levels was higher than that in the patients with lower serum sN-CAD levels. A univariate analysis demonstrated that the patients with higher serum sN-CAD levels showed a worse disease-free survival rate, local recurrence-free survival rate, metastasis-free survival rate, and overall survival rate compared to those with lower serum sN-CAD levels. In the multivariate analysis, sN-CAD was an independent factor predicting disease-free survival. sN-CAD is a biomarker for malignant bone and soft tissue tumors, and a

  6. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin

    2011-01-01

    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  7. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neural stem cells

    Directory of Open Access Journals (Sweden)

    Stéphanie eSEGURA

    2015-09-01

    Full Text Available Adipocyte-derived hormone leptin has been recently implicated in the control of neuronal plasticity. To explore whether modulation of adult neurogenesis may contribute to leptin control of neuronal plasticity, we used the neurosphere assay of neural stem cells derived from the adult rat subventricular zone (SVZ. Endogenous expression of specific leptin receptor (ObRb transcripts, as revealed by RT-PCR, is associated with activation of both ERK and STAT-3 pathways via phosphorylation of the critical ERK/STAT-3 amino acid residues upon addition of leptin to neurospheres. Furthermore, leptin triggered withdrawal of neural stem cells from the cell cycle as monitored by Ki67 labelling. This effect was blocked by pharmacological inhibition of ERK activation thus demonstrating that ERK mediates leptin effects on neural stem cell expansion. Leptin-dependent withdrawal of neural stem cells from the cell cycle was associated with increased apoptosis, as detected by TUNEL, which was preceded by cyclin D1 induction. Cyclin D1 was indeed extensively colocalized with TUNEL-positive apoptotic cells. Cyclin-D1 silencing by specific shRNA prevented leptin-induced decrease of the cell number per neurosphere thus pointing to the causal relationship between leptin actions on apoptosis and cyclin D1 induction. Leptin target cells in SVZ neurospheres were identified by double TUNEL/phenotypic marker immunocytofluorescence as differentiating neurons mostly. The inhibition of neural stem cell expansion via ERK/cyclin D1-triggered apoptosis defines novel biological action of leptin which may be involved in adiposity-dependent neurotoxicity.

  8. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    Science.gov (United States)

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  9. Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators

    International Nuclear Information System (INIS)

    Zhang, Xinliang; Tan, Yonghong; Su, Miyong; Xie, Yangqiu

    2010-01-01

    This paper presents a method of the identification for the rate-dependent hysteresis in the piezoelectric actuator (PEA) by use of neural networks. In this method, a special hysteretic operator is constructed from the Prandtl-Ishlinskii (PI) model to extract the changing tendency of the static hysteresis. Then, an expanded input space is constructed by introducing the proposed hysteretic operator to transform the multi-valued mapping of the hysteresis into a one-to-one mapping. Thus, a feedforward neural network is applied to the approximation of the rate-independent hysteresis on the constructed expanded input space. Moreover, in order to describe the rate-dependent performance of the hysteresis, a special hybrid model, which is constructed by a linear auto-regressive exogenous input (ARX) sub-model preceded with the previously obtained neural network based rate-independent hysteresis sub-model, is proposed. For the compensation of the effect of the hysteresis in PEA, the PID feedback controller with a feedforward hysteresis compensator is developed for the tracking control of the PEA. Thus, a corresponding inverse model based on the proposed modeling method is developed for the feedforward hysteresis compensator. Finally, both simulations and experimental results on piezoelectric actuator are presented to verify the effectiveness of the proposed approach for the rate-dependent hysteresis.

  10. Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity

    Science.gov (United States)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-05-01

    The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.

  11. Ultrasonic Characterization of Tissues via Backscatter Frequency Dependence

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.

    1997-01-01

    , significantly lower mean frequency of ultrasound backscattered from cirrhotic, compared to normal, liver tissue was noted, Studies of benign and malignant liver tumors (hemangiomas and metastases, respectively) indicated differences in frequency content of these tumors, compared to the adjacent normal liver...

  12. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.

    Science.gov (United States)

    Bentil, Sarah A; Dupaix, Rebecca B

    2014-02-01

    The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.

  13. Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks

    International Nuclear Information System (INIS)

    Karimi, Hamid Reza; Maass, Peter

    2009-01-01

    This article aims to present a multiple delayed state-feedback control design for exponential H ∞ synchronization problem of a class of delayed neural networks with multiple time-varying discrete delays. On the basis of the drive-response concept and by introducing a descriptor technique and using Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for exponential H ∞ synchronization of the drive-response structure of neural networks are driven in terms of linear matrix inequalities (LMIs). The explicit expression of the controller gain matrices are parameterized based on the solvability conditions such that the drive system and the response system can be exponentially synchronized. A numerical example is included to illustrate the applicability of the proposed design method.

  14. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    Science.gov (United States)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity

    International Nuclear Information System (INIS)

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-01-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell–scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. - Highlights: • This paper focuses on design a high porous nanofibrous scaffold. • Hyaluronic acid and polycaprolactone were used as materials to provide ideal conditions for nerve regeneration. • Proper physicochemical and mechanical signals applied for improving cell attachment

  16. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    Science.gov (United States)

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity

    Energy Technology Data Exchange (ETDEWEB)

    Entekhabi, Elahe [Department of Biomedical Engineering, Amirkabir University of Technology, P.O. Box: 15875/4413, Tehran 159163/4311 (Iran, Islamic Republic of); Haghbin Nazarpak, Masoumeh, E-mail: mhaghbinn@gmail.com [New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moztarzadeh, Fathollah; Sadeghi, Ali [Department of Biomedical Engineering, Amirkabir University of Technology, P.O. Box: 15875/4413, Tehran 159163/4311 (Iran, Islamic Republic of)

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell–scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. - Highlights: • This paper focuses on design a high porous nanofibrous scaffold. • Hyaluronic acid and polycaprolactone were used as materials to provide ideal conditions for nerve regeneration. • Proper physicochemical and mechanical signals applied for improving cell attachment.

  18. Thymidine Kinase-Negative Herpes Simplex Virus 1 Can Efficiently Establish Persistent Infection in Neural Tissues of Nude Mice.

    Science.gov (United States)

    Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua

    2017-02-15

    Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised

  19. ERK-dependent and -independent pathways trigger human neural progenitor cell migration

    International Nuclear Information System (INIS)

    Moors, Michaela; Cline, Jason E.; Abel, Josef; Fritsche, Ellen

    2007-01-01

    Besides differentiation and apoptosis, cell migration is a basic process in brain development in which neural cells migrate several centimeters within the developing brain before reaching their proper positions and forming the right connections. For identifying signaling events that control neural migration and are therefore potential targets of chemicals to disturb normal brain development, we developed a human neurosphere-based migration assay based on normal human neural progenitor (NHNP) cells, in which the distance is measured that cells wander over time. Applying this assay, we investigated the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the regulation of NHNP cell migration. Exposure to model substances like ethanol or phorbol 12-myristate 13-acetate (PMA) revealed a correlation between ERK1/2 activation and cell migration. The participation of phospho-(P-) ERK1/2 was confirmed by exposure of the cells to the MEK inhibitor PD98059, which directly prohibits ERK1/2 phosphorylation and inhibited cell migration. We identified protein kinase C (PKC) and epidermal growth factor receptor (EGFR) as upstream signaling kinases governing ERK1/2 activation, thereby controlling NHNP cell migration. Additionally, treatments with src kinase inhibitors led to a diminished cell migration without affecting ERK1/2 phosphorylation. Based on these results, we postulate that migration of NHNP cells is controlled via ERK1/2-dependent and -independent pathways

  20. Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?

    Directory of Open Access Journals (Sweden)

    Carole Guedj

    2017-01-01

    Full Text Available The locus coeruleus-norepinephrine (LC-NE system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.

  1. State-dependent, bidirectional modulation of neural network activity by endocannabinoids.

    Science.gov (United States)

    Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J

    2011-11-16

    The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.

  2. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  3. Maternal Antiviral Immunoglobulin Accumulates in Neural Tissue of Neonates To Prevent HSV Neurological Disease

    Directory of Open Access Journals (Sweden)

    Yike Jiang

    2017-07-01

    Full Text Available While antibody responses to neurovirulent pathogens are critical for clearance, the extent to which antibodies access the nervous system to ameliorate infection is poorly understood. In this study on herpes simplex virus 1 (HSV-1, we demonstrate that HSV-specific antibodies are present during HSV-1 latency in the nervous systems of both mice and humans. We show that antibody-secreting cells entered the trigeminal ganglion (TG, a key site of HSV infection, and persisted long after the establishment of latent infection. We also demonstrate the ability of passively administered IgG to enter the TG independently of infection, showing that the naive TG is accessible to antibodies. The translational implication of this finding is that human fetal neural tissue could contain HSV-specific maternally derived antibodies. Exploring this possibility, we observed HSV-specific IgG in HSV DNA-negative human fetal TG, suggesting passive transfer of maternal immunity into the prenatal nervous system. To further investigate the role of maternal antibodies in the neonatal nervous system, we established a murine model to demonstrate that maternal IgG can access and persist in neonatal TG. This maternal antibody not only prevented disseminated infection but also completely protected the neonate from neurological disease and death following HSV challenge. Maternal antibodies therefore have a potent protective role in the neonatal nervous system against HSV infection. These findings strongly support the concept that prevention of prenatal and neonatal neurotropic infections can be achieved through maternal immunization.

  4. Neural tissue engineering scaffold with sustained RAPA release relieves neuropathic pain in rats.

    Science.gov (United States)

    Ding, Tan; Zhu, Chao; Kou, Zhen-Zhen; Yin, Jun-Bin; Zhang, Ting; Lu, Ya-Cheng; Wang, Li-Ying; Luo, Zhuo-Jing; Li, Yun-Qing

    2014-09-01

    To investigate the effect of locally slow-released rapamycin (RAPA) from bionic peripheral nerve stent to reduce the incidence of neuropathic pain or mitigate the degree of pain after nerve injury. We constructed a neural tissue engineering scaffold with sustained release of RAPA to repair 20mm defects in rat sciatic nerves. Four presurgical and postsurgical time windows were selected to monitor the changes in the expression of pain-related dorsal root ganglion (DRG) voltage-gated sodium channels 1.3 (Nav1.3), 1.7 (Nav1.7), and 1.8 (Nav1.8) through immunohistochemistry (IHC) and Western Blot, along with the observation of postsurgical pathological pain in rats by pain-related behavior approaches. Relatively small upregulation of DRG sodium channels was observed in the experimental group (RAPA+poly(lactic-co-glycolic acid) (PLGA)+stent) after surgery, along with low degrees of neuropathic pain and anxiety, which were similar to those in the Autologous nerve graft group. Autoimmune inflammatory response plays a leading role in the occurrence of post-traumatic neuropathic pain, and that RAPA significantly inhibits the abnormal upregulation of sodium channels to reduce pain by alleviating inflammatory response. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Artificial neural network prediction of ischemic tissue fate in acute stroke imaging

    Science.gov (United States)

    Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2010-01-01

    Multimodal magnetic resonance imaging of acute stroke provides predictive value that can be used to guide stroke therapy. A flexible artificial neural network (ANN) algorithm was developed and applied to predict ischemic tissue fate on three stroke groups: 30-, 60-minute, and permanent middle cerebral artery occlusion in rats. Cerebral blood flow (CBF), apparent diffusion coefficient (ADC), and spin–spin relaxation time constant (T2) were acquired during the acute phase up to 3 hours and again at 24 hours followed by histology. Infarct was predicted on a pixel-by-pixel basis using only acute (30-minute) stroke data. In addition, neighboring pixel information and infarction incidence were also incorporated into the ANN model to improve prediction accuracy. Receiver-operating characteristic analysis was used to quantify prediction accuracy. The major findings were the following: (1) CBF alone poorly predicted the final infarct across three experimental groups; (2) ADC alone adequately predicted the infarct; (3) CBF+ADC improved the prediction accuracy; (4) inclusion of neighboring pixel information and infarction incidence further improved the prediction accuracy; and (5) prediction was more accurate for permanent occlusion, followed by 60- and 30-minute occlusion. The ANN predictive model could thus provide a flexible and objective framework for clinicians to evaluate stroke treatment options on an individual patient basis. PMID:20424631

  6. Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Zhu Xunlin; Wang Youyi

    2009-01-01

    This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.

  7. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  9. Nonrigid registration with tissue-dependent filtering of the deformation field

    International Nuclear Information System (INIS)

    Staring, Marius; Klein, Stefan; Pluim, Josien P W

    2007-01-01

    In present-day medical practice it is often necessary to nonrigidly align image data. Current registration algorithms do not generally take the characteristics of tissue into account. Consequently, rigid tissue, such as bone, can be deformed elastically, growth of tumours may be concealed, and contrast-enhanced structures may be reduced in volume. We propose a method to locally adapt the deformation field at structures that must be kept rigid, using a tissue-dependent filtering technique. This adaptive filtering of the deformation field results in locally linear transformations without scaling or shearing. The degree of filtering is related to tissue stiffness: more filtering is applied at stiff tissue locations, less at parts of the image containing nonrigid tissue. The tissue-dependent filter is incorporated in a commonly used registration algorithm, using mutual information as a similarity measure and cubic B-splines to model the deformation field. The new registration algorithm is compared with this popular method. Evaluation of the proposed tissue-dependent filtering is performed on 3D computed tomography (CT) data of the thorax and on 2D digital subtraction angiography (DSA) images. The results show that tissue-dependent filtering of the deformation field leads to improved registration results: tumour volumes and vessel widths are preserved rather than affected

  10. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    Science.gov (United States)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the

  11. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics

    Science.gov (United States)

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  12. Fabrication of Chitosan/Poly (vinyl alcohol/Carbon Nanotube/Bioactive Glass Nanocomposite Scaffolds for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Nikbakht Katouli

    2016-06-01

    5 and 10 wt% incorporated electrospun chitosan (CS/polyvinyl alcohol (PVA nanofibers for potential neural tissue engineering applications.The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy (SEM and mechanical testing, respectively. In vitro cell culture of embryonal carcinoma stem cells (P19 were seeded onto the electrospun scaffolds. The results showed that the incorporation of CNTs and BG nanoparticles did not appreciably affect the morphology of the CS/PVA nanofibers. The maximum tensile strength (7.9 MPa was observed in the composite sample with 5 %wt bioactive glass nanoparticles. The results suggest that BG and CNT-incorporated CS/PVA nanofibrous scaffolds with small diameters, high porosity, and promoted mechanical properties can potentially provide many possibilities for applications in the fields of neural tissue engineering and regenerative medicine.

  13. Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.

    Science.gov (United States)

    Mishchenko, Yuriy

    2009-01-30

    We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

  14. Probing neural tissue with airy light-sheet microscopy: investigation of imaging performance at depth within turbid media

    Science.gov (United States)

    Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan

    2017-02-01

    Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.

  15. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

    Science.gov (United States)

    Kooi, Thijs; van Ginneken, Bram; Karssemeijer, Nico; den Heeten, Ard

    2017-03-01

    It is estimated that 7% of women in the western world will develop palpable breast cysts in their lifetime. Even though cysts have been correlated with risk of developing breast cancer, many of them are benign and do not require follow-up. We develop a method to discriminate benign solitary cysts from malignant masses in digital mammography. We think a system like this can have merit in the clinic as a decision aid or complementary to specialized modalities. We employ a deep convolutional neural network (CNN) to classify cyst and mass patches. Deep CNNs have been shown to be powerful classifiers, but need a large amount of training data for which medical problems are often difficult to come by. The key contribution of this paper is that we show good performance can be obtained on a small dataset by pretraining the network on a large dataset of a related task. We subsequently investigate the following: (a) when a mammographic exam is performed, two different views of the same breast are recorded. We investigate the merit of combining the output of the classifier from these two views. (b) We evaluate the importance of the resolution of the patches fed to the network. (c) A method dubbed tissue augmentation is subsequently employed, where we extract normal tissue from normal patches and superimpose this onto the actual samples aiming for a classifier invariant to occluding tissue. (d) We combine the representation extracted using the deep CNN with our previously developed features. We show that using the proposed deep learning method, an area under the ROC curve (AUC) value of 0.80 can be obtained on a set of benign solitary cysts and malignant mass findings recalled in screening. We find that it works significantly better than our previously developed approach by comparing the AUC of the ROC using bootstrapping. By combining views, the results can be further improved, though this difference was not found to be significant. We find no significant difference between

  16. Brain tissue aspiration neural tube defect Aspiração de tecido cerebral em casos de defeitos de fechamento do tubo neural

    Directory of Open Access Journals (Sweden)

    Luiz Cesar Peres

    2005-09-01

    Full Text Available The study aimed to find out how frequent is brain tissue aspiration and if brain tissue heterotopia could be found in the lung of human neural tube defect cases. Histological sections of each lobe of both lungs of 22 fetuses and newborn with neural tube defect were immunostained for glial fibrillary acidic protein (GFAP. There were 15 (68.2% females and 7 (31.8% males. Age ranged from 18 to 40 weeks of gestation (mean= 31.8. Ten (45.5% were stillborn, the same newborn, and 2 (9.1% were abortuses. Diagnosis were: craniorrhachischisis (9 cases, 40.9%, anencephaly (8 cases, 36,4%, ruptured occipital encephalocele and rachischisis (2 cases, 9.1% each, and early amniotic band disruption sequence (1 case, 4.5%. Only one case (4.5% exhibited GFAP positive cells inside bronchioles and alveoli admixed to epithelial amniotic squames. No heterotopic tissue was observed in the lung interstitium. We concluded that aspiration of brain tissue from the amniotic fluid in neural tube defect cases may happen but it is infrequent and heterotopia was not observed.O objetivo do estudo foi identificar qual a freqüência de aspiração de tecido cerebral e a existência de heterotopia nos pulmões de casos humanos de defeito de fechamento do tubo neural através da reação imuno-histoquímica para proteína fibrilar glial ácida (GFAP em cortes histológicos de todos os lobos de ambos os pulmões de 22 casos de fetos e neonatos com defeito de fechamento do tubo neural. Havia 15 casos femininos (68,2% e 7 masculinos (31,8%, com idade gestacional variando de 18 a 40 semanas (média= 31,8, sendo natimortos e neomortos 10 (45,5% cada e 2 (9,1% abortos. Os diagnósticos foram: Craniorraquisquise (9 casos, 40,9%, anencefalia (8 casos, 36,4%, encefalocele occipital rota e raquisquise (2 casos, 9,1% e 1 (4,5%caso de seqüência de disruptura amniótica precoce. Somente 1 caso (4,5% apresentou células positivas dentro de bronquíolos e alvéolos em meio a células epiteliais

  17. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  18. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Attenuated Neural Processing of Risk in Young Adults at Risk for Stimulant Dependence.

    Directory of Open Access Journals (Sweden)

    Martina Reske

    Full Text Available Approximately 10% of young adults report non-medical use of stimulants (cocaine, amphetamine, methylphenidate, which puts them at risk for the development of dependence. This fMRI study investigates whether subjects at early stages of stimulant use show altered decision making processing.158 occasional stimulants users (OSU and 50 comparison subjects (CS performed a "risky gains" decision making task during which they could select safe options (cash in 20 cents or gamble them for double or nothing in two consecutive gambles (win or lose 40 or 80 cents, "risky decisions". The primary analysis focused on risky versus safe decisions. Three secondary analyses were conducted: First, a robust regression examined the effect of lifetime exposure to stimulants and marijuana; second, subgroups of OSU with >1000 (n = 42, or <50 lifetime marijuana uses (n = 32, were compared to CS with <50 lifetime uses (n = 46 to examine potential marijuana effects; third, brain activation associated with behavioral adjustment following monetary losses was probed.There were no behavioral differences between groups. OSU showed attenuated activation across risky and safe decisions in prefrontal cortex, insula, and dorsal striatum, exhibited lower anterior cingulate cortex (ACC and dorsal striatum activation for risky decisions and greater inferior frontal gyrus activation for safe decisions. Those OSU with relatively more stimulant use showed greater dorsal ACC and posterior insula attenuation. In comparison, greater lifetime marijuana use was associated with less neural differentiation between risky and safe decisions. OSU who chose more safe responses after losses exhibited similarities with CS relative to those preferring risky options.Individuals at risk for the development of stimulant use disorders presented less differentiated neural processing of risky and safe options. Specifically, OSU show attenuated brain response in regions critical for performance monitoring

  20. Modeling gravity-dependent plasticity of the angular vestibuloocular reflex with a physiologically based neural network.

    Science.gov (United States)

    Xiang, Yongqing; Yakushin, Sergei B; Cohen, Bernard; Raphan, Theodore

    2006-12-01

    A neural network model was developed to explain the gravity-dependent properties of gain adaptation of the angular vestibuloocular reflex (aVOR). Gain changes are maximal at the head orientation where the gain is adapted and decrease as the head is tilted away from that position and can be described by the sum of gravity-independent and gravity-dependent components. The adaptation process was modeled by modifying the weights and bias values of a three-dimensional physiologically based neural network of canal-otolith-convergent neurons that drive the aVOR. Model parameters were trained using experimental vertical aVOR gain values. The learning rule aimed to reduce the error between eye velocities obtained from experimental gain values and model output in the position of adaptation. Although the model was trained only at specific head positions, the model predicted the experimental data at all head positions in three dimensions. Altering the relative learning rates of the weights and bias improved the model-data fits. Model predictions in three dimensions compared favorably with those of a double-sinusoid function, which is a fit that minimized the mean square error at every head position and served as the standard by which we compared the model predictions. The model supports the hypothesis that gravity-dependent adaptation of the aVOR is realized in three dimensions by a direct otolith input to canal-otolith neurons, whose canal sensitivities are adapted by the visual-vestibular mismatch. The adaptation is tuned by how the weights from otolith input to the canal-otolith-convergent neurons are adapted for a given head orientation.

  1. Context-dependent retrieval of information by neural-network dynamics with continuous attractors.

    Science.gov (United States)

    Tsuboshita, Yukihiro; Okamoto, Hiroshi

    2007-08-01

    Memory retrieval in neural networks has traditionally been described by dynamic systems with discrete attractors. However, recent neurophysiological findings of graded persistent activity suggest that memory retrieval in the brain is more likely to be described by dynamic systems with continuous attractors. To explore what sort of information processing is achieved by continuous-attractor dynamics, keyword extraction from documents by a network of bistable neurons, which gives robust continuous attractors, is examined. Given an associative network of terms, a continuous attractor led by propagation of neuronal activation in this network appears to represent keywords that express underlying meaning of a document encoded in the initial state of the network-activation pattern. A dominant hypothesis in cognitive psychology is that long-term memory is archived in the network structure, which resembles associative networks of terms. Our results suggest that keyword extraction by the neural-network dynamics with continuous attractors might symbolically represent context-dependent retrieval of short-term memory from long-term memory in the brain.

  2. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  3. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    Science.gov (United States)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  4. Neural mechanisms of context-dependent processing of CO2 avoidance behavior in fruit flies.

    Science.gov (United States)

    Siju, K P; Bräcker, Lasse B; Grunwald Kadow, I C

    2014-01-01

    The fruit fly, Drosophila melanogaster, innately avoids even low levels of CO2. CO2 is part of the so-called Drosophila stress odor produced by stressed flies, but also a byproduct of fermenting fruit, a main food source, making the strong avoidance behavior somewhat surprising. Therefore, we addressed whether feeding states might influence the fly's behavior and processing of CO2. In a recent report, we showed that this innate behavior is differentially processed and modified according to the feeding state of the fly. Interestingly, we found that hungry flies require the function of the mushroom body, a higher brain center required for olfactory learning and memory, but thought to be dispensable for innate olfactory behaviors. In addition, we anatomically and functionally characterized a novel bilateral projection neuron connecting the CO2 sensory input to the mushroom body. This neuron was essential for processing of CO2 in the starved fly but not in the fed fly. In this Extra View article, we provide evidence for the potential involvement of the neuromodulator dopamine in state-dependent CO2 avoidance behavior. Taken together, our work demonstrates that CO2 avoidance behavior is mediated by alternative neural pathways in a context-dependent manner. Furthermore, it shows that the mushroom body is not only involved in processing of learned olfactory behavior, as previously suggested, but also in context-dependent innate olfaction.

  5. DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate.

    Science.gov (United States)

    Li, Wen; Yu, Min; Luo, Suhui; Liu, Huan; Gao, Yuxia; Wilson, John X; Huang, Guowei

    2013-07-01

    The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0-200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20-40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images

    International Nuclear Information System (INIS)

    Sahiner, B.; Chan, H.P.; Petrick, N.; Helvie, M.A.; Adler, D.D.; Goodsitt, M.M.; Wei, D.

    1996-01-01

    The authors investigated the classification of regions of interest (ROI's) on mammograms as either mass or normal tissue using a convolution neural network (CNN). A CNN is a back-propagation neural network with two-dimensional (2-D) weight kernels that operate on images. A generalized, fast and stable implementation of the CNN was developed. The input images to the CNN were obtained form the ROI's using two techniques. The first technique employed averaging and subsampling. The second technique employed texture feature extraction methods applied to small subregions inside the ROI. Features computed over different subregions were arranged as texture images, which were subsequently used as CNN inputs. The effects of CNN architecture and texture feature parameters on classification accuracy were studied. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. A data set consisting of 168 ROI's containing biopsy-proven masses and 504 ROI's containing normal breast tissue was extracted from 168 mammograms by radiologists experienced in mammography. This data set was used for training and testing the CNN. With the best combination of CNN architecture and texture feature parameters, the area under the test ROC curve reached 0.87, which corresponded to a true-positive fraction of 90% at a false positive fraction of 31%. The results demonstrate the feasibility of using a CNN for classification of masses and normal tissue on mammograms

  7. Optical study on the dependence of breast tissue composition and structure on subject anamnesis

    Science.gov (United States)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo

    2015-07-01

    Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 200 subjects to estimate their average breast tissue composition in terms of oxy- and deoxy-hemoglobin, water, lipid and collagen, and structural information, as provided by scattering parameters (amplitude and power). Significant (and often marked) dependence of tissue composition and structure on age, menopausal status, body mass index, and use of oral contraceptives was demonstrated.

  8. Neural Correlates of Drug-Related Attentional Bias in Heroin Dependence

    Directory of Open Access Journals (Sweden)

    Qinglin Zhao

    2018-01-01

    Full Text Available The attention of drug-dependent persons tends to be captured by stimuli associated with drug consumption. This involuntary cognitive process is considered as attentional bias (AB. AB has been hypothesized to have causal effects on drug abuse and drug relapse, but its underlying neural mechanisms are still unclear. This study investigated the neural basis of AB in abstinent heroin addicts (AHAs, combining event-related potential (ERP analysis and source localization techniques. Electroencephalography data were collected in 21 abstinent heroin addicts and 24 age- and gender-matched healthy controls (HCs during a dot-probe task. In the task, a pair of drug-related image and neutral image was presented randomly in left and right side of the cross fixation, followed by a dot probe replacing one of the images. Behaviorally, AHAs had shorter reaction times (RTs for the congruent condition compared to the incongruent condition, whereas this was not the case in the HCs. This finding demonstrated the presence of AB towards drug cues in AHAs. Furthermore, the image-evoked ERPs in AHAs had significant shorter P1 latency compared to HCs, as well as larger N1, N2, and P2 amplitude, suggesting that drug-related stimuli might capture attention early and overall require more attentional resources in AHAs. The target-related P3 had significantly shorter latency and lower amplitude in the congruent than incongruent condition in AHAs compared to HCs. Moreover, source localization of ERP components revealed increased activity for AHAs as compared to HCs in the dorsal posterior cingulate cortex (dPCC, superior parietal lobule and inferior frontal gyrus (IFG for image-elicited responses, and decreased activity in the occipital and the medial parietal lobes for target-elicited responses. Overall, the results of our study confirmed that AHAs may exhibit AB in drug-related contexts, and suggested that the bias might be related to an abnormal neural activity, both in

  9. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    OpenAIRE

    Kamei, Naosuke; Atesok, Kivanc; Ochi, Mitsuo

    2017-01-01

    Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regenera...

  10. Memory and pattern storage in neural networks with activity dependent synapses

    Science.gov (United States)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  11. Sensitivity of hiPSC-derived neural stem cells (NSC) to Pyrroloquinoline quinone depends on their developmental stage.

    Science.gov (United States)

    Augustyniak, J; Lenart, J; Zychowicz, M; Lipka, G; Gaj, P; Kolanowska, M; Stepien, P P; Buzanska, L

    2017-12-01

    Pyrroloquinoline quinone (PQQ) is a factor influencing on the mitochondrial biogenesis. In this study the PQQ effect on viability, total cell number, antioxidant capacity, mitochondrial biogenesis and differentiation potential was investigated in human induced Pluripotent Stem Cells (iPSC) - derived: neural stem cells (NSC), early neural progenitors (eNP) and neural progenitors (NP). Here we demonstrated that sensitivity to PQQ is dependent upon its dose and neural stage of development. Induction of the mitochondrial biogenesis by PQQ at three stages of neural differentiation was evaluated at mtDNA, mRNA and protein level. Changes in NRF1, TFAM and PPARGC1A gene expression were observed at all developmental stages, but only at eNP were correlated with the statistically significant increase in the mtDNA copy numbers and enhancement of SDHA, COX-1 protein level. Thus, the "developmental window" of eNP for PQQ-evoked mitochondrial biogenesis is proposed. This effect was independent of high antioxidant capacity of PQQ, which was confirmed in all tested cell populations, regardless of the stage of hiPSC neural differentiation. Furthermore, a strong induction of GFAP, with down regulation of MAP2 gene expression upon PQQ treatment was observed. This indicates a possibility of shifting the balance of cell differentiation in the favor of astroglia, but more research is needed at this point. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration.

    Science.gov (United States)

    Allocca, Mariacarmela; Corrigan, Joshua J; Fake, Kimberly R; Calvo, Jennifer A; Samson, Leona D

    2017-09-15

    Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type and Aag -transgenic ( AagTg ) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT and AagTg mice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. In AagTg male and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much like Parp1 gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT and AagTg mice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.

  13. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    OpenAIRE

    Hayato Fukusumi; Tomoko Shofuda; Yohei Bamba; Atsuyo Yamamoto; Daisuke Kanematsu; Yukako Handa; Keisuke Okita; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano; Yonehiro Kanemura

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPS...

  14. Travelling waves in models of neural tissue: from localised structures to periodic waves

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2014-01-01

    We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength

  15. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  16. A fully-automated neural network analysis of AFM force-distance curves for cancer tissue diagnosis

    Science.gov (United States)

    Minelli, Eleonora; Ciasca, Gabriele; Sassun, Tanya Enny; Antonelli, Manila; Palmieri, Valentina; Papi, Massimiliano; Maulucci, Giuseppe; Santoro, Antonio; Giangaspero, Felice; Delfini, Roberto; Campi, Gaetano; De Spirito, Marco

    2017-10-01

    Atomic Force Microscopy (AFM) has the unique capability of probing the nanoscale mechanical properties of biological systems that affect and are affected by the occurrence of many pathologies, including cancer. This capability has triggered growing interest in the translational process of AFM from physics laboratories to clinical practice. A factor still hindering the current use of AFM in diagnostics is related to the complexity of AFM data analysis, which is time-consuming and needs highly specialized personnel with a strong physical and mathematical background. In this work, we demonstrate an operator-independent neural-network approach for the analysis of surgically removed brain cancer tissues. This approach allowed us to distinguish—in a fully automated fashion—cancer from healthy tissues with high accuracy, also highlighting the presence and the location of infiltrating tumor cells.

  17. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

    Science.gov (United States)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.

    2018-06-01

    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  18. Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yonggang Chen

    2008-01-01

    Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.

  19. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.

    Science.gov (United States)

    Zenobia, Camille; Luo, Xiao Long; Hashim, Ahmed; Abe, Toshiharu; Jin, Lijian; Chang, Yucheng; Jin, Zhi Chao; Sun, Jian Xun; Hajishengallis, George; Curtis, Mike A; Darveau, Richard P

    2013-08-01

    The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific-pathogen-free and germ-free wild-type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment of neutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88-dependent way that correlates with increased neutrophil recruitment as compared with germ-free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue. © 2013 John Wiley & Sons Ltd.

  20. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field.

    Science.gov (United States)

    Ye, Hui; Steiger, Amanda

    2015-08-12

    In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural

  1. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    Science.gov (United States)

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  2. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.

    Science.gov (United States)

    Jose, K V Jovan; Artrith, Nongnuch; Behler, Jörg

    2012-05-21

    An accurate determination of the potential energy is the crucial step in computer simulations of chemical processes, but using electronic structure methods on-the-fly in molecular dynamics (MD) is computationally too demanding for many systems. Constructing more efficient interatomic potentials becomes intricate with increasing dimensionality of the potential-energy surface (PES), and for numerous systems the accuracy that can be achieved is still not satisfying and far from the reliability of first-principles calculations. Feed-forward neural networks (NNs) have a very flexible functional form, and in recent years they have been shown to be an accurate tool to construct efficient PESs. High-dimensional NN potentials based on environment-dependent atomic energy contributions have been presented for a number of materials. Still, these potentials may be improved by a more detailed structural description, e.g., in form of atom pairs, which directly reflect the atomic interactions and take the chemical environment into account. We present an implementation of an NN method based on atom pairs, and its accuracy and performance are compared to the atom-based NN approach using two very different systems, the methanol molecule and metallic copper. We find that both types of NN potentials provide an excellent description of both PESs, with the pair-based method yielding a slightly higher accuracy making it a competitive alternative for addressing complex systems in MD simulations.

  3. Delay-Dependent Exponential Optimal Synchronization for Nonidentical Chaotic Systems via Neural-Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Feng-Hsiag Hsiao

    2013-01-01

    Full Text Available A novel approach is presented to realize the optimal exponential synchronization of nonidentical multiple time-delay chaotic (MTDC systems via fuzzy control scheme. A neural-network (NN model is first constructed for the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov's direct method is proposed to guarantee that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. According to the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach.

  4. A Recurrent Neural Network Approach to Rear Vehicle Detection Which Considered State Dependency

    Directory of Open Access Journals (Sweden)

    Kayichirou Inagaki

    2003-08-01

    Full Text Available Experimental vision-based detection often fails in cases when the acquired image quality is reduced by changing optical environments. In addition, the shape of vehicles in images that are taken from vision sensors change due to approaches by vehicle. Vehicle detection methods are required to perform successfully under these conditions. However, the conventional methods do not consider especially in rapidly varying by brightness conditions. We suggest a new detection method that compensates for those conditions in monocular vision-based vehicle detection. The suggested method employs a Recurrent Neural Network (RNN, which has been applied for spatiotemporal processing. The RNN is able to respond to consecutive scenes involving the target vehicle and can track the movements of the target by the effect of the past network states. The suggested method has a particularly beneficial effect in environments with sudden, extreme variations such as bright sunlight and shield. Finally, we demonstrate effectiveness by state-dependent of the RNN-based method by comparing its detection results with those of a Multi Layered Perceptron (MLP.

  5. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    Science.gov (United States)

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  6. Light evokes melanopsin-dependent vocalization and neural activation associated with aversive experience in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Anton Delwig

    Full Text Available Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus.

  7. Alcohol Dependence and Altered Engagement of Neural Networks in Risky Decisions

    Directory of Open Access Journals (Sweden)

    Xi eZhu

    2016-03-01

    Full Text Available Alcohol dependence is associated with heightened risk tolerance and altered decision- making. This raises the question as to whether alcohol dependent patients (ADP are incapable of proper risk assessment. We investigated how healthy controls (HC and ADP engage neural networks to cope with the increased cognitive demands of risky decisions. We collected fMRI data while 34 HC and 16 ADP played a game that included safe and risky trials. In safe trials, participants accrued money at no risk of a penalty. In risky trials, reward and risk simultaneously increased as participants were instructed to decide when to stop a reward accrual period. If the participant failed to stop before an undisclosed time, the trial would bust and participants would not earn the money from that trial. Independent Component Analysis was used to identify networks engaged during the anticipation and the decision execution of risky compared with safe trials. Like HC, ADP demonstrated distinct network engagement for safe and risky trials at anticipation. However, at decision execution, ADP exhibited severely reduced discrimination in network engagement between safe and risky trials. Although ADP behaviorally responded to risk they failed to appropriately modify network engagement as the decision continued, leading ADP to assume similar network engagement regardless of risk prospects. This may reflect disorganized network switching and a facile response strategy uniformly adopted by ADP across risk conditions. We propose that aberrant salience network (SN engagement in ADP might contribute to ineffective network switching and that the role of the SN in risky decisions warrants further investigation.

  8. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2016-01-01

    Full Text Available The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.

  9. Alteration of putative amino acid levels and morphological findings in neural tissues of methylmercury-intoxicated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, K.; Inouye, M.; Fujisaki, T.

    1985-04-01

    Methylmercury chloride was administered PO to male Kud:ddY mice at a dose of 5 mg/kg/day for 20 days. The contents of taurine, aspartate, glutamate, glycine, and ..gamma..-aminobutyric acid were determined in tissue and crude synaptosomal (P/sub 2/) fraction of cerebellum, cerebral cortex, and spinal cord of methylmercury-treated mice with or without ataxia. In the cerebellum of ataxic mice, increased levels of taurine and glycine were found in the tissue and P/sub 2/ fraction, and increased levels of glutamate were found in the P/sub 2/ fraction. In the cerebral cortex, the levels of ..gamma..-aminobutylic acid decreased in the tissue and in the P/sub 2/ fraction of ataxic mice, but increased levels were found in the tissue of non-ataxic mice. A decreased asparate level in the cerebral cortex of ataxic mice and an increased taurine level in the cerebral cortex of non-ataxic mice were also found. In the spinal cord of ataxic mice, taurine increased in the tissue and in the P/sub 2/ fraction. Glutamate level decreased in the spinal cord of ataxic mice, but increased in the P/sub 2/ fraction of non-ataxic mice. Increased glycine levels in the P/sub 2/ fraction of the spinal cord were also found in non-axtaxic mice. Histologically, some degenerative changes were demonstrated in the cerebral and cerebellar cortices of ataxic mice. Such changes were also present to a mild degree in non-ataxic mice. In conclusion, methylmercury treatment altered the levels of putative neurotransmitter amino acids in neutral tissue of mice. These alterations might be caused by specific neural cell dysfunction and could be related to the appearance of ataxia.

  10. Age-dependent tissue-specific exposure of cell phone users

    International Nuclear Information System (INIS)

    Christ, Andreas; Gosselin, Marie-Christine; Kuehn, Sven; Kuster, Niels; Christopoulou, Maria

    2010-01-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  11. Age-dependent tissue-specific exposure of cell phone users

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Gosselin, Marie-Christine; Kuehn, Sven; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland); Christopoulou, Maria [National Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Polytechniou Str., 15780 Athens (Greece)], E-mail: christ@itis.ethz.ch

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  12. Method of Creation of “Core-Gisseismic Attributes” Dependences With Use of Trainable Neural Networks

    Directory of Open Access Journals (Sweden)

    Gafurov Denis

    2016-01-01

    Full Text Available The study describes methodological techniques and results of geophysical well logging and seismic data interpretation by means of trainable neural networks. Objects of research are wells and seismic materials of Talakan field. The article also presents forecast of construction and reservoir properties of Osa horizon. The paper gives an example of creation of geological (lithological -facial model of the field based on developed methodical techniques of complex interpretation of geologicgeophysical data by trainable neural network. The constructed lithological -facial model allows specifying a geological structure of the field. The developed methodical techniques and the trained neural networks may be applied to adjacent sites for research of carbonate horizons.

  13. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology.

    Directory of Open Access Journals (Sweden)

    Marcela Montes de Oca

    2016-01-01

    Full Text Available Tumor necrosis factor (TNF is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1 cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.

  14. Identifying the relevant dependencies of the neural network response on characteristics of the input space

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This talk presents an approach to identify those characteristics of the neural network inputs that are most relevant for the response and therefore provides essential information to determine the systematic uncertainties.

  15. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  16. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    Science.gov (United States)

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.

  17. Improved delay-dependent globally asymptotic stability of delayed uncertain recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Yan, Ji; Bao-Tong, Cui

    2010-01-01

    In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB. (general)

  18. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  19. Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray

    Science.gov (United States)

    Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit

    2016-11-01

    Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".

  20. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

    Science.gov (United States)

    Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard

    2018-04-01

    To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Improved Criteria on Delay-Dependent Stability for Discrete-Time Neural Networks with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2012-01-01

    Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  2. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.

    Science.gov (United States)

    Mitozo, Péricles Arruda; de Souza, Luiz Felipe; Loch-Neckel, Gecioni; Flesch, Samira; Maris, Angelica Francesca; Figueiredo, Cláudia Pinto; Dos Santos, Adair Roberto Soares; Farina, Marcelo; Dafre, Alcir Luiz

    2011-07-01

    Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H₂O₂ decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H₂O₂ and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H₂O₂, but not in C6 cells. However, Prx-SO₃ formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard; Bramsen, Jesper Bertram; Bendixen, Christian

    2012-01-01

    Editing by ADAR enzymes is essential for mammalian life. Still, knowledge of the spatio-temporal editing patterns in mammals is limited. By use of 454 amplicon sequencing we examined the editing status of 12 regionally extracted mRNAs from porcine developing brain encompassing a total of 64...... putative ADAR editing sites. In total 24 brain tissues, dissected from up to five regions from embryonic gestation day 23, 42, 60, 80, 100 and 115, were examined for editing....

  4. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    objective of this project is to determine the conditions conducive for cavitation in cerebrospinal fluid (CSF) and corresponding tissue injury in 2-D brain...the radius of an isolated spherical bubble in an infinite, incompressible liquid is given by Where, R is the instantaneous bubble radius, which can...by the pressure transducer placed in the test chamber, and PR is the pressure in the liquid at the boundary of the bubble. The measurable bubble

  5. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    International Nuclear Information System (INIS)

    Miranda, P C; Correia, L; Salvador, R; Basser, P J

    2007-01-01

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m -1 to 0.333 S m -1 , simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation

  6. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  7. Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Olivier Reynaud

    2017-11-01

    Full Text Available In diffusion weighted imaging (DWI, the apparent diffusion coefficient (ADC has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times/frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a in the short time regime, disentangling structural and diffusive tissue properties, and (b near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts, a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS and diffusivities are assessed. The proper modeling of tissue membrane permeability—hardly a newcomer in the field, but lacking applications—and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter

  8. Time-dependent diffusion MRI in cancer: tissue modeling and applications

    Science.gov (United States)

    Reynaud, Olivier

    2017-11-01

    In diffusion weighted imaging (DWI), the apparent diffusion coefficient has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD) is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times / frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a) in the short time regime, disentangling structural and diffusive tissue properties, and (b) near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts), a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT) are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS) and diffusivities are assessed. The proper modeling of tissue membrane permeability – hardly a newcomer in the field, but lacking applications - and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter estimation (i

  9. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    International Nuclear Information System (INIS)

    Caspar-Bauguil, S.; Cousin, B.; Andre, M.; Nibbelink, M.; Galinier, A.; Periquet, B.; Casteilla, L.; Penicaud, L.

    2006-01-01

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage of NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral γδ T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the αβ T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations

  10. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  11. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

    Directory of Open Access Journals (Sweden)

    Vaibhav P. Pai

    2012-01-01

    Full Text Available Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (Vmem demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by Vmem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

  12. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  13. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2005-01-01

    For bi-directional associative memory (BAM) neural networks (NNs) with different constant or time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated in this paper. An approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI) is taken to study the problems, which provide bounds on the interconnection matrix and the activation functions, so as to guarantee the system's exponential stability. Some criteria for the exponential stability, which give information on the delay-dependent property, are derived. The results obtained in this paper provide one more set of easily verified guidelines for determining the exponential stability of delayed BAM (DBAM) neural networks, which are less conservative and less restrictive than the ones reported so far in the literature. Some typical examples are presented to show the application of the criteria obtained in this paper

  14. Neural organization of linguistic short-term memory is sensory modality-dependent: evidence from signed and spoken language.

    Science.gov (United States)

    Pa, Judy; Wilson, Stephen M; Pickell, Herbert; Bellugi, Ursula; Hickok, Gregory

    2008-12-01

    Despite decades of research, there is still disagreement regarding the nature of the information that is maintained in linguistic short-term memory (STM). Some authors argue for abstract phonological codes, whereas others argue for more general sensory traces. We assess these possibilities by investigating linguistic STM in two distinct sensory-motor modalities, spoken and signed language. Hearing bilingual participants (native in English and American Sign Language) performed equivalent STM tasks in both languages during functional magnetic resonance imaging. Distinct, sensory-specific activations were seen during the maintenance phase of the task for spoken versus signed language. These regions have been previously shown to respond to nonlinguistic sensory stimulation, suggesting that linguistic STM tasks recruit sensory-specific networks. However, maintenance-phase activations common to the two languages were also observed, implying some form of common process. We conclude that linguistic STM involves sensory-dependent neural networks, but suggest that sensory-independent neural networks may also exist.

  15. Functional dissociations in top-down control dependent neural repetition priming.

    NARCIS (Netherlands)

    Klaver, P.; Schnaidt, M.; Fell, J.; Ruhlmann, J.; Elger, C.E.; Fernandez, G.S.E.

    2007-01-01

    Little is known about the neural mechanisms underlying top-down control of repetition priming. Here, we use functional brain imaging to investigate these mechanisms. Study and repetition tasks used a natural/man-made forced choice task. In the study phase subjects were required to respond to either

  16. Vividness of visual imagery depends on the neural overlap with perception in visual areas

    NARCIS (Netherlands)

    Dijkstra, N.; Bosch, S.E.; Gerven, M.A.J. van

    2017-01-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture.

  17. Delay-dependent exponential stability of cellular neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2005-01-01

    The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results

  18. GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel G Blackmore

    Full Text Available Here we demonstrate, both in vivo and in vitro, that growth hormone (GH mediates precursor cell activation in the subventricular zone (SVZ of the aged (12-month-old brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.

  19. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    Science.gov (United States)

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  20. Neural Differences in Bilingual Children's Arithmetic Processing Depending on Language of Instruction

    NARCIS (Netherlands)

    Mondt, K.; Struys, E.; Noort, M.W.M.L. van den; Balériaux, D.; Metens, T.; Paquier, P.; Craen, P. van de; Bosch, M.P.C.; Denolin, V.

    2011-01-01

    Many children in bilingual regions follow lessons in a language at school (school-language) that they hardly ever speak at home or in other informal settings. What are the neural effects of this phenomenon? This functional magnetic resonance imaging (fMRI) study investigates the effects of using

  1. Simulation studies of optimum energies for DXA: dependence on tissue type, patient size and dose model

    International Nuclear Information System (INIS)

    Michael, G. J.; Henderson, C. J.

    1999-01-01

    Dual-energy x-ray absorptiometry (DXA) is a well established technique for measuring bone mineral density (BMD). However, in recent years DXA is increasingly being used to measure body composition in terms of fat and fat-free mass. DXA scanners must also determine the soft tissue baseline value from soft-tissue-only regions adjacent to bone. The aim of this work is to determine, using computer simulations, the optimum x- ray energies for a number of dose models, different tissues, i.e. bone mineral, average soft tissue, lean soft tissue and fat; and a range of anatomical sites and patient sizes. Three models for patient dose were evaluated total beam energy, entrance exposure and absorbed dose calculated by Monte Carlo modelling. A range of tissue compositions and thicknesses were chosen to cover typical patient variations for the three sites femoral neck, PA spine and lateral spine. In this work, the optimisation of the energies is based on (1) the uncertainty that arises from the quantum statistical nature of the number of x-rays recorded by the detector, and (2) the radiation dose received by the patient. This study has deliberately not considered other parameters such as detector response, electronic noise, x-ray tube heat load etc, because these are technology dependent parameters, not ones that are inherent to the measuring technique. Optimisation of the energies is achieved by minimisation of the product of variance of density measurement and dose which is independent of the absolute intensities of the x-ray beams. The results obtained indicate that if solving for bone density, then E-low in the range 34 to 42 keV, E-high in the range 100 to 200 keV and incident intensity ratio (low energy/high energy) in the range 3 to 10 is a reasonable compromise for the normal range of patient sizes. The choice of energies is complicated by the fact that the DXA unit must also solve for fat and lean soft tissue in soft- tissue-only regions adjacent to the bone. In this

  2. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Baertsch, Nathan A; Baker-Herman, Tracy L

    2015-04-15

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. Copyright © 2015 the American Physiological Society.

  3. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  4. Elemental imbalance studies by INAA on extra neural tissues from amyotrophic lateral sclerosis patients

    International Nuclear Information System (INIS)

    Tandon, L.; Ehmann, W.D.

    1995-01-01

    Human kidney and liver tissues were studied for generalized elemental imbalances in amyotrophic lateral sclerosis (ALS) by instrumental neutron activation analysis (INAA). Iron was significantly increased (p<0.05) in ALS kidneys and Co and Fe (marginal, p<0.10) were increased in ALS liver compared with their respective controls. Mercury values were almost two-fold higher for ALS kidney and 17% higher for ALS liver as compared with their respective controls, However, the Hg data exhibited large variations and ALS-control differences were not significant. Data from the present study are discussed with reference to the role of metallothioneins (MT) in ALS, and a possible linkage between a free radical mediated mechanism and degeneration of cells in ALS is also explored. (author). 43 refs., 2 tabs

  5. Angular dependence of depth doses in a tissue slab irradiated with monoenergetic photons

    International Nuclear Information System (INIS)

    Till, E.; Zankl, M.; Drexler, G.

    1995-12-01

    This report presents dose equivalents from external photon irradiation, normalised to air kerma free in air, on the central axis of a cuboid slab of ICRU tissue for various depths, photon energies and angles of beam incidence. The data were calculated by a Monte Carlo method using an idealised planar parallel source of monoenergetic photons. The data presented here aim at facilitating the calibration of individual dosimeters; they provide also an estimate of the quantity 'personal dose equivalent' defined by the ICRU. A detailed evaluation of the dependence of the calculated conversion coefficients on depth in the slab, photon energy and angle of incidence is given. A comparison with published measured an calculated values of angular dependence factors is made. (orig.)

  6. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  7. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    Science.gov (United States)

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  8. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    International Nuclear Information System (INIS)

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-01-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P 1 production (P 1 release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway

  9. Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay

    International Nuclear Information System (INIS)

    Wang Shen-Quan; Feng Jian; Zhao Qing

    2012-01-01

    In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones. (general)

  10. Neural Signatures of Cognitive Flexibility and Reward Sensitivity Following Nicotinic Receptor Stimulation in Dependent Smokers: A Randomized Trial.

    Science.gov (United States)

    Lesage, Elise; Aronson, Sarah E; Sutherland, Matthew T; Ross, Thomas J; Salmeron, Betty Jo; Stein, Elliot A

    2017-06-01

    Withdrawal from nicotine is an important contributor to smoking relapse. Understanding how reward-based decision making is affected by abstinence and by pharmacotherapies such as nicotine replacement therapy and varenicline tartrate may aid cessation treatment. To independently assess the effects of nicotine dependence and stimulation of the nicotinic acetylcholine receptor on the ability to interpret valence information (reward sensitivity) and subsequently alter behavior as reward contingencies change (cognitive flexibility) in a probabilistic reversal learning task. Nicotine-dependent smokers and nonsmokers completed a probabilistic reversal learning task during acquisition of functional magnetic resonance imaging (fMRI) in a 2-drug, double-blind placebo-controlled crossover design conducted from January 21, 2009, to September 29, 2011. Smokers were abstinent from cigarette smoking for 12 hours for all sessions. In a fully Latin square fashion, participants in both groups underwent MRI twice while receiving varenicline and twice while receiving a placebo pill, wearing either a nicotine or a placebo patch. Imaging analysis was performed from June 15, 2015, to August 10, 2016. A well-established computational model captured effects of smoking status and administration of nicotine and varenicline on probabilistic reversal learning choice behavior. Neural effects of smoking status, nicotine, and varenicline were tested for on MRI contrasts that captured reward sensitivity and cognitive flexibility. The study included 24 nicotine-dependent smokers (12 women and 12 men; mean [SD] age, 35.8 [9.9] years) and 20 nonsmokers (10 women and 10 men; mean [SD] age, 30.4 [7.2] years). Computational modeling indicated that abstinent smokers were biased toward response shifting and that their decisions were less sensitive to the available evidence, suggesting increased impulsivity during withdrawal. These behavioral impairments were mitigated with nicotine and varenicline

  11. The Dose-Dependent Effects of Vascular Risk Factors on Dynamic Compensatory Neural Processes in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Haifeng Chen

    2018-05-01

    Full Text Available Background/Objectives: Mild cognitive impairment (MCI has been associated with risk for Alzheimer's Disease (AD. Previous investigations have suggested that vascular risk factors (VRFs were associated with cognitive decline and AD pathogenesis, and the intervention of VRFs may be a possible way to prevent dementia. However, in MCI, little is known about the potential impacts of VRFs on neural networks and their neural substrates, which may be a neuroimaging biomarker of the disease progression.Methods: 128 elderly Han Chinese participants (67 MCI subjects and 61 matched normal elderly with or without VRFs (hypertension, diabetes mellitus, hypercholesterolemia, smoking and alcohol drinking underwent the resting-state functional magnetic resonance imaging (fMRI and neuropsychological tests. We obtained the default mode network (DMN to identify alterations in MCI with the varying number of the VRF and analyzed the significant correlation with behavioral performance.Results: The effects of VRF on the DMN were primarily in bilateral dorsolateral prefrontal cortex (DLPFC (i.e., middle frontal gyrus. Normal elderly showed the gradually increased functional activity of DLPFC, while a fluctuant activation of DLPFC was displayed in MCI with the growing number of the VRF. Interestingly, the left DLPFC further displayed significantly dynamic correlation with executive function as the variation of VRF loading. Initial level of compensation was observed in normal aging and none-vascular risk factor (NVRF MCI, while these compensatory neural processes were suppressed in One-VRF MCI and were subsequently re-aroused in Over-One-VRF MCI.Conclusions: These findings suggested that the dose-dependent effects of VRF on DLPFC were highlighted in MCI, and the dynamic compensatory neural processes that fluctuated along with variations of VRF loading could be key role in the progression of MCI.

  12. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Sapin-de Brosses, E; Gennisson, J-L; Pernot, M; Fink, M; Tanter, M [Langevin Institute (CNRS UMR 7587), INSERM ERL U979, ESPCI ParisTech, 10 rue Vauquelin, 75 005 Paris (France)], E-mail: emilie.sapin@espci.fr

    2010-03-21

    Soft tissue stiffness was shown to significantly change after thermal ablation. To better understand this phenomenon, the study aims (1) to quantify and explain the temperature dependence of soft tissue stiffness for different organs, (2) to investigate the potential relationship between stiffness changes and thermal dose and (3) to study the reversibility or irreversibility of stiffness changes. Ex vivo bovine liver and muscle samples (N = 3 and N = 20, respectively) were slowly heated and cooled down into a thermally controlled saline bath. Temperatures were assessed by thermocouples. Sample stiffness (shear modulus) was provided by the quantitative supersonic shear imaging technique. Changes in liver stiffness are observed only after 45 deg. C. In contrast, between 25 deg. C and 65 deg. C, muscle stiffness varies in four successive steps that are consistent with the thermally induced proteins denaturation reported in the literature. After a 6 h long heating and cooling process, the final muscle stiffness can be either smaller or bigger than the initial one, depending on the stiffness at the end of the heating. Another important result is that stiffness changes are linked to thermal dose. Given the high sensitivity of ultrasound to protein denaturation, this study gives promising prospects for the development of ultrasound-guided HIFU systems.

  13. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound

    International Nuclear Information System (INIS)

    Sapin-de Brosses, E; Gennisson, J-L; Pernot, M; Fink, M; Tanter, M

    2010-01-01

    Soft tissue stiffness was shown to significantly change after thermal ablation. To better understand this phenomenon, the study aims (1) to quantify and explain the temperature dependence of soft tissue stiffness for different organs, (2) to investigate the potential relationship between stiffness changes and thermal dose and (3) to study the reversibility or irreversibility of stiffness changes. Ex vivo bovine liver and muscle samples (N = 3 and N = 20, respectively) were slowly heated and cooled down into a thermally controlled saline bath. Temperatures were assessed by thermocouples. Sample stiffness (shear modulus) was provided by the quantitative supersonic shear imaging technique. Changes in liver stiffness are observed only after 45 deg. C. In contrast, between 25 deg. C and 65 deg. C, muscle stiffness varies in four successive steps that are consistent with the thermally induced proteins denaturation reported in the literature. After a 6 h long heating and cooling process, the final muscle stiffness can be either smaller or bigger than the initial one, depending on the stiffness at the end of the heating. Another important result is that stiffness changes are linked to thermal dose. Given the high sensitivity of ultrasound to protein denaturation, this study gives promising prospects for the development of ultrasound-guided HIFU systems.

  14. Is NAA reduction in normal contralateral cerebral tissue in stroke patients dependent on underlying risk factors?

    Science.gov (United States)

    Walker, P M; Ben Salem, D; Giroud, M; Brunotte, F

    2006-05-01

    This retrospective study investigated the dependence of N-acetyl aspartate (NAA) ratios on risk factors for cerebral vasculopathy such as sex, age, hypertension, diabetes mellitus, carotid stenosis, and dyslipidaemia, which may have affected brain vessels and induced metabolic brain abnormalities prior to stroke. We hypothesise that in stroke patients metabolic alterations in the apparently normal contralateral brain are dependent on the presence or not of such risk factors. Fifty nine patients (31 male, 28 female: 58.8+/-16.1 years old) with cortical middle cerebral artery (MCA) territory infarction were included. Long echo time chemical shift imaging spectroscopy was carried out on a Siemens 1.5 T Magnetom Vision scanner using a multi-voxel PRESS technique. Metabolite ratios (NAA/choline, NAA/creatine, lactate/choline, etc) were studied using uni- and multivariate analyses with respect to common risk factors. The influence of age, stroke lesion size, and time since stroke was studied using a linear regression approach. Age, sex, and hypertension all appeared to individually influence metabolite ratios, although only hypertension was significant after multivariate analysis. In both basal ganglia and periventricular white matter regions in apparently normal contralateral brain, the NAA/choline ratio was significantly lower in hypertensive (1.37+/-0.16 and 1.50+/-0.19, respectively) than in normotensive patients (1.72+/-0.19 and 1.85+/-0.15, respectively). Regarding MCA infarction, contralateral tissue remote from the lesion behaves abnormally in the presence of hypertension, the NAA ratios in hypertensive patients being significantly lower. These data suggest that hypertension may compromise the use of contralateral tissue data as a reference for comparison with ischaemic tissue.

  15. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  16. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomohiro [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Sugiura, Hisatoshi, E-mail: sugiura@rm.med.tohoku.ac.jp [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan); Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Ichinose, Masakazu [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan)

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  17. [The elemental composition of teeth hard tissues depending on the state of the environment].

    Science.gov (United States)

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  18. Acute D3 Antagonist GSK598809 Selectively Enhances Neural Response During Monetary Reward Anticipation in Drug and Alcohol Dependence

    Science.gov (United States)

    Murphy, Anna; Nestor, Liam J; McGonigle, John; Paterson, Louise; Boyapati, Venkataramana; Ersche, Karen D; Flechais, Remy; Kuchibatla, Shankar; Metastasio, Antonio; Orban, Csaba; Passetti, Filippo; Reed, Laurence; Smith, Dana; Suckling, John; Taylor, Eleanor; Robbins, Trevor W; Lingford-Hughes, Anne; Nutt, David J; Deakin, John FW; Elliott, Rebecca

    2017-01-01

    Evidence suggests that disturbances in neurobiological mechanisms of reward and inhibitory control maintain addiction and provoke relapse during abstinence. Abnormalities within the dopamine system may contribute to these disturbances and pharmacologically targeting the D3 dopamine receptor (DRD3) is therefore of significant clinical interest. We used functional magnetic resonance imaging to investigate the acute effects of the DRD3 antagonist GSK598809 on anticipatory reward processing, using the monetary incentive delay task (MIDT), and response inhibition using the Go/No-Go task (GNGT). A double-blind, placebo-controlled, crossover design approach was used in abstinent alcohol dependent, abstinent poly-drug dependent and healthy control volunteers. For the MIDT, there was evidence of blunted ventral striatal response to reward in the poly-drug-dependent group under placebo. GSK598809 normalized ventral striatal reward response and enhanced response in the DRD3-rich regions of the ventral pallidum and substantia nigra. Exploratory investigations suggested that the effects of GSK598809 were mainly driven by those with primary dependence on alcohol but not on opiates. Taken together, these findings suggest that GSK598809 may remediate reward deficits in substance dependence. For the GNGT, enhanced response in the inferior frontal cortex of the poly-drug group was found. However, there were no effects of GSK598809 on the neural network underlying response inhibition nor were there any behavioral drug effects on response inhibition. GSK598809 modulated the neural network underlying reward anticipation but not response inhibition, suggesting that DRD3 antagonists may restore reward deficits in addiction. PMID:28042871

  19. A delay-dependent approach to robust control for neutral uncertain neural networks with mixed interval time-varying delays

    International Nuclear Information System (INIS)

    Lu, Chien-Yu

    2011-01-01

    This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method

  20. Neural response in obsessive-compulsive washers depends on individual fit of triggers

    Directory of Open Access Journals (Sweden)

    Ali eBaioui

    2013-04-01

    Full Text Available BackgroundPatients with obsessive-compulsive disorder (OCD have highly idiosyncratic triggers. To fully understand which role this idiosyncrasy plays in the neurobiological mechanisms behind OCD, it is necessary to elucidate the impact of individualization regarding the applied investigation methods.This functional magnetic resonance imaging (fMRI study explores the neural correlates of contamination/washing-related OCD with a highly individualized symptom provocation paradigm. Additionally, it is the first study to directly compare individualized and standardized symptom provocation. MethodsNineteen patients with washing compulsions created individual OCD hierarchies, which later served as instructions to photograph their own individualized stimulus sets. The patients and 19 case-by-case matched healthy controls participated in a symptom provocation fMRI experiment with individualized and standardized stimulus sets created for each patient. ResultsOCD patients compared to healthy controls displayed stronger activation in the basal ganglia (nucleus accumbens, nucleus caudatus, pallidum for individualized symptom provocation. Using standardized symptom provocation, this group comparison led to stronger activation in the nucleus caudatus. The direct comparison of between-group effects for both symptom provocation approaches revealed stronger activation of the orbitofronto-striatal network for individualized symptom provocation.ConclusionsThe present study provides insight into the differential impact of individualized and standardized symptom provocation on the orbitofronto-striatal network of OCD washers. Behavioral and neural responses imply a higher symptom-specificity of individualized symptom provocation.

  1. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    Science.gov (United States)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  2. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    Science.gov (United States)

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration

    Science.gov (United States)

    Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L.; Muneoka, Ken

    2013-01-01

    A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue

  4. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    Full Text Available A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3 leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2, fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3 and incompetent (P2 levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of

  5. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  6. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  7. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  8. Effectiveness of a Treatment Involving Soft Tissue Techniques and/or Neural Mobilization Techniques in the Management of Tension-Type Headache: A Randomized Controlled Trial.

    Science.gov (United States)

    Ferragut-Garcías, Alejandro; Plaza-Manzano, Gustavo; Rodríguez-Blanco, Cleofás; Velasco-Roldán, Olga; Pecos-Martín, Daniel; Oliva-Pascual-Vaca, Jesús; Llabrés-Bennasar, Bartomeu; Oliva-Pascual-Vaca, Ángel

    2017-02-01

    To evaluate the effects of a protocol involving soft tissue techniques and/or neural mobilization techniques in the management of patients with frequent episodic tension-type headache (FETTH) and those with chronic tension-type headache (CTTH). Randomized, double-blind, placebo-controlled before and after trial. Rehabilitation area of the local hospital and a private physiotherapy center. Patients (N=97; 78 women, 19 men) diagnosed with FETTH or CTTH were randomly assigned to groups A, B, C, or D. (A) Placebo superficial massage; (B) soft tissue techniques; (C) neural mobilization techniques; (D) a combination of soft tissue and neural mobilization techniques. The pressure pain threshold (PPT) in the temporal muscles (points 1 and 2) and supraorbital region (point 3), the frequency and maximal intensity of pain crisis, and the score in the Headache Impact Test-6 (HIT-6) were evaluated. All variables were assessed before the intervention, at the end of the intervention, and 15 and 30 days after the intervention. Groups B, C, and D had an increase in PPT and a reduction in frequency, maximal intensity, and HIT-6 values in all time points after the intervention as compared with baseline and group A (P<.001 for all cases). Group D had the highest PPT values and the lowest frequency and HIT-6 values after the intervention. The application of soft tissue and neural mobilization techniques to patients with FETTH or CTTH induces significant changes in PPT, the characteristics of pain crisis, and its effect on activities of daily living as compared with the application of these techniques as isolated interventions. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healty and demyelinated CNS tissue

    OpenAIRE

    Praet, J.; SANTERMANS, Eva; Reekmans, K.; de Vocht, N.; Le Blon, D.; Hoornaert, C.; Daans, J.; Goossens, H.; Berneman, Z.; HENS, Niel; Van der Linden, A.; Ponsaerts, P.

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and cult...

  10. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    Science.gov (United States)

    2011-01-01

    Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646

  11. Neural evidence for description dependent reward processing in the framing effect

    Science.gov (United States)

    Yu, Rongjun; Zhang, Ping

    2014-01-01

    Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN), which indexes the “worse than expected” negative prediction error in the anterior cingulate cortex (ACC), was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to “better than expected” positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect. PMID:24733998

  12. Dependence of synchronization transitions on mean field approach in two-way coupled neural system

    Science.gov (United States)

    Shi, J. C.; Luo, M.; Huang, C. S.

    2018-03-01

    This work investigates the synchronization transitions in two-way coupled neural system by mean field approach. Results show that, there exists a critical noise intensity for the synchronization transitions, i.e., above (or below) the critical noise intensity, the synchronization transitions are decreased (or hardly change) with increasing the noise intensity. Meanwhile, the heterogeneity effect plays a negative role for the synchronization transitions, and above critical coupling strength, the heterogeneity effect on synchronization transitions can be negligible. Furthermore, when an external signal is introduced into the coupled system, the novel frequency-induced and amplitude-induced synchronization transitions are found, and there exist an optimal frequency and an optimal amplitude of external signal which makes the system to display the best synchronization transitions. In particular, it is observed that the synchronization transitions can not be further affected above critical frequency of external signal.

  13. Neural evidence for description dependent reward processing in the framing effect.

    Science.gov (United States)

    Yu, Rongjun; Zhang, Ping

    2014-01-01

    Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN), which indexes the "worse than expected" negative prediction error in the anterior cingulate cortex (ACC), was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to "better than expected" positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect.

  14. Neural evidence for description dependent reward processing in the framing effect

    Directory of Open Access Journals (Sweden)

    Rongjun eYu

    2014-03-01

    Full Text Available Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN, which indexes the worse than expected negative prediction error in the anterior cingulate cortex, was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to better than expected positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect.

  15. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  16. Adolescent development of context-dependent stimulus-reward association memory and its neural correlates.

    Science.gov (United States)

    Voss, Joel L; O'Neil, Jonathan T; Kharitonova, Maria; Briggs-Gowan, Margaret J; Wakschlag, Lauren S

    2015-01-01

    Expression of learned stimulus-reward associations based on context is essential for regulation of behavior to meet situational demands. Contextual regulation improves during development, although the developmental progression of relevant neural and cognitive processes is not fully specified. We therefore measured neural correlates of flexible, contextual expression of stimulus-reward associations in pre/early-adolescent children (ages 9-13 years) and young adults (ages 19-22 years). After reinforcement learning using standard parameters, a contextual reversal manipulation was used whereby contextual cues indicated that stimulus-reward associations were the same as previously reinforced for some trials (consistent trials) or were reversed on other trials (inconsistent trials). Subjects were thus required to respond according to original stimulus-reward associations vs. reversed associations based on trial-specific contextual cues. Children and young adults did not differ in reinforcement learning or in relevant functional magnetic resonance imaging (fMRI) correlates. In contrast, adults outperformed children during contextual reversal, with better performance specifically for inconsistent trials. fMRI signals corresponding to this selective advantage included greater activity in lateral prefrontal cortex (LPFC), hippocampus, and dorsal striatum for young adults relative to children. Flexible expression of stimulus-reward associations based on context thus improves via adolescent development, as does recruitment of brain regions involved in reward learning and contextual expression of memory. HighlightsEarly-adolescent children and young adults were equivalent in reinforcement learning.Adults outperformed children in contextual expression of stimulus-reward associations.Adult advantages correlated with increased activity of relevant brain regions.Specific neurocognitive developmental changes support better contextual regulation.

  17. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  18. Chymase-dependent generation of angiotensin II from angiotensin-(1-12 in human atrial tissue.

    Directory of Open Access Journals (Sweden)

    Sarfaraz Ahmad

    Full Text Available Since angiotensin-(1-12 [Ang-(1-12] is a non-renin dependent alternate precursor for the generation of cardiac Ang peptides in rat tissue, we investigated the metabolism of Ang-(1-12 by plasma membranes (PM isolated from human atrial appendage tissue from nine patients undergoing cardiac surgery for primary control of atrial fibrillation (MAZE surgical procedure. PM was incubated with highly purified ¹²⁵I-Ang-(1-12 at 37°C for 1 h with or without renin-angiotensin system (RAS inhibitors [lisinopril for angiotensin converting enzyme (ACE, SCH39370 for neprilysin (NEP, MLN-4760 for ACE2 and chymostatin for chymase; 50 µM each]. ¹²⁵I-Ang peptide fractions were identified by HPLC coupled to an inline γ-detector. In the absence of all RAS inhibitor, ¹²⁵I-Ang-(1-12 was converted into Ang I (2±2%, Ang II (69±21%, Ang-(1-7 (5±2%, and Ang-(1-4 (2±1%. In the absence of all RAS inhibitor, only 22±10% of ¹²⁵I-Ang-(1-12 was unmetabolized, whereas, in the presence of the all RAS inhibitors, 98±7% of ¹²⁵I-Ang-(1-12 remained intact. The relative contribution of selective inhibition of ACE and chymase enzyme showed that ¹²⁵I-Ang-(1-12 was primarily converted into Ang II (65±18% by chymase while its hydrolysis into Ang II by ACE was significantly lower or undetectable. The activity of individual enzyme was calculated based on the amount of Ang II formation. These results showed very high chymase-mediated Ang II formation (28±3.1 fmol × min⁻¹ × mg⁻¹, n = 9 from ¹²⁵I-Ang-(1-12 and very low or undetectable Ang II formation by ACE (1.1±0.2 fmol×min⁻¹ × mg⁻¹. Paralleling these findings, these tissues showed significant content of chymase protein that by immunocytochemistry were primarily localized in atrial cardiac myocytes. In conclusion, we demonstrate for the first time in human cardiac tissue a dominant role of cardiac chymase in the formation of Ang II from Ang-(1-12.

  19. Error Processing and Gender-Shared and -Specific Neural Predictors of Relapse in Cocaine Dependence

    Science.gov (United States)

    Luo, Xi; Zhang, Sheng; Hu, Sien; Bednarski, Sarah R.; Erdman, Emily; Farr, Olivia M.; Hong, Kwang-Ik; Sinha, Rajita; Mazure, Carolyn M.; Li, Chiang-shan R.

    2013-01-01

    Deficits in cognitive control are implicated in cocaine dependence. Previously, combining functional magnetic resonance imaging and a stop signal task, we demonstrated altered cognitive control in cocaine-dependent individuals. However, the clinical implications of these cross-sectional findings and, in particular, whether the changes were…

  20. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes.

    Directory of Open Access Journals (Sweden)

    Evgeny A Zemskov

    2011-04-01

    Full Text Available Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG. The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secretion pathway, but is targeted to perinuclear recycling endosomes, and is delivered inside these vesicles prior to externalization. On its route to the cell surface tTG interacts with internalized β1 integrins inside the recycling endosomes and is secreted as a complex with recycled β1 integrins. Inactivation of recycling endosomes, blocking endosome fusion with the plasma membrane, or downregulation of Rab11 GTPase that controls outbound trafficking of perinuclear recycling endosomes, all abrogate tTG secretion. The initial recruitment of cytoplasmic tTG to recycling endosomes and subsequent externalization depend on its binding to phosphoinositides on endosomal membranes. These findings begin to unravel the unconventional mechanism of tTG secretion which utilizes the long loop of endosomal recycling pathway and indicate involvement of endosomal trafficking in non-classical protein secretion.

  1. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  2. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  3. Cytoskeletal remodeling of connective tissue fibroblasts in response to static stretch is dependent on matrix material properties

    Science.gov (United States)

    Abbott, Rosalyn D; Koptiuch, Cathryn; Iatridis, James C; Howe, Alan K; Badger, Gary J; Langevin, Helene M

    2012-01-01

    In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross-sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in and dissociated from areolar and dense connective tissue in response to 2 hours of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet-like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch-induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells’ tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. PMID:22552950

  4. Delay-dependent stability of neural networks of neutral type with time delay in the leakage term

    International Nuclear Information System (INIS)

    Li, Xiaodi; Cao, Jinde

    2010-01-01

    This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method

  5. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  6. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    International Nuclear Information System (INIS)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-01-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing

  7. Neural responses to unfairness and fairness depend on self-contribution to the income.

    Science.gov (United States)

    Guo, Xiuyan; Zheng, Li; Cheng, Xuemei; Chen, Menghe; Zhu, Lei; Li, Jianqi; Chen, Luguang; Yang, Zhiliang

    2014-10-01

    Self-contribution to the income (individual achievement) was an important factor which needs to be taken into individual's fairness considerations. This study aimed at elucidating the modulation of self-contribution to the income, on recipient's responses to unfairness in the Ultimatum Game. Eighteen participants were scanned while they were playing an adapted version of the Ultimatum Game as responders. Before splitting money, the proposer and the participant (responder) played the ball-guessing game. The responder's contribution to the income was manipulated by both the participant's and the proposer's accuracy in the ball-guessing game. It turned out that the participants more often rejected unfair offers and gave lower fairness ratings when they played a more important part in the earnings. At the neural level, anterior insula, anterior cingulate cortex, dorsolateral prefrontal cortex and temporoparietal junction showed greater activities to unfairness when self-contribution increased, whereas ventral striatum and medial orbitofrontal gyrus showed higher activations to fair (vs unfair) offers in the other-contributed condition relative to the other two. Besides, the activations of right dorsolateral prefrontal cortex during unfair offers showed positive correlation with rejection rates in the self-contributed condition. These findings shed light on the significance of self-contribution in fairness-related social decision-making processes. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain.

    Science.gov (United States)

    Kippin, Tod E; Cain, Sean W; Masum, Zahra; Ralph, Martin R

    2004-03-17

    Many of the effects of prenatal stress on the endocrine function, brain morphology, and behavior in mammals can be reversed by brief sessions of postnatal separation and handling. We have tested the hypothesis that the effects of both the prenatal and postnatal experiences are mediated by negative and positive regulation of neural stem cell (NSC) number during critical stages in neurodevelopment. We used the in vitro clonal neurosphere assay to quantify NSCs in hamsters that had experienced prenatal stress (maternal restraint stress for 2 hr per day, for the last 7 d of gestation), postnatal handling (maternal-offspring separation for 15 min per day during postnatal days 1-21), orboth. Prenatal stress reduced the number of NSCs derived from the subependyma of the lateral ventricle. The effect was already present at postnatal day 1 and persisted into adulthood (at least 14 months of age). Similarly, prenatal stress reduced in vivo proliferation in the adult subependyma of the lateral ventricle. Conversely, postnatal handling increased NSC number and reversed the effect of prenatal stress. The effects of prenatal stress on NSCs and proliferation and the effect of postnatal handling on NSCs did not differ between male and females. The findings demonstrate that environmental factors can produce changes in NSC number that are present at birth and endure into late adulthood. These changes may underlie some of the behavioral effects produced by prenatal stress and postnatal handling.

  9. Neural correlates of stress-induced and cue-induced drug craving: influences of sex and cocaine dependence.

    Science.gov (United States)

    Potenza, Marc N; Hong, Kwang-ik Adam; Lacadie, Cheryl M; Fulbright, Robert K; Tuit, Keri L; Sinha, Rajita

    2012-04-01

    Although stress and drug cue exposure each increase drug craving and contribute to relapse in cocaine dependence, no previous research has directly examined the neural correlates of stress-induced and drug cue-induced craving in cocaine-dependent women and men relative to comparison subjects. Functional MRI was used to assess responses to individualized scripts for stress, drug/alcohol cue and neutral-relaxing-imagery conditions in 30 abstinent cocaine-dependent individuals (16 women, 14 men) and 36 healthy recreational-drinking comparison subjects (18 women, 18 men). Significant three-way interactions between diagnostic group, sex, and script condition were observed in multiple brain regions including the striatum, insula, and anterior and posterior cingulate. Within women, group-by-condition interactions were observed involving these regions and were attributable to relatively increased regional activations in cocaine-dependent women during the stress and, to a lesser extent, neutral-relaxing conditions. Within men, group main effects were observed involving these same regions, with cocaine-dependent men demonstrating relatively increased activation across conditions, with the main contributions from the drug and neutral-relaxing conditions. In men and women, subjective drug-induced craving measures correlated positively with corticostriatal-limbic activations. In cocaine dependence, corticostriatal-limbic hyperactivity appears to be linked to stress cues in women, drug cues in men, and neutral-relaxing conditions in both. These findings suggest that sex should be taken into account in the selection of therapies in the treatment of addiction, particularly those targeting stress reduction.

  10. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Science.gov (United States)

    Adams, Bret R; Golding, Sarah E; Rao, Raj R; Valerie, Kristoffer

    2010-04-02

    The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  11. Relative Composition of Fibrous Connective and Fatty/Glandular Tissue in Connective Tissue Grafts Depends on the Harvesting Technique but not the Donor Site of the Hard Palate.

    Science.gov (United States)

    Bertl, Kristina; Pifl, Markus; Hirtler, Lena; Rendl, Barbara; Nürnberger, Sylvia; Stavropoulos, Andreas; Ulm, Christian

    2015-12-01

    Whether the composition of palatal connective tissue grafts (CTGs) varies depending on donor site or harvesting technique in terms of relative amounts of fibrous connective tissue (CT) and fatty/glandular tissue (FGT) is currently unknown and is histologically assessed in the present study. In 10 fresh human cadavers, tissue samples were harvested in the anterior and posterior palate and in areas close to (marginal) and distant from (apical) the mucosal margin. Mucosal thickness, lamina propria thickness (defined as the extent of subepithelial portion of the biopsy containing ≤25% or ≤50% FGT), and proportions of CT and FGT were semi-automatically estimated for the entire mucosa and for CTGs virtually harvested by split-flap (SF) preparation minimum 1 mm deep or after deepithelialization (DE). Palatal mucosal thickness, ranging from 2.35 to 6.89 mm, and histologic composition showed high interindividual variability. Lamina propria thickness (P >0.21) and proportions of CT (P = 0.48) and FGT (P = 0.15) did not differ significantly among the donor sites (anterior, posterior, marginal, apical). However, thicker palatal tissue was associated with higher FGT content (P tissue composition in the hard palate, DE-harvested CTG contains much larger amounts of CT and much lower amounts of FGT than SF-harvested CTG, irrespective of the harvesting site.

  12. Neural and psychological characteristics of college students with alcoholic parents differ depending on current alcohol use.

    Science.gov (United States)

    Brown-Rice, Kathleen A; Scholl, Jamie L; Fercho, Kelene A; Pearson, Kami; Kallsen, Noah A; Davies, Gareth E; Ehli, Erik A; Olson, Seth; Schweinle, Amy; Baugh, Lee A; Forster, Gina L

    2018-02-02

    A significant proportion of college students are adult children of an alcoholic parent (ACoA), which can confer greater risk of depression, poor self-esteem, alcohol and drug problems, and greater levels of college attrition. However, some ACoA are resilient to these negative outcomes. The goal of this study was to better understand the psychobiological factors that distinguish resilient and vulnerable college-aged ACoAs. To do so, scholastic performance and psychological health were measured in ACoA college students not engaged in hazardous alcohol use (resilient) and those currently engaged in hazardous alcohol use (vulnerable). Neural activity (as measured by functional magnetic resonance imaging) in response to performing working memory and emotion-based tasks were assessed. Furthermore, the frequency of polymorphisms in candidate genes associated with substance use, risk taking and stress reactivity were compared between the two ACoA groups. College ACoAs currently engaged in hazardous alcohol use reported more anxiety, depression and posttraumatic stress symptoms, and increased risky nicotine and marijuana use as compared to ACoAs resistant to problem alcohol use. ACoA college students with current problem alcohol showed greater activity of the middle frontal gyrus and reduced activation of the posterior cingulate in response to visual working memory and emotional processing tasks, which may relate to increased anxiety and problem alcohol and drug behaviors. Furthermore, polymorphisms of cholinergic receptor and the serotonin transporter genes also appear to contribute a role in problem alcohol use in ACoAs. Overall, findings point to several important psychobiological variables that distinguish ACoAs based on their current alcohol use that may be used in the future for early intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electrospun Collagen/Silk Tissue Engineering Scaffolds: Fiber Fabrication, Post-Treatment Optimization, and Application in Neural Differentiation of Stem Cells

    Science.gov (United States)

    Zhu, Bofan

    Biocompatible scaffolds mimicking the locally aligned fibrous structure of native extracellular matrix (ECM) are in high demand in tissue engineering. In this thesis research, unidirectionally aligned fibers were generated via a home-built electrospinning system. Collagen type I, as a major ECM component, was chosen in this study due to its support of cell proliferation and promotion of neuroectodermal commitment in stem cell differentiation. Synthetic dragline silk proteins, as biopolymers with remarkable tensile strength and superior elasticity, were also used as a model material. Good alignment, controllable fiber size and morphology, as well as a desirable deposition density of fibers were achieved via the optimization of solution and electrospinning parameters. The incorporation of silk proteins into collagen was found to significantly enhance mechanical properties and stability of electrospun fibers. Glutaraldehyde (GA) vapor post-treatment was demonstrated as a simple and effective way to tune the properties of collagen/silk fibers without changing their chemical composition. With 6-12 hours GA treatment, electrospun collagen/silk fibers were not only biocompatible, but could also effectively induce the polarization and neural commitment of stem cells, which were optimized on collagen rich fibers due to the unique combination of biochemical and biophysical cues imposed to cells. Taken together, electrospun collagen rich composite fibers are mechanically strong, stable and provide excellent cell adhesion. The unidirectionally aligned fibers can accelerate neural differentiation of stem cells, representing a promising therapy for neural tissue degenerative diseases and nerve injuries.

  14. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  15. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects

    DEFF Research Database (Denmark)

    Asmar, M; Simonsen, L; Arngrim, N

    2013-01-01

    OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) appears to have a role in lipid metabolism. Recently, we showed that GIP in combination with hyperinsulinemia and hyperglycemia increases triglyceride uptake in abdominal, subcutaneous adipose tissue in lean humans. It has been suggested...... that increased GIP secretion in obesity will promote lipid deposition in adipose tissue. In light of the current attempts to employ GIP antagonists in the treatment and prevention of human obesity, the present experiments were performed in order to elucidate whether the adipose tissue lipid metabolism would...... to an oral glucose challenge: (i) NGT and (ii) IGT. Abdominal, subcutaneous adipose tissue lipid metabolism was studied by conducting measurements of arteriovenous concentrations of metabolites and regional adipose tissue blood flow (ATBF) during GIP (1.5 pmol kg(-1) min(-1)) in combination with a HI...

  16. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing

    2010-01-01

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

  17. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2015-01-01

    Full Text Available Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.

  18. Investigations of the metabolism of NAD in embryonic neural tissue of mice after irradiation with X-rays

    International Nuclear Information System (INIS)

    Beuningen, M. van.

    1974-01-01

    Female mice of an institutes own inbred strain were killed on the 9th-13th day of pregnancy and the embryos were removed by caesarian section. The NAD content and protein content in the embryonic neural tissue of the mice increase the most from the 10th to 11th day. There is a relationship between NAD quantity and increase in size measured by the protein content. The enzymal activity of the NMN pyrophosphorylase runs parallel to the NAD rise and fall except for on the 11th day on which the enzyme increases further. The NAD biosynthesis from nicotinamide measured by the incorporation of 14-C nicotinamide in the NAD rises from the 10th to the 13th day. If one refers the incorporation to the protein content, however, the NAD synthesis falls from the 10th day onwards. An increase of the NAD content in the embryonic brain by the addition of nicotinamide in a high dose was not possible on the 10th and 12th day, whereas a clear increase was registered in the mother animal liver. Following an X-radiation with 200 R on the 9th day, the NAD content/brain dropped on the 11th day to its lowest point and had reached its normal value again on the 13th day, contrary to the protein content which only decreases on the 11th day. If one refers the NAD content, however, to protein quantity, then this only falls on the 10th day and rises on the 11th day almost to the normal value and has reached the latter by the 12th day. The NMN pyrophosphorylase activity falls on the 10th and 11th day, has its normal value on the 12th day and exceeds it on the 13th day. If one refers the enzyme activity to protein content, then it drops on the 10th day, reaches its lowest value on the 11th day, has its normal value on the 12th day and shoots above it on the 13th day. On the 10th day, the NAD content falls only after an X-ray with 200 R given on the 9th day, whereas the protein content remains constant. The NAD content does not change in the region of 50 to 150 R. (orig./LH) [de

  19. Connective-Tissue Growth Factor (CTGF/CCN2 Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Fabio A Mendes

    Full Text Available Connective-tissue growth factor (CTGF is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61, CTGF and nephroblastoma overexpressed (NOV. CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling

  20. Neural evidence for Reference-dependence in real-market-transactions.

    Science.gov (United States)

    Weber, Bernd; Aholt, Andreas; Neuhaus, Carolin; Trautner, Peter; Elger, Christian E; Teichert, Thorsten

    2007-03-01

    Human decision making has become one of the major research-foci in economics, marketing and in neuroscience. This study integrates perspectives from these disciplines by examining neurophysiological correlates to Reference-dependence of utility evaluations in real market contexts both before and after choice. First, by comparing buying and selling decisions, we observe an activation of the amygdala only in the latter. We interpret this as loss aversion with respect to prior possessions. This finding contributes to the settling of an ongoing fundamental dispute in economic theory by indicating the absence of loss aversion for money in routine transactions. Second, ex post satisfaction statements are accompanied by an activation of the reward processing orbitofrontal cortex, if the evaluation context is framed by a high external reference price instead of a lower internal reference price. This indicates a nonrational Reference-dependence--despite the neoclassical view of a rational Homo Economicus--of satisfaction measures and challenges a central marketing variable.

  1. Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations.

    Science.gov (United States)

    Beiran, Manuel; Kruscha, Alexandra; Benda, Jan; Lindner, Benjamin

    2018-04-01

    We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

  2. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  3. Origin-Dependent Neural Cell Identities in Differentiated Human iPSCs In Vitro and after Transplantation into the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Gunnar Hargus

    2014-09-01

    Full Text Available The differentiation capability of induced pluripotent stem cells (iPSCs toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs, dermal fibroblasts, or cord blood CD34+ hematopoietic progenitor cells. Neural progenitor cells (NPCs and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.

  4. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  5. Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays.

    Science.gov (United States)

    Hisada, Yohei; Alexander, Wyeth; Kasthuri, Raj; Voorhees, Peter; Mobarrez, Fariborz; Taylor, Angela; McNamara, Coleen; Wallen, Hakan; Witkowski, Marco; Key, Nigel S; Rauch, Ursula; Mackman, Nigel

    2016-03-01

    Thrombosis is a leading cause of morbidity and mortality. Detection of a prothrombotic state using biomarkers would be of great benefit to identify patients at risk of thrombosis that would benefit from thromboprophylaxis. Tissue factor (TF) is a highly procoagulant protein that under normal conditions is not present in the blood. However, increased levels of TF in the blood in the form of microparticles (MPs) (also called extracellular vesicles) are observed under various pathological conditions. In this review, we will discuss studies that have measured MP-TF activity in a variety of diseases using two similar FXa generation assay. One of the most robust signals for MP-TF activity (16-26 fold higher than healthy controls) is observed in pancreatic cancer patients with venous thromboembolism. In this case, the TF+ MPs appear to be derived from the cancer cells. Surprisingly, cirrhosis and acute liver injury are associated with 17-fold and 38-fold increases in MP-TF activity, respectively. Based on mouse models, we speculate that the TF+ MPs are derived from hepatocytes. More modest increases are observed in patients with urinary tract infections (6-fold) and in a human endotoxemia model (9-fold) where monocytes are the likely source of the TF+ MPs. Finally, there is no increase in MP-TF activity in the majority of cardiovascular disease patients. These studies indicate that MP-TF activity may be a useful biomarker to identify patients with particular diseases that have an increased risk of thrombosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of cue-exposure treatment on neural cue reactivity in alcohol dependence: a randomized trial.

    Science.gov (United States)

    Vollstädt-Klein, Sabine; Loeber, Sabine; Kirsch, Martina; Bach, Patrick; Richter, Anne; Bühler, Mira; von der Goltz, Christoph; Hermann, Derik; Mann, Karl; Kiefer, Falk

    2011-06-01

    In alcohol-dependent patients, alcohol-associated cues elicit brain activation in mesocorticolimbic networks involved in relapse mechanisms. Cue-exposure based extinction training (CET) has been shown to be efficacious in the treatment of alcoholism; however, it has remained unexplored whether CET mediates its therapeutic effects via changes of activity in mesolimbic networks in response to alcohol cues. In this study, we assessed CET treatment effects on cue-induced responses using functional magnetic resonance imaging (fMRI). In a randomized controlled trial, abstinent alcohol-dependent patients were randomly assigned to a CET group (n = 15) or a control group (n = 15). All patients underwent an extended detoxification treatment comprising medically supervised detoxification, health education, and supportive therapy. The CET patients additionally received nine CET sessions over 3 weeks, exposing the patient to his/her preferred alcoholic beverage. Cue-induced fMRI activation to alcohol cues was measured at pretreatment and posttreatment. Compared with pretreatment, fMRI cue-reactivity reduction was greater in the CET relative to the control group, especially in the anterior cingulate gyrus and the insula, as well as limbic and frontal regions. Before treatment, increased cue-induced fMRI activation was found in limbic and reward-related brain regions and in visual areas. After treatment, the CET group showed less activation than the control group in the left ventral striatum. The study provides first evidence that an exposure-based psychotherapeutic intervention in the treatment of alcoholism impacts on brain areas relevant for addiction memory and attentional focus to alcohol-associated cues and affects mesocorticolimbic reward pathways suggested to be pathophysiologically involved in addiction. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Gestational age dependent content, composition and intrauterine accretion rates of fatty acids in fetal white adipose tissue

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Martini, Ingrid A.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Background: Little is known about the gestational age (GA) dependent content, composition and intrauterine accretion rates of fatty acids (FA) in fetal white adipose tissue (WAT). Objective & design: To acquire this information, we collected abdominal subcutaneous WAT samples from 40 preterm and

  8. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Simonsen, Lene; Madsbad, Sten

    2010-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) has been implicated in lipid metabolism in animals. In humans, however, there is no clear evidence of GIP effecting lipid metabolism. The present experiments were performed in order to elucidate the effects of GIP on regional adipose tissue metab...

  9. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Directory of Open Access Journals (Sweden)

    Bret R Adams

    2010-04-01

    Full Text Available The DNA double-strand break (DSB is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ is dominant. We have characterized the DNA damage response (DDR and quality of DNA double-strand break (DSB repair in human embryonic stem cells (hESCs, and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR, showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ] in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  10. Tissue-Specific Methylation of Long Interspersed Nucleotide Element-1 of Homo Sapiens (L1Hs) During Human Embryogenesis and Roles in Neural Tube Defects.

    Science.gov (United States)

    Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T

    2015-01-01

    Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.

  11. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  12. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  13. Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry

    International Nuclear Information System (INIS)

    Hadad, Kamal; Pirouzmand, Ahmad; Ayoobian, Navid

    2008-01-01

    This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the time dependent one-speed neutron transport equation in slab geometry. We use a neutron angular flux in terms of the Chebyshev polynomials (T N ) of the first kind and then we attempt to implement the equations in an equivalent electrical circuit. We apply this equivalent circuit to analyze the T N moments equation in a uniform finite slab using Marshak type vacuum boundary condition. The validity of the CNN results is evaluated with numerical solution of the steady state T N moments equations by MATLAB. Steady state, as well as transient simulations, shows a very good comparison between the two methods. We used our CNN model to simulate space-time response of total flux and its moments for various c (where c is the mean number of secondary neutrons per collision). The complete algorithm could be implemented using very large-scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for neutron transport calculations

  14. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis

    OpenAIRE

    Papusheva, Ekaterina; Heisenberg, Carl-Philipp

    2010-01-01

    The Heisenberg laboratory reviews the spatial organization of signalling complexes at cell–matrix and cell–cell contact sites and its impact on cell integrity, cellular polarity and tissue morphogenesis.

  15. Relaxivity of blood pool contrast agent depends on the host tissue as suggested by semianalytical simulations

    DEFF Research Database (Denmark)

    Jensen, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    Concentration of MRI contrast agents (CA) is commonly determined indirectly using their relaxation effect. In quantitative perfusion studies, the change in the relaxation following a bolus passage is converted into concentrations assuming identical relaxivities for tissue and blood. Simulations...

  16. A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Song, Qiankun; Wang, Zidong

    2007-01-01

    In this Letter, the analysis problem for the existence and stability of periodic solutions is investigated for a class of general discrete-time recurrent neural networks with time-varying delays. For the neural networks under study, a generalized activation function is considered, and the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. By employing the latest free-weighting matrix method, an appropriate Lyapunov-Krasovskii functional is constructed and several sufficient conditions are established to ensure the existence, uniqueness, and globally exponential stability of the periodic solution for the addressed neural network. The conditions are dependent on both the lower bound and upper bound of the time-varying time delays. Furthermore, the conditions are expressed in terms of the linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Two simulation examples are given to show the effectiveness and less conservatism of the proposed criteria

  17. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    Science.gov (United States)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  18. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  19. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  20. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  1. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T

    2006-01-01

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware

  2. MRI Brain Images Healthy and Pathological Tissues Classification with the Aid of Improved Particle Swarm Optimization and Neural Network

    Science.gov (United States)

    Sheejakumari, V.; Sankara Gomathi, B.

    2015-01-01

    The advantages of magnetic resonance imaging (MRI) over other diagnostic imaging modalities are its higher spatial resolution and its better discrimination of soft tissue. In the previous tissues classification method, the healthy and pathological tissues are classified from the MRI brain images using HGANN. But the method lacks sensitivity and accuracy measures. The classification method is inadequate in its performance in terms of these two parameters. So, to avoid these drawbacks, a new classification method is proposed in this paper. Here, new tissues classification method is proposed with improved particle swarm optimization (IPSO) technique to classify the healthy and pathological tissues from the given MRI images. Our proposed classification method includes the same four stages, namely, tissue segmentation, feature extraction, heuristic feature selection, and tissue classification. The method is implemented and the results are analyzed in terms of various statistical performance measures. The results show the effectiveness of the proposed classification method in classifying the tissues and the achieved improvement in sensitivity and accuracy measures. Furthermore, the performance of the proposed technique is evaluated by comparing it with the other segmentation methods. PMID:25977706

  3. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    International Nuclear Information System (INIS)

    Kohandel, M; Sivaloganathan, S; Tenti, G; Darvish, K

    2005-01-01

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters

  4. Sonic Hedgehog promotes the survival of neural crest cells by limiting apoptosis induced by the dependence receptor CDON during branchial arch development.

    Science.gov (United States)

    Delloye-Bourgeois, Céline; Rama, Nicolas; Brito, José; Le Douarin, Nicole; Mehlen, Patrick

    2014-09-26

    Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network.

    Science.gov (United States)

    Wang, Yearnchee Curtis; Chan, Terence Chee-Hung; Sahakian, Alan Varteres

    2018-01-04

    Radiofrequency ablation (RFA), a method of inducing thermal ablation (cell death), is often used to destroy tumours or potentially cancerous tissue. Current techniques for RFA estimation (electrical impedance tomography, Nakagami ultrasound, etc.) require long compute times (≥ 2 s) and measurement devices other than the RFA device. This study aims to determine if a neural network (NN) can estimate ablation lesion depth for control of bipolar RFA using complex electrical impedance - since tissue electrical conductivity varies as a function of tissue temperature - in real time using only the RFA therapy device's electrodes. Three-dimensional, cubic models comprised of beef liver, pork loin or pork belly represented target tissue. Temperature and complex electrical impedance from 72 data generation ablations in pork loin and belly were used for training the NN (403 s on Xeon processor). NN inputs were inquiry depth, starting complex impedance and current complex impedance. Training-validation-test splits were 70%-0%-30% and 80%-10%-10% (overfit test). Once the NN-estimated lesion depth for a margin reached the target lesion depth, RFA was stopped for that margin of tissue. The NN trained to 93% accuracy and an NN-integrated control ablated tissue to within 1.0 mm of the target lesion depth on average. Full 15-mm depth maps were calculated in 0.2 s on a single-core ARMv7 processor. The results show that a NN could make lesion depth estimations in real-time using less in situ devices than current techniques. With the NN-based technique, physicians could deliver quicker and more precise ablation therapy.

  6. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating

    International Nuclear Information System (INIS)

    Kolios, M.C.; Worthington, A.E.; Hunt, J.W.; Holdsworth, D.W.; Sherar, M.D.

    1999-01-01

    Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 deg. C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 deg. C mm -1 close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three-dimensional vessel path observed could account for the complex features of the temperature profiles. The flow

  7. The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF

    DEFF Research Database (Denmark)

    Zhou, Shuling; Ochalek, Anna; Szczesna, Karolina

    2016-01-01

    Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth...... factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations...... of the neural rosettes, resulting in subsequent cholinergic neuron differentiation. Thus, our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells....

  8. Tissue factor-dependent blood coagulation is enhanced following delivery irrespective of the mode of delivery

    NARCIS (Netherlands)

    Boer, K.; den Hollander, I. A.; Meijers, J. C. M.; Levi, M. [=Marcel M.

    2007-01-01

    BACKGROUND: The risk of thrombosis is clearly increased in the postpartum period. Mice with a targeted deletion of the transmembrane domain of tissue factor (TF) develop serious activation of blood coagulation and widespread thrombosis after delivery. OBJECTIVE AND METHODS: We hypothesized that TF,

  9. A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters

    Science.gov (United States)

    De Geeter, N.; Crevecoeur, G.; Dupré, L.; Van Hecke, W.; Leemans, A.

    2012-04-01

    Accurate simulations on detailed realistic head models are necessary to gain a better understanding of the response to transcranial magnetic stimulation (TMS). Hitherto, head models with simplified geometries and constant isotropic material properties are often used, whereas some biological tissues have anisotropic characteristics which vary naturally with frequency. Moreover, most computational methods do not take the tissue permittivity into account. Therefore, we calculate the electromagnetic behaviour due to TMS in a head model with realistic geometry and where realistic dispersive anisotropic tissue properties are incorporated, based on T1-weighted and diffusion-weighted magnetic resonance images. This paper studies the impact of tissue anisotropy, permittivity and frequency dependence, using the anisotropic independent impedance method. The results show that anisotropy yields differences up to 32% and 19% of the maximum induced currents and electric field, respectively. Neglecting the permittivity values leads to a decrease of about 72% and 24% of the maximum currents and field, respectively. Implementing the dispersive effects of biological tissues results in a difference of 6% of the maximum currents. The cerebral voxels show limited sensitivity of the induced electric field to changes in conductivity and permittivity, whereas the field varies approximately linearly with frequency. These findings illustrate the importance of including each of the above parameters in the model and confirm the need for accuracy in the applied patient-specific method, which can be used in computer-assisted TMS.

  10. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Directory of Open Access Journals (Sweden)

    Arianna eLaCroix

    2015-08-01

    Full Text Available The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel’s Shared Syntactic Integration Resource Hypothesis (SSIRH and Koelsch’s neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music versus speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.

  11. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Science.gov (United States)

    LaCroix, Arianna N.; Diaz, Alvaro F.; Rogalsky, Corianne

    2015-01-01

    The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music. PMID:26321976

  12. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  13. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    Science.gov (United States)

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  14. ROS production in brown adipose tissue mitochondria: The question of UCP1-dependence

    Czech Academy of Sciences Publication Activity Database

    Shabalina, I.G.; Vrbacký, Marek; Pecinová, Alena; Kalinovich, A. V.; Drahota, Zdeněk; Houštěk, Josef; Mráček, Tomáš; Cannon, B.; Nedergaard, J.

    2014-01-01

    Roč. 1837, č. 12 (2014), s. 2017-2030 ISSN 0005-2728 R&D Projects: GA MŠk(CZ) LL1204; GA ČR(CZ) GB14-36804G Institutional support: RVO:67985823 Keywords : reactive oxygen species * uncoupling protein 1 * brown adipose tissue mitochondria * cold acclimation * glycerol-3-phosphate dehydrogenase (EC 1.1.5.3) * succinate Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.353, year: 2014

  15. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    Science.gov (United States)

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-11-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains.

  16. Triglyceride dependent differentiation of obesity in adipose tissues by FTIR spectroscopy coupled with chemometrics.

    Science.gov (United States)

    Kucuk Baloglu, Fatma; Baloglu, Onur; Heise, Sebastian; Brockmann, Gudrun; Severcan, Feride

    2017-10-01

    The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm -1 spectral region as a more sensitive obesity related biomarker using the diagnostic potential of Fourier Transform Infrared (FTIR) spectroscopy in subcutaneous (SCAT) and visceral (VAT) adipose tissues. The adipose tissue samples were obtained from 10 weeks old male control (DBA/2J) (n = 6) and four different obese BFMI mice lines (n = 6 per group). FTIR spectroscopy coupled with hierarchical cluster analysis (HCA) and principal component analysis (PCA) was applied to the spectra of triglyceride bands as a diagnostic tool in the discrimination of the samples. Successful discrimination of the obese, obesity related insulin resistant and control groups were achieved with high sensitivity and specificity. The results revealed the power of FTIR spectroscopy coupled with chemometric approaches in internal diagnosis of abdominal obesity based on the spectral differences in the triglyceride region that can be used as a spectral marker. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  18. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner.

    Science.gov (United States)

    Rharass, Tareck; Lantow, Margareta; Gbankoto, Adam; Weiss, Dieter G; Panáková, Daniela; Lucas, Stéphanie

    2017-10-16

    Improving the neuronal yield from in vitro cultivated neural progenitor cells (NPCs) is an essential challenge in transplantation therapy in neurological disorders. In this regard, Ascorbic acid (AA) is widely used to expand neurogenesis from NPCs in cultures although the mechanisms of its action remain unclear. Neurogenesis from NPCs is regulated by the redox-sensitive WNT/β-catenin signaling pathway. We therefore aimed to investigate how AA interacts with this pathway and potentiates neurogenesis. Effects of 200 μM AA were compared with the pro-neurogenic reagent and WNT/β-catenin signaling agonist lithium chloride (LiCl), and molecules with antioxidant activities i.e. N-acetyl-L-cysteine (NAC) and ruthenium red (RuR), in differentiating neural progenitor ReNcell VM cells. Cells were supplemented with reagents for two periods of treatment: a full period encompassing the whole differentiation process versus an early short period that is restricted to the cell fate commitment stage. Intracellular redox balance and reactive oxygen species (ROS) metabolism were examined by flow cytometry using redox and ROS sensors. Confocal microscopy was performed to assess cell viability, neuronal yield, and levels of two proteins: Nucleoredoxin (NXN) and the WNT/β-catenin signaling component Dishevelled 2 (DVL2). TUBB3 and MYC gene responses were evaluated by quantitative real-time PCR. DVL2-NXN complex dissociation was measured by fluorescence resonance energy transfer (FRET). In contrast to NAC which predictably exhibited an antioxidant effect, AA treatment enhanced ROS metabolism with no cytotoxic induction. Both drugs altered ROS levels only at the early stage of the differentiation as no changes were held beyond the neuronal fate commitment stage. FRET studies showed that AA treatment accelerated the redox-dependent release of the initial pool of DVL2 from its sequestration by NXN, while RuR treatment hampered the dissociation of the two proteins. Accordingly, AA

  19. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide

    Czech Academy of Sciences Publication Activity Database

    Drahota, Zdeněk; Chowdhury, Subir; Floryk, Daniel; Mráček, Tomáš; Wilhelm, J.; Rauchová, Hana; Lenaz, G.; Houštěk, Josef

    2002-01-01

    Roč. 34, č. 2 (2002), s. 105-113 ISSN 0145-479X R&D Projects: GA MŠk(CZ) OC 918.50; GA ČR(CZ) GA303/00/1658; GA MŠk(CZ) LN00A079 Grant - others:GA UK(CZ) 70/99 Institutional research plan: CEZ:AV0Z5011922 Keywords : ferricyanide * brown adipose tissue * mitochondrial glycerophosphate dehydrogenase Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.920, year: 2002

  20. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    Science.gov (United States)

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  1. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    International Nuclear Information System (INIS)

    Tanaka, Simon; Iber, Dagmar

    2013-01-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH–PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand–receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand–receptor based Turing mechanisms can also result from BMP–receptor, SHH–receptor, and GDNF–receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor–ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature. (paper)

  2. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    Science.gov (United States)

    Tanaka, Simon; Iber, Dagmar

    2013-10-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH-PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand-receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand-receptor based Turing mechanisms can also result from BMP-receptor, SHH-receptor, and GDNF-receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor-ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature.

  3. Plasmin-dependent proteolysis of tissue factor pathway inhibitor in a mouse model of endotoxemia.

    Science.gov (United States)

    Lupu, C; Herlea, O; Tang, H; Lijnen, R H; Lupu, F

    2013-01-01

    The development of a procoagulant state in sepsis, owing to aberrant expression of tissue factor (TF) and a sharp decrease in the level of its major inhibitor, TF pathway inhibitor (TFPI), could lead to microthrombotic organ failure. The mechanism for the decline in TFPI activity in the lung could involve plasmin-mediated cleavage of the inhibitor. To investigate the effect of plasmin generation on lung-associated TFPI activity, in normal conditions and during infusion of endotoxin (lipopolysaccharide [LPS]) in mice. Plasmin generation and TFPI activity were assayed in the lungs of mice deficient in tissue-type plasminogen (Plg) activator (t-PA) or Plg, at 2 h after LPS or saline injection. The sharp loss of lung-associated TFPI activity at 2 h after LPS challenge paralleled the abrupt increase in plasmin generation. TFPI activity was significantly retained in both t-PA(-/-) and Plg(-/-) mice, which are unable to generate plasmin. The increased plasmin generation during the early stages of sepsis could cleave/inactivate TFPI and thus lead to thrombotic complications. © 2012 International Society on Thrombosis and Haemostasis.

  4. The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy

    NARCIS (Netherlands)

    Sloot, L.H.; van der Krogt, M.M.; de Gooijer-van Groep, K.; van Eesbeek, S.; de Groot, J.; Buizer, A.I.; Meskers, C.; Becher, J.G.; de Vlugt, E.; Harlaar, J.

    2015-01-01

    Spastic cerebral palsy (CP) is characterized by increased joint resistance, caused by a mix of increased tissue stiffness, as well as involuntary reflex and background muscle activity. These properties can be quantified using a neuromechanical model of the musculoskeletal complex and instrumented

  5. Medium dependant production of corymbiferone a novel product from Penicillium hordei cultured on plant tissue agar

    DEFF Research Database (Denmark)

    Overy, David Patrick; Zidorn, C.; Petersen, B.O.

    2005-01-01

    Medium dependant production and the structure elucidation of corymbiferone (1) from the fungus Penicillitan hordei grown on oatmeal and macerated tulip, yellow onion and red onion agars are reported. Compound 1 possesses an unusual oxygenated aromatic structure with a lactone bridge preventing full...

  6. Age, Dose, and Time-Dependency of Plasma and Tissue Distribution of Deltamethrine in Immature Rats

    Science.gov (United States)

    The major objective of this project was to characterize the systemic disposition of the pyrethroid, deltamethrin (DLT), in immature rats, with emphasis on the age-dependence of target organ (brain) dosimetry. Postnatal day (PND) 10, 21, and 40 male Sprague-Dawley rats received 0...

  7. Time dependency of local cerebral blood flow measurements caused by regional variations in tissue transit time

    International Nuclear Information System (INIS)

    Lear, J.L.; Kasliwal, R.; Feyerabend, A.

    1990-01-01

    Calculated values of local cerebral blood flow (LCBF) using the diffusible tracer model are assumed to be independent of time as long as experiments are brief enough to prevent tissue saturation. This paper investigates the effects of CTT variation on LCBF measurements. Using double-label quantitative digital autoradiography, we compared iodoantipyrine (IAP)-based LCBF measurements obtained with tracer infusions of different lengths of time. Lightly anesthetized rats were given simultaneous ramp infusions of C-14 IAP (45 seconds) and I-123 IAP (15 seconds) and immediately sacrificed. Two autoradiograms of each brain section, one representing I-123 and the other representing C-14, were produced, digitized, and converted into images of LCBF based on the 15- and 45-second infusion periods. The LCBF image pairs were compared on a pixel-by-pixel basis

  8. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy.

    Science.gov (United States)

    Schneider, D A; Harrington, R D; Zhuang, D; Yan, H; Truscott, T C; Dassanayake, R P; O'Rourke, K I

    2012-11-01

    Transmissible spongiform encephalopathies (TSEs) are diagnosed by immunodetection of disease-associated prion protein (PrP(d)). The distribution of PrP(d) within the body varies with the time-course of infection and between species, during interspecies transmission, as well as with prion strain. Mink are susceptible to a form of TSE known as transmissible mink encephalopathy (TME), presumed to arise due to consumption of feed contaminated with a single prion strain of ruminant origin. After extended passage of TME isolates in hamsters, two strains emerge, HY and DY, each of which is associated with unique structural isoforms of PrP(TME) and of which only the HY strain is associated with accumulation of PrP(TME) in lymphoid tissues. Information on the structural nature and lymphoid accumulation of PrP(TME) in mink is limited. In this study, 13 mink were challenged by intracerebral inoculation using late passage TME inoculum, after which brain and lymphoid tissues were collected at preclinical and clinical time points. The distribution and molecular nature of PrP(TME) was investigated by techniques including blotting of paraffin wax-embedded tissue and epitope mapping by western blotting. PrP(TME) was detected readily in the brain and retropharyngeal lymph node during preclinical infection, with delayed progression of accumulation within other lymphoid tissues. For comparison, three mink were inoculated by the oral route and examined during clinical disease. Accumulation of PrP(TME) in these mink was greater and more widespread, including follicles of rectoanal mucosa-associated lymphoid tissue. Western blot analyses revealed that PrP(TME) accumulating in the brain of mink is structurally most similar to that accumulating in the brain of hamsters infected with the DY strain. Collectively, the results of extended passage in mink are consistent with the presence of only a single strain of TME, the DY strain, capable of inducing accumulation of PrP(TME) in the lymphoid

  10. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent LER Calculations

    Science.gov (United States)

    Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.

    2017-12-01

    In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.

  11. Levels of PAH-DNA adducts in cord blood and cord tissue and the risk of fetal neural tube defects in a Chinese population.

    Science.gov (United States)

    Yi, Deqing; Yuan, Yue; Jin, Lei; Zhou, Guodong; Zhu, Huiping; Finnell, Richard H; Ren, Aiguo

    2015-01-01

    Maternal exposure to polycyclic aromatic hydrocarbons (PAHs) has been shown to be associated with an elevated risk for neural tube defects (NTDs). In the human body, PAHs are bioactivated and the resultant reactive epoxides can covalently bind to DNA to form PAH-DNA adducts, which may, in turn, cause transcription errors, changes in gene expression or altered patterns of apoptosis. During critical developmental phases, these changes can result in abnormal morphogenesis. We aimed to examine the relationship between the levels of PAH-DNA adducts in cord blood and cord tissue and the risk of NTDs. From 2010 to 2012, 60 NTD cases and 60 healthy controls were recruited from a population-based birth defects surveillance system in five counties of Shanxi Province in Northern China, where the emission of PAHs remains one of the highest in the country and PAHs exposure is highly prevalent. PAH-DNA adducts in cord blood of 15 NTD cases and 15 control infants, and in cord tissue of 60 NTD cases and 60 control infants were measured using the (32)P-postlabeling method. PAH-DNA adduct levels in cord blood tend to be higher in the NTD group (28.5 per 10(8) nucleotides) compared with controls (19.7 per 10(8) nucleotides), although the difference was not statistically significant (P=0.377). PAH-DNA adducts in cord tissue were significantly higher in the NTD group (24.6 per 10(6) nucleotides) than in the control group (15.3 per 10(6) nucleotides), P=0.010. A positive dose-response relationship was found between levels of PAH-DNA adducts in cord tissue and the risk of NTDs (P=0.009). When the lowest tertile was used as the referent and potential confounding factors were adjusted for, a 1.03-fold (95% CI, 0.37-2.89) and 2.96-fold (95% CI, 1.16-7.58) increase in the risk of NTDs was observed for fetuses whose cord tissue PAH-DNA adduct levels were in the second and highest tertile, respectively. High levels of PAH-DNA adducts in fetal tissues were associated with increased risks of

  12. Comparison of the Incorporation of DHA in Circulatory and Neural Tissue When Provided as Triacylglycerol (TAG), Monoacylglycerol (MAG) or Phospholipids (PL) Provides New Insight into Fatty Acid Bioavailability.

    Science.gov (United States)

    Destaillats, Frédéric; Oliveira, Manuel; Bastic Schmid, Viktoria; Masserey-Elmelegy, Isabelle; Giuffrida, Francesca; Thakkar, Sagar K; Dupuis, Lénaïck; Gosoniu, Maria Laura; Cruz-Hernandez, Cristina

    2018-05-15

    Phospholipids (PL) or partial acylglycerols such as sn -1(3)-monoacylglycerol (MAG) are potent dietary carriers of long-chain polyunsaturated fatty acids (LC-PUFA) and have been reported to provide superior bioavailability when compared to conventional triacylglycerol (TAG). The main objective of the present study was to compare the incorporation of docosahexaenoic acid (DHA) in plasma, erythrocytes, retina and brain tissues in adult rats when provided as PL (PL-DHA) and MAG (MAG-DHA). Conventional dietary DHA oil containing TAG (TAG-DHA) as well as control chow diet were used to evaluate the potency of the two alternative DHA carriers over a 60-day feeding period. Fatty acid profiles were determined in erythrocytes and plasma lipids at time 0, 7, 14, 28, 35 and 49 days of the experimental period and in retina, cortex, hypothalamus, and hippocampus at 60 days. The assessment of the longitudinal evolution of DHA in erythrocyte and plasma lipids suggest that PL-DHA and MAG-DHA are efficient carriers of dietary DHA when compared to conventional DHA oil (TAG-DHA). Under these experimental conditions, both PL-DHA and MAG-DHA led to higher incorporations of DHA erythrocytes lipids compared to TAG-DHA group. After 60 days of supplementation, statistically significant increase in DHA level incorporated in neural tissues analyzed were observed in the DHA groups compared with the control. The mechanism explaining hypothetically the difference observed in circulatory lipids is discussed.

  13. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    Science.gov (United States)

    Hitt, Nathaniel P.; Smith, David R.

    2015-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased

  14. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  15. Revised age-dependent doses to members of the public from intake of radionuclides using the new tissue weighting factors

    International Nuclear Information System (INIS)

    Jain, S.C.; Gupta, M.M.; Nagaratnam, A.; Reddy, A.R.; Mehta, S.C.

    1992-01-01

    ICRP 56 gave age-dependent dose coefficients to members of the public from intake of most radiologically significant radionuclides that might be released to the environment due to various human activities. It has computed effective dose equivalent (now called effective dose) from these dose coefficients utilising the tissue weighting factors as given by ICRP 26. The recent ICRP 1990 recommendations have revised the tissue weighting factors based on new information on risk estimates of fatal cancer and hereditary disorders. This change in the tissue weighting factors will subsequently affect the computation of effective dose due to intake of various radio-nuclides considered by ICRP 56. The revised effective doses for ingested as well as inhaled radionuclides have been worked out and compared from corresponding earlier values. No change was found in the case of tritiated water, organically bound tritium and 14 C. For the majority of the radionuclides, the revised effective dose was within ± 20% of the earlier values. Larger variations in effective dose were noted for radionuclides which deposit preferentially in one or two organs. (author)

  16. DEPENDENCE OF THE SPECKLE-PATTERNS SIZE AND THEIR CONTRAST ON THE BIOPHYSICAL AND STRUCTURAL PARAMETERS OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    N. D. Abramovich

    2017-01-01

    Full Text Available Speckle fields are widely used in optical diagnostics of biotissues and evaluation of the functional state of bioobjects. The speckle field is formed by laser radiation scattered from the object under study. It bears information about the average dimensions of the scatterers, the degree of surface roughness makes it possible to judge the structural and biophysical characteristics of individual tissue cells (particles, on the one hand, and the integral optical characteristics of the entire biological tissue. The aim of the study was – the determination of connections between the biophysical and structural characteristics of the biotissue and the light fields inside the biotissues.The model developed of the medium gives a direct relationship between the optical and biophysical parameters of the biotissue. Calculations were carried out using known solutions of the radiation transfer equation, taking into account the multilayer structure of the tissue, multiple scattering in the medium, and multiple reflection of irradiation between the layers.With the increase wavelength, the size of speckles formed by the non-scattered component (direct light of laser radiation increases by a factor of 2 from 400 to 800 μm in the stratum corneum and 5 times from 0.6 to 3 μm for the epidermis and from 0.27 to 1.4 μm to the dermis. Typical values of sizes of speckles formed by the diffraction component of laser radiation for the stratum corneum and epidermis range from 0.02 to 0.15 μm. For the dermis typical spot sizes are up to 0.03 μm. The speckle-spot size of the diffusion component in the dermis can vary from ±10 % at 400 nm and up to ±23 % for 800 nm when the volume concentration of blood capillaries changes. Characteristic dependencies are obtained and biophysical factors associated with the volume concentration of blood and the degree of it’s oxygenation that affect the contrast of the speckle structure in the dermis are discussed.The of speckles

  17. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    Science.gov (United States)

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    Science.gov (United States)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  19. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  20. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  1. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  2. Delay-Dependent Stability Criterion for Bidirectional Associative Memory Neural Networks with Interval Time-Varying Delays

    Science.gov (United States)

    Park, Ju H.; Kwon, O. M.

    In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.

  3. A neural measure of behavioral engagement: task-residual low-frequency blood oxygenation level-dependent activity in the precuneus.

    Science.gov (United States)

    Zhang, Sheng; Li, Chiang-Shan Ray

    2010-01-15

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low-frequency blood oxygenation level-dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit - including the precuneus and medial prefrontal cortex (mPFC) - showing greater activation during resting as compared to task residuals in 33 individuals. Time series correlations with the posterior cingulate cortex as the seed region showed that connectivity with the precuneus was significantly stronger during resting as compared to task residuals. We hypothesized that if the task-residual BOLD activity in the precuneus reflects engagement, it should account for a certain amount of variance in task-related regional brain activation. In an additional experiment of 59 individuals performing a stop signal task, we observed that the fractional amplitude of low-frequency fluctuation (fALFF) of the precuneus but not the mPFC accounted for approximately 10% of the variance in prefrontal activation related to attentional monitoring and response inhibition. Taken together, these results suggest that task-residual fALFF in the precuneus may be a potential indicator of task engagement. This measurement may serve as a useful covariate in identifying motivation-independent neural processes that underlie the pathogenesis of a psychiatric or neurological condition.

  4. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity.

    Science.gov (United States)

    Yang, Chunhua; Deconinck, G; Gui, Weihua; Li, Yonggang

    2002-01-01

    Depending on varying prices of electricity, an optimal power-dispatching system (OPDS) is developed to minimize the cost of power consumption in the electrochemical process of zinc (EPZ). Due to the complexity of the EPZ, the main factors influencing the power consumption are determined by qualitative analysis, and a series of conditional experiments is conducted to acquire sufficient data, then two backpropagation neural networks are used to describe these relationships quantitatively. An equivalent Hopfield neural network is constructed to solve the optimization problem where a penalty function is introduced into the network energy function so as to meet the equality constraints, and inequality constraints are removed by alteration of the Sigmoid function. This OPDS was put into service in a smeltery in 1998. The cost of power consumption has decreased significantly, the total electrical energy consumption is reduced, and it is also beneficial to balancing the load of the power grid. The actual results show the effectiveness of the OPDS. This paper introduces a successful industrial application and mainly presents how to utilize neural networks to solve particular problems for the real world.

  5. Exponential Antisynchronization Control of Stochastic Memristive Neural Networks with Mixed Time-Varying Delays Based on Novel Delay-Dependent or Delay-Independent Adaptive Controller

    Directory of Open Access Journals (Sweden)

    Minghui Yu

    2017-01-01

    Full Text Available The global exponential antisynchronization in mean square of memristive neural networks with stochastic perturbation and mixed time-varying delays is studied in this paper. Then, two kinds of novel delay-dependent and delay-independent adaptive controllers are designed. With the ability of adapting to environment changes, the proposed controllers can modify their behaviors to achieve the best performance. In particular, on the basis of the differential inclusions theory, inequality theory, and stochastic analysis techniques, several sufficient conditions are obtained to guarantee the exponential antisynchronization between the drive system and response system. Furthermore, two numerical simulation examples are provided to the validity of the derived criteria.

  6. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues

    International Nuclear Information System (INIS)

    Firth, R.G.; Bell, P.M.; Marsh, H.M.; Hansen, I.; Rizza, R.A.

    1986-01-01

    Patients with noninsulin-dependent diabetes mellitus (NIDDM) have both preprandial and postprandial hyperglycemia. To determine the mechanism responsible for the postprandial hyperglycemia, insulin secretion, insulin action, and the pattern of carbohydrate metabolism after glucose ingestion were assessed in patients with NIDDM and in matched nondiabetic subjects using the dual isotope and forearm catheterization techniques. Prior to meal ingestion, hepatic glucose release was increased (P less than 0.001) in the diabetic patients measured using [2- 3 H] or [3- 3 H] glucose. After meal ingestion, patients with NIDDM had excessive rates of systemic glucose entry (1,316 +/- 56 vs. 1,018 +/- 65 mg/kg X 7 h, P less than 0.01), primarily owing to a failure to suppress adequately endogenous glucose release (680 +/- 50 vs. 470 +/- 32 mg/kg X 7 h, P less than 0.01) from its high preprandial level. Despite impaired suppression of endogenous glucose production during a hyperinsulinemic glucose clamp (P less than 0.001) and decreased postprandial C-peptide response (P less than 0.05) in NIDDM, percent suppression of hepatic glucose release after oral glucose was comparable in the diabetic and nondiabetic subjects (45 +/- 3 vs. 39 +/- 2%). Although new glucose formation from meal-derived three-carbon precursors (53 +/- 3 vs. 40 +/- 7 mg/kg X 7 h, P less than 0.05) was greater in the diabetic patients, it accounted for only a minor part of this excessive postprandial hepatic glucose release. Postprandial hyperglycemia was exacerbated by the lack of an appropriate increase in glucose uptake whether measured isotopically or by forearm glucose uptake. Thus excessive hepatic glucose release and impaired glucose uptake are involved in the pathogenesis of postprandial hyperglycemia in patients with NIDDM

  7. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    Directory of Open Access Journals (Sweden)

    Jitender P Dubey

    Full Text Available The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse.Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i. to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25% of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle.This study reevaluated

  8. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  9. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  10. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.

    Science.gov (United States)

    Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia

    2015-06-16

    The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.

  11. Comparative Study of Various Delivery Methods for the Supply of Alpha-Ketoglutarate to the Neural Cells for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tanushree Vishnoi

    2013-01-01

    Full Text Available Delivery of growth factors or bioactive molecules plays an important role in tissue engineering, as the duration to which these are supplied can modulate the cell fate. Thus, the delivery method plays an important role, and the same is presented in this work wherein the exogenous supply of alpha-ketoglutarate (α-KG gave better results for fast proliferating cells as compared to delivery by microspheres or microspheres incorporated scaffolds which can be used while culturing slow growing cells. All these studies were performed in two dimensional (2D and three dimensional (3D setups in which chitosan-gelatin-polypyrrole has been used as 3-D scaffolds. Chitosan and gelatin microspheres alone as well as incorporated in the cryogels were characterized. MTT assay done using neuro-2a cell line showed approximately 42% and 70% increment in cellular proliferation when gelatin and chitosan microspheres were added in a 3-D setup, respectively, as compared to the control. Biochemical analysis of ammonia showed 6-fold reductions in ammonia level in a 3-D setup compared to the control. We also studied the synthesis of a neurotransmitter-like glutamate and found that its concentration increased up to 0.25 mg/ml when the microspheres were added exogenously in a 3-D system.

  12. Expression of the melatonin receptor Mel(1c) in neural tissues of the reef fish Siganus guttatus.

    Science.gov (United States)

    Park, Yong-Ju; Park, Ji-Gweon; Jeong, Hyung-Bok; Takeuchi, Yuki; Kim, Se-Jae; Lee, Young-Don; Takemura, Akihiro

    2007-05-01

    The golden rabbitfish, Siganus guttatus, is a reef fish exhibiting a restricted lunar-related rhythm in behavior and reproduction. Here, to understand the circadian rhythm of this lunar-synchronized spawner, a melatonin receptor subtype-Mel(1c)-was cloned. The full-length Mel(1c) melatonin receptor cDNA comprised 1747 bp with a single open reading frame (1062 bp) that encodes a 353-amino acid protein, which included 7 presumed transmembrane domains. Real-time PCR revealed high Mel(1c) mRNA expression in the retina and brain but not in the peripheral tissues. When the fish were reared under light/dark (LD 12:12) conditions, Mel(1c) mRNA in the retina and brain was expressed with daily variations and increased during nighttime. Similar variations were noted under constant conditions, suggesting that Mel(1c) mRNA expression is regulated by the circadian clock system. Daily variations of Mel(1c) mRNA expression with a peak at zeitgeber time (ZT) 12 were observed in the cultured pineal gland under LD 12:12. Exposure of the cultured pineal gland to light at ZT17 resulted in a decrease in Mel(1c) mRNA expression. When light was obstructed at ZT5, the opposite effect was obtained. These results suggest that light exerts certain effects on Mel(1c) mRNA expression directly or indirectly through melatonin actions.

  13. Immunohistochemical study of PrPSc distribution in neural and extraneural tissues of two cats with feline spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Wunderlin Sabina S

    2009-03-01

    Full Text Available Abstract Background Two domestic shorthair cats presenting with progressive hind-limb ataxia and increased aggressiveness were necropsied and a post mortem diagnosis of Feline Spongiform Encephalopathy (FSE was made. A wide spectrum of tissue samples was collected and evaluated histologically and immunohistologically for the presence of PrPSc. Results Histopathological examination revealed a diffuse vacuolation of the grey matter neuropil with the following areas being most severely affected: corpus geniculatum medialis, thalamus, gyrus dentatus of the hippocampus, corpus striatum, and deep layers of the cerebral and cerebellar cortex as well as in the brain stem. In addition, a diffuse glial reaction involving astrocytes and microglia and intraneuronal vacuolation in a few neurons in the brain stem was present. Heavy PrPSc immunostaining was detected in brain, retina, optic nerve, pars nervosa of the pituitary gland, trigeminal ganglia and small amounts in the myenteric plexus of the small intestine (duodenum, jejunum and slightly in the medulla of the adrenal gland. Conclusion The PrPSc distribution within the brain was consistent with that described in other FSE-affected cats. The pattern of abnormal PrP in the retina corresponded to that found in a captive cheetah with FSE, in sheep with scrapie and was similar to nvCJD in humans.

  14. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Science.gov (United States)

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  15. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction.

    Science.gov (United States)

    Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C

    2015-03-18

    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Dose dependent transfer of 203lead to milk and tissue uptake in suckling offspring studied in rats and mice

    International Nuclear Information System (INIS)

    Palminger Hallen, I.; Oskarsson, A.

    1993-01-01

    The dose-dependent transfer of 203 Pb to milk and uptake in suckling rats and mice during a three-day nursing period was studied. On day 14 of lactation, the dams were administered a single intravenous dose of lead, labelled with 203 Pb, in four or five doses from 0.0005 to 2.0 mg Pb/kg b.wt. There was a linear relationship between Pb levels in plasma and milk of both species. The Pb milk: plasma ratios at 24 hr after administration were 119 and 89 in mice and rats, respectively. At 72 hr the Pb milk: plasma ratio had decreased to 72 in mice and 35 in rats. The tissue levels of lead in the suckling rats and mice were also linearly correlated with lead concentration in milk at 72 hr, showing that milk could be used as an indicator of lead exposure to the suckling offspring. It is concluded that lead is transported into rat and mouse milk to a very high extent and the excretion into milk is more efficient in mice than in rats. On the other hand, rat pups had higher lead levels in tissues than mice pups, which might be due to a higher bioavailability and/or a lower excretion of lead in rat pups. Thus, lead in breast milk could be used as a biological indicator of lead exposure in the mother as well as in the suckling offspring. (au) (38 refs.)

  17. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration.

    Science.gov (United States)

    Sánchez-González, Sandra; Diban, Nazely; Urtiaga, Ane

    2018-03-05

    The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

  18. Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

    Science.gov (United States)

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.

    2015-01-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  19. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard

    2005-01-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 0 C and 25 ± 1 0 C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue

  20. Boys vs. girls: Gender differences in the neural development of trust and reciprocity depend on social context.

    Science.gov (United States)

    Lemmers-Jansen, Imke L J; Krabbendam, Lydia; Veltman, Dick J; Fett, Anne-Kathrin J

    2017-06-01

    Trust and cooperation increase from adolescence to adulthood, but studies on gender differences in this development are rare. We investigated gender and age-related differences in trust and reciprocity and associated neural mechanisms in 43 individuals (16-27 years, 22 male). Participants played two multi-round trust games with a cooperative and an unfair partner. Males showed more basic trust towards unknown others than females. Both genders increased trust during cooperative interactions, with no differences in average trust. Age was unrelated to trust during cooperation. During unfair interactions males decreased their trust more with age than females. ROI analysis showed age-related increases in activation in the temporo-parietal junction (TPJ) and dorsolateral prefrontal cortex (dlPFC) during cooperative investments, and increased age-related caudate activation during both cooperative and unfair repayments. Gender differences in brain activation were only observed during cooperative repayments, with males activating the TPJ more than females, and females activating the caudate more. The findings suggest relatively mature processes of trust and reciprocity in the investigated age range. Gender differences only occur in unfair contexts, becoming more pronounced with age. Largely similar neural activation in males and females and few age effects suggest that similar, mature cognitive strategies are employed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  2. Age-dependent changes in mean and variance of gene expression across tissues in a twin cohort.

    Science.gov (United States)

    Viñuela, Ana; Brown, Andrew A; Buil, Alfonso; Tsai, Pei-Chien; Davies, Matthew N; Bell, Jordana T; Dermitzakis, Emmanouil T; Spector, Timothy D; Small, Kerrin S

    2018-02-15

    Changes in the mean and variance of gene expression with age have consequences for healthy aging and disease development. Age-dependent changes in phenotypic variance have been associated with a decline in regulatory functions leading to increase in disease risk. Here, we investigate age-related mean and variance changes in gene expression measured by RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression from 855 adult female twins. We see evidence of up to 60% of age effects on transcription levels shared across tissues, and 47% of those on splicing. Using gene expression variance and discordance between genetically identical MZ twin pairs, we identify 137 genes with age-related changes in variance and 42 genes with age-related discordance between co-twins; implying the latter are driven by environmental effects. We identify four eQTLs whose effect on expression is age-dependent (FDR 5%). Combined, these results show a complicated mix of environmental and genetically driven changes in expression with age. Using the twin structure in our data, we show that additive genetic effects explain considerably more of the variance in gene expression than aging, but less that other environmental factors, potentially explaining why reliable expression-derived biomarkers for healthy-aging have proved elusive compared with those derived from methylation. © The Author(s) 2017. Published by Oxford University Press.

  3. Auto-Associative Recurrent Neural Networks and Long Term Dependencies in Novelty Detection for Audio Surveillance Applications

    Science.gov (United States)

    Rossi, A.; Montefoschi, F.; Rizzo, A.; Diligenti, M.; Festucci, C.

    2017-10-01

    Machine Learning applied to Automatic Audio Surveillance has been attracting increasing attention in recent years. In spite of several investigations based on a large number of different approaches, little attention had been paid to the environmental temporal evolution of the input signal. In this work, we propose an exploration in this direction comparing the temporal correlations extracted at the feature level with the one learned by a representational structure. To this aim we analysed the prediction performances of a Recurrent Neural Network architecture varying the length of the processed input sequence and the size of the time window used in the feature extraction. Results corroborated the hypothesis that sequential models work better when dealing with data characterized by temporal order. However, so far the optimization of the temporal dimension remains an open issue.

  4. Vitamin D-dependent rat renal calcium-binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification

    International Nuclear Information System (INIS)

    Sonnenberg, J.; Pansini, A.R.; Christakos, S.

    1984-01-01

    A sensitive double antibody RIA has been developed for the 28,000 mol wt rat renal vitamin D-dependent calcium-binding protein. Using this assay, concentrations of calcium-binding protein (CaBP) as low as 30 ng can be measured. The assay is precise (intraassay variability, 5.0%) and reproductible (interassay variability, 8.2%). Measurements of renal CaBP by RIA showed a good correlation with measurements of CaBP by the chelex resin assay and by polyacrylamide gel analysis by densitometric tracing using a purified CaBP marker. The concentration of CaBP in the vitamin D-replete rat kidney is 7.3 +/- 1.0 (mean +/- SEM) micrograms/mg protein. In vitamin D-deficient rats the level of renal CaBP is 2.6 +/- 0.3 micrograms/mg protein. Tissue distribution of immunoreactive rat renal CaBP showed the highest concentration of CaBP in the rat cerebellum (38.3 +/- 5.1 micrograms/mg protein). Lower concentrations of immunoreactive CaBP were detected in several other rat tissues. No immunoreactive CaBP was detected in rat or human serum. In necropsy human kidney and cerebellum, high levels of immunoreactive CaBP were also detected (1.5 +/- 0.1 and 27.3 +/- 2.1 micrograms/mg protein, respectively). When extracts of rat kidney and brain and human cerebellum and kidney were assayed at several dilutions, immunodisplacement curves parallel to that of pure renal CaBP were observed, indicating immunochemical similarity. Fractionation of extracts of rat cerebellum, human kidney, and human cerebellum on Sephadex G-100 revealed immunoreactivity and calcium-binding activity in the 28,000 mol wt region similar to rat kidney

  5. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  6. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    Science.gov (United States)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  7. Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm.

    Science.gov (United States)

    Peng, Jiansheng; Meng, Fanmei; Ai, Yuncan

    2013-06-01

    The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermentation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a "5-10-1" ANN topology to identify the nonlinear relationship between fermentation parameters and the antibiotic effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained ANN model were coincided with the observed ones (the coefficient of R(2) was greater than 0.95). As the fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be optimized by stages through GA, and an optimal fermentation process control trajectory was created. The production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermentation control trajectory that was optimized by using of combined ANN-GA method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    International Nuclear Information System (INIS)

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola

    2015-01-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs

  9. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola, E-mail: Ola.Hermanson@ki.se

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  10. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  11. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice.

    Science.gov (United States)

    Sebastian, Becky M; Roychowdhury, Sanjoy; Tang, Hui; Hillian, Antoinette D; Feldstein, Ariel E; Stahl, Gregory L; Takahashi, Kazue; Nagy, Laura E

    2011-10-14

    Chronic, heavy alcohol exposure results in inflammation in adipose tissue, insulin resistance, and liver injury. Here we have identified a CYP2E1/Bid/C1q-dependent pathway that is activated in response to chronic ethanol and is required for the development of inflammation in adipose tissue. Ethanol feeding for 25 days to wild-type (C57BL/6J) mice increased expression of multiple markers of adipose tissue inflammation relative to pair-fed controls independent of increased body weight or adipocyte size. Ethanol feeding increased the expression of CYP2E1 in adipocytes, but not stromal vascular cells, in adipose tissue and Cyp2e1(-/-) mice were protected from adipose tissue inflammation in response to ethanol. Ethanol feeding also increased the number of TUNEL-positive nuclei in adipose tissue of wild-type mice but not in Cyp2e1(-/-) or Bid (-/-) mice. Apoptosis contributed to adipose inflammation, as the expression of multiple inflammatory markers was decreased in mice lacking the Bid-dependent apoptotic pathway. The complement protein C1q binds to apoptotic cells, facilitating their clearance and activating complement. Making use of C1q-deficient mice, we found that activation of complement via C1q provided the critical link between CYP2E1/Bid-dependent apoptosis and onset of adipose tissue inflammation in response to chronic ethanol. In summary, chronic ethanol increases CYP2E1 activity in adipose, leading to Bid-mediated apoptosis and activation of complement via C1q, finally resulting in adipose tissue inflammation. Taken together, these data identify a novel mechanism for the development of adipose tissue inflammation that likely contributes to the pathophysiological effects of ethanol.

  12. The use of output-dependent data scaling with artificial neural networks and multilinear regression for modeling of ciprofloxacin removal from aqueous solution

    Directory of Open Access Journals (Sweden)

    Ulaş Yurtsever

    2017-03-01

    Full Text Available In this study, an experimental system entailing ciprofloxacin hydrochloride (CIP removal from aqueous solution is modeled by using artificial neural networks (ANNs. For modeling of CIP removal from aqueous solution using bentonite and activated carbon, we utilized the combination of output-dependent data scaling (ODDS with ANN, and the combination of ODDS with multivariable linear regression model (MVLR. The ANN model normalized via ODDS performs better in comparison with the ANN model scaled via standard normalization. Four distinct hybrid models, ANN with standard normalization, ANN with ODDS, MVLR with standard normalization, and MVLR with ODDS, were also applied. We observed that ANN and MVLR estimations’ consistency, accuracy ratios and model performances increase as a result of pre-processing with ODDS.

  13. The blunted effect of glucose-dependent insulinotropic polypeptide in subcutaneous abdominal adipose tissue in obese subjects is partly reversed by weight loss

    DEFF Research Database (Denmark)

    Asmar, M; Arngrim, N; Simonsen, L.

    2016-01-01

    BACKGROUND: Glucose-dependent insulinotropic polypeptide (GIP) appears to have impaired effect on subcutaneous abdominal adipose tissue metabolism in obese subjects. The aim of the present study was to examine whether weight loss may reverse the impaired effect of GIP on subcutaneous abdominal...... adipose tissue in obese subjects. METHODS: Five obese males participated in a 12-week weight loss program, which consisted of caloric restriction (800 Cal day(-)(1)) followed by 4 weeks of weight-maintenance diet. Before and after weight loss, subcutaneous adipose tissue lipid metabolism was studied...... after weight loss, Pobese subjects, weight...

  14. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes

    Science.gov (United States)

    Jády, Attila Gy.; Nagy, Ádám M.; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László

    2016-01-01

    While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H+ production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In “starving” neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons. PMID:27116891

  16. In the face of threat: neural and endocrine correlates of impaired facial emotion recognition in cocaine dependence.

    Science.gov (United States)

    Ersche, K D; Hagan, C C; Smith, D G; Jones, P S; Calder, A J; Williams, G B

    2015-05-26

    The ability to recognize facial expressions of emotion in others is a cornerstone of human interaction. Selective impairments in the recognition of facial expressions of fear have frequently been reported in chronic cocaine users, but the nature of these impairments remains poorly understood. We used the multivariate method of partial least squares and structural magnetic resonance imaging to identify gray matter brain networks that underlie facial affect processing in both cocaine-dependent (n = 29) and healthy male volunteers (n = 29). We hypothesized that disruptions in neuroendocrine function in cocaine-dependent individuals would explain their impairments in fear recognition by modulating the relationship with the underlying gray matter networks. We found that cocaine-dependent individuals not only exhibited significant impairments in the recognition of fear, but also for facial expressions of anger. Although recognition accuracy of threatening expressions co-varied in all participants with distinctive gray matter networks implicated in fear and anger processing, in cocaine users it was less well predicted by these networks than in controls. The weaker brain-behavior relationships for threat processing were also mediated by distinctly different factors. Fear recognition impairments were influenced by variations in intelligence levels, whereas anger recognition impairments were associated with comorbid opiate dependence and related reduction in testosterone levels. We also observed an inverse relationship between testosterone levels and the duration of crack and opiate use. Our data provide novel insight into the neurobiological basis of abnormal threat processing in cocaine dependence, which may shed light on new opportunities facilitating the psychosocial integration of these patients.

  17. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.

    Science.gov (United States)

    Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie

    2013-04-01

    Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.

  18. On vitamin D-dependent regulation of local mechanisms of non-specific defense in children with connective tissue dysplasia

    Directory of Open Access Journals (Sweden)

    L.I. Omelchenko

    2017-11-01

    Full Text Available Background. The influence of active vitamin D (VD metabolites on the reaction of nonspecific defense mechanisms of mucous membranes may be of particular importance in children with connective tissue dysplasia (СТD. The purpose of the study was to establish the concentration of human -defensin (HBD-2 and lysozyme in local secretions in children with CTD taking into account the body’s VD supply. Materials and methods. We examined 127 children aged 11–17 years with phenotypic manifestations of CTD taking into account the supplementation of VD. Four groups of children were identified: group 1 — healthy children with a physiological level of 25OHD, group 2 — children with moderate and severe CTD degrees and physiological concentrations of VD (75–100 nmol/l, group 3 — children with CTD and 25OHD insufficiency (50–75 nmol/l, group 4 — children with CTD and vitamin D deficiency (VDD (below 50 nmol/l. Determination of HBD-2 level by immunoassay and lysozyme using a dry powder of one-day Micrococcus lyzodeiticus culture in local secretions (saliva, coprofiltrate (CF was performed in all children. Results. When studying HBD-2 in saliva, its highest concentrations were found in children of group 1 — 4.52 ± 0.06 ng/ml. Lower levels of HBD-2 were reported in children of groups 2 and 3, and in children with CTD and DVD, the rates were lowest — 3.88 ± 0.08 ng/ml. The highest HBD-2 concentrations in CF were detected in group 1 — 81.14 ± 5.13 ng/ml. In groups of children with dysplastic manifestations, a significant difference in data (p ≤ 0.05 is observed depending on the concentration of 25OHD, with the lowest concentrations found in VDD group — 52.63 ± 3.01 ng/ml. The highest lysozyme levels in CF were in children from groups 1 (4.68 ± 0.10 mg/l and 2 (4.41 ± 0.09 mg/l; however, the lowest concentration of lysozyme was found in children with CTD and VDD — 4.09 ± 0.08 mg/l. A direct relationship is determined between the

  19. Hypoxia-ischemia or excitotoxin-induced tissue plasminogen activator- dependent gelatinase activation in mice neonate brain microvessels.

    Directory of Open Access Journals (Sweden)

    Priscilla L Omouendze

    Full Text Available Hypoxia-ischemia (HI and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9 activity links in HI and excitotoxicity lesion models in 5 day-old pups in wild type and in t-PA or its inhibitor (PAI-1 genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O₂. Excitotoxic lesions were produced by intra parenchymal cortical (i.c. injections of 10 µg ibotenate (Ibo. Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA⁻/⁻ and enhanced in PAI-1⁻/⁻ mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA⁻/⁻ mice. In PAI-1⁻/⁻ mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1⁻/⁻ and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM induced DQ-gelatin activation in vessels. The effect was not detected in t-PA⁻/⁻ mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL. In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have

  20. An MHC II-Dependent Activation Loop between Adipose Tissue Macrophages and CD4+ T Cells Controls Obesity-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Kae Won Cho

    2014-10-01

    Full Text Available An adaptive immune response triggered by obesity is characterized by the activation of adipose tissue CD4+ T cells by unclear mechanisms. We have examined whether interactions between adipose tissue macrophages (ATMs and CD4+ T cells contribute to adipose tissue metainflammation. Intravital microscopy identifies dynamic antigen-dependent interactions between ATMs and T cells in visceral fat. Mice deficient in major histocompatibility complex class II (MHC II showed protection from diet-induced obesity. Deletion of MHC II expression in macrophages led to an adipose tissue-specific decrease in the effector/memory CD4+ T cells, attenuation of CD11c+ ATM accumulation, and improvement in glucose intolerance by increasing adipose tissue insulin sensitivity. Ablation experiments demonstrated that the maintenance of proliferating conventional T cells is dependent on signals from CD11c+ ATMs in obese mice. These studies demonstrate the importance of MHCII-restricted signals from ATMs that regulate adipose tissue T cell maturation and metainflammation.

  1. EXPOSURE TO DIETHYL HEXYL PHTHALATE (DEHP) DELAYS PUBERTY AND REDUCES ANDROGEN-DEPENDENT TISSUE WEIGHTS IN LONG EVANS HOODED AND SPRAGUE DAWLEY MALE RATS

    Science.gov (United States)

    DEHP is a plasticizer that alters sexual differentiation in the male rat by reducing fetal Leydig cell testosterone synthesis and insl3 mRNA levels. When exposure includes the pubertal stage of life, DEHP and other phthalates delay puberty and reduce androgen-dependent tissue wei...

  2. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study

    Science.gov (United States)

    Lim, Hongki; Fessler, Jeffrey A.; Wilderman, Scott J.; Brooks, Allen F.; Dewaraja, Yuni K.

    2018-06-01

    While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the ‘bremsstrahlung distribution’ that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.

  3. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    Science.gov (United States)

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. Copyright © 2016 the American Physiological Society.

  4. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting

    International Nuclear Information System (INIS)

    Park, Ju Young; Choi, Jong-Cheol; Lee, Jung-Seob; Park, Hyoungjun; Doh, Junsang; Cho, Dong-Woo; Shim, Jin-Hyung; Kim, Sung Won

    2014-01-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration. (paper)

  5. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    Science.gov (United States)

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  6. Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy.

    Directory of Open Access Journals (Sweden)

    Paola Taroni

    Full Text Available Breast tissue composition is recognized as a strong and independent risk factor for breast cancer. It is a heritable feature, but is also significantly affected by several other elements (e.g., age, menopause. Nowadays it is quantified by mammographic density, thus requiring the use of ionizing radiation. Optical techniques are absolutely non-invasive and have already proved effective in the investigation of biological tissues, as they are sensitive to tissue composition and structure.Time domain diffuse optical spectroscopy was performed at 7 wavelengths (635-1060 nm on 200 subjects to derive their breast tissue composition (in terms of water, lipid and collagen content, blood parameters (total hemoglobin content and oxygen saturation level, and information on the microscopic structure (scattering amplitude and power. The dependence of all optically-derived parameters on age, menopausal status, body mass index, and use of oral contraceptives, and the correlation with mammographic density were investigated.Younger age, premenopausal status, lower body mass index values, and use of oral contraceptives all correspond to significantly higher water, collagen and total hemoglobin content, and lower lipid content (always p < 0.05 and often p < 10-4, while oxygen saturation level and scattering parameters show significant dependence only on some conditions. Even when age-adjusted groups of subjects are compared, several optically derived parameters (and in particular always collagen and total hemoglobin content remain significantly different.Time domain diffuse optical spectroscopy can probe non-invasively breast tissue composition and physiologic blood parameters, and provide information on tissue structure. The measurement is suitable for in vivo studies and monitoring of changes in breast tissue (e.g., with age, lifestyle, chemotherapy, etc. and to gain insight into related processes, like the origin of cancer risk associated with breast density.

  7. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Faris, I; Vagn Nielsen, H; Henriksen, O

    1983-01-01

    Autoregulation of blood flow was studied in skeletal muscle and subcutaneous tissue in seven Type 1 (insulin-dependent) diabetic patients (median age: 36 years) with nephropathy and retinopathy and in eight normal subjects of the same age. Blood flow was measured by the local 133Xe washout...... technique. Reduction in arterial perfusion pressure was produced by elevating the limb 20 and 40 cm above heart level. Blood flow remained within 10% of control values when the limb was elevated in normal subjects. In five of the seven diabetic subjects blood flow fell significantly in both tissues when...

  8. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  9. Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Edith Roussel

    2010-09-01

    Full Text Available Plasticity in the honeybee brain has been studied using the appetitive olfactory conditioning of the proboscis extension reflex, in which a bee learns the association between an odor and a sucrose reward. In this framework, coupling behavioral measurements of proboscis extension and invasive recordings of neural activity has been difficult because proboscis movements usually introduce brain movements that affect physiological preparations. Here we took advantage of a new conditioning protocol, the aversive olfactory conditioning of the sting extension reflex, which does not generate this problem. We achieved the first simultaneous recordings of conditioned sting extension responses and calcium imaging of antennal lobe activity, thus revealing on-line processing of olfactory information during conditioning trials. Based on behavioral output we distinguished learners and non-learners and analyzed possible learning-dependent changes in antennal lobe activity. We did not find differences between glomerular responses to the CS+ and the CS- in learners. Unexpectedly, we found that during conditioning trials non-learners exhibited a progressive decrease in physiological responses to odors, irrespective of their valence. This effect could neither be attributed to a fitness problem nor to abnormal dye bleaching. We discuss the absence of learning-induced changes in the antennal lobe of learners and the decrease in calcium responses found in non-learners. Further studies will have to extend the search for functional plasticity related to aversive learning to other brain areas and to look on a broader range of temporal scales

  10. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    Science.gov (United States)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  11. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.

    Science.gov (United States)

    Duadi, Hamootal; Fixler, Dror; Popovtzer, Rachela

    2013-11-01

    Most methods for measuring light-tissue interactions focus on the volume reflectance while very few measure the transmission. We investigate both diffusion reflection and diffuse transmission at all exit angles to receive the full scattering profile. We also investigate the influence of blood vessel diameter on the scattering profile of a circular tissue. The photon propagation path at a wavelength of 850 nm is calculated from the absorption and scattering constants via Monte Carlo simulation. Several simulations are performed where a different vessel diameter and location were chosen but the blood volume was kept constant. The fraction of photons exiting the tissue at several central angles is presented for each vessel diameter. The main result is that there is a central angle that below which the photon transmission decreased for lower vessel diameters while above this angle the opposite occurred. We find this central angle to be 135 deg for a two-dimensional 10-mm diameter circular tissue cross-section containing blood vessels. These findings can be useful for monitoring blood perfusion and oxygen delivery in the ear lobe and pinched tissues. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

  12. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    Science.gov (United States)

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  13. Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China.

    Science.gov (United States)

    Cui, Jia; Wu, Bin; Halbrook, Richard S; Zang, Shuying

    2013-12-01

    Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment. In the current study, 1-2, 5-6, and 9-10+ year old homing pigeons collected from the Haidian District of Beijing during 2011 were necropsied and concentrations of cadmium, lead, and mercury were measured in liver, lung, and kidney tissue. At necropsy, gray/black discoloration of the margins of the lungs was observed in 98 % of the pigeons. There were no significant differences in metal concentrations as a function of gender. Cadmium concentrations in all tissues and Pb concentrations in the lung tissues were significantly greater in 9-10+ year old pigeons compared to other age groups indicating that Cd and Pb were bioavailable. Mercury concentrations were not significantly different among age groups. Cadmium concentrations in kidney and lung tissues of 9-10+ year old pigeons were similar to or exceeded concentrations of Cd reported in pigeons from another high traffic urban area and most wild avian species from Korea suggesting that Cd in this region of Beijing may be of concern. Homing pigeons provide valuable exposure and bioaccumulation data not readily available from air monitoring alone, thus providing information regarding potential health effects in wildlife and humans in urban areas. As environmental quality standards are implemented in China, homing pigeons will serve as a valuable bio-monitor of the efficacy of these actions.

  14. Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Gemmer, Carsten

    2007-01-01

    Microdialysis studies indicate that mechanical loading of human tendon during exercise elevates type I collagen production in tendon. However, the possibility that the insertion of microdialysis fibers per se may increase the local collagen production due to trauma has not been explored. Insulin......-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen] were measured by microdialysis in peritendinous tissue of the human Achilles tendon in an exercise group (performing a 36-km run, n = 6) and a control group (no intervention, n = 6). An increase in local PICP concentration was seen in both...... and exercise groups after 48 h (P human peritendinous tissue in response to prolonged mechanical loading with part of the increase due to trauma from the sampling...

  15. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  16. Hormone replacement therapy dependent changes in breast cancer-related gene expression in breast tissue of healthy postmenopausal women.

    Science.gov (United States)

    Sieuwerts, Anieta M; De Napoli, Giuseppina; van Galen, Anne; Kloosterboer, Helenius J; de Weerd, Vanja; Zhang, Hong; Martens, John W M; Foekens, John A; De Geyter, Christian

    2011-12-01

    Risk assessment of future breast cancer risk through exposure to sex steroids currently relies on clinical scorings such as mammographic density. Knowledge about the gene expression patterns in existing breast cancer tumors may be used to identify risk factors in the breast tissue of women still free of cancer. The differential effects of estradiol, estradiol together with gestagens, or tibolone on breast cancer-related gene expression in normal breast tissue samples taken from postmenopausal women may be used to identify gene expression profiles associated with a higher breast cancer risk. Breast tissue samples were taken from 33 healthy postmenopausal women both before and after a six month treatment with either 2mg micronized estradiol [E2], 2mg micronized estradiol and 1mg norethisterone acetate [E2+NETA], 2.5mg tibolone [T] or [no HRT]. Except for [E2], which was only given to women after hysterectomy, the allocation to each of the three groups was randomized. The expression of 102 mRNAs and 46 microRNAs putatively involved in breast cancer was prospectively determined in the biopsies of 6 women receiving [no HRT], 5 women receiving [E2], 5 women receiving [E2+NETA], and 6 receiving [T]. Using epithelial and endothelial markers genes, non-representative biopsies from 11 women were eliminated. Treatment of postmenopausal women with [E2+NETA] resulted in the highest number of differentially (pbreast tissue with a change in the expression of genes putatively involved in breast cancer. Our data suggest that normal mammary cells triggered by [E2+NETA] adjust for steroidogenic up-regulation through down-regulation of the estrogen-receptor pathway. This feasibility study provides the basis for whole genome analyses to identify novel markers involved in increased breast cancer risk. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    Science.gov (United States)

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects.

    Science.gov (United States)

    Sudiwala, Sonia; De Castro, Sandra C P; Leung, Kit-Yi; Brosnan, John T; Brosnan, Margaret E; Mills, Kevin; Copp, Andrew J; Greene, Nicholas D E

    2016-07-01

    The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Ravinder Kaur

    2015-10-01

    Full Text Available Medulloblastoma (MB is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH, Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2 is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs, but not their normal counterparts (hENs, resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression.

  20. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    International Nuclear Information System (INIS)

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content ∼ 50-fold and their carboxypeptidase. A content ∼ 100-fold, and augment ∼ their biosynthesis of proteoglycans bearing 35 S-labeled haparin relative to 35 S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment

  1. Dose-dependent variations in blood flow evaluation of canine nerve, nerve graft, tendon, and ligament tissue by the radiolabeled-microsphere technique

    International Nuclear Information System (INIS)

    Riggi, K.; Wood, M.B.; Ilstrup, D.M.

    1990-01-01

    This study evaluates the dose-dependent accuracy of the radionuclide-labeled microsphere technique for blood flow evaluation in nerve, tendon, and ligament. In eight dogs, blood flows were determined for nerve, nerve graft, tendon, and ligament tissue by simultaneous injection of high- and low-dose microspheres with different radiolabels. The results demonstrated no significant differences in blood flow as measured from the small number of microspheres (less than 400) and the high number (more than 400) for nerve and tendon tissue. For nerve tissue, microsphere counts of 50 to 100, 100 to 200, 200 to 300, and more than 300 produced mean percentage errors of 12.74% (n = 5, SEM = 4.52), 5.45% (n = 13, SEM = 1.22), 10.22% (n = 6, SEM = 4.37), and 17.08% (n = 12, SEM = 3.30), respectively. For tendon tissue, the same microsphere subdivisions had mean percentage errors of 7.47% (n = 4, SEM = 2.66), 3.63% (n = 6, SEM = 1.34), 15.54% (n = 4, SEM = 4.43), and 12.91% (n = 1), respectively. For ligament tissue, percentage errors were consistently higher; microsphere counts of 30 to 100, 100 to 200, and 200 to 300 produced mean errors of 20.14% (n = 4, SEM = 6.38), 18.66% (n = 4, SEM = 6.24), and 25.78% (n = 2, SEM = 1.97), respectively. Although there was no direct relationship between percentage error and number of microspheres retrieved, we suggest that microsphere counts in the range of 100 to 200 should be considered acceptable for nerve and tendon in the canine. Ligament tissue seems to be less well suited to the microsphere technique; however, further study is warranted

  2. Gender-dependent expression of leading and passenger strand of miR-21 and miR-16 in human colorectal cancer and adjacent colonic tissues.

    Science.gov (United States)

    Hasáková, K; Bezakova, J; Vician, M; Reis, R; Zeman, M; Herichova, I

    2017-12-30

    miRNAs are small regulatory RNA molecules involved in posttranscriptional gene silencing. Their biosynthesis results in the formation of duplex consisting of a leading and a passenger strand of mature miRNA. The leading strand exhibits the main activity but recent findings indicate a certain role of the passenger strand as well. Deregulated levels of miRNA were found in many types of cancers including colorectal cancer. miR-21 and miR-16 were indicated as possible markers of colorectal cancer, however, small attention to gender differences in their expression was paid so far. Therefore, the aim of our study was to investigate the expression of miR-21-5p, miR-21-3p, miR-16-5p and miR-16-3p in human colorectal cancer tissue and compare it to the adjacent tissues taken during surgery in men and women separately. Our results showed an up-regulation of all measured miRNAs in tumor tissue compared to adjacent tissues. As expected, tumors and adjacent tissues exhibited a significantly higher expression of leading miRNAs compared to passenger strand of miR-21 and miR-16. The expression of leading and passenger strand of miR-21 and miR-16 positively correlated exhibiting the highest correlation coefficient in the distal tissue. The expression pattern showed gender-dependent differences, with higher levels of miRNA in men than in women. Our findings indicate a gender-related expression pattern of miRNA, which should be considered as an important factor in generating new prognostic or diagnostic biomarkers.

  3. Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta

    Science.gov (United States)

    Lichtenberg, Mads; Larkum, Anthony W. D.; Kühl, Michael

    2016-01-01

    Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters. PMID:26955372

  4. Photosynthetic acclimation of Symbiodinium in hospite depends on vertical position in the tissue of the scleractinian coral Montastrea curta

    Directory of Open Access Journals (Sweden)

    Mads eLichtenberg

    2016-02-01

    Full Text Available Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ~71% and ~33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.

  5. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation.

    Directory of Open Access Journals (Sweden)

    Fenghui Qi

    Full Text Available The community of endophytic fungi associated with Acer ginnala, a common tree in northeastern China, was investigated. Four media, PDA, Czapek's, WA and Sabouraud's, were used to inoculate explants from seeds, annual twigs and perennial twigs (xylem and bark. Media strongly affected the isolated species number, but not colonization frequency (CF or isolation frequency (IF. To investigate media effect further, a Principal Component Analysis (PCA was done. As a result, two components accounted for 86.502% of the total variance were extracted. These two components were named as PDA-determined factor (accounted for 45.139% of the total variance and Czapek's-determined factor (accounted for 41.363% of the total variance, respectively. This result suggested that only two media, PDA and Czapek's, could be used instead of all four media in this study without affecting the isolation results significantly. In total, ten taxa were isolated in this study. Alternaria sp., Phomopsis sp., Neurospora sp. and Phoma sp. were dominant endophytes while Pleosporales Incertae Sedis sp., Cladosporium sp., Trichoderma sp. and Epicoccum sp. were rare taxa. Different tissues/organs had different endophyte assemblages. All tissue/organ pairs had low Bray-Curtis indices (<0.3 except for bark and annual twigs (0.63. Compared to perennial twigs, annual twigs had a lower taxon number, lower isolate number, lower endophyte dominance and diversity indices. Seeds had distinct assemblage, lower similarity and similar low diversity indices to annual twigs. These results suggested that tissue type determines the endophyte assemblage while age determines the diversity.

  6. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation.

    Science.gov (United States)

    Qi, Fenghui; Jing, Tianzhong; Zhan, Yaguang

    2012-01-01

    The community of endophytic fungi associated with Acer ginnala, a common tree in northeastern China, was investigated. Four media, PDA, Czapek's, WA and Sabouraud's, were used to inoculate explants from seeds, annual twigs and perennial twigs (xylem and bark). Media strongly affected the isolated species number, but not colonization frequency (CF) or isolation frequency (IF). To investigate media effect further, a Principal Component Analysis (PCA) was done. As a result, two components accounted for 86.502% of the total variance were extracted. These two components were named as PDA-determined factor (accounted for 45.139% of the total variance) and Czapek's-determined factor (accounted for 41.363% of the total variance), respectively. This result suggested that only two media, PDA and Czapek's, could be used instead of all four media in this study without affecting the isolation results significantly. In total, ten taxa were isolated in this study. Alternaria sp., Phomopsis sp., Neurospora sp. and Phoma sp. were dominant endophytes while Pleosporales Incertae Sedis sp., Cladosporium sp., Trichoderma sp. and Epicoccum sp. were rare taxa. Different tissues/organs had different endophyte assemblages. All tissue/organ pairs had low Bray-Curtis indices (<0.3) except for bark and annual twigs (0.63). Compared to perennial twigs, annual twigs had a lower taxon number, lower isolate number, lower endophyte dominance and diversity indices. Seeds had distinct assemblage, lower similarity and similar low diversity indices to annual twigs. These results suggested that tissue type determines the endophyte assemblage while age determines the diversity.

  7. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident.

    Directory of Open Access Journals (Sweden)

    Michael Abend

    Full Text Available The strong and consistent relationship between irradiation at a young age and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis in humans. We thus evaluated differential gene expression in thyroid tissue in relation to iodine-131 (I-131 doses received from the Chernobyl accident. Sixty three of 104 papillary thyroid cancers diagnosed between 1998 and 2008 in the Ukrainian-American cohort with individual I-131 thyroid dose estimates had paired RNA specimens from fresh frozen tumor (T and normal (N tissue provided by the Chernobyl Tissue Bank and satisfied quality control criteria. We first hybridized 32 randomly allocated RNA specimen pairs (T/N on 64 whole genome microarrays (Agilent, 4×44 K. Associations of differential gene expression (log(2(T/N with dose were assessed using Kruskall-Wallis and trend tests in linear mixed regression models. While none of the genes withstood correction for the false discovery rate, we selected 75 genes with a priori evidence or P kruskall/P trend <0.0005 for validation by qRT-PCR on the remaining 31 RNA specimen pairs (T/N. The qRT-PCR data were analyzed using linear mixed regression models that included radiation dose as a categorical or ordinal variable. Eleven of 75 qRT-PCR assayed genes (ACVR2A, AJAP1, CA12, CDK12, FAM38A, GALNT7, LMO3, MTA1, SLC19A1, SLC43A3, ZNF493 were confirmed to have a statistically significant differential dose-expression relationship. Our study is among the first to provide direct human data on long term differential gene expression in relation to individual I-131 doses and to identify a set of genes potentially important in radiation carcinogenesis.

  8. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria

    Czech Academy of Sciences Publication Activity Database

    Vrbacký, Marek; Drahota, Zdeněk; Mráček, Tomáš; Vojtíšková, Alena; Ješina, Pavel; Stopka, Pavel; Houštěk, Josef

    2007-01-01

    Roč. 1767, č. 7 (2007), s. 989-997 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GA303/06/1261; GA MŠk(CZ) 1M0520 Grant - others:Framework Program EUMITOCOMBAT(XE) LSHM-CT-2004-503116 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40320502 Source of funding: R - rámcový projekt EK Keywords : brown adipose tissue mitochondria * reactive oxygen species * glycerophosphate dehydrogenase, Subject RIV: CE - Biochemistry Impact factor: 3.835, year: 2007

  9. Epithelial control of gut-associated lymphoid tissue formation through p38α-dependent restraint of NF-κB signaling

    Science.gov (United States)

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2015-01-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. Here we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a non-cell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. PMID:26792803

  10. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38α-Dependent Restraint of NF-κB Signaling.

    Science.gov (United States)

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2016-03-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. In this study, we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a noncell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are most likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Computational model of soft tissues in the human upper airway.

    Science.gov (United States)

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  12. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  13. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  14. Endogenous Proteolytic Cleavage of Disease-associated Prion Protein to Produce C2 Fragments Is Strongly Cell- and Tissue-dependent*

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-01-01

    The abnormally folded form of the prion protein (PrPSc) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrPSc N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrPSc accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrPSc proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrPSc fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrPSc and cell pathogenesis of prion infection. PMID:20154089

  15. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines.

    Science.gov (United States)

    Kuzmenko, Volodymyr; Karabulut, Erdem; Pernevik, Elin; Enoksson, Peter; Gatenholm, Paul

    2018-06-01

    Neural tissue engineering (TE), an innovative biomedical method of brain study, is very dependent on scaffolds that support cell development into a functional tissue. Recently, 3D patterned scaffolds for neural TE have shown significant positive effects on cells by a more realistic mimicking of actual neural tissue. In this work, we present a conductive nanocellulose-based ink for 3D printing of neural TE scaffolds. It is demonstrated that by using cellulose nanofibrils and carbon nanotubes as ink constituents, it is possible to print guidelines with a diameter below 1 mm and electrical conductivity of 3.8 × 10 -1  S cm -1 . The cell culture studies reveal that neural cells prefer to attach, proliferate, and differentiate on the 3D printed conductive guidelines. To our knowledge, this is the first research effort devoted to using cost-effective cellulosic 3D printed structures in neural TE, and we suppose that much more will arise in the near future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Determination of the swelling velocity of different wood species and tissues depending on the cutting direction on microtome section level

    Science.gov (United States)

    Stuckenberg, Peter; Wenderdel, Christoph; Zauer, Mario

    2018-06-01

    Swelling velocity in dependence on the anatomical cutting direction of yew [Taxus baccata L.] and boxwood [Buxus sempervirens L.] was determined at temperature of 20 °C and at relative humidity of 10% and 100%. The investigations, conducted on a microtome section level, showed a similar behaviour for specimens of both wood species. It was possible to determine that the swelling velocity for yew and boxwood increases in its anatomical cutting directions. The longitudinal direction showed the lowest value, the tangential direction, by distinction, the highest value. Furthermore, a significant influence of early wood and late wood content on the swelling velocity for yew was detected.

  17. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner.

    Science.gov (United States)

    Guan, Le; Wu, Benhong; Hilbert, Ghislaine; Li, Shaohua; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2017-08-01

    Amino acid composition of the grape berry at harvest is important for wine making. The present study investigates the complex interplay between tissue, cultivar and light conditions that determine berry amino acid content. Twenty amino acids were assessed in the berry skin and pulp of two grape cultivars (Gamay Noir and Gamay Fréaux), grown under either light exposure or cluster shading conditions. In all samples, cluster shading significantly reduced most amino acids, except gamma-aminobutyric acid (GABA) and phenylalanine. However, the magnitude of the decrease was stronger in the skin (67.0% decrease) than in the pulp (30.4%) and stronger in cv. Gamay Noir (69.7%) than in Gamay Fréaux (30.7%). Cluster shading also significantly modified amino acid composition by decreasing the proline content while increasing the GABA content. These results are of oenological interest for shaping the amino acid composition of the must and improving wine quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Data on metabolic-dependent antioxidant response in the cardiovascular tissues of living zebrafish under stress conditions

    Directory of Open Access Journals (Sweden)

    Emiliano Panieri

    2017-06-01

    Full Text Available In this article we used transgenic zebrafish lines that express compartment-specific isoforms of the roGFP2-Orp1 and Grx1-roGFP2 biosensors, described in Panieri et al (2017 [1], to test the contribute of the pentose phosphate pathway and of the glutathione biosynthesis in the antioxidant capacity of myocardial and endothelial cells in vivo. The transgenic zebrafish embryos were subdued to metabolic inhibition and subsequently challenged with H2O2 or the redox-cycling agent menadione to respectively mimic acute or chronic oxidative stress. Confocal time-lapse recordings were performed to follow the compartmentalized H2O2 and EGSH changes in the cardiovascular tissues of zebrafish embryos at 48 h post fertilization. After sequential excitation at 405 nm and 488 nm the emission was collected between 500–520 nm every 2 min for an overall duration of 60 min. The 405/488 nm ratio was normalized to the initial value obtained before oxidants addition and plotted over time. The analysis and the interpretation of the data can be found in the associated article [1].

  19. Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks

    International Nuclear Information System (INIS)

    Zhang, H.; Wallen, C.A.; Wheeler, K.T.; Joch, C.J.

    1995-01-01

    Results from several laboratories, including ours, have suggested that measurements of radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) may be used to estimate the hypoxic fraction or fractional hypoxic volume of tumors and normal tissues. This suggestion has been predicated on both published and nonpublished information that (1) the oxygen dependence of the formation of strand breaks in irradiated mammalian cells is similar to the oxygen dependence of radiation-produced cell killing, and (2) the oxygen dependence of the formation of DPCs in irradiated mammalian cells is the mirror image of the oxygen dependence of radiation-induced cell killing. However, the published studies that attempted to determine the relationship between the oxygen dependence of the formation of strand breaks and the radiation sensitivity of mammalian cells were not performed at 37 degrees C, the exact oxygen concentrations were not always known, and the results were conflicting. In addition, most of the data on the oxygen dependence of the formation of DPCs are unpublished. Consequently, we have undertaken a comprehensive investigation of one cell line, 9L/Ro rat brain tumor cells, to determine if the shape of the oxygen dependence curve and the K m value for radiation-induced strand breaks and DPCs were similar when 9L cells were irradiated under both ideal gas-liquid equilibrium conditions at 4 degrees C and nonideal gas-liquid equilibrium conditions at 37 degrees C. At 4 degrees C under ideal gas-liquid equilibrium conditions, the K m for the formation of strand breaks was approximately 0.0045 mM, and Km for radiation sensitivity was approximately 0.005mM. A similar comparison for the formation of DPCs at 4 degrees C could not be made, because the efficiency of the formation of DPC was much lower at 4 degrees C than at 37 degrees C. 30 refs., 3 figs

  20. Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue.

    Science.gov (United States)

    Osborn, Olivia; Sanchez-Alavez, Manuel; Dubins, Jeffrey S; Gonzalez, Alejandro Sanchez; Morrison, Brad; Hadcock, John R; Bartfai, Tamas

    2011-03-01

    CC Chemokine ligand 22 (Ccl22) is a selective, high affinity ligand at the CC chemokine receptor 4 (Ccr4). We have identified cDNAs encoding both ligand and receptor of the Ccl22-Ccr4 pair in cDNA libraries of the anterior hypothalamus/pre-optic area (AH/POA) by PCR. The AH/POA is the key brain region where endogenous pyrogens have been shown to act on warm sensitive neurons to affect thermogenesis in brown adipose tissue (BAT) and other thermogenically responsive tissues. We show that functional Ccr4 receptors are present in the AH/POA neurons as injection of Ccl22 into the POA but not to other hypothalamic nuclei induces an increase in core body temperature as measured by radiotelemetry. Indomethacin (5 mg/kg s.c) pre-treatment markedly reduced the hyperthermia evoked by POA injection of Ccl22 (10 ng/0.5 ul) and thus suggests that this hyperthermia is mediated through cyclooxygenase activation and thus likely through the formation and action of the pyrogen prostaglandin E2. The temperature elevation involves a decrease in the respiratory exchange ratio and increased activation of the brown adipose tissue as demonstrated by ¹⁸F-FDG-PET imaging. We describe a novel role to the ligand Ccl22 and its receptor Ccr4 in the anterior hypothalamus in temperature regulation that depends on the synthesis of the endogenous pyrogen, prostaglandin E2. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner

    DEFF Research Database (Denmark)

    Cox, F F; Berezin, V; Bock, E

    2013-01-01

    Fibroblast growth loop (FGL) is a neural cell adhesion molecule (NCAM)-mimetic peptide that mimics the interaction of NCAM with fibroblast growth factor receptor (FGFR). FGL increases neurite outgrowth and promotes neuronal survival in vitro, and it has also been shown to have neuroprotective eff...

  2. Classification of Laser Induced Fluorescence Spectra from Normal and Malignant bladder tissues using Learning Vector Quantization Neural Network in Bladder Cancer Diagnosis

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Mascarenhas, Kim Komal; Patil, Choudhary

    2008-01-01

    In the present work we discuss the potential of recently developed classification algorithm, Learning Vector Quantization (LVQ), for the analysis of Laser Induced Fluorescence (LIF) Spectra, recorded from normal and malignant bladder tissue samples. The algorithm is prototype based and inherently...

  3. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion.

    Science.gov (United States)

    Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu

    2015-07-01

    Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.

  4. Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer

    International Nuclear Information System (INIS)

    Wopken, Kim; Bijl, Hendrik P.; Schaaf, Arjen van der; Laan, Hans Paul van der; Chouvalova, Olga; Steenbakkers, Roel J.H.M.; Doornaert, Patricia; Slotman, Ben J.; Oosting, Sjoukje F.; Christianen, Miranda E.M.C.; Laan, Bernard F.A.M. van der; Roodenburg, Jan L.N.; René Leemans, C.; Verdonck-de Leeuw, Irma M.; Langendijk, Johannes A.

    2014-01-01

    Background and purpose: Curative radiotherapy/chemo-radiotherapy for head and neck cancer (HNC) may result in severe acute and late side effects, including tube feeding dependence. The purpose of this prospective cohort study was to develop a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence 6 months (TUBE M6 ) after definitive radiotherapy, radiotherapy plus cetuximab or concurrent chemoradiation based on pre-treatment and treatment characteristics. Materials and methods: The study included 355 patients with HNC. TUBE M6 was scored prospectively in a standard follow-up program. To design the prediction model, the penalized learning method LASSO was used, with TUBE M6 as the endpoint. Results: The prevalence of TUBE M6 was 10.7%. The multivariable model with the best performance consisted of the variables: advanced T-stage, moderate to severe weight loss at baseline, accelerated radiotherapy, chemoradiation, radiotherapy plus cetuximab, the mean dose to the superior and inferior pharyngeal constrictor muscle, to the contralateral parotid gland and to the cricopharyngeal muscle. Conclusions: We developed a multivariable NTCP model for TUBE M6 to identify patients at risk for tube feeding dependence. The dosimetric variables can be used to optimize radiotherapy treatment planning aiming at prevention of tube feeding dependence and to estimate the benefit of new radiation technologies

  5. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  6. Chondroitin sulfate effects on neural stem cell differentiation.

    Science.gov (United States)

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  7. Endolithic algae in living stony corals: algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L.) and Meandrina meandrites (L.) (Scleractinia, Anthozoa)

    NARCIS (Netherlands)

    Delvoye, Laurent

    1992-01-01

    DELVOYE, L., 1992. Endolithic algae in living stony corals: Algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L) and Meandrina meandrites (L.) (Sclereactinia, Anthozoa). Studies Nat. Hist. Caribbean Region 71, Amsterdam

  8. Conservative treatment of bone tissue metabolic disorders among patients with vitamin D-dependent rickets type II with genetic abnormality of type I collagen formation

    Directory of Open Access Journals (Sweden)

    S.M. Martsyniak

    2017-08-01

    Full Text Available Background. The purpose of the article is to determine the effect of conservative therapy on genetically caused disorders of bone tissue metabolism in patients with vitamin D-dependent rickets type II and genetic abnormality of type I collagen formation (VDDR(COL1. Materials and methods. At the premises of consulting and outpatient department of SI “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, 13 patients having VDDR type II and genetic damage of type I collagen formation were examined and treated. The medical treatment was conducted in four stages. The first stage included full examination of patients (calcium and phosphorus levels in the blood serum and their urinary excretion, as well as determination of calcidiol and calcitriol serum levels, indicators of parathyroid hormone and osteocalcin, and a marker of bone formation P1NP and osteoresorption b-CTx. At this stage, children were obligated to undergo a genetic test to detect changes (polymorphism in alleles of receptors to vitamin D and type I collagen. Besides genetic tests, examinations at the other stages were conducted in full. Results. The study has shown the following. The genetically caused abnormality of reception to vitamin D results into substantial accumulation of vitamin D active metabolite in the blood serum. When combined with gene­tic abnormality of type I collagen formation, it significantly affected bone formation and destruction processes that causes development of osteomalacia (parathormone — vitamin D — osteocalcin system. The comprehensive study of vitamin D metabolism and biochemical vitals of bone tissue in patients having VDDR (COL1 brought us to understanding of some issues related to pathogenesis and nature of osteomalacia and, in future, osteoporotic changes on different levels, ensured us to express these changes by corresponding indices in the biochemical research and, finally, to develop appropriate schemes for the treatment of

  9. Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra

    International Nuclear Information System (INIS)

    Skiba, Marta; Mrówczyńska, Maria; Bazan-Krzywoszańska, Anna

    2017-01-01

    Highlights: • Artificial neural networks (AI) are suitable to estimate the distribution of potential energy savings. • Improving the energy efficiency of buildings helps to reduce energy poverty. • Improving energy efficiency requires monitoring of estates and districts of cities. - Abstract: Due to the changes in legal requirements, growth of energy consumption from different media and prices increase it is necessary to change the attitude of urban consumers. Achieving the objectives of energy policy in each country requires societies to consolidate the confidence that reducing the demand for energy will pay to each household. Creating a positive investment climate, promoting new models and the dissemination of good examples can also lead to economic growth through the use of low-carbon technologies. In many countries, including Poland, the high energy intensity of buildings is seen as a result of the use of low quality materials, low constructing awareness causing the low standard of residential buildings, which is the reason for forcing thermal renovations. This article presents the distribution of market potential of savings for energy efficient renovations in construction on the example of a medium-sized city of Zielona Gora (Poland), which may be representative of cities in the country and in the world. The potential was determined on the basis of technology and a year of a construction of the buildings, technologies used, kind of development and dominating kind of heat and power supply. The calculated potential was presented as the value of the investments necessary to reduce energy consumption by 1 kW h/m"2. Artificial neural networks, which represent a sophisticated modeling technique and are among the computational intelligence methods were used to compute a distribution of potential. The article makes use of possibilities of multi-layer artificial neural networks trained by back propagation error technique and neural networks with radial basis

  10. Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination.

    Science.gov (United States)

    Barone, F; Patel, P; Sanderson, J D; Spencer, J

    2009-11-01

    A PRoliferation-Inducing Ligand (APRIL) is a secreted cytokine member of the tumor necrosis factor family. It is a B-cell survival factor that also induces class switch recombination (CSR) toward immunoglobulin A (IgA), independent of T cells. It is therefore an important contributor to the maintenance of the mucosal immunological barrier, which has been linked to a putative extrafollicular inductive phase of the IgA response in lamina propria. By immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) on microdissected tissue from normal human gut, we observed APRIL expression, together with TACI (transmembrane activator and CAML interactor) and BCMA (B-cell maturation antigen), in gut-associated lymphoid tissue (GALT), lamina propria, and in the epithelium of stomach, small and large intestine, and rectum. However, no activation-induced cytidine deaminase (AID) expression (an absolute requirement for class switching) was detected in lamina propria by IHC or qRT-PCR. APRIL and its receptors were only observed alongside AID in GALT, showing that GALT contains the apparatus to support both T-independent and T-dependent routes to IgA CSR.

  11. The Effects of Xiangqing Anodyne Spray on Treating Acute Soft-Tissue Injury Mainly Depend on Suppressing Activations of AKT and p38 Pathways

    Directory of Open Access Journals (Sweden)

    Shudong Wang

    2016-01-01

    Full Text Available Objectives. In the present study we try to elucidate the mechanism of Xiangqing anodyne spray (XQAS effects on acute soft-tissue injury (STI. Methods. Acute STI model was established by hammer blow in the rat hind leg muscle. Within 8 hours, instantly after modeling and per 2-hour interval repeated topical applications with or without XQAS, CP or IH ethanol extracts spray (CPS and IHS were performed, respectively; muscle swelling rate and inflammation-related biochemical parameters, muscle histological observation, and mRNA and protein expression were then examined. Results. XQAS dose-dependently suppressed STI-caused muscle swelling, proinflammatory mediator productions, and oxidative stress as well as severe pathological changes in the injured muscle tissue. Moreover, CPS mainly by blocking p38 activation while IHS majorly by blocking AKT activation led to cytoplastic IκBα degradation with NF-κB p65 translocated into the nucleus. There are synergistic effects between CP and IH components in the XQAS on preventing from acute STI with suppressing IκBα degradation, NF-κB p65 translocation, and subsequent inflammation and oxidative stress-related abnormality. Conclusion. Marked effects of XQAS on treating acute STI are ascribed to strong anti-inflammatory and antioxidative actions with a reasonable combination of CP active components, blocking p38-NF-κB pathway activated, and IH active components, blocking AKT-NF-κB pathway activated.

  12. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    International Nuclear Information System (INIS)

    Wang Qingshan; Hou Liyan; Zhang Cuili; Zhao Xiulan; Yu Sufang; Xie, Ke-Qin

    2008-01-01

    Calcium-dependent mechanisms, particularly those mediated by Ca 2+ /calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca 2+ concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs

  13. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  14. Microfluidic engineered high cell density three-dimensional neural cultures

    Science.gov (United States)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities =104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p 90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  15. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    Full Text Available Abstract Background Gold nanoparticles (GNPs have important application for cell labeling and imaging, drug delivery, diagnostic and therapeutic purposes mainly in cancer. Nanoparticles (NPs are being increasingly exploited for medical applications. The aim of the present study was to investigate the particle-size and period effects of administration of GNPs on the renal tissue in an attempt to address their potential toxicity. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days to investigate particle-size effect of GNPs on the renal tissue. Animals were randomly divided into groups, 6 GNPs-treated rats groups and one control group. Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days, size 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Stained sections of control and treated rats kidneys were examined for renal tissue alterations induced by GNPs. Results In comparison with respective control rats, exposure to GNPs doses has produced the following renal tubular alterations: cloudy swelling, vacuolar degeneration, hyaline droplets and casts, anisokaryosis, karopyknosis, karyorrhexis and karyolysis. The glomeruli showed moderate congestion with no hypercelluraity, mesangial proliferation or basement membrane thickening. The histological alterations were mainly seen in the cortex and the proximal renal convoluted tubules were more affected than the distal ones. Conclusions The induced histological alterations might be an indication of injured renal tubules due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. The findings may suggest that GNPs interact with proteins and enzymes of the renal tissue

  16. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  17. Therapeutic Antibody-Like Immunoconjugates against Tissue Factor with the Potential to Treat Angiogenesis-Dependent as Well as Macrophage-Associated Human Diseases

    Directory of Open Access Journals (Sweden)

    Zhiwei Hu

    2018-01-01

    Full Text Available Accumulating evidence suggests that tissue factor (TF is selectively expressed in pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological angiogenesis, the formation of neovasculature, is involved in many clinically significant human diseases, notably cancer, age-related macular degeneration (AMD, endometriosis and rheumatoid arthritis (RA. Macrophage is involved in the progression of a variety of human diseases, such as atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola. It is well documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs in these pathological angiogenesis-dependent human diseases and on disease-associated macrophages. Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely restricted on some cells (such as pericytes that are located outside of blood circulation and the inner layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also expressed by cancer-initiating stem cells (CSCs and can serve as a novel oncotarget for eradication of CSCs without drug resistance. Furthermore, we review and discuss two generations of TF-targeting therapeutic antibody-like immunoconjugates (ICON and L-ICON1 and antibody-drug conjugates that are currently being tested in preclinical and clinical studies for the treatment of some of these human diseases. If efficacy and safety are proven in current and future clinical trials, TF-targeting immunoconjugates may provide novel therapeutic approaches with potential to broadly impact the treatment regimen of these significant angiogenesis-dependent, as well as macrophage-associated, human diseases.

  18. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  19. The Neural Border: Induction, Specification and Maturation of the territory that generates Neural Crest cells.

    Science.gov (United States)

    Pla, Patrick; Monsoro-Burq, Anne H

    2018-05-28

    The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions. Copyright © 2018. Published by Elsevier Inc.

  20. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  1. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  2. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    International Nuclear Information System (INIS)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5° angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. (author)

  3. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    Science.gov (United States)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure.

  4. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Creytens, David; van Gorp, Joost; Ferdinande, Liesbeth; Speel, Ernst-Jan; Libbrecht, Louis

    2015-02-01

    In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on

  5. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  6. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  7. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    Science.gov (United States)

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  8. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    NARCIS (Netherlands)

    De Gooijer-van de Groep, K.L.; De Vlugt, E.; De Groot, J.H.; Van der Heijden-Maessen, H.C.M.; Wielheesen, D.H.M.; Van Wijlen-Hempel, R.M.S.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”).

  9. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn

  10. Concentration- and Time-Dependent Effects of Isothiocyanates Produced from Brassicaceae Shoot Tissues on the Pea Root Rot Pathogen Aphanomyces euteiches

    NARCIS (Netherlands)

    Hossain, S.; Bergkvist, G.; Berglund, K.; Glinwood, R.; Kabouw, P.; Martensson, A.; Persson, P.

    2014-01-01

    Isothiocyanates (ITCs) hydrolyzed from glucosinolates (GSLs) in Brassicaceae tissue are toxic to soil organisms. In this study, the effect of aliphatic and aromatic ITCs from hydrated dry Brassicaceae shoot tissues on the mycelium and oospores of the pea root rot pathogen Aphanomyces euteiches was

  11. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    Science.gov (United States)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  12. Efficient Cancer Detection Using Multiple Neural Networks.

    Science.gov (United States)

    Shell, John; Gregory, William D

    2017-01-01

    The inspection of live excised tissue specimens to ascertain malignancy is a challenging task in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that provides highly accurate neural network classification of malignant and benign tissue. The handheld device collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes. The data analysis was implemented with six different backpropagation neural networks (BNN). A data set consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a malignant or benign classification. The BNN analysis was then compared with the histology results with consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely on statistical variation between the benign and malignant impedance data and intricate neural network configuration. This device and BNN implementation provides a novel approach that could be a valuable tool to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue in various clinical settings.

  13. Effect of a short-term HAART on SIV load in macaque tissues is dependent on time of initiation and antiviral diffusion

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Lucie

    2010-09-01

    Full Text Available Abstract Background HIV reservoirs are rapidly established after infection, and the effect of HAART initiated very early during acute infection on HIV reservoirs remains poorly documented, particularly in tissue known to actively replicate the virus. In this context, we used the model of experimental infection of macaques with pathogenic SIV to assess in different tissues: (i the effect of a short term HAART initiated at different stages during acute infection on viral dissemination and replication, and (ii the local concentration of antiviral drugs. Results Here, we show that early treatment with AZT/3TC/IDV initiated either within 4 hours after intravenous infection of macaques with SIVmac251 (as a post exposure prophylaxis or before viremia peak (7 days post-infection [pi], had a strong impact on SIV production and dissemination in all tissues but did not prevent infection. When treatment was initiated after the viremia peak (14 days pi or during early chronic infection (150 days pi, significant viral replication persists in the peripheral lymph nodes and the spleen of treated macaques despite a strong effect of treatment on viremia and gut associated lymphoid tissues. In these animals, the level of virus persistence in tissues was inversely correlated with local concentrations of 3TC: high concentrations of 3TC were measured in the gut whereas low concentrations were observed in the secondary lymphoid tissues. IDV, like 3TC, showed much higher concentration in the colon than in the spleen. AZT concentration was below the quantification threshold in all tissues studied. Conclusions Our results suggest that limited antiviral drug diffusion in secondary lymphoid tissues may allow persistent viral replication in these tissues and could represent an obstacle to HIV prevention and eradication.

  14. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  15. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    Science.gov (United States)

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  16. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  17. Neurophysiology and neural engineering: a review.

    Science.gov (United States)

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  18. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    Science.gov (United States)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  19. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...

  20. Proposal of a model of mammalian neural induction

    Science.gov (United States)

    Levine, Ariel J.; Brivanlou, Ali H.

    2009-01-01

    How does the vertebrate embryo make a nervous system? This complex question has been at the center of developmental biology for many years. The earliest step in this process – the induction of neural tissue – is intimately linked to patterning of the entire early embryo, and the molecular and embryological basis these processes are beginning to emerge. Here, we analyze classic and cutting-edge findings on neural induction in the mouse. We find that data from genetics, tissue explants, tissue grafting, and molecular marker expression support a coherent framework for mammalian neural induction. In this model, the gastrula organizer of the mouse embryo inhibits BMP signaling to allow neural tissue to form as a default fate – in the absence of instructive signals. The first neural tissue induced is anterior and subsequent neural tissue is posteriorized to form the midbrain, hindbrain, and spinal cord. The anterior visceral endoderm protects the pre-specified anterior neural fate from similar posteriorization, allowing formation of forebrain. This model is very similar to the default model of neural induction in the frog, thus bridging the evolutionary gap between amphibians and mammals. PMID:17585896

  1. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  2. The genetic variation rs6903956 in the novel androgen-dependent tissue factor pathway inhibitor regulating protein (ADTRP) gene is not associated with levels of plasma coagulation factors in the Singaporean Chinese

    OpenAIRE

    Chang, Xuling; Chin, Hui-Lin; Quek, Swee-Chye; Goh, Daniel Y. T.; Dorajoo, Rajkumar; Friedlander, Yechiel; Heng, Chew-Kiat

    2017-01-01

    Background Genome-wide association study (GWAS) has reported that rs6903956 within the first intron of androgen-dependent tissue factor pathway inhibitor (TFPI) regulating protein (ADTRP) gene is associated with coronary artery disease (CAD) risk in the Chinese population. Although ADTRP is believed to be involved in the upregulation of TFPI, the underlying mechanism involved is largely unknown. This study investigated the association of rs6903956 with plasma Factor VII coagulant activity (FV...

  3. Increased uncoupling protein-2 mRNA abundance and glucocorticoid action in adipose tissue in the sheep fetus during late gestation is dependent on plasma cortisol and triiodothyronine

    Science.gov (United States)

    Gnanalingham, MG; Mostyn, A; Forhead, AJ; Fowden, AL; Symonds, ME; Stephenson, T

    2005-01-01

    The endocrine regulation of uncoupling protein-2 (UCP2), an inner mitochondrial protein, in fetal adipose tissue remains unclear. The present study aimed to determine if fetal plasma cortisol and triiodothyronine (T3) influenced the mRNA abundance of UCP2, glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and 2 (11βHSD2) in fetal adipose tissue in the sheep during late gestation. Perirenal–abdominal adipose tissue was sampled from ovine fetuses to which either cortisol (2–3 mg kg−1 day−1) or saline was infused for 5 days up to 127–130 days gestation, or near term fetuses (i.e. 142–145 days gestation) that were either adrenalectomised (AX) or remained intact. Fetal plasma cortisol and T3 concentrations were higher in the cortisol infused animals and lower in AX fetuses compared with their corresponding control group, and increased with gestational age. UCP2 and GR mRNA abundance were significantly lower in AX fetuses compared with age-matched controls, and increased with gestational age and by cortisol infusion. Glucocorticoid action in fetal adipose tissue was augmented by AX and suppressed by cortisol infusion, the latter also preventing the gestational increase in 11βHSD1 mRNA and decrease in 11βHSD2 mRNA. When all treatment groups were combined, both fetal plasma cortisol and T3 concentrations were positively correlated with UCP2, GR and 11βHSD2 mRNA abundance, but negatively correlated with 11βHSD1 mRNA abundance. In conclusion, plasma cortisol and T3 are both required for the late gestation rise in UCP2 mRNA and differentially regulate glucocorticoid action in fetal adipose tissue in the sheep during late gestation. PMID:15961419

  4. Rosa26-GFP direct repeat (RaDR-GFP mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.

    Directory of Open Access Journals (Sweden)

    Michelle R Sukup-Jackson

    2014-06-01

    Full Text Available Homologous recombination (HR is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.

  5. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior. Study 1--Role of NMDA receptors in efferent transmission from the cat amygdala.

    Science.gov (United States)

    Adamec, R E

    1998-01-01

    The anxiogenic beta-carboline, FG-7142, produces intense anxiety in humans and anxiety-like behavior in animals. FG-7142 also mimics the effects of exogenous stressors. In cats, FG-7142 lastingly changes defensive and aggressive behavior. Long-term potentiation (LTP) of neural transmission between limbic structures known to modulate feline defensive response to threat accompany behavioral changes. A series of three reports describes experiments designed to test the hypothesis that behavioral changes depend upon an N-methyl-D-aspartate (NMDA) receptor-based LTP of efferent transmission from the amygdala. This first study characterizes the dose and time effects of injection of the NMDA receptor blocker 7-amino-phosphono-heptanoic acid (AP7) on efferent transmission from the cat amygdala to the ventromedial hypothalamus (VMH). Effects of doses of 0.5-10mg/kg (i.v.) of AP7 on potentials evoked in the VMH by single pulse stimulation of the basal amygdala were examined. In order to localize the action of the drug, concurrent measurements were taken of potentials evoked in the VMH by stimulation of the efferent fibers from the amygdala to the VMH (ventral amygdalofugal pathway, VAF). There was a dose-dependent reduction in the amygdalo-VMH evoked potential. The greatest reduction occurred at 5 mg/kg. Effects peaked at 10 min, and persisted for at least 1 h after injection. In contrast, AP7 increased the VAF-VMH-evoked potential at 10 min after injection, with a maximal increase at 5mg/kg. The data suggest that NMDA receptors intrinsic to the amygdala modulate excitatory efferent transmission from amygdala to VMH in the cat. It is speculated that a glutamatergic projection to gamma-aminobutyric acid tonic inhibitory systems in the VMH accounts for the VAF-VMH results.

  6. Fgf8-related secondary organizers exert different polarizing planar instructions along the mouse anterior neural tube.

    Science.gov (United States)

    Crespo-Enriquez, Ivan; Partanen, Juha; Martinez, Salvador; Echevarria, Diego

    2012-01-01

    Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens) detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO) and the anterior neural ridge (anr) but not on zona limitans intrathalamica (zli). Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development.

  7. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue.

    Science.gov (United States)

    Jandzik, David; Garnett, Aaron T; Square, Tyler A; Cattell, Maria V; Yu, Jr-Kai; Medeiros, Daniel M

    2015-02-26

    A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.

  8. [Estimation of Time-Dependent microRNA Expression Patterns in Brain Tissue, Leukocytes, and Blood Plasma of Rats under Photochemically Induced Focal Cerebral Ischemia].

    Science.gov (United States)

    Gusar, V A; Timofeeva, A V; Zhanin, I S; Shram, S I; Pinelis, V G

    2017-01-01

    miRNA expression over different time periods (24 and 48 h) using the quantitative RT-PCR and deep sequencing has been evaluated in a model of photochemically induced thrombosis. A combination of two approaches allowed us to determine the miRNA expression patterns caused by ischemia. Nine miRNAs, including let-7f-5p, miR-221-3p, miR-21-5p, miR-30c-5p, miR-30a-3p, miR-223-3p, miR-23a-3p, miR-22-5p, and miR-99a-5p, were differentially expressed in brain tissue and leukocytes of rats 48 h after onset of ischemia. In addition, six miRNAs were differentially expressed in the brain tissue and blood plasma of rats 24 h after exposure, among which miR-145-3p and miR-375-3p were downregulated and miR-19a-3p, miR-92a-3p, miR-188-5p, and miR-532-5p were upregulated. In our opinion, miR-188-5p and miR-532-5p may be considered to be new potential markers of ischemic injury. The level of miRNA expression tended to increase 48 h after the onset of ischemia in brain tissue and leukocytes, which reflects not only the local response in brain tissue due to inflammation, vascular endothelial dysfunction, and disorders of the permeability of the blood-brain barrier, but also the systemic response of the organism to multifactor molecular processes induced by ischemic injury.

  9. Autoimmunity and inflammation are independent of class II transactivator type PIV-dependent class II major histocompatibility complex expression in peripheral tissues during collagen-induced arthritis.

    Science.gov (United States)

    Waldburger, Jean-Marc; Palmer, Gaby; Seemayer, Christian; Lamacchia, Celine; Finckh, Axel; Christofilopoulos, Panayiotis; Baeten, Dominique; Reith, Walter; Gabay, Cem

    2011-11-01

    To determine the regulation of class II major histocompatibility complex (MHC) expression in fibroblast-like synoviocytes (FLS) in order to investigate their role as nonprofessional antigen-presenting cells in collagen-induced arthritis (CIA). Expression of class II MHC, class II MHC transactivator (CIITA), and Ciita isoforms PI, PIII, and PIV was examined by real-time quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry in human synovial tissues, arthritic mouse joints, and human and murine FLS. CIA was induced in mice in which isoform PIV of Ciita was knocked out (PIV(-/-) ), in PIV(-/-) mice transgenic for CIITA in the thymus (K14 CIITA), and in their control littermates. HLA-DRA, total CIITA, and CIITA PIII messenger RNA levels were significantly increased in synovial tissue samples from patients with rheumatoid arthritis compared with the levels in tissue from patients with osteoarthritis. Human FLS expressed surface class II MHC via CIITA PIII and PIV, while class II MHC expression in murine FLS was entirely mediated by PIV. Mice with a targeted deletion of CIITA PIV lack CD4+ T cells and were protected against CIA. The expression of CIITA was restored in the thymus of PIV(-/-) K14 CIITA-transgenic mice, which had a normal CD4+ T cell repertoire and normal surface levels of class II MHC on professional antigen-presenting cells, but did not induce class II MHC on FLS. Synovial inflammation and immune responses against type II collagen were similar in PIV(-/-) K14 CIITA-transgenic mice and control mice with CIA, but bone erosion was significantly reduced in the absence of PIV. Overexpression of class II MHC is tightly correlated with CIITA expression in arthritic synovium and in FLS. Selective targeting of Ciita PIV in peripheral tissues abrogates class II MHC expression by murine FLS but does not protect against inflammation and autoimmune responses in CIA. Copyright © 2011 by the American College of Rheumatology.

  10. Neutron RBE for normal tissues

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1979-01-01

    RBE for various normal tissues is considered as a function of neutron dose per fraction. Results from a variety of centres are reviewed. It is shown that RBE is dependent on neutron energy and is tissue dependent, but is not specially high for the more critical tissues or for damage occurring late after irradiation. (author)

  11. Reproduction is associated with a tissue-dependent reduction of oxidative stress in eusocial female Damaraland mole-rats (Fukomys damarensis.

    Directory of Open Access Journals (Sweden)

    Christina M Schmidt

    Full Text Available Oxidative stress has been implicated as both a physiological cost of reproduction and a driving force on an animal's lifespan. Since increased reproductive effort is generally linked with a reduction in survival, it has been proposed that oxidative stress may influence this relationship. Support for this hypothesis is inconsistent, but this may, in part, be due to the type of tissues that have been analyzed. In Damaraland mole-rats the sole reproducing female in the colony is also the longest lived. Therefore, if oxidative stress does impact the trade-off between reproduction and survival in general, this species may possess some form of enhanced defense. We assessed this relationship by comparing markers of oxidative damage (malondialdehyde, MDA; protein carbonyls, PC and antioxidants (total antioxidant capacity, TAC; superoxide dismutase, SOD in various tissues including plasma, erythrocytes, heart, liver, kidney and skeletal muscle between wild-caught reproductive and non-reproductive female Damaraland mole-rats. Reproductive females exhibited significantly lower levels of PC across all tissues, and lower levels of MDA in heart, kidney and liver relative to non-reproductive females. Levels of TAC and SOD did not differ significantly according to reproductive state. The reduction in oxidative damage in breeding females may be attributable to the unusual social structure of this species, as similar relationships have been observed between reproductive and non-reproductive eusocial insects.

  12. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    Science.gov (United States)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

  13. Metabolism of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Atropisomers in Tissue Slices from Phenobarbital or Dexamethasone-Induced Rats is Sex-Dependent

    Science.gov (United States)

    Wu, Xianai; Kania-Korwel, Izabela; Chen, Hao; Stamou, Marianna; Dammanahalli, Karigowda J.; Duffel, Michael; Lein, Pamela J.; Lehmler, Hans-Joachim

    2013-01-01

    Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized.The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups.In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected.Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs. PMID:23581876

  14. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity.

    Science.gov (United States)

    Patterson, Edward I; Khanipov, Kamil; Rojas, Mark M; Kautz, Tiffany F; Rockx-Brouwer, Dedeke; Golovko, Georgiy; Albayrak, Levent; Fofanov, Yuriy; Forrester, Naomi L

    2018-01-01

    Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.

  15. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    Science.gov (United States)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  16. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    International Nuclear Information System (INIS)

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua; Yan Yasheng; Alt, Eckhard

    2008-01-01

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation and hypoxia reduced the expression of nuclear β-catenin, which is reversed by IGF-1. IGF-1's effect on β-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing β-catenin

  17. Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner.

    Science.gov (United States)

    Polakof, S; Moon, T W; Aguirre, P; Skiba-Cassy, S; Panserat, S

    2011-01-01

    Carnivorous fish species such as the rainbow trout (Oncorhynchus mykiss) are considered to be "glucose intolerant" because of the prolonged hyperglycemia experienced after intake of a carbohydrate-enriched meal. In the present study, we use this species to study glucose homeostasis in fish chronically infused with the hypoglycemic agents, insulin, and metformin, and fed with a high proportion of carbohydrates (30%). We analyzed liver, skeletal muscle, and white adipose tissue (WAT), which are insulin- and metformin-specific targets at both the biochemical and molecular levels. Trout infused with the combination of insulin and metformin can effectively utilize dietary glucose at the liver, resulting in lowered glycemia, increased insulin sensitivity, and glucose storage capacity, combined with reduced glucose output. However, in both WAT and skeletal muscle, we observed decreased insulin sensitivity with the combined insulin + metformin treatment, resulting in the absence of changes at the metabolic level in the skeletal muscle and an increased potential for glucose uptake and storage in the WAT. Thus, the poor utilization by rainbow trout of a diet with a high proportion of carbohydrate can at least be partially improved by a combined treatment with insulin and metformin, and the glucose intolerance observed in this species could be, in part, due to some of the downstream components of the insulin and metformin signaling pathways. However, the predominant effects of metformin treatment on the action of insulin in these three tissues thought to be involved in glucose homeostasis remain exclusive in this species.

  18. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Schmid, Kurt W.; Richter, Klaus D.; Wessel, Jan; Schuck, Andreas; Willich, Norman; Ruebe, Christian

    2000-01-01

    Purpose: The lung is the major dose-limiting organ for radiotherapy of cancer in the thoracic region. The pathogenesis of radiation-induced lung injury at the molecular level is still unclear. Immediate cellular damage after irradiation is supposed to result in cytokine-mediated multicellular interactions with induction and progression of fibrotic tissue reactions. The purpose of this investigation was to evaluate the acute and long-term effects of radiation on the gene expression of transforming growth factor beta (TGF-β) in a model of lung injury using fibrosis-sensitive C57BL/6 mice. Methods and Materials: The thoraces of C57BL/6 mice were irradiated with 6 and 12 Gy, respectively. Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 3, 6, 12, 24, 48, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation). The lung tissue from three different mice per dosage and time point was analyzed by a combination of polymerase chain reaction (PCR), immunohistochemistry, and light microscopy. The mRNA expression of TGF-β was quantified by competitive reverse transcriptase/polymerase chain reaction (RT-PCR); the cellular origin of the TGF-β protein was identified by immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase [APAAP]). The cytokine expression on mRNA and protein level was correlated with the histopathological alterations. Results: Following thoracic irradiation with a single dose of 12 Gy, radiation-induced TGF-β release in lung tissue was appreciable already within the first hours (1, 3, and 6 hours postirradiation) and reached a significant increase after 12 hours; subsequently (48 hours, 72 hours, and 1 week postirradiation) the TGF-β expression declined to basal levels. At the beginning of the pneumonic phase, irradiation-mediated stimulation of TGF-β release reached

  19. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  20. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning

    DEFF Research Database (Denmark)

    Schmidt, Michael Rahbek; Smerup, M; Konstantinov, I E

    2006-01-01

    . Intermittent limb ischemia during myocardial ischemia reduces MI, preserves global systolic and diastolic function, and protects against arrhythmia during the reperfusion phase through a K(ATP) channel-dependent mechanism. Understanding this process may have important therapeutic implications for a range...

  1. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied.

    Science.gov (United States)

    Miyoshi, K; Igarashi, K; Saeki, S; Shinoda, H; Mitani, H

    2001-08-01

    The purpose of this study was to investigate whether there are any differences in tooth movement or in the response of periodontal tissue to orthodontic force when the force is applied at different times of the day. One hundred 6-week-old male Wistar rats were divided into one control group without force application and three experimental groups based on the time of day the force was applied to the upper first molars. Animals in the whole-day group received force continuously throughout the experimental period, while animals in the light- and dark-period groups received force only during the light (07:00-19:00) or dark period (19:00-07:00), respectively. Tooth movement was measured using the occlusal view of a precise plaster model with a profile projector. Periodontal tissues were evaluated histologically. The time course of tooth movement varied among the groups. Tooth movement over 21 days in the whole-day and light-period groups was about twice that as in the dark-period group. The formation of new bone on the tension side in the whole-day and light-period groups was more than twice that as in the dark-period group. On the pressure side, more osteoclasts appeared on the alveolar bone in the whole-day and light-period groups than in the dark-period group. The light-period group showed less extensive hyalinization of the periodontal ligament (PDL) than the whole-day group. The area of root resorption on day 21 also varied among the groups. Interference by masticatory forces did not seem to be a principal cause of the decreased tooth movement in the dark-period group. These results indicate that there are considerable variations in tooth movement and in the response of periodontal tissue to orthodontic force when the force is applied at different times of the day in rats. The results suggest that diurnal rhythms in bone metabolism have important implications in orthodontic treatment.

  2. Dose- and time-dependent changes in tissue levels of tetrabromobisphenol A (TBBPA and its sulfate and glucuronide conjugates following repeated administration to female Wistar Han Rats

    Directory of Open Access Journals (Sweden)

    S.J. Borghoff

    Full Text Available Tetrabromobisphenol A (TBBPA, a nongenotoxic flame retardant, causes uterine tumors in female rats. A proposed mode of action (MoA for these tumors involves an increase in the bioavailability of estradiol as a result of TBBPA inhibiting estrogen sulfotransferases (ES, the enzymes responsible for inactivating and enhancing the elimination of estradiol. The objective of this study was to evaluate the effect of dose and repeated administration of TBBPA on the level of TBBPA, TBBPA-glucuronide (GA and TBBPA-sulfate (S conjugates in plasma, liver and uterus of female Wistar Han rats administered TBBPA (50, 100, 250, 500 or 1000 mg/kg for 28 consecutive days. In accordance with this objective, TBBPA sulfation was used as a surrogate for evaluating the potential for estradiol sulfation to be limited at high dose levels of TBBPA. Blood samples were collected at 4 and 8 h post-dosing on study day 7, 14, and 28, while liver and uterus were collected at the same time points following 28 days of dosing. Tissue samples were analyzed for TBBPA, TBBPA-GA and TBBPA-S by LC–MS/MS. A dose-related increase in the concentration of all three analytes occurred in plasma (day 7, 14, and 28 as well as liver and uterus tissue (day 28 at both 4 and 8 h post dose. The plasma concentration of TBBPA-GA and TBBPA-S was higher in animals dosed for 28 days compared to those dosed for 7 or 14 days showing an increase in systemic circulation of these conjugates with repeated administration. The balance of these conjugates was also different in tissues with TBBPA-S > TBBPA-GA at high doses in the liver and TBBPA-GA > TBBPA-S in both plasma and uterus. In all three tissues the ratio of TBBPA-S/TBBPA-GA showed a decreasing trend with dose, suggesting that at high TBBPA dose levels sulfation of TBBPA becomes limited. This effect was most apparent in the liver and plasma at 28 days of administration. Together these data show that administration of high doses of TBBPA

  3. Sex-, tissue-, and exposure duration-dependent effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part I: oxidative and neurotoxic potentials.

    Science.gov (United States)

    Yardimci, Mustafa; Sevgiler, Yusuf; Rencuzogullari, Eyyup; Arslan, Mehmet; Buyukleyla, Mehmet; Yilmaz, Mehmet

    2014-12-01

    Earlier research has evidenced the oxidative and neurotoxic potential of imidacloprid, a neonicotinoid insecticide, in different animal species. The primary aim of this study was to determine how metabolic modulators piperonyl butoxide and menadione affect imidacloprid's adverse action in the liver and kidney of Sprague-Dawley rats of both sexes. The animals were exposed to imidacloprid alone (170 mg kg⁻¹) or in combination with piperonyl butoxide (100 mg kg⁻¹) or menadione (25 mg kg⁻¹) for 12 and 24 h. Their liver and kidney homogenates were analysed spectrophotometrically for glutathione peroxidase, glutathione S-transferase, catalase, total cholinesterase specific activities, total glutathione, total protein content, and lipid peroxidation levels. Imidacloprid displayed its prooxidative and neurotoxic effects predominantly in the kidney of male rats after 24 h of exposure. Our findings suggest that the observed differences in prooxidative and neurotoxic potential of imidacloprid could be related to differences in its metabolism between the sexes. Co-exposure (90-min pre-treatment) with piperonyl butoxide or menadione revealed tissue-specific effect of imidacloprid on total cholinesterase activity. Increased cholinesterase activity in the kidney could be an adaptive response to imidacloprid-induced oxidative stress. In the male rat liver, co-exposure with piperonyl butoxide or menadione exacerbated imidacloprid toxicity. In female rats, imidacloprid+menadione co-exposure caused prooxidative effects, while no such effects were observed with imidacloprid alone or menadione alone. In conclusion, sex-, tissue-, and duration-specific effects of imidacloprid are remarkable points in its toxicity.

  4. Epidural anaesthesia with levobupivacaine and ropivacaine : effects of age on the pharmacokinetics, neural blockade and haemodynamics

    NARCIS (Netherlands)

    Simon, Mischa J.G.

    2006-01-01

    Epidural neural blockade results from processes after the administration of a local anaesthetic in the epidural space until the uptake in neural tissue. The pharmacokinetics, neural blockade and haemodynamics after epidural anaesthesia may be influenced by several factors, with age as the most

  5. A framework for plasticity implementation on the SpiNNaker neural architecture.

    Science.gov (United States)

    Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A; Furber, Steve B; Benosman, Ryad B

    2014-01-01

    Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system.

  6. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio

    2013-10-01

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status. © 2013 Elsevier Inc. All rights reserved.

  7. Radioactive fallout and neural tube defects

    African Journals Online (AJOL)

    Nejat Akar

    2015-07-10

    Jul 10, 2015 ... It is a prenatal failure of the embryonic neural tube to close over the ... and the ability of radioisotopes to attach to cells, tissues, and ... The Egyptian Journal of Medical Human Genetics .... Stem Cells 1997;15(Suppl 2):255–60.

  8. Enhancing neural-network performance via assortativity

    International Nuclear Information System (INIS)

    Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.

    2011-01-01

    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.

  9. Tissue sterol composition in Atlantic salmon (Salmo salar L.) depends on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content.

    Science.gov (United States)

    Sissener, Nini H; Rosenlund, Grethe; Stubhaug, Ingunn; Liland, Nina S

    2018-03-01

    The aim of the study was to investigate how the dietary sterol composition, including cholesterol, phytosterol:cholesterol ratio and phytosterols, affect the absorption, biliary excretion, retention, tissue storage and distribution of cholesterol and individual phytosterols in Atlantic salmon (Salmo salar L.). A feeding trial was conducted at two different temperatures (6 and 12°C), using nine different diets with varying contents of phytosterols, cholesterol and phytosterol:cholesterol ratio. Cholesterol retention values were clearly dependent on dietary cholesterol, and showed that fish fed cholesterol levels phytosterol:cholesterol ratio, but not on the dietary phytosterol content in itself. Campesterol and brassicasterol appeared to be the phytosterols with the highest intestinal absorption in Atlantic salmon. There was a high biliary excretion of campesterol, but not of brassicasterol, which accumulated in tissues and particularly in adipose tissue, with 2-fold-higher retention at 12°C compared with 6°C. Campesterol had the second highest retention of the phytosterols in the fish, but with no difference between the two temperatures. Other phytosterols had very low retention. Although brassicasterol retention decreased with increasing dietary phytosterols, campesterol retention decreased with increasing dietary cholesterol, indicating differences in the uptake mechanisms for these two sterols.

  10. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    Science.gov (United States)

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  11. Modeling of steam generator in nuclear power plant using neural network ensemble

    International Nuclear Information System (INIS)

    Lee, S. K.; Lee, E. C.; Jang, J. W.

    2003-01-01

    Neural network is now being used in modeling the steam generator is known to be difficult due to the reverse dynamics. However, Neural network is prone to the problem of overfitting. This paper investigates the use of neural network combining methods to model steam generator water level and compares with single neural network. The results show that neural network ensemble is effective tool which can offer improved generalization, lower dependence of the training set and reduced training time

  12. The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Strid, A.; Anthony, R.G.

    1994-01-01

    present in low or undetectable amounts in control tissues. In green leaf tissue exposed to supplementary UV-B, a transient increase was detected. The transcripts for chs reached a maximum level after approximately 8 h UV-B exposure, and then declined to lower levels over subsequent days of diurnal photoperiods. However, a constant increase in chs was found after continuous exposure to UV-B for up to 30 h. In etiolated tissue, either white-light, supplementary UV-B or UV-B alone gave small increases in chs, only 8 h of UV-B radiation alone gave any substantial increase in chs expression. Overall, these results clearly demonstrate that the response to increased levels of UV-B radiation is dependent upon the developmental stage of the tissue and involves complex changes in gene expression. (author)

  13. cables1 Is Required for Embryonic Neural Development: Molecular, Cellular, and Behavioral Evidence From the Zebrafish

    Science.gov (United States)

    GROENEWEG, JOLIJN W.; WHITE, YVONNE A.R.; KOKEL, DAVID; PETERSON, RANDALL T.; ZUKERBERG, LAWRENCE R.; BERIN, INNA; RUEDA, BO R.; WOOD, ANTONY W.

    2014-01-01

    SUMMARY In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway. PMID:21268180

  14. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  15. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  16. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  17. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  18. Deep Gate Recurrent Neural Network

    Science.gov (United States)

    2016-11-22

    and Fred Cummins. Learning to forget: Continual prediction with lstm . Neural computation, 12(10):2451–2471, 2000. Alex Graves. Generating sequences...DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory ( LSTM ) and...Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM

  19. Chronic behavior evaluation of a micro-machined neural implant with optimized design based on an experimentally derived model.

    Science.gov (United States)

    Andrei, Alexandru; Welkenhuysen, Marleen; Ameye, Lieveke; Nuttin, Bart; Eberle, Wolfgang

    2011-01-01

    Understanding the mechanical interactions between implants and the surrounding tissue is known to have an important role for improving the bio-compatibility of such devices. Using a recently developed model, a particular micro-machined neural implant design aiming the reduction of insertion forces dependence on the insertion speed was optimized. Implantations with 10 and 100 μm/s insertion speeds showed excellent agreement with the predicted behavior. Lesion size, gliosis (GFAP), inflammation (ED1) and neuronal cells density (NeuN) was evaluated after 6 week of chronic implantation showing no insertion speed dependence.

  20. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    Science.gov (United States)

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  1. Neural Correlates of Affective Influence on Choice

    Science.gov (United States)

    Piech, Richard M.; Lewis, Jade; Parkinson, Caroline H.; Owen, Adrian M.; Roberts, Angela C.; Downing, Paul E.; Parkinson, John A.

    2010-01-01

    Making the right choice depends crucially on the accurate valuation of the available options in the light of current needs and goals of an individual. Thus, the valuation of identical options can vary considerably with motivational context. The present study investigated the neural structures underlying context dependent evaluation. We instructed…