WorldWideScience

Sample records for neural systems related

  1. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  2. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    Science.gov (United States)

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Environmental influences on neural systems of relational complexity

    Directory of Open Access Journals (Sweden)

    Layne eKalbfleisch

    2013-09-01

    Full Text Available Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC, defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2. The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of relational complexity during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast add demand at a basic sensory level, but contributions from color and from black-white visual contrast are dissociable in cortex such that color engages a reasoning heuristic and black-white visual contrast engages a sensory heuristic. Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem

  4. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  5. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  6. Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Mostafa Langarizadeh

    2017-09-01

    Full Text Available Introduction: Age-related macular degeneration (AMD is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography-based screening system help overcome such drawbacks. The main objective of this study was to suggest a novel method to classify AMD and normal retinal fundus images. Materials and Methods: The suggested system was developed using convolutional neural networks. Several methods were adopted for increasing data such as horizontal reflection, random crop, as well as transfer and combination of such methods. The suggested system was evaluated using images obtained from STARE database and a local dataset. Results: The local dataset contained 3195 images (2070 images of AMD suspects and 1125 images of healthy retina and the STARE dataset comprised of 201 images (105 images of AMD suspects and 96 images of healthy retina. According to the results, the accuracies of the local and standard datasets were 0.95 and 0.81, respectively. Conclusion: Diagnosis and screening of AMD is a time-consuming task for specialists. To overcome this limitation, we attempted to design an intelligent decision support system for the diagnosis of AMD fundus using retina images. The proposed system is an important step toward providing a reliable tool for supervising patients. Early diagnosis of AMD can lead to timely access to treatment.

  7. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  8. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.

    Science.gov (United States)

    Mitozo, Péricles Arruda; de Souza, Luiz Felipe; Loch-Neckel, Gecioni; Flesch, Samira; Maris, Angelica Francesca; Figueiredo, Cláudia Pinto; Dos Santos, Adair Roberto Soares; Farina, Marcelo; Dafre, Alcir Luiz

    2011-07-01

    Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H₂O₂ decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H₂O₂ and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H₂O₂, but not in C6 cells. However, Prx-SO₃ formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Organization of the sleep-related neural systems in the brain of the minke whale (Balaenoptera acutorostrata).

    Science.gov (United States)

    Dell, Leigh-Anne; Karlsson, Karl Ae; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The current study analyzed the nuclear organization of the neural systems related to the control and regulation of sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the minke whale, a mysticete cetacean. While odontocete cetaceans sleep in an unusual manner, with unihemispheric slow wave sleep (USWS) and suppressed REM sleep, it is unclear whether the mysticete whales show a similar sleep pattern. Previously, we detailed a range of features in the odontocete brain that appear to be related to odontocete-type sleep, and here present our analysis of these features in the minke whale brain. All neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals and the harbor porpoise were present in the minke whale, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic and orexinergic systems, and the GABAergic elements of these nuclei. Quantitative analysis revealed that the numbers of pontine cholinergic (274,242) and noradrenergic (203,686) neurons, and hypothalamic orexinergic neurons (277,604), are markedly higher than other large-brained bihemispheric sleeping mammals. Small telencephalic commissures (anterior, corpus callosum, and hippocampal), an enlarged posterior commissure, supernumerary pontine cholinergic and noradrenergic cells, and an enlarged peripheral division of the dorsal raphe nuclear complex of the minke whale, all indicate that the suite of neural characteristics thought to be involved in the control of USWS and the suppression of REM in the odontocete cetaceans are present in the minke whale. J. Comp. Neurol. 524:2018-2035, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Organization of the sleep-related neural systems in the brain of the harbour porpoise (Phocoena phocoena).

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  11. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  12. Neural neworks in a management information systems

    Directory of Open Access Journals (Sweden)

    Jana Weinlichová

    2009-01-01

    Full Text Available For having retrospection for all over the data which are used, analyzed, evaluated and for a future incident predictions are used Management Information Systems and Business Intelligence. In case of not to be able to apply standard methods of data processing there can be with benefit applied an Artificial Intelligence. In this article will be referred to proofed abilities of Neural Networks. The Neural Networks is supported by many software products related to provide effective solution of manager issues. Those products are given as primary support for manager issues solving. We were tried to find reciprocally between products using Neural Networks and between Management Information Systems for finding a real possibility of applying Neural Networks as a direct part of Management Information Systems (MIS. In the article are presented possibilities to apply Neural Networks on different types of tasks in MIS.

  13. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  14. Age-related vulnerability in the neural systems supporting semantic processing

    Directory of Open Access Journals (Sweden)

    Jonathan E Peelle

    2013-09-01

    Full Text Available Our ability to form abstract representations of objects in semantic memory is crucial to language and thought. The utility of this information relies both on the representations of sensory-motor feature knowledge stored in long-term memory and the executive processes required to retrieve, manipulate, and evaluate this semantic knowledge in a task-relevant manner. These complementary components of semantic memory can be differentially impacted by aging. We investigated semantic processing in normal aging using functional magnetic resonance imaging (fMRI. Young and older adults were asked to judge whether two printed object names match on a particular feature (for example, whether a tomato and strawberry have the same color. The task thus required both retrieval of relevant visual feature knowledge of object concepts and evaluating this information. Objects were drawn from either natural kinds or manufactured objects, and were queried on either color or shape in a factorial design. Behaviorally, all subjects performed well, but older adults could be divided into those whose performance matched that of young adults (better performers and those whose performance was worse (poorer performers. All subjects activated several cortical regions while performing this task, including bilateral inferior and lateral temporal cortex and left frontal and prefrontal cortex. Better performing older adults showed increased overall activity in bilateral premotor cortex and left lateral occipital cortex compared to young adults, and increased activity in these brain regions relative to poorer performing older adults who also showed gray matter atrophy in premotor cortex. These findings highlight the contribution of domain-general executive processing brain regions to semantic memory, and illustrate differences in how these regions are recruited in healthy older adults.

  15. Neural neworks in a management information systems

    OpenAIRE

    Jana Weinlichová; Michael Štencl

    2009-01-01

    For having retrospection for all over the data which are used, analyzed, evaluated and for a future incident predictions are used Management Information Systems and Business Intelligence. In case of not to be able to apply standard methods of data processing there can be with benefit applied an Artificial Intelligence. In this article will be referred to proofed abilities of Neural Networks. The Neural Networks is supported by many software products related to provide effective solution of ma...

  16. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  17. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder.

    Science.gov (United States)

    Morey, Rajendra A; Dolcos, Florin; Petty, Christopher M; Cooper, Debra A; Hayes, Jasmeet Pannu; LaBar, Kevin S; McCarthy, Gregory

    2009-05-01

    The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n=22) and a trauma-exposed control group (n=20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing.

  18. Neural control of magnetic suspension systems

    Science.gov (United States)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  19. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  20. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  1. Neural systems for tactual memories.

    Science.gov (United States)

    Bonda, E; Petrides, M; Evans, A

    1996-04-01

    1. The aim of this study was to investigate the neural systems involved in the memory processing of experiences through touch. 2. Regional cerebral blood flow was measured with positron emission tomography by means of the water bolus H2(15)O methodology in human subjects as they performed tasks involving different levels of tactual memory. In one of the experimental tasks, the subjects had to palpate nonsense shapes to match each one to a previously learned set, thus requiring constant reference to long-term memory. The other experimental task involved judgements of the recent recurrence of shapes during the scanning period. A set of three control tasks was used to control for the type of exploratory movements and sensory processing inherent in the two experimental tasks. 3. Comparisons of the distribution of activity between the experimental and the control tasks were carried out by means of the subtraction method. In relation to the control conditions, the two experimental tasks requiring memory resulted in significant changes within the posteroventral insula and the central opercular region. In addition, the task requiring recall from long-term memory yielded changes in the perirhinal cortex. 4. The above findings demonstrated that a ventrally directed parietoinsular pathway, leading to the posteroventral insula and the perirhinal cortex, constitutes a system by which long-lasting representations of tactual experiences are formed. It is proposed that the posteroventral insula is involved in tactual feature analysis, by analogy with the similar role of the inferotemporal cortex in vision, whereas the perirhinal cortex is further involved in the integration of these features into long-lasting representations of somatosensory experiences.

  2. Incorporating Relation Paths in Neural Relation Extraction

    OpenAIRE

    Zeng, Wenyuan; Lin, Yankai; Liu, Zhiyuan; Sun, Maosong

    2016-01-01

    Distantly supervised relation extraction has been widely used to find novel relational facts from plain text. To predict the relation between a pair of two target entities, existing methods solely rely on those direct sentences containing both entities. In fact, there are also many sentences containing only one of the target entities, which provide rich and useful information for relation extraction. To address this issue, we build inference chains between two target entities via intermediate...

  3. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  4. Relation Classification via Recurrent Neural Network

    OpenAIRE

    Zhang, Dongxu; Wang, Dong

    2015-01-01

    Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between no...

  5. Learning in Artificial Neural Systems

    Science.gov (United States)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  6. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  7. Echoes in correlated neural systems

    International Nuclear Information System (INIS)

    Helias, M; Tetzlaff, T; Diesmann, M

    2013-01-01

    Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator. (paper)

  8. Organization of the sleep-related neural systems in the brain of the river hippopotamus (Hippopotamus amphibius): A most unusual cetartiodactyl species.

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Bertelsen, Mads F; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    This study provides the first systematic analysis of the nuclear organization of the neural systems related to sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the river hippopotamus, one of the closest extant terrestrial relatives of the cetaceans. All nuclei involved in sleep regulation and control found in other mammals, including cetaceans, were present in the river hippopotamus, with no specific nuclei being absent, but novel features of the cholinergic system, including novel nuclei, were present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements of these nuclei. Quantitative analysis reveals that the numbers of pontine cholinergic (259,578) and noradrenergic (127,752) neurons, and hypothalamic orexinergic neurons (68,398) are markedly higher than in other large-brained mammals. These features, along with novel cholinergic nuclei in the intralaminar nuclei of the dorsal thalamus and the ventral tegmental area of the midbrain, as well as a major expansion of the hypothalamic cholinergic nuclei and a large laterodorsal tegmental nucleus of the pons that has both parvocellular and magnocellular cholinergic neurons, indicates an unusual sleep phenomenology for the hippopotamus. Our observations indicate that the hippopotamus is likely to be a bihemispheric sleeper that expresses REM sleep. The novel features of the cholinergic system suggest the presence of an undescribed sleep state in the hippopotamus, as well as the possibility that this animal could, more rapidly than other mammals, switch cortical electroencephalographic activity from one state to another. J. Comp. Neurol. 524:2036-2058, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Neural Alterations in Acquired Age-Related Hearing Loss

    Directory of Open Access Journals (Sweden)

    Raksha Anand Mudar

    2016-06-01

    Full Text Available Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches.

  10. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  11. Neural correlates related to action observation in expert archers.

    Science.gov (United States)

    Kim, Yang-Tae; Seo, Jee-Hye; Song, Hui-Jin; Yoo, Done-Sik; Lee, Hui Joong; Lee, Jongmin; Lee, Gunyoung; Kwon, Eunjin; Kim, Jin Goo; Chang, Yongmin

    2011-10-01

    A growing body of evidence suggests that activity of the mirror neuron system is dependent on the observer's motor experience of a given action. It remains unclear, however, whether activity of the mirror neuron system is also associated with the observer's motor experience in sports game. Therefore, the aim of the present study is to investigate differences in activation of the mirror neuron system during action observation between experts and non-archer control subjects. We used video of Western-style archery in which participants were asked to watch the archery movements. Hyperactivation of the premotor and inferior parietal cortex in expert archers relative to non-archer control subjects suggests that the human mirror neuron system could contain and expand representations of the motor repertoire. The fact that dorsomedial prefrontal cortex was more active in expert archers than in non-archer control subjects indicates a spontaneous engagement of theory of mind in experts when watching video of Western-style archery. Compared with the non-archer control subjects, expert archers showed greater activation in the neural system in regions associated with episodic recall from familiar and meaningful information, including the cingulate cortex, retrosplenial cortex, and parahippocampal gyrus. The results demonstrate that expertise effects stimulate brain activity not only in the mirror neuron system but also in the neural networks related to theory of mind and episodic memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Application of neural networks in CRM systems

    Directory of Open Access Journals (Sweden)

    Bojanowska Agnieszka

    2017-01-01

    Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.

  13. Effects of turbidity on the neural structures of two closely related ...

    African Journals Online (AJOL)

    The neural structures of the sister species Pseudobarbus afer and P. asper were compared. P. afer, a redfin minnow which inhabits clear, perennial mountain streams, was found to have larger neural structures related to vision than P. asper, which inhabits turbid, intermittent streams of the Gamtoos River system, ...

  14. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluating neural networks and artificial intelligence systems

    Science.gov (United States)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  16. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  17. System and method for determining stability of a neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  18. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  19. Collaborative Recurrent Neural Networks forDynamic Recommender Systems

    Science.gov (United States)

    2016-11-22

    JMLR: Workshop and Conference Proceedings 63:366–381, 2016 ACML 2016 Collaborative Recurrent Neural Networks for Dynamic Recommender Systems Young...an unprece- dented scale. Although such activity logs are abundantly available, most approaches to recommender systems are based on the rating...Recurrent Neural Network, Recommender System , Neural Language Model, Collaborative Filtering 1. Introduction As ever larger parts of the population

  20. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  1. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  2. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  3. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  4. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  6. Neural System Prediction and Identification Challenge

    Directory of Open Access Journals (Sweden)

    Ioannis eVlachos

    2013-12-01

    Full Text Available Can we infer the function of a biological neural network (BNN if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC. We provide the connectivity and activity of all neurons and invite participants (i to infer the functions implemented (hard-wired in spiking neural networks (SNNs by stimulating and recording the activity of neurons and, (ii to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  7. Neural system prediction and identification challenge.

    Science.gov (United States)

    Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  8. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  9. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  10. Neural systems for preparatory control of imitation.

    Science.gov (United States)

    Cross, Katy A; Iacoboni, Marco

    2014-01-01

    Humans have an automatic tendency to imitate others. Previous studies on how we control these tendencies have focused on reactive mechanisms, where inhibition of imitation is implemented after seeing an action. This work suggests that reactive control of imitation draws on at least partially specialized mechanisms. Here, we examine preparatory imitation control, where advance information allows control processes to be employed before an action is observed. Drawing on dual route models from the spatial compatibility literature, we compare control processes using biological and non-biological stimuli to determine whether preparatory imitation control recruits specialized neural systems that are similar to those observed in reactive imitation control. Results indicate that preparatory control involves anterior prefrontal, dorsolateral prefrontal, posterior parietal and early visual cortices regardless of whether automatic responses are evoked by biological (imitative) or non-biological stimuli. These results indicate both that preparatory control of imitation uses general mechanisms, and that preparatory control of imitation draws on different neural systems from reactive imitation control. Based on the regions involved, we hypothesize that preparatory control is implemented through top-down attentional biasing of visual processing.

  11. Obesity-related differences in neural correlates of force control.

    Science.gov (United States)

    Mehta, Ranjana K; Shortz, Ashley E

    2014-01-01

    Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).

  12. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  13. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    Galla, Tobias

    2006-01-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  14. Examination of neural systems sub-serving facebook "addiction".

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  15. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  16. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  17. Neural networks for feedback feedforward nonlinear control systems.

    Science.gov (United States)

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  18. Dynamics of a neural system with a multiscale architecture

    Science.gov (United States)

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  19. Classifying medical relations in clinical text via convolutional neural networks.

    Science.gov (United States)

    He, Bin; Guan, Yi; Dai, Rui

    2018-05-16

    Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best model is competitive with the existing ensemble-based method. Copyright © 2018. Published by Elsevier B.V.

  20. Dynamic Neural Processing of Linguistic Cues Related to Death

    Science.gov (United States)

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  1. The ctenophore genome and the evolutionary origins of neural systems

    NARCIS (Netherlands)

    Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M.; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P.; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V.; Jurka, Jerzy; Bobkov, Yuri V.; Swore, Joshua J.; Girardo, David O.; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E.; Rast, Jonathan P.; Derelle, Romain; Solovyev, Victor V.; Kondrashov, Fyodor A.; Swalla, Billie J.; Sweedler, Jonathan V.; Rogaev, Evgeny I.; Halanych, Kenneth M.; Kohn, Andrea B.

    2014-01-01

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we

  2. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  3. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  4. Bifurcation and chaos in neural excitable system

    International Nuclear Information System (INIS)

    Jing Zhujun; Yang Jianping; Feng Wei

    2006-01-01

    In this paper, we investigate the dynamical behaviors of neural excitable system without periodic external current (proposed by Chialvo [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] and with periodic external current as system's parameters vary. The existence and stability of three fixed points, bifurcation of fixed points, the conditions of existences of fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using bifurcation theory and center manifold theorem. The chaotic existence in the sense of Marotto's definition of chaos is proved. We then give the numerical simulated results (using bifurcation diagrams, computations of Maximum Lyapunov exponent and phase portraits), which not only show the consistence with the analytic results but also display new and interesting dynamical behaviors, including the complete period-doubling and inverse period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, simultaneous occurrence of two different routes (invariant cycle and period-doubling bifurcations) to chaos for a given bifurcation parameter, sudden disappearance of chaos at one critical point, a great abundance of period windows (period 2 to 10, 12, 19, 20 orbits, and so on) in transient chaotic regions with interior crises, strange chaotic attractors and strange non-chaotic attractor. In particular, the parameter k plays a important role in the system, which can leave the chaotic behavior or the quasi-periodic behavior to period-1 orbit as k varies, and it can be considered as an control strategy of chaos by adjusting the parameter k. Combining the existing results in [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] with the new results reported in this paper, a more complete description of the system is now obtained

  5. Age-related difference in the effective neural connectivity associated with probabilistic category learning

    International Nuclear Information System (INIS)

    Yoon, Eun Jin; Cho, Sang Soo; Kim, Hee Jung; Bang, Seong Ae; Park, Hyun Soo; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Although it is well known that explicit memory is affected by the deleterious changes in brain with aging, but effect of aging in implicit memory such as probabilistic category learning (PCL) is not clear. To identify the effect of aging on the neural interaction for successful PCL, we investigated the neural substrates of PCL and the age-related changes of the neural network between these brain regions. 23 young (age, 252 y; 11 males) and 14 elderly (673 y; 7 males) healthy subjects underwent FDG PET during a resting state and 150-trial weather prediction (WP) task. Correlations between the WP hit rates and regional glucose metabolism were assessed using SPM2 (P diff (37) = 142.47, P<0.005), Systematic comparisons of each path revealed that frontal crosscallosal and the frontal to parahippocampal connection were most responsible for the model differences (P<0.05). For the successful PCL, the elderly recruits the basal ganglia implicit memory system but MTL recruitment differs from the young. The inadequate MTL correlation pattern in the elderly is may be caused by the changes of the neural pathway related with explicit memory. These neural changes can explain the decreased performance of PCL in elderly subjects

  6. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  7. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  8. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  9. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  10. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  11. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  12. Artificial neural network analysis of triple effect absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com

    2011-07-01

    In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.

  13. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  14. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  15. Vein matching using artificial neural network in vein authentication systems

    Science.gov (United States)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  16. Neural Connectivity and Immunocytochemical Studies of Anatomical Sites Related to Nauseogenic and Emetic Reflexes

    Science.gov (United States)

    Fox, Robert A. (Principal Investigator)

    1992-01-01

    The studies conducted in this research project examined several aspects of neuroanatomical structures and neurochemical processes related to motion sickness in animal models. A principle objective of these studies was to investigate neurochemical changes in the central nervous system that are related to motion sickness with the objective of defining neural mechanisms important to this malady. For purposes of exposition, the studies and research finding have been classified into five categories. These are: immunoreactivity in the brainstem, vasopressin effects, lesion studies of area postrema, role of the vagus nerve, and central nervous system structure related to adaptation to microgravity.

  17. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  18. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  19. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Z.; Rizy, D.T.

    1996-02-01

    A neural network for controlling shunt capacitor banks and feeder voltage regulators in electric distribution systems is presented. The objective of the neural controller is to minimize total I{sup 2}R losses and maintain all bus voltages within standard limits. The performance of the neural network for different input selections and training data is discussed and compared. Two different input selections are tried, one using the previous control states of the capacitors and regulator along with measured line flows and voltage which is equivalent to having feedback and the other with measured line flows and voltage without previous control settings. The results indicate that the neural net controller with feedback can outperform the one without. Also, proper selection of a training data set that adequately covers the operating space of the distribution system is important for achieving satisfactory performance with the neural controller. The neural controller is tested on a radially configured distribution system with 30 buses, 5 switchable capacitor banks an d one nine tap line regulator to demonstrate the performance characteristics associated with these principles. Monte Carlo simulations show that a carefully designed and relatively compact neural network with a small but carefully developed training set can perform quite well under slight and extreme variation of loading conditions.

  20. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  1. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  3. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  4. Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    2015-01-01

    Full Text Available Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression, structural plasticity (i.e., dynamics of dendritic spines, and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  5. Representation of neural networks as Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Moreau, Yves; Vandewalle, Joos; Louies, Stephane; Brenig, Leon

    1999-01-01

    We study changes of coordinates that allow the representation of the ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models--also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form, where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoied. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network

  6. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: 1) Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. 2) Amongst numerous training algorithms, only the Recursive Prediction Error Method using...

  7. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  8. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  9. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  10. High speed digital interfacing for a neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Bahr Andreas

    2016-09-01

    Full Text Available Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech Abstracts 2015; 60(S1: 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.

  11. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  12. Social power and approach-related neural activity.

    Science.gov (United States)

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  13. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  14. Age-related difference in the effective neural connectivity associated with probabilistic category learning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eun Jin; Cho, Sang Soo; Kim, Hee Jung; Bang, Seong Ae; Park, Hyun Soo; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Although it is well known that explicit memory is affected by the deleterious changes in brain with aging, but effect of aging in implicit memory such as probabilistic category learning (PCL) is not clear. To identify the effect of aging on the neural interaction for successful PCL, we investigated the neural substrates of PCL and the age-related changes of the neural network between these brain regions. 23 young (age, 252 y; 11 males) and 14 elderly (673 y; 7 males) healthy subjects underwent FDG PET during a resting state and 150-trial weather prediction (WP) task. Correlations between the WP hit rates and regional glucose metabolism were assessed using SPM2 (P<0.05 uncorrected). For path analysis, seven brain regions (bilateral middle frontal gyri and putamen, left fusiform gyrus, anterior cingulate and right parahippocampal gyri) were selected based on the results of the correlation analysis. Model construction and path analysis processing were done by AMOS 5.0. The elderly had significantly lower total hit rates than the young (P<0.005). In the correlation analysis, both groups showed similar metabolic correlation in frontal and striatal area. But correlation in the medial temporal lobe (MTL) was found differently by group. In path analysis, the functional networks for the constructed model was accepted (X(2) =0.80, P=0.67) and it proved to be significantly different between groups (X{sub diff}(37) = 142.47, P<0.005), Systematic comparisons of each path revealed that frontal crosscallosal and the frontal to parahippocampal connection were most responsible for the model differences (P<0.05). For the successful PCL, the elderly recruits the basal ganglia implicit memory system but MTL recruitment differs from the young. The inadequate MTL correlation pattern in the elderly is may be caused by the changes of the neural pathway related with explicit memory. These neural changes can explain the decreased performance of PCL in elderly subjects.

  15. Empathy and Stress Related Neural Responses in Maternal Decision Making

    Directory of Open Access Journals (Sweden)

    S. Shaun Ho

    2014-06-01

    Full Text Available Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers’ emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child’s unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural correlates of child feedback to caregiving decisions. In Part 1 of the study, 33 female participants were recruited to undergo a lab-based mild stressor, the Social Evaluation Test (SET, and then in Part 2 of the study, a subset of the participants, fourteen mothers, performed a Parenting Decision Making Task (PDMT in an fMRI setting. Four dimensions of dispositional empathy based on the Interpersonal Reactivity Index were measured in all participants – Personal Distress, Empathic Concern, Perspective Taking, and Fantasy. Overall, we found that the Personal Distress and Perspective Taking were associated with greater and lesser cortisol reactivity, respectively. The four types of empathy were distinctly associated with the negative (versus positive child feedback activation in the brain. Personal Distress was associated with amygdala and hypothalamus activation, Empathic Concern with the left ventral striatum, ventrolateral prefrontal cortex (VLPFC, and supplemental motor area (SMA activation, and Fantasy with the septal area, right SMA and VLPFC activation. Interestingly, hypothalamus-septal coupling during the negative feedback condition was associated with less PDMT-related cortisol reactivity. The roles of distinct forms of dispositional empathy in neural and stress responses are discussed.

  16. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  17. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  18. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    computational tool for investigating fundamental questions related to neural dynamics, the sophistication of current neuromorphic systems now allows direct interfaces with large neuronal networks and circuits, resulting in potentially interesting clinical applications for neuroengineering systems, neuroprosthetics and neurorehabilitation.

  19. Temporal neural networks and transient analysis of complex engineering systems

    Science.gov (United States)

    Uluyol, Onder

    A theory is introduced for a multi-layered Local Output Gamma Feedback (LOGF) neural network within the paradigm of Locally-Recurrent Globally-Feedforward neural networks. It is developed for the identification, prediction, and control tasks of spatio-temporal systems and allows for the presentation of different time scales through incorporation of a gamma memory. It is initially applied to the tasks of sunspot and Mackey-Glass series prediction as benchmarks, then it is extended to the task of power level control of a nuclear reactor at different fuel cycle conditions. The developed LOGF neuron model can also be viewed as a Transformed Input and State (TIS) Gamma memory for neural network architectures for temporal processing. The novel LOGF neuron model extends the static neuron model by incorporating into it a short-term memory structure in the form of a digital gamma filter. A feedforward neural network made up of LOGF neurons can thus be used to model dynamic systems. A learning algorithm based upon the Backpropagation-Through-Time (BTT) approach is derived. It is applicable for training a general L-layer LOGF neural network. The spatial and temporal weights and parameters of the network are iteratively optimized for a given problem using the derived learning algorithm.

  20. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  1. Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse.

    Science.gov (United States)

    Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor

    2017-07-01

    Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. NNETS - NEURAL NETWORK ENVIRONMENT ON A TRANSPUTER SYSTEM

    Science.gov (United States)

    Villarreal, J.

    1994-01-01

    The primary purpose of NNETS (Neural Network Environment on a Transputer System) is to provide users a high degree of flexibility in creating and manipulating a wide variety of neural network topologies at processing speeds not found in conventional computing environments. To accomplish this purpose, NNETS supports back propagation and back propagation related algorithms. The back propagation algorithm used is an implementation of Rumelhart's Generalized Delta Rule. NNETS was developed on the INMOS Transputer. NNETS predefines a Back Propagation Network, a Jordan Network, and a Reinforcement Network to assist users in learning and defining their own networks. The program also allows users to configure other neural network paradigms from the NNETS basic architecture. The Jordan network is basically a feed forward network that has the outputs connected to a pseudo input layer. The state of the network is dependent on the inputs from the environment plus the state of the network. The Reinforcement network learns via a scalar feedback signal called reinforcement. The network propagates forward randomly. The environment looks at the outputs of the network to produce a reinforcement signal that is fed back to the network. NNETS was written for the INMOS C compiler D711B version 1.3 or later (MS-DOS version). A small portion of the software was written in the OCCAM language to perform the communications routing between processors. NNETS is configured to operate on a 4 X 10 array of Transputers in sequence with a Transputer based graphics processor controlled by a master IBM PC 286 (or better) Transputer. A RGB monitor is required which must be capable of 512 X 512 resolution. It must be able to receive red, green, and blue signals via BNC connectors. NNETS is meant for experienced Transputer users only. The program is distributed on 5.25 inch 1.2Mb MS-DOS format diskettes. NNETS was developed in 1991. Transputer and OCCAM are registered trademarks of Inmos Corporation. MS

  3. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  4. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual ...

  5. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.

  6. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  7. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  8. Fault diagnosis system of electromagnetic valve using neural network filter

    International Nuclear Information System (INIS)

    Hayashi, Shoji; Odaka, Tomohiro; Kuroiwa, Jousuke; Ogura, Hisakazu

    2008-01-01

    This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection. (author)

  9. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    International Nuclear Information System (INIS)

    Tsai, Tai Ming; Wang, Wei Hui

    2009-01-01

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  10. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tai Ming; Wang, Wei Hui [National Taiwan Ocean University, Keelung (China)

    2009-01-15

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  11. Flood forecasting within urban drainage systems using NARX neural network.

    Science.gov (United States)

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  12. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  13. Three neural network based sensor systems for environmental monitoring

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field

  14. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    International Nuclear Information System (INIS)

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun

    2007-01-01

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy

  15. Neural multigrid for gauge theories and other disordered systems

    International Nuclear Information System (INIS)

    Baeker, M.; Kalkreuter, T.; Mack, G.; Speh, M.

    1992-09-01

    We present evidence that multigrid works for wave equations in disordered systems, e.g. in the presence of gauge fields, no matter how strong the disorder, but one needs to introduce a 'neural computations' point of view into large scale simulations: First, the system must learn how to do the simulations efficiently, then do the simulation (fast). The method can also be used to provide smooth interpolation kernels which are needed in multigrid Monte Carlo updates. (orig.)

  16. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models.

    Science.gov (United States)

    Orsini, Caitlin A; Moorman, David E; Young, Jared W; Setlow, Barry; Floresco, Stan B

    2015-11-01

    Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  18. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  19. Neural Computations in a Dynamical System with Multiple Time Scales.

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  20. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  1. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  2. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  3. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  4. Cognitive control in adolescence: neural underpinnings and relation to self-report behaviors.

    Directory of Open Access Journals (Sweden)

    Jessica R Andrews-Hanna

    Full Text Available Adolescence is commonly characterized by impulsivity, poor decision-making, and lack of foresight. However, the developmental neural underpinnings of these characteristics are not well established.To test the hypothesis that these adolescent behaviors are linked to under-developed proactive control mechanisms, the present study employed a hybrid block/event-related functional Magnetic Resonance Imaging (fMRI Stroop paradigm combined with self-report questionnaires in a large sample of adolescents and adults, ranging in age from 14 to 25. Compared to adults, adolescents under-activated a set of brain regions implicated in proactive top-down control across task blocks comprised of difficult and easy trials. Moreover, the magnitude of lateral prefrontal activity in adolescents predicted self-report measures of impulse control, foresight, and resistance to peer pressure. Consistent with reactive compensatory mechanisms to reduced proactive control, older adolescents exhibited elevated transient activity in regions implicated in response-related interference resolution.Collectively, these results suggest that maturation of cognitive control may be partly mediated by earlier development of neural systems supporting reactive control and delayed development of systems supporting proactive control. Importantly, the development of these mechanisms is associated with cognitive control in real-life behaviors.

  5. Real-time camera-based face detection using a modified LAMSTAR neural network system

    Science.gov (United States)

    Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.

    2003-03-01

    This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.

  6. Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system.

    Science.gov (United States)

    Uchino, Yoshio; Kushiro, Keisuke

    2011-12-01

    In the last two decades, we have focused on establishing a reliable technique for focal stimulation of vestibular receptors to evaluate neural connectivity. Here, we summarize the vestibular-related neuronal circuits for the vestibulo-ocular reflex, vestibulocollic reflex, and vestibulospinal reflex arcs. The focal stimulating technique also uncovered some hidden neural mechanisms. In the otolith system, we identified two hidden neural mechanisms that enhance otolith receptor sensitivity. The first is commissural inhibition, which boosts sensitivity by incorporating inputs from bilateral otolith receptors, the existence of which was in contradiction to the classical understanding of the otolith system but was observed in the utricular system. The second mechanism, cross-striolar inhibition, intensifies the sensitivity of inputs from both sides of receptive cells across the striola in a single otolith sensor. This was an entirely novel finding and is typically observed in the saccular system. We discuss the possible functional meaning of commissural and cross-striolar inhibition. Finally, our focal stimulating technique was applied to elucidate the different constructions of axonal projections from each vestibular receptor to the spinal cord. We also discuss the possible function of the unique neural connectivity observed in each vestibular receptor system. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  7. Nonlinear dynamical system approaches towards neural prosthesis

    International Nuclear Information System (INIS)

    Torikai, Hiroyuki; Hashimoto, Sho

    2011-01-01

    An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.

  8. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    Science.gov (United States)

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  9. Sympathetic neural modulation of the immune system

    International Nuclear Information System (INIS)

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125 iododeoxyuridine ( 125 IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125 IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51 Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  10. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  11. The role of neural networks in nuclear power plant safety systems

    International Nuclear Information System (INIS)

    Boger, Z.

    1993-01-01

    Neural networks (NN) techniques have been applied in recent years to many systems by researchers in the nuclear power industry, mainly for modeling and sensor validation. Recent results are reviewed, including new directions in applications to control systems, safety analysis, and ''virtual'' instruments. As new fast learning algorithms become available, large systems may be learned effectively, even with few training examples. The nuclear industry hesitates to include NN in safety related systems, but it seems that the obstacles could be overcome with the demonstration of successful applications, even from other industries. Coupling of full-scale reactor simulators, as fault database generators, with neural networks learning should be explored. The integration of Expert System technology with NN should improve the Validation and Verification tasks, and also help overcome psychological barriers. It may prove that the potential of NN to help operators, compared with the existing and proposed alternatives, outweigh the risks. (author). 58 refs, 2 figs

  12. Fuzzy-Neural Automatic Daylight Control System

    Directory of Open Access Journals (Sweden)

    Grif H. Şt.

    2011-12-01

    Full Text Available The paper presents the design and the tuning of a CMAC controller (Cerebellar Model Articulation Controller implemented in an automatic daylight control application. After the tuning process of the controller, the authors studied the behavior of the automatic lighting control system (ALCS in the presence of luminance disturbances. The luminance disturbances were produced by the authors in night conditions and day conditions as well. During the night conditions, the luminance disturbances were produced by turning on and off a halogen desk lamp. During the day conditions the luminance disturbances were produced in two ways: by daylight contributions changes achieved by covering and uncovering a part of the office window and by turning on and off a halogen desk lamp. During the day conditions the luminance disturbances, produced by turning on and off the halogen lamp, have a smaller amplitude than those produced during the night conditions. The luminance disturbance during the night conditions was a helpful tool to select the proper values of the learning rate for CMAC controller. The luminance disturbances during the day conditions were a helpful tool to demonstrate the right setting of the CMAC controller.

  13. Excess lead in the neural retina in age-related macular degeneration.

    Science.gov (United States)

    Erie, Jay C; Good, Jonathan A; Butz, John A

    2009-12-01

    To measure lead and cadmium in retinal tissues of human donor eyes with and without age-related macular degeneration (AMD). Laboratory investigation. Lead and cadmium concentrations in retinal tissues (neural retina and retinal pigment epithelium [RPE]-choroid complex) in 25 subjects with AMD (50 donor eyes) and 36 normal subjects (72 donor eyes) were determined by using inductively coupled plasma-mass spectrometry. Severity of AMD was graded by using color fundus photographs and the Minnesota Grading System. Differences in metal concentrations were compared by using Wilcoxon rank-sum tests. The neural retinas of subjects with AMD had increased lead concentrations (median, 12.0 ng/g; 25% to 75% interquartile range, 8 to 18 ng/g; n = 25) compared with normal subjects (median, 8.0 ng/g; 25% to 75% interquartile range, 0 to 11 ng/g; P = .04; n = 36). There was no difference in lead concentration in the RPE-choroid complex between subjects with AMD (median, 198 ng/g; 25% to 75% interquartile range, 87 to 381 ng/g) and normal subjects (median, 172 ng/g; 25% to 75% interquartile range, 100 to 288 ng/g; P = .25). Cadmium concentration in the neural retina (median, 0.9 microg/g; 25% to 75% interquartile range, 0.7 to 1.8 microg/g) and RPE-choroid complex (median, 2.2 microg/g; 25% to 75% interquartile range, 1.8 to 3.7 microg/g) in subjects with AMD was not different from concentrations in the neural retina (median, 0.9 microg/g; 25% to 75% interquartile range, 0.7 to 1.4 microg/g; P = .32) and RPE-choroid complex (median, 1.5 microg/g; 25% to 75% interquartile range, 0.9 to 2.5 microg/g; P = .12) of normal subjects. AMD is associated with excess lead in the neural retina, and this relationship suggests that metal homeostasis in AMD eyes is different from normal.

  14. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  15. Reliability analysis of a consecutive r-out-of-n: F system based on neural networks

    International Nuclear Information System (INIS)

    Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada

    2009-01-01

    In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.

  16. Effects of selective serotonin reuptake inhibition on neural activity related to risky decisions and monetary rewards in healthy males

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Fisher, Patrick M; Haahr, Mette E

    2014-01-01

    the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation....... to placebo, the SSRI intervention did not alter individual risk-choice preferences, but modified neural activity during decision-making and reward processing: During the choice phase, SSRI reduced the neural response to increasing risk in lateral orbitofrontal cortex, a key structure for value-based decision-making...... functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine...

  17. Statistical mechanics of complex neural systems and high dimensional data

    International Nuclear Information System (INIS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-01-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks. (paper)

  18. Artificial Neural Network for Location Estimation in Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2012-03-01

    Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  19. Artificial neural network for location estimation in wireless communication systems.

    Science.gov (United States)

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  20. Semi-empirical neural network models of controlled dynamical systems

    Directory of Open Access Journals (Sweden)

    Mihail V. Egorchev

    2017-12-01

    Full Text Available A simulation approach is discussed for maneuverable aircraft motion as nonlinear controlled dynamical system under multiple and diverse uncertainties including knowledge imperfection concerning simulated plant and its environment exposure. The suggested approach is based on a merging of theoretical knowledge for the plant with training tools of artificial neural network field. The efficiency of this approach is demonstrated using the example of motion modeling and the identification of the aerodynamic characteristics of a maneuverable aircraft. A semi-empirical recurrent neural network based model learning algorithm is proposed for multi-step ahead prediction problem. This algorithm sequentially states and solves numerical optimization subproblems of increasing complexity, using each solution as initial guess for subsequent subproblem. We also consider a procedure for representative training set acquisition that utilizes multisine control signals.

  1. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K Y Michael; Zhou, Changsong

    2016-01-08

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  2. Development of an accident diagnosis system using a dynamic neural network for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2004-01-01

    In this work, an accident diagnosis system using the dynamic neural network is developed. In order to help the plant operators to quickly identify the problem, perform diagnosis and initiate recovery actions ensuring the safety of the plant, many operator support system and accident diagnosis systems have been developed. Neural networks have been recognized as a good method to implement an accident diagnosis system. However, conventional accident diagnosis systems that used neural networks did not consider a time factor sufficiently. If the neural network could be trained according to time, it is possible to perform more efficient and detailed accidents analysis. Therefore, this work suggests a dynamic neural network which has different features from existing dynamic neural networks. And a simple accident diagnosis system is implemented in order to validate the dynamic neural network. After training of the prototype, several accident diagnoses were performed. The results show that the prototype can detect the accidents correctly with good performances

  3. Neural correlates of appetite and hunger-related evaluative judgments.

    Directory of Open Access Journals (Sweden)

    Richard M Piech

    2009-08-01

    Full Text Available How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value.

  4. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  5. The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency.

    Science.gov (United States)

    Wilkey, Eric D; Barone, Jordan C; Mazzocco, Michèle M M; Vogel, Stephan E; Price, Gavin R

    2017-10-01

    Nonsymbolic numerical comparison task performance (whereby a participant judges which of two groups of objects is numerically larger) is thought to index the efficiency of neural systems supporting numerical magnitude perception, and performance on such tasks has been related to individual differences in math competency. However, a growing body of research suggests task performance is heavily influenced by visual parameters of the stimuli (e.g. surface area and dot size of object sets) such that the correlation with math is driven by performance on trials in which number is incongruent with visual cues. Almost nothing is currently known about whether the neural correlates of nonsymbolic magnitude comparison are also affected by visual congruency. To investigate this issue, we used functional magnetic resonance imaging (fMRI) to analyze neural activity during a nonsymbolic comparison task as a function of visual congruency in a sample of typically developing high school students (n = 36). Further, we investigated the relation to math competency as measured by the preliminary scholastic aptitude test (PSAT) in 10th grade. Our results indicate that neural activity was modulated by the ratio of the dot sets being compared in brain regions previously shown to exhibit an effect of ratio (i.e. left anterior cingulate, left precentral gyrus, left intraparietal sulcus, and right superior parietal lobe) when calculated from the average of congruent and incongruent trials, as it is in most studies, and that the effect of ratio within those regions did not differ as a function of congruency condition. However, there were significant differences in other regions in overall task-related activation, as opposed to the neural ratio effect, when congruent and incongruent conditions were contrasted at the whole-brain level. Math competency negatively correlated with ratio-dependent neural response in the left insula across congruency conditions and showed distinct correlations when

  6. Disentangling the Attention Network Test: Behavioral, Event Related Potentials and neural source analyses.

    Directory of Open Access Journals (Sweden)

    Alejandro eGalvao-Carmona

    2014-10-01

    Full Text Available Background. The study of the attentional system remains a challenge for current neuroscience. The Attention Network Test (ANT was designed to study simultaneously three different attentional networks (alerting, orienting and executive based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event Related Potentials (ERPs and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioural measures. Results. This study shows that there is a basic level of alerting (tonic alerting in the no cue condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the no cue condition; a late modulation triggered by the central cue condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. Conclusions. The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human

  7. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  8. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  9. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  10. Robustness of a Neural Network Model for Power Peak Factor Estimation in Protection Systems

    International Nuclear Information System (INIS)

    Souza, Rose Mary G.P.; Moreira, Joao M.L.

    2006-01-01

    This work presents results of robustness verification of artificial neural network correlations that improve the real time prediction of the power peak factor for reactor protection systems. The input variables considered in the correlation are those available in the reactor protection systems, namely, the axial power differences obtained from measured ex-core detectors, and the position of control rods. The correlations, based on radial basis function (RBF) and multilayer perceptron (MLP) neural networks, estimate the power peak factor, without faulty signals, with average errors between 0.13%, 0.19% and 0.15%, and maximum relative error of 2.35%. The robustness verification was performed for three different neural network correlations. The results show that they are robust against signal degradation, producing results with faulty signals with a maximum error of 6.90%. The average error associated to faulty signals for the MLP network is about half of that of the RBF network, and the maximum error is about 1% smaller. These results demonstrate that MLP neural network correlation is more robust than the RBF neural network correlation. The results also show that the input variables present redundant information. The axial power difference signals compensate the faulty signal for the position of a given control rod, and improves the results by about 10%. The results show that the errors in the power peak factor estimation by these neural network correlations, even in faulty conditions, are smaller than the current PWR schemes which may have uncertainties as high as 8%. Considering the maximum relative error of 2.35%, these neural network correlations would allow decreasing the power peak factor safety margin by about 5%. Such a reduction could be used for operating the reactor with a higher power level or with more flexibility. The neural network correlation has to meet requirements of high integrity software that performs safety grade actions. It is shown that the

  11. Computation of optimal transport and related hedging problems via penalization and neural networks

    OpenAIRE

    Eckstein, Stephan; Kupper, Michael

    2018-01-01

    This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversa...

  12. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  13. Neural Network Target Identification System for False Alarm Reduction

    Science.gov (United States)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  14. System identification of an unmanned quadcopter system using MRAN neural

    Science.gov (United States)

    Pairan, M. F.; Shamsudin, S. S.

    2017-12-01

    This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.

  15. Monitoring nuclear reactor systems using neural networks and fuzzy logic

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E.; Mullens, J.A.

    1991-01-01

    A new approach is presented that demonstrates the potential of trained artificial neural networks (ANNs) as generators of membership functions for the purpose of monitoring nuclear reactor systems. ANN's provide a complex-to-simple mapping of reactor parameters in a process analogous to that of measurement. Through such ''virtual measurements'' the value of parameters with operational significance, e.g., control-valve-disk-position, valve-line-up or performance can be determined. In the methodology presented the output of a virtual measuring device is a set of membership functions which independently represent different states of the system. Utilizing a fuzzy logic representation offers the advantage of describing the state of the system in a condensed form, developed through linguistic descriptions and convenient for application in monitoring, diagnostics and generally control algorithms. The developed methodology is applied to the problem of measuring the disk position of the secondary flow control valve of an experimental reactor using data obtained during a start-up. The enhanced noise tolerance of the methodology is clearly demonstrated as well as a method for selecting the actual output. The results suggest that it is possible to construct virtual measuring devices through artificial neural networks mapping dynamic time series to a set of membership functions and thus enhance the capability of monitoring systems. 8 refs., 11 figs., 1 tab

  16. Monitoring nuclear reactor systems using neural networks and fuzzy logic

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E.; Mullens, J.A.

    1992-01-01

    A new approach is presented that demonstrates the potential of trained artificial neural networks (ANNs) as generators of membership functions for the purpose of monitoring nuclear reactor systems. ANN's provide a complex-to-simple mapping of reactor parameters in a process analogous to that of measurement. Through such virtual measurements the value of parameters with operational significance, e.g., control-valve-disk-position, valve-line-up-or performance can be determined. In the methodology presented the output of virtual measuring device is a set of membership functions which independently represent different states of the system. Utilizing a fuzzy logic representation offers the advantage of describing the state of the system in a condensed form, developed through linguistic descriptions and convenient for application in monitoring, diagnostics and generally control algorithms. The developed methodology is applied to the problem of measuring the disk position of the secondary flow control is clearly demonstrated as well as a method for selecting the actual output. The results suggest that it is possible to construct virtual measuring devices through artificial neural networks mapping dynamic time series to a set of membership functions and thus enhance the capability of monitoring systems

  17. Phase transitions in glassy systems via convolutional neural networks

    Science.gov (United States)

    Fang, Chao

    Machine learning is a powerful approach commonplace in industry to tackle large data sets. Most recently, it has found its way into condensed matter physics, allowing for the first time the study of, e.g., topological phase transitions and strongly-correlated electron systems. The study of spin glasses is plagued by finite-size effects due to the long thermalization times needed. Here we use convolutional neural networks in an attempt to detect a phase transition in three-dimensional Ising spin glasses. Our results are compared to traditional approaches.

  18. NEURAL NETWORK SYSTEM FOR DIAGNOSTICS OF AVIATION DESIGNATION PRODUCTS

    Directory of Open Access Journals (Sweden)

    В. Єременко

    2011-02-01

    Full Text Available In the article for solving the classification problem of the technical state of the  object, proposed to use a hybrid neural network with a Kohonen layer and multilayer perceptron. The information-measuring system can be used for standardless diagnostics, cluster analysis and to classify the products which made from composite materials. The advantage of this architecture is flexibility, high performance, ability to use different methods for collecting diagnostic information about unit under test, high reliability of information processing

  19. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  20. Optimizing Markovian modeling of chaotic systems with recurrent neural networks

    International Nuclear Information System (INIS)

    Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de

    2008-01-01

    In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included

  1. A hybrid model based on neural networks for biomedical relation extraction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Solving differential equations with unknown constitutive relations as recurrent neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.; Tartakovsky, Alexandre M.

    2017-12-08

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.

  3. Neural systems supporting and affecting economically relevant behavior

    Directory of Open Access Journals (Sweden)

    Braeutigam S

    2012-05-01

    Full Text Available Sven BraeutigamOxford Centre for Human Brain Activity, University of Oxford, Oxford, United KingdomAbstract: For about a hundred years, theorists and traders alike have tried to unravel and understand the mechanisms and hidden rules underlying and perhaps determining economically relevant behavior. This review focuses on recent developments in neuroeconomics, where the emphasis is placed on two directions of research: first, research exploiting common experiences of urban inhabitants in industrialized societies to provide experimental paradigms with a broader real-life content; second, research based on behavioral genetics, which provides an additional dimension for experimental control and manipulation. In addition, possible limitations of state-of-the-art neuroeconomics research are addressed. It is argued that observations of neuronal systems involved in economic behavior converge to some extent across the technologies and paradigms used. Conceptually, the data available as of today raise the possibility that neuroeconomic research might provide evidence at the neuronal level for the existence of multiple systems of thought and for the importance of conflict. Methodologically, Bayesian approaches in particular may play an important role in identifying mechanisms and establishing causality between patterns of neural activity and economic behavior.Keywords: neuroeconomics, behavioral genetics, decision-making, consumer behavior, neural system

  4. Coding of level of ambiguity within neural systems mediating choice.

    Science.gov (United States)

    Lopez-Paniagua, Dan; Seger, Carol A

    2013-01-01

    Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).

  5. Child Maltreatment and Neural Systems Underlying Emotion Regulation.

    Science.gov (United States)

    McLaughlin, Katie A; Peverill, Matthew; Gold, Andrea L; Alves, Sonia; Sheridan, Margaret A

    2015-09-01

    The strong associations between child maltreatment and psychopathology have generated interest in identifying neurodevelopmental processes that are disrupted following maltreatment. Previous research has focused largely on neural response to negative facial emotion. We determined whether child maltreatment was associated with neural responses during passive viewing of negative and positive emotional stimuli and effortful attempts to regulate emotional responses. A total of 42 adolescents aged 13 to 19 years, half with exposure to physical and/or sexual abuse, participated. Blood oxygen level-dependent (BOLD) response was measured during passive viewing of negative and positive emotional stimuli and attempts to modulate emotional responses using cognitive reappraisal. Maltreated adolescents exhibited heightened response in multiple nodes of the salience network, including amygdala, putamen, and anterior insula, to negative relative to neutral stimuli. During attempts to decrease responses to negative stimuli relative to passive viewing, maltreatment was associated with greater recruitment of superior frontal gyrus, dorsal anterior cingulate cortex, and frontal pole; adolescents with and without maltreatment down-regulated amygdala response to a similar degree. No associations were observed between maltreatment and neural response to positive emotional stimuli during passive viewing or effortful regulation. Child maltreatment heightens the salience of negative emotional stimuli. Although maltreated adolescents modulate amygdala responses to negative cues to a degree similar to that of non-maltreated youths, they use regions involved in effortful control to a greater degree to do so, potentially because greater effort is required to modulate heightened amygdala responses. These findings are promising, given the centrality of cognitive restructuring in trauma-focused treatments for children. Copyright © 2015 American Academy of Child and Adolescent Psychiatry

  6. Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording Systems

    Science.gov (United States)

    Yin, Ming; Ghovanloo, Maysam

    2013-01-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823

  7. A systematic review of the neural bases of psychotherapy for anxiety and related disorders.

    Science.gov (United States)

    Brooks, Samantha J; Stein, Dan J

    2015-09-01

    Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions.

  8. A Gamma Memory Neural Network for System Identification

    Science.gov (United States)

    Motter, Mark A.; Principe, Jose C.

    1992-01-01

    A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.

  9. Speaker diarization system using HXLPS and deep neural network

    Directory of Open Access Journals (Sweden)

    V. Subba Ramaiah

    2018-03-01

    Full Text Available In general, speaker diarization is defined as the process of segmenting the input speech signal and grouped the homogenous regions with regard to the speaker identity. The main idea behind this system is that it is able to discriminate the speaker signal by assigning the label of the each speaker signal. Due to rapid growth of broadcasting and meeting, the speaker diarization is burdensome to enhance the readability of the speech transcription. In order to solve this issue, Holoentropy with the eXtended Linear Prediction using autocorrelation Snapshot (HXLPS and deep neural network (DNN is proposed for the speaker diarization system. The HXLPS extraction method is newly developed by incorporating the Holoentropy with the XLPS. Once we attain the features, the speech and non-speech signals are detected by the Voice Activity Detection (VAD method. Then, i-vector representation of every segmented signal is obtained using Universal Background Model (UBM model. Consequently, DNN is utilized to assign the label for the speaker signal which is then clustered according to the speaker label. The performance is analysed using the evaluation metrics, such as tracking distance, false alarm rate and diarization error rate. The outcome of the proposed method ensures the better diarization performance by achieving the lower DER of 1.36% based on lambda value and DER of 2.23% depends on the frame length. Keywords: Speaker diarization, HXLPS feature extraction, Voice activity detection, Deep neural network, Speaker clustering, Diarization Error Rate (DER

  10. Distant supervision for neural relation extraction integrated with word attention and property features.

    Science.gov (United States)

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Feeling full and being full : how gastric content relates to appetite, food properties and neural activation

    NARCIS (Netherlands)

    Camps, Guido

    2017-01-01

    Aim: This thesis aimed to further determine how gastric content relates to subjective experiences regarding appetite, how this relation is affected by food properties and whether this is visible in neural activation changes.

    Method: This was studied using

  12. Verbal working memory-related neural network communication in schizophrenia.

    Science.gov (United States)

    Kustermann, Thomas; Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte

    2018-04-19

    Impaired working memory (WM) in schizophrenia is associated with reduced hemodynamic and electromagnetic activity and altered network connectivity within and between memory-associated neural networks. The present study sought to determine whether schizophrenia involves disruption of a frontal-parietal network normally supporting WM and/or involvement of another brain network. Nineteen schizophrenia patients (SZ) and 19 healthy comparison subjects (HC) participated in a cued visual-verbal Sternberg task while dense-array EEG was recorded. A pair of item arrays each consisting of 2-4 consonants was presented bilaterally for 200 ms with a prior cue signaling the hemifield of the task-relevant WM set. A central probe letter 2,000 ms later prompted a choice reaction time decision about match/mismatch with the target WM set. Group and WM load effects on time domain and time-frequency domain 11-15 Hz alpha power were assessed for the cue-to-probe time window, and posterior 11-15 Hz alpha power and frontal 4-8 Hz theta power were assessed during the retention period. Directional connectivity was estimated via Granger causality, evaluating group differences in communication. SZ showed slower responding, lower accuracy, smaller overall time-domain alpha power increase, and less load-dependent alpha power increase. Midline frontal theta power increases did not vary by group or load. Network communication in SZ was characterized by temporal-to-posterior information flow, in contrast to bidirectional temporal-posterior communication in HC. Results indicate aberrant WM network activity supporting WM in SZ that might facilitate normal load-dependent and only marginally less accurate task performance, despite generally slower responding. © 2018 Society for Psychophysiological Research.

  13. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  14. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology

    Science.gov (United States)

    Yohn, Samantha E.; López-Cruz, Laura; San Miguel, Noemí; Correa, Mercè

    2016-01-01

    Abstract Motivation has been defined as the process that allows organisms to regulate their internal and external environment, and control the probability, proximity and availability of stimuli. As such, motivation is a complex process that is critical for survival, which involves multiple behavioural functions mediated by a number of interacting neural circuits. Classical theories of motivation suggest that there are both directional and activational aspects of motivation, and activational aspects (i.e. speed and vigour of both the instigation and persistence of behaviour) are critical for enabling organisms to overcome work-related obstacles or constraints that separate them from significant stimuli. The present review discusses the role of brain dopamine and related circuits in behavioural activation, exertion of effort in instrumental behaviour, and effort-related decision-making, based upon both animal and human studies. Impairments in behavioural activation and effort-related aspects of motivation are associated with psychiatric symptoms such as anergia, fatigue, lassitude and psychomotor retardation, which cross multiple pathologies, including depression, schizophrenia, and Parkinson’s disease. Therefore, this review also attempts to provide an interdisciplinary approach that integrates findings from basic behavioural neuroscience, behavioural economics, clinical neuropsychology, psychiatry, and neurology, to provide a coherent framework for future research and theory in this critical field. Although dopamine systems are a critical part of the brain circuitry regulating behavioural activation, exertion of effort, and effort-related decision-making, mesolimbic dopamine is only one part of a distributed circuitry that includes multiple neurotransmitters and brain areas. Overall, there is a striking similarity between the brain areas involved in behavioural activation and effort-related processes in rodents and in humans. Animal models of effort-related

  15. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.

    Science.gov (United States)

    Salamone, John D; Yohn, Samantha E; López-Cruz, Laura; San Miguel, Noemí; Correa, Mercè

    2016-05-01

    Motivation has been defined as the process that allows organisms to regulate their internal and external environment, and control the probability, proximity and availability of stimuli. As such, motivation is a complex process that is critical for survival, which involves multiple behavioural functions mediated by a number of interacting neural circuits. Classical theories of motivation suggest that there are both directional and activational aspects of motivation, and activational aspects (i.e. speed and vigour of both the instigation and persistence of behaviour) are critical for enabling organisms to overcome work-related obstacles or constraints that separate them from significant stimuli. The present review discusses the role of brain dopamine and related circuits in behavioural activation, exertion of effort in instrumental behaviour, and effort-related decision-making, based upon both animal and human studies. Impairments in behavioural activation and effort-related aspects of motivation are associated with psychiatric symptoms such as anergia, fatigue, lassitude and psychomotor retardation, which cross multiple pathologies, including depression, schizophrenia, and Parkinson's disease. Therefore, this review also attempts to provide an interdisciplinary approach that integrates findings from basic behavioural neuroscience, behavioural economics, clinical neuropsychology, psychiatry, and neurology, to provide a coherent framework for future research and theory in this critical field. Although dopamine systems are a critical part of the brain circuitry regulating behavioural activation, exertion of effort, and effort-related decision-making, mesolimbic dopamine is only one part of a distributed circuitry that includes multiple neurotransmitters and brain areas. Overall, there is a striking similarity between the brain areas involved in behavioural activation and effort-related processes in rodents and in humans. Animal models of effort-related decision

  16. Hybrid case-neural network (CNN) diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    recently, the mobile health care has a great attention for the researcher and people all over the world. Case based reasoning (CBR) systems have proved their performance as world wide web (WWW) medical diagnostic systems. They were preferred rather than different reasoning approaches due to their high performance and results' explanation. But, their operations require a complex knowledge acquisition and management processes. On the other hand, it is found that, artificial neural network (ANN) has a great acceptance as a classifier methodology using a little amount of knowledge. But, ANN lacks of an explanation capability .The present research introduces a new web-based hybrid diagnostic system that can use the ANN inside the CBR , cycle.It can provide higher performance for the web diagnostic systems. Besides, the proposed system can be used as a web diagnostic system. It can be applied for diagnosis different types of systems in several domains. It has been applied in diagnosis of the cancer diseases that has a great spreading in recent years as a case of study . However, the suggested system has proved its acceptance in the manner.

  17. The exploitation of neural networks in automotive engine management systems

    Energy Technology Data Exchange (ETDEWEB)

    Shayler, P.J.; Goodman, M. [University of Nottingham (United Kingdom); Ma, T. [Ford Motor Company, Dagenham (United Kingdom). Research and Engineering Centre

    2000-07-01

    The use of electronic engine control systems on spark ignition engines has enabled a high degree of performance optimisation to be achieved. The range of functions performed by these systems, and the level of performance demanded, is rising and thus so are development times and costs. Neural networks have attracted attention as having the potential to simplify software development and improve the performance of this software. The scope and nature of possible applications is described. In particular, the pattern recognition and classification abilities of networks are applied to crankshaft speed fluctuation data for engine-fault diagnosis, and multidimensional mapping capabilities are investigated as an alternative to large 'lookup' tables and calibration functions. (author)

  18. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    Central Pattern Generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so...... that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  19. Impact of load-related neural processes on feature binding in visuospatial working memory.

    Directory of Open Access Journals (Sweden)

    Nicole A Kochan

    Full Text Available BACKGROUND: The capacity of visual working memory (WM is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. OBJECTIVE: To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. METHODS AND FINDINGS: 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. CONCLUSIONS AND SIGNIFICANCE: The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be 'automatic' but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this

  20. Direct process estimation from tomographic data using artificial neural systems

    Science.gov (United States)

    Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.

    2001-07-01

    The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.

  1. Social network size relates to developmental neural sensitivity to biological motion

    Directory of Open Access Journals (Sweden)

    L.A. Kirby

    2018-04-01

    Full Text Available The ability to perceive others’ actions and goals from human motion (i.e., biological motion perception is a critical component of social perception and may be linked to the development of real-world social relationships. Adult research demonstrates two key nodes of the brain’s biological motion perception system—amygdala and posterior superior temporal sulcus (pSTS—are linked to variability in social network properties. The relation between social perception and social network properties, however, has not yet been investigated in middle childhood—a time when individual differences in social experiences and social perception are growing. The aims of this study were to (1 replicate past work showing amygdala and pSTS sensitivity to biological motion in middle childhood; (2 examine age-related changes in the neural sensitivity for biological motion, and (3 determine whether neural sensitivity for biological motion relates to social network characteristics in children. Consistent with past work, we demonstrate a significant relation between social network size and neural sensitivity for biological motion in left pSTS, but do not find age-related change in biological motion perception. This finding offers evidence for the interplay between real-world social experiences and functional brain development and has important implications for understanding disorders of atypical social experience. Keywords: Biological motion, Social networks, Middle childhood, Neural specialization, Brain-behavior relations, pSTS

  2. Application of neural networks to connectional expert system for identification of transients in nuclear power plants

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Kim, Wan Joo; Chang, Soon Heung; Roh, Myung Sub

    1991-01-01

    The Back-propagation Neural Network (BPN) algorithm is applied to connectionist expert system for the identification of BWR transients. Several powerful features of neural network-based expert systems over traditional rule-based expert systems are described. The general mapping capability of the neural networks enables to identify transients easily. A number of case studies were performed with emphasis on the applicability of the neural networks to the diagnostic domain. It is revealed that the BPN algorithm can identify transients properly, even when incomplete or untrained symptoms are given. It is also shown that multiple transients are easily identified

  3. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  4. Emotion identification and aging: Behavioral and neural age-related changes.

    Science.gov (United States)

    Gonçalves, Ana R; Fernandes, Carina; Pasion, Rita; Ferreira-Santos, Fernando; Barbosa, Fernando; Marques-Teixeira, João

    2018-05-01

    Aging is known to alter the processing of facial expressions of emotion (FEE), however the impact of this alteration is less clear. Additionally, there is little information about the temporal dynamics of the neural processing of facial affect. We examined behavioral and neural age-related changes in the identification of FEE using event-related potentials. Furthermore, we analyze the relationship between behavioral/neural responses and neuropsychological functioning. To this purpose, 30 younger adults, 29 middle-aged adults and 26 older adults identified FEE. The behavioral results showed a similar performance between groups. The neural results showed no significant differences between groups for the P100 component and an increased N170 amplitude in the older group. Furthermore, a pattern of asymmetric activation was evident in the N170 component. Results also suggest deficits in facial feature decoding abilities, reflected by a reduced N250 amplitude in older adults. Neuropsychological functioning predicts P100 modulation, but does not seem to influence emotion identification ability. The findings suggest the existence of a compensatory function that would explain the age-equivalent performance in emotion identification. The study may help future research addressing behavioral and neural processes involved on processing of FEE in neurodegenerative conditions. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  6. Social power and approach-related neural activity

    OpenAIRE

    Boksem, Maarten; Smolders, Ruud; Cremer, David

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motiva...

  7. Neural mechanisms underlying ecstasy-related attentional bias.

    Science.gov (United States)

    Roberts, Gloria M P; Garavan, Hugh

    2013-08-30

    Conditioned responses to cues associated with drug taking play a pivotal role in a number of theories of drug addiction. This study examined whether attentional biases towards drug-related cues exist in recreational drug users who predominantly used ecstasy (3,4-methylenedioxymethamphetamine). Experiment 1 compared 30 ecstasy users, 25 cannabis users, and 30 controls in an attentional distraction task in which neutral, evocative, and ecstasy-related pictures were presented within a coloured border, requiring participants to respond as quickly as possible to the border colour. Experiment 2 employed functional magnetic resonance imaging (fMRI) and the attentional distraction task and tested 20 ecstasy users and 20 controls. Experiment 1 revealed significant response speed interference by the ecstasy-related pictures in the ecstasy users only. Experiment 2 revealed increased prefrontal and occipital activity in ecstasy users in all conditions. Activations in response to the ecstasy stimuli in these regions showed an apparent antagonism whereby ecstasy users, relative to controls, showed increased occipital but decreased right prefrontal activation. These results are interpreted to reflect increased visual processing of, and decreased prefrontal control over, the irrelevant but salient ecstasy-related stimuli. These results suggest that right inferior frontal cortex may play an important role in controlling drug-related attentional biases and may thus play an important role in mediating control over drug usage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Hysteretic recurrent neural networks: a tool for modeling hysteretic materials and systems

    International Nuclear Information System (INIS)

    Veeramani, Arun S; Crews, John H; Buckner, Gregory D

    2009-01-01

    This paper introduces a novel recurrent neural network, the hysteretic recurrent neural network (HRNN), that is ideally suited to modeling hysteretic materials and systems. This network incorporates a hysteretic neuron consisting of conjoined sigmoid activation functions. Although similar hysteretic neurons have been explored previously, the HRNN is unique in its utilization of simple recurrence to 'self-select' relevant activation functions. Furthermore, training is facilitated by placing the network weights on the output side, allowing standard backpropagation of error training algorithms to be used. We present two- and three-phase versions of the HRNN for modeling hysteretic materials with distinct phases. These models are experimentally validated using data collected from shape memory alloys and ferromagnetic materials. The results demonstrate the HRNN's ability to accurately generalize hysteretic behavior with a relatively small number of neurons. Additional benefits lie in the network's ability to identify statistical information concerning the macroscopic material by analyzing the weights of the individual neurons

  9. Neural correlates to food-related behavior in normal-weight and overweight/obese participants.

    Directory of Open Access Journals (Sweden)

    Alan Ho

    Full Text Available Two thirds of US adults are either obese or overweight and this rate is rising. Although the etiology of obesity is not yet fully understood, neuroimaging studies have demonstrated that the central nervous system has a principal role in regulating eating behavior. In this study, functional magnetic resonance imaging and survey data were evaluated for correlations between food-related problem behaviors and the neural regions underlying responses to visual food cues before and after eating in normal-weight individuals and overweight/obese individuals. In normal-weight individuals, activity in the left amygdala in response to high-calorie food vs. nonfood object cues was positively correlated with impaired satiety scores during fasting, suggesting that those with impaired satiety scores may have an abnormal anticipatory reward response. In overweight/obese individuals, activity in the dorsolateral prefrontal cortex (DLPFC in response to low-calorie food cues was negatively correlated with impaired satiety during fasting, suggesting that individuals scoring lower in satiety impairment were more likely to activate the DLPFC inhibitory system. After eating, activity in both the putamen and the amygdala was positively correlated with impaired satiety scores among obese/overweight participants. While these individuals may volitionally suggest they are full, their functional response to food cues suggests food continues to be salient. These findings suggest brain regions involved in the evaluation of visual food cues may be mediated by satiety-related problems, dependent on calorie content, state of satiation, and body mass index.

  10. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  11. Evolving networks and the development of neural systems

    International Nuclear Information System (INIS)

    Johnson, Samuel; Marro, J; Torres, Joaquín J

    2010-01-01

    It is now generally assumed that the heterogeneity of most networks in nature probably arises via preferential attachment of some sort. However, the origin of various other topological features, such as degree–degree correlations and related characteristics, is often not clear, and they may arise from specific functional conditions. We show how it is possible to analyse a very general scenario in which nodes can gain or lose edges according to any (e.g., nonlinear) function of local and/or global degree information. Applying our method to two rather different examples of brain development—synaptic pruning in humans and the neural network of the worm C. Elegans—we find that simple biologically motivated assumptions lead to very good agreement with experimental data. In particular, many nontrivial topological features of the worm's brain arise naturally at a critical point

  12. Stochastic Neural Field Theory and the System-Size Expansion

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.

  13. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  14. Decoupling control of vehicle chassis system based on neural network inverse system

    Science.gov (United States)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  15. Social power and approach-related neural activity

    NARCIS (Netherlands)

    M.A.S. Boksem (Maarten); R. Smolders (Ruud); D. de Cremer (David)

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and

  16. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation......Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two...

  17. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Science.gov (United States)

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  18. Symptom based diagnostic system using artificial neural networks

    International Nuclear Information System (INIS)

    Santosh; Vinod, Gopika; Saraf, R.K.

    2003-01-01

    Nuclear power plant experiences a number of transients during its operations. In case of such an undesired plant condition generally known as an initiating event, the operator has to carry out diagnostic and corrective actions. The operator's response may be too late to mitigate or minimize the negative consequences in such scenarios. The objective of this work is to develop an operator support system based on artificial neural networks that will assist the operator to identify the initiating events at the earliest stages of their developments. A symptom based diagnostic system has been developed to investigate the initiating events. Neutral networks are utilized for carrying out the event identification by continuously monitoring process parameters. Whenever an event is detected, the system will display the necessary operator actions along with the initiating event. The system will also show the graphical trend of process parameters that are relevant to the event. This paper describes the features of the software that is used to monitor the reactor. (author)

  19. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  20. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model....

  1. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  2. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    Science.gov (United States)

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  3. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  4. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...

  5. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.

    Directory of Open Access Journals (Sweden)

    Yuhan Chen

    Full Text Available The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter α, and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of α, resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of α values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real

  6. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination.

    Science.gov (United States)

    Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna

    2016-07-01

    Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.

    Science.gov (United States)

    Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M

    2011-08-01

    During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.

  8. Combining neural networks and signed particles to simulate quantum systems more efficiently

    Science.gov (United States)

    Sellier, Jean Michel

    2018-04-01

    Recently a new formulation of quantum mechanics has been suggested which describes systems by means of ensembles of classical particles provided with a sign. This novel approach mainly consists of two steps: the computation of the Wigner kernel, a multi-dimensional function describing the effects of the potential over the system, and the field-less evolution of the particles which eventually create new signed particles in the process. Although this method has proved to be extremely advantageous in terms of computational resources - as a matter of fact it is able to simulate in a time-dependent fashion many-body systems on relatively small machines - the Wigner kernel can represent the bottleneck of simulations of certain systems. Moreover, storing the kernel can be another issue as the amount of memory needed is cursed by the dimensionality of the system. In this work, we introduce a new technique which drastically reduces the computation time and memory requirement to simulate time-dependent quantum systems which is based on the use of an appropriately tailored neural network combined with the signed particle formalism. In particular, the suggested neural network is able to compute efficiently and reliably the Wigner kernel without any training as its entire set of weights and biases is specified by analytical formulas. As a consequence, the amount of memory for quantum simulations radically drops since the kernel does not need to be stored anymore as it is now computed by the neural network itself, only on the cells of the (discretized) phase-space which are occupied by particles. As its is clearly shown in the final part of this paper, not only this novel approach drastically reduces the computational time, it also remains accurate. The author believes this work opens the way towards effective design of quantum devices, with incredible practical implications.

  9. On the Universality and Non-Universality of Spiking Neural P Systems With Rules on Synapses.

    Science.gov (United States)

    Song, Tao; Xu, Jinbang; Pan, Linqiang

    2015-12-01

    Spiking neural P systems with rules on synapses are a new variant of spiking neural P systems. In the systems, the neuron contains only spikes, while the spiking/forgetting rules are moved on the synapses. It was obtained that such system with 30 neurons (using extended spiking rules) or with 39 neurons (using standard spiking rules) is Turing universal. In this work, this number is improved to 6. Specifically, we construct a Turing universal spiking neural P system with rules on synapses having 6 neurons, which can generate any set of Turing computable natural numbers. As well, it is obtained that spiking neural P system with rules on synapses having less than two neurons are not Turing universal: i) such systems having one neuron can characterize the family of finite sets of natural numbers; ii) the family of sets of numbers generated by the systems having two neurons is included in the family of semi-linear sets of natural numbers.

  10. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  11. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  12. Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems

    DEFF Research Database (Denmark)

    Kolbæk, Morten; Tan, Zheng-Hua; Jensen, Jesper

    2017-01-01

    In this paper, we study aspects of single microphone speech enhancement (SE) based on deep neural networks (DNNs). Specifically, we explore the generalizability capabilities of state-of-the-art DNN-based SE systems with respect to the background noise type, the gender of the target speaker...... general. Finally, we compare how a DNN-based SE system trained to be noise type general, speaker general, and SNR general performs relative to a state-of-the-art short-time spectral amplitude minimum mean square error (STSA-MMSE) based SE algorithm. We show that DNN-based SE systems, when trained...... a state-of-the-art STSA-MMSE based SE method, when tested using a range of unseen speakers and noise types. Finally, a listening test using several DNN-based SE systems tested in unseen speaker conditions show that these systems can improve SI for some SNR and noise type configurations but degrade SI...

  13. An alternative respiratory sounds classification system utilizing artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  14. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  15. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  16. A neural network method for solving a system of linear variational inequalities

    International Nuclear Information System (INIS)

    Lan Hengyou; Cui Yishun

    2009-01-01

    In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.

  17. relation in spherical systems

    Indian Academy of Sciences (India)

    D. Bhattacharyya

    2018-02-09

    Feb 9, 2018 ... SMBH than that of the nearby stars. The relation of the. SMBHs to their host galaxies can be seen by the strong correlation between the mass of SMBH and velocity dispersion σ of the stars in the galaxy. This is some- what surprising because the stars are too far from the. SMBH for the velocity dispersion to ...

  18. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  19. Relative location prediction in CT scan images using convolutional neural networks.

    Science.gov (United States)

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  1. Adolescent girls' neural response to reward mediates the relation between childhood financial disadvantage and depression.

    Science.gov (United States)

    Romens, Sarah E; Casement, Melynda D; McAloon, Rose; Keenan, Kate; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2015-11-01

    Children who experience socioeconomic disadvantage are at heightened risk for developing depression; however, little is known about neurobiological mechanisms underlying this association. Low socioeconomic status (SES) during childhood may confer risk for depression through its stress-related effects on the neural circuitry associated with processing monetary rewards. In a prospective study, we examined the relationships among the number of years of household receipt of public assistance from age 5-16 years, neural activation during monetary reward anticipation and receipt at age 16, and depression symptoms at age 16 in 123 girls. Number of years of household receipt of public assistance was positively associated with heightened response in the medial prefrontal cortex during reward anticipation, and this heightened neural response mediated the relationship between socioeconomic disadvantage and current depression symptoms, controlling for past depression. Chronic exposure to socioeconomic disadvantage in childhood may alter neural circuitry involved in reward anticipation in adolescence, which in turn may confer risk for depression. © 2015 Association for Child and Adolescent Mental Health.

  2. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  3. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.

    Science.gov (United States)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Yu, Junzhi; Tan, Min

    2016-02-01

    The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formation means that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formation can also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.

  4. Artificial neural network controller for automatic ship berthing using head-up coordinate system

    Directory of Open Access Journals (Sweden)

    Nam-Kyun Im

    2018-05-01

    Full Text Available The Artificial Neural Network (ANN model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller. First, teaching data were created in the original port to train the neural network; then, the controller was tested for automatic berthing in other ports, where the initial conditions of the inputs in the head-up coordinate system were similar to those of the teaching data in the original port. The results showed that the proposed controller has good performance for ship berthing in ports. Keywords: Automatic ship berthing, ANN controller, Head-up coordinate system, Low speed, Relative bearing

  5. Adolescent neural response to reward is related to participant sex and task motivation.

    Science.gov (United States)

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J

    2017-02-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory

    Directory of Open Access Journals (Sweden)

    Kara J Blacker

    2016-11-01

    Full Text Available Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM: spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations versus relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations versus relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.

  7. A novel neural-wavelet approach for process diagnostics and complex system modeling

    Science.gov (United States)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  8. Emotional expectations influence neural sensitivity to fearful faces in humans:An event-related potential study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The present study tested whether neural sensitivity to salient emotional facial expressions was influenced by emotional expectations induced by a cue that validly predicted the expression of a subsequently presented target face. Event-related potentials (ERPs) elicited by fearful and neutral faces were recorded while participants performed a gender discrimination task under cued (‘expected’) and uncued (‘unexpected’) conditions. The behavioral results revealed that accuracy was lower for fearful compared with neutral faces in the unexpected condition, while accuracy was similar for fearful and neutral faces in the expected condition. ERP data revealed increased amplitudes in the P2 component and 200–250 ms interval for unexpected fearful versus neutral faces. By contrast, ERP responses were similar for fearful and neutral faces in the expected condition. These findings indicate that human neural sensitivity to fearful faces is modulated by emotional expectations. Although the neural system is sensitive to unpredictable emotionally salient stimuli, sensitivity to salient stimuli is reduced when these stimuli are predictable.

  9. Nicotinergic Modulation of Attention-Related Neural Activity Differentiates Polymorphisms of DRD2 and CHRNA4 Receptor Genes.

    Directory of Open Access Journals (Sweden)

    Thomas P K Breckel

    Full Text Available Cognitive and neuronal effects of nicotine show high interindividual variability. Recent findings indicate that genetic variations that affect the cholinergic and dopaminergic neurotransmitter system impact performance in cognitive tasks and effects of nicotine. The current pharmacogenetic functional magnetic resonance imaging (fMRI study aimed to investigate epistasis effects of CHRNA4/DRD2 variations on behavioural and neural correlates of visuospatial attention after nicotine challenge using a data driven partial least squares discriminant analysis (PLS-DA approach. Fifty young healthy non-smokers were genotyped for CHRNA4 (rs1044396 and DRD2 (rs6277. They received either 7 mg transdermal nicotine or a matched placebo in a double blind within subject design prior to performing a cued target detection task with valid and invalid trials. On behavioural level, the strongest benefits of nicotine in invalid trials were observed in participants carrying both, the DRD2 T- and CHRNA4 C+ variant. Neurally, we were able to demonstrate that different DRD2/CHRNA4 groups can be decoded from the pattern of brain activity in invalid trials under nicotine. Neural substrates of interindividual variability were found in a network of attention-related brain regions comprising the pulvinar, the striatum, the middle and superior frontal gyri, the insula, the left precuneus, and the right middle temporal gyrus. Our findings suggest that polymorphisms in the CHRNA4 and DRD2 genes are a relevant source of individual variability in pharmacological studies with nicotine.

  10. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  11. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  12. A neural network approach to the study of dynamics and structure of molecular systems

    International Nuclear Information System (INIS)

    Getino, C.; Sumpter, B.G.; Noid, D.W.

    1994-01-01

    Neural networks are used to study intramolecular energy flow in molecular systems (tetratomics to macromolecules), developing new techniques for efficient analysis of data obtained from molecular-dynamics and quantum mechanics calculations. Neural networks can map phase space points to intramolecular vibrational energies along a classical trajectory (example of complicated coordinate transformation), producing reasonably accurate values for any region of the multidimensional phase space of a tetratomic molecule. Neural network energy flow predictions are found to significantly enhance the molecular-dynamics method to longer time-scales and extensive averaging of trajectories for macromolecular systems. Pattern recognition abilities of neural networks can be used to discern phase space features. Neural networks can also expand model calculations by interpolation of costly quantum mechanical ab initio data, used to develop semiempirical potential energy functions

  13. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)

    2009-09-15

    Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)

  14. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  15. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  16. A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks

    OpenAIRE

    Xiangyu He; Shanghong He

    2014-01-01

    Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...

  17. An artificial neural network for modeling reliability, availability and maintainability of a repairable system

    International Nuclear Information System (INIS)

    Rajpal, P.S.; Shishodia, K.S.; Sekhon, G.S.

    2006-01-01

    The paper explores the application of artificial neural networks to model the behaviour of a complex, repairable system. A composite measure of reliability, availability and maintainability parameters has been proposed for measuring the system performance. The artificial neural network has been trained using past data of a helicopter transportation facility. It is used to simulate behaviour of the facility under various constraints. The insights obtained from results of simulation are useful in formulating strategies for optimal operation of the system

  18. Development of the disable software reporting system on the basis of the neural network

    Science.gov (United States)

    Gavrylenko, S.; Babenko, O.; Ignatova, E.

    2018-04-01

    The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems

  19. Doctor, Teacher, and Stethoscope: Neural Representation of Different Types of Semantic Relations.

    Science.gov (United States)

    Xu, Yangwen; Wang, Xiaosha; Wang, Xiaoying; Men, Weiwei; Gao, Jia-Hong; Bi, Yanchao

    2018-03-28

    Concepts can be related in many ways. They can belong to the same taxonomic category (e.g., "doctor" and "teacher," both in the category of people) or be associated with the same event context (e.g., "doctor" and "stethoscope," both associated with medical scenarios). How are these two major types of semantic relations coded in the brain? We constructed stimuli from three taxonomic categories (people, manmade objects, and locations) and three thematic categories (school, medicine, and sports) and investigated the neural representations of these two dimensions using representational similarity analyses in human participants (10 men and nine women). In specific regions of interest, the left anterior temporal lobe (ATL) and the left temporoparietal junction (TPJ), we found that, whereas both areas had significant effects of taxonomic information, the taxonomic relations had stronger effects in the ATL than in the TPJ ("doctor" and "teacher" closer in ATL neural activity), with the reverse being true for thematic relations ("doctor" and "stethoscope" closer in TPJ neural activity). A whole-brain searchlight analysis revealed that widely distributed regions, mainly in the left hemisphere, represented the taxonomic dimension. Interestingly, the significant effects of the thematic relations were only observed after the taxonomic differences were controlled for in the left TPJ, the right superior lateral occipital cortex, and other frontal, temporal, and parietal regions. In summary, taxonomic grouping is a primary organizational dimension across distributed brain regions, with thematic grouping further embedded within such taxonomic structures. SIGNIFICANCE STATEMENT How are concepts organized in the brain? It is well established that concepts belonging to the same taxonomic categories (e.g., "doctor" and "teacher") share neural representations in specific brain regions. How concepts are associated in other manners (e.g., "doctor" and "stethoscope," which are thematically

  20. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers

    Directory of Open Access Journals (Sweden)

    Mauricio R Delgado

    2011-05-01

    Full Text Available Money is a secondary reinforcer commonly used across a range of disciplines in experimental paradigms investigating reward learning and decision-making. The effectiveness of monetary reinforcers during aversive learning and its neural basis, however, remains a topic of debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary losses depends on similar neural systems as more traditional aversive conditioning that involves primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer (shock and a socially defined secondary reinforcer (money during aversive learning and its associated neural circuitry. During a two-part experiment, participants first played a gambling game where wins and losses were based on performance to gain an experimental bank. Participants were then exposed to two separate aversive conditioning sessions. In one session, a primary reinforcer (mild shock served as an unconditioned stimulus (US and was paired with one of two colored squares, the conditioned stimuli (CS+ and CS-, respectively. In another session, a secondary reinforcer (loss of money served as the US and was paired with one of two different CS. Skin conductance responses were greater for CS+ compared to CS- trials irrespective of type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with reward-related processing, was found to be involved in the acquisition of aversive conditioned response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a follow-up case study with a patient with bilateral amygdala damage. Taken together, these results suggest that learning about potential monetary losses may depend on reinforcement learning related systems, rather than on typical structures involved in more biologically based

  1. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  2. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    International Nuclear Information System (INIS)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R.

    2006-01-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  3. Systems biological approach to investigate the lack of familial link between Down's Syndrome & Neural Tube Disorders.

    Science.gov (United States)

    Ragunath, Pk; Abhinand, Pa

    2013-01-01

    Systems Biology involves the study of the interactions of biological systems and ultimately their functions. Down's syndrome (DS) is one of the most common genetic disorders which are caused by complete, or occasionally partial, triplication of chromosome 21, characterized by cognitive and language dysfunction coupled with sensory and neuromotor deficits. Neural Tube Disorders (NTDs) are a group of congenital malformations of the central nervous system and neighboring structures related to defective neural tube closure during the first trimester of pregnancy usually occurring between days 18-29 of gestation. Several studies in the past have provided considerable evidence that abnormal folate and methyl metabolism are associated with onset of DS & NTDs. There is a possible common etiological pathway for both NTDs and Down's syndrome. But, various research studies over the years have indicated very little evidence for familial link between the two disorders. Our research aimed at the gene expression profiling of microarray datasets pertaining to the two disorders to identify genes whose expression levels are significantly altered in these conditions. The genes which were 1.5 fold unregulated and having a p-value disorders were recognized and over representation analysis was carried out for each of the constituent genes. The comprehensive manual analysis of these genes yields a hypothetical understanding of the lack of familial link between DS and NTDs. There were no genes involved with folic acid present in the dense cliques. Only - CBL, EGFR genes were commonly present, which makes the allelic variants of these genes - good candidates for future studies regarding the familial link between DS and NTDs. NTD - Neural Tube Disorders, DS - Down's Syndrome, MTHFR - Methylenetetrahydrofolate reductase, MTRR- 5 - methyltetrahydrofolate-homocysteine methyltransferase reductase.

  4. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  5. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music

    Science.gov (United States)

    Liu, Chao; Brattico, Elvira; Abu-jamous, Basel; Pereira, Carlos S.; Jacobsen, Thomas; Nandi, Asoke K.

    2017-01-01

    People can experience different emotions when listening to music. A growing number of studies have investigated the brain structures and neural connectivities associated with perceived emotions. However, very little is known about the effect of an explicit act of judgment on the neural processing of emotionally-valenced music. In this study, we adopted the novel consensus clustering paradigm, called binarisation of consensus partition matrices (Bi-CoPaM), to study whether and how the conscious aesthetic evaluation of the music would modulate brain connectivity networks related to emotion and reward processing. Participants listened to music under three conditions – one involving a non-evaluative judgment, one involving an explicit evaluative aesthetic judgment, and one involving no judgment at all (passive listening only). During non-evaluative attentive listening we obtained auditory-limbic connectivity whereas when participants were asked to decide explicitly whether they liked or disliked the music excerpt, only two clusters of intercommunicating brain regions were found: one including areas related to auditory processing and action observation, and the other comprising higher-order structures involved with visual processing. Results indicate that explicit evaluative judgment has an impact on the neural auditory-limbic connectivity during affective processing of music. PMID:29311874

  6. Fuzzy Wavelet Neural Network Using a Correntropy Criterion for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Leandro L. S. Linhares

    2015-01-01

    Full Text Available Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS. In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE cost function is replaced by the Maximum Correntropy Criterion (MCC in the traditional error backpropagation (BP algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy.

  7. A novel image block cryptosystem based on a spatiotemporal chaotic system and a chaotic neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Bao Xue-Mei

    2013-01-01

    In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)

  8. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  9. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  10. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  11. SWANN: The Snow Water Artificial Neural Network Modelling System

    Science.gov (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  12. The wandering mood: psychological and neural determinants of rest-related negative affect

    Directory of Open Access Journals (Sweden)

    Michal eGruberger

    2013-12-01

    Full Text Available Rest related negative affect (RRNA has gained scientific interest in the past decade. However, it is mostly studied within the context of mind-wandering (MW, and the relevance of other psychological and neural aspects of the resting state to its' occurrence has never been studied. Several indications associate RRNA with internally directed attention, yet the nature of this relation remains largely unknown. Moreover, the role of neural networks associated with rest related phenomenology - the default mode (DMN, executive (EXE and salience (SAL networks, has not been studied in this context. To this end, we explored two 5- (baseline and 15-minute resting-state simultaneous fMRI-EEG scans of 29 participants. As vigilance has been shown to affect attention, and thus its availability for inward allocation, EEG-based vigilance levels were computed for each participant. Questionnaires for affective assessment were administered before and after scans, and retrospective reports of MW were additionally collected. Results revealed increased negative affect following rest, but only among participants who retained high vigilance levels. Among low-vigilance participants, changes in negative affect were negligible, despite reports of MW occurrence in both groups. In addition, in the high-vigilance group only, a significant increase in functional connectivity (FC levels was found between the DMN-related ventral anterior cingulate cortex (ACC,associated with emotional processing, and the EXE-related dorsal ACC, associated with monitoring of self and other's behavior. These heightened FC levels further correlated with reported negative affect among this group. Taken together, these results demonstrate that, rather than an unavoidable outcome of the resting state, RRNA depends on internal allocation of attention at rest. Results are discussed in terms of two rest-related possible scenarios which defer in mental and neural processing, and subsequently, in the

  13. The wandering mood: psychological and neural determinants of rest-related negative affect.

    Science.gov (United States)

    Gruberger, Michal; Maron-Katz, Adi; Sharon, Haggai; Hendler, Talma; Ben-Simon, Eti

    2013-01-01

    Rest related negative affect (RRNA) has gained scientific interest in the past decade. However, it is mostly studied within the context of mind-wandering (MW), and the relevance of other psychological and neural aspects of the resting state to its' occurrence has never been studied. Several indications associate RRNA with internally directed attention, yet the nature of this relation remains largely unknown. Moreover, the role of neural networks associated with rest related phenomenology - the default mode (DMN), executive (EXE), and salience (SAL) networks, has not been studied in this context. To this end, we explored two 5 (baseline) and 15-minute resting-state simultaneous fMRI-EEG scans of 29 participants. As vigilance has been shown to affect attention, and thus its availability for inward allocation, EEG-based vigilance levels were computed for each participant. Questionnaires for affective assessment were administered before and after scans, and retrospective reports of MW were additionally collected. Results revealed increased negative affect following rest, but only among participants who retained high vigilance levels. Among low-vigilance participants, changes in negative affect were negligible, despite reports of MW occurrence in both groups. In addition, in the high-vigilance group only, a significant increase in functional connectivity (FC) levels was found between the DMN-related ventral anterior cingulate cortex (ACC), associated with emotional processing, and the EXE-related dorsal ACC, associated with monitoring of self and other's behavior. These heightened FC levels further correlated with reported negative affect among this group. Taken together, these results demonstrate that, rather than an unavoidable outcome of the resting state, RRNA depends on internal allocation of attention at rest. Results are discussed in terms of two rest-related possible scenarios which defer in mental and neural processing, and subsequently, in the occurrence of

  14. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  15. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  16. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  17. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.

  18. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  19. Age-Related Reversals in Neural Recruitment across Memory Retrieval Phases.

    Science.gov (United States)

    Ford, Jaclyn H; Kensinger, Elizabeth A

    2017-05-17

    Over the last several decades, neuroimaging research has identified age-related neural changes that occur during cognitive tasks. These changes are used to help researchers identify functional changes that contribute to age-related impairments in cognitive performance. One commonly reported example of such a change is an age-related decrease in the recruitment of posterior sensory regions coupled with an increased recruitment of prefrontal regions across multiple cognitive tasks. This shift is often described as a compensatory recruitment of prefrontal regions due to age-related sensory-processing deficits in posterior regions. However, age is not only associated with spatial shifts in recruitment, but also with temporal shifts, in which younger and older adults recruit the same neural region at different points in a task trial. The current study examines the possible contribution of temporal modifications in the often-reported posterior-anterior shift. Participants, ages 19-85, took part in a memory retrieval task with a protracted retrieval trial consisting of an initial memory search phase and a subsequent detail elaboration phase. Age-related neural patterns during search replicated prior reports of age-related decreases in posterior recruitment and increases in prefrontal recruitment. However, during the later elaboration phase, the same posterior regions were associated with age-related increases in activation. Further, ROI and functional connectivity results suggest that these posterior regions function similarly during search and elaboration. These results suggest that the often-reported posterior-anterior shift may not reflect the inability of older adults to engage in sensory processing, but rather a change in when they recruit this processing. SIGNIFICANCE STATEMENT The current study provides evidence that the often-reported posterior-anterior shift in aging may not reflect a global sensory-processing deficit, as has often been reported, but rather a

  20. Specific neural basis of Chinese idioms processing: an event-related functional MRI study

    International Nuclear Information System (INIS)

    Chen Shaoqi; Zhang Yanzhen; Xiao Zhuangwei; Zhang Xuexin

    2007-01-01

    Objective: To address the neural basis of Chinese idioms processing with different kinds of stimuli using an event-related fMRI design. Methods: Sixteen native Chinese speakers were asked to perform a semantic decision task during fMRI scanning. Three kinds of stimuli were used: Real idioms (Real-idiom condition); Literally plausible phrases (Pseudo-idiom condition, the last character of a real idiom was replaced by a character with similar meaning); Literally implausible strings (Non-idiom condition, the last character of a real idiom was replaced by a character with unrelated meaning). Reaction time and correct rate were recorded at the same time. Results: The error rate was 2.6%, 5.2% and 0.9% (F=3.51, P 0.05) for real idioms, pseudo-idioms and wrong idioms, respectively. Similar neural network was activated in all of the three conditions. However, the right hippocampus was only activated in the real idiom condition, and significant activations were found in anterior portion of left inferior frontal gyms (BA47) in real-and pseudo-idiom conditions, but not in non-idiom condition. Conclusion: The right hippocampus plays a specific role in the particular wording of the Chinese idioms. And the left anterior inferior frontal gyms (BA47) may be engaged in the semantic processing of Chinese idioms. The results support the notion that there were specific neural bases for Chinese idioms processing. (authors)

  1. Transient Global Amnesia following Neural and Cardiac Angiography May Be Related to Ischemia

    Directory of Open Access Journals (Sweden)

    Hongzhou Duan

    2016-01-01

    Full Text Available Introduction. Transient global amnesia (TGA following angiography is rare, and the pathogenesis has not been illustrated clearly till now. The aim of this research is to explore the pathogenesis of TGA following angiography by analyzing our data and reviewing the literature. Methods. We retrospectively studied 20836 cases with angiography in our hospital between 2007 and 2015 and found 9 cases with TGA following angiography. The data of these 9 cases were analyzed. Results. We found all 9 cases with TGA following neural angiography (5 in 4360 or cardiac angiography (4 in 8817 and no case with TGA following peripheral angiography (0 in 7659. Statistical difference was found when comparing the neural and cardiac angiography group with peripheral group (p=0.022. Two cases with TGA were confirmed with small acute infarctions in hippocampus after angiography. This might be related to the microemboli which were rushed into vertebral artery following blood flow during neural angiography or cardiac angiography. There was no statistical difference when comparing the different approaches for angiography (p=0.82 and different contrast agents (p=0.619. Conclusion. Based on the positive findings of imaging study and our analysis, we speculate that ischemia in the medial temporal lobe with the involvement of the hippocampus might be an important reason of TGA following angiography.

  2. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Power to punish norm violations affects the neural processes of fairness-related decision making

    Directory of Open Access Journals (Sweden)

    Xuemei eCheng

    2015-12-01

    Full Text Available Punishing norm violations is considered an important motive during rejection of unfair offers in the Ultimatum Game (UG. The present study investigates the impact of the power to punish norm violations on people’s responses to unfairness and associated neural correlates. In the UG condition participants had the power to punish norm violations, while an alternate condition, the Impunity Game (IG, was presented where participants had no power to punish norm violations since rejection only reduced the responder’s income to zero. Results showed that unfair offers were rejected more often in UG compared to IG. At the neural level, anterior insula and dorsal anterior cingulate cortex were more active when participants received and rejected unfair offers in both UG and IG. Moreover, greater dorsolateral prefrontal cortex activity was observed when participants rejected than accepted unfair offers in UG but not in IG. Ventromedial prefrontal cortex activation was higher in UG than IG when unfair offers were accepted as well as when rejecting unfair offers in IG as opposed to UG. Taken together, our results demonstrate that the power to punish norm violations affects not only people’s behavioral responses to unfairness but also the neural correlates of the fairness-related social decision-making process.

  4. Olfactory systems and neural circuits that modulate predator odor fear

    OpenAIRE

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator ...

  5. Sex differences of gray matter morphology in cortico-limbic-striatal neural system in major depressive disorder.

    Science.gov (United States)

    Kong, Lingtao; Chen, Kaiyuan; Womer, Fay; Jiang, Wenyan; Luo, Xingguang; Driesen, Naomi; Liu, Jie; Blumberg, Hilary; Tang, Yanqing; Xu, Ke; Wang, Fei

    2013-06-01

    Sex differences are observed in both epidemiological and clinical aspects of major depressive disorder (MDD). The cortico-limbic-striatal neural system, including the prefrontal cortex, amygdala, hippocampus, and striatum, have shown sexually dimorphic morphological features and have been implicated in the dysfunctional regulation of mood and emotion in MDD. In this study, we utilized a whole-brain, voxel-based approach to examine sex differences in the regional distribution of gray matter (GM) morphological abnormalities in medication-naïve participants with MDD. Participants included 29 medication-naïve individuals with MDD (16 females and 13 males) and 33 healthy controls (HC) (17 females and 16 males). Gray matter morphology of the cortico-limbic-striatal neural system was examined using voxel-based morphometry analyzes of high-resolution structural magnetic resonance imaging scans. The main effect of diagnosis and interaction effect of diagnosis by sex on GM morphology were statistically significant (p sex-related patterns of abnormalities within the cortico-limbic-strial neural system, such as predominant prefrontal-limbic abnormalities in MDD females vs. predominant prefrontal-striatal abnormalities in MDD males, suggest differences in neural circuitry that may mediate sex differences in the clinical presentation of MDD and potential targets for sex-differentiated treatment of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  7. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    Science.gov (United States)

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  8. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  9. Intelligent neural network and fuzzy logic control of industrial and power systems

    Science.gov (United States)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  10. Compact holographic optical neural network system for real-time pattern recognition

    Science.gov (United States)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  11. System-Level Design of a 64-Channel Low Power Neural Spike Recording Sensor.

    Science.gov (United States)

    Delgado-Restituto, Manuel; Rodriguez-Perez, Alberto; Darie, Angela; Soto-Sanchez, Cristina; Fernandez-Jover, Eduardo; Rodriguez-Vazquez, Angel

    2017-04-01

    This paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration algorithm which individually configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by the embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330 μW.

  12. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  13. Prospects of application of artificial neural networks for forecasting of cargo transportation volume in transport systems

    Directory of Open Access Journals (Sweden)

    D. T. Yakupov

    2017-01-01

    Full Text Available The purpose of research – to identify the prospects for the use of neural network approach in relation to the tasks of economic forecasting of logistics performance, in particular of volume freight traffic in the transport system promiscuous regional freight traffic, as well as to substantiate the effectiveness of the use of artificial neural networks (ANN, as compared with the efficiency of traditional extrapolative methods of forecasting. The authors consider the possibility of forecasting to use ANN for these economic indicators not as an alternative to the traditional methods of statistical forecasting, but as one of the available simple means for solving complex problems.Materials and methods. When predicting the ANN, three methods of learning were used: 1 the Levenberg-Marquardt algorithm-network training stops when the generalization ceases to improve, which is shown by the increase in the mean square error of the output value; 2 Bayes regularization method - network training is stopped in accordance with the minimization of adaptive weights; 3 the method of scaled conjugate gradients, which is used to find the local extremum of a function on the basis of information about its values and gradient. The Neural Network Toolbox package is used for forecasting. The neural network model consists of a hidden layer of neurons with a sigmoidal activation function and an output neuron with a linear activation function, the input values of the dynamic time series, and the predicted value is removed from the output. For a more objective assessment of the prospects of the ANN application, the results of the forecast are presented in comparison with the results obtained in predicting the method of exponential smoothing.Results. When predicting the volumes of freight transportation by rail, satisfactory indicators of the verification of forecasting by both the method of exponential smoothing and ANN had been obtained, although the neural network

  14. Neural circuitry of abdominal pain-related fear learning and reinstatement in irritable bowel syndrome.

    Science.gov (United States)

    Icenhour, A; Langhorst, J; Benson, S; Schlamann, M; Hampel, S; Engler, H; Forsting, M; Elsenbruch, S

    2015-01-01

    Altered pain anticipation likely contributes to disturbed central pain processing in chronic pain conditions like irritable bowel syndrome (IBS), but the learning processes shaping the expectation of pain remain poorly understood. We assessed the neural circuitry mediating the formation, extinction, and reactivation of abdominal pain-related memories in IBS patients compared to healthy controls (HC) in a differential fear conditioning paradigm. During fear acquisition, predictive visual cues (CS(+)) were paired with rectal distensions (US), while control cues (CS(-)) were presented unpaired. During extinction, only CSs were presented. Subsequently, memory reactivation was assessed with a reinstatement procedure involving unexpected USs. Using functional magnetic resonance imaging, group differences in neural activation to CS(+) vs CS(-) were analyzed, along with skin conductance responses (SCR), CS valence, CS-US contingency, state anxiety, salivary cortisol, and alpha-amylase activity. The contribution of anxiety symptoms was addressed in covariance analyses. Fear acquisition was altered in IBS, as indicated by more accurate contingency awareness, greater CS-related valence change, and enhanced CS(+)-induced differential activation of prefrontal cortex and amygdala. IBS patients further revealed enhanced differential cingulate activation during extinction and greater differential hippocampal activation during reinstatement. Anxiety affected neural responses during memory formation and reinstatement. Abdominal pain-related fear learning and memory processes are altered in IBS, mediated by amygdala, cingulate cortex, prefrontal areas, and hippocampus. Enhanced reinstatement may contribute to hypervigilance and central pain amplification, especially in anxious patients. Preventing a 'relapse' of learned fear utilizing extinction-based interventions may be a promising treatment goal in IBS. © 2014 John Wiley & Sons Ltd.

  15. Adaptive neural network/expert system that learns fault diagnosis for different structures

    Science.gov (United States)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  16. The influence of motherhood on neural systems for reward processing in low income, minority, young women.

    Science.gov (United States)

    Moses-Kolko, Eydie L; Forbes, Erika E; Stepp, Stephanie; Fraser, David; Keenan, Kate E; Guyer, Amanda E; Chase, Henry W; Phillips, Mary L; Zevallos, Carlos R; Guo, Chaohui; Hipwell, Alison E

    2016-04-01

    Given the association between maternal caregiving behavior and heightened neural reward activity in experimental animal studies, the present study examined whether motherhood in humans positively modulates reward-processing neural circuits, even among mothers exposed to various life stressors and depression. Subjects were 77 first-time mothers and 126 nulliparous young women from the Pittsburgh Girls Study, a longitudinal study beginning in childhood. Subjects underwent a monetary reward task during functional magnetic resonance imaging in addition to assessment of current depressive symptoms. Life stress was measured by averaging data collected between ages 8-15 years. Using a region-of-interest approach, we conducted hierarchical regression to examine the relationship of psychosocial factors (life stress and current depression) and motherhood with extracted ventral striatal (VST) response to reward anticipation. Whole-brain regression analyses were performed post-hoc to explore non-striatal regions associated with reward anticipation in mothers vs nulliparous women. Anticipation of monetary reward was associated with increased neural activity in expected regions including caudate, orbitofrontal, occipital, superior and middle frontal cortices. There was no main effect of motherhood nor motherhood-by-psychosocial factor interaction effect on VST response during reward anticipation. Depressive symptoms were associated with increased VST activity across the entire sample. In exploratory whole brain analysis, motherhood was associated with increased somatosensory cortex activity to reward (FWE cluster forming threshold preward anticipation-related VST activity nor does motherhood modulate the impact of depression or life stress on VST activity. Future studies are needed to evaluate whether earlier postpartum assessment of reward function, inclusion of mothers with more severe depressive symptoms, and use of reward tasks specific for social reward might reveal an

  17. Suppressing images of desire: Neural correlates of chocolate-related thoughts in high and low trait chocolate cravers.

    Science.gov (United States)

    Miedl, Stephan F; Blechert, Jens; Meule, Adrian; Richard, Anna; Wilhelm, Frank H

    2018-03-05

    Chocolate is the most often craved food in Western societies and many individuals try to resist its temptation due to weight concerns. Suppressing chocolate-related thoughts might, however, lead to paradoxical enhancements of these thoughts and this effect might be more pronounced in individuals with frequent chocolate cravings. In the current study, neural and cognitive correlates of chocolate thought suppression were investigated as a function of trait chocolate craving. Specifically, 20 high and 20 low trait chocolate cravers followed suppression vs. free thinking instructions after being exposed to chocolate and neutral images. Enhanced cue reactivity was evident in high trait chocolate cravers in that they reported more chocolate-related thoughts selectively after chocolate images compared to their low trait craving counterparts. This cue reactivity was mirrored neurally by higher activation in the ventral and dorsal striatum, demonstrating enhanced reward system activity. Unexpectedly, high trait chocolate cravers successfully reduced their elevated chocolate thoughts in the suppression condition. This lends support for the use of thought suppression as a means of regulating unwanted thoughts, cravings and imagery. Whether this thought manipulation is able to curb the elevated cue reactivity and the underlying reward sensitivity in chocolate cravers in applied settings remains to be shown. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The neural basis of love as a subliminal prime: an event-related functional magnetic resonance imaging study.

    Science.gov (United States)

    Ortigue, S; Bianchi-Demicheli, F; Hamilton, A F de C; Grafton, S T

    2007-07-01

    Throughout the ages, love has been defined as a motivated and goal-directed mechanism with explicit and implicit mechanisms. Recent evidence demonstrated that the explicit representation of love recruits subcorticocortical pathways mediating reward, emotion, and motivation systems. However, the neural basis of the implicit (unconscious) representation of love remains unknown. To assess this question, we combined event-related functional magnetic resonance imaging (fMRI) with a behavioral subliminal priming paradigm embedded in a lexical decision task. In this task, the name of either a beloved partner, a neutral friend, or a passionate hobby was subliminally presented before a target stimulus (word, nonword, or blank), and participants were required to decide if the target was a word or not. Behavioral results showed that subliminal presentation of either a beloved's name (love prime) or a passion descriptor (passion prime) enhanced reaction times in a similar fashion. Subliminal presentation of a friend's name (friend prime) did not show any beneficial effects. Functional results showed that subliminal priming with a beloved's name (as opposed to either a friend's name or a passion descriptor) specifically recruited brain areas involved in abstract representations of others and the self, in addition to motivation circuits shared with other sources of passion. More precisely, love primes recruited the fusiform and angular gyri. Our findings suggest that love, as a subliminal prime, involves a specific neural network that surpasses a dopaminergic-motivation system.

  19. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.

    Science.gov (United States)

    Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra

    2014-09-01

    Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.

  20. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  1. Effects of selective serotonin reuptake inhibition on neural activity related to risky decisions and monetary rewards in healthy males

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Fisher, Patrick M; Haahr, Mette E

    2014-01-01

    the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation.......Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are commonly prescribed antidepressant drugs targeting the dysfunctional serotonin (5-HT) system, yet little is known about the functional effects of prolonged serotonin reuptake inhibition in healthy individuals. Here we used...... functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine...

  2. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  3. Extracting Neural Oscillation Signatures of Laser-Induced Nociception in Pain-Related Regions in Rats

    Directory of Open Access Journals (Sweden)

    Xuezhu Li

    2017-10-01

    Full Text Available Previous studies have shown that multiple brain regions are involved in pain perception and pain-related neural processes by forming a functionally connected pain network. It is still unclear how these pain-related brain areas actively work together to generate the experience of pain. To get a better insight into the pain network, we implanted electrodes in four pain-related areas of rats including the anterior cingulate cortex (ACC, orbitofrontal cortex (OFC, primary somatosensory cortex (S1 and periaqueductal gray (PAG. We analyzed the pattern of local field potential (LFP oscillations under noxious laser stimulations and innoxious laser stimulations. A high-dimensional feature matrix was built based on the LFP characters for both experimental conditions. Generalized linear models (GLMs were trained to classify recorded LFPs under noxious vs. innoxious condition. We found a general power decrease in α and β bands and power increase in γ band in the recorded areas under noxious condition. After noxious laser stimulation, there was a consistent change in LFP power and correlation in all four brain areas among all 13 rats. With GLM classifiers, noxious laser trials were distinguished from innoxious laser trials with high accuracy (86% using high-dimensional LFP features. This work provides a basis for further research to examine which aspects (e.g., sensory, motor or affective processes of noxious stimulation should drive distinct neural activity across the pain network.

  4. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Psychological Processing in Chronic Pain: A Neural Systems Approach

    OpenAIRE

    Simons, Laura; Elman, Igor; Borsook, David

    2013-01-01

    Our understanding of chronic pain involves complex brain circuits that include sensory, emotional, cognitive and interoceptive processing. The feed-forward interactions between physical (e.g., trauma) and emotional pain and the consequences of altered psychological status on the expression of pain have made the evaluation and treatment of chronic pain a challenge in the clinic. By understanding the neural circuits involved in psychological processes, a mechanistic approach to the implementati...

  6. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    Science.gov (United States)

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Reduced reward-related neural response to mimicry in individuals with autism.

    Science.gov (United States)

    Hsu, Chun-Ting; Neufeld, Janina; Chakrabarti, Bhismadev

    2018-03-01

    Mimicry is a facilitator of social bonds in humans, from infancy. This facilitation is made possible through changing the reward value of social stimuli; for example, we like and affiliate more with people who mimic us. Autism spectrum disorders (ASD) are marked by difficulties in forming social bonds. In this study, we investigate whether the reward-related neural response to being mimicked is altered in individuals with ASD, using a simple conditioning paradigm. Multiple studies in humans and nonhuman primates have established a crucial role for the ventral striatal (VS) region in responding to rewards. In this study, adults with ASD and matched controls first underwent a conditioning task outside the scanner, where they were mimicked by one face and 'anti-mimicked' by another. In the second part, participants passively viewed the conditioned faces in a 3T MRI scanner using a multi-echo sequence. The differential neural response towards mimicking vs. anti-mimicking faces in the VS was tested for group differences as well as an association with self-reported autistic traits. Multiple regression analysis revealed lower left VS response to mimicry (mimicking > anti-mimicking faces) in the ASD group compared to controls. The VS response to mimicry was negatively correlated with autistic traits across the whole sample. Our results suggest that for individuals with ASD and high autistic traits, being mimicked is associated with lower reward-related neural response. This result points to a potential mechanism underlying the difficulties reported by many of individuals with ASD in building social rapport. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design.

    Science.gov (United States)

    Huang, Zong-Hao; Wang, Zhi-Gong; Lu, Xiao-Ying; Li, Wen-Yuan; Zhou, Yu-Xuan; Shen, Xiao-Yan; Zhao, Xin-Tai

    2016-01-01

    The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.

  9. Insular neural system controls decision-making in healthy and methamphetamine-treated rats.

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Katahira, Kentaro; Inutsuka, Ayumu; Fukumoto, Kazuya; Nakamura, Akihiro; Wang, Tian; Nagai, Taku; Sato, Jun; Sawada, Makoto; Ohira, Hideki; Yamanaka, Akihiro; Yamada, Kiyofumi

    2015-07-21

    Patients suffering from neuropsychiatric disorders such as substance-related and addictive disorders exhibit altered decision-making patterns, which may be associated with their behavioral abnormalities. However, the neuronal mechanisms underlying such impairments are largely unknown. Using a gambling test, we demonstrated that methamphetamine (METH)-treated rats chose a high-risk/high-reward option more frequently and assigned higher value to high returns than control rats, suggestive of changes in decision-making choice strategy. Immunohistochemical analysis following the gambling test revealed aberrant activation of the insular cortex (INS) and nucleus accumbens in METH-treated animals. Pharmacological studies, together with in vivo microdialysis, showed that the insular neural system played a crucial role in decision-making. Moreover, manipulation of INS activation using designer receptor exclusively activated by designer drug technology resulted in alterations to decision-making. Our findings suggest that the INS is a critical region involved in decision-making and that insular neural dysfunction results in risk-taking behaviors associated with altered decision-making.

  10. A model of microsaccade-related neural responses induced by short-term depression in thalamocortical synapses

    Directory of Open Access Journals (Sweden)

    Wujie eYuan

    2013-04-01

    Full Text Available Microsaccades during fixation have been suggested to counteract visual fading. Recent experi- ments have also observed microsaccade-related neural responses from cellular record, scalp elec- troencephalogram (EEG and functional magnetic resonance imaging (fMRI. The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1 is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depres- sion (STD in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades.

  11. A model of microsaccade-related neural responses induced by short-term depression in thalamocortical synapses

    Science.gov (United States)

    Yuan, Wu-Jie; Dimigen, Olaf; Sommer, Werner; Zhou, Changsong

    2013-01-01

    Microsaccades during fixation have been suggested to counteract visual fading. Recent experiments have also observed microsaccade-related neural responses from cellular record, scalp electroencephalogram (EEG), and functional magnetic resonance imaging (fMRI). The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1) is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depression (STD) in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades. PMID:23630494

  12. An evaluation of neural networks for identification of system parameters in reactor noise signals

    International Nuclear Information System (INIS)

    Miller, L.F.

    1991-01-01

    Several backpropagation neural networks for identifying fundamental mode eigenvalues were evaluated. The networks were trained and tested on analytical data and on results from other numerical methods. They were then used to predict first mode break frequencies for noise data from several sources. These predictions were, in turn, compared with analytical values and with results from alternative methods. Comparisons of results for some data sets suggest that the accuracy of predictions from neural networks are essentially equivalent to results from conventional methods while other evaluations indicate that either method may be superior. Experience gained from these numerical experiments provide insight for improving the performance of neural networks relative to other methods for identifying parameters associated with experimental data. Neural networks may also be used in support of conventional algorithms by providing starting points for nonlinear minimization algorithms

  13. Plastic reorganization of neural systems for perception of others in the congenitally blind.

    Science.gov (United States)

    Fairhall, S L; Porter, K B; Bellucci, C; Mazzetti, M; Cipolli, C; Gobbini, M I

    2017-09-01

    Recent evidence suggests that the function of the core system for face perception might extend beyond visual face-perception to a broader role in person perception. To critically test the broader role of core face-system in person perception, we examined the role of the core system during the perception of others in 7 congenitally blind individuals and 15 sighted subjects by measuring their neural responses using fMRI while they listened to voices and performed identity and emotion recognition tasks. We hypothesised that in people who have had no visual experience of faces, core face-system areas may assume a role in the perception of others via voices. Results showed that emotions conveyed by voices can be decoded in homologues of the core face system only in the blind. Moreover, there was a specific enhancement of response to verbal as compared to non-verbal stimuli in bilateral fusiform face areas and the right posterior superior temporal sulcus showing that the core system also assumes some language-related functions in the blind. These results indicate that, in individuals with no history of visual experience, areas of the core system for face perception may assume a role in aspects of voice perception that are relevant to social cognition and perception of others' emotions. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system

    International Nuclear Information System (INIS)

    Fazlollahtabar, Hamed; Saidi-Mehrabad, Mohammad; Balakrishnan, Jaydeep

    2015-01-01

    This paper proposes an integrated Markovian and back propagation neural network approaches to compute reliability of a system. While states of failure occurrences are significant elements for accurate reliability computation, Markovian based reliability assessment method is designed. Due to drawbacks shown by Markovian model for steady state reliability computations and neural network for initial training pattern, integration being called Markov-neural is developed and evaluated. To show efficiency of the proposed approach comparative analyses are performed. Also, for managerial implication purpose an application case for multiple automated guided vehicles (AGVs) in manufacturing networks is conducted. - Highlights: • Integrated Markovian and back propagation neural network approach to compute reliability. • Markovian based reliability assessment method. • Managerial implication is shown in an application case for multiple automated guided vehicles (AGVs) in manufacturing networks

  15. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  16. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  17. The missing link: Mothers’ neural response to infant cry related to infant attachment behaviors

    Science.gov (United States)

    Laurent, Heidemarie K.; Ablow, Jennifer C.

    2012-01-01

    This study addresses a gap in the attachment literature by investigating maternal neural response to cry related to infant attachment classifications and behaviors. Twenty-two primiparous mothers and their 18-month old infants completed the Strange Situation Procedure (SS) to elicit attachment behaviors. During a separate functional MRI session, mothers were exposed to their own infant’s cry sound, as well as an unfamiliar infant’s cry and control sound. Maternal neural response to own infant cry related to both overall attachment security and specific infant behaviors. Mothers of less secure infants maintained greater activation to their cry in left parahippocampal and amygdala regions and the right posterior insula. consistent with a negative schematic response bias. Mothers of infants exhibiting more avoidant or contact maintaining behaviors during the SS showed diminished response across left prefrontal, parietal, and cerebellar areas involved in attentional processing and cognitive control. Mothers of infants exhibiting more disorganized behavior showed reduced response in bilateral temporal and subcallosal areas relevant to social cognition and emotion regulation. No differences by attachment classification were found. Implications for attachment transmission models are discussed. PMID:22982277

  18. The missing link: mothers' neural response to infant cry related to infant attachment behaviors.

    Science.gov (United States)

    Laurent, Heidemarie K; Ablow, Jennifer C

    2012-12-01

    This study addresses a gap in the attachment literature by investigating maternal neural response to cry related to infant attachment classifications and behaviors. Twenty-two primiparous mothers and their 18-month old infants completed the Strange Situation (SS) procedure to elicit attachment behaviors. During a separate functional MRI session, mothers were exposed to their own infant's cry sound, as well as an unfamiliar infant's cry and control sound. Maternal neural response to own infant cry related to both overall attachment security and specific infant behaviors. Mothers of less secure infants maintained greater activation to their cry in left parahippocampal and amygdala regions and the right posterior insula consistent with a negative schematic response bias. Mothers of infants exhibiting more avoidant or contact maintaining behaviors during the SS showed diminished response across left prefrontal, parietal, and cerebellar areas involved in attentional processing and cognitive control. Mothers of infants exhibiting more disorganized behavior showed reduced response in bilateral temporal and subcallosal areas relevant to social cognition and emotion regulation. No differences by attachment classification were found. Implications for attachment transmission models are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    Science.gov (United States)

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten

    2018-03-01

    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A face a mother could love: depression-related maternal neural responses to infant emotion faces.

    Science.gov (United States)

    Laurent, Heidemarie K; Ablow, Jennifer C

    2013-01-01

    Depressed mothers show negatively biased responses to their infants' emotional bids, perhaps due to faulty processing of infant cues. This study is the first to examine depression-related differences in mothers' neural response to their own infant's emotion faces, considering both effects of perinatal depression history and current depressive symptoms. Primiparous mothers (n = 22), half of whom had a history of major depressive episodes (with one episode occurring during pregnancy and/or postpartum), were exposed to images of their own and unfamiliar infants' joy and distress faces during functional neuroimaging. Group differences (depression vs. no-depression) and continuous effects of current depressive symptoms were tested in relation to neural response to own infant emotion faces. Compared to mothers with no psychiatric diagnoses, those with depression showed blunted responses to their own infant's distress faces in the dorsal anterior cingulate cortex. Mothers with higher levels of current symptomatology showed reduced responses to their own infant's joy faces in the orbitofrontal cortex and insula. Current symptomatology also predicted lower responses to own infant joy-distress in left-sided prefrontal and insula/striatal regions. These deficits in self-regulatory and motivational response circuits may help explain parenting difficulties in depressed mothers.

  1. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    Science.gov (United States)

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats ( Rattus norvegicus ) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  2. A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Metin Demirtas

    2011-07-01

    Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.

  3. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...... trained on peptides of single lengths. Also, we illustrate how the location of deletions can aid the interpretation of the modes of binding of the peptide-MHC, as in the case of long peptides bulging out of the MHC groove or protruding at either terminus. Finally, we demonstrate that the method can learn...... the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped...

  4. Neural Correlates of Drug-Related Attentional Bias in Heroin Dependence

    Directory of Open Access Journals (Sweden)

    Qinglin Zhao

    2018-01-01

    Full Text Available The attention of drug-dependent persons tends to be captured by stimuli associated with drug consumption. This involuntary cognitive process is considered as attentional bias (AB. AB has been hypothesized to have causal effects on drug abuse and drug relapse, but its underlying neural mechanisms are still unclear. This study investigated the neural basis of AB in abstinent heroin addicts (AHAs, combining event-related potential (ERP analysis and source localization techniques. Electroencephalography data were collected in 21 abstinent heroin addicts and 24 age- and gender-matched healthy controls (HCs during a dot-probe task. In the task, a pair of drug-related image and neutral image was presented randomly in left and right side of the cross fixation, followed by a dot probe replacing one of the images. Behaviorally, AHAs had shorter reaction times (RTs for the congruent condition compared to the incongruent condition, whereas this was not the case in the HCs. This finding demonstrated the presence of AB towards drug cues in AHAs. Furthermore, the image-evoked ERPs in AHAs had significant shorter P1 latency compared to HCs, as well as larger N1, N2, and P2 amplitude, suggesting that drug-related stimuli might capture attention early and overall require more attentional resources in AHAs. The target-related P3 had significantly shorter latency and lower amplitude in the congruent than incongruent condition in AHAs compared to HCs. Moreover, source localization of ERP components revealed increased activity for AHAs as compared to HCs in the dorsal posterior cingulate cortex (dPCC, superior parietal lobule and inferior frontal gyrus (IFG for image-elicited responses, and decreased activity in the occipital and the medial parietal lobes for target-elicited responses. Overall, the results of our study confirmed that AHAs may exhibit AB in drug-related contexts, and suggested that the bias might be related to an abnormal neural activity, both in

  5. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  6. A modular neural network scheme applied to fault diagnosis in electric power systems.

    Science.gov (United States)

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  7. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Agustín Flores

    2014-01-01

    Full Text Available This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  8. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  9. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks.

    Science.gov (United States)

    Dodds, Chris M; Henson, Richard N; Suckling, John; Miskowiak, Kamilla W; Ooi, Cinly; Tait, Roger; Soltesz, Fruzsina; Lawrence, Phil; Bentley, Graham; Maltby, Kay; Skeggs, Andrew; Miller, Sam R; McHugh, Simon; Bullmore, Edward T; Nathan, Pradeep J

    2013-01-01

    It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.

  11. Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks.

    Directory of Open Access Journals (Sweden)

    Chris M Dodds

    Full Text Available It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.

  12. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    International Nuclear Information System (INIS)

    Vargas, Lorena P; Barba, Leiner; Torres, C O; Mattos, L

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  13. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....

  14. Artificial neural network analysis of a refrigeration system with an evaporative condenser

    Energy Technology Data Exchange (ETDEWEB)

    Ertunc, H.M. [Department of Mechatronics Engineering, Kocaeli University, 41040 Kocaeli (Turkey); Hosoz, M. [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)

    2006-04-01

    This paper describes an application of artificial neural networks (ANNs) to predict the performance of a refrigeration system with an evaporative condenser. In order to gather data for training and testing the proposed ANN, an experimental refrigeration system with an evaporative condenser was set up. Then, steady-state test runs were conducted varying the evaporator load, air and water flow rates passing through the condenser and both dry and wet bulb temperatures of the air stream entering the condenser. Utilizing some of the experimental data, an ANN model for the system based on standard backpropagation algorithm was developed. The ANN was used for predicting various performance parameters of the system, namely the condenser heat rejection rate, refrigerant mass flow rate, compressor power, electric power input to the compressor motor and the coefficient of performance. The ANN predictions usually agree well with the experimental values with correlation coefficients in the range of 0.933-1.000, mean relative errors in the range of 1.90-4.18% and very low root mean square errors. Results show that refrigeration systems, even complex ones involving concurrent heat and mass transfer such as systems with an evaporative condenser, can alternatively be modelled using ANNs within a high degree of accuracy. [Author].

  15. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  16. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    Science.gov (United States)

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  17. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes.

    Science.gov (United States)

    Luo, Yuan; Cheng, Yu; Uzuner, Özlem; Szolovits, Peter; Starren, Justin

    2018-01-01

    We propose Segment Convolutional Neural Networks (Seg-CNNs) for classifying relations from clinical notes. Seg-CNNs use only word-embedding features without manual feature engineering. Unlike typical CNN models, relations between 2 concepts are identified by simultaneously learning separate representations for text segments in a sentence: preceding, concept1, middle, concept2, and succeeding. We evaluate Seg-CNN on the i2b2/VA relation classification challenge dataset. We show that Seg-CNN achieves a state-of-the-art micro-average F-measure of 0.742 for overall evaluation, 0.686 for classifying medical problem-treatment relations, 0.820 for medical problem-test relations, and 0.702 for medical problem-medical problem relations. We demonstrate the benefits of learning segment-level representations. We show that medical domain word embeddings help improve relation classification. Seg-CNNs can be trained quickly for the i2b2/VA dataset on a graphics processing unit (GPU) platform. These results support the use of CNNs computed over segments of text for classifying medical relations, as they show state-of-the-art performance while requiring no manual feature engineering. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Neural correlates of age-related decline and compensation in visual attention capacity

    DEFF Research Database (Denmark)

    Wiegand, Iris; Töllner, Thomas; Dyrholm, Mads

    2014-01-01

    -individual differences in K. Moreover, both parameters were selectively related to two further ERP waves in older age: The anterior N1 was reduced for older participants with lower processing speed, indicating that age-related loss of attentional resources slows encoding. An enhanced right-central positivity (RCP......We identified neural correlates of declined and preserved basic visual attention functions in aging individuals based on Bundesen’s ‘Theory of Visual Attention’ (TVA). In an inter-individual difference approach, we contrasted electrophysiology of higher- and lower-performing younger and older......) was found only for older participants with high storage capacity, suggesting compensatory recruitment for retaining vSTM performance. Together, our results demonstrate that attentional capacity in older age depends on both preservation and successful reorganization of the underlying brain circuits...

  19. Relative Permittivity of Carbon Dioxide + Ethanol Mixtures prediction by means of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gonzalo Astray

    2014-07-01

    Full Text Available CO2 + ethanol mixtures have a huge scientific interest and enormous relevance for many industrial processes. Obtaining of their chemical and physical properties is a fundamental task. Relative permittivity (r of these mixtures is a key property because allows a better knowledge of the structure and the interactions in other media. In this work predictive values of relative permittivity (r of carbon dioxide + ethanol mixtures were obtained implementing artificial neural networks (ANNs. They are used successfully in very different fields; therefore it is a very useful tool. In this case the obtained results enhance the ones from the usual multiple linear regression analysis. In both cases mass fraction, pressure and temperature experimental data from a direct capacitance method were used.

  20. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  1. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  2. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Neural activity related to cognitive and emotional empathy in post-traumatic stress disorder.

    Science.gov (United States)

    Mazza, Monica; Tempesta, Daniela; Pino, Maria Chiara; Nigri, Anna; Catalucci, Alessia; Guadagni, Veronica; Gallucci, Massimo; Iaria, Giuseppe; Ferrara, Michele

    2015-04-01

    The aim of this study is to evaluate the empathic ability and its functional brain correlates in post-traumatic stress disorder subjects (PTSD). Seven PTSD subjects and ten healthy controls, all present in the L'Aquila area during the earthquake of the April 2009, underwent fMRI during which they performed a modified version of the Multifaceted Empathy Test. PTSD patients showed impairments in implicit and explicit emotional empathy, but not in cognitive empathy. Brain responses during cognitive empathy showed an increased activation in patients compared to controls in the right medial frontal gyrus and the left inferior frontal gyrus. During implicit emotional empathy responses patients with PTSD, compared to controls, exhibited greater neural activity in the left pallidum and right insula; instead the control group showed an increased activation in right inferior frontal gyrus. Finally, in the explicit emotional empathy responses the PTSD group showed a reduced neural activity in the left insula and the left inferior frontal gyrus. The behavioral deficit limited to the emotional empathy dimension, accompanied by different patterns of activation in empathy related brain structures, represent a first piece of evidence of a dissociation between emotional and cognitive empathy in PTSD patients. The present findings support the idea that empathy is a multidimensional process, with different facets depending on distinct anatomical substrates. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Trait self-esteem and neural activities related to self-evaluation and social feedback

    Science.gov (United States)

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-01-01

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one’s own personality traits and of others’ opinion about one’s own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one’s own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback. PMID:26842975

  5. Trait self-esteem and neural activities related to self-evaluation and social feedback.

    Science.gov (United States)

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-02-04

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one's own personality traits and of others' opinion about one's own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one's own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback.

  6. Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations.

    Science.gov (United States)

    Li, Xiaoqing; Zhang, Yuping; Xia, Jinyan; Swaab, Tamara Y

    2017-07-28

    Although numerous studies have demonstrated that the language processing system can predict upcoming content during comprehension, there is still no clear picture of the anticipatory stage of predictive processing. This electroencephalograph study examined the cognitive and neural oscillatory mechanisms underlying anticipatory processing during language comprehension, and the consequences of this prediction for bottom-up processing of predicted/unpredicted content. Participants read Mandarin Chinese sentences that were either strongly or weakly constraining and that contained critical nouns that were congruent or incongruent with the sentence contexts. We examined the effects of semantic predictability on anticipatory processing prior to the onset of the critical nouns and on integration of the critical nouns. The results revealed that, at the integration stage, the strong-constraint condition (compared to the weak-constraint condition) elicited a reduced N400 and reduced theta activity (4-7Hz) for the congruent nouns, but induced beta (13-18Hz) and theta (4-7Hz) power decreases for the incongruent nouns, indicating benefits of confirmed predictions and potential costs of disconfirmed predictions. More importantly, at the anticipatory stage, the strongly constraining context elicited an enhanced sustained anterior negativity and beta power decrease (19-25Hz), which indicates that strong prediction places a higher processing load on the anticipatory stage of processing. The differences (in the ease of processing and the underlying neural oscillatory activities) between anticipatory and integration stages of lexical processing were discussed with regard to predictive processing models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  8. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  9. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Science.gov (United States)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  10. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  11. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  12. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  13. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  14. Artificial neural systems for interpretation and inversion of seismic data

    Science.gov (United States)

    Calderon-Macias, Carlos

    The goal of this work is to investigate the feasibility of using neural network (NN) models for solving geophysical exploration problems. First, a feedforward neural network (FNN) is used to solve inverse problems. The operational characteristics of a FNN are primarily controlled by a set of weights and a nonlinear function that performs a mapping between two sets of data. In a process known as training, the FNN weights are iteratively adjusted to perform the mapping. After training, the computed weights encode important features of the data that enable one pattern to be distinguished from another. Synthetic data computed from an ensemble of earth models and the corresponding models provide the training data. Two training methods are studied: the backpropagation method which is a gradient scheme, and a global optimization method called very fast simulated annealing (VFSA). A trained network is then used to predict models from new data (e.g., data from a new location) in a one-step procedure. The application of this method to the problems of obtaining formation resistivities and layer thicknesses from resistivity sounding data and 1D velocity models from seismic data shows that trained FNNs produce reasonably accurate earth models when observed data are input to the FNNs. In a second application, a FNN is used for automating the NMO correction process of seismic reflection data. The task of the FNN is to map CMP data at control locations along a seismic line into subsurface velocities. The network is trained while the velocity analyses are performed at the control locations. Once trained, the computed weights are used as an operator that acts on the remaining CMP data as a velocity interpolator, resulting in a fast method for NMO correction. The second part of this dissertation describes the application of a Hopfield neural network (HNN) to the problems of deconvolution and multiple attenuation. In these applications, the unknown parameters (reflection coefficients

  15. Neural correlates of emotional distractibility in bipolar disorder patients, unaffected relatives, and individuals with hypomanic personality.

    Science.gov (United States)

    Kanske, Philipp; Heissler, Janine; Schönfelder, Sandra; Forneck, Johanna; Wessa, Michèle

    2013-12-01

    Neuropsychological deficits and emotion dysregulation are present in symptomatic and euthymic patients with bipolar disorder. However, there is little evidence on how cognitive functioning is influenced by emotion, what the neural correlates of emotional distraction effects are, and whether such deficits are a consequence or a precursor of the disorder. The authors used functional MRI (fMRI) to investigate these questions. fMRI was used first to localize the neural network specific to a certain cognitive task (mental arithmetic) and then to test the effect of emotional distractors on this network. Euthymic patients with bipolar I disorder (N=22), two populations at high risk for developing the disorder (unaffected first-degree relatives of individuals with bipolar disorder [N=17]), and healthy participants with hypomanic personality traits [N=22]) were tested, along with three age-, gender-, and education-matched healthy comparison groups (N=22, N=17, N=24, respectively). There were no differences in performance or activation in the task network for mental arithmetic. However, while all participants exhibited slower responses when emotional distractors were present, this response slowing was greatly enlarged in bipolar patients. Similarly, task-related activation was generally increased under emotional distraction; however, bipolar patients exhibited a further increase in right parietal activation that correlated positively with the response slowing effect. The results suggest that emotional dysregulation leads to exacerbated neuropsychological deficits in bipolar patients, as evidenced by behavioral slowing and task-related hyperactivation. The lack of such a deficit in high-risk populations suggests that it occurs only after disease onset, rather than representing a vulnerability marker.

  16. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  17. Study on driving control behavior for lane change maneuver. Analysis of expert driver using neural network system; Shasen henkoji no driver sosa tokusei. Neural network system ni yoru jukuren driver no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z; Okayama, T; Katayama, T [Japan Automobile Research Institute Inc., Tsukuba (Japan); Kageyama, I [Nihon University, Tokyo (Japan)

    1997-10-01

    In order to study driver steering control behavior for vehicle, a driver model for single-lane change maneuver is constructed by a neural network system concerned with the man-machine-environment system. And, using sensitivity analysis, it is found that the model represent the driver control behavior, and the relation between the driver control behavior and vehicle responses. The sensitivity analysis is also examined by applying to the 2nd order predictive driver model. The validity of the sensitivity analysis is confirmed. 5 refs., 8 figs.

  18. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  19. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Science.gov (United States)

    Wang, L.; Zhang, Y. Y.; Ding, L.

    2006-10-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  20. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    International Nuclear Information System (INIS)

    Wang, L; Zhang, Y Y; Ding, L

    2006-01-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module

  1. ISC feedforward control of gasoline engine. Adaptive system using neural network; Jidoshayo gasoline engine no ISC feedforward seigyo. Neural network wo mochiita tekioka

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, N; Morita, S; Takiyama, T [Osaka City University, Osaka (Japan)

    1997-10-01

    For fuel economy and a good driver`s feeling, it is necessary for idle-speed to keep at a constant low speed. But keeping low speed has danger of engine stall when the engine torque is disturbed by the alternator, and so on. In this paper, adaptive feedforward idle-speed control system against electrical loads was investigated. This system was based on the reversed tansfer functions of the object system, and a neural network was used to adapt this system for aging. Then, this neural network was also used for creating feedforward table map. Good experimental results were obtained. 2 refs., 11 figs.

  2. Neural Networks for Self-tuning Control Systems

    Directory of Open Access Journals (Sweden)

    A. Noriega Ponce

    2004-01-01

    Full Text Available In this paper, we presented a self-tuning control algorithm based on a three layers perceptron type neural network. The proposed algorithm is advantageous in the sense that practically a previous training of the net is not required and some changes in the set-point are generally enough to adjust the learning coefficient. Optionally, it is possible to introduce a self-tuning mechanism of the learning coefficient although by the moment it is not possible to give final conclusions about this possibility. The proposed algorithm has the special feature that the regulation error instead of the net output error is retropropagated for the weighting coefficients modifications. 

  3. System Identification Using Multilayer Differential Neural Networks: A New Result

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2012-01-01

    Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.

  4. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  5. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  6. Towards an Irritable Bowel Syndrome Control System Based on Artificial Neural Networks

    Science.gov (United States)

    Podolski, Ina; Rettberg, Achim

    To solve health problems with medical applications that use complex algorithms is a trend nowadays. It could also be a chance to help patients with critical problems caused from nerve irritations to overcome them and provide a better living situation. In this paper a system for monitoring and controlling the nerves from the intestine is described on a theoretical basis. The presented system could be applied to the irritable bowel syndrome. For control a neural network is used. The advantages for using a neural network for the control of irritable bowel syndrome are the adaptation and learning. These two aspects are important because the syndrome behavior varies from patient to patient and have also concerning the time a lot of variations with respect to each patient. The developed neural network is implemented and can be simulated. Therefore, it can be shown how the network monitor and control the nerves for individual input parameters.

  7. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  8. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle

    DEFF Research Database (Denmark)

    Andersson, A M; Olsen, M; Zhernosekov, D

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here...... report quantitative and qualitative changes in NCAM protein and mRNA forms during aging in normal rat skeletal muscle. Determination of the amount of NCAM by e.l.i.s.a. showed that the level decreased from perinatal to adult age, followed by a considerable increase in 24-month-old rat muscle. Thus NCAM...... concentration in aged muscle was sixfold higher than in young adult muscle. In contrast with previous reports, NCAM polypeptides of 200, 145, 125 and 120 kDa were observed by immunoblotting throughout postnatal development and aging, the relative proportions of the individual NCAM polypeptides remaining...

  9. Neural network approach in multichannel auditory event-related potential analysis.

    Science.gov (United States)

    Wu, F Y; Slater, J D; Ramsay, R E

    1994-04-01

    Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.

  10. Neural computing thermal comfort index PMV for the indoor environment intelligent control system

    Science.gov (United States)

    Liu, Chang; Chen, Yifei

    2013-03-01

    Providing indoor thermal comfort and saving energy are two main goals of indoor environmental control system. An intelligent comfort control system by combining the intelligent control and minimum power control strategies for the indoor environment is presented in this paper. In the system, for realizing the comfort control, the predicted mean vote (PMV) is designed as the control goal, and with chastening formulas of PMV, it is controlled to optimize for improving indoor comfort lever by considering six comfort related variables. On the other hand, a RBF neural network based on genetic algorithm is designed to calculate PMV for better performance and overcoming the nonlinear feature of the PMV calculation better. The formulas given in the paper are presented for calculating the expected output values basing on the input samples, and the RBF network model is trained depending on input samples and the expected output values. The simulation result is proved that the design of the intelligent calculation method is valid. Moreover, this method has a lot of advancements such as high precision, fast dynamic response and good system performance are reached, it can be used in practice with requested calculating error.

  11. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.

    Science.gov (United States)

    Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi

    2017-01-01

    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to

  12. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  13. Application of neural networks to software quality modeling of a very large telecommunications system.

    Science.gov (United States)

    Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J

    1997-01-01

    Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.

  14. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  15. Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-12-01

    Full Text Available In the last decade, conventional materials such as steel and concrete are being replaced by fiber reinforced polymer (FRP materials for the strengthening of concrete structures. Among the strengthening techniques based on Fiber Reinforced Polymer composites, the use of near-surface mounted (NSM FRP rods is emerging as a promising technology for increasing flexural and shear strength of deficient concrete, masonry and timber members. An artificial neural network is an information processing tool that is inspired by the way biological nervous systems (such as the brain process the information. The key element of this tool is the novel structure of the information processing system. In engineering applications, a neural network can be a vector mapper which maps an input vector to an output one. In the present study, a new approach is developed to predict the behavior of strengthened concrete beam using a large number of experimental data by applying artificial neural networks. Having parameters used as input nodes in ANN modeling such as elastic modulus of the FRP reinforcement, the ratio of the steel longitudinal reinforcement, dimensions of the beam section, the ratio of the NSM-FRP reinforcement and characteristics of concrete, the output node was the flexural strength of beams. The idealized neural network was employed to generate empirical charts and equations to be used in design. The aim of this study is to investigate the behavior of strengthened RC beam using artificial neural networks.

  16. PRODIAG: Combined expert system/neural network for process fault diagnosis. Volume 1, Theory

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.

    1995-09-01

    The function of the PRODIAG code is to diagnose on-line the root cause of a thermal-hydraulic (T-H) system transient with trace back to the identification of the malfunctioning component using the T-H instrumentation signals exclusively. The code methodology is based on the Al techniques of automated reasoning/expert systems (ES) and artificial neural networks (ANN). The research and development objective is to develop a generic code methodology which would be plant- and T-H-system-independent. For the ES part the only plant or T-H system specific code requirements would be implemented through input only and at that only through a Piping and Instrumentation Diagram (PID) database. For the ANN part the only plant or T-H system specific code requirements would be through the ANN training data for normal component characteristics and the same PID database information. PRODIAG would, therefore, be generic and portable from T-H system to T-H system and from plant to plant without requiring any code-related modifications except for the PID database and the ANN training with the normal component characteristics. This would give PRODIAG the generic feature which numerical simulation plant codes such as TRAC or RELAP5 have. As the code is applied to different plants and different T-H systems, only the connectivity information, the operating conditions and the normal component characteristics are changed, and the changes are made entirely through input. Verification and validation of PRODIAG would, be T-H system independent and would be performed only ``once``.

  17. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  18. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  19. Container-code recognition system based on computer vision and deep neural networks

    Science.gov (United States)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  20. Neural activity in relation to clinically derived personality syndromes in depression using a psychodynamic fMRI paradigm

    Directory of Open Access Journals (Sweden)

    Svenja eTaubner

    2013-12-01

    Full Text Available Objective: The heterogeneity between patients with depression cannot be captured adequately with existing descriptive systems of diagnosis and neurobiological models of depression. Furthermore, considering the highly individual nature of depression, the application of general stimuli in past research efforts may not capture the essence of the disorder. This study aims to identify subtypes of depression by using empirically-derived personality-syndromes, and to explore neural correlates of the derived personality syndromes.Method: In the present exploratory study an individually tailored and psychodynamically based fMRI paradigm using dysfunctional relationship patterns was presented to 20 chronically depressed patients. Results from the Shedler-Westen-Assessment-Procedure (SWAP-200 were analyzed by Q-factor analysis to identify clinically relevant subgroups of depression and related brain activation.Results: The principle component analysis of SWAP-200 items from all 20 patients lead to a 2-factor solution: Depressive Personality and Emotional-Hostile-Externalizing Personality. Both factors were used in a whole-brain correlational analysis but only the second factor yielded significant positive correlations in four regions: A large cluster in the right orbitofrontal cortex (OFC, the left ventral striatum, a small cluster in the left temporal pole and another small cluster in the right middle frontal gyrus. Discussion: The degree to which patients with depression score high on the factor Emotional-Hostile-Externalizing Personality correlated with relatively higher activity in three key areas involved in emotion processing, evaluation of reward/punishment, negative cognitions, depressive pathology and social knowledge (OFC, ventral striatum, temporal pole. Results may contribute to an alternative description of neural correlates of depression showing differential brain activation dependent on the extent of specific personality syndromes in

  1. Neural coding in the visual system of Drosophila melanogaster: How do small neural populations support visually guided behaviours?

    Science.gov (United States)

    Dewar, Alex D M; Wystrach, Antoine; Philippides, Andrew; Graham, Paul

    2017-10-01

    All organisms wishing to survive and reproduce must be able to respond adaptively to a complex, changing world. Yet the computational power available is constrained by biology and evolution, favouring mechanisms that are parsimonious yet robust. Here we investigate the information carried in small populations of visually responsive neurons in Drosophila melanogaster. These so-called 'ring neurons', projecting to the ellipsoid body of the central complex, are reported to be necessary for complex visual tasks such as pattern recognition and visual navigation. Recently the receptive fields of these neurons have been mapped, allowing us to investigate how well they can support such behaviours. For instance, in a simulation of classic pattern discrimination experiments, we show that the pattern of output from the ring neurons matches observed fly behaviour. However, performance of the neurons (as with flies) is not perfect and can be easily improved with the addition of extra neurons, suggesting the neurons' receptive fields are not optimised for recognising abstract shapes, a conclusion which casts doubt on cognitive explanations of fly behaviour in pattern recognition assays. Using artificial neural networks, we then assess how easy it is to decode more general information about stimulus shape from the ring neuron population codes. We show that these neurons are well suited for encoding information about size, position and orientation, which are more relevant behavioural parameters for a fly than abstract pattern properties. This leads us to suggest that in order to understand the properties of neural systems, one must consider how perceptual circuits put information at the service of behaviour.

  2. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Directory of Open Access Journals (Sweden)

    Małgorzata Kossowska

    2018-03-01

    Full Text Available Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure. We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400 due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure, religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure.

  3. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure.

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure).

  4. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure). PMID:29636709

  5. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  6. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    Science.gov (United States)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  7. A Neural Networks Based Operation Guidance System for Procedure Presentation and Validation

    International Nuclear Information System (INIS)

    Seung, Kun Mo; Lee, Seung Jun; Seong, Poong Hyun

    2006-01-01

    In this paper, a neural network based operator support system is proposed to reduce operator's errors in abnormal situations in nuclear power plants (NPPs). There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to regulate and validate operators' operations, it is necessary to develop an operator support system which includes computer based procedures with the functions for operation validation. Many computerized procedures systems (CPS) have been recently developed. Focusing on the human machine interface (HMI) design and procedures' computerization, most of CPSs used various methodologies to enhance system's convenience, reliability and accessibility. Other than only showing procedures, the proposed system integrates a simple CPS and an operation validation system (OVS) by using artificial neural network (ANN) for operational permission and quantitative evaluation

  8. Directive Nanophysical Cues for Regenerative Neural Cell Systems

    Science.gov (United States)

    Ayres, Virginia; Tiryaki, Volkan Mujdat; Ahmed, Ijaz; Shreiber, David

    Until recently, implantables such as stents, probes, wafers and scaffolds have been viewed as passive vehicles for the delivery of physical, pharmacological and cellular interventions. Recent research, however, indicates that the physical environments that implantables present supply directive cues in their own right that work in conjunction with biochemical cues and produce a jointly-directed outcome. We will present our research in CNS repairs using advanced scanning probe microscopy, electron microscopies and contact angle measurements to quantitatively describe the nanoscale elasticity, surface roughness, work of adhesion and surface polarity for investigation of scaffold environments. We will also present our research using super-resolution immunocytochemistry and atomic force microscopy to evaluate neural cell morphological responses with associated micro filament, microtubule and intermediate filament expressions, along with results on how and which integrin-family receptors are possibly involved. Finally, we will present our novel application of k-means cluster analysis applied across multiple experimental modalities for quantification of synergistic scaffold properties and cell responses.

  9. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.

    Science.gov (United States)

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan

    2017-12-21

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  10. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    Directory of Open Access Journals (Sweden)

    Ahnsei Shon

    2017-12-01

    Full Text Available Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC-compliant power transmission circuit, a medical implant communication service (MICS-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  11. Performance monitoring in the medial frontal cortex and related neural networks: From monitoring self actions to understanding others' actions.

    Science.gov (United States)

    Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki

    2018-04-27

    Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.

  12. Artificial neural networks contribution to the operational security of embedded systems. Artificial neural networks contribution to fault tolerance of on-board functions in space environment

    International Nuclear Information System (INIS)

    Vintenat, Lionel

    1999-01-01

    A good quality often attributed to artificial neural networks is fault tolerance. In general presentation works, this property is almost always introduced as 'natural', i.e. being obtained without any specific precaution during learning. Besides, space environment is known to be aggressive towards on-board hardware, inducing various abnormal operations. Particularly, digital components suffer from upset phenomenon, i.e. misplaced switches of memory flip-flops. These two observations lead to the question: would neural chips constitute an interesting and robust solution to implement some board functions of spacecrafts? First, the various aspects of the problem are detailed: artificial neural networks and their fault tolerance, neural chips, space environment and resulting failures. Further to this presentation, a particular technique to carry out neural chips is selected because of its simplicity, and especially because it requires few memory flip-flops: random pulse streams. An original method for star recognition inside a field-of-view is then proposed for the board function 'attitude computation'. This method relies on a winner-takes-all competition network, and on a Kohonen self-organized map. An hardware implementation of those two neural models is then proposed using random pulse streams. Thanks to this realization, on one hand difficulties related to that particular implementation technique can be highlighted, and on the other hand a first evaluation of its practical fault tolerance can be carried out. (author) [fr

  13. The use of neural networks in the D0 data acquisition system

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Sornborger, A.; Astur, R.V.; Johnson, C.R.; Zeller, R.T.

    1989-01-01

    We discuss the possible application of algorithms derived from neural networks to the D0 experiment. The D0 data acquisition system is based on a large farm of MicroVAXes, each independently performing real-time event filtering. A new generation of multiport memories in each MicroVAX node will enable special function processors to have direct access to event data. We describe an exploratory study of back propagation neural networks, such as might be configured in the nodes, for more efficient event filtering. 9 refs., 3 figs., 1 tab

  14. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  15. Systematic Self-Regulation of the Neural System Essential for Peak Performance and Wellbeing.

    Science.gov (United States)

    Cassel, Russell N.

    1985-01-01

    Balance and harmony within one's neural system is dynamic and changing, and restoring that balance is essential for peak performance. With a minimum amount of training individuals are able to restore this delicate balance and thereby enhance their own wellbeing. Autogenic feedback training has been demonstrated to be an effective means for…

  16. Systemic Injection of Neural Stem/progenitor Cells in Mice With Chronic EAE

    OpenAIRE

    Donegà, Matteo; Giusto, Elena; Cossetti, Chiara; Schaeffer, Julia; Pluchino, Stefano

    2014-01-01

    Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several pre clinical models of neurological diseases.

  17. Comparable mechanisms for action and language: Neural systems behind intentions, goals and means

    NARCIS (Netherlands)

    Schie, H.T. van; Toni, I.; Bekkering, H.

    2006-01-01

    In this position paper we explore correspondence between neural systems for language and action starting from recent electrophysiological findings on the roles of posterior and frontal areas in goal-directed grasping actions. The paper compares the perceptual and motor organization for action and

  18. Artificial neural network decision support systems for new product development project selection

    NARCIS (Netherlands)

    Thieme, R.J.; Song, Michael; Calantone, R.J.

    2000-01-01

    The authors extend and develop an artificial neural network decision support system and demonstrate how it can guide managers when they make complex new product development decisions. The authors use data from 612 projects to compare this new method with traditional methods for predicting various

  19. A New Method for Studying the Periodic System Based on a Kohonen Neural Network

    Science.gov (United States)

    Chen, David Zhekai

    2010-01-01

    A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…

  20. A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2018-01-01

    Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.

  1. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  2. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  3. Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.

  4. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    Science.gov (United States)

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Development of relative humidity models by using optimized neural network structures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-romero, A.; Ortega, J. F.; Juan, J. A.; Tarjuelo, J. M.; Moreno, M. A.

    2010-07-01

    Climate has always had a very important role in life on earth, as well as human activity and health. The influence of relative humidity (RH) in controlled environments (e.g. industrial processes in agro-food processing, cold storage of foods such as fruits, vegetables and meat, or controls in greenhouses) is very important. Relative humidity is a main factor in agricultural production and crop yield (due to the influence on crop water demand or the development and distribution of pests and diseases, for example). The main objective of this paper is to estimate RH [maximum (RHmax), average (RHave), and minimum (RHmin)] data in a specific area, being applied to the Region of Castilla-La Mancha (C-LM) in this case, from available data at thermo-pluviometric weather stations. In this paper Artificial neural networks (ANN) are used to generate RH considering maximum and minimum temperatures and extraterrestrial solar radiation data. Model validation and generation is based on data from the years 2000 to 2008 from 44 complete agroclimatic weather stations. Relative errors are estimated as 1) spatial errors of 11.30%, 6.80% and 10.27% and 2) temporal errors of 10.34%, 6.59% and 9.77% for RHmin, RHmax and RHave, respectively. The use of ANNs is interesting in generating climate parameters from available climate data. For determining optimal ANN structure in estimating RH values, model calibration and validation is necessary, considering spatial and temporal variability. (Author) 44 refs.

  6. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs

    Science.gov (United States)

    Dresp-Langley, Birgitta; Grossberg, Stephen

    2016-01-01

    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data. PMID:27516746

  7. Memory's aging echo: age-related decline in neural reactivation of perceptual details during recollection.

    Science.gov (United States)

    McDonough, Ian M; Cervantes, Sasha N; Gray, Stephen J; Gallo, David A

    2014-09-01

    Episodic memory decline is a hallmark of normal cognitive aging. Here, we report the first event-related fMRI study to directly investigate age differences in the neural reactivation of qualitatively rich perceptual details during recollection. Younger and older adults studied pictures of complex scenes at different presentation durations along with descriptive verbal labels, and these labels subsequently were used during fMRI scanning to cue picture recollections of varying perceptual detail. As expected from prior behavioral work, the two age groups subjectively rated their recollections as containing similar amounts of perceptual detail, despite objectively measured recollection impairment in older adults. In both age groups, comparisons of retrieval trials that varied in recollected detail revealed robust activity in brain regions previously linked to recollection, including hippocampus and both medial and lateral regions of the prefrontal and posterior parietal cortex. Critically, this analysis also revealed recollection-related activity in visual processing regions that were active in an independent picture-perception task, and these regions showed age-related reductions in activity during recollection that cannot be attributed to age differences in response criteria. These fMRI findings provide new evidence that aging reduces the absolute quantity of perceptual details that are reactivated from memory, and they help to explain why aging reduces the reliability of subjective memory judgments. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs.

    Science.gov (United States)

    Dresp-Langley, Birgitta; Grossberg, Stephen

    2016-01-01

    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.

  9. Neural computation of surface border ownership and relative surface depth from ambiguous contrast inputs

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2016-07-01

    Full Text Available The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.

  10. Time spent with friends in adolescence relates to less neural sensitivity to later peer rejection.

    Science.gov (United States)

    Masten, Carrie L; Telzer, Eva H; Fuligni, Andrew J; Lieberman, Matthew D; Eisenberger, Naomi I

    2012-01-01

    Involvement with friends carries many advantages for adolescents, including protection from the detrimental effects of being rejected by peers. However, little is known about the mechanisms through which friendships may serve their protective role at this age, or the potential benefit of these friendships as adolescents transition to adulthood. As such, this investigation tested whether friend involvement during adolescence related to less neural sensitivity to social threats during young adulthood. Twenty-one adolescents reported the amount of time they spent with friends outside of school using a daily diary. Two years later they underwent an fMRI scan, during which they were ostensibly excluded from an online ball-tossing game by two same-age peers. Findings from region of interest and whole brain analyses revealed that spending more time with friends during adolescence related to less activity in the dorsal anterior cingulate cortex and anterior insula--regions previously linked with negative affect and pain processing--during an experience of peer rejection 2 years later. These findings are consistent with the notion that positive relationships during adolescence may relate to individuals being less sensitive to negative social experiences later on.

  11. Novel Behavioral and Neural Evidences for Age-Related changes in Force complexity.

    Science.gov (United States)

    Chen, Yi-Ching; Lin, Linda L; Hwang, Ing-Shiou

    2018-02-17

    This study investigated age-related changes in behavioral and neural complexity for a polyrhythmic movement, which appeared to be an exception to the loss of complexity hypothesis. Young (n = 15; age = 24.2 years) and older (15; 68.1 years) adults performed low-level force-tracking with isometric index abduction to couple a compound sinusoidal target. Multi-scale entropy (MSE) of tracking force and inter-spike interval (ISI) of motor unit (MU) in the first dorsal interosseus muscle were assessed. The MSE area of tracking force at shorter time scales of older adults was greater (more complex) than that of young adults, whereas an opposite trend (less complex for the elders) was noted at longer time scales. The MSE area of force fluctuations (the stochastic component of the tracking force) were generally smaller (less complex) for older adults. Along with greater mean and coefficient of ISI, the MSE area of the cumulative discharge rate of elders tended to be lower (less complex) than that of young adults. In conclusion, age-related complexity changes in polyrhythmic force-tracking depended on the time scale. The adaptive behavioral consequences could be multi-factorial origins of the age-related impairment in rate coding, increased discharge noises, and lower discharge complexity of pooled MUs.

  12. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences.

    Science.gov (United States)

    Herbet, Guillaume; Lafargue, Gilles; Moritz-Gasser, Sylvie; Bonnetblanc, François; Duffau, Hugues

    2015-07-01

    According to recently proposed interactive dual-process theories, mentalizing abilities emerge from the coherent interaction between two physically distinct neural systems: (1) the mirror network, coding for the low-level embodied representations involved in pre-reflective sociocognitive processes and (2) the mentalizing network per se, which codes for higher level representations subtending the reflective attribution of psychological states. However, although the latest studies have shown that the core areas forming these two neurocognitive systems do indeed maintain effective connectivity during mentalizing, it is unclear whether an intact mirror system (and, more specifically, its anterior node, namely the posterior inferior frontal cortex) is a prerequisite for accurate mentalistic inferences. Intraoperative brain mapping via direct electrical stimulation offers a unique opportunity to address this issue. Electrical stimulation of the brain creates a "virtual" lesion, which provides functional information on well-defined parts of the cerebral cortex. In the present study, five patients were mapped in real time while they performed a mentalizing task. We found six responsive sites: four in the lateral part of the right pars opercularis and two in the dorsal part of the right pars triangularis. On the subcortical level, two additional sites were located within the white matter connectivity of the pars opercularis. Taken as a whole, our results suggest that the right inferior frontal cortex and its underlying axonal connectivity have a key role in mentalizing. Specifically, our findings support the hypothesis whereby transient, functional disruption of the mirror network influences higher order mentalistic inferences.

  13. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.

    Science.gov (United States)

    Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz

    2018-03-01

    Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.

  14. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2014-01-01

    Full Text Available The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  15. New Solutions to the Firing Squad Synchronization Problems for Neural and Hyperdag P Systems

    Directory of Open Access Journals (Sweden)

    Michael J. Dinneen

    2009-11-01

    Full Text Available We propose two uniform solutions to an open question: the Firing Squad Synchronization Problem (FSSP, for hyperdag and symmetric neural P systems, with anonymous cells. Our solutions take e_c+5 and 6e_c+7 steps, respectively, where e_c is the eccentricity of the commander cell of the dag or digraph underlying these P systems. The first and fast solution is based on a novel proposal, which dynamically extends P systems with mobile channels. The second solution is substantially longer, but is solely based on classical rules and static channels. In contrast to the previous solutions, which work for tree-based P systems, our solutions synchronize to any subset of the underlying digraph; and do not require membrane polarizations or conditional rules, but require states, as typically used in hyperdag and neural P systems.

  16. A red-light running prevention system based on artificial neural network and vehicle trajectory data.

    Science.gov (United States)

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  17. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    Science.gov (United States)

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  18. Dental anomalies in different cleft groups related to neural crest developmental fields contributes to the understanding of cleft aetiology

    DEFF Research Database (Denmark)

    Riis, Louise Claudius; Kjær, Inger; Mølsted, Kirsten

    2014-01-01

    OBJECTIVE: To analyze dental deviations in three cleft groups and relate findings to embryological neural crest fields (frontonasal, maxillary, and palatal). The overall purpose was to evaluate how fields are involved in different cleft types. DESIGN: Retrospective audit of clinical photographs...

  19. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    Science.gov (United States)

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  20. Wood Modification at High Temperature and Pressurized Steam: a Relational Model of Mechanical Properties Based on a Neural Network

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2015-07-01

    Full Text Available Thermally modified wood has high dimensional stability and biological durability.But if the process parameters of thermal modification are not appropriate, then there will be a decline in the physical properties of wood.A neural network algorithm was employed in this study to establish the relationship between the process parameters of high-temperature and high-pressure thermal modification and the mechanical properties of the wood. Three important parameters: temperature, relative humidity, and treatment time, were considered as the inputs to the neural network. Back propagation (BP neural network and radial basis function (RBF neural network models for prediction were built and compared. The comparison showed that the RBF neural network model had advantages in network structure, convergence speed, and generalization capacity. On this basis, the inverse model, reflecting the relationship between the process parameters and the mechanical properties of wood, was established. Given the desired mechanical properties of the wood, the thermal modification process parameters could be inversely optimized and predicted. The results indicated that the model has good learning ability and generalization capacity. This is of great importance for the theoretical and applicational studies of the thermal modification of wood.

  1. Identification of complex systems by artificial neural networks. Applications to mechanical frictions

    International Nuclear Information System (INIS)

    Dominguez, Manuel

    1998-01-01

    In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr

  2. DEVELOPMENT OF A COMPUTER SYSTEM FOR IDENTITY AUTHENTICATION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Timur Kartbayev

    2017-03-01

    Full Text Available The aim of the study is to increase the effectiveness of automated face recognition to authenticate identity, considering features of change of the face parameters over time. The improvement of the recognition accuracy, as well as consideration of the features of temporal changes in a human face can be based on the methodology of artificial neural networks. Hybrid neural networks, combining the advantages of classical neural networks and fuzzy logic systems, allow using the network learnability along with the explanation of the findings. The structural scheme of intelligent system for identification based on artificial neural networks is proposed in this work. It realizes the principles of digital information processing and identity recognition taking into account the forecast of key characteristics’ changes over time (e.g., due to aging. The structural scheme has a three-tier architecture and implements preliminary processing, recognition and identification of images obtained as a result of monitoring. On the basis of expert knowledge, the fuzzy base of products is designed. It allows assessing possible changes in key characteristics, used to authenticate identity based on the image. To take this possibility into consideration, a neuro-fuzzy network of ANFIS type was used, which implements the algorithm of Tagaki-Sugeno. The conducted experiments showed high efficiency of the developed neural network and a low value of learning errors, which allows recommending this approach for practical implementation. Application of the developed system of fuzzy production rules that allow predicting changes in individuals over time, will improve the recognition accuracy, reduce the number of authentication failures and improve the efficiency of information processing and decision-making in applications, such as authentication of bank customers, users of mobile applications, or in video monitoring systems of sensitive sites.

  3. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders.

    Science.gov (United States)

    Maheu, Marissa E; Ressler, Kerry J

    2017-09-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk for illnesses like depression and post-traumatic stress disorder, some have turned their attention instead to focusing on so-called "master regulators" of plasticity that may provide a means of controlling these potentially impaired processes in psychiatric illnesses. The mammalian homolog of Tailless (TLX), Wnt, and the homeoprotein Otx2 have all been proposed to constitute master regulators of different forms of plasticity which have, in turn, each been implicated in learning and stress-related disorders. In the present review, we provide an overview of the changing distribution of these genes and their roles both during development and in the adult brain. We further discuss how their distinct expression profiles provide clues as to their function, and may inform their suitability as candidate drug targets in the treatment of psychiatric disorders. © 2017 Maheu and Ressler; Published by Cold Spring Harbor Laboratory Press.

  4. Disentangling the neural mechanisms involved in Hinduism- and Buddhism-related meditations.

    Science.gov (United States)

    Tomasino, Barbara; Chiesa, Alberto; Fabbro, Franco

    2014-10-01

    The most diffuse forms of meditation derive from Hinduism and Buddhism spiritual traditions. Different cognitive processes are set in place to reach these meditation states. According to an historical-philological hypothesis (Wynne, 2009) the two forms of meditation could be disentangled. While mindfulness is the focus of Buddhist meditation reached by focusing sustained attention on the body, on breathing and on the content of the thoughts, reaching an ineffable state of nothigness accompanied by a loss of sense of self and duality (Samadhi) is the main focus of Hinduism-inspired meditation. It is possible that these different practices activate separate brain networks. We tested this hypothesis by conducting an activation likelihood estimation (ALE) meta-analysis of functional magnetic resonance imaging (fMRI) studies. The network related to Buddhism-inspired meditation (16 experiments, 263 subjects, and 96 activation foci) included activations in some frontal lobe structures associated with executive attention, possibly confirming the fundamental role of mindfulness shared by many Buddhist meditations. By contrast, the network related to Hinduism-inspired meditation (8 experiments, 54 activation foci and 66 subjects) triggered a left lateralized network of areas including the postcentral gyrus, the superior parietal lobe, the hippocampus and the right middle cingulate cortex. The dissociation between anterior and posterior networks support the notion that different meditation styles and traditions are characterized by different patterns of neural activation. Copyright © 2014. Published by Elsevier Inc.

  5. On control of Hopf bifurcation in time-delayed neural network system

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2005-01-01

    The control of Hopf bifurcations in neural network systems is studied in this Letter. The asymptotic stability theorem and the relevant corollary for linearized nonlinear dynamical systems are proven. In particular, a novel method for analyzing the local stability of a dynamical system with time-delay is suggested. For the time-delayed system consisting of one or two neurons, a washout filter based control model is proposed and analyzed. By employing the stability theorems derived, we investigate the stability of a control system and state the relevant theorems for choosing the parameters of the stabilized control system

  6. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  7. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  8. Sliding mode synchronization controller design with neural network for uncertain chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Mou Chen [College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)], E-mail: chenmou@nuaa.edu.cn; Jiang Changsheng; Bin Jiang; Wu Qingxian [College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2009-02-28

    A sliding mode synchronization controller is presented with RBF neural network for two chaotic systems in this paper. The compound disturbance of the synchronization error system consists of nonlinear uncertainties and exterior disturbances of chaotic systems. Based on RBF neural networks, a compound disturbance observer is proposed and the update law of parameters is given to monitor the compound disturbance. The synchronization controller is given based on the output of the compound disturbance observer. The designed controller can make the synchronization error convergent to zero and overcome the disruption of the uncertainty and the exterior disturbance of the system. Finally, an example is given to demonstrate the availability of the proposed synchronization control method.

  9. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  10. Neural net based determination of generator-shedding requirements in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE Inc., Cleveland, OH (United States)

    1992-09-01

    This paper presents an application of artificial neural networks (ANN) in support of a decision-making process by power system operators directed towards the fast stabilisation of multi-machine systems. The proposed approach considers generator shedding as the most effective discrete supplementary control for improving the dynamic performance of faulted power systems and preventing instabilities. The sensitivity of the transient energy function (TEF) with respect to changes in the amount of dropped generation is used during the training phase of ANNs to assess the critical amount of generator shedding required to prevent the loss of synchronism. The learning capabilities of neural nets are used to establish complex mappings between fault information and the amount of generation to be shed, suggesting it as the control signal to the power system operator. (author)

  11. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  12. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  13. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  14. New neural-networks-based 3D object recognition system

    Science.gov (United States)

    Abolmaesumi, Purang; Jahed, M.

    1997-09-01

    Three-dimensional object recognition has always been one of the challenging fields in computer vision. In recent years, Ulman and Basri (1991) have proposed that this task can be done by using a database of 2-D views of the objects. The main problem in their proposed system is that the correspondent points should be known to interpolate the views. On the other hand, their system should have a supervisor to decide which class does the represented view belong to. In this paper, we propose a new momentum-Fourier descriptor that is invariant to scale, translation, and rotation. This descriptor provides the input feature vectors to our proposed system. By using the Dystal network, we show that the objects can be classified with over 95% precision. We have used this system to classify the objects like cube, cone, sphere, torus, and cylinder. Because of the nature of the Dystal network, this system reaches to its stable point by a single representation of the view to the system. This system can also classify the similar views to a single class (e.g., for the cube, the system generated 9 different classes for 50 different input views), which can be used to select an optimum database of training views. The system is also very flexible to the noise and deformed views.

  15. Novel Modified Elman Neural Network Control for PMSG System Based on Wind Turbine Emulator

    OpenAIRE

    Lin, Chih-Hong

    2013-01-01

    The novel modified Elman neural network (NN) controlled permanent magnet synchronous generator (PMSG) system, which is directly driven by a permanent magnet synchronous motor (PMSM) based on wind turbine emulator, is proposed to control output of rectifier (AC/DC power converter) and inverter (DC/AC power converter) in this study. First, a closed loop PMSM drive control based on wind turbine emulator is designed to generate power for the PMSG system according to different wind speeds. Then, t...

  16. An analog VLSI real time optical character recognition system based on a neural architecture

    International Nuclear Information System (INIS)

    Bo, G.; Caviglia, D.; Valle, M.

    1999-01-01

    In this paper a real time Optical Character Recognition system is presented: it is based on a feature extraction module and a neural network classifier which have been designed and fabricated in analog VLSI technology. Experimental results validate the circuit functionality. The results obtained from a validation based on a mixed approach (i.e., an approach based on both experimental and simulation results) confirm the soundness and reliability of the system

  17. An analog VLSI real time optical character recognition system based on a neural architecture

    Energy Technology Data Exchange (ETDEWEB)

    Bo, G.; Caviglia, D.; Valle, M. [Genoa Univ. (Italy). Dip. of Biophysical and Electronic Engineering

    1999-03-01

    In this paper a real time Optical Character Recognition system is presented: it is based on a feature extraction module and a neural network classifier which have been designed and fabricated in analog VLSI technology. Experimental results validate the circuit functionality. The results obtained from a validation based on a mixed approach (i.e., an approach based on both experimental and simulation results) confirm the soundness and reliability of the system.

  18. Review of Data Preprocessing Methods for Sign Language Recognition Systems based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zorins Aleksejs

    2016-12-01

    Full Text Available The article presents an introductory analysis of relevant research topic for Latvian deaf society, which is the development of the Latvian Sign Language Recognition System. More specifically the data preprocessing methods are discussed in the paper and several approaches are shown with a focus on systems based on artificial neural networks, which are one of the most successful solutions for sign language recognition task.

  19. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  20. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2010-09-01

    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  1. A neural network approach to the study of internal energy flow in molecular systems

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Getino, C.; Noid, D.W.

    1992-01-01

    Neural networks are used to develop a new technique for efficient analysis of data obtained from molecular-dynamics calculations and is applied to the study of mode energy flow in molecular systems. The methodology is based on teaching an appropriate neural network the relationship between phase-space points along a classical trajectory and mode energies for stretch, bend, and torsion vibrations. Results are discussed for reactive and nonreactive classical trajectories of hydrogen peroxide (H 2 O 2 ) on a semiempirical potential-energy surface. The neural-network approach is shown to produce reasonably accurate values for the mode energies, with average errors between 1% and 12%, and is applicable to any region within the 24-dimensional phase space of H 2 O 2 . In addition, the generic knowledge learned by the neural network allows calculations to be made for other molecular systems. Results are discussed for a series of tetratomic molecules: H 2 X 2 , X=C, N, O, Si, S, or Se, and preliminary results are given for energy flow predictions in macromolecules

  2. A neurally inspired musical instrument classification system based upon the sound onset.

    Science.gov (United States)

    Newton, Michael J; Smith, Leslie S

    2012-06-01

    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.

  3. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  4. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  5. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  6. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  7. Hybrid information privacy system: integration of chaotic neural network and RSA coding

    Science.gov (United States)

    Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.

    2005-03-01

    Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.

  8. A wireless transmission neural interface system for unconstrained non-human primates.

    Science.gov (United States)

    Fernandez-Leon, Jose A; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J; Hansen, Bryan J; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  9. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  10. Neural systems analysis of decision making during goal-directed navigation.

    Science.gov (United States)

    Penner, Marsha R; Mizumori, Sheri J Y

    2012-01-01

    The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.

  11. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.

    Science.gov (United States)

    Samarasinghe, S; Ling, H

    In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced

  12. Study on reciprocal relation of pore water pressure with genetic algorithm and neural network model (Contract research)

    International Nuclear Information System (INIS)

    Seno, Shoji; Nakajima, Makoto; Toida, Masaru; Kunimaru, Takanori; Watanabe, Kunio; Sohail Ahmed Rai

    2009-12-01

    Horonobe Underground Research Center has carried out the Horonobe Underground Research Laboratory Project which is a comprehensive research project to investigate the deep geological environment within sedimentary rock. In this project, long-term observation of the pore water pressure has been conducted with monitoring systems introduced in 9 of 11 boreholes drilled in phase I (surface-based investigation). Since August 2003 the monitoring systems have been settled successively in the boreholes, and a certain amount of the pore water pressure data has been already accumulated. Using 6 borehole data (HDB-1,3,6,7,8,9) among this, this report summarized the result of a study on reciprocal relation of pore water pressure to investigate the hydrogeological environment of this site. At first, to exclude the influences of working of nature such as tide and atmospheric pressure from the source data, an analysis with Bayesian model was progressed. As the result of the estimation of these influences calculated by BAYTAP-G (Bayesian Tidal Analysis Program Grouping Model), it was found that the influence of the atmospheric pressure was comparatively large and that of tide was comparatively small. Secondly, an analysis on the reciprocal relation of the pore water pressure was carried out to investigate the relation between the different depth points of the same borehole and the relation between different boreholes. As the result of the calculations with genetic algorithm (GA) and neural network models (BPANN, GAANN), it was found that estimation by GA models was better than other models in the case where analyzing data included radical changes. And the result also showed that in regions lower than GL.-400m of HDB-3,6,7,8, the pore water pressures change in the same manner. These results indicate the effectiveness of this analysis method. (author)

  13. A comparison of neural tube defects identified by two independent routine recording systems for congenital malformations in Northern Ireland.

    Science.gov (United States)

    Nevin, N C; McDonald, J R; Walby, A L

    1978-12-01

    The efficiency of two systems for recording congenital malformations has been compared; one system, the Registrar General's Congenital Malformation Notification, is based on registering all malformed infants, and the other, the Child Health System, records all births. In Northern Ireland for three years [1974--1976], using multiple sources of ascertainment, a total of 686 infants with neural tube defects was identified among 79 783 live and stillbirths. The incidence for all neural tube defects in 8 60 per 1 000 births. The Registrar General's Congenital Malformation Notification System identified 83.6% whereas the Child Health System identified only 63.3% of all neural tube defects. Both systems together identified 86.2% of all neural tube defects. The two systems are suitable for monitoring of malformations and the addition of information from the Genetic Counselling Clinics would enhance the data for epidemiological studies.

  14. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  15. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  16. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  17. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  18. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  19. Optimization of workflow scheduling in Utility Management System with hierarchical neural network

    Directory of Open Access Journals (Sweden)

    Srdjan Vukmirovic

    2011-08-01

    Full Text Available Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it can be used for executing large scale applications. Utility Management Systems execute very large numbers of workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, Serbia. Performance tests show that significant improvement of overall execution time can be achieved by Hierarchical Artificial Neural Networks.

  20. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  1. CloudScan - A Configuration-Free Invoice Analysis System Using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Palm, Rasmus Berg; Winther, Ole; Laws, Florian

    2017-01-01

    We present CloudScan; an invoice analysis system that requires zero configuration or upfront annotation. In contrast to previous work, CloudScan does not rely on templates of invoice layout, instead it learns a single global model of invoices that naturally generalizes to unseen invoice layouts....... The model is trained using data automatically extracted from end-user provided feedback. This automatic training data extraction removes the requirement for users to annotate the data precisely. We describe a recurrent neural network model that can capture long range context and compare it to a baseline...... logistic regression model corresponding to the current CloudScan production system. We train and evaluate the system on 8 important fields using a dataset of 326,471 invoices. The recurrent neural network and baseline model achieve 0.891 and 0.887 average F1 scores respectively on seen invoice layouts...

  2. A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2016-01-01

    Full Text Available A sliding mode control method based on radial basis function (RBF neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network parameters are derived by a Koski function algorithm to ensure the network convergences and enacts stable control. The simulations and experimental results of the deburring robot system are provided to illustrate the effectiveness of the proposed RBFNN-SMC control method. The advantages of the proposed RBFNN-SMC method are also evaluated by comparing it to existing control schemes.

  3. Age-related neural correlates of cognitive task performance under increased postural load

    NARCIS (Netherlands)

    Van Impe, A; Bruijn, S M; Coxon, J P; Wenderoth, N; Sunaert, S; Duysens, J; Swinnen, S P

    2013-01-01

    Behavioral studies suggest that postural control requires increased cognitive control and visuospatial processing with aging. Consequently, performance can decline when concurrently performing a postural and a demanding cognitive task. We aimed to identify the neural substrate underlying this

  4. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    Science.gov (United States)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  5. Soil infiltration based on bp neural network and grey relational analysis

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2013-02-01

    Full Text Available Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

  6. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Discrepancy of neural response between exogenous and endogenous task switching: an event-related potentials study.

    Science.gov (United States)

    Miyajima, Maki; Toyomaki, Atsuhito; Hashimoto, Naoki; Kusumi, Ichiro; Murohashi, Harumitsu; Koyama, Tsukasa

    2012-08-01

    Task switching is a well-known cognitive paradigm to explore task-set reconfiguration processes such as rule shifting. In particular, endogenous task switching is thought to differ qualitatively from stimulus-triggered exogenous task switching. However, no previous study has examined the neural substrate of endogenous task switching. The purpose of the present study is to explore the differences between event-related potential responses to exogenous and endogenous rule switching at cue stimulus. We modified two patterns of cued switching tasks: exogenous (bottom-up) rule switching and endogenous (top-down) rule switching. In each task cue stimulus was configured to induce switching or maintaining rule. In exogenous switching tasks, late positive deflection was larger in the switch rule condition than in the maintain rule condition. However, in endogenous switching tasks late positive deflection was unexpectedly larger in the maintain-rule condition than in the switch-rule condition. These results indicate that exogenous rule switching is explicit stimulus-driven processes, whereas endogenous rule switching is implicitly parallel processes independent of external stimulus.

  8. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.

    Science.gov (United States)

    Condro, Michael C; White, Stephanie A

    2014-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. Copyright © 2013 Wiley Periodicals, Inc.

  9. Parametric models to relate spike train and LFP dynamics with neural information processing.

    Science.gov (United States)

    Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan

    2012-01-01

    Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial

  10. Let7a involves in neural stem cell differentiation relating with TLX level.

    Science.gov (United States)

    Song, Juhyun; Cho, Kyoung Joo; Oh, Yumi; Lee, Jong Eun

    2015-07-10

    Neural stem cells (NSCs) have the potential for differentiation into neurons known as a groundbreaking therapeutic solution for central nervous system (CNS) diseases. To resolve the therapeutic efficiency of NSCs, recent researchers have focused on the study on microRNA's role in CNS. Some micro RNAs have been reported significant functions in NSC self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. MicroRNA-Let7a (Let7a) has known as the regulator of diverse cellular mechanisms including cell differentiation and proliferation. In present study, we investigated whether Let7a regulates NSC differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal, proliferation and differentiation. We performed the following experiments: western blot analysis, TaqMan assay, RT-PCR, and immunocytochemistry to confirm the alteration of NSCs. Our data showed that let7a play important roles in controlling NSC fate determination. Thus, manipulating Let-7A and TLX could be a novel strategy to enhance the efficiency of NSC's neuronal differentiation for CNS disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Let7a involves in neural stem cell differentiation relating with TLX level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Juhyun [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Kyoung Joo; Oh, Yumi [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Jong Eun, E-mail: jelee@yuhs.ac [Department of Anatomy, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-07-10

    Neural stem cells (NSCs) have the potential for differentiation into neurons known as a groundbreaking therapeutic solution for central nervous system (CNS) diseases. To resolve the therapeutic efficiency of NSCs, recent researchers have focused on the study on microRNA's role in CNS. Some micro RNAs have been reported significant functions in NSC self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. MicroRNA-Let7a (Let7a) has known as the regulator of diverse cellular mechanisms including cell differentiation and proliferation. In present study, we investigated whether Let7a regulates NSC differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal, proliferation and differentiation. We performed the following experiments: western blot analysis, TaqMan assay, RT-PCR, and immunocytochemistry to confirm the alteration of NSCs. Our data showed that let7a play important roles in controlling NSC fate determination. Thus, manipulating Let-7A and TLX could be a novel strategy to enhance the efficiency of NSC's neuronal differentiation for CNS disorders. - Highlights: • Let7a influences on NSC differentiation and proliferation. • Let7a involves in mainly NSC differentiation rather than proliferation. • Let7a positively regulates the TLX expression.

  12. Let7a involves in neural stem cell differentiation relating with TLX level

    International Nuclear Information System (INIS)

    Song, Juhyun; Cho, Kyoung Joo; Oh, Yumi; Lee, Jong Eun

    2015-01-01

    Neural stem cells (NSCs) have the potential for differentiation into neurons known as a groundbreaking therapeutic solution for central nervous system (CNS) diseases. To resolve the therapeutic efficiency of NSCs, recent researchers have focused on the study on microRNA's role in CNS. Some micro RNAs have been reported significant functions in NSC self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. MicroRNA-Let7a (Let7a) has known as the regulator of diverse cellular mechanisms including cell differentiation and proliferation. In present study, we investigated whether Let7a regulates NSC differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal, proliferation and differentiation. We performed the following experiments: western blot analysis, TaqMan assay, RT-PCR, and immunocytochemistry to confirm the alteration of NSCs. Our data showed that let7a play important roles in controlling NSC fate determination. Thus, manipulating Let-7A and TLX could be a novel strategy to enhance the efficiency of NSC's neuronal differentiation for CNS disorders. - Highlights: • Let7a influences on NSC differentiation and proliferation. • Let7a involves in mainly NSC differentiation rather than proliferation. • Let7a positively regulates the TLX expression

  13. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  14. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    Science.gov (United States)

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  16. Relational time in anyonic systems

    Science.gov (United States)

    Nikolova, A.; Brennen, G. K.; Osborne, T. J.; Milburn, G. J.; Stace, T. M.

    2018-03-01

    In a seminal paper [Phys. Rev. D 27, 2885 (1983), 10.1103/PhysRevD.27.2885], Page and Wootters suggest that time evolution could be described solely in terms of correlations between systems and clocks, as a means of dealing with the "problem of time" stemming from vanishing Hamiltonian dynamics in many theories of quantum gravity. Their approach seeks to identify relational dynamics given a Hamiltonian constraint on the physical states. Here we present a "state-centric" reformulation of the Page and Wootters model better suited to cases where the Hamiltonian constraint is satisfied, such as anyons emerging in Chern-Simons theories. We describe relational time by encoding logical "clock" qubits into topologically protected anyonic degrees of freedom. The minimum temporal increment of such anyonic clocks is determined by the universality of the anyonic braid group, with nonuniversal models naturally exhibiting discrete time. We exemplify this approach by using SU (2) 2 anyons and discuss generalizations to other states and models.

  17. Intelligent Prediction of Soccer Technical Skill on Youth Soccer Player's Relative Performance Using Multivariate Analysis and Artificial Neural Network Techniques

    OpenAIRE

    Abdullah, M. R; Maliki, A. B. H. M; Musa, R. M; Kosni, N. A; Juahir, H

    2016-01-01

    This study aims to predict the potential pattern of soccer technical skill on Malaysia youth soccer players relative performance using multivariate analysis and artificial neural network techniques. 184 male youth soccer players were recruited in Malaysia soccer academy (average age = 15.2±2.0) underwent to, physical fitness test, anthropometric, maturity, motivation and the level of skill related soccer. Unsupervised pattern recognition of principal component analysis (PCA) was used to ident...

  18. Implementing artificial neural networks in nuclear power plants diagnostic systems: issues and challenges

    International Nuclear Information System (INIS)

    Boger, Z.

    1998-01-01

    A recent review of artificial intelligence applications in nuclear power plants (NPP) diagnostics and fault detection finds that mostly expert systems (ES) and artificial neural networks (ANN) techniques were researched and proposed, but the number of actual implementations in NPP diagnostics systems is very small. It lists the perceived obstacles to the ANN-based system acceptance and implementation. This paper analyses this list. Some of ANN limitations relate to 'quantitative' difficulties of designing and training large-scale ANNs. The availability of an efficient large-scale ANN training algorithm may alleviate most of these concerns. Other perceived drawbacks refer to the 'qualitative' aspects of ANN acceptance - how and when can we rely on the quality of the advice given by the ANN model. Several techniques are available that help to brighten the 'black box' image of the ANN. Analysis of the trained ANN can identify the significant inputs. Calculation of the Causal Indices may reveal the magnitude and sign of the influence of each input on each output. Both these techniques increase the confidence of the users when they conform to known knowledge, or point to plausible relationships. Analysis of the behavior of the neurons in the hidden layer can identify false ANN classification when presented with noisy or corrupt data. Auto-associative NN can identify faulty sensors or data. Two examples of the ANN capabilities as possible diagnostic tools are given, using NPP data, one classifying internal reactor disturbances by neutron noise spectra analysis, the other identifying the faults causes of several transients. To use these techniques the ANN developers need large amount of training data of as many transients as possible. Such data is routinely generated in NPP simulators during the periodic qualification of NPP operators. The IAEA can help by encouraging the saving and distributing the transient data to developers of ANN diagnostic system, to serve as

  19. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  20. Opto-electronic system for a formal neural network

    Science.gov (United States)

    Heggarty, Keven

    A study on the construction of an optoelectronic system which makes use of the capacities of holographic optics for performing interconnections is presented. In the chosen application (digit recognition) the system acts as an associative memory treating two dimensional data structures (images) in parallel. Starting from the Hopfield model, the synaptic matrix algorithm is modified to adapt the network to optical implementation and improve its discrimination of similar memory vectors. The approach leads to a correlation-reconstruction interpretation of pseudo-inverse techniques. The coding of the computed generated hologram used to perform the connections between two planes which form the outputs and the inputs of the neurons is addressed. This hologram is unusual in that it fulfills simultaneously the necessary correlation and reconstruction functions. The standard techniques of digital holography, usually optimized for one or the other of these functions, is therefore adapted to the specific needs of the connection hologram. In particular, the reduction of the dynamic range of the hologram, whilst retaining the correlation function and a useful degree of shift invariance, is demonstrated. The construction of the prototype system and the adaptation of a laser lithography facility to the fabrication of the holograms are described. The potential of the system is illustrated with experimental results demonstrating its capacity to recognize and discriminate to correlated images from noisy, translated input images. Generalization of the system for use as an interconnection stage in more complicated architectures is illustrated.

  1. Factors that influence the relative use of multiple memory systems.

    Science.gov (United States)

    Packard, Mark G; Goodman, Jarid

    2013-11-01

    Neurobehavioral evidence supports the existence of at least two anatomically distinct "memory systems" in the mammalian brain that mediate dissociable types of learning and memory; a "cognitive" memory system dependent upon the hippocampus and a "stimulus-response/habit" memory system dependent upon the dorsolateral striatum. Several findings indicate that despite their anatomical and functional distinctiveness, hippocampal- and dorsolateral striatal-dependent memory systems may potentially interact and that, depending on the learning situation, this interaction may be cooperative or competitive. One approach to examining the neural mechanisms underlying these interactions is to consider how various factors influence the relative use of multiple memory systems. The present review examines several such factors, including information compatibility, temporal sequence of training, the visual sensory environment, reinforcement parameters, emotional arousal, and memory modulatory systems. Altering these parameters can lead to selective enhancements of either hippocampal-dependent or dorsolateral striatal-dependent memory, and bias animals toward the use of either cognitive or habit memory in dual-solution tasks that may be solved adequately with either memory system. In many learning situations, the influence of such experimental factors on the relative use of memory systems likely reflects a competitive interaction between the systems. Research examining how various factors influence the relative use of multiple memory systems may be a useful method for investigating how these systems interact with one another. Copyright © 2013 Wiley Periodicals, Inc.

  2. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.

    Science.gov (United States)

    Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng

    2013-02-01

    This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.

  3. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories.

    Science.gov (United States)

    Sachs, Olga; Weis, Susanne; Zellagui, Nadia; Huber, Walter; Zvyagintsev, Mikhail; Mathiak, Klaus; Kircher, Tilo

    2008-07-07

    Most current models of knowledge organization are based on hierarchical or taxonomic categories (animals, tools). Another important organizational pattern is thematic categorization, i.e. categories held together by external relations, a unifying scene or event (car and garage). The goal of this study was to compare the neural correlates of these categories under automatic processing conditions that minimize strategic influences. We used fMRI to examine neural correlates of semantic priming for category members with a short stimulus onset asynchrony (SOA) of 200 ms as subjects performed a lexical decision task. Four experimental conditions were compared: thematically related words (car-garage); taxonomically related (car-bus); unrelated (car-spoon); non-word trials (car-derf). We found faster reaction times for related than for unrelated prime-target pairs for both thematic and taxonomic categories. However, the size of the thematic priming effect was greater than that of the taxonomic. The imaging data showed signal changes for the taxonomic priming effects in the right precuneus, postcentral gyrus, middle frontal and superior frontal gyri and thematic priming effects in the right middle frontal gyrus and anterior cingulate. The contrast of neural priming effects showed larger signal changes in the right precuneus associated with the taxonomic but not with thematic priming response. We suggest that the greater involvement of precuneus in the processing of taxonomic relations indicates their reduced salience in the knowledge structure compared to more prominent thematic relations.

  4. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  5. System Control Device Electronics Smart Home Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Safarul Ilham

    2017-06-01

    Full Text Available The use of information technology is very useful for today’s life and the next, where the human facilitated in doing a variety of activities in the life day to day. By the development of the existing allows people no longer do a job with difficulty. For that, it takes a system safety home using system technology Web-based and complete video streaming CCTV (video streaming a person can see the condition of his home whenever and wherever by using handphone, laptops and other tools are connected to the Internet network. This tool can facilitate someone in the monitor at home and control equipment the House as open and close and the lock the gate, turning on and off the lights so homeowners are no longer have to visit their home and fear the state of the House because fully security and control in the House was handled by the system. based on the above problems Writer try to design work system a tool that can control the simulation tools home using two Microcontroller is Attiny 2313 and Atmega16.

  6. Artificial neural networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, H. C.; Chang, S. H.

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a method using artificial neural networks is studied in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes appeared during accidents, the deviation is about ±10∼15%. The suggested method could be the alternative that can calculate DNBR very quickly while increasing the plant availability

  7. Abstract computation in schizophrenia detection through artificial neural network based systems.

    Science.gov (United States)

    Cardoso, L; Marins, F; Magalhães, R; Marins, N; Oliveira, T; Vicente, H; Abelha, A; Machado, J; Neves, J

    2015-01-01

    Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.

  8. Characterization of a photoacoustic system through neural networks to determine multicomponent samples

    Science.gov (United States)

    Zajarevich, N. M.; Peuriot, A. L.; Slezak, V. B.

    2016-07-01

    Photoacoustic spectroscopy for trace gases detection, based on a CO2 laser, can be used in a wide range of applications. The tunability of this laser in the mid-infrared (9.4-10.6 μm) allows the quantitative determination of different substances in multicomponent samples. In general, at traces level, the total photoacoustic amplitude at a certain wavelength may be approximated by a linear superposition of the amplitudes given by each of the species absorbing at that wavelength. However, in some cases, the sum of the individual signals is no longer valid. In particular, it is known the presence of CO2 delays the acoustic signal in relation to the laser excitation due to the exchange of vibrational energy between CO2 and N2. This phenomenon generates a slow V-T energy relaxation from a metastable N2 vibrational level and the sum of individual contributions may no longer be valid. Moreover, the resolution of a linear equation system has limitations, so the possibility to determine concentrations in photoacoustics based on neural network is proposed in this work. This procedure is tried in a particular case of a volatile organic compound, such as C2H4, and CO2 in air. The results are compared with the ones obtained with a model based on rate equations.

  9. Abstract Computation in Schizophrenia Detection through Artificial Neural Network Based Systems

    Directory of Open Access Journals (Sweden)

    L. Cardoso

    2015-01-01

    Full Text Available Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason of defective information.

  10. Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy.

    Science.gov (United States)

    Aminsharifi, Alireza; Irani, Dariush; Pooyesh, Shima; Parvin, Hamid; Dehghani, Sakineh; Yousofi, Khalilolah; Fazel, Ebrahim; Zibaie, Fatemeh

    2017-05-01

    To construct, train, and apply an artificial neural network (ANN) system for prediction of different outcome variables of percutaneous nephrolithotomy (PCNL). We calculated predictive accuracy, sensitivity, and precision for each outcome variable. During the study period, all adult patients who underwent PCNL at our institute were enrolled in the study. Preoperative and postoperative variables were recorded, and stone-free status was assessed perioperatively with computed tomography scans. MATLAB software was used to design and train the network in a feed forward back-propagation error adjustment scheme. Preoperative and postoperative data from 200 patients (training set) were used to analyze the effect and relative relevance of preoperative values on postoperative parameters. The validated adequately trained ANN was used to predict postoperative outcomes in the subsequent 254 adult patients (test set) whose preoperative values were serially fed into the system. To evaluate system accuracy in predicting each postoperative variable, predicted values were compared with actual outcomes. Two hundred fifty-four patients (155 [61%] males) were considered the test set. Mean stone burden was 6702.86 ± 381.6 mm 3 . Overall stone-free rate was 76.4%. Fifty-four out of 254 patients (21.3%) required ancillary procedures (shockwave lithotripsy 5.9%, transureteral lithotripsy 10.6%, and repeat PCNL 4.7%). The accuracy and sensitivity of the system in predicting different postoperative variables ranged from 81.0% to 98.2%. As a complex nonlinear mathematical model, our ANN system is an interconnected data mining tool, which prospectively analyzes and "learns" the relationships between variables. The accuracy and sensitivity of the system for predicting the stone-free rate, the need for blood transfusion, and post-PCNL ancillary procedures ranged from 81.0% to 98.2%.The stone burden and the stone morphometry were among the most significant preoperative characteristics that

  11. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  12. An electronic system for simulation of neural networks with a micro-second real time constraint

    International Nuclear Information System (INIS)

    Chorti, Arsenia; Granado, Bertrand; Denby, Bruce; Garda, Patrick

    2001-01-01

    Neural networks implemented in hardware can perform pattern recognition very quickly, and as such have been used to advantage in the triggering systems of certain high energy physics experiments. Typically, time constants of the order of a few microseconds are required. In this paper, we present a new system. MAHARADJA, for evaluating MLP and RBF neural network paradigms in real time. The system is tested on a possible ATLAS muon triggering application suggested by the Tel Aviv ATLAS group, consisting of a 4-8-8-4 MLP which must be evaluated in 10 microseconds. The inputs to the net are dx/dz, x(z=0), dy/dz, and y(z=0), whereas the outputs give pt, tan(phi), sin(theta), and q, the charge. With a 10 MHz clock, MAHARADJA calculates the result in 6.8 microseconds; at 20 MHz, which is readily attainable, this would be reduced to only 3.4 microseconds. The system can also handle RBF networks with 3 different distance metrics (Euclidean, Manhattan and Mahalanobis), and can simulate any MLP of 10 hidden layers or less. The electronic implementation is with FPGA's, which can be optimized for a specific neural network because the number of processing elements can be modified

  13. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  14. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  15. Neural correlates of consciousness

    African Journals Online (AJOL)

    neural cells.1 Under this approach, consciousness is believed to be a product of the ... possible only when the 40 Hz electrical hum is sustained among the brain circuits, ... expect the brain stem ascending reticular activating system. (ARAS) and the ... related synchrony of cortical neurons.11 Indeed, stimulation of brainstem ...

  16. Visual working memory load-related changes in neural activity and functional connectivity.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: Visual working memory (VWM helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we recorded electroencephalography (EEG from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4-8 Hz, alpha- (8-12 Hz, beta- (12-32 Hz, and gamma- (32-40 Hz frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. CONCLUSIONS/SIGNIFICANCE: We suggest that the differences in theta- and alpha- bands between LVF and RVF

  17. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Science.gov (United States)

    Sosic-Vasic, Zrinka; Ulrich, Martin; Ruchsow, Martin; Vasic, Nenad; Grön, Georg

    2012-01-01

    The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness) and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI). A second strong positive correlation was observed in the anterior cingulate gyrus (ACC). Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  18. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Directory of Open Access Journals (Sweden)

    Zrinka Sosic-Vasic

    Full Text Available The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI. A second strong positive correlation was observed in the anterior cingulate gyrus (ACC. Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  19. Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    Science.gov (United States)

    Li, Ling; Zhang, Jin-Xiang; Jiang, Tao

    2011-01-01

    Background Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. Methodology/Principal Findings In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. Conclusions/Significance We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in

  20. Distributed Energy Neural Network Integration System: Year One Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Regan, T.; Sinnock, H.; Davis, A.

    2003-06-01

    This report describes the work of Orion Engineering Corp. to develop a DER household controller module and demonstrate the ability of a group of these controllers to operate through an intelligent, neighborhood controller. The controllers will provide a smart, technologically advanced, simple, efficient, and economic solution for aggregating a community of small distributed generators into a larger single, virtual generator capable of selling power or other services to a utility, independent system operator (ISO), or other entity in a coordinated manner.

  1. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  2. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    Science.gov (United States)

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    Science.gov (United States)

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  4. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resulting in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.