WorldWideScience

Sample records for neural tissue damage

  1. A reduction in DNA damage in neural tissue and peripheral blood of old mice treated with caffeine.

    Science.gov (United States)

    Damiani, Adriani Paganini; Garcez, Michelle Lima; Letieli de Abreu, Larissa; Tavares, Taís Helena; Rodrigues Boeck, Carina; Moraes de Andrade, Vanessa

    2017-01-01

    Studies on caffeine consumption have shown a negative correlation with development of some diseases with subsequent beneficial manifestations. Our aim was to assess the effects of caffeine on peripheral blood and neural tissue DNA in young adult and aged mice. Male Swiss mice (age 2-3 or 16-18 months, respectively) were treated with a caffeine solution (0.3 g/l) for 4 weeks, while controls received water. After the treatments, blood and hippocampal cells (for a comet assay) and femurs (for a micronucleus [MN] test) were collected. The comet assay of peripheral blood and hippocampal cells demonstrated no significant differences between caffeine-treated and control young adult mice in terms of DNA damage index (DI) and frequency. In contrast, when comparing young adult with aged animals, significant differences were observed in DNA damage in blood and hippocampal cells. The differences between aged animals (with or without caffeine) consisted of a significant decrease in DNA DI in the group that received caffeine. In the MN test, an increase in frequency of micronucleated polychromatic (PCE) erythrocytes was noted in aged animals that received water compared to young adult mice. In addition, comparing treated with control aged murine groups, a decrease in frequency of MN was found in PCE erythrocytes of caffeine-treated mice. Chronic caffeine consumption was neither genotoxic nor mutagenic at the dose tested; however, it appears that caffeine actually protected mice from genotoxicity and mutagenicity, consequences attributed to aging.

  2. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  3. The Extent of Tissue Damage in the Epidural Space by Ho / YAG Laser During Epiduroscopic Laser Neural Decompression.

    Science.gov (United States)

    Jo, Daehyun; Lee, Dong Joo

    2016-01-01

    Lasers have recently become very useful for epiduroscopy. As the use of lasers increases, the potential for unwanted complications with direct application of laser energy to nerve tissue has also increased. Even using the lowest laser power to test for nerve stimulation, there are still risks of laser ablation. However, there are no studies investigating tissue damage from laser procedures in the epidural space. This is a study on the risks of Ho/YAG laser usage during epiduroscopy. Observatory cadaver study. Department of anatomy and clinical research institute at the University Hospital. We used 5 cadavers for this study. After removing the dura and nerve root from the spinal column, laser energy from a Ho/YAG laser was applied directly to the dura and nerve root as well as in the virtual epidural space, which mimicked the conditions of epiduroscopy with the dura folded. Tissue destruction at all laser ablation sites was observed with the naked eye as well as with a microscope. Specimens were collected from each site of laser exposure, fixed in 10% neutral formalin, and dyed with H/E staining. Tissue destruction was observed in all laser ablation sites, regardless of the length of exposure and the power of the laser beam. A cadaver is not exactly the same as a living human because dura characteristics change and tissue damage can be influenced by dura thickness according to the spinal level. Even with low power and short duration, a laser can destroy tissue if the laser beam makes direct contact with the tissue.

  4. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  6. Tissue damage thresholds during therapeutic electrical stimulation

    Science.gov (United States)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  7. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  8. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  9. Visceral adipose tissue is associated with microstructural brain tissue damage.

    Science.gov (United States)

    Widya, Ralph L; Kroft, Lucia J M; Altmann-Schneider, Irmhild; van den Berg-Huysmans, Annette A; van der Bijl, Noortje; de Roos, Albert; Lamb, Hildo J; van Buchem, Mark A; Slagboom, P Eline; van Heemst, Diana; van der Grond, Jeroen

    2015-05-01

    Obesity has been associated with microstructural brain tissue damage. Different fat compartments demonstrate different metabolic and endocrine behaviors. The aim was to investigate the individual associations between abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) and microstructural integrity in the brain. This study comprised 243 subjects aged 65.4 ± 6.7 years. The associations between abdominal VAT and SAT, assessed by CT, and magnetization transfer imaging markers of brain microstructure for gray and white matter were analyzed and adjusted for confounding factors. VAT was associated with normalized MTR peak height in gray (β -0.216) and white matter (β -0.240) (both P  0.05). Stepwise linear regression analysis showed that only VAT was associated with normalized MTR peak height in gray and white matter (both P VAT rather than SAT is associated with microstructural brain tissue damage in elderly individuals. © 2015 The Obesity Society.

  10. Multifunctional nanowire scaffolds for neural tissue engineering applications

    Science.gov (United States)

    Bechara, Samuel Leo

    Unlike other regions of the body, the nervous system is extremely vulnerable to damage and injury because it has a limited ability to self-repair. Over 250,000 people in the United States have spinal cord injuries and due to the complicated pathophysiology of such injuries, there are few options available for functional regeneration of the spinal column. Furthermore, peripheral nerve damage is troublingly common in the United States, with an estimated 200,000 patients treated surgically each year. The current gold standard in treatment for peripheral nerve damage is a nerve autograft. This technique was pioneered over 45 years ago, but suffers from a major drawback. By transecting a nerve from another part of the body, function is regained at the expense of destroying a nerve connection elsewhere. Because of these issues, the investigation of different materials for regenerating nervous tissue is necessary. This work examines multi-functional nanowire scaffolds to provide physical and chemical guidance cues to neural stem cells to enhance cellular activity from a biomedical engineering perspective. These multi-functional scaffolds include a unique nanowire nano-topography to provide physical cues to guide cellular adhesion. The nanowires were then coated with an electrically conductive polymer to further enhance cellular activity. Finally, nerve growth factor was conjugated to the surface of the scaffolds to provide chemical cues for the neural stem cells. The results in this work suggest that these multifunctional nanowire scaffolds could be used in vivo to repair nervous system tissue.

  11. PD-1 Regulates Neural Damage in Oligodendroglia-Induced Inflammation

    Science.gov (United States)

    Kroner, Antje; Schwab, Nicholas; Ip, Chi Wang; Leder, Christoph; Nave, Klaus-Armin; Mäurer, Mathias

    2009-01-01

    We investigated the impact of immune regulatory mechanisms involved in the modulation of the recently presented, CD8+ lymphocyte mediated immune response in a mouse model of oligodendropathy-induced inflammation (PLPtg-mutants). The focus was on the role of the co-inhibitory molecule PD-1, a CD28-related receptor expressed on activated T- and B-lymphocytes associated with immune homeostasis and autoimmunity. PLPtg/PD-1-deficient double mutants and the corresponding bone marrow chimeras were generated and analysed using immunohistochemistry, light- and electron microscopy, with particular emphasis on immune-cell number and neural damage. In addition, the immune cells in both the CNS and the peripheral immune system were investigated by IFN-gamma elispot assays and spectratype analysis. We found that mice with combined pathology exhibited significantly increased numbers of CD4+ and CD8+ T-lymphocytes in the CNS. Lack of PD-1 substantially aggravated the pathological phenotype of the PLPtg mutants compared to genuine PLPtg mutants, whereas the PD-1 deletion alone did not cause alterations in the CNS. CNS T-lymphocytes in PLPtg/PD-1-/- double mutants exhibited massive clonal expansions. Furthermore, PD-1 deficiency was associated with a significantly higher propensity of CNS but not peripheral CD8+ T-cells to secrete proinflammatory cytokines. PD-1 could be identified as a crucial player of tissue homeostasis and immune-mediated damage in a model of oligodendropathy-induced inflammation. Alterations of this regulatory pathway lead to overt neuroinflammation of high pathogenetic impact. Our finding may have implications for understanding the mechanisms leading to the high clinical variability of polygenic or even monogenic disorders of the nervous system. PMID:19197390

  12. PD-1 regulates neural damage in oligodendroglia-induced inflammation.

    Directory of Open Access Journals (Sweden)

    Antje Kroner

    Full Text Available We investigated the impact of immune regulatory mechanisms involved in the modulation of the recently presented, CD8+ lymphocyte mediated immune response in a mouse model of oligodendropathy-induced inflammation (PLPtg-mutants. The focus was on the role of the co-inhibitory molecule PD-1, a CD28-related receptor expressed on activated T- and B-lymphocytes associated with immune homeostasis and autoimmunity. PLPtg/PD-1-deficient double mutants and the corresponding bone marrow chimeras were generated and analysed using immunohistochemistry, light- and electron microscopy, with particular emphasis on immune-cell number and neural damage. In addition, the immune cells in both the CNS and the peripheral immune system were investigated by IFN-gamma elispot assays and spectratype analysis. We found that mice with combined pathology exhibited significantly increased numbers of CD4+ and CD8+ T-lymphocytes in the CNS. Lack of PD-1 substantially aggravated the pathological phenotype of the PLPtg mutants compared to genuine PLPtg mutants, whereas the PD-1 deletion alone did not cause alterations in the CNS. CNS T-lymphocytes in PLPtg/PD-1-/- double mutants exhibited massive clonal expansions. Furthermore, PD-1 deficiency was associated with a significantly higher propensity of CNS but not peripheral CD8+ T-cells to secrete proinflammatory cytokines. PD-1 could be identified as a crucial player of tissue homeostasis and immune-mediated damage in a model of oligodendropathy-induced inflammation. Alterations of this regulatory pathway lead to overt neuroinflammation of high pathogenetic impact. Our finding may have implications for understanding the mechanisms leading to the high clinical variability of polygenic or even monogenic disorders of the nervous system.

  13. Neural crest specification: tissues, signals, and transcription factors.

    Science.gov (United States)

    Rogers, C D; Jayasena, C S; Nie, S; Bronner, M E

    2012-01-01

    The neural crest is a transient population of multipotent and migratory cells unique to vertebrate embryos. Initially derived from the borders of the neural plate, these cells undergo an epithelial to mesenchymal transition to leave the central nervous system, migrate extensively in the periphery, and differentiate into numerous diverse derivatives. These include but are not limited to craniofacial cartilage, pigment cells, and peripheral neurons and glia. Attractive for their similarities to stem cells and metastatic cancer cells, neural crest cells are a popular model system for studying cell/tissue interactions and signaling factors that influence cell fate decisions and lineage transitions. In this review, we discuss the mechanisms required for neural crest formation in various vertebrate species, focusing on the importance of signaling factors from adjacent tissues and conserved gene regulatory interactions, which are required for induction and specification of the ectodermal tissue that will become neural crest. Copyright © 2011 Wiley Periodicals, Inc.

  14. Is Artificial Neural Network Suitable for Damage Level Determination of Rc- Structures?

    OpenAIRE

    Baltacıoğlu, A. K.; Öztürk, B.; Civalek, Ö.; Akgöz, B.

    2010-01-01

    In the present study, an artificial neural network (ANN) application is introduced for estimation of damage level of reinforced concrete structures. Back-propagation learning algorithm is adopted. A typical neural network architecture is proposed and some conclusions are presented. Applicability of artificial neural network (ANN) for the assessment of earthquake related damage is investigated

  15. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  16. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  17. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration.

    Science.gov (United States)

    Subramanian, Anuradha; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2009-11-25

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  18. Soft tissue damage after minimally invasive THA

    NARCIS (Netherlands)

    van Oldenrijk, Jakob; Hoogland, Piet V. J. M.; Tuijthof, Gabriëlle J. M.; Corveleijn, Ruby; Noordenbos, Tom W. H.; Schafroth, Matthias U.

    2010-01-01

    Methods 5 surgeons each performed a total hip arthroplasty on 5 fresh frozen cadaver hips, using either a MIS anterior, MIS anterolateral, MIS 2-incision, MIS posterior, or lateral transgluteal approach. Postoperatively, the hips were dissected and muscle damage color-stained. We measured

  19. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of

  20. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  1. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  2. Prevention of tissue damage by water jet during cavitation

    Science.gov (United States)

    Palanker, Daniel; Vankov, Alexander; Miller, Jason; Friedman, Menahem; Strauss, Moshe

    2003-08-01

    Cavitation bubbles accompany explosive vaporization of water following pulsed energy deposition in liquid media. Bubbles collapsing at the tip of a surgical endoprobe produce a powerful and damaging water jet propagating forward in the axial direction of the probe. We studied interaction of such jet with tissue using fast flash photography and modeled the flow dynamics using a two-dimensional Rayleigh-type hydrodynamic simulation. Maximal velocity of the jet generated at pulse energies of up to 1 mJ was about 80 m/s. The jet can produce tissue damage at a distance exceeding the radius of the cavitation bubble by a factor of 4. We demonstrate that formation of this flow and associated tissue damage can be prevented by application of the concave endoprobes that slow down the propagation of the back boundary of the bubble. Similar effect can be achieved by positioning an obstacle to the flow, such as a ring behind the tip.

  3. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  4. The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

    Science.gov (United States)

    Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.

    2017-02-01

    Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.

  5. Adhesion molecule-modified biomaterials for neural tissue engineering

    Directory of Open Access Journals (Sweden)

    Shreyas S Rao

    2009-06-01

    Full Text Available Adhesion molecules (AMs represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review discusses common AMs used in neural biomaterials and the mechanism of cell attachment to these AMs. Methods to modify materials with AMs are discussed and compared. Additionally, patterning of AMs for achieving specific neuronal responses is explored.

  6. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  7. Zebrafish fin regeneration after cryoinjury-induced tissue damage

    Directory of Open Access Journals (Sweden)

    Bérénice Chassot

    2016-06-01

    Full Text Available Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump.

  8. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.

    Science.gov (United States)

    Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu

    2016-03-01

    The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  10. Use of Neural Networks for Damage Assessment in a Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    excitation. The basic idea is to train a neural network with simulated patterns of the relative changes in natural frequencies and corresponding sizes and locations of damages in order to recognize the behaviour of the damaged as well as the undamaged structure. Subjecting this trained neural network...... bolted joint consists of 4 slice plates giving the possibilities of simulating a 1/4, 1/2, 3/4 and full reduction of the area of a diagonal. A damage is simulated by removing one or more splice plates in these bolted joints. The utility of the neural network approach is demonstrated by a simulation study...... as well as full-scale tests where the mast is identified by an ARMA-model. The results show that a neural network trained with simulated data is capable for detecting location of a damage in a steel lattice mast when the network is subjected to experimental data.·...

  11. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy subjects and 8 patients at risk of developing pressure ulcers. Blood flow index (BFI

  12. Binary tissue classification on wound images with neural networks and bayesian classifiers.

    Science.gov (United States)

    Veredas, Francisco; Mesa, Héctor; Morente, Laura

    2010-02-01

    A pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, or friction. Diagnosis, treatment, and care of pressure ulcers are costly for health services. Accurate wound evaluation is a critical task for optimizing the efficacy of treatment and care. Clinicians usually evaluate each pressure ulcer by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. In this paper, a hybrid approach based on neural networks and Bayesian classifiers is used in the design of a computational system for automatic tissue identification in wound images. A mean shift procedure and a region-growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multilayer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes which are determined by clinical experts. This training procedure is driven by a k-fold cross-validation method. Finally, a Bayesian committee machine is formed by training a Bayesian classifier to combine the classifications of the k neural networks. Specific heuristics based on the wound topology are designed to significantly improve the results of the classification. We obtain high efficiency rates from a binary cascade approach for tissue identification. Results are compared with other similar machine-learning approaches, including multiclass Bayesian committee machine classifiers and support vector machines. The different techniques analyzed in this paper show high global classification accuracy rates. Our binary cascade approach gives high global performance rates (average sensitivity =78.7% , specificity =94.7% , and accuracy =91.5% ) and shows the highest average sensitivity score ( =86.3%) when detecting

  13. Classifications of multispectral colorectal cancer tissues using convolution neural network

    Directory of Open Access Journals (Sweden)

    Hawraa Haj-Hassan

    2017-01-01

    Full Text Available Background: Colorectal cancer (CRC is the third most common cancer among men and women. Its diagnosis in early stages, typically done through the analysis of colon biopsy images, can greatly improve the chances of a successful treatment. This paper proposes to use convolution neural networks (CNNs to predict three tissue types related to the progression of CRC: benign hyperplasia (BH, intraepithelial neoplasia (IN, and carcinoma (Ca. Methods: Multispectral biopsy images of thirty CRC patients were retrospectively analyzed. Images of tissue samples were divided into three groups, based on their type (10 BH, 10 IN, and 10 Ca. An active contour model was used to segment image regions containing pathological tissues. Tissue samples were classified using a CNN containing convolution, max-pooling, and fully-connected layers. Available tissue samples were split into a training set, for learning the CNN parameters, and test set, for evaluating its performance. Results: An accuracy of 99.17% was obtained from segmented image regions, outperforming existing approaches based on traditional feature extraction, and classification techniques. Conclusions: Experimental results demonstrate the effectiveness of CNN for the classification of CRC tissue types, in particular when using presegmented regions of interest.

  14. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...

  15. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening

    Directory of Open Access Journals (Sweden)

    Michaela Thomas

    2017-11-01

    Full Text Available Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone, and poly(ethylene glycol. This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.

  16. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening.

    Science.gov (United States)

    Thomas, Michaela; Willerth, Stephanie M

    2017-01-01

    Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone), and poly(ethylene glycol). This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.

  17. Tissue damage disrupts developmental progression and ecdysteroid biosynthesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jennifer F Hackney

    Full Text Available In humans, chronic inflammation, severe injury, infection and disease can result in changes in steroid hormone titers and delayed onset of puberty; however the pathway by which this occurs remains largely unknown. Similarly, in insects injury to specific tissues can result in a global developmental delay (e.g. prolonged larval/pupal stages often associated with decreased levels of ecdysone - a steroid hormone that regulates developmental transitions in insects. We use Drosophila melanogaster as a model to examine the pathway by which tissue injury disrupts developmental progression. Imaginal disc damage inflicted early in larval development triggers developmental delays while the effects are minimized in older larvae. We find that the switch in injury response (e.g. delay/no delay is coincident with the mid-3rd instar transition - a developmental time-point that is characterized by widespread changes in gene expression and marks the initial steps of metamorphosis. Finally, we show that developmental delays induced by tissue damage are associated with decreased expression of genes involved in ecdysteroid synthesis and signaling.

  18. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration.

    Science.gov (United States)

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    Acute traumatic injuries and chronic degenerative diseases represent the world's largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37 °C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration.

  19. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration

    Science.gov (United States)

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    ABSTRACT Acute traumatic injuries and chronic degenerative diseases represent the world’s largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37°C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration. PMID:26709633

  20. Assessing laser-tissue damage with bioluminescent imaging.

    Science.gov (United States)

    Wilmink, Gerald J; Opalenik, Susan R; Beckham, Joshua T; Davidson, Jeffrey M; Jansen, E Duco

    2006-01-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (lambda=10.6 microm, 0.679 to 2.262 Wcm2, cw, unfocused Gaussian beam, omegaL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 Wcm2 activated the hsp70 response, and a higher irradiance of 2.262 Wcm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin

  1. Real-Time Structural Damage Assessment Using Artificial Neural Networks and Antiresonant Frequencies

    Directory of Open Access Journals (Sweden)

    V. Meruane

    2014-01-01

    Full Text Available The main problem in damage assessment is the determination of how to ascertain the presence, location, and severity of structural damage given the structure's dynamic characteristics. The most successful applications of vibration-based damage assessment are model updating methods based on global optimization algorithms. However, these algorithms run quite slowly, and the damage assessment process is achieved via a costly and time-consuming inverse process, which presents an obstacle for real-time health monitoring applications. Artificial neural networks (ANN have recently been introduced as an alternative to model updating methods. Once a neural network has been properly trained, it can potentially detect, locate, and quantify structural damage in a short period of time and can therefore be applied for real-time damage assessment. The primary contribution of this research is the development of a real-time damage assessment algorithm using ANN and antiresonant frequencies. Antiresonant frequencies can be identified more easily and more accurately than mode shapes, and they provide the same information. This research addresses the setup of the neural network parameters and provides guidelines for the selection of these parameters in similar damage assessment problems. Two experimental cases validate this approach: an 8-DOF mass-spring system and a beam with multiple damage scenarios.

  2. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  3. Expression of Intermediate Filament Nestin in Blood Vessels of Neural and Non-neural Tissues

    Directory of Open Access Journals (Sweden)

    Jaroslav Mokrý

    2008-01-01

    Full Text Available Our previous findings performed in rat tissues demonstrated that intermediate filament nestin is expressed in endothelial cells of newly formed blood vessels of developing organs and neural transplants. The aim of the present study was to identify other cellular markers expressed in nestin-positive (nestin+ blood vessels. To reach this goal we performed double immunofluorescent study to co-localize nestin with endothelium-specific markers (CD31, CD34 II, vimentin or markers of perivascular cells (GFAP, SMA in paraffin-embedded sections of normal human brain tissue, low- and high-grade gliomas, postinfarcted heart and samples of non-neural tumours. Our findings documented that all the samples examined contained blood vessels with different ratio of nestin+ endothelial cells. Double immunostaining provided unambiguous evidence that endothelial cells expressed nestin and allowed them to distinguish from other nestin+ elements (perivascular astrocytic endfeet, undifferentiated tumour cells, smooth muscle cells and pericytes. Nestin+ endothelium was not confined only to newly formed capillaries but was also observed in blood vessels of larger calibres, frequently in arterioles and venules. We conclude that nestin represents a reliable vascular marker that is expressed in endothelial cells. Elevation of nestin expression likely corresponds to reorganization of intermediate filament network in the cytoskeleton of endothelial cells in the course of their maturation or adaptation to changes in growing tissues.

  4. Temporal effects of mechanical loading on deformation-induced damage in skeletal muscle tissue

    NARCIS (Netherlands)

    Loerakker, S.; Stekelenburg, A.; Strijkers, G. J.; Rijpkema, J. J. M.; Baaijens, F. P. T.; Bader, D. L.; Nicolay, K.; Oomens, C. W. J.

    2010-01-01

    Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury. Recently, by means of an experimental-numerical approach, it was shown that local tissue deformations cause tissue damage once a

  5. Deep convolutional neural network approach for forehead tissue thickness estimation

    Directory of Open Access Journals (Sweden)

    Manit Jirapong

    2017-09-01

    Full Text Available In this paper, we presented a deep convolutional neural network (CNN approach for forehead tissue thickness estimation. We use down sampled NIR laser backscattering images acquired from a novel marker-less near-infrared laser-based head tracking system, combined with the beam’s incident angle parameter. These two-channel augmented images were constructed for the CNN input, while a single node output layer represents the estimated value of the forehead tissue thickness. The models were – separately for each subject – trained and tested on datasets acquired from 30 subjects (high resolution MRI data is used as ground truth. To speed up training, we used a pre-trained network from the first subject to bootstrap training for each of the other subjects. We could show a clear improvement for the tissue thickness estimation (mean RMSE of 0.096 mm. This proposed CNN model outperformed previous support vector regression (mean RMSE of 0.155 mm or Gaussian processes learning approaches (mean RMSE of 0.114 mm and eliminated their restrictions for future research.

  6. Structural Damage Identification Based on Rough Sets and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chengyin Liu

    2014-01-01

    Full Text Available This paper investigates potential applications of the rough sets (RS theory and artificial neural network (ANN method on structural damage detection. An information entropy based discretization algorithm in RS is applied for dimension reduction of the original damage database obtained from finite element analysis (FEA. The proposed approach is tested with a 14-bay steel truss model for structural damage detection. The experimental results show that the damage features can be extracted efficiently from the combined utilization of RS and ANN methods even the volume of measurement data is enormous and with uncertainties.

  7. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    Science.gov (United States)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  8. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    Science.gov (United States)

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  9. A radiation damage repair model for normal tissues

    Science.gov (United States)

    Partridge, Mike

    2008-07-01

    A cellular Monte Carlo model describing radiation damage and repair in normal epithelial tissues is presented. The deliberately simplified model includes cell cycling, cell motility and radiation damage response (cell cycle arrest and cell death) only. Results demonstrate that the model produces a stable equilibrium system for mean cell cycle times in the range 24-96 h. Simulated irradiation of these stable equilibrium systems produced a range of responses that are shown to be consistent with experimental and clinical observation, including (i) re-epithelialization of radiation-induced lesions by a mixture of cell migration into the wound and repopulation at the periphery; (ii) observed radiosensitivity that is quantitatively consistent with both rate of induction of irreparable DNA lesions and, independently, with the observed acute oral and pharyngeal mucosal reactions to radiotherapy; (iii) an observed time between irradiation and maximum toxicity that is consistent with experimental data for skin; (iv) quantitatively accurate predictions of low-dose hyper-radiosensitivity; (v) Gomperzian repopulation for very small lesions (~2000 cells) and (vi) a linear rate of re-epithelialization of 5-10 µm h-1 for large lesions (>15 000 cells).

  10. A radiation damage repair model for normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, Mike [Institute of Cancer Research, Downs Road, Sutton, SM2 5PT (United Kingdom)

    2008-07-07

    A cellular Monte Carlo model describing radiation damage and repair in normal epithelial tissues is presented. The deliberately simplified model includes cell cycling, cell motility and radiation damage response (cell cycle arrest and cell death) only. Results demonstrate that the model produces a stable equilibrium system for mean cell cycle times in the range 24-96 h. Simulated irradiation of these stable equilibrium systems produced a range of responses that are shown to be consistent with experimental and clinical observation, including (i) re-epithelialization of radiation-induced lesions by a mixture of cell migration into the wound and repopulation at the periphery; (ii) observed radiosensitivity that is quantitatively consistent with both rate of induction of irreparable DNA lesions and, independently, with the observed acute oral and pharyngeal mucosal reactions to radiotherapy; (iii) an observed time between irradiation and maximum toxicity that is consistent with experimental data for skin; (iv) quantitatively accurate predictions of low-dose hyper-radiosensitivity; (v) Gomperzian repopulation for very small lesions ({approx}2000 cells) and (vi) a linear rate of re-epithelialization of 5-10 {mu}m h{sup -1} for large lesions (>15 000 cells)

  11. New concepts on diabetic retinopathy: neural versus vascular damage

    OpenAIRE

    Pedro Durães Serrarbassa; Alana Ferreira Gomes Dias; Marcio Fragoso Vieira

    2008-01-01

    A retinopatia diabética é a principal causa de cegueira legal irreversível em adultos na idade produtiva. Estima-se que o número de pessoas com risco de desenvolver perda de visão decorrente do diabetes dobre nos próximos 30 anos. Alguns estudos sugerem que alterações neurodegenerativas ocorram antes do comprometimento vascular. Essas alterações incluem aumento da apoptose neural, reatividade de células gliais, ativação microglial e metabolismo alterado do glutamato, e podem explicar algumas ...

  12. Analytic Modeling of Neural Tissue: I. A Spherical Bidomain.

    Science.gov (United States)

    Schwartz, Benjamin L; Chauhan, Munish; Sadleir, Rosalind J

    2016-12-01

    Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and sink points. The problem is solved in three spatial dimensions and defined in spherical coordinates [Formula: see text]. The system of coupled partial differential equations is solved by recasting the problem to be in terms of the membrane and a monodomain, interpreted as a weighted average of the intra and extracellular domains. The membrane and monodomain are defined by the scalar Helmholtz and Laplace equations, respectively, which are both separable in spherical coordinates. Product solutions are thus assumed and given through certain transcendental functions. From these electrical potentials, analytic expressions for current density are derived and from those fields the magnetic flux density is calculated. Numerical examples are considered wherein the interstitial conductivity is varied, as well as the limiting case of the problem simplifying to two dimensions due to azimuthal independence. Finally, future modeling work is discussed.

  13. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications.

    Science.gov (United States)

    Lee, Jae Y; Bashur, Chris A; Goldstein, Aaron S; Schmidt, Christine E

    2009-09-01

    Electrospinning is a promising approach to create nanofiber structures that are capable of supporting adhesion and guiding extension of neurons for nerve regeneration. Concurrently, electrical stimulation of neurons in the absence of topographical features also has been shown to guide axonal extension. Therefore, the goal of this study was to form electrically conductive nanofiber structures and to examine the combined effect of nanofiber structures and electrical stimulation. Conductive meshes were produced by growing polypyrrole (PPy) on random and aligned electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers, as confirmed by scanning electron micrographs and X-ray photon spectroscopy. PPy-PLGA electrospun meshes supported the growth and differentiation of rat pheochromocytoma 12 (PC12) cells and hippocampal neurons comparable to non-coated PLGA control meshes, suggesting that PPy-PLGA may be suitable as conductive nanofibers for neuronal tissue scaffolds. Electrical stimulation studies showed that PC12 cells, stimulated with a potential of 10 mV/cm on PPy-PLGA scaffolds, exhibited 40-50% longer neurites and 40-90% more neurite formation compared to unstimulated cells on the same scaffolds. In addition, stimulation of the cells on aligned PPy-PLGA fibers resulted in longer neurites and more neurite-bearing cells than stimulation on random PPy-PLGA fibers, suggesting a combined effect of electrical stimulation and topographical guidance and the potential use of these scaffolds for neural tissue applications.

  14. Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications

    Science.gov (United States)

    Lee, Jae Young; Bashur, Chris A.; Goldstein, Aaron S.; Schmidt, Christine E.

    2009-01-01

    Electrospinning is a promising approach to create nanofiber structures that are capable of supporting adhesion and guiding extension of neurons for nerve regeneration. Concurrently, electrical stimulation of neurons in the absence of topographical features also has been shown to guide axonal extension. Therefore, the goal of this study was to form electrically conductive nanofiber structures and to examine the combined effect of nanofiber structures and electrical stimulation. Conductive meshes were produced by growing polypyrrole (PPy) on random and aligned electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers, as confirmed by scanning electron micrographs and X-ray photon spectroscopy. PPy-PLGA electrospun meshes supported the growth and differentiation of rat pheochromocytoma 12 (PC12) cells and hippocampal neurons comparable to non-coated PLGA control meshes, suggesting that PPy-PLGA may be suitable as conductive nanofibers for neuronal tissue scaffolds. Electrical stimulation studies showed that PC12 cells, stimulated with a potential of 10 mV/cm on PPy-PLGA scaffolds, exhibited 40–50% longer neurites and 40–90% more neurite formation compared to unstimulated cells on the same scaffolds. In addition, stimulation of the cells on aligned PPy-PLGA fibers resulted in longer neurites and more neurite-bearing cells than stimulation on random PPy-PLGA fibers, suggesting a combined effect of electrical stimulation and topographical guidance and the potential use of these scaffolds for neural tissue applications. PMID:19501901

  15. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  16. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    Science.gov (United States)

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  17. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    2016-11-01

    Full Text Available Recorded potentials in the extracellular space (ECS of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1 the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2 the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii The power spectral density (PSD of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in

  18. [New concepts on diabetic retinopathy: neural versus vascular damage].

    Science.gov (United States)

    Serrarbassa, Pedro Durães; Dias, Alana Ferreira Gomes; Vieira, Marcio Fragoso

    2008-01-01

    Diabetic retinopathy is the leading cause of irreversible legal blindness in working-age adults. The number of people worldwide at risk of developing vision loss from diabetes is predicted to double over the next 30 years. Some elements suggest that neurodegenerative changes occur beyond vascular damage. These changes include increased apoptosis, glial cell reactivity, microglial activation, and altered glutamate metabolism, and could explain some of the functional abnormalities that begin soon after the onset of diabetes, as early changes in electroretinogram. This review article will present some evidences that point out neurodegeneration as a possible initial event in diabetic retinopathy.

  19. A New Procedure for Damage Assessment of Prestressed Concrete Beams Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    K. Sumangala

    2011-01-01

    Full Text Available A damage assessment procedure has been developed using artificial neural network (ANN for prestressed concrete beams. The methodology had been formulated using the results obtained from an experimental study conducted in the laboratory. Prestressed concrete (PSC rectangular beams were cast, and pitting corrosion was introduced in the prestressing wires and was allowed to be snapped using accelerated corrosion process. Both static and dynamic tests were conducted to study the behaviour of perfect and damaged beams. The measured output from both static and dynamic tests was taken as input to train the neural network. Back propagation network was chosen for this purpose, which was written using the programming package MATLAB. The trained network was tested using separate test data obtained from the tests. A damage assessment procedure was developed using the trained network, it was validated using the data available in literature, and the outcome is presented in this paper.

  20. Intraoperative arrhythmias and tissue damage during transmyocardial laser revascularization.

    Science.gov (United States)

    Kadipaşaoglu, K A; Sartori, M; Masai, T; Cihan, H B; Clubb, F J; Conger, J L; Frazier, O H

    1999-02-01

    Transmyocardial laser revascularization creates transmural channels to improve myocardial perfusion. Different laser sources and ablation modalities have been proposed for transmyocardial laser revascularization. We investigated the incidence of cardiac arrhythmias and laser-tissue interactions during transmyocardial laser revascularization of normal porcine myocardium with three different lasers. We used a continuous-wave, chopped CO2 laser (20 J/pulse, 15 ms/pulse) synchronized with the R wave; a holmium:yttrium aluminum garnet (Ho:YAG) laser (2 J/pulse, 250 micros/pulse, 5 Hz); and a xenon-chloride (excimer, Xe:Cl) laser (35 mJ/pulse, 20 ns/pulse, 30 Hz). Each laser was used 30 times as the sole modality in four consecutive pigs, yielding 120 channels. The average number of pulses needed to create a channel was 1, 11 +/- 4, and 37 +/- 8 for the CO2, Ho:YAG, and Xe:Cl lasers, respectively. All Ho:YAG and Xe:Cl channels had premature ventricular contractions. Ventricular tachycardia occurred in 70% of the Xe:Cl and 60% of the Ho:YAG channels. Only 36% of the CO2 channels had premature ventricular contractions, and only 3% of the CO2 channels had ventricular tachycardia (p CO2 channels were straight and well demarcated. The zone of structural and thermal damage extended over half the channel's diameter, measuring 0.52 +/- 0.25 mm. During transmyocardial laser revascularization, the CO2 laser synchronized with the R wave is significantly less arrhythmogenic than the Ho:YAG and Xe:Cl lasers not synchronized with the R wave. In addition, the interaction of the CO2 laser with porcine cardiac tissue is significantly less traumatic than that of the Ho:YAG and the Xe:Cl lasers.

  1. Electric field effects in hyperexcitable neural tissue: A review

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.M

    2003-07-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm{sup -1} in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm{sup -1}. These results suggest that the threshold for this effect is clearly smaller than 1mV mm{sup -1}. The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease (n=4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than {approx}1mmV mm{sup -.} (author)

  2. Central neural control of thermoregulation and brown adipose tissue.

    Science.gov (United States)

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    Science.gov (United States)

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  4. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    Directory of Open Access Journals (Sweden)

    Wajdy Al-Awaida

    2014-10-01

    Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT.

  5. Electrochemically Reduced Water Protects Neural Cells from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Taichi Kashiwagi

    2014-01-01

    Full Text Available Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW was demonstrated to scavenge reactive oxygen species (ROS in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2 and nitric oxide (NO was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW.

  6. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  7. Damage Localization of Cable-Supported Bridges Using Modal Frequency Data and Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    X. T. Zhou

    2014-01-01

    Full Text Available This paper presents an investigation on using the probabilistic neural network (PNN for damage localization in the suspension Tsing Ma Bridge (TMB and the cable-stayed Ting Kau Bridge (TKB from simulated noisy modal data. Because the PNN approach describes measurement data in a Bayesian probabilistic framework, it is promising for structural damage detection in noisy conditions. For locating damage on the TMB deck, the main span of the TMB is divided into a number of segments, and damage to the deck members in a segment is classified as one pattern class. The characteristic ensembles (training samples for each pattern class are obtained by computing the modal frequency change ratios from a 3D finite element model (FEM when incurring damage at different members of the same segment and then corrupting the analytical results with random noise. The testing samples for damage localization are obtained in a similar way except that damage is generated at locations different from the training samples. For damage region/type identification of the TKB, a series of pattern classes are defined to depict different scenarios with damage occurring at different portions/components. Research efforts have been focused on evaluating the influence of measurement noise level on the identification accuracy.

  8. Neural networks-based damage detection for bridges considering errors in baseline finite element models

    Science.gov (United States)

    Lee, Jong Jae; Lee, Jong Won; Yi, Jin Hak; Yun, Chung Bang; Jung, Hie Young

    2005-02-01

    Structural health monitoring has become an important research topic in conjunction with damage assessment and safety evaluation of structures. The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in signal analysis and information processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, a neural networks-based damage detection method using the modal properties is presented, which can effectively consider the modelling errors in the baseline finite element model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modelling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness of the proposed method. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.

  9. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    Science.gov (United States)

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  11. Nd : YAG surgical laser effects in canine prostate tissue: temperature and damage distribution

    NARCIS (Netherlands)

    van Nimwegen, S. A.; L'Eplattenier, H. F.; Rem, A. I.; van der Lugt, J. J.; Kirpensteijn, J.

    2009-01-01

    An in vitro model was used to predict short-term, laser-induced, thermal damage in canine prostate tissue. Canine prostate tissue samples were equipped with thermocouple probes to measure tissue temperature at 3, 6, 9 and 12 mm depths. The tissue surface was irradiated with a Nd:YAG laser in contact

  12. Cellular neural network modelling of soft tissue dynamics for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Currently, the mechanical dynamics of soft tissue deformation is achieved by numerical time integrations such as the explicit or implicit integration; however, the explicit integration is stable only under a small time step, whereas the implicit integration is computationally expensive in spite of the accommodation of a large time step. This paper presents a cellular neural network method for stable simulation of soft tissue deformation dynamics. The non-rigid motion equation is formulated as a cellular neural network with local connectivity of cells, and thus the dynamics of soft tissue deformation is transformed into the neural dynamics of the cellular neural network. Results show that the proposed method can achieve good accuracy at a small time step. It still remains stable at a large time step, while maintaining the computational efficiency of the explicit integration. The proposed method can achieve stable soft tissue deformation with efficiency of explicit integration for surgical simulation.

  13. Diagnosing of car engine fuel injectors damage using DWT analysis and PNN neural networks

    Directory of Open Access Journals (Sweden)

    Piotr CZECH

    2013-01-01

    Full Text Available In many research centers all over the world nowadays works are being carried out aimed at compiling method for diagnosis machines technical condition. Special meaning have non-invasive methods including methods using vibroacoustic phenomena. In this article is proposed using DWT analysis and energy or entropy, which are a base for diagnostic system of fuel injectors damage in car combustion engine. There were conducted researches aimed at building of diagnostic system using PNN neural networks.

  14. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  15. Modeling electrical power absorption and thermally-induced biological tissue damage.

    Science.gov (United States)

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  16. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    Science.gov (United States)

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  17. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  18. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  19. Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization

    Science.gov (United States)

    Ross, Richard W.

    2006-01-01

    Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.

  20. Cellular proliferation and regeneration following tissue damage. Progress report. [Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.V.

    1976-10-01

    Results are reported from a study of wound healing in tissues of the eye, particularly lens, cornea, and surrounding tissues. The reactions of these tissues to mechanical injuries, as well as injuries induced by chemotoxic agents were studied. It is postulated that a better understanding of the basic reactions of the eye to injurious agents may be of importance in the evaluation of potential environmental hazards.

  1. A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2014-01-01

    Full Text Available Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.

  2. Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques.

    Science.gov (United States)

    Barry, Christopher; Schmitz, Matthew T; Propson, Nicholas E; Hou, Zhonggang; Zhang, Jue; Nguyen, Bao K; Bolin, Jennifer M; Jiang, Peng; McIntosh, Brian E; Probasco, Mitchell D; Swanson, Scott; Stewart, Ron; Thomson, James A; Schwartz, Michael P; Murphy, William L

    2017-11-01

    The aim of the present study was to test sample reproducibility for model neural tissues formed on synthetic hydrogels. Human embryonic stem (ES) cell-derived precursor cells were cultured on synthetic poly(ethylene glycol) (PEG) hydrogels to promote differentiation and self-organization into model neural tissue constructs. Neural progenitor, vascular, and microglial precursor cells were combined on PEG hydrogels to mimic developmental timing, which produced multicomponent neural constructs with 3D neuronal and glial organization, organized vascular networks, and microglia with ramified morphologies. Spearman's rank correlation analysis of global gene expression profiles and a comparison of coefficient of variation for expressed genes demonstrated that replicate neural constructs were highly uniform to at least day 21 for samples from independent experiments. We also demonstrate that model neural tissues formed on PEG hydrogels using a simplified neural differentiation protocol correlated more strongly to in vivo brain development than samples cultured on tissue culture polystyrene surfaces alone. These results provide a proof-of-concept demonstration that 3D cellular models that mimic aspects of human brain development can be produced from human pluripotent stem cells with high sample uniformity between experiments by using standard culture techniques, cryopreserved cell stocks, and a synthetic extracellular matrix. Impact statement Pluripotent stem (PS) cells have been characterized by an inherent ability to self-organize into 3D "organoids" resembling stomach, intestine, liver, kidney, and brain tissues, offering a potentially powerful tool for modeling human development and disease. However, organoid formation must be quantitatively reproducible for applications such as drug and toxicity screening. Here, we report a strategy to produce uniform neural tissue constructs with reproducible global gene expression profiles for replicate samples from multiple

  3. Suturing intraabdominal organs : When do we cause tissue damage?

    NARCIS (Netherlands)

    Rodrigues, S.P.; Horeman, T.; Dankelman, J.; Van den Dobbelsteen, J.J.; Jansen, F.W.

    2011-01-01

    It is generally assumed that safety of tissue manipulations during (laparoscopic) surgery is related to the magnitude of force that is exerted on the tissue. To provide trainees with performance feedback about tissuehandling skills, it is essential to define objective criteria for judging the safety

  4. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2017-08-31

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  5. Mechanisms of cell damage in agitated microcarrier tissue culture reactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1986-01-01

    Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The cells are also exposed to 10-20 Hz cyclic shear stress by bead rotation.

  6. Intelligent Monitoring System on Prediction of Building Damage Index using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Reni Suryanita

    2012-03-01

    Full Text Available An earthquake potentially destroys a tall building. The building damage can be indexed by FEMA into three categories namely Immediate Occupancy (IO, Life Safety (LS, and Collapse Prevention (CP. To determine the damage index, the building model has been simulated into structure analysis software. Acceleration data has been analyzed using non linear method in structure analysis program. The earthquake load is time history at surface, PGA=0105g. This work proposes an intelligent monitoring system utilizing Artificial Neural Network to predict the building damage index. The system also provides an alert system and notification to inform the status of the damage. Data learning is trained on ANN utilizing feed forward and back propagation algorithm. The alert system is designed to be able to activate the alarm sound, view the alert bar or text, and send notification via email to the security or management. The system is tested using sample data represented in three conditions involving IO, LS, and CP. The results show that the proposed intelligent monitoring system could provide prediction of up to 92% rate of accuracy and activate the alert. Implementation of the system in building monitoring would allow for rapid, intelligent and accurate prediction of the building damage index due to earthquake.

  7. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  8. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    In osteoarthritis, one postulate is that changes in the mechanical properties of the subchondral bone layer result in cartilage damage. The goal of this study was to examine changes in subchondral trabecular bone properties at the calcified tissue level in the early stages of cartilage damage. Fi...

  9. Disease related tissue damage and subsequent changes in fillet structure

    DEFF Research Database (Denmark)

    (Oncorhynchus mykiss). Needle disrupted muscle tissue was sampled at different time points and subject to real-time RT-PCR for measuring the expression of the genes IL-1β, IL-8, IL-10, TGF-β, Myostatin-1ab, MMP-2, CTGF, Collagen-1α, VEGF, iNOS, Arg-2 and FGF. The results showed an initial phase with up...

  10. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats

    Directory of Open Access Journals (Sweden)

    Masoumeh Seghatoleslam

    2016-07-01

    Full Text Available Nigella sativa (NS has been suggested to have neuroprotective and anti-seizures properties. The aim of current study was to investigate the effects of NS hydro-alcoholic extract on neural damage after pentylenetetrazole (PTZ – induced repeated seizures. The rats were divided into five groups: (1 control (saline, (2 PTZ (50 mg/kg, i.p., (3–5 PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 (100, 200 and 400 mg/kg of NS extract respectively, 30 min prior to each PTZ injection on 5 consecutive days. The passive avoidance (PA test was done and the brains were then removed for histological measurements. The PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 groups had lower seizure scores than PTZ group (P < 0.01 and P < 0.001. The latency to enter the dark compartment by the animals of PTZ group was lower than control in PA test (P < 0.01. Pre-treatment by 400 mg/kg of the extract increased the latency to enter the dark compartment (P < 0.05. Meanwhile, different doses of the extract inhibited production of dark neurons in different regions of hippocampus (P < 0.001. The present study allows us to suggest that the NS possesses a potential ability to prevent hippocampal neural damage which is accompanied with improving effects on memory.

  11. Application of immunohistochemical staining to detect antigen destruction as a measure of tissue damage.

    Science.gov (United States)

    Onul, Abdullah; Colvard, Michael D; Paradise, William A; Elseth, Kim M; Vesper, Benjamin J; Gouvas, Eftychia; Deliu, Zane; Garcia, Kelly D; Pestle, William J; Radosevich, James A

    2012-09-01

    Electrocautery and directed energy devices (DEDs) such as lasers, which are used in surgery, result in tissue damage that cannot be readily detected by traditional histological methods, such as hematoxylin and eosin staining. Alternative staining methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to stain live tissue, have been reported. Despite providing superior detection of damaged tissue relative to the hematoxylin and eosin (H&E) method, the MTT method possesses a number of drawbacks, most notably that it must be carried out on live tissue samples. Herein, we report the development of a novel staining method, "antigen destruction immunohistochemistry" (ADI), which can be carried out on paraffin-embedded tissue. The ADI method takes advantage of epitope loss to define the area of tissue damage and provides many of the benefits of live tissue MTT staining without the drawbacks inherent to that method. In addition, the authors provide data to support the use of antibodies directed at a number of gene products for use in animal tissue for which there are no species-specific antibodies commercially available, as well as an example of a species-specific direct antibody. Data are provided that support the use of this method in many tissue models, as well as evidence that ADI is comparable to the live tissue MTT method.

  12. Neural classifier of the communication damage size being a result of collision of vehicles in road traffic

    Directory of Open Access Journals (Sweden)

    Krystian WILK

    2010-01-01

    Full Text Available In the article the results of the attempts of MLP neural network application to define the size of a communication damage being the result of a road collision were presented. The size of the damage was used as a research parameter defined by the coefficient dependent on the cost of repair of the damaged vehicle and its market value. The elements of the damage mechanism determining the way of damage qualification were the inner factors of the system, that is; the technical features of the vehicles, the character features of the drivers, the influence of the weather conditions and the location of the event in time and space. The research was conducted on one thousand cases reported for liquidation in Silesian branch of one of the insurance companies. In the conducted research the working of the neural networks with the limited input data was checked.

  13. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Directory of Open Access Journals (Sweden)

    Naosuke Kamei

    2017-01-01

    Full Text Available Endothelial progenitor cells (EPCs derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+ cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

  14. Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage.

    Science.gov (United States)

    Somfai, Gábor Márk; Tátrai, Erika; Laurik, Lenke; Varga, Boglárka E; Ölvedy, Vera; Smiddy, William E; Tchitnga, Robert; Somogyi, Anikó; DeBuc, Delia Cabrera

    2014-09-01

    The sensitivity of Optical Coherence Tomography (OCT) images to identify retinal tissue morphology characterized by early neural loss from normal healthy eyes is tested by calculating structural information and fractal dimension. OCT data from 74 healthy eyes and 43 eyes with type 1 diabetes mellitus with mild diabetic retinopathy (MDR) on biomicroscopy was analyzed using a custom-built algorithm (OCTRIMA) to measure locally the intraretinal layer thickness. A power spectrum method was used to calculate the fractal dimension in intraretinal regions of interest identified in the images. ANOVA followed by Newman-Keuls post-hoc analyses were used to test for differences between pathological and normal groups. A modified p value of Fractal dimension was higher for all the layers (except the GCL + IPL and INL) in MDR eyes compared to normal healthy eyes. When comparing MDR with normal healthy eyes, the highest AUROC values estimated for the fractal dimension were observed for GCL + IPL and INL. The maximum discrimination value for fractal dimension of 0.96 (standard error =0.025) for the GCL + IPL complex was obtained at a FD ≤ 1.66 (cut off point, asymptotic 95% Confidence Interval: lower-upper bound = 0.905-1.002). Moreover, the highest AUROC values estimated for the thickness measurements were observed for the OPL, GCL + IPL and OS. Particularly, when comparing MDR eyes with control healthy eyes, we found that the fractal dimension of the GCL + IPL complex was significantly better at diagnosing early DR, compared to the standard thickness measurement. Our results suggest that the GCL + IPL complex, OPL and OS are more susceptible to initial damage when comparing MDR with control healthy eyes. Fractal analysis provided a better sensitivity, offering a potential diagnostic predictor for detecting early neurodegeneration in the retina.

  15. External ventricular drain causes brain tissue damage: an imaging study.

    Science.gov (United States)

    Ortolano, Fabrizio; Carbonara, Marco; Stanco, Antonella; Civelli, Vittorio; Carrabba, Giorgio; Zoerle, Tommaso; Stocchetti, Nino

    2017-10-01

    An external ventricular drain (EVD) is used to measure intracranial pressure (ICP) and to drain cerebrospinal fluid (CSF). The procedure is generally safe, but parenchymal sequelae are reported as a possible side effect, with variable incidence. We investigated the mechanical sequelae of EVD insertion and their clinical significance in acute brain-injured patients, with a special focus on hemorrhagic lesions. Mechanical sequelae of EVD insertion were detected in patients by computed tomography (CT) and magnetic resonance imaging (MRI), performed for clinical purposes. In 155 patients we studied the brain tissue surrounding the EVD by CT scan (all patients) and MRI (16 patients); 53 patients were studied at three time points (day 1-2, day 3-10, >10 days after EVD placement) to document the lesion time course. Small hemorrhages, with a hyperdense core surrounded by a hypodense area, were identified by CT scan in 33 patients. The initial average (hyper- + hypodense) lesion volume was 8.16 ml, increasing up to 15 ml by >10 days after EVD insertion. These lesions were not accompanied by neurologic deterioration or ICP elevation. History of arterial hypertension, coagulation abnormalities and multiple EVD insertions were significantly associated with hemorrhages. In 122 non-hemorrhagic patients, we detected very small hypodense areas (average volume 0.38 ml) surrounding the catheter. At later times these hypodensities slightly increased. MRI studies in 16 patients identified both intra- and extracellular edema around the catheters. The extracellular component increased with time. EVD insertion, even when there are no clinically important complications, causes a tissue reaction with minimal bleedings and small areas of brain edema.

  16. A New Damage Assessment Method by Means of Neural Network and Multi-Sensor Satellite Data

    Directory of Open Access Journals (Sweden)

    Alessandro Piscini

    2017-08-01

    Full Text Available Artificial Neural Network (ANN is a valuable and well-established inversion technique for the estimation of geophysical parameters from satellite images. After training, ANNs are able to generate very fast products for several types of applications. Satellite remote sensing is an efficient way to detect and map strong earthquake damage for contributing to post-disaster activities during emergency phases. This work aims at presenting an application of the ANN inversion technique addressed to the evaluation of building collapse ratio (CR, defined as the number of collapsed buildings with respect to the total number of buildings in a city block, by employing optical and SAR satellite data. This is done in order to directly relate changes in images with damage that has occurred during strong earthquakes. Furthermore, once they have been trained, neural networks can be used rapidly at application stage. The goal was to obtain a general tool suitable for re-use in different scenarios. An ANN has been implemented in order to emulate a regression model and to estimate the CR as a continuous function. The adopted ANN has been trained using some features obtained from optical and Synthetic Aperture Radar (SAR images, as inputs, and the corresponding values of collapse ratio obtained from the survey of the 2010 M7 Haiti Earthquake, i.e., as target output. As regards the optical data, we selected three change parameters: the Normalized Difference Index (NDI, the Kullback–Leibler divergence (KLD, and Mutual Information (MI. Concerning the SAR images, the Intensity Correlation Difference (ICD and the KLD parameters have been considered. Exploiting an object-oriented approach, a segmentation of the study area into several regions has been performed. In particular, damage maps have been generated by considering a set of polygons (in which satellite parameters have been calculated extracted from the open source Open Street Map (OSM geo-database. The trained

  17. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  18. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.

    Science.gov (United States)

    Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L

    2017-08-01

    While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.

  19. Tissue damage in organic rainbow trout muscle investigated by proteomics and bioinformatics.

    Science.gov (United States)

    Wulff, Tune; Silva, Tomé; Nielsen, Michael Engelbrecht

    2013-07-01

    The response to tissue damage is a complex process, which involves the coordinated regulation of multiple proteins to ensure tissue repair. In order to investigate the effect of tissue damage in a lower vertebrate, samples were taken from rainbow trout (Oncorhynchus mykiss) at day 7 after damage and proteins were separated using 2DE. The experimental design included two groups of rainbow trout, which were fed organic feed either with or without astaxanthin. In total, 96 proteins were found to be affected by tissue damage, clearly demonstrating in this lower vertebrate the complexity and magnitude of the cellular response, in the context of a regenerative process. Using a bioinformatics approach, the main biological function of these proteins were assigned, showing the regulation of proteins involved in processes such as apoptosis, iron homeostasis, and regulation of muscular structure. Interestingly, it was established that exclusively within the astaxanthin feed group, three members of the annexin protein family (annexin IV, V, and VI) were regulated in response to tissue damage. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tissue damage modeling in gene electrotransfer: the role of pH.

    Science.gov (United States)

    Olaiz, N; Signori, E; Maglietti, F; Soba, A; Suárez, C; Turjanski, P; Michinski, S; Marshall, G

    2014-12-01

    Optimal gene electrotransfer (GET) requires a compromise between maximum transgene expression and minimal tissue damage. GET in skeletal muscle can be improved by pretreatment with hyaluronidase which contributes to maximize transgene uptake and expression. Nevertheless, tissue damage remains severe close to the electrodes, with a concomitant loss of GET efficiency. Here we analyze the role of pH in tissue damage in GET protocols through in vivo modeling using a transparent chamber implanted into the dorsal skinfold of a mouse (DSC) and intravital microscopy, and in silico modeling using the Poisson-Nernst-Planck equations for ion transport. DSC intravital microscopy reveals the existence of pH fronts emerging from both electrodes and that these fronts are immediate and substantial thus giving rise to tissue necrosis. Theoretical modeling confirms experimental measurements and shows that in GET protocols whether with or without hyaluronidase pretreatment, pH fronts are the principal cause of muscle damage near the electrodes. It also predicts that an optimal efficiency in GET protocols, that is a compromise between obtaining maximum electroporated area and minimal tissue damage, is achieved when the electric field applied is near 183 V/cm in a GET protocol and 158 V/cm in a hyaluronidase+GET protocol. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Novel nanofibrous spiral scaffolds for neural tissue engineering

    Science.gov (United States)

    Valmikinathan, Chandra M.; Tian, Jingjing; Wang, Junping; Yu, Xiaojun

    2008-12-01

    Due to several drawbacks associated with autografts and allografts, tissue-engineering approaches have been widely used to repair peripheral nerve injuries. Most of the traditional tissue-engineered scaffolds in use are either tubular (single or multi-lumen) or hydrogel-based cylindrical grafts, which provide limited surface area for cell attachment and regeneration. Here, we show a novel poly(lactide-co-glycotide) (PLGA) microsphere-based spiral scaffold design with a nanofibrous surface that has enhanced surface areas and possesses sufficient mechanical properties and porosities to support the nerve regeneration process. These scaffolds have an open architecture that goes evenly throughout the scaffolds hence leaving enough volume for media influx and deeper cell penetration into the scaffolds. The in vitro tests conducted using Schwann cells show that the nanofibrous spiral scaffolds promote higher cell attachment and proliferation when compared to contemporary tubular scaffolds or nanofiber-based tubular scaffolds. Also, the nanofiber coating on the surfaces enhances the surface area, mimics the extracellular matrix and provides unidirectional alignment of cells along its direction. Hence, we propose that these scaffolds could alleviate some drawbacks in current nerve grafts and could potentially be used in nerve regeneration.

  2. Inflammatory and regenerative responses in salmonids following mechanical tissue damage and natural infection

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Lunder, Tor; Nielsen, Michael Engelbrecht

    2010-01-01

    injured cells as well as PAMPs from the surface of pathogens are immunogenic. To examine this in salmonid fishes, Atlantic salmon (Salmo salar) were infected with Moritella viscosus, the causative agent of winter ulcer. Muscle tissue was sampled from infected fish at 4, 7 and 14 days post infection...... and TLR-22 following damage. Further, in both studies the regenerative genes TGF-β, MMP-2, CTGF, myostatin-1αβ were induced, but showed different kinetics. Collagen-1α was only induced in infected fish, probably due to heavier tissue damage in these....

  3. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  4. Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Campi, G.; Pezzotti, G. [Institute of Crystallography, CNR, via Salaria Km 29.300, I-00015, Monterotondo Roma (Italy); Fratini, M. [Centro Fermi -Museo Storico della Fisica e Centro Studi e Ricerche ' Enrico Fermi' , Roma (Italy); Ricci, A. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany); Burghammer, M. [European Synchrotron Radiation Facility, B. P. 220, F-38043 Grenoble Cedex (France); Cancedda, R.; Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro, and Dipartimento di Medicina Sperimentale dell' Università di Genova and AUO San Martino Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132, Genova (Italy); Bukreeva, I.; Cedola, A. [Institute for Chemical and Physical Process, CNR, c/o Physics Dep. at Sapienza University, P-le A. Moro 5, 00185, Roma (Italy)

    2013-12-16

    We monitored bone regeneration in a tissue engineering approach. To visualize and understand the structural evolution, the samples have been measured by X-ray micro-diffraction. We find that bone tissue regeneration proceeds through a multi-step mechanism, each step providing a specific diffraction signal. The large amount of data have been classified according to their structure and associated to the process they came from combining Neural Networks algorithms with least square pattern analysis. In this way, we obtain spatial maps of the different components of the tissues visualizing the complex kinetic at the base of the bone regeneration.

  5. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.

    Science.gov (United States)

    Wang, Shuping; Guan, Shui; Xu, Jianqiang; Li, Wenfang; Ge, Dan; Sun, Changkai; Liu, Tianqing; Ma, Xuehu

    2017-09-26

    Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine. Herein, conductive poly(3,4-ethylenedioxythiophene) doped with hyaluronic acid (PEDOT-HA) nanoparticles were firstly synthesized via chemical oxidant polymerization. A three-dimensional (3D) PEDOT-HA/Cs/Gel scaffold was then developed by introducing PEDOT-HA nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. HA, as a bridge, not only was used as a dopant, but also combined PEDOT into the Cs/Gel via chemical crosslinking. The PEDOT-HA/Cs/Gel scaffold was used as a conductive substrate for neural stem cell (NSC) culture in vitro. The results demonstrated that the PEDOT-HA/Cs/Gel scaffold had excellent biocompatibility for NSC proliferation and differentiation. 3D confocal fluorescence images showed cells attached on the channel surface of Cs/Gel and PEDOT-HA/Cs/Gel scaffolds with a normal neuronal morphology. Compared to the Cs/Gel scaffold, the PEDOT-HA/Cs/Gel scaffold not only promoted NSC proliferation with up-regulated expression of Ki67, but also enhanced NSC differentiation into neurons and astrocytes with up-regulated expression of β tubulin-III and GFAP, respectively. It is expected that this electro-active and bio-active PEDOT-HA/Cs/Gel scaffold will be used as a conductive platform to regulate NSC behavior for neural tissue engineering.

  6. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements.

    Science.gov (United States)

    Xu, Tiantian; Zhang, Manke; Hu, Jiani; Li, Zihan; Wu, Taipu; Bao, Jianing; Wu, Siyu; Lei, Lili; He, Defu

    2017-08-01

    Rare earth elements (REEs) are widely used in industry, agriculture, medicine and daily life in recent years. However, environmental and health risks of REEs are still poorly understood. In this study, neurotoxicity of trichloride neodymium, praseodymium and scandium were evaluated using nematode Caenorhabditis elegans as the assay system. Median lethal concentrations (48 h) were 99.9, 157.2 and 106.4 mg/L for NdCl3, PrCl3 and ScCl3, respectively. Sublethal dose (10-30 mg/L) of these trichloride salts significantly inhibited body length of nematodes. Three REEs resulted in significant declines in locomotor frequency of body bending, head thrashing and pharyngeal pumping. In addition, mean speed and wavelength of crawling movement were significantly reduced after chronic exposure. Using transgenic nematodes, we found NdCl3, PrCl3 and ScCl3 resulted in loss of dendrite and soma of neurons, and induced down-expression of dat-1::GFP and unc-47::GFP. It indicates that REEs can lead to damage of dopaminergic and GABAergic neurons. Our data suggest that exposure to REEs may cause neurotoxicity of inducing behavioral deficits and neural damage. These findings provide useful information for understanding health risk of REE materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of Retinal Vascular and Neural Damage in a Novel Model of Diabetic Retinopathy.

    Science.gov (United States)

    Weerasekera, Lakshini Y; Balmer, Lois A; Ram, Ramesh; Morahan, Grant

    2015-06-01

    Diabetic retinopathy (DR) is a major cause of blindness globally. Investigating the underlying mechanisms of DR would be aided by a suitable mouse model that developed key features seen in the human disease, and did so without carrying genetic modifications. This study was undertaken to produce such a model. Our panel of Collaborative Cross strains was screened for DR-like features after induction of diabetes by intravenous injection with alloxan or streptozotocin. Both flat-mounted whole-retina and histologic sections were studied for the presence of retinal lesions. Progression of DR was also studied by histologic examination of the retinal vascular and neural structure at various time points after diabetes onset. In addition, microarray investigations were conducted on retinas from control and diabetic mice. Features of DR such as degenerated pericytes, acellular capillaries, minor vascular proliferation, gliosis of Müller cells, and loss of ganglion cells were noted as early as day 7 in some mice. These lesions became more evident with time. After 21 days of diabetes, severe vascular proliferation, microaneurysms, preretinal damage, increased Müller cell gliosis, and damage to the outer retina were all obvious. Microarray studies found significant differential expression of multiple genes known to be involved in DR. The FOT_FB strain provides a useful model to investigate the pathogenesis of DR and to develop treatments for this vision-threatening disease.

  8. Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Kermer, Vanessa; Ritter, Mathias; Albuquerque, Boris; Leib, Christoph; Stanke, Matthias; Zimmermann, Herbert

    2010-11-26

    In the adult mammalian brain the subependymal layer of the lateral ventricles houses neural stem cells giving rise to young neurons migrating towards the olfactory bulb. The molecular cues controlling essential functions within the neurogenesis pathway such as proliferation, short and long distance migration, differentiation and functional integration are poorly understood. Neural progenitors in situ express the tissue nonspecific form of alkaline phosphatase (TNAP), a cell surface-located nonspecific phosphomonoesterase capable of hydrolyzing extracellular nucleotides. To gain insight into the functional role of TNAP in cultured multipotent neural stem cells we applied a knockdown protocol using RNA interference with shRNA and retroviral infection. We show that TNAP knockdown reduces cell proliferation and differentiation into neurons or oligodendrocytes. This effect is abrogated by addition of alkaline phosphatase to the culture medium. Our results suggest that TNAP is essential for NSC proliferation and differentiation in vitro and possibly also in vivo. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  10. The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage

    NARCIS (Netherlands)

    van Wilgen, C. Paul; Keizer, Doeke

    The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back

  11. Comparison of tissue damage caused by various laser systems with tissue tolerable plasma by light and laser scan microscopy

    Science.gov (United States)

    Vandersee, Staffan; Lademann, Jürgen; Richter, Heike; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard

    2013-10-01

    Tissue tolerable plasma (TTP) represents a novel therapeutic method with promising capabilities in the field of dermatological interventions, in particular disinfection but also wound antisepsis and regeneration. The energy transfer by plasma into living tissue is not easily educible, as a variety of features such as the medium’s actual molecule-stream, the ions, electrons and free radicals involved, as well as the emission of ultraviolet, visible and infrared light contribute to its increasingly well characterized effects. Thus, relating possible adversary effects, especially of prolonged exposure to a single component of the plasma’s mode of action, is difficult. Until now, severe adverse events connected to plasma exposure have not been reported when conducted according to existing therapeutic protocols. In this study, we have compared the tissue damage-potential of CO2 and dye lasers with TTP in a porcine model. After exposure of pig ear skin to the three treatment modalities, all specimens were examined histologically and by means of laser scan microscopy (LSM). Light microscopical tissue damage could only be shown in the case of the CO2 laser, whereas dye laser and plasma treatment resulted in no detectable impairment of the specimens. In the case of TTP, LSM examination revealed only an impairment of the uppermost corneal layers of the skin, thus stressing its safety when used in vivo.

  12. Mechanisms of tissue damage during ArF excimer endolaser microsurgery

    Science.gov (United States)

    Palanker, Daniel V.; Turovets, Igor; Lewis, Aaron

    1996-05-01

    The novel fiberoptic delivery system for the 193 nm excimer laser has been developed for vitreoretinal microsurgery. During the application of this laser in a liquid environment both the short-living cavitation bubbles and hydrogen gas-containing insoluble bubbles are produced. In present work we study the influence of these bubbles generated in free liquid on membranous tissue. Damage zones resulting from application of pulse trains at various repetition rates were investigated using vital stains which indicate the increase of cell membrane permeability. Cavitation bubbles were created by laser above the tissue in a highly absorbing liquid--Hartmann's solution with an addition of 7% albumin. These conditions simulate a situation in which a thin membrane separated from the underlying retina by layer of liquid is cut. After application of 50 pulses at 20 Hz at energy levels varying from 14 to 68 (mu) J per pulse we have detected cell damage at corresponding distances varying from 100 to 1200 microns. In Hartmann's solution (physiological medium), where the cavitation bubbles could not be formed at the same applied energies, the laser damage has been detected only at the distances varying from 150 to 200 microns. Penetration depth of the laser radiation in this solution is about 50 microns. The cells damage in this case probably has a photochemical nature. The difference in damage distance obtained at 1 and 20 Hz repetition rates can be explained by the influence of insoluble gas bubbles that grow at the tip exit and play a role of a transparent medium for the laser radiation. This effect probably determines the minimal distance at which the surgeon can apply the laser in standard physiological medium without being concerned with underlying cells damage. On the other hand, this phenomenon enable to destroy the upper level of cells in tissue without the deep penetrating mechanical influence associated with cavitation bubble-based tissue removal.

  13. Determination of platinum by radiochemical neutron activation analysis in neural tissues from rats, monkeys and patients treated with cisplatin

    DEFF Research Database (Denmark)

    Rietz, B.; Krarup-Hansen, A.; Rorth, M.

    2001-01-01

    of the animals mentioned and in the neural tissues of human patients. For the determination of platinum in the tissues radiochemical neutron activation analysis has been used. The detection limit is 1 ng Pt g(-1). The platinum results indicate that platinum becomes accumulated in the dorsal root ganglia......Cisplatin is one of the most used antineoplastic drugs, essential for the treatment of germ cell tumours. Its use in medical treatment of cancer patients often causes chronic peripheral neuropathy in these patients. The distribution of cisplatin in neural tissues is, therefore, of great interest....... Rats and monkeys were used as animal models for the study of sensory changes in different neural tissues, like spinal cord (ventral and dorsal part), dorsal root ganglia and sural nerve. The study was combined with quantitative measurements of the content of platinum in the neural tissues...

  14. Melatonin attenuated brain death tissue extract-induced cardiac damage by suppressing DAMP signaling.

    Science.gov (United States)

    Sung, Pei-Hsun; Lee, Fan-Yen; Lin, Ling-Chun; Chen, Kuan-Hung; Lin, Hung-Sheng; Shao, Pei-Lin; Li, Yi-Chen; Chen, Yi-Ling; Lin, Kun-Chen; Yuen, Chun-Man; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2018-01-09

    We tested the hypothesis that melatonin prevents brain death (BD) tissue extract (BDEX)-induced cardiac damage by suppressing inflammatory damage-associated molecular pattern (DAMP) signaling in rats. Six hours after BD induction, levels of a DAMP component (HMGB1) and inflammatory markers (TLR-2, TLR-4, MYD88, IκB, NF-κB, IL-1β, IFN-γ, TNF-α and IL-6) were higher in brain tissue from BD animals than controls. Levels of HMGB1 and inflammatory markers were higher in BDEX-treated H9C2 cardiac myoblasts than in cells treated with healthy brain tissue extract. These increases were attenuated by melatonin but re-induced with luzindole (all P DAMP inflammatory axis.

  15. Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue.

    Science.gov (United States)

    Wong, Fong Kuan; Haffner, Christiane; Huttner, Wieland B; Taverna, Elena

    2014-05-01

    This microinjection protocol allows the manipulation and tracking of neural stem and progenitor cells in tissue at single-cell resolution. We demonstrate how to apply microinjection to organotypic brain slices obtained from mice and ferrets; however, our technique is not limited to mouse and ferret embryos, but provides a means of introducing a wide variety of membrane-impermeable molecules (e.g., nucleic acids, proteins, hydrophilic compounds) into neural stem and progenitor cells of any developing mammalian brain. Microinjection experiments are conducted by using a phase-contrast microscope equipped with epifluorescence, a transjector and a micromanipulator. The procedure normally takes ∼2 h for an experienced researcher, and the entire protocol, including tissue processing, can be performed within 1 week. Thus, microinjection is a unique and versatile method for changing and tracking the fate of a cell in organotypic slice culture.

  16. Trigger Points, Pressure Pain Hyperalgesia, and Mechanosensitivity of Neural Tissue in Women with Chronic Pelvic Pain.

    Science.gov (United States)

    Fuentes-Márquez, Pedro; Valenza, Marie Carmen; Cabrera-Martos, Irene; Ríos-Sánchez, Ana; Ocón-Hernández, Olga

    2017-08-25

    This study aims to evaluate the presence of myofascial trigger points (TrPs), widespread pressure pain sensitivity, and mechanosensitivity of neural tissue in women with chronic pelvic pain. Case-control study. Faculty of Health Sciences. Forty women with chronic pelvic pain between age 18 and 60 years and 40 matched healthy controls were included in the study. TrPs were bilaterally explored in gluteus maximus, gluteus medius, gluteus minimus, quadratus lumborum, and adductor magnus muscles. The referred pain reproduced lumbopelvic symptoms. Pressure pain thresholds (PPTs) were also bilaterally assessed over the Pfannenstiel incision point on the abdominal, C5-C6 zygapophyseal joint, second metacarpal, and tibialis anterior muscle. Mechanosensitivity of neural tissue was assessed with the neurodynamics tests of slump and the straight-leg raising. Significant between-group differences were found in TrP presence in patients with chronic pelvic pain (P Neurodynamics show a significantly decreased value in women with CPP. Patients with chronic pelvic pain presented a high percentage of TrPs that reproduce their symptoms. Patients also showed a widespread pressure pain hyperalgesia and more mechanosensitive neural tissue due to a decrease on the range of motion related to neurodynamics.

  17. On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue.

    Science.gov (United States)

    Ingo, Carson; Magin, Richard L; Colon-Perez, Luis; Triplett, William; Mareci, Thomas H

    2014-02-01

    In diffusion-weighted MRI studies of neural tissue, the classical model assumes the statistical mechanics of Brownian motion and predicts a monoexponential signal decay. However, there have been numerous reports of signal decays that are not monoexponential, particularly in the white matter. We modeled diffusion in neural tissue from the perspective of the continuous time random walk. The characteristic diffusion decay is represented by the Mittag-Leffler function, which relaxes a priori assumptions about the governing statistics. We then used entropy as a measure of the anomalous features for the characteristic function. Diffusion-weighted MRI experiments were performed on a fixed rat brain using an imaging spectrometer at 17.6 T with b-values arrayed up to 25,000 s/mm(2). Additionally, we examined the impact of varying either the gradient strength, q, or mixing time, Δ, on the observed diffusion dynamics. In white and gray matter regions, the Mittag-Leffler and entropy parameters demonstrated new information regarding subdiffusion and produced different image contrast from that of the classical diffusion coefficient. The choice of weighting on q and Δ produced different image contrast within the regions of interest. We propose these parameters have the potential as biomarkers for morphology in neural tissue. Copyright © 2013 Wiley Periodicals, Inc.

  18. Carcinoma cells misuse the host tissue damage response to invade the brain

    Science.gov (United States)

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis. PMID:23832647

  19. The role of tissue damage in whiplash associated disorders: Discussion paper 1

    Science.gov (United States)

    Bogduk, Nikolai; Ivancic, Paul C.; McLean, Samuel A.; Siegmund, Gunter P.; Winkelstein, Beth

    2011-01-01

    STUDY DESIGN Non-systematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Non-systematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research. PMID:22020601

  20. Non-damaging laser therapy of the macula: Titration algorithm and tissue response

    Science.gov (United States)

    Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip

    2014-02-01

    Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.

  1. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Directory of Open Access Journals (Sweden)

    John H Martin

    2016-01-01

    Full Text Available As most spinal cord injuries (SCIs are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST-which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals-informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C 4 contusion rat model.

  2. Comparison of the acute effects of hemostatic agents on neural tissues in spine surgery: Histologic analysis in rat models

    Directory of Open Access Journals (Sweden)

    Gokhan Meric

    2016-03-01

    Conclusion: Both gelatin sponge and oxidized cellulose did not increase the cellular necrosis of neural tissues. However, oxidized cellulose may lead to an increased local inflammatory reaction. [Arch Clin Exp Surg 2016; 5(1.000: 21-26

  3. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger?

    Science.gov (United States)

    van der Vliet, Albert; Janssen-Heininger, Yvonne M. W.

    2015-01-01

    Tissue injury and inflammation are associated with increased production of reactive oxygen species (ROS), which have the ability to induce oxidative injury to various biomolecules resulting in e.g. protein dysfunction or cell death. However, recent observations indicate that formation of hydrogen peroxide (H2O2) during tissue injury is also an essential feature of the ensuing wound healing response, and functions as an early damage signal to control several critical aspects of the wound healing process. Because innate oxidative wound responses must be tightly coordinated to avoid chronic inflammation or tissue injury, a more complete understanding is needed regarding the origins and dynamics of ROS production, and their critical biological targets. This Prospect highlights the current experimental evidence implicating H2O2 in early epithelial wound responses, and summarizes technical advances and approaches that may help distinguish its beneficial actions from its more deleterious actions in conditions of chronic tissue injury or inflammation. PMID:24122865

  4. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  5. Prediction of Damage Factor in end Milling of Glass Fibre Reinforced Plastic Composites Using Artificial Neural Network

    Science.gov (United States)

    Erkan, Ömer; Işık, Birhan; Çiçek, Adem; Kara, Fuat

    2013-08-01

    Glass fibre reinforced plastic (GFRP) composites are an economic alternative to engineering materials because of their superior properties. Some damages on the surface occur due to their complex cutting mechanics in cutting process. Minimisation of the damages is fairly important in terms of product quality. In this study, a GFRP composite material was milled to experimentally minimise the damages on the machined surfaces, using two, three and four flute end mills at different combinations of cutting parameters. Experimental results showed that the damage factor increased with increasing cutting speed and feed rate, on the other hand, it was found that the damage factor decreased with increasing depth of cut and number of the flutes. In addition, analysis of variance (ANOVA) results clearly revealed that the feed rate was the most influential parameter affecting the damage factor in end milling of GFRP composites. Also, in present study, Artificial Neural Network (ANN) models with five learning algorithms were used in predicting the damage factor to reduce number of expensive and time-consuming experiments. The highest performance was obtained by 4-10-1 network structure with LM learning algorithm. ANN was notably successful in predicting the damage factor due to higher R2 and lower RMSE and MEP.

  6. Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs, along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  7. Thermal Damage Analysis in Biological Tissues Under Optical Irradiation: Application to the Skin

    Science.gov (United States)

    Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Solana-Quirós, José Ramón; Arce-Diego, José Luis

    2009-07-01

    The use of optical sources in medical praxis is increasing nowadays. In this study, different approaches using thermo-optical principles that allow us to predict thermal damage in irradiated tissues are analyzed. Optical propagation is studied by means of the radiation transport theory (RTT) equation, solved via a Monte Carlo analysis. Data obtained are included in a bio-heat equation, solved via a numerical finite difference approach. Optothermal properties are considered for the model to be accurate and reliable. Thermal distribution is calculated as a function of optical source parameters, mainly optical irradiance, wavelength and exposition time. Two thermal damage models, the cumulative equivalent minutes (CEM) 43 °C approach and the Arrhenius analysis, are used. The former is appropriate when dealing with dosimetry considerations at constant temperature. The latter is adequate to predict thermal damage with arbitrary temperature time dependence. Both models are applied and compared for the particular application of skin thermotherapy irradiation.

  8. Improved Selectivity From a Wavelength Addressable Device for Wireless Stimulation of Neural Tissue

    Directory of Open Access Journals (Sweden)

    Elif Ç. Seymour

    2014-02-01

    Full Text Available Electrical neural stimulation with micro electrodes is a promising technique for restoring lost functions in the central nervous system as a result of injury or disease. One of the problems related to current neural stimulators is the tissue response due to the connecting wires and the presence of a rigid electrode inside soft neural tissue. We have developed a novel, optically activated, microscale photovoltaic neurostimulator based on a custom layered compound semiconductor heterostructure that is both wireless and has a comparatively small volume. Optical activation provides a wireless means of energy transfer to the neurostimulator, eliminating wires and the associated complications. This neurostimulator was shown to evoke action potentials and a functional motor response in the rat spinal cord. In this work, we extend our design to include wavelength selectivity and thus allowing independent activation of devices. As a proof of concept, we fabricated two different microscale devices with different spectral responsivities in the near-infrared region. We assessed the improved addressability of individual devices via wavelength selectivity as compared to spatial selectivity alone through on-bench optical measurements of the devices in combination with an in vivo light intensity profile in the rat cortex obtained in a previous study. We show that wavelength selectivity improves the individual addressability of the floating stimulators, thus increasing the number of devices that can be implanted in close proximity to each other.

  9. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  10. The emerging roles of clusterin on reduction of both blood retina barrier breakdown and neural retina damage in diabetic retinopathy.

    Science.gov (United States)

    Zhang, Conghui; Nie, Jing; Feng, Le; Luo, Wentao; Yao, Jun; Wang, Fang; Wang, Hao

    2016-04-01

    Previous proteomic studies revealed that intravitreous clusterin was decreased in diabetic retinopathy (DR) patients. We explored the role of clusterin in reduction of both blood retina barrier (BRB) breakdown and neural retina damage in early DR. Immunofluorescent staining of proliferated diabetic retinopathy (PDR) membranes was performed to detect endogenous clusterin, and intravitreous injection of clusterin (CLU group) or PBS (DR group) to streptozotocin-induced diabetic rats was conducted. Both qPCR and immunofluorescent staining were employed to investigate tight junction (TJ) protein. Fundus fluorescein angiography (FFA) and electroretinogram (ERG) were examined. Finally, HE and TUNEL stainings were used for neural retina assessment. Clusterin was expressed in the endothelial cells of PDR membranes. The expressions of several TJ protein genes were decreased in the retina of DR group (pretina showed that both dropouts and apoptotic death of neural retina cells in diabetic rats were attenuated in CLU group. Clusterin had a promising role in reducing both BRB breakdown and neural retina damage under high glucose; the mechanism might be keeping TJ protein integrated and maintaining anti-apoptosis in early diabetic rats.

  11. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  12. Damage to fetal bovine ovarian tissue caused by cryoprotectant exposure and vitrification is mitigated during tissue culture.

    Science.gov (United States)

    Mouttham, Lara; Fortune, Joanne E; Comizzoli, Pierre

    2015-08-01

    The objective of this study is to characterize the impact of exposure to cryoprotectants followed by vitrification on primordial follicle survival and activation using a fetal bovine model. In the first study, fetal bovine cortical pieces were exposed to cryoprotectants with or without sucrose and cultured up to 7 days in the presence or absence of insulin. In the second study, cortical pieces were exposed to cryoprotectants with or without sucrose, vitrified, and cultured up to 7 days after warming in the presence or absence of insulin. Viability and morphology of follicles, as well as proliferation and/or DNA repair in ovarian tissue were analyzed. When compared to non-exposed controls, normal follicular morphology was affected in groups exposed to cryoprotectants only immediately post-exposure and after 1 day of culture, but improved by day 3 and did not significantly differ by day 7. Similarly, normal follicular morphology was compromised in vitrified groups after warming and on day 1 compared to controls, but improved by days 3 and 7. Proliferation and/or DNA repair in ovarian tissue was not affected by vitrification in this model. Cryoprotectant exposure and vitrification of ovarian tissue did not impair the activation of primordial follicles in response to insulin, although activation was delayed relative to non-exposed controls. Interestingly, sucrose had no noticeable protective effect. Vitrified fetal bovine ovarian tissue has the intrinsic capacity to mitigate the immediate damage to primordial follicles' morphology and retains the capacity to activate. These findings provide a basis for a successful cryopreservation protocol for ovarian cortical tissue in other species including humans.

  13. Missing in action-The meaning of cell death in tissue damage and inflammation.

    Science.gov (United States)

    Muñoz, Luis E; Leppkes, Moritz; Fuchs, Tobias A; Hoffmann, Markus; Herrmann, Martin

    2017-11-01

    Billions of cells die every day in higher organisms as part of the normal process of tissue homeostasis. During special conditions like in development, acute infections, mechanical injuries, and immunity, cell death is a common denominator and it exerts profound effects in the outcome of these scenarios. To prevent the accumulation of aged, superfluous, infected, damaged and dead cells, professional phagocytes act in a rapid and efficient manner to clear the battle field and avoid spread of the destruction. Neutrophils are the most abundant effector immune cells that extravasate into tissues and can turn injured tissues into gory battle fields. In peace times, neutrophils tend to patrol tissues without provoking inflammatory reactions. We discuss in this review actual and forgotten knowledge about the meaning of cell death during homeostatic processes and drive the attention to the importance of the action of neutrophils during patrolling and for the maintenance or recovery of the homeostatic state once the organism gets attacked or injured, respectively. In this fashion, we disclose several disease conditions that arise as collateral damage of physiological responses to death. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  15. Predictive analysis of thermal distribution and damage in thermotherapy on biological tissue

    Science.gov (United States)

    Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2007-05-01

    The use of optical techniques is increasing the possibilities and success of medical praxis in certain cases, either in tissue characterization or treatment. Photodynamic therapy (PDT) or low intensity laser treatment (LILT) are two examples of the latter. Another very interesting implementation is thermotherapy, which consists of controlling temperature increase in a pathological biological tissue. With this method it is possible to provoke an improvement on specific diseases, but a previous analysis of treatment is needed in order for the patient not to suffer any collateral damage, an essential point due to security margins in medical procedures. In this work, a predictive analysis of thermal distribution in a biological tissue irradiated by an optical source is presented. Optical propagation is based on a RTT (Radiation Transport Theory) model solved via a numerical Monte Carlo method, in a multi-layered tissue. Data obtained are included in a bio-heat equation that models heat transference, taking into account conduction, convection, radiation, blood perfusion and vaporization depending on the specific problem. Spatial-temporal differential bio-heat equation is solved via a numerical finite difference approach. Experimental temperature distributions on animal tissue irradiated by laser radiation are shown. From thermal distribution in tissue, thermal damage is studied, based on an Arrhenius analysis, as a way of predicting harmful effects. The complete model can be used for concrete treatment proposals, as a way of predicting treatment effects and consequently decide which optical source parameters are appropriate for the specific disease, mainly wavelength and optical power, with reasonable security margins in the process.

  16. Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury.

    Science.gov (United States)

    Diaz-Ruiz, Araceli; Salgado-Ceballos, Hermelinda; Montes, Sergio; Guizar-Sahagún, Gabriel; Gelista-Herrera, Noemi; Mendez-Armenta, Marisela; Diaz-Cintra, Sofia; Ríos, Camilo

    2011-03-01

    After spinal cord injury (SCI), a complex cascade of pathophysiological processes increases the primary damage. The inflammatory response plays a key role in this pathology. Recent evidence suggests that myeloperoxidase (MPO), an enzyme produced and released by neutrophils, is of special importance in spreading tissue damage. Dapsone (4,4'-diaminodiphenylsulfone) is an irreversible inhibitor of MPO. Recently, we demonstrated, in a model of brain ischemia/reperfusion, that dapsone has antioxidant, antiinflammatory, and antiapoptotic effects. The effects of dapsone on MPO activity, lipid peroxidation (LP) processes, motor function recovery, and the amount of spared tissue were evaluated in a rat model of SCI. MPO activity had increased 24.5-fold 24 hr after SCI vs. the sham group, and it had diminished by 38% and 19% in the groups treated with dapsone at 3 and 5 hr after SCI, respectively. SCI increased LP by 45%, and this increase was blocked by dapsone. In rats treated with dapsone, a significant motor function recovery (Basso-Beattie-Bresnahan score, BBB) was observed beginning during the first week of evaluation and continuing until the end of the study. Spontaneous recovery 8 weeks after SCI was 9.2 ± 1.12, whereas, in the dapsone-treated groups, it reached 13.6 ± 1.04 and 12.9 ± 1.17. Spared tissue increased by 42% and 33% in the dapsone-treated groups (3 and 5 hr after SCI, respectively) vs. SCI without treatment. Dapsone significantly prevented mortality. The results show that inhibition of MPO by dapsone significantly protected the spinal cord from tissue damage and enhanced motor recovery after SCI. Copyright © 2011 Wiley-Liss, Inc.

  17. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  18. Neural electrode resilience against dielectric damage may be improved by use of highly doped silicon as a conductive material.

    Science.gov (United States)

    Caldwell, Ryan; Sharma, Rohit; Takmakov, Pavel; Street, Matthew G; Solzbacher, Florian; Tathireddy, Prashant; Rieth, Loren

    2018-01-01

    Dielectric damage occurring in vivo to neural electrodes, leading to conductive material exposure and impedance reduction over time, limits the functional lifetime and clinical viability of neuroprosthetics. We used silicon micromachined Utah Electrode Arrays (UEAs) with iridium oxide (IrOx) tip metallization and parylene C dielectric encapsulation to understand the factors affecting device resilience and drive improvements. In vitro impedance measurements and finite element analyses were conducted to evaluate how exposed surface area of silicon and IrOx affect UEA properties. Through an aggressive in vitro reactive accelerated aging (RAA) protocol, in vivo parylene degradation was simulated on UEAs to explore agreement with our models. Electrochemical properties of silicon and other common electrode materials were compared to help inform material choice in future neural electrode designs. Exposure of silicon on UEAs was found to primarily affect impedance at frequencies >1kHz, while characteristics at 1 kHz and below were largely unchanged. Post-RAA impedance reduction of UEAs was mitigated in cases where dielectric damage was more likely to expose silicon instead of IrOx. Silicon was found to have a per-area electrochemical impedance >10×higher than many common electrode materials regardless of doping level and resistivity, making it best suited for use as a low-shunting conductor. Non-semiconductor electrode materials commonly used in neural electrode design are more susceptible to shunting neural interface signals through dielectric defects, compared to highly doped silicon. Strategic use of silicon and similar materials may increase neural electrode robustness against encapsulation failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  20. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Science.gov (United States)

    Beltran, Nohra E.; Garcia, Laura E.; Garcia-Lorenzana, Mario

    2013-01-01

    The gastric mucosa ischemic tissular damage plays an important role in critical care patients' outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine). The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10%) for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (P < 0.01). Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia. PMID:23841094

  1. Effect of propolis feeding on rat tissues damaged by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Seo, Eul Won [Andong National Univ., Andong (Korea, Republic of); Ji, Tae Jeong [Kaya Univ., Goryeong (Korea, Republic of)

    2007-06-15

    Present study aimed to investigate the radioprotective effects of propolis feeding on rat tissues damaged by X-ray irradiation. It was shown that the number of white blood cell in X-ray irradiated group supplemented with propolis increased as much to those of the control group and also the GOT activities among the blood components were decreased after propolis feeding. The mineral contents such as Mg, Fe, Ca, Mn, Cu, Mo, Ni, As in liver were increased as compared with those of the control group but maintained lower level than those of only irradiated groups, implying that the propolis feeding elevated the recovery capability of white blood cell effectively and propolis have a potential resistance to cell damage by X-ray. According to histological observations of the testis, intestine and liver tissues which are irradiated after feeding propolis, the numbers of damaged undifferentiated cells were decreased in testis and the shape of the goblet cells and inner and outer muscular layers in intestine were restored to the original state and the hepatocytes and interlobular veins were shown intact in liver, suggesting that propolis has a potential capacity to restore cell shapes or resist deformation of cell.

  2. Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available Several innate and adaptive immune cell types participate in ischemia/reperfusion induced tissue injury. Amongst them, platelets have received little attention as contributors in the process of tissue damage after ischemia reperfusion (I/R injury. It is currently unknown whether platelets participate through the immunologically important molecules including, CD40 and when activated, CD154 (CD40L, in the pathogenesis of I/R injury. We hypothesized that constitutive expression of CD40 and activation-induced expression of CD154 on platelets mediate local mesenteric and remote lung tissue damage after I/R injury. Wild type (WT; C57BL/6J, CD40 and CD154 deficient mice underwent mesenteric ischemia for 30 minutes followed by reperfusion for 3 hours. WT mice subjected to mesenteric I/R injury displayed both local intestinal and remote lung damage. In contrast, there was significantly less intestinal damage and no remote lung injury in CD40 and CD154 deficient mice when compared to WT mice. Platelet-depleted WT mice transfused with platelets from CD40 or CD154 deficient mice failed to reconstitute remote lung damage. In contrast, when CD40 or CD154 deficient mice were transfused with WT platelets lung tissue damage was re-established. Together, these findings suggest that multiple mechanisms are involved in local and remote tissue injury and also identify platelet-expressed CD40 and/or CD154 as mediators of remote tissue damage.

  3. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    Science.gov (United States)

    Montero, Juan A.; Sanchez-Fernandez, Cristina; Lorda-Diez, Carlos I.; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration. PMID:27752097

  4. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  5. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  6. Vibration Based Damage Assessment of a Cantilever using a Neural Network

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated.......In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated....

  7. A Study of the Therapeutic Effects of Vitamin E on Testicular Tissue Damage Caused by Fluoxetine

    Directory of Open Access Journals (Sweden)

    Jalili Tohid

    2014-04-01

    Full Text Available Objective: Fluoxetine is widely used in the treatment of neurological disorders. Hence, considering the adverse effects of this drug on the endocrine axes of the body is very important. Fluoxetine has been shown to cause significant changes in testicular tissue structure and sex hormones in rats. It seems that antioxidant compounds such as vitamin E can reduce free radicals and inhibit these changes. Therefore, the aim of this study is to investigate the therapeutic effects of vitamin E on testicular tissue damage caused by fluoxetine use. Materials and Methods: In the present study, 40 Wistar rats (weight = 250 ± 10 gr were randomly divided into 4 groups; control group that received normal saline (with intraperitoneal (IP method, fluoxetine group (n = 10 that received 10 mg/kg of fluoxetine (IP, vitamin E group (n = 10 that received 100 mg/kg of vitamin E (IP, and the treatment group that received both vitamin E (100 mg/kg and fluoxetine (10 mg/kg for 28 days. On the 28th day of the study testis tissue was removed and sent to the pathology lab and blood samples were taken for analyzing of testosterone and total antioxidant capacity. Results: The highest testosterone levels are related to the control group and the lowest levels are related to the fluoxetine receiving group. Significant differences were observed between sperm density in the seminiferous tubes, spermatogonia cells, and primary spermatocyte, and leydig and sertoli cells in the experimental groups compared to the control group after a 28-day period. Conclusion: Fluoxetine can damage the leydig cells and decrease activity of testis and production of testosterone, but vitamin E can repair the leydig cells and reduce damages caused by fluoxetine.

  8. SU-E-T-168: Evaluation of Normal Tissue Damage in Head and Neck Cancer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ai, H [IU School of Medicine, Indianapolis, IN (United States); Zhang, H [Northwestern Memorial Hospital, Chicago, IL (United States)

    2014-06-01

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.

  9. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  10. Pulsed and Tissue Doppler Echocardiographic Changes in Hypertensive Crisis with and without End Organ Damage.

    Science.gov (United States)

    Garadah, Taysir; Kassab, Salah; Gabani, Saleh; Abu-Taleb, Ahmed; Abdelatif, Ahmed; Asef, Aysha; Shoroqi, Issa; Jamsheer, Anwer

    2011-01-01

    Hypertensive crisis (HC) is a common medical emergency associated with acute rise in arterial blood pressure that leads to end-organ damage (EOD). Therefore, it is imperative to find markers that may help in the prediction of EOD in acute hypertensive crisis. To assess the clinical presentations on admission; echocardiographic changes of pulsed and tissue Doppler changes in EOD patients compared with no EOD; and the risk of developing end organ damage for clinical and biochemical variables in hypertension crisis. The data of 241 patients with hypertensive crisis with systolic blood pressure (SBP) of >180 mmHg or diastolic blood pressure (DBP) >120 mmHg were extracted from patients files. Patients divided into hypertensive emergency (HE) with EOD, n = 62 and hypertensive urgency (HU) without EOD, n = 179. LV hypertrophy on ECG, echo parameters for wall thickness, left Ventricular mass index (LVMI), Body mass index (BMI), pulse Doppler ratio of early filling velocity E wave to late A wave (E/A) and ratio of E wave velocity to tissue Doppler Em to E wave (E/Em) were evaluated. Serum creatinine, hemoglobin, age, gender, body mass Index (BMI), history of diabetes mellitus, smoking, hypertension, stroke and hyperlipidemia were recorded. Multiple logistic regression analysis was applied for risk prediction of end organ damage of clinical variables. Patients with HE compared with HU were significantly older, with a significantly higher SBP on admission, high BMI and LVMI. Further there were significantly higher E/A ratio on Doppler echo and higher E/Em ratio on tissue Doppler echocardiogram. Multiple regression analysis with adjustment for age and sex shows positive predictive value with odds ratio of SBP on admission >220 mmHg of 1.98, serum creatinine > 120 µg/L of 1.43, older age > 60 year of 1.304, obesity (BMI ≥ 30) of 1.9, male gender of 2.26 and left ventricle hypertrophy on ECG of 1.92. The hemoglobin level, history of smoking, hyperlipidemia and DM were with no

  11. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    Science.gov (United States)

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  12. Fibroblasts Express Immune Relevant Genes and Are Important Sentinel Cells during Tissue Damage in Rainbow Trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, Carlo Gunnar; Lindenstrom, Thomas

    2010-01-01

    from E. coli, supernatant and debris from sonicated RTHDF cells. LPS was overall the strongest inducer of IL-1 beta, IL-8, IL-10, TLR-3 and TLR-9. IL-1 beta and IL-8 were already highly up regulated after 1 hour of LPS stimulation. Supernatant stimuli significantly increased the expression of IL-1 beta......, TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1 beta. Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly...... local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1 beta, IL-8 and TGF-beta already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker...

  13. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  15. Tissue damage caused by the intramuscular injection of long-acting penicillin.

    Science.gov (United States)

    Schanzer, H; Jacobson, J H

    1985-04-01

    In order to elucidate whether tissue damage produced on occasion by intramuscular injection of long-acting penicillin is due to accidental intra-arterial injection or vasospasm, two types of experiments were carried out in rabbits. In the first set of experiments, six New Zealand White rabbits were given intra-arterial injections of 0.4 mL of a mixture containing 300,000 U of penicillin G benzathine and 300,000 units of penicillin procaine per milliliter (Bicillin C-R) into the left femoral artery and 0.4 mL of normal saline into the right femoral artery as autocontrol. In a second set of experiments, 0.4 mL of the same penicillin preparation was injected in the space surrounding the left femoral artery in five New Zealand rabbits, and 0.4 mL of normal saline was injected in a similar fashion around the right femoral artery as control. The legs of the rabbits that received the intra-arterial injection of penicillin invariably developed ischemic manifestations. None of the legs of rabbits given intra-arterial injections of normal saline had pathologic manifestations. None of the rabbits that received the periarterial penicillin preparation or normal saline developed abnormalities. These results strongly suggest that the tissue damage produced by penicillin is secondary to the intra-arterial administration of the drug.

  16. Vitamin E prevents neutrophil accumulation and attenuates tissue damage in ischemic-reperfused human skeletal muscle.

    Science.gov (United States)

    Formigli, L; Ibba Manneschi, L; Tani, A; Gandini, E; Adembri, C; Pratesi, C; Novelli, G P; Zecchi Orlandini, S

    1997-07-01

    Neutrophil accumulation and the consequent production of oxygen-derived free radicals are involved in the pathogenesis of Ischemia-Reperfusion syndrome. In this study we investigated whether a treatment with Vitamin E, which has antioxidant properties, could attenuate the tissue damage by interfering with the influx of neutrophils within the ischemic and reperfused human skeletal muscle. To this purpose, patients undergoing aortic cross-clamping during the surgical repair of aortic abdominal aneurysm were studied as a model of ischemia-reperfusion of the lower limb muscles. Muscle biopsies from the right femoral quadriceps of patients not receiving and receiving Vitamin E pretreatment before surgery were taken: a) after the induction of anaesthesia, as control samples, and b) after a period of ischemia followed by 30 min of reperfusion. The tissue samples were either routinely processed for morphological study and immunohistochemical analysis to detect an altered expression of specific endothelial adhesion proteins, such as E-selectin and ICAM-1. The results obtained showed that Vitamin E administration was able to prevent the accumulation of neutrophils within the ischemic and reperfused muscle. This beneficial effect of Vitamin E was due to its ability to hinder the expression of E-selectin and ICAM-1, molecules known to increase the adhesiveness of endothelium to circulating neutrophils. After treatment with Vitamin E a marked attenuation of the reperfusion injury was also evident. In conclusion, Vitamin E treatment may be considered a valuable tool for protection against the ischemia-reperfusion damage of human skeletal muscle.

  17. Freezing/Thawing without Cryoprotectant Damages Native but not Decellularized Porcine Renal Tissue.

    Science.gov (United States)

    Poornejad, Nafiseh; Frost, Timothy S; Scott, Daniel R; Elton, Brinden B; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2015-01-01

    Whole organ decellularization of porcine renal tissue and recellularization with a patient's own cells would potentially overcome immunorejection, which is one of the most significant problems with allogeneic kidney transplantation. However, there are obstacles to achieving this goal, including preservation of the decellularized extracellular matrix (ECM), identifying the proper cell types, and repopulating the ECM before transplantation. Freezing biological tissue is the best option to avoid spoilage; however, it may damage the structure of the tissue or disrupt cellular membranes through ice crystal formation. Cryoprotectants have been used to repress ice formation during freezing, although cell toxicity can still occur. The effect of freezing/thawing on native (n = 10) and decellularized (n = 10) whole porcine kidneys was studied without using cryoprotectants. Results showed that the elastic modulus of native kidneys was reduced by a factor of 22 (P freezing/thawing or decellularization, while the elastic modulus for decellularized ECM was essentially unchanged by the freezing/thawing process (p = 0.0636). Arterial pressure, representative of structural integrity, was also reduced by a factor of 52 (P freezing/thawing for native kidneys, compared to a factor of 43 (P freezing/thawing decellularized structures. Both freezing/thawing and decellularization reduced stiffness, but the reductions were not additive. Investigation of the microstructure of frozen/thawed native and decellularized renal tissues showed increased porosity due to cell removal and ice crystal formation. Orcein and Sirius staining showed partial damage to elastic and collagen fibers after freezing/thawing. It was concluded that cellular damage and removal was more responsible for reducing stiffness than fibril destruction. Cell viability and growth were demonstrated on decellularized frozen/thawed and non-frozen samples using human renal cortical tubular epithelial (RCTE) cells over 12 d. No

  18. [Unreamed tibial nail in tibial shaft fractures with severe soft tissue damage. Initial clinical experiences].

    Science.gov (United States)

    Krettek, C; Haas, N; Schandelmaier, P; Frigg, R; Tscherne, H

    1991-11-01

    In a prospective study, since March 1989, 55 tibial shaft fractures have been treated with a new, unreamed solid tibial nail (UTN). This nail was initially designed as a temporary implant. The first 33 cases with second or third degree soft tissue damage were reviewed 6 months or more after the operation. Fractures were classified according to Müller: 6 type A (18.2%), 15 type B (45.5%), and 12 type C (36.7%). In 9 cases (27.3%), there was GII (n = 4) or GIII (n = 5) closed soft tissue damage according to Tscherne's classification. The 24 open fractures (72.7%) comprised 11 OII, 3 OIIIA and 10 OIIIB fractures (Gustilo classification). 24 patients (72.7%) were polytraumatized, the mean PTS (Hannover Polytrauma Score) was 18 points (range: 8-65 points). All fractures were stabilized without reaming. The implant diameter was 8mm (n = 14) or 9 mm (n = 19). Static locking was performed in 31 cases. Dermatofasciotomy was necessary because of compartment syndrome in 14 cases. In 1 grade IIIB open fracture soft tissue coverage was performed with a latissimus dorsi myocutaneous free flap 4 days after nailing. In 32 of the 33 cases the use of an additional cast or brace was not necessary during the follow-up treatment; 1 patient had a cast for 8 weeks for the treatment of accompanying injuries. Full weight-bearing was achieved in 5 cases within 3 weeks, in 16 cases within 12 weeks, and in 30 cases within 26 weeks. In 16 cases (48.5%) the interlocking screws were removed after 5-26 weeks (mean: 10 weeks).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Use of a Neural Network for Damage Detection and Location in a Steel Member

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    The paper explores the potential of using a Multilayer Perceptron (MLP) network trained with the Backpropagation algorithm for damage assessment of free-free cracked straight steel beam based on vibration measurements. The problem of damage assessment, i.e. detecting, locating and quantifying a d...

  20. Disease related tissue damage in rainbow trout versus infection of Atlantic salmon by Moritella viscosus – a comparative study

    DEFF Research Database (Denmark)

    phenomenon occurs in salmonid fishes, Atlantic salmon (Salmo salar) were infected with the gram-negative bacterium Moritella viscosus, the causative agent of winter ulcer. The clinical signs showing visible, punctual lesions in the skin make this pathogen unique in order to study local inflammation. Muscle......Physical damage of tissue and multiple kinds of infections are found to cause inflammatory reactions in mammals. Regardless of the difference between non-pathogenic induced tissue damage and a bacterial infection, many of the same pathways and genes are triggered. To determine if the same...... tissue was sampled from infected fish at 4, 7 and 14 days post infection. Samples were obtained from site of lesions and from locations without clinical signs of disease and lesions. To compare the inflammatory reactions from infected fish relative to sterile, mechanical tissue damage, rainbow trout...

  1. Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling.

    Science.gov (United States)

    Struzyna, Laura A; Adewole, Dayo O; Gordián-Vélez, Wisberty J; Grovola, Michael R; Burrell, Justin C; Katiyar, Kritika S; Petrov, Dmitriy; Harris, James P; Cullen, D Kacy

    2017-05-31

    Functional recovery rarely occurs following injury or disease-induced degeneration within the central nervous system (CNS) due to the inhibitory environment and the limited capacity for neurogenesis. We are developing a strategy to simultaneously address neuronal and axonal pathway loss within the damaged CNS. This manuscript presents the fabrication protocol for micro-tissue engineered neural networks (micro-TENNs), implantable constructs consisting of neurons and aligned axonal tracts spanning the extracellular matrix (ECM) lumen of a preformed hydrogel cylinder hundreds of microns in diameter that may extend centimeters in length. Neuronal aggregates are delimited to the extremes of the three-dimensional encasement and are spanned by axonal projections. Micro-TENNs are uniquely poised as a strategy for CNS reconstruction, emulating aspects of brain connectome cytoarchitecture and potentially providing means for network replacement. The neuronal aggregates may synapse with host tissue to form new functional relays to restore and/or modulate missing or damaged circuitry. These constructs may also act as pro-regenerative "living scaffolds" capable of exploiting developmental mechanisms for cell migration and axonal pathfinding, providing synergistic structural and soluble cues based on the state of regeneration. Micro-TENNs are fabricated by pouring liquid hydrogel into a cylindrical mold containing a longitudinally centered needle. Once the hydrogel has gelled, the needle is removed, leaving a hollow micro-column. An ECM solution is added to the lumen to provide an environment suitable for neuronal adhesion and axonal outgrowth. Dissociated neurons are mechanically aggregated for precise seeding within one or both ends of the micro-column. This methodology reliably produces self-contained miniature constructs with long-projecting axonal tracts that may recapitulate features of brain neuroanatomy. Synaptic immunolabeling and genetically encoded calcium

  2. Assessment of tissue damage due to percutaneous nephrolithotomy using serum concentrations of inflammatory mediators.

    Science.gov (United States)

    Pérez-Fentes, D; Gude, F; Blanco-Parra, M; Morón, E; Ulloa, B; García, C

    2015-06-01

    To determine the percutaneous nephrolithotomy (PCNL) effects on the tissues using the quantification of inflammatory mediators, and to assess their impact on the development of postoperative complications. Prospective observational non-randomized study on 40 patients underwent to PCNL. 50 patients with kidney stone who were treated by extracorporeal shock wave lithotripsy (ESWL) were used as control group. Interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP) were determined at baseline (T0: before treatment), and at 2, 6 and 24hours after (T1, T2 and T3). No relevant changes on IL-1β and TNF-α were found. IL-6 showed two peaks at 2 and 6hours post-PCNL (median 17.8 and 15.8 pg/mL, respectively). At 24hours CRP had reached its peak value (3.4mg/L). The group treated with ESWL no showed significant changes in any of the markers. The serum concentration of IL-6 and CRP at 24hours post-NLP is different depending on the occurrence of complications (P=.001 and P=.039, respectively). IL-6 showed a good predictive power for the development of complications (AUC .801). Tissue damage caused by the PCNL is low. This damage increases significantly in those cases showing postoperative complications. IL-6 at 24hours has been shown to be a good predictive tool for the development of complications. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Susceptibility to glaucoma damage related to age and connective tissue mutations in mice.

    Science.gov (United States)

    Steinhart, Matthew R; Cone-Kimball, Elizabeth; Nguyen, Cathy; Nguyen, Thao D; Pease, Mary E; Chakravarti, Shukti; Oglesby, Ericka N; Quigley, Harry A

    2014-02-01

    The purpose of this research was to study the effects of age and genetic alterations in key connective tissue proteins on susceptibility to experimental glaucoma in mice. We used mice haploinsufficient in the elastin gene (EH) and mice without both alleles of the fibromodulin gene (FM KO) and their wild type (WT) littermates of B6 and CD1 strains, respectively. FM KO mice were tested at two ages: 2 months and 12 months. Intraocular pressure (IOP) was measured by Tonolab tonometer, axial lengths and widths measured by digital caliper post-enucleation, and chronic glaucoma damage was measured using a bead injection model and optic nerve axon counts. IOP in EH mice was not significantly different from WT, but FM KO were slightly lower than their controls (p = 0.04). Loss of retinal ganglion cell (RGC) axons was somewhat, but not significantly greater in young EH and younger or older FM KO strains than in age-matched controls (p = 0.48, 0.34, 0.20, respectively, multivariable regression adjusting for IOP exposure). Older CD1 mice lost significantly more RGC axons than younger CD1 (p = 0.01, multivariable regression). The CD1 mouse strain showed age-dependence of experimental glaucoma damage to RGC in the opposite, and more expected, direction than in B6 mice in which older mice are more resistant to damage. Genetic alteration in two genes that are constituents of sclera, fibromodulin and elastin do not significantly affect RGC loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Tissue damage in kidney, adrenal glands and diaphragm following extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Gecit, Ilhan; Kavak, Servet; Oguz, Elif Kaval; Pirincci, Necip; Günes, Mustafa; Kara, Mikail; Ceylan, Kadir; Kaba, Mehmet; Tanık, Serhat

    2014-10-01

    This study was designed to investigate whether exposure to short-term extracorporeal shock wave lithotripsy (ESWL) produces histologic changes or induces apoptosis in the kidney, adrenal glands or diaphragm muscle in rats. The effect of shock waves on the kidney of male Wistar rats (n = 12) was investigated in an experimental setting using a special ESWL device. Animals were killed at 72 h after the last ESWL, and the tissues were stained with an in situ Cell Death Detection Kit, Fluorescein. Microscopic examination was performed by fluorescent microscopy. Apoptotic cell deaths in the renal tissue were not observed in the control group under fluorescent microscopy. In the ESWL group, local apoptotic changes were observed in the kidney in the area where the shock wave was focused. The apoptotic cell deaths observed in the adrenal gland of the control group were similar to those observed in the ESWL groups, and apoptosis was occasionally observed around the capsular structure. Apoptotic cell deaths in the diaphragm muscle were infrequently observed in the control group. Apoptosis in the ESWL group was limited to the mesothelial cells. This study demonstrated that serious kidney, adrenal gland and diaphragm muscles damage occurred following ESWL, which necessitated the removal of the organ in the rat model. It is recognized that the ESWL complications related to the kidney, adrenal gland and diaphragm muscles are rare and may be managed conservatively. © The Author(s) 2012.

  5. Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice.

    Directory of Open Access Journals (Sweden)

    Marina Burgos-Silva

    Full Text Available Acute and chronic kidney injuries (AKI and CKI constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs in an experimental model of nephrotoxicity induced by folic acid (FA in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation.

  6. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  7. Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network.

    Science.gov (United States)

    Vokhidov, Husan; Hong, Hyung Gil; Kang, Jin Kyu; Hoang, Toan Minh; Park, Kang Ryoung

    2016-12-16

    Automobile driver information as displayed on marked road signs indicates the state of the road, traffic conditions, proximity to schools, etc. These signs are important to insure the safety of the driver and pedestrians. They are also important input to the automated advanced driver assistance system (ADAS), installed in many automobiles. Over time, the arrow-road markings may be eroded or otherwise damaged by automobile contact, making it difficult for the driver to correctly identify the marking. Failure to properly identify an arrow-road marker creates a dangerous situation that may result in traffic accidents or pedestrian injury. Very little research exists that studies the problem of automated identification of damaged arrow-road marking painted on the road. In this study, we propose a method that uses a convolutional neural network (CNN) to recognize six types of arrow-road markings, possibly damaged, by visible light camera sensor. Experimental results with six databases of Road marking dataset, KITTI dataset, Málaga dataset 2009, Málaga urban dataset, Naver street view dataset, and Road/Lane detection evaluation 2013 dataset, show that our method outperforms conventional methods.

  8. Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Husan Vokhidov

    2016-12-01

    Full Text Available Automobile driver information as displayed on marked road signs indicates the state of the road, traffic conditions, proximity to schools, etc. These signs are important to insure the safety of the driver and pedestrians. They are also important input to the automated advanced driver assistance system (ADAS, installed in many automobiles. Over time, the arrow-road markings may be eroded or otherwise damaged by automobile contact, making it difficult for the driver to correctly identify the marking. Failure to properly identify an arrow-road marker creates a dangerous situation that may result in traffic accidents or pedestrian injury. Very little research exists that studies the problem of automated identification of damaged arrow-road marking painted on the road. In this study, we propose a method that uses a convolutional neural network (CNN to recognize six types of arrow-road markings, possibly damaged, by visible light camera sensor. Experimental results with six databases of Road marking dataset, KITTI dataset, Málaga dataset 2009, Málaga urban dataset, Naver street view dataset, and Road/Lane detection evaluation 2013 dataset, show that our method outperforms conventional methods.

  9. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVES: To assess levels of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine; 8-oxo-dG) and lipid peroxidation (4-hydroxy-2-nonenal; 4-HNE) in serum, synovial fluid and tissue of patients with inflammatory arthritis in relation to in vivo hypoxia levels, disease activity and angiogenic markers. METHODS: Oxygen levels in synovial tissue were assessed using an oxygen\\/temperature probe. Nuclear and cytoplasmic 8-oxo-dG and 4-HNE levels were assessed in synovial tissue from 23 patients by immunohistochemistry. 8-Oxo-dG and 4-HNE levels in serum and synovial fluid were determined using 8-oxo-dG and hexanoyl-Lys (HEL) adduct ELISAs, respectively. Serum vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) levels were also measured by ELISA. RESULTS: The median oxygen tension in synovial tissue was profoundly hypoxic at 19.35 mm Hg (2.5%). Nuclear 8-oxo-dG levels were significantly higher than nuclear 4-HNE levels in the lining and sublining layers (all p<0.001). In contrast, cytoplasmic 4-HNE levels were higher than cytoplasmic 8-oxo-dG levels in both cell layers (all p<0.001). Reduced in vivo oxygen tension correlated with high lipid peroxidation in synovial fluid (p=0.027; r=0.54) and tissue (p=0.004; r=0.58). Serum VEGF levels were positively correlated with cytoplasmic 4-HNE expression (p=0.05; r=0.43) and intensity (p=0.006; r=0.59) in the lining layer. Serum Ang2 levels were positively correlated with nuclear 4-HNE expression and intensity in both cell layers (all p < or = 0.05). DAS28-C-reactive protein was correlated with nuclear 4-HNE expression in the sublining layer (p=0.02; r=0.48) and DAS28-erythrocyte sedimentation rate was correlated with nuclear 4-HNE expression in both cell layers (p < or = 0.03). CONCLUSIONS: Lipid peroxidation is associated with low oxygen tension in vivo, disease activity and angiogenic marker expression in inflammatory arthritis.

  10. Autoantibodies produced at the site of tissue damage provide evidence of humoral autoimmunity in inclusion body myositis.

    Directory of Open Access Journals (Sweden)

    Arundhati Ray

    Full Text Available Inclusion body myositis (IBM belongs to a group of muscle diseases known as the inflammatory myopathies. The presence of antibody-secreting plasma cells in IBM muscle implicates the humoral immune response in this disease. However, whether the humoral immune response actively contributes to IBM pathology has not been established. We sought to investigate whether the humoral immune response in IBM both in the periphery and at the site of tissue damage was directed towards self-antigens. Peripheral autoantibodies present in IBM serum but not control serum recognized self-antigens in both muscle tissue and human-derived cell lines. To study the humoral immune response at the site of tissue damage in IBM patients, we isolated single plasma cells directly from IBM-derived muscle tissue sections and from these cells, reconstructed a series of recombinant immunoglobulins (rIgG. These rIgG, each representing a single muscle-associated plasma cell, were examined for reactivity to self-antigens. Both, flow cytometry and immunoblotting revealed that these rIgG recognized antigens expressed by cell lines and in muscle tissue homogenates. Using a mass spectrometry-based approach, Desmin, a major intermediate filament protein, expressed abundantly in muscle tissue, was identified as the target of one IBM muscle-derived rIgG. Collectively, these data support the view that IBM includes a humoral immune response in both the periphery and at the site of tissue damage that is directed towards self-antigens.

  11. Thymidine Kinase-Negative Herpes Simplex Virus 1 Can Efficiently Establish Persistent Infection in Neural Tissues of Nude Mice.

    Science.gov (United States)

    Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua

    2017-02-15

    Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised

  12. Investigations of the damage mechanisms during ultrashort pulse laser ablation of dental tissue

    Science.gov (United States)

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Kuznetsova, Julia; Homann, Christian; Huber, Heinz P.; Sroka, Ronald

    2015-07-01

    Several investigations of dental tissue ablation with ultrashort pulsed lasers suggest that these lasers enable precise and selective material removal and reduce the formation of micro cracks and thermal effects, when compared to ns-pulses. In this study, two damage mechanisms are presented occurring during ablation of dentin using a laser emitting pulses of a duration of 380 fs at a wavelength of 1040 nm. First, it was found that nano cracks appear around the craters after single fs-pulse ablation. These cracks are directed to the crater and cross the dentinal tubules. Transient investigation of the single fs-pulse ablation process by pump-probe microscopy suggest that the driving mechanism could be a pressure wave that is released after stress confinement. Second, squared ablation holes were created by moving the laser focus at scan speeds between 0.5 mm/s and 2.0 m/s and fluences up to 14 J/cm2. It was found that deep cracks appear at the edges of the squared holes, if the scan speed is about 0.5 m/s. The fluence has only a minor impact on the crack formation. The crack propagation was investigated in the depth using x-ray micro tomography and optical coherence tomography. It was found that these cracks appear in the depth down to the dental pulp. These findings suggest that fast scanning of the laser beam is the key for damage free processing using ultrashort pulse lasers. Then, ablation rates of about 2.5 - 3.5 mm3/min/W can be achieved in dentine with pulse durations of 380 fs.

  13. New tissue dissociation protocol for scaled-up production of neural stem cells in suspension bioreactors.

    Science.gov (United States)

    Sen, Arindom; Kallos, Michael S; Behie, Leo A

    2004-01-01

    The successful dissociation of mammalian neural stem cell (NSC) aggregates (neurospheres) into a single-cell suspension is an important procedure when expanding NSCs for clinical use, or when performing important assays such as clonal analyses. Until now, researchers have had to rely primarily on destructive mechanical methods such as trituration with a pipette tip to break apart the aggregates. In this study we report on a new chemical dissociation procedure that is efficient, cost effective, reproducible, and much less harmful to murine NSCs than both mechanical and enzymatic techniques. This method, involving the manipulation of environmental pH levels, resulted in 40% higher measured cell densities and 15-20% higher viabilities compared with mechanical dissociation. Moreover, chemical dissociation resulted in the production of significantly less cellular debris. Chemical dissociation was found to have no adverse effects on the long-term proliferation of the NSCs, which retained the ability to proliferate, form neurospheres, self-renew, and exhibit multipotentiality. This chemical method represents a new approach for the dissociation of tissues.

  14. 3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection

    Science.gov (United States)

    Goodwin, Thomas J.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

  15. Maternal Antiviral Immunoglobulin Accumulates in Neural Tissue of Neonates To Prevent HSV Neurological Disease

    Directory of Open Access Journals (Sweden)

    Yike Jiang

    2017-07-01

    Full Text Available While antibody responses to neurovirulent pathogens are critical for clearance, the extent to which antibodies access the nervous system to ameliorate infection is poorly understood. In this study on herpes simplex virus 1 (HSV-1, we demonstrate that HSV-specific antibodies are present during HSV-1 latency in the nervous systems of both mice and humans. We show that antibody-secreting cells entered the trigeminal ganglion (TG, a key site of HSV infection, and persisted long after the establishment of latent infection. We also demonstrate the ability of passively administered IgG to enter the TG independently of infection, showing that the naive TG is accessible to antibodies. The translational implication of this finding is that human fetal neural tissue could contain HSV-specific maternally derived antibodies. Exploring this possibility, we observed HSV-specific IgG in HSV DNA-negative human fetal TG, suggesting passive transfer of maternal immunity into the prenatal nervous system. To further investigate the role of maternal antibodies in the neonatal nervous system, we established a murine model to demonstrate that maternal IgG can access and persist in neonatal TG. This maternal antibody not only prevented disseminated infection but also completely protected the neonate from neurological disease and death following HSV challenge. Maternal antibodies therefore have a potent protective role in the neonatal nervous system against HSV infection. These findings strongly support the concept that prevention of prenatal and neonatal neurotropic infections can be achieved through maternal immunization.

  16. Expression of the synaptic vesicle proteins VAMPs/synaptobrevins 1 and 2 in non-neural tissues

    DEFF Research Database (Denmark)

    Ralston, E; Beushausen, S; Ploug, Thorkil

    1994-01-01

    for Vp/Syb 2 detected a protein in the endoplasmic reticulum-Golgi area of skeletal muscle. Thus Vp/Sybs 1 and 2 are not restricted to the nervous system but appear to be co-expressed with cellubrevin in many different tissues. This redundancy of Vp/Sybs in a single cell may be required to control......The VAMPs/synaptobrevins (Vp/Sybs) are small integral membrane proteins. Two isoforms, Vp/Syb 1 and Vp/Syb 2, are considered to be specific to neural tissue. They are associated with synaptic vesicles and are believed to play an important role in neurotransmitter release. A third isoform......, cellubrevin, has recently been found in non-neural tissues. We now report that the distribution of Vp/Syb 1 and Vp/Syb 2 is wider than previously thought. RNA transcripts for both Vp/Syb 1 and Vp/Syb 2 were found in rat skeletal muscle and in several other rat non-neural tissues, and antibodies specific...

  17. Influence of estrogen on markers of muscle tissue damage following eccentric exercise.

    Science.gov (United States)

    Carter, A; Dobridge, J; Hackney, A C

    2001-01-01

    This study tested the hypothesis that estrogen levels of women influences the development of a muscle-tissue damage (creatine kinase, CK) marker and delayed onset muscle soreness (DOMS) following eccentric exercise. Seventeen oral contraceptive (OC) users and ten eumenorrheic (EU) subjects completed a 30-min downhill running bout at approximately 60% VO2max. The OC completed the exercise during the mid-luteal phase (day 22.9 +/- 1.5; high estrogen) while the EU did their exercise in the mid-follicular phase (day 9.6 +/- 4.4; low estrogen) of the menstrual cycle, respectively. The CK activity and DOMS were assessed pre-exercise, immediately post-, 24, 48 and 72 h post-exercise. ANOVA results indicated that there was a significant increase in CK activity in response to the downhill run (p < 0.001), and the interaction of group x time was significantly different (p < 0.01). The OC group had lower CK at 72 h post-exercise than did the EU group. Pre-exercise estrogen levels correlated with the overall mean CK (r = -0.43, p < 0.05) and 72 h (r = -0.38, p < 0.05) responses, respectively. Exercise caused an increase in DOMS in both groups (p < 0.001); but, no significant interaction was observed. These findings suggest that elevated estrogen levels have a protective effect on muscle tissue following eccentric exercise. The mechanism of this protective effect is unclear but may be related to the anti-oxidant characteristics and membrane stability properties associated with estrogen and its derivatives.

  18. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2016-01-01

    Full Text Available It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.

  19. BDNF Increases Survival and Neuronal Differentiation of Human Neural Precursor Cells Cotransplanted with a Nanofiber Gel to the Auditory Nerve in a Rat Model of Neuronal Damage

    Directory of Open Access Journals (Sweden)

    Yu Jiao

    2014-01-01

    Full Text Available Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM. Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel, in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN.

  20. Tissue Damage Markers after a Spinal Manipulation in Healthy Subjects: A Preliminary Report of a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    A. Achalandabaso

    2014-01-01

    Full Text Available Spinal manipulation (SM is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of movement (ROM. In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a placebo SM (control group; n=10, a single lower cervical manipulation (cervical group; n=10, and a thoracic manipulation (n=10. Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK, lactate dehydrogenase (LDH, C-reactive protein (CRP, troponin-I, myoglobin, neuron-specific enolase (NSE, and aldolase were determined in samples. Statistical analysis was performed through a 3×3 mixed-model ANOVA. Neither cervical manipulation nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in healthy subjects.

  1. DNA damage and metal accumulation in four tissues of feral Octopus vulgaris from two coastal areas in Portugal.

    Science.gov (United States)

    Raimundo, Joana; Costa, Pedro M; Vale, Carlos; Costa, Maria Helena; Moura, Isabel

    2010-10-01

    The alkaline comet assay has been employed for the first time to estimate the basal DNA damage in the digestive gland, gills, kidney and gonads of Octopus vulgaris. Octopuses were captured in two coastal areas adjacent to the cities of Matosinhos (N) and Olhão (S), Portugal. The area of Matosinhos is influenced by discharges of the Douro River, city of Porto, industries and intensive agriculture, while Olhão is an important fisheries port. Previous works point to contrasting metal availability in the two coastal areas. Among the analysed tissues digestive gland presented the highest levels of Zn, Cu, Cd and Pb. Tissues of specimens from Matosinhos exhibited high levels of Cd and from Olhão enhanced Pb concentrations. The DNA damages in digestive gland, gills and kidney were more accentuated in specimens from Matosinhos than from Olhão, suggesting a stronger effect of contaminants. Elevated strand breakages were registered in digestive gland, recognised for its ability to store and detoxify accumulated metals. The DNA damages in kidney, gills and gonads were lower, reflecting reduced metal accumulation or efficient detoxification. The broad variability of damages in the three tissues may also mirror tissue function, specific defences to genotoxicants and cell-cycle turnover. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Metformin ameliorates podocyte damage by restoring renal tissue nephrin expression in type 2 diabetic rats.

    Science.gov (United States)

    Zhai, Limin; Gu, Junfei; Yang, Di; Hu, Wen; Wang, Wei; Ye, Shandong

    2017-05-01

    Previous studies found that metformin provided some renoprotection for diabetic renal damage. In the present study, we evaluated the effects of different doses of metformin on the expression of renal tissue nephrin in type 2 diabetes mellitus (T2DM) model rats and the possible mechanism underlying its protective effect in kidney podocytes. A high-fat diet combined with a low dose of streptozotocin was used to induce T2DM model rats. Diabetic rats were treated with 150, 300, or 500 mg/kg metformin for 8 weeks. At the end of the study, urine and blood samples were collected for measurement of different indices. Light microscopy and transmission electron microscopy were used to identify morphological changes. Renal expression of nephrin protein was assayed by immunohistochemical staining, whereas real-time polymerase chain reaction was used to detect renal nephrin (Nphs1) mRNA expression. Metformin treatment of T2DM rats produced dose-dependent significant reductions in urinary albumin and nephrin concentrations, glomerular basement membrane thickness (GBMT), and the foot process fusion rate (FPFR) compared with control T2DM model rats, whereas renal expression of nephrin protein and Nphs1 mRNA was dose-dependently increased by metformin treatment. Metformin protects kidney podocytes in T2DM model rats by dose-dependently adjusting renal nephrin expression. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  3. Skin and soft tissue artifacts due to postmortem damage caused by rodents.

    Science.gov (United States)

    Tsokos, M; Matschke, J; Gehl, A; Koops, E; Püschel, K

    1999-09-30

    Five cases of postmortem bite-injuries inflicted by rodents are presented (five males between 41 and 89 years; three cases caused by mice, one case by rats, one case of possible mixed rodent activity by rats and mice). The study presents a spectrum of phenomenological aspects of postmortem artifacts due to rodent activity to fresh skin and soft tissue: the majority of the injuries have a circular appearance. The wound margins are finely serrated with irregular edges and circumscribed 1-2 mm intervals within, partly showing protruding indentations up to 5 mm. Distinct parallel cutaneous lacerations deriving from the biting action of the upper and lower pairs of the rodents incisors are diagnostic for tooth marks of rodent origin but cannot always be found. No claw-induced damage can be found in the skin beyond the wound margins. Areas involved in the present study were: exposed and unprotected parts of the body, such as eyelids, nose and mouth (representing moist parts of the face); and the back of the hands. Postmortem rodent activity may occasionally be expected on clothed and therefore protected parts of the body. The phenomenon of postmortem rodent activity to human bodies can be found indoors especially under circumstances of low socioeconomic settings; outdoors this finding is particularly observed among fatalities among homeless people.

  4. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  5. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  6. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    Science.gov (United States)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the

  7. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  8. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  9. Application of Artificial Neural Network for Damage Detection in Planetary Gearbox of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Marcin Strączkiewicz

    2016-01-01

    Full Text Available In the monitoring process of wind turbines the utmost attention should be given to gearboxes. This conclusion is derived from numerous summary papers. They reveal that, on the one hand, gearboxes are one of the most fault susceptible elements in the drive-train and, on the other, the most expensive to replace. Although state-of-the-art CMS can usually provide advanced signal processing tools for extraction of diagnostic information, there are still many installations, where the diagnosis is based simply on the averaged wideband features like root-mean-square (RMS or peak-peak (PP. Furthermore, for machinery working in highly changing operational conditions, like wind turbines, those estimators are strongly fluctuating, and this fluctuation is not linearly correlated to operation parameters. Thus, the sudden increase of a particular feature does not necessarily have to indicate the development of fault. To overcome this obstacle, it is proposed to detect a fault development with Artificial Neural Network (ANN and further observation of linear regression parameters calculated on the estimation error between healthy and unknown condition. The proposed reasoning is presented on the real life example of ring gear fault in wind turbine’s planetary gearbox.

  10. Damage of rat liver tissue caused by repeated and sustained +Gz exposure and the mechanism thereof

    Directory of Open Access Journals (Sweden)

    Wen-bing LI

    2014-03-01

    Full Text Available Objective  To explore the mechanisms of positive acceleration (+Gz on the damage of rat liver tissue and the effect of +Gz on the expression of JNK/c-Jun in liver cells. Methods  Twenty four male Wistar rats were randomly divided into 4 groups (n=6: control, +2Gz, +6Gz and +10Gz group. With prone position, the rats in control group were fixed to the turning arm of centrifuge with head towards the axis for 5 minutes. The fixation method in +2Gz, +6Gz and +10Gz group was the same as in the control group. The increase rate of acceleration was 1G/s with a peak-time of 3 minutes, and each +Gz exposure repeated 5 times with an interval of 30 minutes. HE staining was used to observe the morphological changes of liver tissue, fluorescence real-time quantitative PCR to detect the expression of hepatic c-Jun mRNA, and Western blotting to detect the hepatic protein expression of p-c-Jun, c-Jun, p-JNK and JNK. Plasma aspartate aminotransferase (AST and alanine aminotransferase (ALT were determined. Results  The levels of serum ALT and AST increased significantly in +6Gz and, especially, the +10Gz group than in control group and +2Gz group (P<0.05. The same situation also existed in the increase of c-Jun mRNA expression (P<0.05. Hepatic c-jun and p-c-Jun (c-Jun activated form protein expression increased with the increase of G value. Compared with control group, no change was found in JNK protein expression in the other three groups, but the expression of p-JNK (activated form of JNK increased in +6Gz and +10Gz groups (P<0.05. HE staining showed the disorganized liver cells with irregular shapes, the unclear cell gap and the vacuolar changes in +6Gz and +10Gz groups. Conclusions  Repeated and sustained +Gz may cause enhanced expression of c-Jun/ p-c-Jun and p-JNK in hepatic cells. JNK/c-Jun signaling pathway may play an important role in the process of hepatic stress injury. DOI: 10.11855/j.issn.0577-7402.2014.03.15

  11. Brain tissue aspiration neural tube defect Aspiração de tecido cerebral em casos de defeitos de fechamento do tubo neural

    Directory of Open Access Journals (Sweden)

    Luiz Cesar Peres

    2005-09-01

    Full Text Available The study aimed to find out how frequent is brain tissue aspiration and if brain tissue heterotopia could be found in the lung of human neural tube defect cases. Histological sections of each lobe of both lungs of 22 fetuses and newborn with neural tube defect were immunostained for glial fibrillary acidic protein (GFAP. There were 15 (68.2% females and 7 (31.8% males. Age ranged from 18 to 40 weeks of gestation (mean= 31.8. Ten (45.5% were stillborn, the same newborn, and 2 (9.1% were abortuses. Diagnosis were: craniorrhachischisis (9 cases, 40.9%, anencephaly (8 cases, 36,4%, ruptured occipital encephalocele and rachischisis (2 cases, 9.1% each, and early amniotic band disruption sequence (1 case, 4.5%. Only one case (4.5% exhibited GFAP positive cells inside bronchioles and alveoli admixed to epithelial amniotic squames. No heterotopic tissue was observed in the lung interstitium. We concluded that aspiration of brain tissue from the amniotic fluid in neural tube defect cases may happen but it is infrequent and heterotopia was not observed.O objetivo do estudo foi identificar qual a freqüência de aspiração de tecido cerebral e a existência de heterotopia nos pulmões de casos humanos de defeito de fechamento do tubo neural através da reação imuno-histoquímica para proteína fibrilar glial ácida (GFAP em cortes histológicos de todos os lobos de ambos os pulmões de 22 casos de fetos e neonatos com defeito de fechamento do tubo neural. Havia 15 casos femininos (68,2% e 7 masculinos (31,8%, com idade gestacional variando de 18 a 40 semanas (média= 31,8, sendo natimortos e neomortos 10 (45,5% cada e 2 (9,1% abortos. Os diagnósticos foram: Craniorraquisquise (9 casos, 40,9%, anencefalia (8 casos, 36,4%, encefalocele occipital rota e raquisquise (2 casos, 9,1% e 1 (4,5%caso de seqüência de disruptura amniótica precoce. Somente 1 caso (4,5% apresentou células positivas dentro de bronquíolos e alvéolos em meio a células epiteliais

  12. Correlation of renal complications with extent and progression of tissue damage in electrical burns

    Directory of Open Access Journals (Sweden)

    Chauhan D

    2004-01-01

    Full Text Available Electrical injuries due to high-tension voltage (>1000 volts cause destruction at the point of contact with massive necrosis of deeper structures such as muscles, vessels and nerves. Rhabdomyolysis due to massive breakdown of skeletal muscles may lead to acute renal failure secondary to myoglobinuria. The study was undertaken to observe the correlation of renal complications with extent and progression of tissue damage in high-tension voltage electrical burns. Renal biochemical parameters as predictors of acute renal failure were also studied. Thirty two patients of high tension voltage electrical burn injuries presenting during one year period 1-1-2001 to 31-12-2001 were studied. Low-tension voltage electrical injuries (< 1000 volts mimic thermal burns were excluded from the study. The electrical wound assessment and the renal biochemical parameters were done daily for the first seven days and then on alternate days for another seven days. Assessment of progression of wounds and correlation with the renal biochemical parameters was done. Patients who died following electrical burns were subjected to autopsy and histopathological examination of both kidneys. Out of the thirty-two patients, six (18.75% went into acute renal failure. Five out of these six patients died because of renal failure (mortality rate 83.33%. There was definite progression of electric burn wounds. There was no correlation between progression of electrical burn wounds and acute renal failure. Serum creatinine was found to be the most important biochemical parameter as a prognostic indicator of acute renal failure.

  13. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

    Science.gov (United States)

    Kooi, Thijs; van Ginneken, Bram; Karssemeijer, Nico; den Heeten, Ard

    2017-03-01

    It is estimated that 7% of women in the western world will develop palpable breast cysts in their lifetime. Even though cysts have been correlated with risk of developing breast cancer, many of them are benign and do not require follow-up. We develop a method to discriminate benign solitary cysts from malignant masses in digital mammography. We think a system like this can have merit in the clinic as a decision aid or complementary to specialized modalities. We employ a deep convolutional neural network (CNN) to classify cyst and mass patches. Deep CNNs have been shown to be powerful classifiers, but need a large amount of training data for which medical problems are often difficult to come by. The key contribution of this paper is that we show good performance can be obtained on a small dataset by pretraining the network on a large dataset of a related task. We subsequently investigate the following: (a) when a mammographic exam is performed, two different views of the same breast are recorded. We investigate the merit of combining the output of the classifier from these two views. (b) We evaluate the importance of the resolution of the patches fed to the network. (c) A method dubbed tissue augmentation is subsequently employed, where we extract normal tissue from normal patches and superimpose this onto the actual samples aiming for a classifier invariant to occluding tissue. (d) We combine the representation extracted using the deep CNN with our previously developed features. We show that using the proposed deep learning method, an area under the ROC curve (AUC) value of 0.80 can be obtained on a set of benign solitary cysts and malignant mass findings recalled in screening. We find that it works significantly better than our previously developed approach by comparing the AUC of the ROC using bootstrapping. By combining views, the results can be further improved, though this difference was not found to be significant. We find no significant difference between

  14. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.

    Science.gov (United States)

    Lai, Bi-Qin; Che, Ming-Tian; Du, Bao-Ling; Zeng, Xiang; Ma, Yuan-Huan; Feng, Bo; Qiu, Xue-Chen; Zhang, Ke; Liu, Shu; Shen, Hui-Yong; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-12-01

    Severe spinal cord injury (SCI) causes loss of neural connectivity and permanent functional deficits. Re-establishment of new neuronal relay circuits after SCI is therefore of paramount importance. The present study tested our hypothesis if co-culture of neurotrophin-3 (NT-3) gene-modified Schwann cells (SCs, NT-3-SCs) and TrkC (NT-3 receptor) gene-modified neural stem cells (NSCs, TrkC-NSCs) in a gelatin sponge scaffold could construct a tissue engineering neural network for re-establishing an anatomical neuronal relay after rat spinal cord transection. Eight weeks after transplantation, the neural network created a favorable microenvironment for axonal regeneration and for survival and synaptogenesis of NSC-derived neurons. Biotin conjugates of cholera toxin B subunit (b-CTB, a transneuronal tracer) was injected into the crushed sciatic nerve to label spinal cord neurons. Remarkably, not only ascending and descending nerve fibers, but also propriospinal neurons, made contacts with b-CTB positive NSC-derived neurons. Moreover, b-CTB positive NSC-derived neurons extended their axons making contacts with the motor neurons located in areas caudal to the injury/graft site of spinal cord. Further study showed that NT-3/TrkC interactions activated the PI3K/AKT/mTOR pathway and PI3K/AKT/CREB pathway affecting synaptogenesis of NSC-derived neurons. Together, our findings suggest that NT-3-mediated TrkC signaling plays an essential role in constructing a tissue engineering neural network thus representing a promising avenue for effective exogenous neuronal relay-based treatment for SCI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Design of endoscopic micro-robotic end effectors: safety and performance evaluation based on physical intestinal tissue damage characteristics.

    Science.gov (United States)

    Kim, Young-Tae; Kim, Dae-Eun; Yang, Sungwook; Yoon, Eui-Sung

    2014-06-01

    During the last several years, legged locomotive mechanism has been considered as one of the main self-propelling mechanisms for future endoscopic microrobots due to its superior propulsion efficiency of an endoscopic microrobot inside the intestinal track. Nevertheless, its clinical application has been largely limited since the legged locomotive mechanism utilizes an end effector which has a sharp tip to generate sufficient traction by physically penetrating and interlocking with the intestinal tissue. This can cause excessive physical tissue damage or even complete perforation of the intestinal wall that can lead to abdominal inflammation. Hence, in this work two types of new end effectors, penetration-limited end effector (PLEE) and bi-material structured end effector (BMEE) were specially designed to acquire high medical safety as well as effective traction generation performance. The microscopic end effector specimens were fabricated with micro-wire electric discharge machining process. Traction generation performance of the end effectors was evaluated by direct measurement of resistance forces during contact-sliding tests using a custom-built contact-sliding tester. The safety of the end effector design was evaluated by examination of microscopic intestinal tissue damage using a scanning electron microscope (SEM). Physical damage characteristics of the intestinal tissue and related contact physics of the end effectors were discussed. From the results, the end effectors were evaluated with respect to their prospects in future medical applications as safe end effectors as well as micro-surgical tools.

  16. Effect of exercise-induced muscle damage on muscle hardness evaluated by ultrasound real-time tissue elastography

    OpenAIRE

    Yanagisawa, Osamu; Sakuma, Jun; Kawakami, Yasuo; Suzuki, Katsuhiko; Fukubayashi, Toru

    2015-01-01

    Purpose To assess the effect of exercise-induced muscle damage on muscle hardness and evaluate the relationship between muscle hardness and muscle damage indicators. Methods Seven men (mean 25.3?years; 172.7?cm; 66.8?kg) performed the single-leg ankle plantar flexion exercise involving both concentric and eccentric contractions (10 sets of 40 repetitions). The hardness of the medial gastrocnemius (MG) was evaluated using ultrasound real-time tissue elastography before, from day 1 to 4, and da...

  17. Clozapine linked to nanocapsules minimizes tissue and oxidative damage to biomolecules lipids, proteins and DNA in brain of rats Wistar.

    Science.gov (United States)

    da Costa Güllich, Angélica Aparecida; Coelho, Ritiéle Pinto; Pilar, Bruna Cocco; Ströher, Deise Jaqueline; Galarça, Leandro Alex Sander Leal; Vieira, Simone Machado; da Costa Escobar Piccoli, Jacqueline; Haas, Sandra Elisa; Manfredini, Vanusa

    2015-06-01

    Clozapine, atypical antipsychotic, can change oxidative stress parameters. It is known that reactive species, in excess, can have a crucial role in the etiology of diseases, as well as, can potentiating adverse effects induce by drugs. The nanocapsules have attracted attention as carriers of several drugs, with consequent reduction of adverse effects. This study aimed to evaluate histopathology and oxidative damage of biomolecules lipids, proteins and DNA in the brain of Wistar rats after treatment with nanocapsules containing clozapine. The study consisted of eight groups of male Wistar rats (n = 6): saline (SAL), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocapsules (BNC), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules (BCSN), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN), clozapine-loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven consecutive days and euthanized in the eighth day. After euthanasia, the brain was collected and homogenate was processed for further analysis. The histopathology showed less brain tissue damage in nanocapsules-treated groups. The lipid peroxidation and carbonylation of proteins showed a significant increase (p < 0.05) induced by CZP. CNC and CPEGN groups obtained a reduction membrane of lipids damage and nanocapsules-treated groups showed significant improvement protein damage. CZP was able to induce genetic oxidative damage, while the nanocapsules causing less damage to DNA. The findings show that different coatings can act protecting target tissues decreasing oxidative damage, suggesting that the drug when linked to different nanocapsules is able to mitigate the harmful effects of clozapine.

  18. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  19. The impact of impaired DNA damage responses on cells, tissues and organisms

    NARCIS (Netherlands)

    Yi, Xia

    2007-01-01

    Current cancer therapies rely mainly on DNA damaging insults (irradiation, DNA alkylating agents, DNA synthesis inhibitors etc.). The rationale behind these treatments is that rapidly growing cancer cells suffer more from DNA damaging insults. Unfortunately, the majority of current therapies fail to

  20. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  1. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

    Directory of Open Access Journals (Sweden)

    Waseem K Raja

    Full Text Available The dismal success rate of clinical trials for Alzheimer's disease (AD motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD patients harboring amyloid precursor protein (APP duplication or presenilin1 (PSEN1 mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD.

  2. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

    Science.gov (United States)

    Han, Arum; Zhao, Hu; Li, Jingyuan; Pelikan, Richard; Chai, Yang

    2014-08-01

    The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5(fl/fl) mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5(fl/fl) mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5(fl/fl) mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    Science.gov (United States)

    Jafari, Mehdi; Kasaei, Shohreh

    2012-01-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  4. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2016-04-01

    Full Text Available The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM and other extracellular matrix (ECM proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  5. Oxidative damage parameters in renal tissues of aged and young rats based on gender

    Directory of Open Access Journals (Sweden)

    Uzun D

    2013-06-01

    young control group for both genders. Conclusion: With respect to PCO and AOPP, impaired redox homeostasis is substantially more prominent in males than females. The decrease of G-SH levels in male groups could be attributed to stabilizing the redox status of protein thiol groups by the depletion of the GSH groups. Considering the results, the renal tissue proteins and lipids in different genders may have different susceptibilities to oxidative damage. Keywords: lipid peroxidation, protein oxidation, radicals, renal aging

  6. Acceleration of normal-tissue damage expression by early stimulation of cell proliferation in rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, C.; Andratschke, N. [Technical Univ., Munich (Germany). Dept. of Radiation Oncology, Klinikum rechts der Isar; Price, R.E. [The Univ. of Texas, M.D. Anderson Cancer Center, Houston, TX (United States). Dept. of Veterinary Medicine and Surgery; Kian-Ang, K. [The Univ. of Texas, M.D. Anderson Cancer Center, Houston, TX (United States). Dept. of Radiation Oncology

    2006-11-15

    Purpose: To examine experimental strategies for prevention of radiation-induced late spinal cord damage. Material and Methods: The effects of treatment with high, proliferation-stimulating doses of platelet-derived growth factor (PDGF) administered at various times after radiotherapy of rat spinal cord, and aiming at increased tissue regeneration, were studied in an established model. Animals were followed and monitored for expression of radiation myelopathy (RM), which was confirmed by histopathologic diagnosis. Results: High doses of PDGF given 8 weeks after radiotherapy significantly accelerated the development of RM compared to control animals (Figure 1). Such effects were observed also for concomitant treatment, but not for PDGF administration after 12 or 15 weeks (Figure 2). On the microscopic level, the spinal cord showed more pronounced vascular damage with vessel necroses and hemorrhages (Figure 3). Conclusion: These data suggest that the vascular system plays an important role during development of RM and that early stimulation of cell proliferation negatively influences the time course of spinal cord damage. Further experiments should address different concepts of tissue regeneration or damage prevention. (orig.)

  7. Fibroblasts express immune relevant genes and are important sentinel cells during tissue damage in rainbow trout (Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Hans-Christian Ingerslev

    Full Text Available Fibroblasts have shown to be an immune competent cell type in mammals. However, little is known about the immunological functions of this cell-type in lower vertebrates. A rainbow trout hypodermal fibroblast cell-line (RTHDF was shown to be responsive to PAMPs and DAMPs after stimulation with LPS from E. coli, supernatant and debris from sonicated RTHDF cells. LPS was overall the strongest inducer of IL-1beta, IL-8, IL-10, TLR-3 and TLR-9. IL-1beta and IL-8 were already highly up regulated after 1 hour of LPS stimulation. Supernatant stimuli significantly increased the expression of IL-1beta, TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1beta. Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1beta, IL-8 and TGF-beta already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker, but significant response was also seen for TLR-9 and TLR-22. Rainbow trout fibroblasts were found to be highly immune competent with a significant ability to express cytokines and immune receptors. Thus fish fibroblasts are believed to contribute significantly to local inflammatory reactions in concert with the traditional immune cells.

  8. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L., protects rat tissues against oxidative damage after acute ethanol administration

    Directory of Open Access Journals (Sweden)

    Carmen Pinto

    2014-01-01

    Full Text Available Ethanol-mediated free radical generation is directly involved in alcoholic liver disease. In addition, chronic alcohol bingeing also induces pathological changes and dysfunction in multi-organs. In the present study, the protective effect of xanthohumol (XN on ethanol-induced damage was evaluated by determining antioxidative parameters and stress oxidative markers in liver, kidney, lung, heart and brain of rats. An acute treatment (4 g/kg b.w. of ethanol resulted in the depletion of superoxide dismutase, catalase and glutathione S-transferase activities and reduced glutathione content. This effect was accompanied by the increased activity of tissue damage marker enzymes (glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and lactate dehydrogenase and a significant increase in lipid peroxidation and hydrogen peroxide concentrations. Pre-treatment with XN protected rat tissues from ethanol-induced oxidative imbalance and partially mitigated the levels to nearly normal levels in all tissues checked. This effect was dose dependent, suggesting that XN reduces stress oxidative and protects rat tissues from alcohol-induced injury.

  9. Pancreatic-derived pathfinder cells enable regeneration of critically damaged adult pancreatic tissue and completely reverse streptozotocin-induced diabetes.

    Science.gov (United States)

    Stevenson, Karen; Chen, Daxin; MacIntyre, Alan; McGlynn, Liane M; Montague, Paul; Charif, Rawiya; Subramaniam, Murali; George, W D; Payne, Anthony P; Davies, R Wayne; Dorling, Anthony; Shiels, Paul G

    2011-04-01

    We demonstrate that intravenous delivery of human, or rat, pancreas-derived pathfinder (PDP) cells can totally regenerate critically damaged adult tissue and restore normal function across a species barrier. We have used a mouse model of streptozotocin (STZ)-induced diabetes to demonstrate this. Normoglycemia was restored and maintained for up to 89 days following the induction of diabetes and subsequent intravenous delivery of PDP cells. Normal pancreatic histology also appeared to be restored, and treated diabetic animals gained body weight. Regenerated tissue was primarily of host origin, with few rat or human cells detectable by fluorescent in situ hybridization (FISH). Crucially, the insulin produced by these animals was overwhelmingly murine in origin and was both types I and II, indicative of a process of developmental recapitulation. These results demonstrate the feasibility of using intravenous administration of adult cells to regenerate damaged tissue. Critically, they enhance our understanding of the mechanisms relating to such repair and suggest a means for novel therapeutic intervention in loss of tissue and organ function with age.

  10. The influence of a depressed scapular alignment on upper limb neural tissue mechanosensitivity and local pressure pain sensitivity.

    Science.gov (United States)

    Martínez-Merinero, Patricia; Lluch, Enriqe; Gallezo-Izquierdo, Tomas; Pecos-Martín, Daniel; Plaza-Manzano, Gustavo; Nuñez-Nagy, Susana; Falla, Deborah

    2017-06-01

    A depressed scapular alignment could lead to prolonged and repetitive stress or compression of the brachial plexus, resulting in sensitization of neural tissue. However, no study has investigated the influence of alignment of the scapulae on sensitization of upper limb neural tissue in otherwise asymptomatic people. In this case-control study, we investigate the influence of a depressed scapular alignment on mechanosensitivity of the upper limb peripheral nervous system as well as pressure pain thresholds (PPT). Asymptomatic individuals with neutral vertical scapular alignment (n = 25) or depressed scapular alignment (n = 25) participated. We measured the upper limb neurodynamic test (ULNT1), including assessment of symptom response and elbow range of motion (ROM), and PPT measured over upper limb peripheral nerve trunks, the upper trapezius muscle and overlying cervical zygapophyseal joints. Subjects with a depressed scapular reported significantly greater pain intensity (t = 5.7, p < 0.0001) and reduced elbow extension ROM (t = -2.7, p < 0.01) during the ULNT1 compared to those with a normal scapular orientation. Regardless of the location tested, the group presenting with a depressed scapular had significantly lower PPT compared to those with a normal scapular orientation (PPT averaged across all sites: normal orientation: 3.3 ± 0.6 kg/cm(2), depressed scapular: 2.1 ± 0.5 kg/cm(2), p < 0.00001). Despite being asymptomatic, people with a depressed scapular have greater neck and upper limb neural tissue mechanosensitivity when compared to people with a normal scapular orientation. This study offers insight into the potential development of neck-arm pain due to a depressed scapular position. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Residual late radiation damage in mouse stromal tissue assessed by the tumor bed effect

    NARCIS (Netherlands)

    Haveman, Jaap; Rodermond, Hans; van Bree, Chris; Wondergem, Jan; Franken, Nicolaas A. P.

    2007-01-01

    Irradiation of murine subcutaneous stroma before implantation of tumor cells leads to retarded tumor growth. This effect is called Tumor Bed Effect (TBE) and can be used to assess the sensitivity of stromal tissue to radiation. We tested the ability of stromal tissue to recover from X-ray-induced

  12. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  13. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Francisco Javier Guzmán-de la Garza

    2013-07-01

    Full Text Available OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student’s t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion.

  14. Travelling waves in models of neural tissue: from localised structures to periodic waves

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2014-01-01

    We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength

  15. Manifestations of oxidative stress and molecular damages in ovarian cancer tissue

    Directory of Open Access Journals (Sweden)

    H. I. Falfushynska

    2015-10-01

    Full Text Available Indices of oxidative stress are recognized molecular markers and prognostic criteria for malignant transformation of tissue, but their value depends on the type of tumor and the stage of its development. The goal of this study was to clarify the relationship between the characteristics of the oxidative stress system including­ metal-associated ones and the cytotoxicity manifestations in neoplastically transformed human ovarian tissue. The highest level of Mn-superoxide dismutase activity (by 630% and metallothionein protein (MT, 100% has been estimated for the first time in malignant ovarian tissue compared to normal ovarian tissue. The researchers have also found a much higher level of oxy-radical formation (by 332%, a lower activity of catalase (by 49% and a lower level of reduced glutathione (by 46% and its redox index (0.84 versus 0.89 in the control in tumor tissue. Under the relatively stable content of zinc, copper and cadmium in MTs, the content of zinc and especially copper in a form non-binding with MTs was significantly lower in the malignant tissue compared to normal one while the content of cadmium was higher. A discriminant analysis of all definable parameters revealed that the higher content of the products of oxidative destruction of proteins, lipids, fragmented DNA and the activity of cathepsin D, especially in its free form (by 235%, are the main characteristic signs of malignant ovarian tissue.

  16. A fully-automated neural network analysis of AFM force-distance curves for cancer tissue diagnosis

    Science.gov (United States)

    Minelli, Eleonora; Ciasca, Gabriele; Sassun, Tanya Enny; Antonelli, Manila; Palmieri, Valentina; Papi, Massimiliano; Maulucci, Giuseppe; Santoro, Antonio; Giangaspero, Felice; Delfini, Roberto; Campi, Gaetano; De Spirito, Marco

    2017-10-01

    Atomic Force Microscopy (AFM) has the unique capability of probing the nanoscale mechanical properties of biological systems that affect and are affected by the occurrence of many pathologies, including cancer. This capability has triggered growing interest in the translational process of AFM from physics laboratories to clinical practice. A factor still hindering the current use of AFM in diagnostics is related to the complexity of AFM data analysis, which is time-consuming and needs highly specialized personnel with a strong physical and mathematical background. In this work, we demonstrate an operator-independent neural-network approach for the analysis of surgically removed brain cancer tissues. This approach allowed us to distinguish—in a fully automated fashion—cancer from healthy tissues with high accuracy, also highlighting the presence and the location of infiltrating tumor cells.

  17. Protective effect of annexin-A1 against irreversible damage to cavernous tissue after cavernous nerve injury in the rat.

    Science.gov (United States)

    Facio, Fernando N; Burnett, Arthur L

    2012-11-01

    Study Type - Aetiology (case control) Level of Evidence 3b. What's known on the subject? and What does the study add? Penile rehabilitation is still controversial regarding good results. Our study shows a non-invasive treatment option to recovery after cavernous nervous damage. The assessment of changes in the intracavernous pressure and karyometry demonstrates the protective effect of annexin-A1 in an animal model of cavernous nerve injury. We found that annexin-A1 effectively preserved erectile function, evidently through significantly protecting the corpus cavernosum tissue against fibrosis. • To evaluate the protective effect of annexin-A1 against irreversible damage to cavernous tissue after cavernous nerve injury. • Thirty Sprague-Dawley male rats were divided into 3 groups; sham-operated rats (n= 10), bilateral cavernous nerve injury treated intravenously with 100 µg/kg annexin-A1 (n= 10), and a crush group of rats submitted to bilateral cavernous nerve injury and vehicle (n= 10). Groups were compared in respect to intracavernous pressure and karyometric parameters. • After annexin-A1 treatment, the maximum changes in intracavernous pressure responses were significantly higher in the annexin-A1 group compared to the vehicle-only group on the 7(th) postoperative day (p-value cavernous nerve injury. We found that annexin-A1 effectively preserved erectile function, evidently through significantly protecting the corpus cavernosum tissue against fibrosis. © 2012 BJU INTERNATIONAL.

  18. A comparison of the thermal-dose equation and the intensity-time product, Itm, for predicting tissue damage thresholds.

    Science.gov (United States)

    Harris, Gerald R; Herman, Bruce A; Myers, Matthew R

    2011-04-01

    Thermal dose is the most generally accepted concept for estimating temperature-related tissue damage thresholds in high-intensity focused ultrasound (HIFU) procedures. However, another approach based on the intensity-time product I t(m) =D has been used, where D is a tissue-dependent damage threshold, I is the spatial-peak, temporal-average intensity and t is time. In this study, these two approaches were compared analytically by substituting a well-known soft-tissue solution for temperature vs. time into the thermal dose equation. From power law fits of I vs. t, m was found to fall between about 0.3 and 0.8. In terms of the intensity required for cell death for a given exposure time, the standard deviation of the error between the full thermal-dose formulation and the I t(m) =D prediction based upon the power-law fit was less than 5% for focal beam diameters up to 3 mm. Thus, for the practical range of HIFU parameters examined, the intensity-time product relationship is equivalent to the thermal dose formulation. Published by Elsevier Inc.

  19. Pathological research on acute hepatic and renal tissue damage in Wistar rats induced by cocoa

    Directory of Open Access Journals (Sweden)

    Chiedozie Onyejiaka Ibegbulem

    2016-01-01

    Conclusions: The pattern of alanine aminotransferase activity being more active than aspartate aminotransferase one in serum appeared to correlate with the extent of disarrangement of hepatic tissue architecture. The experimental rat groups exhibited no hyperbilirubinemia. Also, diets containing processed cocoa bean and raw cocoa bean products did not substantially interfere with the capacity of the hepatocytes to biosynthesize plasma proteins and the functionality of renal tissues.

  20. Automated cell-specific laser detection and ablation of neural circuits in neonatal brain tissue

    Science.gov (United States)

    Wang, Xueying; Hayes, John A; Picardo, Maria Cristina D; Del Negro, Christopher A

    2013-01-01

    A key feature of neurodegenerative disease is the pathological loss of neurons that participate in generating behaviour. To investigate network properties of neural circuits and provide a complementary tool to study neurodegeneration in vitro or in situ, we developed an automated cell-specific laser detection and ablation system. The instrument consists of a two-photon and visible-wavelength confocal imaging setup, controlled by executive software, that identifies neurons in preparations based on genetically encoded fluorescent proteins or Ca2+ imaging, and then sequentially ablates cell targets while monitoring network function concurrently. Pathological changes in network function can be directly attributed to ablated cells, which are logged in real time. Here, we investigated brainstem respiratory circuits to demonstrate single-cell precision in ablation during physiological network activity, but the technique could be applied to interrogate network properties in neural systems that retain network functionality in reduced preparations in vitro or in situ. PMID:23440965

  1. Th e eff ects of Nigella Sativa extract on renal tissue oxidative damage during neonatal and juvenile growth in propylthiouracil-induced hypothyroid rats

    Directory of Open Access Journals (Sweden)

    Mohebbati R.

    2017-04-01

    Full Text Available Objective. We investigated the effects of hydroalcoholic extract of Nigella sativa (NS on renal tissue oxidative damage associated with propylthiouracil (PTU-induced hypothyroidism during neonatal and juvenile growth in rats.

  2. Quantitative MRI analysis of the brain after twenty-two years of neuromyelitis optica indicates focal tissue damage

    DEFF Research Database (Denmark)

    Aradi, Mihaly; Koszegi, Edit; Orsi, Gergely

    2013-01-01

    BACKGROUND: The long-term effect of neuromyelitis optica (NMO) on the brain is not well established. METHODS: After 22 years of NMO, a patient's brain was examined by quantitative T1- and T2-weighted mono- and biexponential diffusion and proton spectroscopy. It was compared to 3 cases with short......, and they were also not quantitatively different from the controls. CONCLUSION: After NMO of 22-year duration, metabolic changes, altered diffusivity and magnetic resonance relaxation features of patchy brain areas may suggest tissue damage in NAWM that persist for at least 6 months....

  3. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2016-01-01

    Full Text Available The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.

  4. Visualization of damaged brain tissue after ischemic stroke with cobalt-55 positron emission tomography

    NARCIS (Netherlands)

    Jansen, H M; Pruim, J; vd Vliet, A M; Paans, A M; Hew, J M; Franssen, E J; de Jong, B M; Kosterink, J G; Haaxma, R; Korf, J

    UNLABELLED: In animal experiments, the radionuclide 55Co2+ has been shown to accumulate in degenerating cerebral tissue similar to Ca2+. METHODS: The potential role of 55Co2+ for in vivo brain PET imaging was investigated in four patients after ischemic stroke. RESULTS: PET showed uptake of 55Co2+

  5. C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus

    NARCIS (Netherlands)

    Ploeg, van der M.J.C.; Handy, R.D.; Heckmann, L.H.; Hout, van der A.; Brink, van den N.W.

    2013-01-01

    Effects of C60 exposure (0, 15 or 154 mg/kg soil) on the earthworm Lumbricus rubellus were assessed at the tissue and molecular level, in two experiments. In the first experiment, earthworms were exposed for four weeks, and in the second lifelong. In both experiments, gene expression of heat shock

  6. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Amanda Alves da Rocha

    2013-01-01

    Full Text Available Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage.

  7. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  8. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study.

    Science.gov (United States)

    Cakmak, Gulgun; Miller, Lisa M; Zorlu, Faruk; Severcan, Feride

    2012-04-15

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    Science.gov (United States)

    da Rocha, Amanda Alves; Araújo, Tiago Ferreira da Silva; da Fonseca, Caíque Silveira Martins; da Mota, Diógenes Luís; de Medeiros, Paloma Lys; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Correia, Maria Tereza dos Santos; Lima, Vera Lúcia de Menezes

    2013-01-01

    Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage. PMID:24324521

  10. Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Mousavi

    2015-01-01

    Full Text Available Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1 Control, (2 Diabetic, (3 Diabetic-Extract 100 (Dia-Ext 100, (4 Diabetic-Extract 200 (Dia-Ext 200, (5 Diabetic-Extract 400 (Dia-Ext 400, and (6 Diabetic-Metformin (Dia-Met. Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally. Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P<0.01. In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P<0.01. Lipid peroxides levels (reported as malondialdehyde, MDA, concentration in the brain of Diabetic group were higher than Control (P<0.001. Treatment by all doses of the extract and metformin decreased the MDA concentration (P<0.01. Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin.

  11. Effect of exercise-induced muscle damage on muscle hardness evaluated by ultrasound real-time tissue elastography.

    Science.gov (United States)

    Yanagisawa, Osamu; Sakuma, Jun; Kawakami, Yasuo; Suzuki, Katsuhiko; Fukubayashi, Toru

    2015-01-01

    To assess the effect of exercise-induced muscle damage on muscle hardness and evaluate the relationship between muscle hardness and muscle damage indicators. Seven men (mean 25.3 years; 172.7 cm; 66.8 kg) performed the single-leg ankle plantar flexion exercise involving both concentric and eccentric contractions (10 sets of 40 repetitions). The hardness of the medial gastrocnemius (MG) was evaluated using ultrasound real-time tissue elastography before, from day 1 to 4, and day 7 after exercise. The strain ratio between the MG and a reference material was calculated. Simultaneously, we evaluated the magnetic resonance T2 value (an index of edema) of the triceps surae, the ankle dorsiflexion range of motion (ROM), and calf muscle soreness. Serum creatine kinase activity was assessed before, 2 and 4 h, and from day 1 to 4 after exercise. The MG showed lower strain ratio, indicating increased muscle hardness, on day 4 post-exercise (P muscle soreness among the post-exercise time points was similar. The decreased strain ratio did not correlate with the increased T2, the decreased joint ROM or muscle soreness. Muscle hardness increased after strenuous resistance exercise, but the change was not related with muscle edema, decreased joint ROM, or muscle soreness resulting from muscle damage.

  12. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages.

    Directory of Open Access Journals (Sweden)

    Julia Esser-von Bieren

    Full Text Available Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα, but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp. Mice lacking antibodies (JH (-/- or activating Fc receptors (FcRγ(-/- harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

  13. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    2015-08-01

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis of testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.

  14. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats.

    Science.gov (United States)

    Martins, C N; Moraes, M B; Hauck, M; Guerreiro, L F; Rossato, D D; Varela, A S; da Rosa, C E; Signori, L U

    2016-12-01

    To investigate the combined effects of cryotherapy and pulsed ultrasound therapy (PUT) on oxidative stress parameters, tissue damage markers and systemic inflammation after musculoskeletal injury. Experimental animal study. Research laboratory. Seventy male Wistar rats were divided into five groups: control, lesion, cryotherapy, PUT, and cryotherapy+PUT. The gastrocnemius muscle was injured by mechanical crushing. Cryotherapy was applied immediately after injury (immersion in water at 10°C for 20minutes). PUT was commenced 24hours after injury (1MHz, 0.4W/cm2SPTA, 20% duty cycle, 5minutes). All animals were treated every 8hours for 3 days. Oxidative stress in muscle was evaluated by concentration of reactive oxygen species (ROS), lipid peroxidation (LPO), anti-oxidant capacity against peroxyl radicals (ACAP) and catalase. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were assessed. When applied individually, cryotherapy and PUT reduced CK, LDH, CRP and LPO caused by muscle damage. Cryotherapy+PUT in combination maintained the previous results, caused a reduction in ROS [P=0.005, mean difference -0.9×10-8 relative area, 95% confidence interval (CI) -0.2 to -1.9], and increased ACAP {P=0.007, mean difference 0.34 1/[relative area with/without 2,2-azobis(2-methylpropionamidine)dihydrochloride], 95% CI 0.07 to 0.61} and catalase (P=0.002, mean difference 0.41units/mg protein, 95% CI 0.09 to 0.73) compared with the lesion group. Cryotherapy+PUT in combination reduced oxidative stress in muscle, contributing to a reduction in adjacent damage and tissue repair. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  15. Inorganic arsenic in drinking water accelerates N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder tissue damage in mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Paul-Yann [Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Chang Gung University, Chiayi, Taiwan (China); Lin, Yung-Lun; Huang, Chin-Chin; Chen, Sin-Syu [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Liu, Yi-Wen, E-mail: ywlss@mail.ncyu.edu.tw [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China)

    2012-02-15

    Epidemiological studies have revealed that exposure to an arsenic-contaminated environment correlates with the incidence of bladder cancer. Bladder cancer is highly recurrent after intravesical therapy, and most of the deaths from this disease are due to invasive metastasis. In our present study, the role of inorganic arsenic in bladder carcinogenesis is characterized in a mouse model. This work provides the first evidence that inorganic arsenic in drinking water promotes N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced bladder tissue damage, including the urothelium and submucosal layer. This damage to the bladder epithelium induced by BBN includes thickening of the submucosal layer, the loss of the glycosaminoglycan layer and an increase in both the deoxyguanosine oxidation and cytosine methylation levels in the DNA. Further, when 10 ppm inorganic arsenic is combined with BBN, the number of bladder submucosal capillaries is increased. In addition, inorganic arsenic also increases the deoxyguanosine oxidation level, alters the cytosine methylation state, decreases the activities of glutathione reductase and glucose-6-phosphate dehydrogenase, decreases the protein expression of NAD(P)H quinone oxidoreductase-1 (NQO-1) and increases the protein expression of specific protein 1 (Sp1) in bladder tissues. In summary, our data reveal that inorganic arsenic in drinking water promotes the BBN-induced pre-neoplastic damage of bladder tissue in mice, and that the 8-hydroxy-2′-deoxyguanosine, 5-methylcytosine, NQO-1 protein and Sp1 protein levels may be pre-neoplastic markers of bladder tumors. -- Highlights: ► The role of inorganic arsenic in bladder carcinogenesis is characterized in mice. ► We examine the changes in the histology and biochemistry of bladder tissues. ► Inorganic arsenic enhances BBN-induced DNA oxidation while decreases BBN-induced DNA methylation in the mouse bladder. ► Inorganic arsenic alters the activities of the anti-oxidant enzymes in

  16. Reorganization of pathological control functions of memory-A neural model for tissue healing by shock waves

    Science.gov (United States)

    Wess, Othmar

    2005-04-01

    Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.

  17. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  18. Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues

    Directory of Open Access Journals (Sweden)

    Ebenezer Tunde Olayinka

    2015-04-01

    Full Text Available Procarbazine (PCZ (indicated in Hodgkin’s disease, is an alkylating agent known to generate free radicals in vivo, while Quercetin (QCT is a flavonoid antioxidant with proven free radical scavenging capacity. This study investigated the protective effects of QCT on PCZ-induced oxidative damage in the rat. Male Wistar rats (160–180 g were randomized into five groups (n = 5/group: I (control, II PCZ-treated (2 mg/kg body weight (bw for seven days; III pre-treated with QCT (20 mg/kg bw for seven days, followed by PCZ for seven days; IV co-treated with PCZ and QCT for seven days and V administered QCT alone for seven days. PCZ caused a significant increase in plasma total bilirubin, urea, and creatinine when compared with control (P < 0.05. Similarly, plasma activities of alkaline phosphatase (ALP, aspartate aminotransferase (AST, alanine aminotransferase (ALT, and γ-glutamyl transferase (γ-GT were significantly increased in the PCZ-treated group relative to control. Furthermore, PCZ caused a significant decrease in the activities of hepatic superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST as well as levels of ascorbic acid (AA and glutathione (GSH. This was followed by a significant increase in hepatic malondialdehyde (MDA content. However, QCT pre-treatment and co-treatment ameliorated the PCZ-induced changes in plasma levels of urea, creatinine, and bilirubin as well as the activities of ALP, AST, ALT, and GGT. QCT also ameliorated hepatic AA and GSH levels and the activities of SOD, CAT, and GST. This all suggests that QCT protected against PCZ-induced oxidative damage in rats.

  19. The effect of ionic diffusion on extracellular potentials in neural tissue

    CERN Document Server

    Halnes, Geir; Keller, Daniel; Pettersen, Klas H; Eivenoll, Gaute T

    2015-01-01

    In computational neuroscience, it is common to use the simplifying assumption that diffusive currents are negligible compared to Ohmic currents. However, endured periods of intense neural signaling may cause local ion concentration changes in the millimolar range. Theoretical studies have identified scenarios where steep concentration gradients give rise to diffusive currents that are of comparable magnitude with Ohmic currents, and where the simplifying assumption that diffusion can be neglected does not hold. We here propose a novel formalism for computing (1) the ion concentration dynamics and (2) the electrical potential in the extracellular space surrounding multi-compartmental neuron models or networks of such (e.g., the Blue-Brain simulator). We use this formalism to explore the effects that diffusive currents can have on the extracellular (ECS) potential surrounding a small population of active cortical neurons. Our key findings are: (i) Sustained periods of neuronal output (simulations were run for 8...

  20. Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray

    Science.gov (United States)

    Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit

    2016-11-01

    Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".

  1. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

    Science.gov (United States)

    Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard

    2017-07-21

    To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Cytokine gene signatures in neural tissue of horses with equine protozoal myeloencephalitis or equine herpes type 1 myeloencephalopathy.

    Science.gov (United States)

    Pusterla, N; Wilson, W D; Conrad, P A; Barr, B C; Ferraro, G L; Daft, B M; Leutenegger, C M

    2006-09-09

    This study was designed to determine the relative levels of gene transcription of selected pathogens and cytokines in the brain and spinal cord of 12 horses with equine protozoal myeloencephalitis (EPM), 11 with equine herpesvirus type 1 (EHV-1) myeloencephalopathy, and 12 healthy control horses by applying a real time pcr to the formalin-fixed and paraffin-embedded tissues. Total rna was extracted from each tissue, transcribed to complementary dna (cDNA) and assayed for Sarcocystis neurona, Neospora hughesi, EHV-1, equine GAPDH (housekeeping gene), tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-8, IL-10 AND IL-12 p40. S neurona cdna was detected in the neural tissue from all 12 horses with EPM, and two of them also had amplifiable cDNA of N hughesi. The relative levels of transcription of protozoal cdna ranged from 1 to 461 times baseline (mean 123). All the horses with ehv-1 myeloencephalopathy had positive viral signals by PCR with relative levels of transcription ranging from 1 to 1618 times baseline (mean 275). All the control horses tested negative for S neurona, N hughesi and EHV-1 cdna. The cytokine profiles of each disease indicated a balance between pro- and anti-inflammatory markers. In the horses with epm the pro-inflammatory Th1 cytokines (IL-8, TNF-alpha and IFN-gamma) were commonly expressed but the anti-inflammatory Th2 cytokines (IL-4, IL-6 AND IL-10) were absent or rare. In the horses with ehv-1 the proinflammatory cytokine IL-8 was commonly expressed, but IL-10 and IFN-gamma were not, and TNF-alpha was rare. Tissue from the control horses expressed only the gene GAPDH.

  3. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    Science.gov (United States)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  4. Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats.

    Science.gov (United States)

    Yanardag, Refiye; Tunali, Sevim

    2006-06-01

    Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of the disease are multifactorial. The present study was carried out to investigate the effects of vanadyl sulfate on biochemical parameters, enzyme activities and brain lipid peroxidation, glutathione and nonenzymatic glycosylation of normal- and streptozotocin-diabetic rats. Streptozotocin (STZ) was administered as a single dose (65 mg/kg) to induce diabetes. A dose of 100 mg/kg vanadyl sulfate was orally administered daily to STZ-diabetic and normal rats, separately until the end of the experiment, at day 60. In STZ-diabetic group, blood glucose, serum sialic and uric acid levels, serum catalase (CAT) and lactate dehydrogenase (LDH) activities, brain lipid peroxidation (LPO) and nonenzymatic glycosylation (NEG) increased, while brain glutathione (GSH) level and body weight decreased. In the diabetic group given vanadyl sulfate, blood glucose, serum sialic and uric acid levels, serum CAT and LDH activities and brain LPO and NEG levels decreased, but brain GSH and body weight increased. The present study showed that vanadyl sulfate exerted antioxidant effects and consequently may prevent brain damage caused by streptozotocin-induced diabetes.

  5. Ameliorating effects of CAPE on oxidative damage caused by pneumoperitoneum in rat lung tissue

    Science.gov (United States)

    Davarci, Isil; Alp, Harun; Ozgur, Tumay; Karcioglu, Murat; Tuzcu, Kasim; Evliyaoglu, Osman; Motor, Sedat; Durgun Yetim, Tulin

    2014-01-01

    We investigated the biochemical and histopathological effects of caffeic acid phenethyl ester (CAPE) against oxidative stress causing lung injury induced by pneumoperitoneum. Twenty-eight rats were selected at random and seven rats were assigned to each of the following groups. The control group (S) was subjected to a sham operation without pneumoperitoneum. The other groups were subjected to CO2 pneumoperitoneum 15 mmHg for 60 min. The laparoscopy group (L) had no additional drugs administered, the laparoscopy + alcohol (LA) group had 1 ml of 70% ethyl alcohol administered 1 h before the desufflation period, and the laparoscopy + CAPE (LC) group had CAPE administered at 10 μmol/kg 1 h before the desufflation period. The total oxidative status levels of lung and plasma were significantly increased in the LA group as compared with the LC and S group. When the LC group was compared with the L group, there was a decrease in the level of total oxidant status and increase in the levels of total antioxidant status and paraoxonase in lung tissue. The level of total antioxidative status in the S group was increased compared with the L group in lung tissue and bronchoalveolar lavage fluid. TNF-α and IL-6 were found significantly elevated in the L group compared with the LC and S groups in bronchoalveolar lavage fluid. There was a similar increase in plasma levels of IL-6. These results were supported by histopathological examination. CAPE was found to considerably reduce oxidative stress and inflammation induced by pneumoperitoneum. PMID:25126167

  6. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  7. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    Science.gov (United States)

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.

    Science.gov (United States)

    Yang, Sumi; Jang, LindyK; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung-Woo; Lee, Jae Young

    2016-11-01

    Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20-200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard; Bramsen, Jesper Bertram; Bendixen, Christian

    2012-01-01

    Editing by ADAR enzymes is essential for mammalian life. Still, knowledge of the spatio-temporal editing patterns in mammals is limited. By use of 454 amplicon sequencing we examined the editing status of 12 regionally extracted mRNAs from porcine developing brain encompassing a total of 64...... putative ADAR editing sites. In total 24 brain tissues, dissected from up to five regions from embryonic gestation day 23, 42, 60, 80, 100 and 115, were examined for editing....

  10. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  11. Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes.

    Science.gov (United States)

    Schmid, Katharina; Sassen, Andrea; Staudenmaier, Rainer; Kroemer, Susanne; Reichl, Franz-Xaver; Harréus, Ulrich; Hagen, Rudolf; Kleinsasser, Norbert

    2007-11-01

    Amalgam is still one of the most frequently used dental filling materials. However, the possible adverse effects especially that of the mercuric component have led to continued controversy. Considering that mercury may be released from amalgam fillings into the oral cavity and also reach the circulating blood after absorption and resorption, it eventually may contribute to tumorigenesis in a variety of target cells. The present investigation focuses on genotoxic effects below a cytotoxic dose level of mercuric dichloride (HgCl(2)) in human samples of salivary glands and lymphocytes to elucidate a possible role in tumor initiation. DNA migration due to single strand breaks, alkali labile sites and incomplete excision repair was quantified with the aid of the single cell microgel electrophoresis (Comet) assay. The concepts of Olive Tail Moment, percentage of DNA in the Tail and Tail Length were used as measures of DNA damage. To control for cytotoxic effects, the trypan blue exclusion test was applied. Human samples of the parotid salivary gland and lymphocytes of ten donors were exposed to HgCl(2)concentrations from 1 to 50 microM. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and dimethyl sulfoxide (DMSO) served as controls. Increasing dose-dependent DNA migration could be demonstrated after exposure to HgCl(2) in cells of the salivary glands and lymphocytes. In both cell types a significant increase in DNA migration could be shown starting from HgCl(2)concentrations of 5 microM in comparison to the negative control. The viability of the cell systems was not affected except at the highest concentration (50 microM) tested. These data indicate genotoxic effects of mercuric dichloride in human salivary glands and lymphocytes at concentrations not leading to cytotoxic effects or cell death. Consequently, a contributory role in oral salivary gland tumor initiation warrants further investigation.

  12. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study.

    Science.gov (United States)

    Beer, F; Körpert, W; Buchmair, A G; Passow, H; Meinl, A; Heimel, P; Moritz, A

    2013-05-01

    Since the diode laser is a good compromise for the daily use in dental offices, finding usage in numerous dental indications (e.g., surgery, periodontics, and endodontics), the minimization of the collateral damage in laser surgery is important to improve the therapeutical outcome. The aim of this study was to investigate the effect of water/air cooling on the collateral thermal soft tissue damage of 980-nm diode laser incisions. A total of 36 mechanically executed laser cuts in pork liver were made with a 980-nm diode laser in micropulsed mode with three different settings of water/air cooling and examined by histological assessment to determine the area and size of carbonization, necrosis, and reversible tissue damage as well as incision depth and width. In our study, clearly the incision depth increased significantly under water/air cooling (270.9 versus 502.3 μm-test group 3) without significant changes of incision width. In test group 2, the total area of damage was significantly smaller than in the control group (in this group, the incision depth increases by 65 %). In test group 3, the total area of damage was significantly higher (incision depth increased by 85 %), but the bigger part of it represented a reversible tissue alteration leaving the amount of irreversible damage almost the same as in the control group. This first pilot study clearly shows that water/air cooling in vitro has an effect on collateral tissue damage. Further studies will have to verify, if the reduced collateral damage we have proved in this study can lead to accelerated wound healing. Reduction of collateral thermal damage after diode laser incisions is clinically relevant for promoted wound healing.

  13. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair?

    Science.gov (United States)

    Sanen, Kathleen; Martens, Wendy; Georgiou, Melanie; Ameloot, Marcel; Lambrichts, Ivo; Phillips, James

    2017-01-04

    Despite the spontaneous regenerative capacity of the peripheral nervous system, large gap peripheral nerve injuries (PNIs) require bridging strategies. The limitations and suboptimal results obtained with autografts or hollow nerve conduits in the clinic urge the need for alternative treatments. Recently, we have described promising neuroregenerative capacities of Schwann cells derived from differentiated human dental pulp stem cells (d-hDPSCs) in vitro. Here, we extended the in vitro assays to show the pro-angiogenic effects of d-hDPSCs, such as enhanced endothelial cell proliferation, migration and differentiation. In addition, for the first time we evaluated the performance of d-hDPSCs in an in vivo rat model of PNI. Eight weeks after transplantation of NeuraWrap™ conduits filled with engineered neural tissue (EngNT) containing aligned d-hDPSCs in 15-mm rat sciatic nerve defects, immunohistochemistry and ultrastructural analysis revealed ingrowing neurites, myelinated nerve fibres and blood vessels along the construct. Although further research is required to optimize the delivery of this EngNT, our findings suggest that d-hDPSCs are able to exert a positive effect in the regeneration of nerve tissue in vivo. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  15. Innate lymphoid cells: the role in respiratory infections and lung tissue damage.

    Science.gov (United States)

    Głobińska, Anna; Kowalski, Marek L

    2017-10-01

    Innate lymphoid cells (ILCs) represent a diverse family of cells of the innate immune system, which play an important role in regulation of tissue homeostasis, immunity and inflammation. Emerging evidence has highlighted the importance of ILCs in both protective immunity to respiratory infections and their pathological roles in the lungs. Therefore, the aim of this review is to summarize the current knowledge, interpret and integrate it into broader perspective, enabling greater insight into the role of ILCs in respiratory diseases. Areas covered: In this review we highlighted the role of ILCs in the lungs, citing the most recent studies in this area. PubMed searches (2004- July 2017) were conducted using the term 'innate lymphoid cells respiratory viral infections' in combination with other relevant terms including various respiratory viruses. Expert commentary: Since studies of ILCs have opened new areas of investigation, understanding the role of ILCs in respiratory infections may help to clarify the mechanisms underlying viral-induced exacerbations of lung diseases, providing the basis for novel therapeutic strategies. Potential therapeutic targets have already been identified. So far, the most promising strategy is cytokine-targeting, although further clinical trials are needed to verify its effectiveness.

  16. HLA-DRB1*15 influences the development of brain tissue damage in early PPMS.

    Science.gov (United States)

    Tur, Carmen; Ramagopalan, Sreeram; Altmann, Daniel R; Bodini, Benedetta; Cercignani, Mara; Khaleeli, Zhaleh; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2014-11-04

    To investigate whether (1) there were differences between HLA-DRB1*15-positive and -negative patients at baseline, and (2) HLA-DRB1*15-positive patients showed a greater development of brain and spinal cord damage, as assessed by MRI, and greater progression of disability, during a 5-year follow-up, compared with HLA-DRB1*15-negative patients. HLA-DRB1*15 typing was performed in 41 patients with primary progressive multiple sclerosis (PPMS) who were recruited within 5 years of symptom onset. All patients and 18 healthy controls were studied clinically and with MRI at baseline, and every 6 months for 3 years, and then at 5 years. Magnetization transfer ratio parameters and volumes for brain gray matter and normal-appearing white matter, brain T2 lesion load, and spinal cord cross-sectional area were obtained. Patient disability was assessed at each visit using the Expanded Disability Status Scale and Multiple Sclerosis Functional Composite subscores. There were no significant differences between HLA-DRB1*15-positive and -negative patients at baseline. HLA-DRB1*15-positive patients showed a greater decline in brain magnetization transfer ratio for gray matter and normal-appearing white matter (both p = 0.005) than HLA-DRB1*15-negative patients over 5 years, while the same parameters did not change over time in healthy controls. HLA-DRB1*15-positive patients also showed a trend toward a faster increase in brain T2 lesion load than HLA-DRB1*15-negative patients (0.29 [95% confidence interval 0.20-0.38] vs 0.21 [0.13-0.30] mL/mo, p = 0.085) and higher T2 lesion volumes at all time points (average difference [95% confidence interval]: 10.58 mL [7.09-14.07], p < 0.001) during the follow-up, after adjusting for disease duration. These findings suggest that HLA-DRB1*15 influences the progression of brain pathology in PPMS. © 2014 American Academy of Neurology.

  17. Dividing the Self: Distinct Neural Substrates of Task-Based and Automatic Self-Prioritization after Brain Damage

    Science.gov (United States)

    Sui, Jie; Chechlacz, Magdalena; Humphreys, Glyn W.

    2012-01-01

    Facial self-awareness is a basic human ability dependent on a distributed bilateral neural network and revealed through prioritized processing of our own over other faces. Using non-prosopagnosic patients we show, for the first time, that facial self-awareness can be fractionated into different component processes. Patients performed two face…

  18. EFFECTIVENESS OF NEURAL TISSUE MOBILISATION ON PAIN, PAIN FREE PASSIVE SLR RANGE OF MOTION AND FUNCTIONAL DISABILITY IN LOW BACK ACHE SUBJECTS WITH SCIATICA

    Directory of Open Access Journals (Sweden)

    V. B. Geethika

    2015-10-01

    Full Text Available Background: Low back pain is a common, benign, and self-limiting disease that affects almost all persons, with a lifetime prevalence of up to 84%. In contrast, sciatica affects only 40 % of all persons in the Western industrialized countries. In sciatica, pain radiates down the legs, below the knee along the distribution of sciatic nerve. Nerve root compression is the most common cause of sciatica. Neuro dynamics or Neural Tissue Mobilization is relatively new approach in treatment of neuro musculoskeletal disorders. The aim of the study to determine the effectiveness of Neural Tissue mobilization on pain, pain free passive SLR ROM &functional disability in LBA subjects with Sciatica. Objective of the study is to study and compare the effectiveness of Neural tissue mobilization in LBA subjects with sciatica in terms of pain, pain free SLR ROM and Oswestry Disability Index. Methods: 30 subjects were selected by simple random sampling and assigned in to Control(n=15 &Experimental group(n=15.The subjects in control group were given conventional physiotherapy and those in Experimental group were given Neural Tissue Mobilization in addition to conventional therapy. All the participants were assessed with VAS, ODI and pain free passive SLR ROM. Results: After the analysis, the results were found to be significant improvement in pain, pain free SLR ROM, ODI in both groups (p< 0.00.But there is a high significance in Experimental group when compared to control group. Conclusion: Results suggest that NEURAL TISSUE MOBILIZATION along with conventional therapy is more effective in reducing pain, decreasing disability and improving SLR ROM.

  19. Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage.

    Directory of Open Access Journals (Sweden)

    Ralf A Linker

    Full Text Available The identification of new biomarkers is of high interest for the prediction of the disease course and also for the identification of pathomechanisms in multiple sclerosis (MS. To specify markers of the chronic disease phase, we performed proteome profiling during the later phase of myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, day 35 after immunization as a model disease mimicking many aspects of secondary progressive MS. In comparison to healthy controls, high resolution 2 dimensional gel electrophoresis revealed a number of regulated proteins, among them glial fibrilary acidic protein (GFAP. Phase specific up-regulation of GFAP in chronic EAE was confirmed by western blotting and immunohistochemistry. Protein levels of GFAP were also increased in the cerebrospinal fluid of MS patients with specificity for the secondary progressive disease phase. In a next step, proteome profiling of an EAE model with enhanced degenerative mechanisms revealed regulation of alpha-internexin, syntaxin binding protein 1, annexin V and glutamate decarboxylase in the ciliary neurotrophic factor (CNTF knockout mouse. The identification of these proteins implicate an increased apoptosis and enhanced axonal disintegration and correlate well the described pattern of tissue injury in CNTF -/- mice which involve oligodendrocyte (OL apoptosis and axonal injury.In summary, our findings underscore the value of proteome analyses as screening method for stage specific biomarkers and for the identification of new culprits for tissue damage in chronic autoimmune demyelination.

  20. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage.

    Science.gov (United States)

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Thompson, Barry J

    2016-07-01

    The YAP/TAZ family of transcriptional co-activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB-Hippo/MST-Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST-LATS or Src family kinase activity to modulate YAP/TAZ activity. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  1. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  2. Safety and effectiveness of a polyvinyl alcohol barrier in reducing risks of vascular tissue damage during anterior spinal revision surgery.

    Science.gov (United States)

    Jeffords, Paul; Li, Jinsheng; Panchal, Deepal; Denoziere, Guilhem; Fetterolf, Donald

    2012-05-01

    This study was conducted as a controlled, prospective investigation to show the safety and efficacy of a polyvinyl alcohol (PVA) device in a sheep model. To evaluate the ability of a permanent PVA hydrogel barrier to reduce the risk of potential vessel damage during anterior vertebral revision surgery, to provide a nonadhesive barrier at the surgical site, and to create a surgical revision plane of dissection. The development of scar tissue and adhesions presents a significant postoperative problem in spine surgery, where adhesion involvement of overlying structures can cause pain, neurovascular complications, and present a difficult surgical environment during revisions. The devices were implanted onto the ventral surface of exposed lumbar intervertebral discs using an anterolateral approach. One disc separated from the study site was also exposed to serve as a control. Three sheep each were then evaluated with an explant procedure at 30 and 90 days. Extensive sampling was undertaken to evaluate gross anatomic, micropathologic, and biochemical environments and properties of the device. The structural properties and appearance of the device remained intact at both 30 and 90 days. The material remained flexible, hydrophilic, and soft, without visible resorption or decomposition. The material was well tolerated by the animal, with minimal histologic signs of inflammation or rejection. Tissue planes were easily able to be localized by the surgeon attempting to locate the prior surgical site at the time of resection. The PVA vessel shield effectively protected the structures overlying the sheep spine during revision, providing a clear dissection plane for resection at repeat surgery. The overlying structures separated from the previous surgical site with no adhesion, and allowed safe separation of adjacent tissues without the use of sharp dissection.

  3. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    Science.gov (United States)

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  4. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  5. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  6. The Role of Platelet Factor 4 in Local and Remote Tissue Damage in a Mouse Model of Mesenteric Ischemia/Reperfusion Injury

    Science.gov (United States)

    Lapchak, Peter H.; Ioannou, Antonis; Rani, Poonam; Lieberman, Linda A.; Yoshiya, Kazuhisa; Kannan, Lakshmi; Lucca, Jurandir J. Dalle; Kowalska, M. Anna; Tsokos, George C.

    2012-01-01

    The robust inflammatory response that occurs during ischemia reperfusion (IR) injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4), during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage. PMID:22792197

  7. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  8. Star poly(ethylene glycol) as a tunable scaffold for neural tissue engineering

    Science.gov (United States)

    Zustiak, Silviya Petrova

    The primary focus of this work was to develop a novel synthetic hydrogel scaffold as an in vitro model to enable future detailed studies of how neurons grow in environments with controllable diffusion profiles of soluble cues and tunable neuronmatrix interactions. The development of in vitro models that enable elucidation of the mechanisms of system performance is a recently emerging goal of tissue engineering. The design of three-dimensional (3D) scaffolds in particular, is motivated by the need to develop model systems that better mimic native tissue as compared to conventional two-dimensional (2D) cell culture substrates. An ideal scaffold is degradable, porous, biocompatible, with mechanical properties to match those of the tissues of interest and with a suitable surface chemistry for cell attachment, proliferation, and differentiation. Although naturally derived materials are more versatile in providing complex biological cues, synthetic polymers are preferable for the design of in vitro models as they provide wider range of properties, controllable degradation rates, and easier processing. Most importantly, their mechanical properties can be decoupled from their biological properties, a crucial issue in interpreting cell responses. The synthetic material provides the structural backbone of the scaffold while biochemical function is added via incorporation of ligands or proteins aimed at triggering specific cell behaviors. As presented in this dissertation, we have developed and characterized a new synthetic 3D hydrogel scaffold from cross-linked poly(ethylene glycol) (PEG). PEG was selected because it is hydrophilic, non-toxic, biocompatible, and inert to protein adhesion. The chosen cross-linking chemistry was a highly specific reaction that occurred under physiological conditions so that cells could be embedded within the gel prior to cross-linking. Controllable degradability was imparted via series of hydrolytically degradable PEG cross-linkers. Thorough

  9. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum

    Directory of Open Access Journals (Sweden)

    Zargar Bilal

    2011-02-01

    Full Text Available Abstract Background The present study was conducted to evaluate the in vitro and in vivo antioxidant properties of aqueous extract of Podophyllum hexandrum. The antioxidant potential of the plant extract under in vitro situations was evaluated by using two separate methods, inhibition of superoxide radical and hydrogen peroxide radical. Carbon tetrachloride (CCl4 is a well known toxicant and exposure to this chemical is known to induce oxidative stress and causes tissue damage by the formation of free radicals. Methods 36 albino rats were divided into six groups of 6 animals each, all animals were allowed food and water ad libitum. Group I (control was given olive oil, while the rest groups were injected intraperitoneally with a single dose of CCl4 (1 ml/kg as a 50% (v/v solution in olive oil. Group II received CCl4 only. Group III animals received vitamin E at a concentration of 50 mg/kg body weight and animals of groups IV, V and VI were given extract of Podophyllum hexandrum at concentration dose of 20, 30 and 50 mg/kg body weight. Antioxidant status in both kidney and lung tissues were estimated by determining the activities of antioxidative enzymes, glutathione reductase (GR, glutathione peroxidase (GPX, glutathione-S-transferase (GST and superoxide dismutase (SOD; as well as by determining the levels of reduced glutathione (GSH and thiobarbituric acid reactive substances (TBARS. In addition, superoxide and hydrogen peroxide radical scavenging activity of the extract was also determined. Results Results showed that the extract possessed strong superoxide and hydrogen peroxide radical scavenging activity comparable to that of known antioxidant butylated hydroxy toluene (BHT. Our results also showed that CCl4 caused a marked increase in TBARS levels whereas GSH, SOD, GR, GPX and GST levels were decreased in kidney and lung tissue homogenates of CCl4 treated rats. Aqueous extract of Podophyllum hexandrum successfully prevented the alterations

  10. Reactive tissue proliferation and damage of elastic lamina caused by hydrogel coated coils in experimental rat aneurysms.

    Science.gov (United States)

    Zhang, Chao; Chaudhary, Neeraj; Gemmete, Joseph J; Thompson, B Gregory; Xi, Guohua; Pandey, Aditya S

    2014-07-01

    The HydroCoil Endovascular Aneurysm Occlusion and Packing Study clinical trial, comparing HydroCoil with platinum coils, reported an 8.6% reduction in significant recurrence following cerebral aneurysm coil embolization. We sought to better understand the mechanism of aneurysmal healing following HydroCoil implantation using the rat external carotid artery (ECA) sidewall aneurysm model. We ligated the proximal ECA, creating a blind pouch in our rat model. HydroCoil or bare platinum coil segments (5 mm) were inserted into aneurysms. Sham operated rats underwent identical procedures without coil insertion. 14 days after coil embolization, animals were sacrificed and the common carotid artery/internal carotid artery/ECA complex removed. Sac and surrounding vasculature underwent microscopic and histopathologic evaluation. Cellular and fibrotic components within the sac were defined as the organized area. Percentage of organized area and residual length of internal elastic lamina were calculated. Organized tissue area in ECA sac 2 weeks following coil embolization was significantly greater in the HydroCoil group than the bare coil (60.42±22.58% vs 15.62±19.24%; p=0.01) and sham (60.42±22.58% vs 4.61±3.86%; p=0.002) groups. Elastic lamina was significantly reduced in the HydroCoil group compared with the sham and bare coil groups (21.67±16.50% vs 100% and 96.06±8.78%; both pgroups for organized tissue formation or reduction in elastic lamina. Greater numbers of B cells, T cells, and neutrophils were present within HydroCoil induced organized tissue compared with the platinum group; this difference was not statistically significant. In the rat ECA sidewall aneurysm model, hydrogel coated coils cause more tissue reaction and organization compared with bare platinum coils, possibly attributed to observed elastic lamina damage and vascular smooth muscle cell proliferation. Published by the BMJ Publishing Group Limited. For permission to use (where not already

  11. An approach for tissue density classification in mammographic images using artificial neural network based on wavelet and curvelet transforms

    Science.gov (United States)

    Yaşar, Hüseyin; Ceylan, Murat

    2015-03-01

    Breast cancer is one of the types of cancer which is most commonly seen in women. Density of breast is an important indicator for the risk of cancer. In addition, densities of tissue may harden the diagnosis by hiding the abnormalities occurring on the breast. For this reason, during the process of diagnosis, the process of automatic classification of breast density has a significant importance. In this study, a new system with the base of Artificial Neural Network (ANN) and multiple resolution analysis is suggested. Wavelet and curvelet analyses having the most common use have been used as multi resolution analysis. 4 pieces of statistics which are minimum value, maximum value, mean value and standard deviation have been extracted from the images which have been eluted to their sub-bands via multi resolution analysis. For the purpose of testing the success of the system, 322 pieces of images which are in MIAS database have been used. The obtained results for different backgrounds are so satisfying; and the highest classification values have been obtained as 97.16 % with Wavelet transform and ANN for fatty background and 79.80 % with Wavelet transform and ANN for fatty-glanduar background. The same results have been obtained using Wavelet transform and ANN and Curvelet transform and ANN for dense background and accuracy rate of 84.82 % have been reached. The results of mean classification have been obtained, for three pieces of tissue types (fatty, fatty-glanduar, dense), in sequence as 84.47 % with the use of ANN, 85.71 % with the use of curvelet analysis and ANN; and 87.26 % with the use of wavelet analysis and ANN.

  12. Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score

    Science.gov (United States)

    Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning

    2017-03-01

    The Gleason grading system was developed for assessing prostate histopathology slides. It is correlated to the outcome and incidence of relapse in prostate cancer. Although this grading is part of a standard protocol performed by pathologists, visual inspection of whole slide images (WSIs) has an inherent subjectivity when evaluated by different pathologists. Computer aided pathology has been proposed to generate an objective and reproducible assessment that can help pathologists in their evaluation of new tissue samples. Deep convolutional neural networks are a promising approach for the automatic classification of histopathology images and can hierarchically learn subtle visual features from the data. However, a large number of manual annotations from pathologists are commonly required to obtain sufficient statistical generalization when training new models that can evaluate the daily generated large amounts of pathology data. A fully automatic approach that detects prostatectomy WSIs with high-grade Gleason score is proposed. We evaluate the performance of various deep learning architectures training them with patches extracted from automatically generated regions-of-interest rather than from manually segmented ones. Relevant parameters for training the deep learning model such as size and number of patches as well as the inclusion or not of data augmentation are compared between the tested deep learning architectures. 235 prostate tissue WSIs with their pathology report from the publicly available TCGA data set were used. An accuracy of 78% was obtained in a balanced set of 46 unseen test images with different Gleason grades in a 2-class decision: high vs. low Gleason grade. Grades 7-8, which represent the boundary decision of the proposed task, were particularly well classified. The method is scalable to larger data sets with straightforward re-training of the model to include data from multiple sources, scanners and acquisition techniques. Automatically

  13. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer’s Disease patients: A pilot study

    Science.gov (United States)

    González-Castañeda, Rocío E.; Sánchez-González, Víctor J.; Flores-Soto, Mario; Vázquez-Camacho, Gonzalo; Macías-Islas, Miguel A.; Ortiz, Genaro G.

    2013-01-01

    Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer’s Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels. PMID:23569405

  14. Development of a Multi-Functional Biopolymer Scaffold for Neural Tissue Engineering

    Science.gov (United States)

    Francis, Nicola Louise

    Spinal cord injury (SCI) affects approximately 270,000 people in the U.S., with approximately 12,000 new cases occurring every year. Several strategies have been investigated to enhance axonal regeneration after SCI, however, the resulting growth can be random and disorganized. Bioengineered scaffolds provide a physical substrate for the guidance of regenerating axons towards their targets, and can be produced by freeze casting. This technique involves the controlled directional solidification of an aqueous solution or suspension, resulting in a linearly aligned porous structure caused by ice templating. In this thesis, freeze casting was used to create novel porous chitosan-alginate (C/A) scaffolds with longitudinally aligned channels and a compressive modulus (5.08 ± 0.61 kPa) comparable to that of native spinal cord tissue. These C/A scaffolds supported the viability, attachment, and directionally oriented growth of chick dorsal root ganglia (DRG) neurites in vitro, with surface adsorptions of polycations and laminin promoting significantly longer neurite growth than the uncoated scaffolds (pvitro, while chABC was released for up to 35 days. However, up to 85% of biomolecules emained entrapped within the scaffold walls, due to limitation of diffusion by the scaffold wall mesh size. Release of bioactive chABC and neurotrophins from the multifunctional scaffolds promoted the growth of DRG neurites through an in vitro barrier of chondroitin sulfate proteoglycans, a main inhibitory component of the growth-inhibiting glial scar in the injured spinal cord. The present data suggest these multi-functional scaffolds are suitable for use and future testing in vivo as a combination strategy for spinal cord repair due to their ability to promote the directionally oriented growth of neurites and their ability to provide the sustained release of therapeutic bioactive molecules for the stimulation of axonal growth through the glial scar.

  15. Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injury-associated genes in sensory neurons.

    Science.gov (United States)

    Rau, Kristofer K; Hill, Caitlin E; Harrison, Benjamin J; Venkat, Gayathri; Koenig, Heidi M; Cook, Sarah B; Rabchevsky, Alexander G; Taylor, Bradley K; Hai, Tsonwin; Petruska, Jeffrey C

    2016-09-01

    Tissue damage is one of the major etiological factors in the emergence of chronic/persistent pain, although mechanisms remain enigmatic. Using incision of the back skin of adult rats as a model for tissue damage, we observed sensitization in a nociceptive reflex enduring to 28days post-incision (DPI). To determine if the enduring behavioral changes corresponded with a long-term impact of tissue damage on sensory neurons, we examined the temporal expression profile of injury-regulated genes and the electrophysiological properties of traced dorsal root ganglion (DRG) sensory neurons. The mRNA for the injury/stress-hub gene Activating Transcription Factor 3 (ATF3) was upregulated and peaked within 4 DPI, after which levels declined but remained significantly elevated out to 28 DPI, a time when the initial incision appears healed and tissue-inflammation largely resolved. Accordingly, stereological image analysis indicated that some neurons expressed ATF3 only transiently (mostly medium-large neurons), while in others it was sustained (mostly small neurons), suggesting cell-type-specific responses. In retrogradely-traced ATF3-expressing neurons, Calcium/calmodulin-dependent protein kinase type IV (CAMK4) protein levels and isolectin-B4 (IB4)-binding were suppressed whereas Growth Associated Protein-43 (GAP-43) and Neuropeptide Y (NPY) protein levels were enhanced. Electrophysiological recordings from DiI-traced sensory neurons 28 DPI showed a significant sensitization limited to ATF3-expressing neurons. Thus, ATF3 expression is revealed as a strong predictor of single cells displaying enduring pain-related electrophysiological properties. The cellular injury/stress response induced in sensory neurons by tissue damage and indicated by ATF3 expression is positioned to contribute to pain which can occur after tissue damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  17. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue

    Directory of Open Access Journals (Sweden)

    Abolhasan Rezaeyan

    2016-01-01

    Full Text Available This study was carried out to evaluate radioprotective effects of hesperidin (HES administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD, malondialdehyde (MDA, and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.

  19. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    Science.gov (United States)

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Green tea (Camellia sinensis) alleviates arsenic-induced damages to DNA and intestinal tissues in rat and in situ intestinal loop by reinforcing antioxidant system.

    Science.gov (United States)

    Acharyya, Nirmallya; Sajed Ali, Sk; Deb, Bimal; Chattopadhyay, Sandip; Maiti, Smarajit

    2015-09-01

    This study elucidates the protective role of Green tea (Camellia sinensis or CS) against arsenic-induced mutagenic DNA-breakage/intestinal (small) damages in female rats. Intestinal epithelial cells receive ingested arsenic initially. Though, the possibility of damages in this tissue is immense and the therapeutic strategies against this damage are of great concern, reports on either issue are scanty. Our earlier study on arsenic-exposed human unveils a link between carcinogenesis and mutagenic DNA damage. Here, we demonstrate that supplementation of CS-extract (10 mg/mL water) with NaAsO2 (0.6 ppm)/100 g b.w. for 28 days to rats offered a significant protection against arsenic-induced oxidative damages to DNA and intestinal (small) tissues by buttressing antioxidant systems. Necrotic and apoptotic damages and their CS-protection are shown in DNA-fragmentation, comet-assay, and histoarchitecture (hematoxylin and eosin and periodic acid-schiff staining) results. Only arsenic exposure significantly decreased intestinal superoxide dismutase, catalase activities, and level of soluble thiol with a concomitant increase in malondialdehyde/conjugated dienes. Alteration of serum necrotic marker lactate dehydrogenase and the metabolic inflammatory marker c-reactive protein also indicate the impairment may be occurring at transcription and/or cellular signal transduction level. In addition, in situ incubation in rat intestinal loop filled for 24 h with NaAsO2 alone (250 µM) or with aqueous CS-extract (250 mg/mL) suggests that small intestinal epithelial cells are significantly protected by CS against arsenic-associated necrotic/mutagenic damages, which is observed in DNA-breakage studies. In conclusion, besides intensifying endogenous antioxidant system, CS polyphenols also offer a direct role on free radical scavenging activity that is associated to the protection from mutagenic DNA-breakages and prevention of tissue necrosis/carcinogenesis generated by arsenic. © 2014

  1. Effectiveness of a Treatment Involving Soft Tissue Techniques and/or Neural Mobilization Techniques in the Management of Tension-Type Headache: A Randomized Controlled Trial.

    Science.gov (United States)

    Ferragut-Garcías, Alejandro; Plaza-Manzano, Gustavo; Rodríguez-Blanco, Cleofás; Velasco-Roldán, Olga; Pecos-Martín, Daniel; Oliva-Pascual-Vaca, Jesús; Llabrés-Bennasar, Bartomeu; Oliva-Pascual-Vaca, Ángel

    2017-02-01

    To evaluate the effects of a protocol involving soft tissue techniques and/or neural mobilization techniques in the management of patients with frequent episodic tension-type headache (FETTH) and those with chronic tension-type headache (CTTH). Randomized, double-blind, placebo-controlled before and after trial. Rehabilitation area of the local hospital and a private physiotherapy center. Patients (N=97; 78 women, 19 men) diagnosed with FETTH or CTTH were randomly assigned to groups A, B, C, or D. (A) Placebo superficial massage; (B) soft tissue techniques; (C) neural mobilization techniques; (D) a combination of soft tissue and neural mobilization techniques. The pressure pain threshold (PPT) in the temporal muscles (points 1 and 2) and supraorbital region (point 3), the frequency and maximal intensity of pain crisis, and the score in the Headache Impact Test-6 (HIT-6) were evaluated. All variables were assessed before the intervention, at the end of the intervention, and 15 and 30 days after the intervention. Groups B, C, and D had an increase in PPT and a reduction in frequency, maximal intensity, and HIT-6 values in all time points after the intervention as compared with baseline and group A (P<.001 for all cases). Group D had the highest PPT values and the lowest frequency and HIT-6 values after the intervention. The application of soft tissue and neural mobilization techniques to patients with FETTH or CTTH induces significant changes in PPT, the characteristics of pain crisis, and its effect on activities of daily living as compared with the application of these techniques as isolated interventions. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healty and demyelinated CNS tissue

    OpenAIRE

    Praet, J.; SANTERMANS, Eva; Reekmans, K.; de Vocht, N.; Le Blon, D.; Hoornaert, C.; Daans, J.; Goossens, H.; Berneman, Z.; HENS, Niel; Van der Linden, A.; Ponsaerts, P.

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and cult...

  3. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2017-12-30

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  4. Arsenic-Induced Antioxidant Depletion, Oxidative DNA Breakage, and Tissue Damages are Prevented by the Combined Action of Folate and Vitamin B12.

    Science.gov (United States)

    Acharyya, Nirmallya; Deb, Bimal; Chattopadhyay, Sandip; Maiti, Smarajit

    2015-11-01

    Arsenic is a grade I human carcinogen. It acts by disrupting one-carbon (1C) metabolism and cellular methyl (-CH3) pool. The -CH3 group helps in arsenic disposition and detoxification of the biological systems. Vitamin B12 and folate, the key promoters of 1C metabolism were tested recently (daily 0.07 and 4.0 μg, respectively/100 g b.w. of rat for 28 days) to evaluate their combined efficacy in the protection from mutagenic DNA-breakage and tissue damages. The selected tissues like intestine (first-pass site), liver (major xenobiotic metabolizer) and lung (major arsenic accumulator) were collected from arsenic-ingested (0.6 ppm/same schedule) female rats. The hemo-toxicity and liver and kidney functions were monitored. Our earlier studies on arsenic-exposed humans can correlate carcinogenesis with DNA damage. Here, we demonstrate that the supplementation of physiological/therapeutic dose of vitamin B12 and folate protected the rodents significantly from arsenic-induced DNA damage (DNA fragmentation and comet assay) and hepatic and renal tissue degeneration (histo-architecture, HE staining). The level of arsenic-induced free-radical products (TBARS and conjugated diene) was significantly declined by the restored actions of several antioxidants viz. urate, thiol, catalase, xanthine oxidase, lactoperoxidase, and superoxide dismutase in the tissues of vitamin-supplemented group. The alkaline phosphatase, transaminases, urea and creatinine (hepatic and kidney toxicity marker), and lactate dehydrogenase (tissue degeneration marker) were significantly impaired in the arsenic-fed group. But a significant protection was evident in the vitamin-supplemented group. In conclusion, the combined action of folate and B12 results in the restitution in the 1C metabolic pathway and cellular methyl pool. The cumulative outcome from the enhanced arsenic methylation and antioxidative capacity was protective against arsenic induced mutagenic DNA breakages and tissue damages.

  5. Epicardial Adipose Tissue (EAT Thickness Is Associated with Cardiovascular and Liver Damage in Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Anna Ludovica Fracanzani

    Full Text Available Epicardial adipose tissue (EAT has been proposed as a cardiometabolic and hepatic fibrosis risk factor in patients with non alcoholic fatty liver disease (NAFLD. Aim of this study was to evaluate the role of EAT in NAFLD by analyzing 1 the association between EAT, the other metabolic parameters and the severity of steatosis 2 the relationship between cardiovascular (cIMT, cplaques, E/A, liver (presence of NASH and significant fibrosis damage and metabolic risk factors including EAT 3 the relationship between EAT and genetic factors strongly influencing liver steatosis.In a cross-sectional study, we considered 512 consecutive patients with NAFLD (confirmed by biopsy in 100. EAT, severity of steatosis, carotid intima-media thickness (cIMT and plaques were evaluated by ultrasonography and results analysed by multiple linear and logistic regression models. Variables independently associated with EAT (mm were female gender (p = 0.003, age (p = 0.001, BMI (p = 0.01, diastolic blood pressure (p = 0.009, steatosis grade 2 (p = 0.01 and 3 (p = 0.04, fatty liver index (p = 0.001 and statin use (p = 0.03. Variables independently associated with carotid IMT were age (p = 0.0001, hypertension (p = 0.009, diabetes (p = 0.04, smoking habits (p = 0.04 and fatty liver index (p = 0.02, with carotid plaques age (p = 0.0001, BMI (p = 0.03, EAT (p = 0.02, and hypertension (p = 0.02, and with E/A age (p = 0.0001, diabetes (p = 0.005, hypertension (p = 0.04 and fatty liver index (p = 0.004. In the 100 patients with available liver histology non alcoholic steatohepatitis (NASH was independently associated with EAT (p = 0.04 and diabetes (p = 0.054 while significant fibrosis with EAT (p = 0.02, diabetes (p = 0.01 and waist circumference (p = 0.05. No association between EAT and PNPLA3 and TM6SF2 polymorphisms was found.In patients with NAFLD, EAT is associated with the severity of liver and vascular damage besides with the known metabolic risk factors.

  6. The Incremental Induction of Neuroprotective Properties by Multiple Therapeutic Strategies for Primary and Secondary Neural Injury

    Directory of Open Access Journals (Sweden)

    Seunghoon Lee

    2015-08-01

    Full Text Available Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS. Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.

  7. Stimulated release of tissue plasminogen activator from artery wall sympathetic nerves: implications for stress-associated wall damage.

    Science.gov (United States)

    Hao, Zhifang; Jiang, Xi; Sharafeih, Roshanak; Shen, Shujing; Hand, Arthur R; Cone, Robert E; O'Rourke, James

    2005-06-01

    Recurrent stress is clinically associated with early onset hypertension and coronary artery disease. A mechanism linking emotion to pathogenic remodeling of the artery wall has not been identified. Stress stimulates acute regulated release of tissue plasminogen activator (t-PA) into the circulation, which is presently attributed to the vascular endothelium. Sympathetic neurons also synthesize t-PA and axonally transport it to the arterial smooth muscle. Unlike release by the endothelium, a stress-stimulated sympathetic discharge would potentially accelerate degradation of the wall matrix by plasmin. To assess whether sympathetic axons are the principal source of acute stress-induced arterial release of t-PA, we compared the output from small densely innervated and large sparsely innervated isolated artery segments before and after sympathetic stimulation, and after ablations. Following phenylephrine infusion densely-innervated microvessels in uveal eyecups were released over 60-fold greater amounts of active t-PA per milligram than the sparsely innervated aorta; and ten-fold more than carotid artery segments. Mesenteric artery release was 4.8-fold greater than release by the carotid artery. In vivo, uveal release of t-PA increased more than three-fold within one minute following superior cervical sympathetic ganglion electrical stimulation, and after phenylephrine, or nicotine infusions of the anterior chamber. Circulating levels of t-PA fell 70% following chemical sympathectomy. We propose that sympathetic nerves are the primary source of stress-induced release of t-PA into and from the densely innervated resistance arteries and arterioles, where dysregulated plasmin-induced proteolysis could damage the wall matrix.

  8. Effect of vitamin C on tissue damage and oxidative stress following tunica vaginalis flap coverage after testicular torsion.

    Science.gov (United States)

    Moghimian, Maryam; Soltani, Malihe; Abtahi, Hossein; Shokoohi, Majid

    2017-10-01

    The aim was to investigate the protective effect of vitamin C on tissue damage and oxidative stress following tunica albuginea incision with tunica vaginalis flap coverage for testicular torsion. Adult male Wistar rats were randomly divided into two experimental groups. The first group experienced 5h of testicular torsion followed by treatment with vitamin C alone, with tunica vaginalis flap coverage alone, and with both vitamin C and tunica vaginalis flap coverage along with a control group subjected to a sham procedure. The second group experienced 9h of testicular torsion followed by the same treatment options as described for the 5h group. The oxidative stress and testosterone levels were measured 24h posttreatment. The Johnsen score, diameter of the seminiferous tubules, and thickness of the seminiferous tubule epithelium were recorded 30days following the treatment. The Johnsen score, diameter of the seminiferous tubules, and thickness of the seminiferous tubule epithelium significantly increased in the 5h testicular torsion group receiving treatment with vitamin C and tunica vaginalis flap coverage compared with the group receiving tunica vaginalis flap alone. The level of testosterone decreased significantly in all groups except for the 5h testicular torsion group receiving treatment with vitamin C and tunica vaginalis flap coverage. The MDA level also decreased in the group receiving treatment with vitamin C and tunica vaginalis flap coverage compared with the group receiving tunica vaginalis flap coverage alone. The results showed that the histological parameters and testosterone levels improved with the administration of vitamin C before tunica vaginalis flap coverage in the group experiencing 5h of torsion. This may be a result of the antioxidant effect of vitamin C. No advantage was observed for the 9h group, possibly because the dosage of vitamin C was inadequate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  10. Can pulsed ultrasound increase tissue damage during ischemia? A study of the effects of ultrasound on infarcted and non-infarcted myocardium in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Grins Edgars

    2005-04-01

    Full Text Available Abstract Background The same mechanisms by which ultrasound enhances thrombolysis are described in connection with non-beneficial effects of ultrasound. The present safety study was therefore designed to explore effects of beneficial ultrasound characteristics on the infarcted and non-infarcted myocardium. Methods In an open chest porcine model (n = 17, myocardial infarction was induced by ligating a coronary diagonal branch. Pulsed ultrasound of frequency 1 MHz and intensity 0.1 W/cm2 (ISATA was applied during one hour to both infarcted and non-infarcted myocardial tissue. These ultrasound characteristics are similar to those used in studies of ultrasound enhanced thrombolysis. Using blinded assessment technique, myocardial damage was rated according to histopathological criteria. Results Infarcted myocardium exhibited a significant increase in damage score compared to non-infarcted myocardium: 6.2 ± 2.0 vs. 4.3 ± 1.5 (mean ± standard deviation, (p = 0.004. In the infarcted myocardium, ultrasound exposure yielded a further significant increase of damage scores: 8.1 ± 1.7 vs. 6.2 ± 2.0 (p = 0.027. Conclusion Our results suggest an instantaneous additive effect on the ischemic damage in myocardial tissue when exposed to ultrasound of stated characteristics. The ultimate damage degree remains to be clarified.

  11. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    -spheres (NTS) in EGF and FGF2 containing medium. The spheres were cut into quarters when passaged every 10-15th day, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. For analysis of regional differences within the forebrain SVZ, NTS were...

  12. A murine experimental anthracycline extravasation model: pathology and study of the involvement of topoisomerase II alpha and iron in the mechanism of tissue damage

    DEFF Research Database (Denmark)

    Thougaard, Annemette V; Langer, Seppo W; Hainau, Bo

    2010-01-01

    tested two major hypotheses: (1) interaction with topoisomerase II alpha and (2) the formation of tissue damaging reactive oxygen species following redox cycling of an anthracycline Fe(2+) complex. Dexrazoxane could minimise skin damage via both mechanisms, as it stops the catalytic activity...... of topoisomerase II alpha and thereby prevents access of anthracycline to the enzyme and thus cytotoxicity, and also acts as a strong iron chelator following opening of its two bisdioxopiperazine rings. Using the model of extravasation in a dexrazoxane-resistant transgenic mouse with a heterozygous mutation...

  13. Intraperitoneal Alpha-Lipoic Acid to prevent neural damage after crush injury to the rat sciatic nerve

    Directory of Open Access Journals (Sweden)

    Ozbag Davut

    2009-01-01

    Full Text Available Abstract Objective Crush injury to the sciatic nerve causes oxidative stress. Alfa Lipoic acid (a-LA is a neuroprotective metabolic antioxidant. This study was designed to investigate the antioxidant effects of pretreatment with a-LA on the crush injury of rat sciatic nerve. Methods Forty rats were randomized into four groups. Group I and Group II received saline (2 ml, intraperitoneally and a-LA (100 mg/kg, 2 ml, intraperitoneally in the groups III and IV at the 24 and 1 hour prior to the crush injury. In groups II, III and IV, the left sciatic nerve was exposed and compressed for 60 seconds with a jeweler's forceps. In Group I (n = 10, the sciatic nerve was explored but not crushed. In all groups of rats, superoxide dismutase (SOD and catalase (CAT activities, as well as malondialdehyde (MDA levels were measured in samples of sciatic nerve tissue. Results Compared to Group I, Group II had significantly decreased tissue SOD and CAT activities and elevated MDA levels indicating crush injury (p < 0.05. In the a-LA treatment groups (groups III and IV, tissue CAT and SOD activities were significantly increased and MDA levels significantly decreased at the first hour (p < 0.05 and on the 3rd day (p < 0.05. There was no significant difference between a-LA treatment groups (p > 0.05. Conclusion A-LA administered before crush injury of the sciatic nerve showed significant protective effects against crush injury by decreasing the oxidative stress. A-LA should be considered in the treatment of peripheral nerve injuries, but further studies are needed to explain the mechanism of its neuroprotective effects.

  14. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats.

    Science.gov (United States)

    Alexanian, Arshak R; Fehlings, Michael G; Zhang, Zhiying; Maiman, Dennis J

    2011-01-01

    Stem cell-based therapy for repair and replacement of lost neural cells is a promising treatment for central nervous system (CNS) diseases. Bone marrow (BM)-derived mesenchymal stem cells (MSCs) can differentiate into neural phenotypes and be isolated and expanded for autotransplantation with no risk of rejection. The authors examined whether transplanted neurally induced human MSCs (NI hMSCs), developed by a new procedure, can survive, differentiate, and promote tissue protection and functional recovery in injured spinal cord (ISC) rats. Neural induction was achieved by exposing cells simultaneously to inhibitors of DNA methylation, histone deacetylation, and pharmacological agents that increased cAMP levels. Three groups of adult female Sprague-Dawley rats were injected immediately rostral and caudal to the midline lesion with phosphate-buffered saline, MSCs, or NI hMSCs, 1 week after a spinal cord impact injury at T-8. Functional outcome was measured using the Basso Beattie Bresnahan (BBB) locomotor rating scale and thermal sensitivity test on a weekly basis up to 12 weeks postinjury. Graft integration and anatomy of spinal cord was assessed by stereological, histochemical, and immunohistochemical techniques. The transplanted NI hMSCs survived, differentiated, and significantly improved locomotor recovery of ISC rats. Transplantation also reduced the volume of lesion cavity and white matter loss. This method of hMSC modification may provide an alternative source of autologous adult stem cells for CNS repair.

  15. Electrospun Collagen/Silk Tissue Engineering Scaffolds: Fiber Fabrication, Post-Treatment Optimization, and Application in Neural Differentiation of Stem Cells

    Science.gov (United States)

    Zhu, Bofan

    Biocompatible scaffolds mimicking the locally aligned fibrous structure of native extracellular matrix (ECM) are in high demand in tissue engineering. In this thesis research, unidirectionally aligned fibers were generated via a home-built electrospinning system. Collagen type I, as a major ECM component, was chosen in this study due to its support of cell proliferation and promotion of neuroectodermal commitment in stem cell differentiation. Synthetic dragline silk proteins, as biopolymers with remarkable tensile strength and superior elasticity, were also used as a model material. Good alignment, controllable fiber size and morphology, as well as a desirable deposition density of fibers were achieved via the optimization of solution and electrospinning parameters. The incorporation of silk proteins into collagen was found to significantly enhance mechanical properties and stability of electrospun fibers. Glutaraldehyde (GA) vapor post-treatment was demonstrated as a simple and effective way to tune the properties of collagen/silk fibers without changing their chemical composition. With 6-12 hours GA treatment, electrospun collagen/silk fibers were not only biocompatible, but could also effectively induce the polarization and neural commitment of stem cells, which were optimized on collagen rich fibers due to the unique combination of biochemical and biophysical cues imposed to cells. Taken together, electrospun collagen rich composite fibers are mechanically strong, stable and provide excellent cell adhesion. The unidirectionally aligned fibers can accelerate neural differentiation of stem cells, representing a promising therapy for neural tissue degenerative diseases and nerve injuries.

  16. PREDICTION OF SPECIFIC DAMAGE OR INFARCTION FROM THE MEASUREMENT OF TISSUE IMPEDANCE FOLLOWING REPETITIVE BRAIN ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    KLEIN, HC; KROPVANGASTEL, W; GO, KG; KORF, J

    The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of

  17. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2015-01-01

    Full Text Available Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.

  18. High sCD40L levels Early After Trauma are Associated with Enhanced Shock, Sympathoadrenal Activation, Tissue and Endothelial Damage, Coagulopathy and Mortality

    DEFF Research Database (Denmark)

    Johansson, P I; Sørensen, A M; Perner, A

    2012-01-01

    the association between the sCD40L level and tissue injury, shock, coagulopathy and mortality in trauma patients. Methods: Prospective, observational study of 80 trauma patients admitted to a Level I Trauma Centre. Data on demography, biochemistry, Injury Severity Score (ISS) and 30-day mortality were recorded...... was associated with enhanced tissue and endothelial damage (ISS, hcDNA, Annexin V, syndecan-1, sTM), shock (pH, SBE), sympathoadrenal activation (adrenaline) and coagulopathy evidenced by reduced thrombin generation (PF1.2), hyperfibrinolysis (D-dimer), increased APTT and inflammation (IL-6) (all p...

  19. An inverse problem in estimating the laser irradiance and thermal damage in laser-irradiated biological tissue with a dual-phase-lag model.

    Science.gov (United States)

    Yang, Yu-Ching; Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih

    2017-03-01

    The aim of this study is to solve an inverse heat conduction problem to estimate the unknown time-dependent laser irradiance and thermal damage in laser-irradiated biological tissue from the temperature measurements taken within the tissue. The dual-phase-lag model is considered in the formulation of heat conduction equation. The inverse algorithm used in the study is based on the conjugate gradient method and the discrepancy principle. The effect of measurement errors and measurement locations on the estimation accuracy is also investigated. Two different examples of laser irradiance are discussed. Results show that the unknown laser irradiance and thermal damage can be predicted precisely by using the present approach for the test cases considered in this study.

  20. Neural plasticity in pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Demir, Ihsan Ekin; Friess, Helmut; Ceyhan, Güralp O

    2015-11-01

    Pancreatic nerves undergo prominent alterations during the evolution and progression of human chronic pancreatitis and pancreatic cancer. Intrapancreatic nerves increase in size (neural hypertrophy) and number (increased neural density). The proportion of autonomic and sensory fibres (neural remodelling) is switched, and are infiltrated by perineural inflammatory cells (pancreatic neuritis) or invaded by pancreatic cancer cells (neural invasion). These neuropathic alterations also correlate with neuropathic pain. Instead of being mere histopathological manifestations of disease progression, pancreatic neural plasticity synergizes with the enhanced excitability of sensory neurons, with Schwann cell recruitment toward cancer and with central nervous system alterations. These alterations maintain a bidirectional interaction between nerves and non-neural pancreatic cells, as demonstrated by tissue and neural damage inducing neuropathic pain, and activated neurons releasing mediators that modulate inflammation and cancer growth. Owing to the prognostic effects of pain and neural invasion in pancreatic cancer, dissecting the mechanism of pancreatic neuroplasticity holds major translational relevance. However, current in vivo models of pancreatic cancer and chronic pancreatitis contain many discrepancies from human disease that overshadow their translational value. The present Review discusses novel possibilities for mechanistically uncovering the role of the nervous system in pancreatic disease progression.

  1. Connective-Tissue Growth Factor (CTGF/CCN2 Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Fabio A Mendes

    Full Text Available Connective-tissue growth factor (CTGF is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61, CTGF and nephroblastoma overexpressed (NOV. CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling

  2. In vivo phenytoin-initiated oxidative damage to proteins and lipids in murine maternal hepatic and embryonic tissue organelles: potential molecular targets of chemical teratogenesis.

    Science.gov (United States)

    Liu, L; Wells, P G

    1994-04-01

    The widely used anticonvulsant drug phenytoin may be bioactivated by peroxidases such as prostaglandin H synthase (PHS) to a reactive free radical intermediate that initiates teratogenesis. This in vivo study evaluated the potential molecular targets mediating phenytoin teratogenicity. In vivo phenytoin-induced oxidative tissue damage following bioactivation was quantified in both maternal hepatic and embryonic tissues from pregnant CD-1 mice using lipid peroxidation and protein oxidation and degradation as indices. Pregnant mice were injected with a teratogenic dose of phenytoin, 65 mg/kg ip, during organogenesis on Gestational Day 12. alpha-Phenyl-N-t-butylnitrone (PBN), a free radical spin trapping agent, 41.5 mg/kg, or acetylsalicylic acid (ASA), an inhibitor of the cyclooxygenase component of PHS, 10 mg/kg, were injected ip 2 hr before phenytoin treatment, and maternal hepatic and embryonic tissues were obtained at 0, 3, 6, 8, and 24 hr. Phenytoin enhanced lipid peroxidation in maternal plasma, hepatic microsomes, cytosol, mitochondria, and nuclei and in embryonic microsomes, cytosol, and mitochondria (p teratogenicity by PBN and ASA, suggest that peroxidase-catalyzed bioactivation of phenytoin may initiate oxidative damage to lipids and proteins in embryonic tissues, with teratological consequences.

  3. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  4. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering.

    Science.gov (United States)

    Pires, Filipa; Ferreira, Quirina; Rodrigues, Carlos A V; Morgado, Jorge; Ferreira, Frederico Castelo

    2015-06-01

    The use of conjugated polymers allows versatile interactions between cells and flexible processable materials, while providing a platform for electrical stimulation, which is particularly relevant when targeting differentiation of neural stem cells and further application for therapy or drug screening. Materials were tested for cytotoxicity following the ISO10993-5. PSS was cross-linked. ReNcellVM neural stem cells (NSC) were seeded in laminin coated surfaces, cultured for 4 days in the presence of EGF (20 ng/mL), FGF-2 (20 ng/mL) and B27 (20 μg/mL) and differentiated over eight additional days in the absence of those factors under 100Hz pulsed DC electrical stimulation, 1V with 10 ms pulses. NSC and neuron elongation aspect ratio as well as neurite length were assessed using ImageJ. Cells were immune-stained for Tuj1 and GFAP. F8T2, MEH-PPV, P3HT and cross-linked PSS (x PSS) were assessed as non-cytotoxic. L929 fibroblast population was 1.3 higher for x PSS than for glass control, while F8T2 presents moderate proliferation. The population of neurons (Tuj1) was 1.6 times higher with longer neurites (73 vs 108 μm) for cells cultured under electrical stimulus, with cultured NSC. Such stimulus led also to longer neurons. x PSS was, for the first time, used to elongate human NSC through the application of pulsed current, impacting on their differentiation towards neurons and contributing to longer neurites. The range of conductive conjugated polymers known as non-cytotoxic was expanded. x PSS was introduced as a stable material, easily processed from solution, to interface with biological systems, in particular NSC, without the need of in-situ polymerization. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Protective efficacy of antioxidants on cisplatin-induced tissue damage caused in Leishmania donovani infected BALB/c mice against murine visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Meenakshi Sharma

    2013-06-01

    Full Text Available Objective: Therapeutic interventions against visceral leishmaniasis (VL are limited and facing serious concerns of toxicity, high cost and emerging resistance, there is a greater interest in new drug developments which are cost effective, efficient and easily available to people suffering from leishmaniasis. Cisplatin (cis-diamminedichloroplatinum II; CDDP has been found to have antileishmanial activity in vitro and in vivo which lead towards an apoptosis like cell death of both promastigotes and amastigotes and a significant reduction in parasite load and enhanced DTH responses which suggested the generation of protective cell-mediated immune responses. But, at higher doses it causes nephrotoxicity-a major side effect. The present study was designed to evaluate the protective efficacy of antioxidants on cisplatin induced tissue damage in Leishmania donovani infected BALB/c mice. Materials and methods: L. donovani infected and uninfected animals were treated with higher doses (5 and 2.5 mg/kg body weight of cisplatin alone and in combination with antioxidants (vitamin C, vitamin E and silibinin for 5 days. Mice were examined for the protective effects of antioxidants on cisplatin indiced tissue damage by DNA fragmentation and histological studies of kidneys, liver and spleen. Results: The damage caused by cisplatin was ameliorated after the supplementation of antioxidants showing a marked reduction in the extent of tubular damage, the focal reaction changes in liver were reversed and no signs of toxicity in the spleen were reported. Moreover, no DNA damage was observed in animals treated with cisplatin along with various antioxidants. Conclusion: The present results showed that antioxidants helped in the amelioration of drug induced toxic effects against murine visceral leishmaniasis, making the combination a potential anti-leishmanial therapy. [J Interdiscipl Histopathol 2013; 1(3.000: 121-136

  6. Tissue-Specific Methylation of Long Interspersed Nucleotide Element-1 of Homo Sapiens (L1Hs) During Human Embryogenesis and Roles in Neural Tube Defects.

    Science.gov (United States)

    Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T

    2015-01-01

    Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.

  7. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Real-time optical coherence tomography observation of retinal tissue damage during laser photocoagulation therapy on ex-vivo porcine samples

    Science.gov (United States)

    Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.

    2015-07-01

    Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.

  9. Three-Dimensional Normal Human Neutral Progenitor Tissue-Like Assemblies: A Model for Persistent Varicella-Zoster Virus Infection and Platform to Study Oxidate Stress and Damage in Multiple Hit Scenarios

    Science.gov (United States)

    Goodwin, Thomas J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpes virus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex three-dimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6]. By combining the RFs of microgravity, radiation, and viral infection we will demonstrate that living in the space environment leads to significant physiological consequences for the peripheral and subsequently the central nervous system (PNS, CNS) associated with OSaD generation and consequentially endangers long-duration and exploration-class missions.

  10. Fabrication of Nerve Growth Factor Encapsulated Aligned Poly(ε-Caprolactone Nanofibers and Their Assessment as a Potential Neural Tissue Engineering Scaffold

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2016-02-01

    Full Text Available Peripheral nerve injury is a serious clinical problem to be solved. There has been no breakthrough so far and neural tissue engineering offers a promising approach to promote the regeneration of peripheral neural injuries. In this study, emulsion electrospinning technique was introduced as a flexible and promising technique for the fabrication of random (R and aligned (A Poly(ε-caprolactone (PCL-Nerve Growth Factor (NGF&Bovine Serum Albumin (BSA nanofibrous scaffolds [(R/A-PCL-NGF&BSA], where NGF and BSA were encapsulated in the core while PCL form the shell. Random and aligned pure PCL, PCL-BSA, and PCL-NGF nanofibers were also produced for comparison. The scaffolds were characterized by Field Emission Scanning Electron Microscopy (FESEM and water contact angle test. Release study showed that, with the addition of stabilizer BSA, a sustained release of NGF from emulsion electrospun PCL nanofibers was observed over 28 days. [3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt; MTS] assay revealed that (R/A-PCL-NGF and (R/A-PCL-NGF&BSA scaffolds favored cell growth and showed no cytotoxicity to PC12 cells. Laser scanning confocal microscope images exhibited that the A-PCL-NGF&BSA scaffold increased the length of neurites and directed neurites extension along the fiber axis, indicating that the A-PCL-NGF&BSA scaffold has a potential for guiding nerve tissue growth and promoting nerve regeneration.

  11. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue.

    Science.gov (United States)

    Praet, Jelle; Santermans, Eva; Reekmans, Kristien; de Vocht, Nathalie; Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Goossens, Herman; Berneman, Zwi; Hens, Niel; Van der Linden, Annemie; Ponsaerts, Peter

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and culture eGFP(+) neural and fibroblast(-like) stem cells from embryonic mouse tissue. Second, we describe flow cytometric procedures to determine cell viability, eGFP transgene expression, and the expression of different stem cell lineage markers. Third, we explain how to induce reproducible demyelination in the CNS of mice by means of cuprizone administration, a validated mouse model for human multiple sclerosis. Fourth, the technical procedures for cell grafting in the CNS are explained in detail. Finally, an optimized and validated workflow for the quantitative histological analysis of cell graft survival and endogenous astroglial and microglial responses is provided.

  12. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan

    2003-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory an...

  13. Tissue structure damage in late-stage knee osteoarthritis: medication, markers, and disease modification before replacement surgery

    NARCIS (Netherlands)

    de Boer, T.N.

    2012-01-01

    The aim of this thesis is to gain more insight in the characteristics of end-stage osteoarthritic patients who are about to undergo total knee replacement surgery. Their use of medication, potential markers of actual characteristics of joint damage and inflammation, and effects of potential disease

  14. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics.

    Science.gov (United States)

    Lu, Yi; Li, Yanling; Pan, Jianqing; Wei, Pengfei; Liu, Nan; Wu, Bifeng; Cheng, Jinbo; Lu, Caiyi; Wang, Liping

    2012-01-01

    The field of optogenetics has been successfully used to understand the mechanisms of neuropsychiatric diseases through the precise spatial and temporal control of specific groups of neurons in a neural circuitry. However, it remains a great challenge to integrate optogenetic modulation with electrophysiological and behavioral read out methods as a means to explore the causal, temporally precise, and behaviorally relevant interactions of neurons in the specific circuits of freely behaving animals. In this study, an eight-channel chronically implantable optrode array was fabricated and modified with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PEDOT/PSS-PVA/PAA IPNs) for improving the optrode-neural tissue interface. The conducting polymer-hydrogel IPN films exhibited a significantly higher capacitance and lower electrochemical impedance at 1 kHz as compared to unmodified optrode sites and showed significantly improved mechanical and electrochemical stability as compared to pure conducting polymer films. The cell attachment and neurite outgrowth of rat pheochromocytoma (PC12) cells on the IPN films were clearly observed through calcein-AM staining. Furthermore, the optrode arrays were chronically implanted into the hippocampus of SD rats after the lentiviral expression of synapsin-ChR2-EYFP, and light-evoked, frequency-dependant action potentials were obtained in freely moving animals. The electrical recording results suggested that the modified optrode arrays showed significantly reduced impedance and RMS noise and an improved SNR as compared to unmodified sites, which may have benefited from the improved electrochemical performance and biocompatibility of the deposited IPN films. All these characteristics are greatly desired in optogenetic applications, and the fabrication method of conducting polymer-hydrogel IPNs can be easily integrated with other modification methods to build a

  15. Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation.

    Science.gov (United States)

    Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2012-10-29

    Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers-"polymer slicing"-thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)-"polymer complexation". Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior hydrophilicity as well as

  16. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  17. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis

    National Research Council Canada - National Science Library

    Herrera, Cristina; Macêdo, Jéssica Kele A; Feoli, Andrés; Escalante, Teresa; Rucavado, Alexandra; Gutiérrez, José María; Fox, Jay W

    2016-01-01

    The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected...

  18. Chilling-related cell damage of apple (Malus × domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism.

    Science.gov (United States)

    Leisso, Rachel S; Buchanan, David A; Lee, Jinwook; Mattheis, James P; Sater, Chris; Hanrahan, Ines; Watkins, Christopher B; Gapper, Nigel; Johnston, Jason W; Schaffer, Robert J; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R

    2015-02-01

    'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder. © 2014 Scandinavian Plant Physiology Society.

  19. Novos conceitos em retinopatia diabética: dano neurológico versus dano vascular New concepts on diabetic retinopathy: neural versus vascular damage

    Directory of Open Access Journals (Sweden)

    Pedro Durães Serrarbassa

    2008-06-01

    Full Text Available A retinopatia diabética é a principal causa de cegueira legal irreversível em adultos na idade produtiva. Estima-se que o número de pessoas com risco de desenvolver perda de visão decorrente do diabetes dobre nos próximos 30 anos. Alguns estudos sugerem que alterações neurodegenerativas ocorram antes do comprometimento vascular. Essas alterações incluem aumento da apoptose neural, reatividade de células gliais, ativação microglial e metabolismo alterado do glutamato, e podem explicar algumas das deficiências funcionais que ocorrem logo após o início do diabetes, como alterações precoces no eletrorretinograma. O presente artigo de revisão visa apresentar evidências atuais que apontem a neurodegeneração como possível evento inicial da retinopatia diabética.Diabetic retinopathy is the leading cause of irreversible legal blindness in working-age adults. The number of people worldwide at risk of developing vision loss from diabetes is predicted to double over the next 30 years. Some elements suggest that neurodegenerative changes occur beyond vascular damage. These changes include increased apoptosis, glial cell reactivity, microglial activation, and altered glutamate metabolism, and could explain some of the functional abnormalities that begin soon after the onset of diabetes, as early changes in electroretinogram. This review article will present some evidences that point out neurodegeneration as a possible initial event in diabetic retinopathy.

  20. EDITORIAL: Focus on the neural interface Focus on the neural interface

    Science.gov (United States)

    Durand, Dominique M.

    2009-10-01

    they can fail to record reliably neural signals for long periods of time. McConnell et al show that by measuring the impedance of the tissue, one can evaluate the extent of the tissue response to the presence of the electrode. Another problem with the neural interface is the mismatch of the mechanical properties between electrode and tissue. Basinger et al use finite element modeling to analyze this mismatch in retinal prostheses and guide the design of new implantable devices. Electrical stimulation has been the method of choice to activate externally the nervous system. However, Zhang et al show that a novel dual hybrid device integrating electrical and optical stimulation can provide an effective interface for simultaneous recording and stimulation. By interfacing an EMG recording system and a movement detection system, Johnson and Fuglevand develop a model capable of predicting muscle activity during movement that could be important for the development of motor prostheses. Sensory restoration is another unsolved problem in neural prostheses. By developing a novel interface between the dorsal root ganglia and electrodes arrays, Gaunt et al show that it is possible to recruit afferent fibers for sensory substitution. Finally, by interfacing directly with muscles, Jung and colleagues show that stimulation of muscles involved in locomotion following spinal cord damage in rats can provide an effective treatment modality for incomplete spinal cord injury. This series of articles clearly shows that the interface is indeed one of the keys to successful therapeutic neural devices. The next Neural Interfaces Conference will take place in Los Angeles, CA in June 2010 and one can expect to see new developments in neural engineering obtained by focusing on the neural interface.

  1. The relationship between oxidative damage and vitamin E concentration in blood, milk, and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers.

    Science.gov (United States)

    Bouwstra, R J; Goselink, R M A; Dobbelaar, P; Nielen, M; Newbold, J R; van Werven, T

    2008-03-01

    This study investigated the relationship between oxidative damage and the effect of vitamin E supplementation in blood, milk, and liver tissue in 16 periparturient heifers. The question is whether measurements of oxidative and vitamin E status in blood of a periparturient cow are representative of the total body, given that blood concentrations of both vitamin E and oxidative stress products change around this period. The daily vitamin E intake of the vitamin E-supplemented Holstein-Friesian heifers (n = 8) was 3,000 international units and was started 2 mo before calving; the control heifers (n = 8) were not supplemented. Oxidative damage was determined on the basis of malondialdehyde (MDA) concentrations. Blood was sampled 9 times before calving, on calving day, and twice after calving. Liver biopsies were taken at wk -5, -1, and 2 relative to calving day. Milk was obtained from all heifers immediately after calving, the first 2 milkings and on d 3, 7, and 14 at 0600 h. Serum and liver tissue were analyzed for vitamin E, cholesterol, and MDA; and milk samples were analyzed for vitamin E, MDA, fat, protein, and somatic cell count. The results showed that vitamin E supplements increased both absolute vitamin E concentrations and the ratio of vitamin E to cholesterol in blood and liver tissue. Absolute vitamin E concentration in milk tended to be greater in supplemented cows. Based on the increased MDA blood concentrations at calving, it seems that dairy heifers experience oxidative stress. The effect of vitamin E on MDA differs between the blood, liver, and mammary gland. Vitamin E supplementation could not prevent the increase in blood MDA at calving, but the significantly lower MDA blood concentrations of supplemented cows in the 2 wk after calving suggest that vitamin E has a role in recovery from parturition-related oxidative stress. Vitamin E supplementation reduced oxidative damage in liver, whereas no obvious effect was found on milk MDA concentrations. A

  2. Type I Interferon Transcriptional Signature in Neutrophils and Low-Density Granulocytes Are Associated with Tissue Damage in Malaria

    Directory of Open Access Journals (Sweden)

    Bruno Coelho Rocha

    2015-12-01

    Full Text Available Neutrophils are the most abundant leukocyte population in the bloodstream, the primary compartment of Plasmodium sp. infection. However, the role of these polymorphonuclear cells in mediating either the resistance or the pathogenesis of malaria is poorly understood. We report that circulating neutrophils from malaria patients are highly activated, as indicated by a strong type I interferon transcriptional signature, increased expression of surface activation markers, enhanced release of reactive oxygen species and myeloperoxidase, and a high frequency of low-density granulocytes. The activation of neutrophils was associated with increased levels of serum alanine and aspartate aminotransferases, indicating liver damage. In a rodent malaria model, we observed intense recruitment of neutrophils to liver sinusoids. Neutrophil migration and IL-1β and chemokine expression as well as liver damage were all dependent on type I interferon signaling. The data suggest that type I interferon signaling has a central role in neutrophil activation and malaria pathogenesis.

  3. Accumulation of DNA damage-induced chromatin alterations in tissue-specific stem cells: the driving force of aging?

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available Accumulation of DNA damage leading to stem cell exhaustion has been proposed to be a principal mechanism of aging. Using 53BP1-foci as a marker for DNA double-strand breaks (DSBs, hair follicle stem cells (HFSCs in mouse epidermis were analyzed for age-related DNA damage response (DDR. We observed increasing amounts of 53BP1-foci during the natural aging process independent of telomere shortening and after protracted low-dose radiation, suggesting substantial accumulation of DSBs in HFSCs. Electron microscopy combined with immunogold-labeling showed multiple small 53BP1 clusters diffusely distributed throughout the highly compacted heterochromatin of aged HFSCs, but single large 53BP1 clusters in irradiated HFSCs. These remaining 53BP1 clusters did not colocalize with core components of non-homologous end-joining, but with heterochromatic histone modifications. Based on these results we hypothesize that these lesions were not persistently unrepaired DSBs, but may reflect chromatin rearrangements caused by the repair or misrepair of DSBs. Flow cytometry showed increased activation of repair proteins and damage-induced chromatin modifications, triggering apoptosis and cellular senescence in irradiated, but not in aged HFSCs. These results suggest that accumulation of DNA damage-induced chromatin alterations, whose structural dimensions reflect the complexity of the initial genotoxic insult, may lead to different DDR events, ultimately determining the biological outcome of HFSCs. Collectively, our findings support the hypothesis that aging might be largely the remit of structural changes to chromatin potentially leading to epigenetically induced transcriptional deregulation.

  4. Protective effect of Urtica dioica L against nicotine-induced damage on sperm parameters, testosterone and testis tissue in mice

    OpenAIRE

    Cyrus Jalili; Mohammad Reza Salahshoor; Ali Naseri

    2014-01-01

    Background: Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. Objective: The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. Materials and Methods: In thi...

  5. Brain Tissues Oxidative Damage as a Possible Mechanism of Deleterious Effects of Propylthiouracil- Induced Hypothyroidism on Learning and Memory in Neonatal and Juvenile Growth in Rats

    Directory of Open Access Journals (Sweden)

    Esmeil Farrokhi

    2014-11-01

    randomly selected and tested in the Morris water maze (MWM. Then, samples of blood were collected to measure thyroxine. Finally, the brains were removed and total thiol groups and molondialdehyde (MDA concentrations were determined. Results: Compared to the control group’s offspring, serum thyroxine levels in the PTU group’s off spring were significantly low (P<0.001. In MWM, the escape latency and traveled path in the PTU group were significantly higher than that in the control group (P<0.01- P<0.001. In PTU group, the total thiol concentrations in both cortical and hippocampal tissues were significantly lower and MDA concentrations were higher than control group (P<0.001. Discussion: It seems that deleterious effect of hypothyroidism during neonatal and juvenile growth on learning and memory is at least in part due to brain tissues oxidative damage.

  6. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-03-01

    Full Text Available Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca caerulea during early regeneration (0–8 h following experimental wound infliction. Subsequently, we investigated the spatial relationship between regeneration and cell proliferation over a six-day period directly adjacent to the wound, 1 cm, and 3 cm from the wound. Cell proliferation was determined by the incorporation of 5-bromo-2′-deoxyuridine (BrdU. We demonstrate that during early regeneration, the growth fraction of the choanocytes (i.e., the percentage of proliferative cells adjacent to the wound is reduced (7.0 ± 2.5% compared to steady-state, undamaged tissue (46.6 ± 2.6%, while the length of the cell cycle remained short (5.6 ± 3.4 h. The percentage of proliferative choanocytes increased over time in all areas and after six days of regeneration choanocyte proliferation rates were comparable to steady-state tissue. Tissue areas farther from the wound had higher rates of choanocyte proliferation than areas closer to the wound, indicating that more resources are demanded from tissue in the immediate vicinity of the wound. There was no difference in the number of proliferative mesohyl cells in regenerative sponges compared to steady-state sponges. Our data suggest that the production of collagen-rich wound tissue is a key process in tissue regeneration for H. caerulea, and helps to rapidly occupy the bare substratum exposed by the wound. Regeneration and choanocyte renewal are competing and negatively correlated life-history traits, both essential to the survival of sponges. The efficient allocation of limited resources to these life-history traits has enabled the ecological success and diversification of sponges.

  7. 4-Aminobiphenyl (4-ABP) - DNA Damage in Breast Tissue and Relationship to p53 Mutations and Polymorphisms of Metabolizing Genes

    National Research Council Canada - National Science Library

    Niguidula, Nancy

    2000-01-01

    .... The analysis of the CYP1A2 gene is currently in progress. Due to the difficulty in obtaining large fragments of DNA from the tumor tissue sections required for PCR-RFLP, a new method is under development for genotyping NAT2...

  8. Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence

    Science.gov (United States)

    Félix-Silva, Juliana; Silva-Junior, Arnóbio Antônio; Zucolotto, Silvana Maria

    2017-01-01

    Snakebites are a serious problem in public health due to their high morbimortality. Most of snake venoms produce intense local tissue damage, which could lead to temporary or permanent disability in victims. The available specific treatment is the antivenom serum therapy, whose effectiveness is reduced against these effects. Thus, the search for complementary alternatives for snakebite treatment is relevant. There are several reports of the popular use of medicinal plants against snakebites worldwide. In recent years, many studies have been published giving pharmacological evidence of benefits of several vegetal species against local effects induced by a broad range of snake venoms, including inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic, and edematogenic activities. In this context, this review aimed to provide an updated overview of medicinal plants used popularly as antiophidic agents and discuss the main species with pharmacological studies supporting the uses, with emphasis on plants inhibiting local effects of snake envenomation. The present review provides an updated scenario and insights into future research aiming at validation of medicinal plants as antiophidic agents and strengthens the potentiality of ethnopharmacology as a tool for design of potent inhibitors and/or development of herbal medicines against venom toxins, especially local tissue damage. PMID:28904556

  9. Histopathology of Incontinence-Associated Skin Lesions: Inner Tissue Damage Due to Invasion of Proteolytic Enzymes and Bacteria in Macerated Rat Skin

    Science.gov (United States)

    Mugita, Yuko; Minematsu, Takeo; Huang, Lijuan; Nakagami, Gojiro; Kishi, Chihiro; Ichikawa, Yoshie; Nagase, Takashi; Oe, Makoto; Noguchi, Hiroshi; Mori, Taketoshi; Abe, Masatoshi; Sugama, Junko; Sanada, Hiromi

    2015-01-01

    A common complication in patients with incontinence is perineal skin lesions, which are recognized as a form of dermatitis. In these patients, perineal skin is exposed to digestive enzymes and intestinal bacterial flora, as well as excessive water. The relative contributions of digestive enzymes and intestinal bacterial flora to skin lesion formation have not been fully shown. This study was conducted to reveal the process of histopathological changes caused by proteases and bacterial inoculation in skin maceration. For skin maceration, agarose gel containing proteases was applied to the dorsal skin of male Sprague-Dawley rats for 4 h, followed by Pseudomonas aeruginosa inoculation for 30 min. Macroscopic changes, histological changes, bacterial distribution, inflammatory response, and keratinocyte proliferation and differentiation were examined. Proteases induced digestion in the prickle cell layer of the epidermis, and slight bleeding in the papillary dermis and around hair follicles in the macerated skin without macroscopic evidence of erosion. Bacterial inoculation of the skin macerated by proteolytic solution resulted in the formation of bacteria-rich clusters comprising numerous microorganisms and inflammatory cells within the papillary dermis, with remarkable tissue damage around the clusters. Tissue damage expanded by day 2. On day 3, the proliferative keratinocyte layer was elongated from the bulge region of the hair follicles. Application of proteases and P. aeruginosa induced skin lesion formation internally without macroscopic erosion of the overhydrated area, suggesting that the histopathology might be different from regular dermatitis. The healing process of this lesion is similar to transepidermal elimination. PMID:26407180

  10. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  11. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  12. Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines.

    Science.gov (United States)

    Boaventura, Viviane S; Santos, Claire S; Cardoso, Cristina R; de Andrade, José; Dos Santos, Washington L C; Clarêncio, Jorge; Silva, João S; Borges, Valeria M; Barral-Netto, Manoel; Brodskyn, Claudia I; Barral, Aldina

    2010-10-01

    Mucosal leishmaniasis (ML) is characterised by severe tissue destruction. Herein, we evaluated the involvement of the IL-17-type response in the inflammatory infiltrate of biopsy specimens from 17 ML patients. IL-17 and IL-17-inducing cytokines (IL-1β, IL-23, IL-6 and TGF-β) were detected by immunohistochemistry in ML patients. IL-17(+) cells exhibited CD4(+), CD8(+) or CD14(+) phenotypes, and numerous IL-17(+) cells co-expressed the CC chemokine receptor 6 (CCR6). Neutrophils, a hallmark of Th17-mediated inflammation, were regularly detected in necrotic and perinecrotic areas and stained positive for neutrophil elastase, myeloperoxidase and MMP-9. Taken together, these observations demonstrate the existence of Th17 cells in ML lesions associated with neutrophils in areas of tissue injury and suggest that IL-17 is involved in ML pathogenesis.

  13. Reduced Leukocyte Infiltration in Absence of Eosinophils Correlates with Decreased Tissue Damage and Disease Susceptibility in ΔdblGATA Mice during Murine Neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Pramod K Mishra

    2016-06-01

    Full Text Available Neurocysticercosis (NCC is one of the most common helminth parasitic diseases of the central nervous system (CNS and the leading cause of acquired epilepsy worldwide. NCC is caused by the presence of the metacestode larvae of the tapeworm Taenia solium within brain tissues. NCC patients exhibit a long asymptomatic phase followed by a phase of symptoms including increased intra-cranial pressure and seizures. While the asymptomatic phase is attributed to the immunosuppressive capabilities of viable T. solium parasites, release of antigens by dying organisms induce strong immune responses and associated symptoms. Previous studies in T. solium-infected pigs have shown that the inflammatory response consists of various leukocyte populations including eosinophils, macrophages, and T cells among others. Because the role of eosinophils within the brain has not been investigated during NCC, we examined parasite burden, disease susceptibility and the composition of the inflammatory reaction in the brains of infected wild type (WT and eosinophil-deficient mice (ΔdblGATA using a murine model of NCC in which mice were infected intracranially with Mesocestoides corti, a cestode parasite related to T. solium. In WT mice, we observed a time-dependent induction of eosinophil recruitment in infected mice, contrasting with an overall reduced leukocyte infiltration in ΔdblGATA brains. Although, ΔdblGATA mice exhibited an increased parasite burden, reduced tissue damage and less disease susceptibility was observed when compared to infected WT mice. Cellular infiltrates in infected ΔdblGATA mice were comprised of more mast cells, and αβ T cells, which correlated with an abundant CD8+ T cell response and reduced CD4+ Th1 and Th2 responses. Thus, our data suggest that enhanced inflammatory response in WT mice appears detrimental and associates with increased disease susceptibility, despite the reduced parasite burden in the CNS. Overall reduced leukocyte

  14. DNA damage in the kidney tissue cells of the fish Rhamdia quelen after trophic contamination with aluminum sulfate.

    Science.gov (United States)

    Klingelfus, Tatiane; Costa, Paula Moiana da; Scherer, Marcos; Cestari, Marta Margarete

    2015-12-01

    Even though aluminum is the third most common element present in the earth's crust, information regarding its toxicity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown. The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities (CA) found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic potential. Under these treatments, early separation of the sister chromatids was observed more frequently and decondensation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA susceptible to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure.

  15. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    Science.gov (United States)

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  16. Serotonin-Sensitive Adenylate Cyclase in Neural Tissue and Its Similarity to the Serotonin Receptor: A Possible Site of Action of Lysergic Acid Diethylamide

    Science.gov (United States)

    Nathanson, James A.; Greengard, Paul

    1974-01-01

    An adenylate cyclase (EC 4.6.1.1) that is activated specifically by low concentrations of serotonin has been identified in homogenates of the thoracic ganglia of an insect nervous system. The activation of this enzyme by serotonin was selectively inhibited by extremely low concentrations of D-lysergic acid diethylamide (LSD), 2-bromo-LSD, and cyproheptadine, agents which are known to block certain serotonin receptors in vivo. The inhibition was competitive with respect to serotonin, and the calculated inhibitory constant of LSD for this serotonin-sensitive adenylate cyclase was 5 nM. The data are consistent with a model in which the serotonin receptor of neural tissue is intimately associated with a serotonin-sensitive adenylate cyclase which mediates serotonergic neurotransmission. The results are also compatible with the possibility that some of the physiological effects of LSD may be mediated through interaction with serotonin-sensitive adenylate cyclase. PMID:4595572

  17. The orphan G-protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tissues.

    Science.gov (United States)

    Raport, C J; Schweickart, V L; Eddy, R L; Shows, T B; Gray, P W

    1995-10-03

    A polymerase chain reaction (PCR) strategy with degenerate primers was used to identify novel G-protein-coupled receptor-encoding genes from human genomic DNA. One of the isolated clones, termed V28, showed high sequence similarity to the genes encoding human chemokine receptors for monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1 alpha (MIP-1 alpha)/RANTES, and to the rat orphan receptor-encoding gene RBS11. When RNA was analyzed by Northern blot, V28 was found to be most highly expressed in neural and lymphoid tissues. Myeloid cell lines, particularly THP.1 cells, showed especially high expression of V28. We have mapped V28 to human chromosome 3p21-3pter, near the MIP-1 alpha/RANTES receptor-encoding gene.

  18. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  19. The immediate effects of soft tissue mobilization versus therapeutic ultrasound for patients with neck and arm pain with evidence of neural mechanosensitivity: a randomized clinical trial.

    Science.gov (United States)

    Costello, Michael; Puentedura, Emilio 'Louie' J; Cleland, Josh; Ciccone, Charles D

    2016-07-01

    Randomized clinical trial. To investigate the immediate effects of soft tissue mobilization (STM) versus therapeutic ultrasound (US) in patients with neck and arm pain who demonstrate neural mechanical sensitivity. While experts have suggested that individuals with neck and arm pain associated with neural tissue mechanical sensitivity may benefit from STM, there has been little research to investigate this hypothesis. Twenty-three patients with neck and arm pain and a positive upper limb neurodynamic test (ULNT) were randomly assigned to receive STM or therapeutic US during a single session. Outcome measures were collected immediately before and after treatment, and at 2-4 day follow-up. Primary outcomes were the Global Rating of Change (GROC), range of motion (ROM) during the ULNT, and pain rating during the ULNT. Secondary measures included the Neck Disability Index (NDI), Patient-Specific Functional Scale (PSFS), Numeric Pain Rating Scale (NPRS), and active range of shoulder abduction motion combined with the wrist neutral or wrist extension. A greater proportion of patients in the STM group reported a significant improvement on the GROC immediately after treatment (P = 0·003, STM = 75%, US = 9%), and at 2-4 day follow-up (P = 0·027, STM = 58%, US = 9%). Patients who received STM demonstrated greater improvements in ROM during ULNT (P = 0·026), PSFS (P = 0·007), and shoulder active ROM combined with wrist extension (P = 0·028). Improvements in Numeric Pain Rating Scale and pain during the ULNT were observed only in the STM group. There was no difference between groups for the NDI or shoulder abduction ROM with wrist neutral. Patients with neck and arm pain demonstrated greater improvements in ULNT ROM, GROC, and PSFS, and pain following STM than after receiving therapeutic US. Therapy, level 1b.

  20. The immediate effects of soft tissue mobilization versus therapeutic ultrasound for patients with neck and arm pain with evidence of neural mechanosensitivity: a randomized clinical trial

    Science.gov (United States)

    Costello, Michael; Puentedura, Emilio ‘Louie’ J.; Cleland, Josh; Ciccone, Charles D.

    2016-01-01

    Study design Randomized clinical trial. Objectives To investigate the immediate effects of soft tissue mobilization (STM) versus therapeutic ultrasound (US) in patients with neck and arm pain who demonstrate neural mechanical sensitivity. Background While experts have suggested that individuals with neck and arm pain associated with neural tissue mechanical sensitivity may benefit from STM, there has been little research to investigate this hypothesis. Methods Twenty-three patients with neck and arm pain and a positive upper limb neurodynamic test (ULNT) were randomly assigned to receive STM or therapeutic US during a single session. Outcome measures were collected immediately before and after treatment, and at 2–4 day follow-up. Primary outcomes were the Global Rating of Change (GROC), range of motion (ROM) during the ULNT, and pain rating during the ULNT. Secondary measures included the Neck Disability Index (NDI), Patient-Specific Functional Scale (PSFS), Numeric Pain Rating Scale (NPRS), and active range of shoulder abduction motion combined with the wrist neutral or wrist extension. Results A greater proportion of patients in the STM group reported a significant improvement on the GROC immediately after treatment (P = 0·003, STM = 75%, US = 9%), and at 2–4 day follow-up (P = 0·027, STM = 58%, US = 9%). Patients who received STM demonstrated greater improvements in ROM during ULNT (P = 0·026), PSFS (P = 0·007), and shoulder active ROM combined with wrist extension (P = 0·028). Improvements in Numeric Pain Rating Scale and pain during the ULNT were observed only in the STM group. There was no difference between groups for the NDI or shoulder abduction ROM with wrist neutral. Conclusion Patients with neck and arm pain demonstrated greater improvements in ULNT ROM, GROC, and PSFS, and pain following STM than after receiving therapeutic US. Level of evidence Therapy, level 1b. PMID:27559283

  1. Crataegus songarica methanolic extract accelerates enzymatic status in kidney and heart tissue damage in albino rats and its in vitro cytotoxic activity.

    Science.gov (United States)

    Ganie, Showkat Ahmad; Ali Dar, Tanveer; Zargar, Sabuhi; Bhat, Aashiq Hussain; Dar, Khalid Bashir; Masood, Akbar; Zargar, Mohammad Afzal

    2016-07-01

    Crataegus songarica K. Koch (Rosaceae) has been used in folk medicine to treat various diseases. This study evaluates the effect of C. songarica methanol extract on the kidney and heart tissue damage of albino rats, and to determine cytotoxic activity of various extracts of songarica on various human cancer cell lines. Rats were divided into six groups, Group I received water only; Group II received CCl4 (1 mL/kg b wt) intraperitoneal; C. songarica extract (at doses of 100, 200 and 300 mg/kg b wt) orally for 15 days. Cytotoxic activity was determined by SRB method using MCF-7, HeLa, HepG2, SF-295, SW480 and IMR-32 cell lines. Compared with CCl4 group, administration of C. songarica extract at the dose of 300 mg/kg b wt, significantly decreases serum creatinine (59.74%), urea (40.23%) and cholesterol (54 mg/dL), MDA (0.007 nmol/mg protein) in kidney and (0.025 nmol/mg protein) in heart tissue, along with evaluation of GSH (209.79 ± 54.6), GR (111.45 ± 2.84), GPx (94.01 ± 14.80), GST (201.71) in kidney tissue and GSH (51.47 ± 1.47), GR (45.42 ± 6.69), GPx (77.19 ± 10.94), GST (49.89) in heart tissue. In addition, methanol, ethanol and ethyl acetate extracts exhibited potent anticancer activity on six cancer cell lines with IC50 values ranging from 28.57 to 85.106 µg/mL. Crataegus songarica methanol extract has a potential antioxidant effect as it protects the kidney and heart tissue against CCl4-induced toxicity, prevents DNA damage and showed strong anticancer activity.

  2. DNA damage in the kidney tissue cells of the fish Rhamdia quelen after trophic contamination with aluminum sulfate

    Directory of Open Access Journals (Sweden)

    Tatiane Klingelfus

    2015-01-01

    Full Text Available Abstract Even though aluminum is the third most common element present in the earth's crust, information regarding its toxicity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown. The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities (CA found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic potential. Under these treatments, early separation of the sister chromatids was observed more frequently and decondensation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA susceptible to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure.

  3. Tissue damage and embryonic malformation induced by aqueous extract of Pteridium aquilinum on chorioallantoic membrane of chick embryo (CAM

    Directory of Open Access Journals (Sweden)

    Amanda Leitolis

    2017-06-01

    Full Text Available The aim of this study was evaluate the effects of Bracken fern (BF (Pteridium aquilinum (L. Kuhn. on biological systems. When consumed by animals can cause acute intoxication, hematuria, biochemistry alterations and cancer. To humans the toxicity is associated with its intake on contaminated ground water or milk and inhalation of its spores. In order to check the BF aqueous extract (AEB deleterious effects on animals blood vessels system, chick embryo chorioallantoic membrane (CAM was used. It were applying on CAM 0.1, 0.5, 1, 5, 10 e 15 µg/mL of AEB and saline as control. The angiogenesis was analyzed and the vascular density index (VDI calculated. The CAM samples were prepared and stained with H&E to evaluation of microvessels, Masson’s trichrome to characterize collagen and fibrin deposition and Picro-sirius used to evaluate collagen using polarized light. Also the morphological aspects of embryos were analysed. We observe on the results of neovascularization that AEB did not change significantly the number of vessels/mm², however, membranes treated with AEB (5 or 10 µg/mL exhibit opacity and tissue fibrosis, both signs of inflammation. Histological analysis with Masson's trichrome and picro-sirius on tissues exposed to AEB respectively has shown increased collagen fibers and presence of fibrilar collagen. The embryos exposed to concentrations of 5 or 10 µg/mL AEB, showed changes as poor face formation and poor closing of abdominal wall. The highest concentration of AEB (15 µg/mL was lethal to embryos. Although significant effects on the CAM’s vasculature has not observed, tissue aggression was detected, a desmoplasia (an extensive inflammatory signal triggered by tissue injury, changes caused on embryos as well as the presence of toxic substances in the AEB show us an important and deleterious pathway of this bracken fern extract on its intoxicants effects on humans and animals, and even cancer or the death of animals.

  4. Increased abundance of ADAM9 transcripts in the blood is associated with tissue damage [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Darawan Rinchai

    2016-10-01

    Full Text Available Background: Members of the ADAM (a disintegrin and metalloprotease domain family have emerged as critical regulators of cell-cell signaling during development and homeostasis. ADAM9 is consistently overexpressed in various human cancers, and has been shown to play an important role in tumorigenesis. However, little is known about the involvement of ADAM9 during immune-mediated processes. Results: Mining of an extensive compendium of transcriptomic datasets identified important gaps in knowledge regarding the possible role of ADAM9 in immunological homeostasis and inflammation: 1 The abundance of ADAM9 transcripts in the blood was increased in patients with acute infection but, 2 changed very little after in vitro exposure to a wide range of pathogen-associated molecular patterns (PAMPs. 3 Furthermore it was found to increase significantly in subjects as a result of tissue injury or tissue remodeling, in absence of infectious processes. Conclusions: Our findings indicate that ADAM9 may constitute a valuable biomarker for the assessment of tissue damage, especially in clinical situations where other inflammatory markers are confounded by infectious processes.

  5. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats.

    Science.gov (United States)

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2013-10-01

    Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.12% and 61.34% respectively and elevated blood glucose level and glycated Hb by about 3.79 and 3.73 folds respectively. The oxidative stress related parameters like lipid peroxidation end products (increased by 3.38, 1.7, 1.65, 1.94 folds respectively), protein carbonyl content (increased by 2.5, 2.35, 1.8, 3.26 folds respectively), glutathione content (decreased by 59.8%, 47.27%, 53.69%, 74.03% respectively), antioxidant enzyme activities were also altered in the pancreatic, hepatic, renal and cardiac tissues of diabetic animals. Results showed significant antidiabetic potential of the fermented beverage (150 mg lyophilized extract/kg bw for 14 days) as it effectively restored ALX-induced pathophysiological changes. Moreover, it could ameliorate DNA fragmentation and caspase-3 activation in the pancreatic tissue of diabetic rats. Although unfermented black tea is effective in the above pathophysiology, KT was found to be more efficient. This might be due to the formation of some antioxidant molecules during fermentation period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Promising anti-oxidative therapeutic potentials of edible freshwater snail Bellamya bengalensis extract against arsenic-induced rat hepatic tissue and DNA damage

    Directory of Open Access Journals (Sweden)

    Sk Sajed Ali

    2016-09-01

    Full Text Available Epidemiological data suggest that arsenic ultimately results in cancer in different parts of the body. Several synthetic therapeutic agents manifest inadequate potency with severe side effects against arsenic toxicity. The flesh of B. bengalensis, has long been used as an ethno-medicine in case of arthritis, blood-impurities, impaired immune system, conjunctivitis and liver anomalies. This potent organism might be a natural choice against arsenic and several other toxicities. Our earlier studies on arsenic-exposed human can correlate carcinogenesis with DNA-damage. In an attempt to investigate the possible protective and therapeutic effect against arsenic induced hepatotoxicity, the extract of B. bengalensis was tested in arsenic intoxicated rat model. The time- and dose-dependent effect of arsenic toxicity was also tested in B. bengalensis. Sodium-meta-arsenite NaAsO2 (0.6 ppm/100g bw/day for 28 days, as earlier reported was treated alone or in combination with the B. bengalensis water extract (BBE, 100 mg/100g bw to rat and compared with vehicle treated control. In a separate experiment, the B. bengalensis was exposed to high concentration of NaAsO2 contaminated water (5 to 20 ppm for 1 to 9 days in laboratory condition and their DNA quality was evaluated in relation to its possible oxidative threat. Any concentration of arsenic was incapable to initiate a significant DNA damage in B. bengalensis. Lipid peroxidation was increased in arsenic exposed B. bengalensis after longer duration of its exposure. Increase in reduced antioxidant like non-protein-soluble thiol (NPSH is concordant with the decrease in lipid peroxidation and DNA stability in this organism. In rat experiment, the BBE supplementation strongly prevented arsenic-induced oxidative, necrotic and apoptotic damages to liver tissue/DNA by strengthening antioxidant systems, which has been shown in hepatic DNA-fragmentation, comet-assay, histo-architecture (hematoxylin/eosin, alkaline

  7. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy.

    Science.gov (United States)

    Schneider, D A; Harrington, R D; Zhuang, D; Yan, H; Truscott, T C; Dassanayake, R P; O'Rourke, K I

    2012-11-01

    Transmissible spongiform encephalopathies (TSEs) are diagnosed by immunodetection of disease-associated prion protein (PrP(d)). The distribution of PrP(d) within the body varies with the time-course of infection and between species, during interspecies transmission, as well as with prion strain. Mink are susceptible to a form of TSE known as transmissible mink encephalopathy (TME), presumed to arise due to consumption of feed contaminated with a single prion strain of ruminant origin. After extended passage of TME isolates in hamsters, two strains emerge, HY and DY, each of which is associated with unique structural isoforms of PrP(TME) and of which only the HY strain is associated with accumulation of PrP(TME) in lymphoid tissues. Information on the structural nature and lymphoid accumulation of PrP(TME) in mink is limited. In this study, 13 mink were challenged by intracerebral inoculation using late passage TME inoculum, after which brain and lymphoid tissues were collected at preclinical and clinical time points. The distribution and molecular nature of PrP(TME) was investigated by techniques including blotting of paraffin wax-embedded tissue and epitope mapping by western blotting. PrP(TME) was detected readily in the brain and retropharyngeal lymph node during preclinical infection, with delayed progression of accumulation within other lymphoid tissues. For comparison, three mink were inoculated by the oral route and examined during clinical disease. Accumulation of PrP(TME) in these mink was greater and more widespread, including follicles of rectoanal mucosa-associated lymphoid tissue. Western blot analyses revealed that PrP(TME) accumulating in the brain of mink is structurally most similar to that accumulating in the brain of hamsters infected with the DY strain. Collectively, the results of extended passage in mink are consistent with the presence of only a single strain of TME, the DY strain, capable of inducing accumulation of PrP(TME) in the lymphoid

  8. Effects of chronic alcohol consumption on DNA damage and immune regulation induced by the environmental pollutant dibenzo[a,l]pyrene in oral tissues of mice.

    Science.gov (United States)

    Chen, Kun-Ming; Schell, Todd D; Richie, John P; Sun, Yuan-Wan; Zhang, Shang-Min; Calcagnotto, Ana; Aliaga, Cesar; Gowda, Krishne; Amin, Shantu; El-Bayoumy, Karam

    2017-10-02

    Previously, we showed that oral application of the environmental pollutant dibenzo[a,l]pyrene (DB[a,l]P) induces oral tumors in mice. Thus, in the present investigation we examined the effect of alcohol on DB[a,l]P-induced DNA damage and immune regulation; we showed that alcohol (6.4% v/v in the diet, 35% of Calories) significantly enhanced the levels of (-)-anti-trans-DB[a,l]P-dA while decreased the levels of GSH in the mouse oral tissues. Analysis of RNA expression revealed that DB[a,l]P alone upregulates inflammatory genes while alcohol suppresses several markers of immune surveillance. Collectively, these results suggest that alcohol may enhance oral carcinogenesis induced by DB[a,l]P.

  9. Automated cancer stem cell recognition in H and E stained tissue using convolutional neural networks and color deconvolution

    Science.gov (United States)

    Aichinger, Wolfgang; Krappe, Sebastian; Cetin, A. Enis; Cetin-Atalay, Rengul; Üner, Aysegül; Benz, Michaela; Wittenberg, Thomas; Stamminger, Marc; Münzenmayer, Christian

    2017-03-01

    The analysis and interpretation of histopathological samples and images is an important discipline in the diagnosis of various diseases, especially cancer. An important factor in prognosis and treatment with the aim of a precision medicine is the determination of so-called cancer stem cells (CSC) which are known for their resistance to chemotherapeutic treatment and involvement in tumor recurrence. Using immunohistochemistry with CSC markers like CD13, CD133 and others is one way to identify CSC. In our work we aim at identifying CSC presence on ubiquitous Hematoxilyn and Eosin (HE) staining as an inexpensive tool for routine histopathology based on their distinct morphological features. We present initial results of a new method based on color deconvolution (CD) and convolutional neural networks (CNN). This method performs favorably (accuracy 0.936) in comparison with a state-of-the-art method based on 1DSIFT and eigen-analysis feature sets evaluated on the same image database. We also show that accuracy of the CNN is improved by the CD pre-processing.

  10. Evaluation of antiglypican-3 therapy as a promising target for amelioration of hepatic tissue damage in hepatocellular carcinoma.

    Science.gov (United States)

    Zaghloul, Randa A; El-Shishtawy, Mamdouh M; El Galil, Khaled H Abd; Ebrahim, Mohamed A; Metwaly, AbdelHamid A; Al-Gayyar, Mohammed M

    2015-01-05

    In Egypt, hepatocellular carcinoma (HCC) was predicted to continue to rise over the next few decades causing a national problem. Meanwhile, glypican-3 (GPC3), a highly expressed glypican, has emerged as a potential target for HCC immunotherapy. Therefore, we aimed to identify the impact of blocking GPC3 on liver damage in HCC as well as a possible mechanism. Fifty four HCC patients, 20 cirrhotic patients and 10 healthy subjects were recruited. Serum levels of GPC3, sulfatase-2 (SULF-2), heparan sulfate proteoglycan (HSPG), insulin-like growth factor-II (IGF-II) were measured by ELISA. In parallel, HCC was induced in 40 male Sprague-Dawley rats in presence/absence of antiGPC-3. Liver impairment was detected by investigating liver sections stained with hematoxylin/eosin and serum α-fetoprotein (AFP). Liver homogenates of GPC3, SULF-2, and HSPG were measured by ELISA. Gene expression of caspase-3 and IGF-II were assayed by RT-PCR. HCC patients showed significant elevated serum levels of GPC3, IGF-II and SULF-2 accompanied by decreased HSPG. However, treatment of HCC rats with antiGPC-3 significantly reduced serum AFP and showed nearly normal hepatocytes. In addition, antiGPC-3 significantly reduced elevated liver homogenates protein levels of GPC3 and SULF-2 and gene expression of IGF-II and caspase-3. antiGPC-3 restored the reduced hepatic HSPG. antiGPC-3 showed anti-tumor activity as well as hepatoprotective effects. antiGPC-3-chemoprotective effect can be explained by forced reduction of IGF-II expression, restoration of HSPGs, deactivation of SULF-2 and reduction of gene expression of caspase-3. Targeting GPC3 is a promising therapeutic approach for HCC. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Protective effect of Urtica dioica L against nicotine-induced damage on sperm parameters, testosterone and testis tissue in mice.

    Science.gov (United States)

    Jalili, Cyrus; Salahshoor, Mohammad Reza; Naseri, Ali

    2014-06-01

    Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. In this study, hydro-alcoholic extract of U.dioica was prepared and various doses of U.dioica (0, 10, 20, and 50 mg/kg) and U.dioica plus nicotine (0, 10, 20, and 50 mg/kg) were administered intraperitoneally to 56 male mice for 28 consequent days. These mice were randomly assigned to 8 groups (n=7) and sperm parameters (sperm cells viability, count, motility, and morphology), testis and prostate weight, testis histology and testosterone hormone were analyzed and compared. The results indicated that nicotine administration (0.5 mg/kg) significantly decreased testosterone level, count and motility of sperm cells, and testis weight compared to control group (p=0.00). However, increasing the dose of U.dioica significantly boosted motility, count, normal morphology of sperm cells, seminiferous tubules diameter, and testosterone in all groups compared to control (p=0.00) and testis weight in 20 and 50 mg/kg doses in comparison with control group (p=0.00). It seems that U.dioica hydro-alcoholic extract administration could increase the quality of spermatozoa and inhibits nicotine-induced adverse effects on sperm parameters.

  12. Serum concentrations of two biochemical markers of brain tissue damage S‐100B and neurone specific enolase are increased in elite female soccer players after a competitive game

    Science.gov (United States)

    Stålnacke, B‐M; Ohlsson, A; Tegner, Y; Sojka, P

    2006-01-01

    Background It is a matter of debate whether or not ordinary heading of the ball in soccer causes injury to brain tissue. Objective To analyse concentrations of the biochemical markers of brain tissue damage S‐100B and neurone specific enolase (NSE) in serum of female elite soccer players in association with a competitive game. Methods Venous blood samples were obtained from 44 female soccer players before and after a competitive game for analysis. The number of headers and trauma events (falls, collisions, etc) was assessed from videotape recordings for each player. Results Concentrations of both brain damage markers were increased after the game (S‐100B, 0.18 (0.11) v 0.11 (0.05) μg/l (p  =  0.000); NSE, 10.14 (1.74) v 9.05 (1.59) μg/l (p  =  0.001)). There was a significant correlation between changes in S‐100B concentrations and both the number of headers (r  =  0.430, p  =  0.004) and the number of other trauma events (r  =  0.517, p<0.001). Conclusion The concentrations of both S‐100B and NSE were increased by game associated activities and events. The increases in S‐100B concentration were significantly related to the number of headers and other trauma events, which indicates that both these factors may have contributed to these increases. PMID:16556784

  13. The effects of tamoxifen on learning, memory and brain tissues oxidative damage in ovariectomized and naïve female rats

    Directory of Open Access Journals (Sweden)

    Hoda Zabihi

    2014-01-01

    Full Text Available Background: Regarding the modulatory effects of tamoxifen (TAM on the actions of estrogen in the present study, the effects of TAM on learning, memory and brain tissues oxidative damage in ovariectomized (OVX and naοve female rats was investigated. Materials and Methods: The animals were divided into: (1 Sham, (2 OVX, (3 Sham-tamoxifen (Sham-TAM and (4 ovariectomized-tamoxifen (OVX-TAM. The animals of the Sham-TAM and OVX-TAM groups were treated by TAM (1 mg/kg; 4 weeks. Results : In Morris water maze, the escape latency in the OVX group was higher than in the Sham group (P < 0.01. The time latency in the animals of OVX-TAM group was lower than that of OVX group (P < 0.01; however, there were no significant differences between the Sham-TAM and Sham groups. In the probe trial, the time spent in target quadrant (Q 1 by the animals of OVX group was lower than that of Sham group (P < 0.01. Interestingly, the animals of OVX-TAM group spent more times in target quadrant (Q 1 compared with OVX group (P < 0.01. In passive avoidance test, the animals of OVX group had lower latencies to enter the dark compartment compared with the Sham group (P < 0.05. The time latency to enter the dark compartment by animals of OVX-TAM group was higher than in OVX group (P < 0.01. In OVX-TAM group, the total thiol concentration was significantly higher (P < 0.05 and malondialdehyde concentration was lower (P < 0.01 than OVX group. Conclusions: These results allow us to propose that TAM enhances learning and memory of OVX rats. The possible mechanism may be due to the protective effects against brain tissues oxidative damage.

  14. [Role of orexin-A-mediated communication system between brain and peripheral tissues on the development of post-ischemic glucose intolerance-induced neuronal damage].

    Science.gov (United States)

    Harada, Shinichi

    2014-01-01

    I recently found that cerebral ischemic stress per se causes hyperglycemia (i.e., post-ischemic glucose intolerance) and suppression of post-ischemic glucose intolerance might be important to improve prognosis. Here, I analyzed the efficacy of suppression of post-ischemic glucose intolerance using orexin-A (OXA) endogenous neuropeptide as a novel therapeutic strategy against cerebral ischemic neuronal damage. OXA in hypothalamus plays a role in many physiological functions including regulation of glucose metabolism. I previously found that the development of post-ischemic glucose intolerance is suppressed by OXA. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic OXA-mediated suppression of post-ischemic glucose intolerance and neuronal damage. Intrahypothalamic administration of OXA significantly suppressed the development of post-ischemic glucose intolerance on day 1 and of neuronal damage on day 3 after middle cerebral artery occlusion (MCAO). In the liver, MCAO-induced decrease in insulin receptors and increase in gluconeogenic enzymes on day 1 was recovered to control levels by OXA; these effects were reversed by hepatic vagotomy. In the medulla oblongata, OXA induced co-localization of the cholinergic neuronal marker choline acetyltransferase with orexin-1 receptor and c-Fos. These results suggest that the vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates neuroprotection by hypothalamic OXA.

  15. Oxidative damage induced by chlorpyrifos in the hepatic and renal tissue of Kunming mice and the antioxidant role of vitamin E.

    Science.gov (United States)

    Ma, Ping; Wu, Yang; Zeng, Qiang; Gan, Yaping; Chen, Jiaoe; Ye, Xin; Yang, Xu

    2013-08-01

    Chlorpyrifos is a broad-spectrum, chlorinated organophosphate pesticide employed for pest control in various agricultural and animal husbandries. Acute and chronic exposure to CPF can elicit several adverse effects, including oxidative stress. We investigated neurotoxicity of CPF-treated mice, and evaluated the antioxidant effect of vitamin E against oxidative stress and histological changes in the livers and kidneys of CPF-treated mice. Kunming mice were divided randomly into five exposure groups of six: (A) peanut oil; (B) 3mg/kg CPF; (C) 6 mg/kg CPF; (D) 12 mg/kg CPF; (E) vitamin E (100 mg/kg), 3h after administration of CPF (12 mg/kg) and used as a post-treatment group. Oral administration of high-dose groups (12 mg/kg) CPF led to a significant increase in levels of reactive oxygen species, DNA-protein crosslinks, 8-hydroxy-2-deoxyguanosine and malondialdehyde, decreases in acetylcholinesterase activity and glutathione level, as well as causing hepatic and renal histopathological change. Except for AChE activity levels, administration of vitamin E to CPF-treated mice restored these biochemical parameters to within normal levels, and resulted in overall improvement in damage to livers and kidneys. These data suggest that oxidative stress is involved in CPF-induced toxicity and that vitamin E can protect against the tissue damage induced by CPF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Comparison of laser-assisted damage in soft tissue using bi-directional and forward-firing optical fiber

    Science.gov (United States)

    Kim, Changhwan; Sohn, Ik-Bu; Park, Hoyong; Lee, Yong Joong; Lee, Ho

    2014-03-01

    Laser-assisted endoscopic surgery is made possible by employing optical devices such as fiber optics and hollow wave-guides. In some applications of laser-assisted endoscopic surgery, it is necessary to change the direction of the light emission. Our group reported a new fabrication method for bi-directional firing fibers. The conical surface of the fiber tip made the bi-directional emission of the laser light at the distal end of the fiber. In this study, we employed the bi-directional firing fiber for laser-assisted coagulation of soft tissue. The developed fiber and the normal forward-firing fiber are used for the endoscopic delivery system of a continuous IR laser into an in vitro porcine liver. The ablation and coagulation pattern were compared for two distinctive fiber systems. Regardless of the laser's parameters, the bi-directional firing fiber produced a cavity and coagulation zone with more or less a circular shape, while the forward fiber produced an elongated cavity and coagulation region. The bi-directional firing fiber produced wider and shorter coagulation and cavity zones compared to that of the forward-firing fiber. We expect the bi-directional firing fiber to be an excellent optical delivery system for endoscopic laser-hyperthermia when used against various tumors in the liver, breast and thyroid.

  17. Neuronal regeneration in the newt: a model to study the partly reconstruction of the neural tissue in real and simulated weightles sness

    Science.gov (United States)

    Anton, H.; Grigoryan, E.; Mitashov, V.

    The micro -"g" effect on nervous tissue regeneration in newts has been investigated by our group for many years. It has been performed in real and in simulated microgravity with a clinostat. During limb regeneration the motor - and sensory nerves regrow perfectly within the newly formed limb. Like in `1g' conditions they are responsible for the initiation of blastema formation and continuity of g owth andr differentiation. Except for a general acceleration of growth and differentiation processes no differences became visible. Tail regeneration, which is perfectly regulated in newts during their whole life, includes the restoration of the spinal cord and dorsal root ganglia. They follow or initiate an accelerated growth. Up to the present the cellular derivation of the sensory neurones within the regenerate has not yet been clarified. But growth acceleration comprises the whole nervous system. That means a totally new formation of the sensory connection from the periphery to the whole spinal cord. Regeneration must be initiated by the outgrowth of nerve fibres into the wound area. This may be performed by the remaining cut sensory fibres of the last stump segment and should be followed by the differentiation of undifferentiated cells of neural crest origin nearby the amputation area. Such cells are present in the form of meningeal cells which are the origin of mantle and Schwann cells too. Corresponding to the well proved growth acceleration of lens, retina, connective tissue, muscle and skin, the real and simulated microgravity affects the nervous system in the same manner. Tissues and organs of adult organisms have no chance to remain unaffected by the microgravity effect. We try to find the trigger which initiates the accelerated proliferation of the stem cells of sensory neurons, mantle and sheath cells under micro-"g" conditions.

  18. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  19. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage.

    Science.gov (United States)

    Peiren, Nico; de Graaf, Dirk C; Vanrobaeys, Frank; Danneels, Ellen L; Devreese, Bart; Van Beeumen, Jozef; Jacobs, Frans J

    2008-07-01

    Honey bee workers use venom for the defence of the colony and themselves when they are exposed to dangers and predators. It is produced by a long thin, convoluted, and bifurcated gland, and consists of several toxic proteins and peptides. The present study was undertaken in order to identify the mechanisms that protect the venom gland secretory cells against these harmful components. Samples of whole venom glands, including the interconnected reservoirs, were separated by two-dimensional gel electrophoresis and the most abundant protein spots were subjected to mass spectrometric identification using MALDI TOF/TOF-MS and LC MS/MS. This proteomic study revealed four antioxidant enzymes: CuZn superoxide dismutase (SOD1), glutathione-S-transferase sigma 1 isoform A (GSTS1), peroxiredoxin 2540 (PXR2540) and thioredoxin peroxidase 1 isoform A (TPX1). Although glutathione-S-transferase (GST) has also been associated with xenobiotic detoxification, the protein we found belongs to the GST Sigma class which is known to protect against oxidative stress only. Moreover, we could demonstrate that the GST and SOD activity of the venom gland was low and moderate, respectively, when compared to other tissues from the adult honey bee. Several proteins involved in other forms of stress were likewise found but it remains uncertain what their function is in the venom gland. In addition to major royal jelly protein 9 (MRJP9), already found in a previous proteomic study, we identified MRJP8 as second member of the MRJP protein family to be associated with the venom gland. Transcripts of both MRJPs were amplified and sequenced. Two endocuticular structural proteins were abundantly present in the 2D-gel and most probably represent a structural component of the epicuticular lining that protects the secretory cells from the toxins they produce.

  20. Spinal cord injury after blunt cervical spine trauma: correlation of soft-tissue damage and extension of lesion.

    Science.gov (United States)

    Martínez-Pérez, R; Paredes, I; Cepeda, S; Ramos, A; Castaño-León, A M; García-Fuentes, C; Lobato, R D; Gómez, P A; Lagares, A

    2014-05-01

    In patients with spinal cord injury after blunt trauma, several studies have observed a correlation between neurologic impairment and radiologic findings. Few studies have been performed to correlate spinal cord injury with ligamentous injury. The purpose of this study was to retrospectively evaluate whether ligamentous injury or disk disruption after spinal cord injury correlates with lesion length. We retrospectively reviewed 108 patients diagnosed with traumatic spinal cord injury after cervical trauma between 1990-2011. Plain films, CT, and MR imaging were performed on patients and then reviewed for this study. MR imaging was performed within 96 hours after cervical trauma for all patients. Data regarding ligamentous injury, disk injury, and the extent of the spinal cord injury were collected from an adequate number of MR images. We evaluated anterior longitudinal ligaments, posterior longitudinal ligaments, and the ligamentum flavum. Length of lesion, disk disruption, and ligamentous injury association, as well as the extent of the spinal cord injury were statistically assessed by means of univariate analysis, with the use of nonparametric tests and multivariate analysis along with linear regression. There were significant differences in lesion length on T2-weighted images for anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum in the univariate analysis; however, when this was adjusted by age, level of injury, sex, and disruption of the soft tissue evaluated (disk, anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum) in a multivariable analysis, only ligamentum flavum showed a statistically significant association with lesion length. Furthermore, the number of ligaments affected had a positive correlation with the extension of the lesion. In cervical spine trauma, a specific pattern of ligamentous injury correlates with the length of the spinal cord lesion in MR imaging studies

  1. Protective Effect of Tulbaghia violacea Harv. on Aortic Pathology, Tissue Antioxidant Enzymes and Liver Damage in Diet-Induced Atherosclerotic Rats

    Directory of Open Access Journals (Sweden)

    Anthony J. Afolayan

    2012-10-01

    Full Text Available The protective effect Tulbaghia violacea rhizomes (TVR against derangements in serum lipid profile, tissue antioxidant enzyme depletion, endothelium dysfunction and histopathological changes in the aorta and liver of rats fed with an atherosclerogenic (Ath diet (4% cholesterol, 1% cholic acid and 0.5% thiouracil was investigated in this study. Co-treatment with the TVR extracts (250 and 500 mg/kg body weight for two weeks significantly (p < 0.05 protected against elevated serum triglyceride (TG, total cholesterol (TC, LDL-cholesterol, VLDL-cholesterol and decreased HDL-cholesterol in a dose-dependent manner when compared with the atherogenic control. The extracts also reduced (p < 0.05 elevated thiobabutric reacting substance (TBARS and reversed endothelial dysfunction parameters (fibrinogen and total NO levels and tissue antioxidant enzyme activities to near normal. The protective ability of the extract was confirmed by the significant (p < 0.05 reduction in the activities of serum markers of liver (LDH, AST, ALT, ALP, bilirubin and kidney damage (creatinine and bilirubin in extract-treated groups compared with the atherogenic control group. Also, histopathology evaluations of aorta sections revealed that the extracts protected against the development of fatty streak plaques (aorta and fatty changes in hepatocytes. The observed activities of the extracts compared favorably with standard drug atorvastatin. Our study thus showed that the methanolic extract of TVR could protect against the early onset of atherosclerosis.

  2. Brain tissue oxidative damage as a possible mechanism for the deleterious effect of a chronic high dose of estradiol on learning and memory in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Fatimeh Khodabandehloo

    2013-05-01

    Full Text Available In addition to antioxidative effects, estrogens also exert pro-oxidative actions. The effect of chronic administration of a high dose of estradiol valerate on Morris water maze tasks and brain tissues oxidative damage was investigated. The Sham-Est and OVX-Est groups were treated with estradiol valerate (4 mg/kg for 12 weeks. Escape latency and traveled path in the Sham-Est and OVX-Est groups were significantly higher than in the Sham and OVX groups (p≪0.01 and p≪0.001. In the probe trial, the animals of the Sham-Est and OVX-Est groups spent lower time in Q1 compared to Sham and OVX groups (p≪0.05 and p≪0.001. In Sham-Est and OVX-Est groups, the brain tissue total thiol concentration was significantly lower, and malondialdehyde (MDA concentrations were higher than in the Sham and OVX groups (p≪0.05 and p≪0.001. It is concluded that administration of high exogenous levels of estradiol impairs performance and enhances oxidative stress.

  3. Clinical and histological comparison of tissue damage and healing following incisions with the CO2-laser and stainless steel surgical blade in dogs.

    Science.gov (United States)

    Durante, E J; Kriek, N P

    1993-09-01

    The tissue damage and subsequent healing of skin, linea alba and intestinal wall incisions made with a CO2-laser and a stainless steel surgical blade were evaluated clinically and histologically in dogs (n = 10). The amount of blood lost in each type of skin incision was measured by taking the pre- and postoperative mass of surgical swabs. The tissues were sutured and the skin incisions examined every day. The animals were subsequently euthanased (Day 12) and all incisions examined histologically. A delay in the healing process was observed in the laser incisions of the skin during the first 4 d, but there was no difference in the healing rate of the intestinal wounds or of the linea alba. The blood loss due to the laser incisions was significantly less than that caused by the surgical blade. It was concluded that the CO2-laser can be used with confidence when incising the skin and intestine and that, due to its precision, the surgical blade is by far a more accurate method to incise the linea alba.

  4. DNA damage induced in mouse tissues by organic wood preserving waste extracts as assayed by {sup 32}P-postlabeling

    Energy Technology Data Exchange (ETDEWEB)

    Randerath, E. [Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, TX (United States); Zhou, G.D. [Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, TX (United States); Donnelly, K.C. [Department of Veterinary Anatomy and Public Health, Texas A and M University, College Station, TX (United States); Safe, S.H. [Department of Veterinary Physiology/Pharmacology, Texas A and M University, College Station, TX (United States); Randerath, K. [Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, TX (United States)

    1996-09-01

    In the present study, a mouse bioassay was used in combination with {sup 32}P-postlabeling to determine DNA adduct formation induced by hexane/acetone extracts of two samples from a WPW site. Female ICR mice were treated dermally with extract corresponding to 3 mg residue or vehicle control once per day for 2 days and killed 24 h later. Skin, lung, liver, kidney, and heart DNA preparations were assayed by nuclease P1-enhanced postlabeling. Adduct profiles were tissue-specific and displayed a multitude of non-polar DNA adducts with levels amounting to one adduct in 1.6 x 10{sup 6} DNA nucleotides in skin (both extracts) and one adduct in 3.2 x 10{sup 7} or 1.2 x 10{sup 7} DNA nucleotides in liver (extract 1 or extract 2). Based on their chromatographic properties, these adducts appeared largely derived from polycyclic aromatic hydrocarbons (PAHs) present in the extracts. One of the major adducts was identified as the {sup 32}P-labeled derivative of the reaction product of 7{beta}, 8{alpha}-dihydroxy-9{alpha}, 10{alpha}-epoxy-7, 8, 9, 10-tetrahydrobenzo[a]pyrene (BPDE I) with N{sup 2} of deoxyguanosine. Total non-polar DNA adduct levels were highest in skin and lung, amounting to 17.4 and 24.0% of the skin values for extracts 1 and 2, respectively, in lung while the corresponding levels in liver were 5.0 and 12.6%. These results were in accord with the carcinogenic potencies of PAHs in these organs. Extract 2 induced higher adduct levels in internal organs, although its PAH concentrations were lower than those of extract 1, i.e. lung, liver, kidney, and heart had 1.4, 2.5, 1.9, and 1.7 times higher total adduct levels and 1.6, 3.3, 1.6, and 1.9 times higher benzo[a]pyrene adduct levels. With the exception of total adducts in lung, the differences between the two extracts were all significant, suggestive of compound interactions. (orig.) (orig.). With 5 figs., 6 tabs.

  5. [The possibility of using the synthetic compound for the purpose of modeling of the human soft tissues in connection with the evaluation of gunshot damages].

    Science.gov (United States)

    Latyshov, I V; Vasil'ev, V A; Zaporotskova, I V; Ermakova, T A

    2017-01-01

    The necessity of using a simulator of human soft tissues for the purpose of criminalistic and forensic medical expertises is dictated by the requirements put forward by the expert practice. The objective of the present study was to develop a synthetic simulator of the human soft tissues (compound) to ensure reliability of comparative criminalistics and forensic medical studies for the evaluation of gunshot injuries. The synthetic compound was prepared by mixing up the petroleum and/or synthetic oil with a polymeric thickening agent. This procedure was followed by heating the mixture at 90 degrees Celsius during 5 hours. Thereafter, petrolatum and/or ceresin and/or paraffin were added to the mixture. At the final stage, ionol was introduced, and the mixture was poured into a mold measuring 70×70×210 mm with its subsequent cooling down to 40 degrees Celsius during 10-12 hours. The experimental shooting was effected from the Kalashnikov AKS-74U assault rifle using the 5.45×39 mm (7H6) cartridges, Makarov pistol using the 9×18 mm cartridges and Nagant pistol using the CHELP-1000 cartridges. Five shots were fired from each of the three models. The experimental gunshot damages were evaluated visually by examining the inlet and exit openings and the bullet channel. In addition, criminalistic analysis of the grooves in cartridges was carried out. The technology for the fabrication of synthetic compounds based on ethylene, propylene, and butadiene co-polymers in the combination with such low molecular weight compounds as paraffins and ceresins having a homogeneous structure makes it possible to vary the rheological and mechanical properties of the simulators of human soft tissues for the solution of diagnostic and identification problems in the framework of criminalistics and forensic medical expertises.

  6. Assessment of penetrating thermal tissue damage/spread associated with PhotonBlade™, Valleylab™ Pencil, Valleylab™ EDGE™ Coated Pencil, PlasmaBlade® 3.0S and PlasmaBlade® 4.0 for intraoperative tissue dissection using the fresh extirpated porcine muscle model

    Science.gov (United States)

    Bennett, Haydon E.; Taylor, Scott D.; Fugett, James H.; Shrout, Joshua L.; Davison, Paul O.; Ryan, S. Eric; Coad, James E.

    2017-02-01

    Penetrating thermal tissue damage/spread is an important aspect of many electrosurgical devices and correlates with effective tissue cutting, hemostasis, preservation of adjacent critical structures and tissue healing. This study compared the thermal damage/spread associated with the PhotonBlade, Valleylab Pencil, Valleylab EDGE Coated Pencil, PlasmaBlade 3.0S and PlasmaBlade 4.0, when performing a single pass dynamic tissue cut in fresh extirpated porcine longissimus muscle. These devices were used in a fashion that emulated their use in the clinical setting. Each device's thermal damage/spread, at Minimum, Median and Maximum power input settings, was assessed with nitroblue tetrazolium viability staining in the WVU Pathology Laboratory for Translational Medicine. The thermal damage/spread associated with the PhotonBlade was compared with the other devices tested based on the individual treatment results (n=179 cuts combined). In summary, the PhotonBlade overall demonstrated the least penetrating thermal tissue damage/spread, followed by the PlasmaBlade 4.0, then Valleylab Pencil and PlasmaBlade 3.0S and then Valleylab EDGE Coated Pencil in order of increasing thermal damage/spread depths.

  7. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  8. Immunohistochemical study of PrPSc distribution in neural and extraneural tissues of two cats with feline spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Wunderlin Sabina S

    2009-03-01

    Full Text Available Abstract Background Two domestic shorthair cats presenting with progressive hind-limb ataxia and increased aggressiveness were necropsied and a post mortem diagnosis of Feline Spongiform Encephalopathy (FSE was made. A wide spectrum of tissue samples was collected and evaluated histologically and immunohistologically for the presence of PrPSc. Results Histopathological examination revealed a diffuse vacuolation of the grey matter neuropil with the following areas being most severely affected: corpus geniculatum medialis, thalamus, gyrus dentatus of the hippocampus, corpus striatum, and deep layers of the cerebral and cerebellar cortex as well as in the brain stem. In addition, a diffuse glial reaction involving astrocytes and microglia and intraneuronal vacuolation in a few neurons in the brain stem was present. Heavy PrPSc immunostaining was detected in brain, retina, optic nerve, pars nervosa of the pituitary gland, trigeminal ganglia and small amounts in the myenteric plexus of the small intestine (duodenum, jejunum and slightly in the medulla of the adrenal gland. Conclusion The PrPSc distribution within the brain was consistent with that described in other FSE-affected cats. The pattern of abnormal PrP in the retina corresponded to that found in a captive cheetah with FSE, in sheep with scrapie and was similar to nvCJD in humans.

  9. Comparative Study of Various Delivery Methods for the Supply of Alpha-Ketoglutarate to the Neural Cells for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tanushree Vishnoi

    2013-01-01

    Full Text Available Delivery of growth factors or bioactive molecules plays an important role in tissue engineering, as the duration to which these are supplied can modulate the cell fate. Thus, the delivery method plays an important role, and the same is presented in this work wherein the exogenous supply of alpha-ketoglutarate (α-KG gave better results for fast proliferating cells as compared to delivery by microspheres or microspheres incorporated scaffolds which can be used while culturing slow growing cells. All these studies were performed in two dimensional (2D and three dimensional (3D setups in which chitosan-gelatin-polypyrrole has been used as 3-D scaffolds. Chitosan and gelatin microspheres alone as well as incorporated in the cryogels were characterized. MTT assay done using neuro-2a cell line showed approximately 42% and 70% increment in cellular proliferation when gelatin and chitosan microspheres were added in a 3-D setup, respectively, as compared to the control. Biochemical analysis of ammonia showed 6-fold reductions in ammonia level in a 3-D setup compared to the control. We also studied the synthesis of a neurotransmitter-like glutamate and found that its concentration increased up to 0.25 mg/ml when the microspheres were added exogenously in a 3-D system.

  10. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues.

    Science.gov (United States)

    Calì, Corrado; Baghabra, Jumana; Boges, Daniya J; Holst, Glendon R; Kreshuk, Anna; Hamprecht, Fred A; Srinivasan, Madhusudhanan; Lehväslaiho, Heikki; Magistretti, Pierre J

    2016-01-01

    Advances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room in which we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of EM preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to the observation of a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. © 2015 Wiley Periodicals, Inc.

  11. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    Science.gov (United States)

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  12. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    Directory of Open Access Journals (Sweden)

    Jitender P Dubey

    Full Text Available The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse.Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i. to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25% of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle.This study reevaluated

  13. Di-D-fructose dianhydride-enriched caramels: effect on colon microbiota, inflammation, and tissue damage in trinitrobenzenesulfonic acid-induced colitic rats.

    Science.gov (United States)

    Arribas, Belén; Suárez-Pereira, Elena; Ortiz Mellet, Carmen; García Fernández, José M; Buttersack, Christoph; Rodríguez-Cabezas, Maria Elena; Garrido-Mesa, Natividad; Bailon, Elvira; Guerra-Hernández, Eduardo; Zarzuelo, Antonio; Gálvez, Julio

    2010-05-26

    In the present study we describe the preparation and chemical characterization of a caramel with a high (70%) content of difructose dianhydrides (DFAs) and glycosylated derivatives (DFAs). This product was obtained by thermal activation (90 degrees C) of highly concentrated (90% w/v) aqueous D-fructose solutions using the sulfonic acid ion-exchange resin Lewatit S2328 as caramelization catalyst. DFAs represent a unique family of cyclic fructans with prebiotic properties already present in low proportions (caramel. We report the antiinflammatory activity of the new DFA-enriched caramel in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis, an experimental model that resembles human inflammatory bowel disease (IBD), and compare its effects with those obtained with a commercial sucrose caramel and with linear fructooligosaccharides (FOS). For this purpose, the effects on colon tissue damage, gut microbiota, short-chain fatty acid (SCFAs) production, and different inflammatory markers were evaluated. The administration of DFA-enriched caramel to colitic rats showed intestinal antiinflammatory effect, as evidenced macroscopically by a significant reduction in the extent of the colonic damage induced by TNBS. This effect was similar to that obtained with FOS in the same experimental settings, whereas commercial caramel was devoid of any significant antiinflammatory effect. The beneficial effect was associated with the inhibition of the colonic levels of the proinflammatory cytokines, tumor necrosis factor alpha (TNF alpha) and interleukin 1beta (IL-1beta), and the reduction in colonic myeloperoxidase (MPO) activity and inducible nitric oxide synthase (iNOS) expression. The DFA-enriched caramel also promoted a more favorable intestinal microbiota, increasing lactobacilli and bifidobacteria counts as well as inducing higher concentrations of SCFAs in the luminal colonic contents. These results reinforce the concept of DFAs and glycosyl-DFAs as dietary beneficial

  14. Assessment of DNA Binding and Oxidative DNA Damage by Acrylonitrile in Two Rat Target Tissues of Carcinogenicity: Implications for the Mechanism of Action.

    Science.gov (United States)

    Williams, Gary M; Kobets, Tetyana; Duan, Jian-Dong; Iatropoulos, Michael J

    2017-07-17

    Exposure to acrylonitrile induces formation of tumors at multiple sites in rats, with females being more sensitive. The present study assessed possible mechanisms of acrylonitrile tumorigenicity, covalent DNA binding, DNA breakage, and oxidative DNA damage, in two target tissues, the brain and Zymbal's glands, of sensitive female Fischer (F344) and Sprague-Dawley (SD) rats. One group received acrylonitrile in drinking water at 100 ppm for 28 days. Two other groups were administered either acrylonitrile in drinking water at 100 ppm or drinking water alone for 27 days, followed by a single oral gavage dose of 11 mg/kg bw (14)C-acrylonitrile on day 28. A positive control group received a single dose of 5 mg/kg bw of 7-(14)C-benzo[a]pyrene, on day 27 following the administration of drinking water for 26 days. Using liquid scintillation counting, no association of radiolabeled acrylonitrile with brain DNA was found. In accelerator mass spectrometry analysis, the association of (14)C of acrylonitrile with DNA in brains was detected and was similar in both strains, which may reflect acrylonitrile binding to protein as well as to DNA. Nucleotide (32)P-postlabeling assay analysis of brain samples from rats of both strains yielded no evidence of acrylonitrile DNA adducts. Negative conventional comet assay results indicate the absence of direct DNA strand breaks in the brain and Zymbal's gland in both strains of rats dosed with acrylonitrile. In both rat strains, positive results in an enhanced comet assay were found only in brain samples digested with formamidopyrimidine-DNA glycosylase but not with human 8-hydroxyguanine-DNA glycosylase, indicating possible oxidative DNA damage, other than 8-oxodG formation. In conclusion, definitive evidence of DNA binding of acrylonitrile in the brain and Zymbal's gland was not obtained under the test conditions. A role for oxidative stress in tumorigenesis in the brain but not Zymbal's gland may exist.

  15. Effect of Butler's neural tissue mobilization and Mulligan's bent leg raise on pain and straight leg raise in patients of low back ache.

    Science.gov (United States)

    Tambekar, Neha; Sabnis, Shaila; Phadke, Apoorva; Bedekar, Nilima

    2016-04-01

    Low back ache (LBA) is a common musculoskeletal disorder sometimes associated with a positive limited Straight leg raise (SLR) test. Mulligan's bent leg raise (BLR) and Butler's neural tissue mobilization (NTM) are commonly used techniques for the treatment of low back ache where SLR is limited. The aim of this study was to evaluate the effect of both the techniques on pain and limited SLR in patients with LBA. Thirty one patients with LBA with radiculopathy were randomly allocated into 2 groups; BLR [n = 16] NTM [n = 15]. The outcome measures i.e. visual analogue scale (VAS) for pain and universal goniometer for measuring SLR range of motion (SROM) were assessed at the baseline, post intervention and after 24 h (follow up). Within group analysis using paired t-test revealed a significant difference between pre-treatment and post-treatment VAS and SROM score(p  0.05). The study showed that both techniques produce immediate improvement in pain and SLR range but this effect was not maintained during the follow up period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neural Crest Cell Implantation Restores Enteric Nervous System Function and Alters the Gastrointestinal Transcriptome in Human Tissue-Engineered Small Intestine.

    Science.gov (United States)

    Schlieve, Christopher R; Fowler, Kathryn L; Thornton, Matthew; Huang, Sha; Hajjali, Ibrahim; Hou, Xiaogang; Grubbs, Brendan; Spence, Jason R; Grikscheit, Tracy C

    2017-09-12

    Acquired or congenital disruption in enteric nervous system (ENS) development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC)-derived tissue-engineered small intestine (TESI) from human intestinal organoids (HIOs). However, HIO-TESI fails to develop an ENS. The purpose of our study is to restore ENS components derived exclusively from hPSCs in HIO-TESI. hPSC-derived enteric neural crest cell (ENCC) supplementation of HIO-TESI establishes submucosal and myenteric ganglia, repopulates various subclasses of neurons, and restores neuroepithelial connections and neuron-dependent contractility and relaxation in ENCC-HIO-TESI. RNA sequencing identified differentially expressed genes involved in neurogenesis, gliogenesis, gastrointestinal tract development, and differentiated epithelial cell types when ENS elements are restored during in vivo development of HIO-TESI. Our findings validate an effective approach to restoring hPSC-derived ENS components in HIO-TESI and may implicate their potential for the treatment of enteric neuropathies. Published by Elsevier Inc.

  17. Células mesenquimales de médula ósea: Diferenciación y potencial reemplazo neuronal Mesenchymal stem cells: Differentiation and alternative source of neural tissue

    Directory of Open Access Journals (Sweden)

    Catalina C. Bianchi de Di Risio

    2004-12-01

    cells to repair damaged tissues. Particularly neuronal differentiation from progenitors obtained from mesenchymae non hemopoietic cells offers a new possibility in the field of neural transplantation and tissue engineering to repair functional entities in the nervous system.

  18. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal

  19. Intestinal titres of anti-tissue transglutaminase 2 antibodies correlate positively with mucosal damage degree and inversely with gluten-free diet duration in coeliac disease.

    Science.gov (United States)

    Tosco, A; Auricchio, R; Aitoro, R; Ponticelli, D; Primario, M; Miele, E; Rotondi Aufiero, V; Discepolo, V; Greco, L; Troncone, R; Maglio, M

    2014-09-01

    It has always been known that anti-tissue transglutaminase 2 (anti-TG2) antibodies are produced in the small intestine. Their serum titres correlate with mucosal damage degree and decrease on a gluten-free diet (GFD). We aimed to correlate intestinal anti-TG2 antibodies levels with degree of mucosal damage and GFD duration. Thirty-four active, 71 potential and 24 CD patients on GFD for at least 2 years were enrolled. Anti-TG2 deposits were detected in intestinal biopsies by double immunofluorescence. Biopsies were cultured for 24 h with medium, and with gliadin peptic tryptic digest (PTG) or A-gliadin peptide 31-43 (P31-43). Anti-TG2 antibodies secreted into supernatants were measured by enzyme-linked immunosorbent assay (ELISA). All active CD patients secreted high titres of anti-TG2 antibodies into culture medium that increased with the worsening of mucosal injury (Spearman's r = 0·71; P < 0·0001). Seventy of 71 potential CD patients and 15 of 24 treated CD patients secreted low titres of anti-TG2 antibodies into supernatants, eight of nine negative treated patients being on GFD for more than 10 years. An inverse correlation between antibody titres and duration of GFD was found, (Spearman's r = -0·52; P < 0·01). All active, 53 of 71 potential and six of 24 treated, CD patients showed anti-TG2 mucosal deposits. Five of six positive treated CD patients had been on GFD for fewer than 6 years and were also positive for secreted anti-TG2. In treated patients, PTG/P31-43 was not able to induce secretion of anti-TG2 antibodies into culture medium. Measurement of anti-TG2 antibodies in biopsy supernatants proved to be more sensitive than detection by immunofluorescence to reveal their intestinal production. Intestinal antiTG2 antibodies titres correlated positively with the degree of mucosal damage and inversely with the duration of GFD. © 2014 British Society for Immunology.

  20. Evaluation of photodynamically induced damage to healthy eye tissues of rabbits using the second-generation photosensitizers bacteriochlorin a and mTHPC

    Science.gov (United States)

    Schuitmaker, Hans J.; Barthen, Ed; Keunen, Jan E.; Ms Wolff-Rouendaal, Didi

    1999-02-01

    Immediate illumination after sensitizer administration is currently often applied in PDT-trials in ophthalmology. The extent of possible damage to healthy ocular tissue after i.v. administration of the photosensitizers bacteriochlorin a (BCA) or mesa (tetrahydroxyphenyl) chlorin (mTHPC) and subsequent illumination with light of the appropriate wavelength and dose was assessed in rabbit eyes. Both hydrophobic drugs were formulated in 30% polyethylene glycol, 20% ethanol and 50% water to obtain an iv injectable suspension. Rabbits destined for BCA-PDT received a single dose of 10 mg/kg.bw. Rabbits destined for mTHPC-PDT received a dose of 0.3 mg/kg.bw. BCA- treated animals were illuminated immediately and 1, 2 and three hours after administration of the dye with an experimental Philips laser diode (760 nm, c.w., 100 mW/cm2, 100 J). To illuminate the eyes of the mTHPC- treated animals a Krypton laser was used (648 nm, c.w., 100 mW/cm2, 20 J). Illumination of these animals was performed immediately, 24, 48 and 72 hours after administration of the dye. BCA or mTHPC without illumination or illumination without administration of a sensitizing dye did not affect normal ocular tissues as judged by histology. Illumination of the entire eye of BCA-treated animals, immediately after administration of the dye caused a lesion in the macula area with a diameter of 3 mm. At the lesion side the photoreceptors were destroyed, ganglion cells were swollen and the sclera was affected. No skin photosensitivity was observed at anytime. Skin photosensitivity was observed in animals treated with mTHPC. Illumination caused swollen eyelids in all animals except when performed immediately after dye administration.

  1. Amebic cysteine proteinase 2 (EhCP2) plays either a minor or no role in tissue damage in acute experimental amebic liver abscess in hamsters.

    Science.gov (United States)

    Olivos-García, Alfonso; González-Canto, Augusto; López-Vancell, Rosario; García de León, Maria del Carmen; Tello, Eusebio; Nequiz-Avendaño, Mario; Montfort, Irmgard; Pérez-Tamayo, Ruy

    2003-06-01

    Amebic cysteine protease 2 (EhCP2) was purified from ethyl ether extracts of axenically grown trophozoites of Entamoeba histolytica strain HM1-IMSS. The purification procedure involved molecular filtration and electroelution. Sequence analysis of the purified product revealed EhCP2 and ubiquitin(s). Electrophoretic migration patterns, isoelectric point determination and Western blot studies failed to reveal other EhCP molecules. Polyclonal antibodies against the purified EhCP2 prepared in rabbits either stabilized or enhanced the enzyme activity in a dose-response manner. Purified EhCP2 was enclosed within inert resin microspheres (22-44 microm in diameter) and injected into the portal vein of normal hamsters. In the liver, the microspheres caused mild acute inflammation and occasional minimal necrosis of short duration. Sections of the liver were immunohistochemically stained with the anti-EhCP2 antibody and the microspheres were positive for only a very short period (1 h) after injection. Sections of experimental acute (1 day, 5 days) amebic liver abscess produced in hamsters were also stained with the anti-EhCP2 antibody; and amebas were intensely positive but no staining was observed at any time in the surrounding necrotic structures. It is suggested that EhCP2 plays either a minor or no role in the causation of tissue damage in experimental acute liver amebiasis.

  2. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Alexandra Rucavado

    2002-01-01

    Full Text Available Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis, blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III and a P-I type hemorrhagic metalloproteinase (BaP1 isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL-1β, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-α (TNF-α and interferon-γ were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-α by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor

  3. Extracorporeal immune therapy with immobilized agonistic anti-Fas antibodies leads to transient reduction of circulating neutrophil numbers and limits tissue damage after hemorrhagic shock/resuscitation in a porcine model.

    Science.gov (United States)

    Lögters, Tim T; Altrichter, Jens; Paunel-Görgülü, Adnana; Sager, Martin; Witte, Ingo; Ott, Annina; Sadek, Sarah; Baltes, Jessica; Bitu-Moreno, José; Schek, Alberto; Müller, Wolfram; Jeri, Teresa; Windolf, Joachim; Scholz, Martin

    2010-04-20

    Hemorrhagic shock/resuscitation is associated with aberrant neutrophil activation and organ failure. This experimental porcine study was done to evaluate the effects of Fas-directed extracorporeal immune therapy with a leukocyte inhibition module (LIM) on hemodynamics, neutrophil tissue infiltration, and tissue damage after hemorrhagic shock/resuscitation. In a prospective controlled double-armed animal trial 24 Munich Mini Pigs (30.3 +/- 3.3 kg) were rapidly haemorrhaged to reach a mean arterial pressure (MAP) of 35 +/- 5 mmHg, maintained hypotensive for 45 minutes, and then were resuscitated with Ringer' solution to baseline MAP. With beginning of resuscitation 12 pigs underwent extracorporeal immune therapy for 3 hours (LIM group) and 12 pigs were resuscitated according to standard medical care (SMC). Haemodynamics, haematologic, metabolic, and organ specific damage parameters were monitored. Neutrophil infiltration was analyzed histologically after 48 and 72 hours. Lipid peroxidation and apoptosis were specifically determined in lung, bowel, and liver. In the LIM group, neutrophil counts were reduced versus SMC during extracorporeal immune therapy. After 72 hours, the haemodynamic parameters MAP and cardiac output (CO) were significantly better in the LIM group. Histological analyses showed reduction of shock-related neutrophil tissue infiltration in the LIM group, especially in the lungs. Lower amounts of apoptotic cells and lipid peroxidation were found in organs after LIM treatment. Transient Fas-directed extracorporeal immune therapy may protect from posthemorrhagic neutrophil tissue infiltration and tissue damage.

  4. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.

    Science.gov (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-06-01

    Accurately assessment of adipose tissue volume inside a human body plays an important role in predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using only one subjectively selected CT image slice to estimate size of fat areas, this study aims to develop and test a computer-aided detection (CAD) scheme based on deep learning technique to automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on volumetric CT images. A retrospectively collected CT image dataset was divided into two independent training and testing groups. The proposed CAD framework consisted of two steps with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with 84,000pixel patches and applied to the selected CT slices to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep learning based CAD scheme to automatically recognize abdominal section of human body from CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement with the manual segmentation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  6. SU-8-based microneedles for in vitro neural applications

    Science.gov (United States)

    Altuna, Ane; Gabriel, Gemma; Menéndez de la Prida, Liset; Tijero, María; Guimerá, Anton; Berganzo, Javier; Salido, Rafa; Villa, Rosa; Fernández, Luis J.

    2010-06-01

    This paper presents novel design, fabrication, packaging and the first in vitro neural activity recordings of SU-8-based microneedles. The polymer SU-8 was chosen because it provides excellent features for the fabrication of flexible and thin probes. A microprobe was designed in order to allow a clean insertion and to minimize the damage caused to neural tissue during in vitro applications. In addition, a tetrode is patterned at the tip of the needle to obtain fine-scale measurements of small neuronal populations within a radius of 100 µm. Impedance characterization of the electrodes has been carried out to demonstrate their viability for neural recording. Finally, probes are inserted into 400 µm thick hippocampal slices, and simultaneous action potentials with peak-to-peak amplitudes of 200-250 µV are detected.

  7. Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis.

    Science.gov (United States)

    Audoin, Bertrand; Au Duong, My Van; Ranjeva, Jean-Philippe; Ibarrola, Danielle; Malikova, Irina; Confort-Gouny, Sylviane; Soulier, Elisabeth; Viout, Patrick; Ali-Chérif, André; Pelletier, Jean; Cozzone, Patrick J

    2005-03-01

    We sought to determine the influence of tissue damage and the potential impact of cortical reorganization on the performance to the Paced Auditory Serial Addition Test (PASAT) in patients at the earliest stage of multiple sclerosis (MS). Magnetization transfer ratio (MTR) imaging and functional magnetic resonance imaging (fMRI) experiments using PASAT as paradigm were carried out in 18 patients with clinically isolated syndrome suggestive of MS (CISSMS) compared to 18 controls. MTR histogram analyses showed structural abnormalities in patients involving the normal-appearing white matter (NAWM) but also the gray matter (GM). Mean PASAT scores were significantly lower in the group of patients taken as a whole, and were correlated with the mean NAWM MTR value. No correlation was observed between PASAT scores and GM MTR. However, in the subgroup of patients with normal PASAT performance (n = 9), fMRI showed larger activations in bilateral Brodmann area 45 (BA45) and right BA44 compared to that in controls (n = 18). In these areas with potentially compensatory reorganization, the whole group of patients (n = 18) showed significantly greater activation than controls (n = 18). Activation in the right BA45 was inversely correlated with the mean NAWM MTR and the peak position of GM MTR histograms of patients. This study indicates that even at the earliest stage of MS, cortical reorganization is present inside the executive system of working memory and could tend to limit the determinant functional impact of NAWM injury on the execution of the PASAT. Copyright 2004 Wiley-Liss, Inc.

  8. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Ming Zeng

    2012-01-01

    Full Text Available Highly active antiretroviral therapy (HAART can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT fibroblastic reticular cell (FRC network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7. As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution.

  9. Delayed injection of polypyrrole doped with iodine particle suspension after spinal cord injury in rats improves functional recovery and decreased tissue damage evaluated by 3.0 Tesla in vivo magnetic resonance imaging.

    Science.gov (United States)

    Mondragon-Lozano, Rodrigo; Ríos, Camilo; Roldan-Valadez, Ernesto; Cruz, Guillermo J; Olayo, Maria G; Olayo, Roberto; Salgado-Ceballos, Hermelinda; Morales, Juan; Mendez-Armenta, Marisela; Alvarez-Mejia, Laura; Fabela, Omar; Morales-Guadarrama, Axayacatl; Sánchez-Torres, Stephanie; Diaz-Ruiz, Araceli

    2017-04-01

    Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. This is an in vivo animal study. This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r(2)=0.449, p<.05) and between FA and preserved tissue (r(2)=0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r(2)=0.367, p<.05) and between ADC and preserved tissue (r(2)=0.421, p<.05) were observed. The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Combined Use of Tissue Morphology, Neural Network Analysis of Chromatin Texture and Clinical Variables to Predict Prostate Cancer Agressiveness from Biopsy Water

    National Research Council Canada - National Science Library

    Partin, Alan

    2000-01-01

    Purpose: To combine clinical, serum, pathologic and computer derived information into an artificial neural network to develop/validate a model to predict prostate cancer tumor aggressiveness in both a...

  11. Combined Use of Tissue Morphology, Neural Network Analysis of Chromatin Texture & Clinical Variables to Predict Prostate Cancer Agressiveness from Biopsy Material

    National Research Council Canada - National Science Library

    Partin, Alan

    1999-01-01

    the purpose of this report is to combine clinical, serum, pathological and computer derived information into an artificial neural network to develop/validate a model to predict prostate cancer tumor...

  12. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting.

    Science.gov (United States)

    Wei Zhu; Harris, Brent T; Zhang, Lijie Grace

    2016-08-01

    Nervous system is extremely complex which leads to rare regrowth of nerves once injury or disease occurs. Advanced 3D bioprinting strategy, which could simultaneously deposit biocompatible materials, cells and supporting components in a layer-by-layer manner, may be a promising solution to address neural damages. Here we presented a printable nano-bioink composed of gelatin methacrylamide (GelMA), neural stem cells, and bioactive graphene nanoplatelets to target nerve tissue regeneration in the assist of stereolithography based 3D bioprinting technique. We found the resultant GelMA hydrogel has a higher compressive modulus with an increase of GelMA concentration. The porous GelMA hydrogel can provide a biocompatible microenvironment for the survival and growth of neural stem cells. The cells encapsulated in the hydrogel presented good cell viability at the low GelMA concentration. Printed neural construct exhibited well-defined architecture and homogenous cell distribution. In addition, neural stem cells showed neuron differentiation and neurites elongation within the printed construct after two weeks of culture. These findings indicate the 3D bioprinted neural construct has great potential for neural tissue regeneration.

  13. Depth of tissue ablation and residual thermal damage caused by a pixilated 2,940 nm laser in a swine skin model.

    Science.gov (United States)

    Regan, Thomas D; Uebelhoer, Nathan S; Satter, Elizabeth; Ross, E Victor

    2010-07-01

    The purpose of this study was to assess the effects of fluence, pulse stacking, and multiple passes on the depth of injury caused by a fractionated Er:YAG laser in an in vivo farm pig model. DESIGN/MATERIAL/METHODS: A fractionated 2,940 nm Er:YAG laser (Pixel, Alma Lasers, Caesarea, Israel) was applied to the flank skin of a Yorkshire cross pig. The 11 mmx11 mm handpiece was comprised of either 49 or 81 microbeams (200 microm diameter), depending on the tip configuration. There were six different parameter sets divided according to total energy per pulse (150, 285, and 500 mJ) and tip type (81 or 49 microbeams per 11 mmx11 mm macrospot). Each of these six groups was subdivided according to number of stacked pulses (1, 3, and 6) and number of passes (1, 3, and 6). This resulted in a total of 36 treatment parameters. With the 49 microbeam configuration, a single pulse resulted in partial epidermal ablation at 150 mJ, complete epidermal ablation at 285 mJ and partial dermal ablation at 500 mJ to a depth of 90 microm. Stacking the pulses resulted in a significant increase in ablation with each fluence with the maximal depth of ablation measured at 140 microm after six stacked pulses at 500 mJ. Increasing the number of passes did not result in a significant increase in ablative depth, but did create a larger surface area of ablation. Residual thermal damage (RTD) was minimal and remained between 10 and 20 microm. The fractionated Er:YAG laser exhibited some of the same tissue interactions as its fully ablative counterparts. An increase in fluence resulted in an increase in ablative depth with minimal RTD. Additionally, RTD was unaffected by pulse stacking or by additional passes. Differences were that pulse stacking appeared to yield a more rapid decrease in ablation efficiency and additional passes did not seem to increase the depth of ablation.

  14. Tissue responses to low protracted doses of high let radiations or photons: Early and late damage relevant to radio-protective countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, E.J.; Afzal, S.M.J.; Crouse, D.A.; Hanson, W.R.; Fry, R.J.M.

    1988-01-01

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for ..gamma..-radiation. When total doses of 96 or 247 cGy of neutrons or ..gamma.. rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and ..gamma..-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. 63 refs., 6 figs., 7 tabs.

  15. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Qin Wang

    2015-06-01

    Full Text Available Multiple sclerosis (MS is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS. Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12 is an oral formulation of the fumaric acid esters (FAE, containing the active metabolite dimethyl fumarate (DMF. Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF on mouse and rat neural stem/progenitor cells (NPCs and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2 treatment. In addition, utilizing the reactive oxygen species (ROS assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2 at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1. Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS.

  16. Review of transplantation of neural stem/progenitor cells for spinal cord injury.

    Science.gov (United States)

    Mothe, Andrea J; Tator, Charles H

    2013-11-01

    Spinal cord injury (SCI) is a debilitating condition often resulting in paralysis, yet currently there is no effective treatment. Stem cell transplantation is a promising therapeutic strategy for promoting tissue repair after SCI. Stem cells offer a renewable source of cells with inherent plasticity for tissue regeneration. Neural stem/progenitor cells (NSPCs) are multipotent cells that self-renew and are committed to the neural lineage, and thus, they are especially suited to SCI repair. NSPCs may differentiate into neural cells after transplantation into the injured spinal cord, replacing lost or damaged cells, providing trophic support, restoring connectivity, and facilitating regeneration. Here, we review experimental studies and considerations for clinical translation of NSPC transplantation for SCI. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  18. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm-1 and 2700-3800cm-1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p denaturation (r = 0.514, p denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cytosolic Double-Stranded DNA as a Damage-Associated Molecular Pattern Induces the Inflammatory Response in Rat Pancreatic Stellate Cells: A Plausible Mechanism for Tissue Injury-Associated Pancreatitis

    Directory of Open Access Journals (Sweden)

    Taichi Nakamura

    2012-01-01

    Full Text Available Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes.

  20. Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage

    Directory of Open Access Journals (Sweden)

    Usue Etxaniz

    2014-11-01

    Full Text Available Resident neural precursor cells (NPCs have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+ and perivascular (CD56− cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread.

  1. Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.

    Science.gov (United States)

    Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji

    2017-08-01

    This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study of functional viability of SU-8-based microneedles for neural applications

    Science.gov (United States)

    Fernández, Luis J.; Altuna, Ane; Tijero, Maria; Gabriel, Gemma; Villa, Rosa; Rodríguez, Manuel J.; Batlle, Montse; Vilares, Roman; Berganzo, Javier; Blanco, F. J.

    2009-02-01

    This paper presents the design, fabrication, packaging and first test results of SU-8-based microneedles for neural applications. By the use of photolithography, sputtering and bonding techniques, polymer needles with integrated microchannels and electrodes have been successfully fabricated. The use of photolithography for the patterning of the fluidic channel integrated in the needle allows the design of multiple outlet ports at the needle tip, minimizing the possibility of being blocked by the tissue. Furthermore, the flexibility of the polymer reduces the risk of fracture and tissue damage once the needle is inserted, while it is still rigid enough to allow a perfect insertion into the neural tissue. Fluidic and electric characterization of the microneedles has shown their viability for drug delivery and monitoring in neural applications. First drug delivery tests in ex vivo tissue demonstrated the functional viability of the needle to deliver drugs to precise points. Furthermore, in vivo experiments have demonstrated lower associated damages during insertion than those by stereotaxic standard needles.

  3. Lactation Affects Isolated Mitochondria and Its Fatty Acid Composition but Has No Effect on Tissue Protein Oxidation, Lipid Peroxidation or DNA-Damage in Laboratory Mice

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2016-01-01

    Full Text Available Linking peak energy metabolism to lifespan and aging remains a major question especially when focusing on lactation in females. We studied, if and how lactation affects in vitro mitochondrial oxygen consumption and mitochondrial fatty acid composition. In addition, we assessed DNA damage, lipid peroxidation and protein carbonyls to extrapolate on oxidative stress in mothers. As model system we used C57BL/6NCrl mice and exposed lactating females to two ambient temperatures (15 °C and 22 °C while they nursed their offspring until weaning. We found that state II and state IV respiration rates of liver mitochondria were significantly higher in the lactating animals than in non-lactating mice. Fatty acid composition of isolated liver and heart mitochondria differed between lactating and non-lactating mice with higher n-6, and lower n-3 polyunsaturated fatty acids in the lactating females. Surprisingly, lactation did not affect protein carbonyls, lipid peroxidation and DNA damage, nor did moderate cold exposure of 15 °C. We conclude that lactation increases rates of mitochondrial uncoupling and alters mitochondrial fatty acid composition thus supporting the “uncoupling to survive” hypothesis. Regarding oxidative stress, we found no impact of lactation and lower ambient temperature and contribute to growing evidence that there is no linear relationship between oxidative damage and lactation.

  4. Beneficial effects of garlic on learning and memory deficits and brain tissue damages induced by lead exposure during juvenile rat growth is comparable to the effect of ascorbic acid.

    Science.gov (United States)

    Ghasemi, Simagol; Hosseini, Mahmoud; Feizpour, Azadeh; Alipour, Fatemeh; Sadeghi, Akram; Vafaee, Farzaneh; Mohammadpour, Toktam; Soukhtanloo, Mohammad; Ebrahimzadeh Bideskan, Alireza; Beheshti, Farimah

    2017-04-01

    The neuroprotective effects of both garlic and ascorbic acid (AA) have been documented. In this study the effects of garlic and ascorbic acid on memory deficits and brain tissue oxidative damages induced by lead exposure was investigated. The juvenile rats were divided and treated: (1) Control, (2) Lead (lead acetate in drinking water, 8 weeks), (3) Lead - Ascorbic Acid (Lead-AA), (4)  Lead - Garlic (100 mg/kg, daily, gavage) (Lead-Gar). In Morris water maze (MWM), the escape latency and traveled path in the Lead group were significantly higher while, the time spent in the target quadrant (Q1) was lower than Control. Both Lead-Gar and Lead-AA groups spent more times in Q1than to lead group. There were no significant differences in swimming speed between the groups. In passive avoidance (PA) test, the time latency for entering the dark compartment by Lead group was lower than Control. Treatment of the animals by AA and garlic significantly increased the time latency. In Lead group, the total thiol concentration in brain tissues was significantly lower while, MDA was higher than Control. Treatment by both garlic and AA increased total thiol concentrations and decreased MDA. Both garlic and AA decreased the lead content of brain tissues. It is suggested that treatment with garlic attenuates the learning and memory impairments due to lead exposure during juvenile rat growth which is comparable to AA. The possible mechanism may be due to its protective effects against brain tissues oxidative damage as well the lowering effects of brain lead content.

  5. A murine experimental anthracycline extravasation model: pathology and study of the involvement of topoisomerase II alpha and iron in the mechanism of tissue damage

    DEFF Research Database (Denmark)

    Thougaard, Annemette V; Langer, Seppo W; Hainau, Bo

    2010-01-01

    to be similar to findings in humans: massive necrosis in the subcutis, dermis and epidermis followed by sequestration and healing with granulation tissue, and a graft-versus-host-like reaction with hyperkeratotic and acanthotic keratinocytes, occasional apoptoses, epidermal invasion by lymphocytes and healing...

  6. Tissue damage after single high-dose intraoperative irradiation of the canine liver : Evaluation in time by means of radionuclide imaging and light microscopy

    NARCIS (Netherlands)

    Cromheecke, M; Piers, BA; Beekhuis, H; ter Veen, H; Sluiter, WJ; Hoekstra, HJ

    2000-01-01

    To establish the tolerance of liver tissue to single high-dose intraoperative irradiation, the histopathological changes in the canine liver after single high-dose intraoperative irradiation were investigated by means of radionuclide imaging and light microscopy, Intraoperative irradiation at doses

  7. [Management of severe soft-tissue trauma in the upper extremity - shoulder, upper and lower arm].

    Science.gov (United States)

    Mittlmeier, Thomas; Krapohl, Björn Dirk; Schaser, Klaus-Dieter

    2010-05-01

    Salvage of the respective extremity. Standardized approach to adequate soft-tissue coverage (isolated severe soft-tissue trauma) and preconditioning for fracture healing (in complex trauma) as a basis for functional restoration. Limitation of secondary soft-tissue loss. Prevention of infection. Isolated extended severe soft-tissue trauma (crush trauma, degloving injury) in the region of the shoulder and the upper extremity. Complex trauma with soft-tissue involvement Gustilo IIIB/C or Tscherne GIII/IV. Segmental soft-tissue/bone loss. Subtotal or partial amputations. Unstable polytraumatized patient with vital hazards and the priority for lifesaving measures. Irretrievable devascularization or unreconstructable neural destruction, extended severe loss of multiple muscular units. Systematic, eventually serial debridement, temporary joint transfixation, reconstruction of macrocirculation, dermatofasciotomy in compartment syndrome, preferably primary shortening in segmental soft-tissue/bone loss, temporary soft-tissue coverage, systematic conditioning of soft tissues, postprimary or secondary soft-tissue reconstruction, secondary change to preferably internal fixation techniques. Individualized earliest possible passive or assisted mobilization of nontransfixed joints, early removal of transfixation and change to internal fixation modes, eventually secondary reconstructive measures (e.g., augmentation of bone defects, flap correction, secondary nerve reconstruction, functional muscle transposition procedures, arthrolyses). Patency rate after vascular reconstruction > 90%, flap survival > 95%, need for amputation is a rare entity; main determinants of prognosis: severity of soft-tissue trauma, neural damage, and potential for reconstruction.

  8. Residual tissue post splenectomy detected by splenic scintillography with erythrocytes damaged by heat; Tejido residual postesplenectomia detectado por centellografia esplenica con eritrocitos danados por calor

    Energy Technology Data Exchange (ETDEWEB)

    Rivera B, B.; Garcia C, E.S.; Garcia O, J.R. [Centro Medico ABC, Departamento de Medicina Nuclear, Mexico, D.F. (Mexico)

    2005-07-01

    Feminine of 26 years old with diagnostic of purple thrombocytopenic idiopathic to those 4 years of age, tried with steroids and splenectomy at 11 years old. Pathway practically asymptomatic until 4 months ago she had presented asthenia, adynamia and general uneasiness, with platelet figures of 40,000 plat/microliter. It was carried out scintillographic study with damaged erythrocytes for post surgical remainder search. Its were took two-dimensional images and tomography by single photon emission (SPECT), being knitted splenic residual in area of anatomical projection of the spleen. (Author)

  9. Chemo Protective role of Moringa oleifera and its isolated Saponin against DMBA induced Tissue Damage in male mice: A Histopathological analysis

    OpenAIRE

    Veena Sharma; Ritu Paliwal

    2012-01-01

    Moringa oleifera, a well known traditional medicinal plant from Moringaceae family has a remarkable reputation among the indigenous medical practitioners. The chemo protective role of hydroethanolic extract of Moringa oleifera and its isolated saponin against 7, 12- dimethyl-benz[a]anthracene (DMBA) intoxicated mice was investigated in the present study with the help of histopathological analysis of soft tissues (liver and kidney). The PAH 7, 12-dimethyl-benz[a]anthracene (DMBA) acts as a pot...

  10. Damage assessment in structure from changes in static parameter ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Damage assessment of structures using neural networks. 319 layers the CPU time increases considerably. Therefore single hidden layer network has been used. In this paper, a three-layer back-propagation neural network (figure 1) is developed for damage detection. 3. Numerical examples and results. The computer ...

  11. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders

    Science.gov (United States)

    2013-01-01

    Background We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Methods Rats underwent initial training for 4–6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Results Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw

  12. Protective effects of the antioxidant Ginkgo biloba extract and the protease inhibitor aprotinin against Leiurus quinquestriatus venom-induced tissue damage in rats

    Directory of Open Access Journals (Sweden)

    A. J. Fatani

    2006-04-01

    Full Text Available Oxidative stress and proteases have been implicated in several diseases and extensive evidence indicates that antioxidants and protease inhibitors help prevent organ functional damage. Leiurus quinquestriatus (LQQ scorpion venom causes cellular injuries that may lead to multiple organ failure. Thus, the capability of the antioxidant "natural standardized extract of Gingko biloba leaves (Gin, EGb 761" and the non-selective protease inhibitor, aprotinin, in ameliorating venom-induced biochemical alterations indicative of cellular injury and oxidative stress was studied to determine their effectiveness in protecting rats from venom-evoked cellular damages. Thus, in this study, rats were treated with LQQ venom (0.3mg.kg-1, subcutaneously alone or after Gin (150mg.kg-1, orally, daily for 2 weeks before venom and/or aprotinin (Apr, 46000 KIU.kg-1, intraperitoneally, 30 min before venom. Control groups were injected with saline or treatment modalities. Lungs and hearts were excised after decapitating rats (n=8/group 60 min after venom injection and the following activities were measured: reduced glutathione (GSH, malondialdehyde (MDA - an index of lipid peroxidation, glutathione peroxidase (GPx, glucose-6-phosphate dehydrogenase (G6PD, and lactate dehydrogenase (LDH. Our findings demonstrate that LQQ venomsignificantly elevated GSH (p<0.05 vs. control, MDA (p<0.05, G6PD (p<0.05, and LDH activities (p<0.001 in hearts of envenomed rats. The venom also elevated MDA (p<0.05 vs. control and reduced GSH and GPx (p<0.05 in the lungs of envenomed rats. In general, pretreatment with EGb761 attenuated LQQ venom-evoked increases in GSH (p<0.05 vs. venom, MDA in rat hearts and lungs (p<0.05 vs. venom, plus LDH in the heart (p<0.01. Aprotinin alone significantly reduced the venom-elicited increase in G6PD and LDH activities and the decrease in GPx levels (p<0.05. In general, these protective effects of EGb761 on GSH, MDA (p<0.01 vs. venom and LDH (p<0.001 in the

  13. Brain tissue banking for stem cells for our future.

    Science.gov (United States)

    Palmero, Emily; Palmero, Sheryl; Murrell, Wayne

    2016-12-19

    In our lab we study neurogenesis and the development of brain tumors. We work towards treatment strategies for glioblastoma and towards using autologous neural stem cells for tissue regeneration strategies for brain damage and neurodegenerative disorders. It has been our policy to try to establish living cell cultures from all human biopsy material that we obtain. We hypothesized that small pieces of brain tissue could be cryopreserved and that live neural stem cells could be recovered at a later time. DMSO has been shown to possess a remarkable ability to diffuse through cell membranes and pass into cell interiors. Its chemical properties prevent the formation of damaging ice crystals thus allowing cell storage at or below -180 C. We report here a protocol for successful freezing of small pieces of tissue derived from human brain and human brain tumours. Virtually all specimens could be successfully revived. Assays of phenotype and behaviour show that the cell cultures derived were equivalent to those cultures previously derived from fresh tissue.

  14. Utilização da veia glicerolada na regeneração neural: Estudo experimental em ratos The use of glycerol-treated venous graft in damaged nerves repair: an experimental study in rats

    Directory of Open Access Journals (Sweden)

    Armando dos Santos Cunha

    2007-01-01

    Full Text Available A auto-enxertia de nervo é o tratamento de escolha para grandes perdas de tecido neural que não podem ser reparadas por meio de rafia primária. A utilização do enxerto venoso previamente conservado em glicerol seria uma alternativa para diminuir o tempo operatório e a morbidade cirúrgica nesses casos. Os vasos preservados em glicerol não apresentam destruição de sua estrutura, o que permite seu uso na microcirurgia vascular, tendo a vantagem de diminuir a imunogenicidade do enxerto. O objetivo deste trabalho experimental foi comparar o grau de reparação nervosa, utilizando análise histológica, contagem do número de axônios mielinizados regenerados e análise funcional, obtida com a interposição de enxerto autógeno (grupo A e de tubo de veia glicerolada (grupo B em defeitos de 5 mm no nervo fibular de ratos Wistar. Somente no grupo A foi observado a formação de neuroma. O grupo B apresentou padrões histológicos compatíveis com diminuição quantitativa do número de axônios mielinizados regenerados em menor número em relação ao grupo A (controle. Na recuperação funcional, não houve diferença estatisticamente significativa entre os dois grupos.Autografting is the treatment of choice for cases of major nervous tissue loss where the ruptured nerve ends cannot be reduced. The use of a venous autograft previously treated with glycerol may be an alternative treatment, as it reduces surgery time duration and level of morbidity. Blood vessel explants, used in vascular microsurgery, kept in glycerol maintain their original biological structure, and when used in autografting, present reduced levels of patient's immune response. The aim of this study was to compare the level of nervous tissue regeneration by using histological analysis, regenerated myelinized axons counts, and functional analysis, obtained with the interposition of autologous graft (group A and glycerol-treated vein tube (group B in 5-mm defects on Wistar

  15. M-CSF deficiency leads to reduced metallothioneins I and II expression and increased tissue damage in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, Milena; Poulsen, Christian; Carrasco, Javier

    2002-01-01

    6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray-matter astrocytes followed by a vigorous inflammatory response. Macrophage colony stimulating factor (M-CSF) is important during inflammation, and in order to further clarify the roles for M-CSF in neurodegener......6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray-matter astrocytes followed by a vigorous inflammatory response. Macrophage colony stimulating factor (M-CSF) is important during inflammation, and in order to further clarify the roles for M......-CSF is an important growth factor for coping with 6-AN-induced central nervous system damage and suggest that MT-I+II are likely to have a significant role....

  16. Correlation of hemorrhage, axonal damage and blood-tissue barrier disruption in brain and retina of Malawian children with fatal cerebral malaria

    Directory of Open Access Journals (Sweden)

    Jesse eGreiner

    2015-03-01

    Full Text Available Background: The retinal and brain histopathological findings in children who died from cerebral malaria (CM have been recently described. Similar changes occur in both structures, but the findings have not been directly compared in the same patients. In this study we compared clinical retinal findings and retinal and cerebral histopathological changes in a series of patients in Blantyre, Malawi, who died of CM.Methods: The features systematically compared in the same patient were: 1 clinical, gross and microscopic retinal hemorrhages with microscopic cerebral hemorrhages, 2 retinal and cerebral hemorrhage-associated and -unassociated axonal damage, and fibrinogen leakage, and 3 differences in the above features between the pathological categories of CM without microvascular pathology (CM1 and CM with microvascular pathology (CM2 in retina and brain. Results: Forty-seven patients were included: 7 CM1, 28 CM2 and 12 controls. In the 35 malaria cases retinal and cerebral pathology correlated in all features except for non-hemorrhage associated fibrinogen leakage. Regarding CM1 and CM2 cases, the only differences were in the proportion of patients with hemorrhage-associated cerebral pathology, and this was expected, based on the definitions of CM1 and CM2. The retina did not show this difference. Non-hemorrhage associated pathology was similar for the two groups. Comment: As postulated, histopathological features of hemorrhages, axonal damage and non-hemorrhage associated fibrinogen leakage correlated in the retina and brain of individual patients, although the difference in hemorrhages between the CM1 and CM2 groups was not consistently observed in the retina. These results help to underpin the utility of ophthalmoscopic examination and fundus findings to help in diagnosis and assessment of cerebral malaria patients, but may not help in distinguishing between CM1 and CM2 patients during life.

  17. Classification of Laser Induced Fluorescence Spectra from Normal and Malignant bladder tissues using Learning Vector Quantization Neural Network in Bladder Cancer Diagnosis

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Mascarenhas, Kim Komal; Patil, Choudhary

    2008-01-01

    In the present work we discuss the potential of recently developed classification algorithm, Learning Vector Quantization (LVQ), for the analysis of Laser Induced Fluorescence (LIF) Spectra, recorded from normal and malignant bladder tissue samples. The algorithm is prototype based and inherently...

  18. Human Immunodeficiency Virus Type 1 Infection of Neural Xenografts

    Science.gov (United States)

    Cvetkovich, Therese A.; Lazar, Eliot; Blumberg, Benjamin M.; Saito, Yoshihiro; Eskin, Thomas A.; Reichman, Richard; Baram, David A.; del Cerro, Coca; Gendelman, Howard E.; del Cerro, Manuel; Epstein, Leon G.

    1992-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection is highly specific for its human host. To study HIV-1 infection of the human nervous system, we have established a small animal model in which second-trimester (11 to 17.5 weeks) human fetal brain or neural retina is transplanted to the anterior chamber of the eye of immunosuppressed adult rats. The human xenografts vascularized, formed a blood-brain barrier, and differentiated, forming neurons and glia. The xenografts were infected with cell-free HIV-1 or with HIV-1-infected human monocytes. Analysis by polymerase chain reaction revealed HIV-1 sequences in DNA from xenograft tissue exposed to HIV-1 virions, and in situ hybridization demonstrated HIV-1 mRNA localized in macrophages and multinucleated giant cells. Pathological damage was observed only in neural xenografts containing HIV-1-infected human monocytes, supporting the hypothesis that these cells mediate neurotoxicity. This small animal model allows the study of direct and indirect effects of HIV-1 infection on developing human fetal neural tissues, and it should prove useful in evaluating antiviral therapies, which must ultimately target HIV-1 infection of the brain.

  19. Neural repair in the adult brain

    Science.gov (United States)

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic. PMID:26918167

  20. A comparison of the techniques of secondary ion mass spectrometry and resonance ionization mass spectrometry for the analysis of potentially toxic element accumulation in neural tissue.

    Science.gov (United States)

    Jones, O R; Perks, R M; Abraham, C J; Telle, H H; Oakley, A E

    1997-01-01

    A comparison is made of the techniques of secondary ion mass spectrometry (SIMS) and resonance ionization mass spectrometry (RIMS) for the detection of the neuro-toxic element aluminium in cortical tissue. Experiments were performed using a reflectron-type time-of-flight mass spectrometer (TOFMS) in conjunction with an Ar+ source for target sputtering and a pulsed tuneable dye laser system for resonance ionization. It is shown how isobaric interference of species such as CNH and C2H3 in the case of aluminium greatly affect the quantitative accuracy and the detection limit of aluminium in biological samples when analysed using SIMS. In contrast the use of RIMS virtually eliminates this problem, so allowing easier quantification and much lower detection limits to be achieved. Detection limits of approximately 3 ppm for aluminium in brain tissue homogenates were achieved using RIMS, with a spatial resolution of less than 100 microns.

  1. Concise Review: Reprogramming, Behind the Scenes: Noncanonical Neural Stem Cell Signaling Pathways Reveal New, Unseen Regulators of Tissue Plasticity With Therapeutic Implications.

    Science.gov (United States)

    Poser, Steven W; Chenoweth, Josh G; Colantuoni, Carlo; Masjkur, Jimmy; Chrousos, George; Bornstein, Stefan R; McKay, Ronald D; Androutsellis-Theotokis, Andreas

    2015-11-01

    Interest is great in the new molecular concepts that explain, at the level of signal transduction, the process of reprogramming. Usually, transcription factors with developmental importance are used, but these approaches give limited information on the signaling networks involved, which could reveal new therapeutic opportunities. Recent findings involving reprogramming by genetic means and soluble factors with well-studied downstream signaling mechanisms, including signal transducer and activator of transcription 3 (STAT3) and hairy and enhancer of split 3 (Hes3), shed new light into the molecular mechanisms that might be involved. We examine the appropriateness of common culture systems and their ability to reveal unusual (noncanonical) signal transduction pathways that actually operate in vivo. We then discuss such novel pathways and their importance in various plastic cell types, culminating in their emerging roles in reprogramming mechanisms. We also discuss a number of reprogramming paradigms (mouse induced pluripotent stem cells, direct conversion to neural stem cells, and in vivo conversion of acinar cells to β-like cells). Specifically for acinar-to-β-cell reprogramming paradigms, we discuss the common view of the underlying mechanism (involving the Janus kinase-STAT pathway that leads to STAT3-tyrosine phosphorylation) and present alternative interpretations that implicate STAT3-serine phosphorylation alone or serine and tyrosine phosphorylation occurring in sequential order. The implications for drug design and therapy are important given that different phosphorylation sites on STAT3 intercept different signaling pathways. We introduce a new molecular perspective in the field of reprogramming with broad implications in basic, biotechnological, and translational research. Reprogramming is a powerful approach to change cell identity, with implications in both basic and applied biology. Most efforts involve the forced expression of key transcription

  2. Tissue segmentation-assisted analysis of fMRI for human motor response: an approach combining artificial neural network and fuzzy C means

    OpenAIRE

    Chiu, MJ; Lin, CC; Chuang, KH; Chen, JH; Huang, KM

    2001-01-01

    The authors have developed an automated algorithm for segmentation of magnetic resonance images (MRI) of the human brain. They investigated the quantitative analysis of tissue-specific human motor response through an approach combining gradient echo functional MRI and automated segmentation analysis. Fifteen healthy volunteers, placed in a 1.5 T clinical MR imager, performed a self-paced finger opposition throughout the activation periods. T1-weighted images (WI), T2WI, and proton density WI ...

  3. Tissue segmentation-assisted analysis of fMRI for human motor response: an approach combining artificial neural network and fuzzy C means.

    Science.gov (United States)

    Chiu, M J; Lin, C C; Chuang, K H; Chen, J H; Huang, K M

    2001-03-01

    The authors have developed an automated algorithm for segmentation of magnetic resonance images (MRI) of the human brain. They investigated the quantitative analysis of tissue-specific human motor response through an approach combining gradient echo functional MRI and automated segmentation analysis. Fifteen healthy volunteers, placed in a 1.5 T clinical MR imager, performed a self-paced finger opposition throughout the activation periods. T1-weighted images (WI), T2WI, and proton density WI were acquired for segmentation analysis. Single-slice axial T2* fast low-angle shot (FLASH) images were obtained during the functional study. Pixelwise cross-correlation analysis was performed to obtain an activation map. A cascaded algorithm, combining Kohonen feature maps and fuzzy C means, was applied for segmentation. After processing, masks for gray matter, white matter, small vessels, and large vessels were generated. Tissue-specific analysis showed a signal change rate of 4.53% in gray matter, 2.98% in white matter, 5.79% in small vessels, and 7.24% in large vessels. Different temporal patterns as well as different levels of activation were identified in the functional response from various types of tissue. High correlation exists between cortical gray matter and subcortical white matter (r = 0.957), while the vessel behaves somewhat different temporally. The cortical gray matter fits best to the assumed input function (r = 0.957) followed by subcortical white matter (r = 0.829) and vessels (r = 0.726). The automated algorithm of tissue-specific analysis thus can assist functional MRI studies with different modalities of response in different brain regions.

  4. Perfusion imaging of the right perisylvian neural network in acute spatial neglect

    Directory of Open Access Journals (Sweden)

    Regine Zopf

    2009-08-01

    Full Text Available Recent studies have suggested a tightly connected perisylvian neural network associated with spatial neglect. Here we investigated whether structural damage in one part of the network typically is accompanied with functional damage in other, structurally intact areas of this network. By combining normalized fluid-attenuated inversion-recovery (FLAIR imaging, diffusion-weighted imaging (DWI, and perfusion-weighted imaging (PWI we asked whether or not lesions centering on fronto-temporal regions co-occur with abnormal perfusion in structurally intact parietal cortex. We found small areas of perfusion differences in the superior temporal gyrus (STG, inferior frontal gyrus (IFG, insula, and postcentral gyrus of our patients with spatial neglect. However, with thresholds applied to delineate behaviorally relevant malperfusion of brain tissue, the analysis of normalised time-to-peak (TTP and maximal signal reduction (MSR perfusion maps did not reveal significant changes outside the area of structural damage. In particular, we found no abnormal perfusion in the structurally intact inferior parietal lobule (IPL and/or the temporo-parietal junction (TPJ. The present results obtained in three consecutively admitted neglect patients indicate that structural damage in one part of the right perisylvian network associated with spatial neglect does not necessarily require dysfunction by malperfusion in other, structurally intact parts of the network to provoke spatial neglect. The neural tissue in the fronto-temporal cortex appears to have an original role in processes of spatial orienting and exploration.

  5. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array.

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    Full Text Available To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Ku heterodimeric regulatory complex 70-KD subunit (Ku70 and ataxia-telangiectasia mutated (ATM.The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC.The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009 and lymph node status (P = 0.004. The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012 and DNA-PKcs (P = 0.02. Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001 and Ku70 expression (P<0.001.Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.

  6. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    Science.gov (United States)

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  7. Extracellular matrix proteins as temporary coating for thin-film neural implants

    Science.gov (United States)

    Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert

    2017-02-01

    Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.

  8. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    Science.gov (United States)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  9. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  10. Coenzyme Q10 for the Protection of Lacrimal Gland against High-Dose Radioiodine Therapy-Associated Oxidative Damage: Histopathologic and Tissue Cytokine Level Assessments in an Animal Model.

    Science.gov (United States)

    Yakin, Mehmet; Eksioglu, Umit; Sadic, Murat; Koca, Gokhan; Ozkan-Uney, Guner; Yumusak, Nihat; Husniye Telek, Hande; Demir, Ayten; Yazihan, Nuray; Ornek, Firdevs; Korkmaz, Meliha

    2017-12-01

    To evaluate protective effect of coenzyme Q10 (CoQ10) in lacrimal glands against high-dose radioactive iodine (RAI)-associated oxidative damage. Thirty Wistar albino rats were randomly divided into three groups. Group 1 was the control group. Group 2 received 3 mCi/kg RAI via gastric gavage but no medication. Group 3 received 3 mCi/kg RAI via gastric gavage and 30 mg/kg/day CoQ10 intraperitoneally. CoQ10 was started at day one just before RAI administration and continued for five days. Seven days after RAI therapy, the animals were anesthetized and decapitated. Intraorbital (IG), extraorbital (EG), and Harderian (HG) lacrimal glands were removed bilaterally for histopathological and tissue cytokine level assessments. Abnormal lobular pattern, acinar fibrosis, lipofuscin-like accumulations, perivascular infiltration, cell size variation, abnormal cell outlines, irregular nucleus shapes in all lacrimal gland types (p < 0.05 for each), periductal fibrosis, periductal and periacinar fibrosis in EG (p = 0.01, 0.044, respectively) and in HG (p = 0.036, 0.044, respectively), periductal infiltration in HG (p = 0.039) and IG (p = 0.029), acinar atrophy in EG (p = 0.044), and cell shape variation in IG (p = 0.036) were observed more frequently in group 2 than in other groups. RAI caused significant increase in TNF-α, IL-6, nuclear factor kappa B, and total oxidant status, and decrease in IL-2, IL-10, and total antioxidant status levels (p < 0.05 for each). Addition of CoQ10 decreased all cytokine levels, increased nuclear factor kappa B levels more, and increased total antioxidant status levels significantly (p < 0.05 for each). RAI administration causes prominent inflammatory response in lacrimal glands. Addition of CoQ10 ameliorates the oxidative damage and protects lacrimal glands both in histopathological and tissue cytokine level assessments. Protection of lacrimal glands against oxidative damage may become a new era of CoQ10 use in the future.

  11. Study of damages induced by fungicide propiconazole on testicular tissue and process of spermatogenesis and protective effects of selenium in male Sprague Dawley rat

    Directory of Open Access Journals (Sweden)

    H Mohsenikouchesfehani

    2015-04-01

    Full Text Available Background & aim: Propiconazole is an herbal fungicide which is used as a tropical and systematic drug for fungal infection and also as an agricultural chemical for protection and preservation of fruits, vegetables and grains. The aim of this study was to assess the efficacy of fungicides propiconazol and possible protective effects of selenium on testes tissue. Methods: The present expremental trail study was conducted on forty rats which were divided into ten groups of four including control , sham (solvent of propiconazole, distilled water, solvent of selenium (normal saline and seven experimental groups : group 1 received 0.5 mg/kg/day of selenium, groups 2,3,4 received three doses of 10,50,75 mg/kg/day of Propiconazole, and groups 5,6,7 received three doses of 10, 50, 75 mg/kg/day of propiconazole with 0.5 mg/kg/day of selenium toevaluate. The administration was done intrapritoneal for two weeks in an alternatively fashion. After determining the level of LH, FSH, Testosterone, sperm was counted by hemocitometer. Data were analyzed by the SPSS software using ANOVA test. Results: No significant differences was observed in the level of hormones in the experimental groups2-7 compared with the control group, but the number of sertoli cells, spermatogonia , primary spermatocyte , spermatid and sperm decreased significantly in comparison with the control group (p<0.05. Conclusion: The decrease in numbers of counted sperm indicates that propiconazole has disrupted the production process of these cells and selenium was unable to improve that.

  12. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Techapiesancharoenkij, Nirachara [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Fiala, Jeannette L.A. [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Croy, Robert G.; Wogan, Gerald N. [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Groopman, John D. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Ruchirawat, Mathuros [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Essigmann, John M., E-mail: jessig@mit.edu [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-01-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB{sub 1}-DNA adducts in AFB{sub 1}-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB{sub 1} and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB{sub 1} administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB{sub 1}-induced hepatotoxicity. At 24 h after AFB{sub 1} administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB{sub 1}-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB{sub 1} hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. - Highlights: • This study revealed sulforaphane (SF)-deregulated gene sets in aflatoxin B{sub 1} (AFB{sub 1})-treated rat livers. • SF redirects biochemical networks toward lipid biosynthesis in AFB{sub 1}-dosed rats. • SF enhanced gene sets that would be expected to favor cell repair and regeneration.

  13. Protection against brain tissues oxidative damage as a possible mechanism for the beneficial effects of Rosa damascena hydroalcoholic extract on scopolamine induced memory impairment in rats.

    Science.gov (United States)

    Mohammadpour, Toktam; Hosseini, Mahmoud; Naderi, Asieh; Karami, Reza; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Vafaee, Farzaneh

    2015-10-01

    Hypnotic, analgesic, anticonvulsant, and antioxidant effects of Rosa damascena have been reported. This study, investigated the effect of R. damascena hydroalcoholic extract on memory performance in a scopolamine-induced memory impairment model. The rats were divided into control group received just saline; scopolamine group was treated by saline for 2 weeks, but was injected by scopolamine 30 minutes before each trial in Morris water maze test; treatment groups (scopolamine + extract 50; Sco + Ext 50) and (scopolamine + extract 250; Sco + Ext 250) were daily treated by 50 and 250 mg/kg of R. damascena extract (2 weeks) and were finally injected by scopolamine before each trial in Morris water maze. The brains were removed for biochemical measurements. Time latency and path length in the scopolamine group were higher than control (P < 0.01 to <0.001). Both treatment groups showed shorter traveled distance and time latency compared with scopolamine group (P < 0.05 to <0.001). Time spent in target quadrant by scopolamine group was lower than control (P < 0.05), while Sco + Ext 250 group spent longer time in target quadrant than scopolamine group (P < 0.05). Malondialdehyde concentrations in hippocampal and cortical tissues of scopolamine group were higher, while thiol concentrations were lower than control ones (P < 0.001). Treatment by both doses of the extract decreased the malondialdehyde concentration, while increased the thiol concentration (P < 0.05 to <0.001). The results of this study showed that the hydroalcoholic extract of R. damascena prevents scopolamine-induced memory deficits. This finding suggests that memory improvement may be in part due to the antioxidant effects.

  14. Skeletal muscle tissue engineering

    National Research Council Canada - National Science Library

    Bach, A. D; Beier, J. P; Stern‐Staeter, J; Horch, R. E

    2004-01-01

    The reconstruction of skeletal muscle tissue either lost by traumatic injury or tumor ablation or functional damage due to myopathies is hampered by the lack of availability of functional substitution...

  15. The effect of micro-ECoG substrate footprint on the meningeal tissue response

    Science.gov (United States)

    Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.

    2014-08-01

    Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.

  16. Heavy metals nanoparticles in fetal kidney and liver tissues.

    Science.gov (United States)

    Gatti, Antonietta M; Bosco, Paolo; Rivasi, Francesco; Bianca, Sebastiano; Ettore, Giuseppe; Gaetti, Luigi; Montanari, Stefano; Bartoloni, Giovanni; Gazzolo, Diego

    2011-01-01

    The proliferation of the nanotechnologies with the production of engineered nanoparticles presents a dilemma to regulators regarding hazard identification mostly for human health. We investigated the presence of inorganic micro and nanosized contamination in fetal liver and kidney tissues by Field Emission Gun-Environmental Scanning Electron Microscope (FEGESEM) innovative observations. An observational study in 16 fetuses, complicated (n=8) or not (n=8) by neural tube defects, whose mothers obtained the authorization for abortion between 21-23 weeks of gestation was carried out. Heavy metals concentrations in maternal blood were undetectable. FEGESEM assessment showed particles of iron, silicon, aluminum and magnesium in different tissues analyzed. The mean size and the number of the foreign bodies detected in kidney and liver tissues were higher in NTD fetuses as well as the number of total particles (P pollution at nanoscale stage and multiorgan damage.

  17. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. TNF/TNFR1 signaling up-regulates CCR5 expression by CD8+ T lymphocytes and promotes heart tissue damage during Trypanosoma cruzi infection: beneficial effects of TNF-α blockade

    Directory of Open Access Journals (Sweden)

    Karina Kroll-Palhares

    2008-06-01

    Full Text Available In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-α is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-α levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-α, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-α+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-α treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-α-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-α treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.

  19. CHARGEd with neural crest defects.

    Science.gov (United States)

    Pauli, Silke; Bajpai, Ruchi; Borchers, Annette

    2017-10-30

    Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders. © 2017 Wiley Periodicals, Inc.

  20. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  1. Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele.

    Science.gov (United States)

    Marotta, Mario; Fernández-Martín, Alejandra; Oria, Marc; Fontecha, Cesar G; Giné, Carles; Martínez-Ibáñez, Vicente; Carreras, Elena; Belfort, Michael A; Pelizzo, Gloria; Peiró, Jose L

    2017-07-01

    Despite benefits of prenatal in utero repair of myelomeningocele, a severe type of spina bifida aperta, many of these patients will still suffer mild to severe impairment. One potential source of stem cells for new regenerative medicine-based therapeutic approaches for spinal cord injury repair is neural progenitor cells (NPCs) in cerebrospinal fluid (CSF). To this aim, we extracted CSF from the cyst surrounding the exposed neural placode during the surgical repair of myelomeningocele in 6 fetuses (20 to 26weeks of gestation). In primary cultured CSF-derived cells, neurogenic properties were confirmed by in vitro differentiation into various neural lineage cell types, and NPC markers expression (TBR2, CD15, SOX2) were detected by immunofluorescence and RT-PCR analysis. Differentiation into three neural lineages was corroborated by arbitrary differentiation (depletion of growths factors) or explicit differentiation as neuronal, astrocyte, or oligodendrocyte cell types using specific induction mediums. Differentiated cells showed the specific expression of neural differentiation markers (βIII-tubulin, GFAP, CNPase, oligo-O1). In myelomeningocele patients, CSF-derived cells could become a potential source of NPCs with neurogenic capacity. Our findings support the development of innovative stem-cell-based therapeutics by autologous transplantation of CSF-derived NPCs in damaged spinal cords, such as myelomeningocele, thus promoting neural tissue regeneration in fetuses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele

    Directory of Open Access Journals (Sweden)

    Mario Marotta

    2017-07-01

    Full Text Available Despite benefits of prenatal in utero repair of myelomeningocele, a severe type of spina bifida aperta, many of these patients will still suffer mild to severe impairment. One potential source of stem cells for new regenerative medicine-based therapeutic approaches for spinal cord injury repair is neural progenitor cells (NPCs in cerebrospinal fluid (CSF. To this aim, we extracted CSF from the cyst surrounding the exposed neural placode during the surgical repair of myelomeningocele in 6 fetuses (20 to 26 weeks of gestation. In primary cultured CSF-derived cells, neurogenic properties were confirmed by in vitro differentiation into various neural lineage cell types, and NPC markers expression (TBR2, CD15, SOX2 were detected by immunofluorescence and RT-PCR analysis. Differentiation into three neural lineages was corroborated by arbitrary differentiation (depletion of growths factors or explicit differentiation as neuronal, astrocyte, or oligodendrocyte cell types using specific induction mediums. Differentiated cells showed the specific expression of neural differentiation markers (βIII-tubulin, GFAP, CNPase, oligo-O1. In myelomeningocele patients, CSF-derived cells could become a potential source of NPCs with neurogenic capacity. Our findings support the development of innovative stem-cell-based therapeutics by autologous transplantation of CSF-derived NPCs in damaged spinal cords, such as myelomeningocele, thus promoting neural tissue regeneration in fetuses.

  3. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  4. Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity.

    Science.gov (United States)

    Demir, Ihsan Ekin; Schäfer, Karl-Herbert; Tieftrunk, Elke; Friess, Helmut; Ceyhan, Güralp O

    2013-04-01

    Neural plasticity is not only the adaptive response of the central nervous system to learning, structural damage or sensory deprivation, but also an increasingly recognized common feature of the gastrointestinal (GI) nervous system during pathological states. Indeed, nearly all chronic GI disorders exhibit a disease-stage-dependent, structural and functional neuroplasticity. At structural level, GI neuroplasticity usually comprises local tissue hyperinnervation (neural sprouting, neural, and ganglionic hypertrophy) next to hypoinnervated areas, a switch in the neurochemical (neurotransmitter/neuropeptide) code toward preferential expression of neuropeptides which are frequently present in nociceptive neurons (e.g., substance P/SP, calcitonin-gene-related-peptide/CGRP) and of ion channels (TRPV1, TRPA1, PAR2), and concomitant activation of peripheral neural glia. The functional counterpart of these structural alterations is altered neuronal electric activity, leading to organ dysfunction (e.g., impaired motility and secretion), together with reduced sensory thresholds, resulting in hypersensitivity and pain. The present review underlines that neural plasticity in all GI organs, starting from esophagus, stomach, small and large intestine to liver, gallbladder, and pancreas, actually exhibits common phenotypes and mechanisms. Careful appraisal of these GI neuroplastic alterations reveals that--no matter which etiology, i.e., inflammatory, infectious, neoplastic/malignant, or degenerative--neural plasticity in the GI tract primarily occurs in the presence of chronic tissue- and neuro-inflammation. It seems that studying the abundant trophic and activating signals which are generated during this neuro-immune-crosstalk represents the key to understand the remarkable neuroplasticity of the GI tract.

  5. Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures

    Directory of Open Access Journals (Sweden)

    V. Bleu Knight

    2017-01-01

    Full Text Available Biomaterial scaffolds have the potential to enhance neuronal development and regeneration. Understanding the genetic responses of astrocytes and neurons to biomaterials could facilitate the development of synthetic environments that enable the specification of neural tissue organization with engineered scaffolds. In this study, we used high throughput transcriptomic and imaging methods to determine the impact of a hydrogel, PuraMatrix™, on human glial cells in vitro. Parallel studies were undertaken with cells grown in a monolayer environment on tissue culture polystyrene. When the Normal Human Astrocyte (NHA cell line is grown in a hydrogel matrix environment, the glial cells adopt a structural organization that resembles that of neuronal-glial cocultures, where neurons form clusters that are distinct from the surrounding glia. Statistical analysis of next generation RNA sequencing data uncovered a set of genes that are differentially expressed in the monolayer and matrix hydrogel environments. Functional analysis demonstrated that hydrogel-upregulated genes can be grouped into three broad categories: neuronal differentiation and/or neural plasticity, response to neural insult, and sensory perception. Our results demonstrate that hydrogel biomaterials have the potential to transform human glial cell identity, and may have applications in the repair of damaged brain tissue.

  6. Microchip-Embedded Capacitors for Implantable Neural Stimulators

    Science.gov (United States)

    Auciello, Orlando

    Miniaturization of microchips for implantation in the human body (e.g., microchip for the artificial retina to restore sight to people blinded by retina photoreceptors degeneration) requires the integration of high-capacitance (≥ 10 μF) energy-storage capacitors into the microchip. These capacitors would be based on high-dielectric constant layers, preferably made of materials that are bioinert (not affected by human body fluids) and are biocompatible (do not elicit adverse reactions in the human body). This chapter focuses on reviewing the work being done at Argonne National Laboratory (Materials Science Division and Center for Nanoscale Materials) to develop high-capacitance microchip-embedded capacitors based on novel high-K dielectric layers (TiAlOx or TiO2/Al2O3 superlattices). The microchip-embedded capacitor provides energy storage and electromagnetic signal coupling needed for neural stimulations. Advances in neural prostheses such as artificial retinas and cochlear implants require miniaturization of device size to minimize tissue damage and improve device/tissue interfaces in the human body. Therefore, development of microchip-embedded capacitors is critical to achieve full-implantable biomedical device miniaturization.

  7. Adaptive Regularization of Neural Classifiers

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai

    1997-01-01

    We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermore......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...

  8. Seeding neural progenitor cells on silicon-based neural probes.

    Science.gov (United States)

    Azemi, Erdrin; Gobbel, Glenn T; Cui, Xinyan Tracy

    2010-09-01

    Chronically implanted neural electrode arrays have the potential to be used as neural prostheses in patients with various neurological disorders. While these electrodes perform well in acute recordings, they often fail to function reliably in clinically relevant chronic settings because of glial encapsulation and the loss of neurons. Surface modification of these implants may provide a means of improving their biocompatibility and integration within host brain tissue. The authors proposed a method of improving the brain-implant interface by seeding the implant's surface with a layer of neural progenitor cells (NPCs) derived from adult murine subependyma. Neural progenitor cells may reduce the foreign body reaction by presenting a tissue-friendly surface and repair implant-induced injury and inflammation by releasing neurotrophic factors. In this study, the authors evaluated the growth and differentiation of NPCs on laminin-immobilized probe surfaces and explored the potential impact on transplant survival of these cells. Laminin protein was successfully immobilized on the silicon surface via covalent binding using silane chemistry. The growth, adhesion, and differentiation of NPCs expressing green fluorescent protein (GFP) on laminin-modified silicon surfaces were characterized in vitro by using immunocytochemical techniques. Shear forces were applied to NPC cultures in growth medium to evaluate their shearing properties. In addition, neural probes seeded with GFP-labeled NPCs cultured in growth medium for 14 days were implanted in murine cortex. The authors assessed the adhesion properties of these cells during implantation conditions. Moreover, the tissue response around NPC-seeded implants was observed after 1 and 7 days postimplantation. Significantly improved NPC attachment and growth was found on the laminin-immobilized surface compared with an unmodified control before and after shear force application. The NPCs grown on the laminin-immobilized surface

  9. Nano-Biosensor for Monitoring the Neural Differentiation of Stem Cells

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2016-11-01

    Full Text Available In tissue engineering and regenerative medicine, monitoring the status of stem cell differentiation is crucial to verify therapeutic efficacy and optimize treatment procedures. However, traditional methods, such as cell staining and sorting, are labor-intensive and may damage the cells. Therefore, the development of noninvasive methods to monitor the differentiation status in situ is highly desirable and can be of great benefit to stem cell-based therapies. Toward this end, nanotechnology has been applied to develop highly-sensitive biosensors to noninvasively monitor the neural differentiation of stem cells. Herein, this article reviews the development of noninvasive nano-biosensor systems to monitor the neural differentiation of stem cells, mainly focusing on optical (plasmonic and eletrochemical methods. The findings in this review suggest that novel nano-biosensors capable of monitoring stem cell differentiation are a promising type of technology that can accelerate the development of stem cell therapies, including regenerative medicine.

  10. Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Anna Kraft

    2017-03-01

    Full Text Available Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase their self-renewal as well as migratory behavior. These changes are due to an upregulation of the Notch signaling pathway. This introduces the concept of propagating astrocytic calcium waves transmitting brain injury signals over long distances.

  11. Laser/tissue interaction.

    Science.gov (United States)

    Dederich, D N

    1991-01-01

    When laser light impinges on tissue, it can reflect, scatter, be absorbed, or transmit to the surrounding tissue. Absorption controls to a great degree the extent to which reflection, scattering and transmission occur, and wavelength is the primary determinant of absorption. The CO2 laser is consistently absorbed by most materials and tissues and the Nd-YAG laser wavelength is preferentially absorbed in pigmented tissues. The factors which determine the initial tissue effect include the laser wavelength, laser power, laser waveform, tissue optical properties, and tissue thermal properties. There are almost an infinite number of combinations of these factors possible, many of which would result in unacceptable damage to the tissues. This underscores the need to thoroughly test any particular combination of these factors on the conceptual, in-vitro, and in-vivo level before a treatment is offered.

  12. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  13. ORGANIC ELECTRODE COATINGS FOR NEXT-GENERATION NEURAL INTERFACES

    Directory of Open Access Journals (Sweden)

    Ulises A Aregueta-Robles

    2014-05-01

    Full Text Available Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.

  14. Neural circuit remodeling and structural plasticity in the cortex during chronic pain.

    Science.gov (United States)

    Kim, Woojin; Kim, Sun Kwang

    2016-01-01

    Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

  15. Regulating Damage from Sterile Inflammation: A Tale of Two Tolerances.

    Science.gov (United States)

    Wu, Shin-Rong; Reddy, Pavan

    2017-04-01

    The severity of immunopathology from non-infectious inflammation is mainly understood and is managed by targeting immune cells. However, the role of target tissues in determining damage severity has been largely overlooked. Here, we discuss the concept of 'tissue tolerance' for tissue-intrinsic programs that ameliorate organ damage in the setting of sterile immunopathology. Copyright