WorldWideScience

Sample records for neural system underlying

  1. Child Maltreatment and Neural Systems Underlying Emotion Regulation.

    Science.gov (United States)

    McLaughlin, Katie A; Peverill, Matthew; Gold, Andrea L; Alves, Sonia; Sheridan, Margaret A

    2015-09-01

    The strong associations between child maltreatment and psychopathology have generated interest in identifying neurodevelopmental processes that are disrupted following maltreatment. Previous research has focused largely on neural response to negative facial emotion. We determined whether child maltreatment was associated with neural responses during passive viewing of negative and positive emotional stimuli and effortful attempts to regulate emotional responses. A total of 42 adolescents aged 13 to 19 years, half with exposure to physical and/or sexual abuse, participated. Blood oxygen level-dependent (BOLD) response was measured during passive viewing of negative and positive emotional stimuli and attempts to modulate emotional responses using cognitive reappraisal. Maltreated adolescents exhibited heightened response in multiple nodes of the salience network, including amygdala, putamen, and anterior insula, to negative relative to neutral stimuli. During attempts to decrease responses to negative stimuli relative to passive viewing, maltreatment was associated with greater recruitment of superior frontal gyrus, dorsal anterior cingulate cortex, and frontal pole; adolescents with and without maltreatment down-regulated amygdala response to a similar degree. No associations were observed between maltreatment and neural response to positive emotional stimuli during passive viewing or effortful regulation. Child maltreatment heightens the salience of negative emotional stimuli. Although maltreated adolescents modulate amygdala responses to negative cues to a degree similar to that of non-maltreated youths, they use regions involved in effortful control to a greater degree to do so, potentially because greater effort is required to modulate heightened amygdala responses. These findings are promising, given the centrality of cognitive restructuring in trauma-focused treatments for children. Copyright © 2015 American Academy of Child and Adolescent Psychiatry

  2. Neural Systems Underlying Individual Differences in Intertemporal Decision-making.

    Science.gov (United States)

    Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A

    2017-03-01

    Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.

  3. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  4. Outcome assessment of patients with metastatic renal cell carcinoma under systemic therapy using artificial neural networks.

    Science.gov (United States)

    Buchner, Alexander; Kendlbacher, Martin; Nuhn, Philipp; Tüllmann, Cordula; Haseke, Nicolas; Stief, Christian G; Staehler, Michael

    2012-03-01

    The outcome of patients with advanced renal cell carcinoma (RCC) under systemic therapy shows remarkable variability, and there is a need to identify prognostic parameters that allow individual prognostic stratification and selection of optimal therapy. Artificial neural networks (ANN) are software systems that can be trained to recognize complex data patterns. In this study, we used ANNs to identify poor prognosis of patients with RCC based on common clinical parameters available at the beginning of systemic therapy. Data from patients with RCC who started systemic therapy were collected prospectively in a single center database; 175 data sets with follow-up data (median, 36 months) were available for analysis. Age, sex, body mass index, performance status, histopathologic parameters, time interval between primary tumor and detection of metastases, type of systemic therapy, number of metastases, and metastatic sites were used as input data for the ANN. The target variable was overall survival after 36 months. Logistic regression models were constructed by using the same variables. Death after 36 months occurred in 26% of the patients in the tyrosine kinase inhibitors group and in 37% of the patients in the immunotherapy group (P = .22). ANN achieved 95% overall accuracy and significantly outperformed logistic regression models (78% accuracy). Pathologic T classification, invasion of vessels, and tumor grade had the highest impact on the network's decision. ANN is a promising approach for individual risk stratification of patients with advanced RCC under systemic therapy, based on clinical parameters, and can help to optimize the therapeutic strategy. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    Science.gov (United States)

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  6. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  7. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers

    Directory of Open Access Journals (Sweden)

    Mauricio R Delgado

    2011-05-01

    Full Text Available Money is a secondary reinforcer commonly used across a range of disciplines in experimental paradigms investigating reward learning and decision-making. The effectiveness of monetary reinforcers during aversive learning and its neural basis, however, remains a topic of debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary losses depends on similar neural systems as more traditional aversive conditioning that involves primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer (shock and a socially defined secondary reinforcer (money during aversive learning and its associated neural circuitry. During a two-part experiment, participants first played a gambling game where wins and losses were based on performance to gain an experimental bank. Participants were then exposed to two separate aversive conditioning sessions. In one session, a primary reinforcer (mild shock served as an unconditioned stimulus (US and was paired with one of two colored squares, the conditioned stimuli (CS+ and CS-, respectively. In another session, a secondary reinforcer (loss of money served as the US and was paired with one of two different CS. Skin conductance responses were greater for CS+ compared to CS- trials irrespective of type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with reward-related processing, was found to be involved in the acquisition of aversive conditioned response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a follow-up case study with a patient with bilateral amygdala damage. Taken together, these results suggest that learning about potential monetary losses may depend on reinforcement learning related systems, rather than on typical structures involved in more biologically based

  8. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  9. What ethologically based models have taught us about the neural systems underlying fear and anxiety

    Directory of Open Access Journals (Sweden)

    N.S. Canteras

    2012-04-01

    Full Text Available Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.

  10. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems.

    Directory of Open Access Journals (Sweden)

    Kentaro Yamanaka

    Full Text Available The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (~100 ms stop-to-restart intervals (SRSI, and an increased probability of difficulties after longer (>200 ms SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms, the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM excitability. Finally, we recorded electroencephalogram (EEG activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms, weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150-200 ms, because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results

  11. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems.

    Science.gov (United States)

    Yamanaka, Kentaro; Nozaki, Daichi

    2013-01-01

    The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time) of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (~100 ms) stop-to-restart intervals (SRSI), and an increased probability of difficulties after longer (>200 ms) SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs) in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms), the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM) excitability. Finally, we recorded electroencephalogram (EEG) activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms), weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150-200 ms), because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results suggest that

  12. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  13. Neural Dynamics Underlying Event-Related Potentials

    Science.gov (United States)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  14. Reduced functional integration and segregation of distributed neural systems underlying social and emotional information processing in autism spectrum disorders.

    Science.gov (United States)

    Rudie, Jeffrey D; Shehzad, Zarrar; Hernandez, Leanna M; Colich, Natalie L; Bookheimer, Susan Y; Iacoboni, Marco; Dapretto, Mirella

    2012-05-01

    A growing body of evidence suggests that autism spectrum disorders (ASDs) are related to altered communication between brain regions. Here, we present findings showing that ASD is characterized by a pattern of reduced functional integration as well as reduced segregation of large-scale brain networks. Twenty-three children with ASD and 25 typically developing matched controls underwent functional magnetic resonance imaging while passively viewing emotional face expressions. We examined whole-brain functional connectivity of two brain structures previously implicated in emotional face processing in autism: the amygdala bilaterally and the right pars opercularis of the inferior frontal gyrus (rIFGpo). In the ASD group, we observed reduced functional integration (i.e., less long-range connectivity) between amygdala and secondary visual areas, as well as reduced segregation between amygdala and dorsolateral prefrontal cortex. For the rIFGpo seed, we observed reduced functional integration with parietal cortex and increased integration with right frontal cortex as well as right nucleus accumbens. Finally, we observed reduced segregation between rIFGpo and the ventromedial prefrontal cortex. We propose that a systems-level approach-whereby the integration and segregation of large-scale brain networks in ASD is examined in relation to typical development-may provide a more detailed characterization of the neural basis of ASD.

  15. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  16. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  17. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  18. Degenerate coding in neural systems.

    Science.gov (United States)

    Leonardo, Anthony

    2005-11-01

    When the dimensionality of a neural circuit is substantially larger than the dimensionality of the variable it encodes, many different degenerate network states can produce the same output. In this review I will discuss three different neural systems that are linked by this theme. The pyloric network of the lobster, the song control system of the zebra finch, and the odor encoding system of the locust, while different in design, all contain degeneracies between their internal parameters and the outputs they encode. Indeed, although the dynamics of song generation and odor identification are quite different, computationally, odor recognition can be thought of as running the song generation circuitry backwards. In both of these systems, degeneracy plays a vital role in mapping a sparse neural representation devoid of correlations onto external stimuli (odors or song structure) that are strongly correlated. I argue that degeneracy between input and output states is an inherent feature of many neural systems, which can be exploited as a fault-tolerant method of reliably learning, generating, and discriminating closely related patterns.

  19. Memory Storage and Neural Systems.

    Science.gov (United States)

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  20. Natural neural projection dynamics underlying social behavior.

    Science.gov (United States)

    Gunaydin, Lisa A; Grosenick, Logan; Finkelstein, Joel C; Kauvar, Isaac V; Fenno, Lief E; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J; Airan, Raag D; Zalocusky, Kelly A; Tye, Kay M; Anikeeva, Polina; Malenka, Robert C; Deisseroth, Karl

    2014-06-19

    Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  2. Ontogeny of neural circuits underlying spatial memory in the rat

    Directory of Open Access Journals (Sweden)

    James Alexander Ainge

    2012-03-01

    Full Text Available Spatial memory is a well characterised psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioural studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.

  3. Neural Network Spectral Robustness under Perturbations of the Underlying Graph.

    Science.gov (United States)

    Rădulescu, Anca

    2016-01-01

    Recent studies have been using graph-theoretical approaches to model complex networks (such as social, infrastructural, or biological networks) and how their hardwired circuitry relates to their dynamic evolution in time. Understanding how configuration reflects on the coupled behavior in a system of dynamic nodes can be of great importance, for example, in the context of how the brain connectome is affecting brain function. However, the effect of connectivity patterns on network dynamics is far from being fully understood. We study the connections between edge configuration and dynamics in a simple oriented network composed of two interconnected cliques (representative of brain feedback regulatory circuitry). In this article our main goal is to study the spectra of the graph adjacency and Laplacian matrices, with a focus on three aspects in particular: (1) the sensitivity and robustness of the spectrum in response to varying the intra- and intermodular edge density, (2) the effects on the spectrum of perturbing the edge configuration while keeping the densities fixed, and (3) the effects of increasing the network size. We study some tractable aspects analytically, then simulate more general results numerically, thus aiming to motivate and explain our further work on the effect of these patterns on the network temporal dynamics and phase transitions. We discuss the implications of such results to modeling brain connectomics. We suggest potential applications to understanding synaptic restructuring in learning networks and the effects of network configuration on function of regulatory neural circuits.

  4. Neural Mechanisms Underlying Compensatory and Noncompensatory Strategies in Risky Choice

    NARCIS (Netherlands)

    van Duijvenvoorde, A.C.K.; Figner, B.; Weeda, W.D.; van der Molen, M.W.; Jansen, B.R.J.; Huizenga, H.M.

    Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study's main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in

  5. Neural mechanisms underlying compensatory and noncompensatory strategies in risky choice

    NARCIS (Netherlands)

    Duijvenvoorde, A.C.K. van; Figner, B.; Weeda, W.D.; Molen, M.W. van der; Jansen, B.R.J.; Huizenga, H.M.

    2016-01-01

    Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study's main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in

  6. Antagonistic neural networks underlying differentiated leadership roles

    OpenAIRE

    Richard Eleftherios Boyatzis; Kylie eRochford; Anthony Ian Jack

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN) and the Default Mode Network (DMN). Neural activity in ...

  7. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  8. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  9. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  10. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  11. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  12. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  13. Neural systems for tactual memories.

    Science.gov (United States)

    Bonda, E; Petrides, M; Evans, A

    1996-04-01

    1. The aim of this study was to investigate the neural systems involved in the memory processing of experiences through touch. 2. Regional cerebral blood flow was measured with positron emission tomography by means of the water bolus H2(15)O methodology in human subjects as they performed tasks involving different levels of tactual memory. In one of the experimental tasks, the subjects had to palpate nonsense shapes to match each one to a previously learned set, thus requiring constant reference to long-term memory. The other experimental task involved judgements of the recent recurrence of shapes during the scanning period. A set of three control tasks was used to control for the type of exploratory movements and sensory processing inherent in the two experimental tasks. 3. Comparisons of the distribution of activity between the experimental and the control tasks were carried out by means of the subtraction method. In relation to the control conditions, the two experimental tasks requiring memory resulted in significant changes within the posteroventral insula and the central opercular region. In addition, the task requiring recall from long-term memory yielded changes in the perirhinal cortex. 4. The above findings demonstrated that a ventrally directed parietoinsular pathway, leading to the posteroventral insula and the perirhinal cortex, constitutes a system by which long-lasting representations of tactual experiences are formed. It is proposed that the posteroventral insula is involved in tactual feature analysis, by analogy with the similar role of the inferotemporal cortex in vision, whereas the perirhinal cortex is further involved in the integration of these features into long-lasting representations of somatosensory experiences.

  14. A dynamical systems view of motor preparation: Implications for neural prosthetic system design

    Science.gov (United States)

    Shenoy, Krishna V.; Kaufman, Matthew T.; Sahani, Maneesh; Churchland, Mark M.

    2013-01-01

    Neural prosthetic systems aim to help disabled patients suffering from a range of neurological injuries and disease by using neural activity from the brain to directly control assistive devices. This approach in effect bypasses the dysfunctional neural circuitry, such as an injured spinal cord. To do so, neural prostheses depend critically on a scientific understanding of the neural activity that drives them. We review here several recent studies aimed at understanding the neural processes in premotor cortex that precede arm movements and lead to the initiation of movement. These studies were motivated by hypotheses and predictions conceived of within a dynamical systems perspective. This perspective concentrates on describing the neural state using as few degrees of freedom as possible and on inferring the rules that govern the motion of that neural state. Although quite general, this perspective has led to a number of specific predictions that have been addressed experimentally. It is hoped that the resulting picture of the dynamical role of preparatory and movement-related neural activity will be particularly helpful to the development of neural prostheses, which can themselves be viewed as dynamical systems under the control of the larger dynamical system to which they are attached. PMID:21763517

  15. Investigation of possible neural architectures underlying information-geometric measures.

    Science.gov (United States)

    Tatsuno, Masami; Okada, Masato

    2004-04-01

    A novel analytical method based on information geometry was recently proposed, and this method may provide useful insights into the statistical interactions within neural groups. The link between informationgeometric measures and the structure of neural interactions has not yet been elucidated, however, because of the ill-posed nature of the problem. Here, possible neural architectures underlying information-geometric measures are investigated using an isolated pair and an isolated triplet of model neurons. By assuming the existence of equilibrium states, we derive analytically the relationship between the information-geometric parameters and these simple neural architectures. For symmetric networks, the first- and second-order information-geometric parameters represent, respectively, the external input and the underlying connections between the neurons provided that the number of neurons used in the parameter estimation in the log-linear model and the number of neurons in the network are the same. For asymmetric networks, however, these parameters are dependent on both the intrinsic connections and the external inputs to each neuron. In addition, we derive the relation between the information-geometric parameter corresponding to the two-neuron interaction and a conventional cross-correlation measure. We also show that the information-geometric parameters vary depending on the number of neurons assumed for parameter estimation in the log-linear model. This finding suggests a need to examine the information-geometric method carefully. A possible criterion for choosing an appropriate orthogonal coordinate is also discussed. This article points out the importance of a model-based approach and sheds light on the possible neural structure underlying the application of information geometry to neural network analysis.

  16. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluating neural networks and artificial intelligence systems

    Science.gov (United States)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  18. Neural Plasticity in the Gustatory System

    OpenAIRE

    Hill, David L.

    2004-01-01

    Sensory systems adapt to changing environmental influences by coordinated alterations in structure and function. These alterations are referred to as plastic changes. The gustatory system displays numerous plastic changes even in receptor cells. This review focuses on the plasticity of gustatory structures through the first synaptic relay in the brain. Unlike other sensory systems, there is a remarkable amount of environmentally induced changes in these peripheral-most neural structures. The ...

  19. System and method for determining stability of a neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  20. Unveiling neural coupling within the sensorimotor system : directionality and nonlinearity

    NARCIS (Netherlands)

    Yang, Y.; Dewald, J.P.A.; van der Helm, F.C.T.; Schouten, A.C.

    2017-01-01

    Neural coupling between the central nervous system and the periphery is essential for the neural control of movement. Corticomuscular coherence is a popular linear technique to assess synchronised oscillatory activity in the sensorimotor system. This oscillatory coupling originates from ascending

  1. Neural circuitry underlying affective response to peer feedback in adolescence.

    Science.gov (United States)

    Guyer, Amanda E; Choate, Victoria R; Pine, Daniel S; Nelson, Eric E

    2012-01-01

    Peer feedback affects adolescents' behaviors, cognitions and emotions. We examined neural circuitry underlying adolescents' emotional response to peer feedback using a functional neuroimaging paradigm whereby, 36 adolescents (aged 9-17 years) believed they would interact with unknown peers postscan. Neural activity was expected to vary based on adolescents' perceptions of peers and feedback type. Ventrolateral prefrontal cortex (vlPFC) activity was found when adolescents indicated how they felt following feedback (acceptance or rejection) from peers of low vs high interest. Greater activation in both cortical (e.g. superior temporal gyrus, insula, anterior cingulate) and subcortical (e.g. striatum, thalamus) regions emerged in response to acceptance vs rejection feedback. Response to acceptance also varied by age and gender in similar regions (e.g. superior temporal gyrus, fusiform, insula), with greater age-related increases in activation to acceptance vs rejection for females than males. Affective response to rejection vs acceptance did not yield significantly greater neural activity in any region. vlPFC response suggests cognitive flexibility in reappraising initial perceptions of peers following feedback. Striatal response suggests that acceptance is a potent social reward for adolescents, an interpretation supported by more positive self-reported affective response to acceptance than rejection from high- but not low-interest peers.

  2. Distinct neural networks underlying empathy for pleasant and unpleasant touch.

    Science.gov (United States)

    Lamm, Claus; Silani, Giorgia; Singer, Tania

    2015-09-01

    In spite of considerable progress in the understanding of the neural mechanisms underlying the experience of empathy, the majority of previous investigations have focused on how we share negative affective states (and in particular pain) of others, whereas only few studies have targeted empathy for positive emotions. This bias has precluded addressing one of the central tenets of the shared representations account of empathy, which is that different networks should be engaged when empathizing with emotions that are represented on different neural levels. The aim of the present study was to overcome this limitation and to test whether empathy for pleasant and unpleasant affective touch is underpinned by different neural networks. To this end we used functional magnetic resonance imaging (fMRI), with two independent replication experiments (N = 18, N = 32), and a novel paradigm enabling the joint investigation of first-hand and vicarious responses to pleasant and unpleasant affect induced via visuo-tactile stimulation. This revealed that empathy is subserved by distinct neural networks, with those regions recruited in the first-hand experience of positive or negative affective states also being specifically recruited when empathizing with these respective states in others. More specifically, the first-hand and vicarious experience of pleasant touch commonly recruited medial orbitofrontal cortex (OFC), while unpleasant touch was associated with shared activation in the right fronto-insular cortex. The observation that specifically tailored subsystems of the human brain are engaged to share positive versus negative touch of others brings fresh evidence to one of the major goals of the social neuroscience of empathy: to identify which specific aspects of the affective states of others are shared, and what role this plays in enabling the understanding of the emotions of others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  4. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  5. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  6. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    Directory of Open Access Journals (Sweden)

    Eline Borch Petersen

    2015-02-01

    Full Text Available Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory. One neural signature of working memory load is enhanced power of alpha oscillations (6 ‒ 12 Hz. However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of working memory when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and background noise level, while the electroencephalogram (EEG was recorded. In each trial, participants were presented with 2, 4, or 6 spoken digits embedded in one of three different levels of background noise. After a stimulus-free delay interval, participants indicated whether a probe digit had appeared in the sequence of digits. Participants were healthy older adults (62 – 86 years, with normal to moderately impaired hearing. Importantly, the background noise levels were individually adjusted and participants were wearing hearing aids to equalize audibility across participants. Irrespective of hearing loss, behavioral performance improved with lower memory load and also with lower levels of background noise. Interestingly, the alpha power in the stimulus-free delay interval was dependent on the interplay between task demands (memory load and noise level and hearing loss; while alpha power increased with hearing loss during low and intermediate levels of memory load and background noise, it dropped for participants with the relatively most severe hearing loss under the highest memory load and background noise level. These findings suggest that adaptive neural mechanisms for coping with adverse listening conditions break down for higher degrees of hearing loss, even when adequate hearing aid amplification is in place.

  7. Predictive and Neural Predictive Control of Uncertain Systems

    Science.gov (United States)

    Kelkar, Atul G.

    2000-01-01

    Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.

  8. Neural basis of increased costly norm enforcement under adversity.

    Science.gov (United States)

    Wu, Yan; Yu, Hongbo; Shen, Bo; Yu, Rongjun; Zhou, Zhiheng; Zhang, Guoping; Jiang, Yushi; Zhou, Xiaolin

    2014-12-01

    Humans are willing to punish norm violations even at a substantial personal cost. Using fMRI and a variant of the ultimatum game and functional magnetic resonance imaging, we investigated how the brain differentially responds to fairness in loss and gain domains. Participants (responders) received offers from anonymous partners indicating a division of an amount of monetary gain or loss. If they accept, both get their shares according to the division; if they reject, both get nothing or lose the entire stake. We used a computational model to derive perceived fairness of offers and participant-specific inequity aversion. Behaviorally, participants were more likely to reject unfair offers in the loss (vs gain) domain. Neurally, the positive correlation between fairness and activation in ventral striatum was reduced, whereas the negative correlations between fairness and activations in dorsolateral prefrontal cortex were enhanced in the loss domain. Moreover, rejection-related dorsal striatum activation was higher in the loss domain. Furthermore, the gain-loss domain modulates costly punishment only when unfair behavior was directed toward the participants and not when it was directed toward others. These findings provide neural and computational accounts of increased costly norm enforcement under adversity and advanced our understanding of the context-dependent nature of fairness preference. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. The Artifical Neural Network as means for modeling Nonlinear Systems

    OpenAIRE

    Drábek Oldøich; Taufer Ivan

    1998-01-01

    The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  10. The Artifical Neural Network as means for modeling Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Drábek Oldøich

    1998-12-01

    Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  11. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  12. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  13. Convergent evolution of neural systems in ctenophores.

    Science.gov (United States)

    Moroz, Leonid L

    2015-02-15

    Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved

  14. Artificial Neural Systems Application to the Simulation of Air Combat Decision Making

    Science.gov (United States)

    1992-04-01

    unit, the CPU , whereas neural networks utilize the effects of many, simple processing elements. Traditional computing is done in a step-by-step, serial...Nielsen Neurocomputers (HNC). The ANZA-Plus coprocessor is part of an 80386 -based computer system which is optimized for training and executing neural...host computer for this program is a Zenith 386/16 system running under the DOS 3.31 operating system. The 80386 microprocessor in this machine operates

  15. Spacecraft Neural Network Control System Design using FPGA

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2011-01-01

    Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...

  16. Engineering neural systems for high-level problem solving.

    Science.gov (United States)

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  17. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  18. Neural circuitry underlying sentence-level linguistic prosody.

    Science.gov (United States)

    Tong, Yunxia; Gandour, Jackson; Talavage, Thomas; Wong, Donald; Dzemidzic, Mario; Xu, Yisheng; Li, Xiaojian; Lowe, Mark

    2005-11-01

    This study investigates the neural substrates underlying the perception of two sentence-level prosodic phenomena in Mandarin Chinese: contrastive stress (initial vs. final emphasis position) and intonation (declarative vs. interrogative modality). In an fMRI experiment, Chinese and English listeners were asked to selectively attend to either stress or intonation in paired 3-word sentences, and make speeded-response discrimination judgments. Between-group comparisons revealed that the Chinese group exhibited significantly greater activity in the left supramarginal gyrus and posterior middle temporal gyrus relative to the English group for both tasks. These same two regions showed a leftward asymmetry in the stress task for the Chinese group only. For both language groups, rightward asymmetries were observed in the middle portion of the middle frontal gyrus across tasks. All task effects involved greater activity for the stress task as compared to intonation. A left-sided task effect was observed in the posterior middle temporal gyrus for the Chinese group only. Both language groups exhibited a task effect bilaterally in the intraparietal sulcus. These findings support the emerging view that speech prosody perception involves a dynamic interplay among widely distributed regions not only within a single hemisphere but also between the two hemispheres. This model of speech prosody processing emphasizes the role of right hemisphere regions for complex-sound analysis, whereas task-dependent regions in the left hemisphere predominate when language processing is required.

  19. Attention Modulates the Neural Processes Underlying Multisensory Integration of Emotion

    Directory of Open Access Journals (Sweden)

    Hao Tam Ho

    2011-10-01

    Full Text Available Integrating emotional information from multiple sensory modalities is generally assumed to be a pre-attentive process (de Gelder et al., 1999. This assumption, however, presupposes that the integrative process occurs independent of attention. Using event-potentials (ERP the present study investigated whether the neural processes underlying the integration of dynamic facial expression and emotional prosody is indeed unaffected by attentional manipulations. To this end, participants were presented with congruent and incongruent face-voice combinations (eg, an angry face combined with a neutral voice and performed different two-choice tasks in four consecutive blocks. Three of the tasks directed the participants' attention to emotion expressions in the face, the voice or both. The fourth task required participants to attend to the synchronicity between voice and lip movements. The results show divergent modulations of early ERP components by the different attentional manipulations. For example, when attention was directed to the face (or the voice, incongruent stimuli elicited a reduced N1 as compared to congruent stimuli. This effect was absent, when attention was diverted away from the emotionality in both face and voice suggesting that the detection of emotional incongruence already requires attention. Based on these findings, we question whether multisensory integration of emotion occurs indeed pre-attentively.

  20. Artificial Neural Network System for Thyroid Diagnosis

    Directory of Open Access Journals (Sweden)

    Mazin Abdulrasool Hameed

    2017-05-01

    Full Text Available Thyroid disease is one of major causes of severe medical problems for human beings. Therefore, proper diagnosis of thyroid disease is considered as an important issue to determine treatment for patients. This paper focuses on using Artificial Neural Network (ANN as a significant technique of artificial intelligence to diagnose thyroid diseases. The continuous values of three laboratory blood tests are used as input signals to the proposed system of ANN. All types of thyroid diseases that may occur in patients are taken into account in design of system, as well as the high accuracy of the detection and categorization of thyroid diseases are considered in the system. A multilayer feedforward architecture of ANN is adopted in the proposed design, and the back propagation is selected as learning algorithm to accomplish the training process. The result of this research shows that the proposed ANN system is able to precisely diagnose thyroid disease, and can be exploited in practical uses. The system is simulated via MATLAB software to evaluate its performance

  1. Neural network system for traffic flow management

    Science.gov (United States)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  2. Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism.

    Science.gov (United States)

    Li, Lulu; Ho, Daniel W C; Cao, Jinde; Lu, Jianquan

    2016-04-01

    Cluster synchronization is a typical collective behavior in coupled dynamical systems, where the synchronization occurs within one group, while there is no synchronization among different groups. In this paper, under event-based mechanism, pinning cluster synchronization in an array of coupled neural networks is studied. A new event-triggered sampled-data transmission strategy, where only local and event-triggering states are utilized to update the broadcasting state of each agent, is proposed to realize cluster synchronization of the coupled neural networks. Furthermore, a self-triggered pinning cluster synchronization algorithm is proposed, and a set of iterative procedures is given to compute the event-triggered time instants. Hence, this will reduce the computational load significantly. Finally, an example is given to demonstrate the effectiveness of the theoretical results. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    Science.gov (United States)

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    , especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.

  4. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  5. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  6. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  7. Analog neural network-based helicopter gearbox health monitoring system.

    Science.gov (United States)

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  8. The ctenophore genome and the evolutionary origins of neural systems

    NARCIS (Netherlands)

    Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M.; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P.; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V.; Jurka, Jerzy; Bobkov, Yuri V.; Swore, Joshua J.; Girardo, David O.; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E.; Rast, Jonathan P.; Derelle, Romain; Solovyev, Victor V.; Kondrashov, Fyodor A.; Swalla, Billie J.; Sweedler, Jonathan V.; Rogaev, Evgeny I.; Halanych, Kenneth M.; Kohn, Andrea B.

    2014-01-01

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we

  9. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  10. Neural Systems for Speech and Song in Autism

    Science.gov (United States)

    Lai, Grace; Pantazatos, Spiro P.; Schneider, Harry; Hirsch, Joy

    2012-01-01

    Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched…

  11. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    Science.gov (United States)

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  12. Neural systems supporting and affecting economically relevant behavior

    Directory of Open Access Journals (Sweden)

    Braeutigam S

    2012-05-01

    Full Text Available Sven BraeutigamOxford Centre for Human Brain Activity, University of Oxford, Oxford, United KingdomAbstract: For about a hundred years, theorists and traders alike have tried to unravel and understand the mechanisms and hidden rules underlying and perhaps determining economically relevant behavior. This review focuses on recent developments in neuroeconomics, where the emphasis is placed on two directions of research: first, research exploiting common experiences of urban inhabitants in industrialized societies to provide experimental paradigms with a broader real-life content; second, research based on behavioral genetics, which provides an additional dimension for experimental control and manipulation. In addition, possible limitations of state-of-the-art neuroeconomics research are addressed. It is argued that observations of neuronal systems involved in economic behavior converge to some extent across the technologies and paradigms used. Conceptually, the data available as of today raise the possibility that neuroeconomic research might provide evidence at the neuronal level for the existence of multiple systems of thought and for the importance of conflict. Methodologically, Bayesian approaches in particular may play an important role in identifying mechanisms and establishing causality between patterns of neural activity and economic behavior.Keywords: neuroeconomics, behavioral genetics, decision-making, consumer behavior, neural system

  13. Neural Adaptive Decentralized Coordinated Control with Fault-Tolerant Capability for DFIGs under Stochastic Disturbances

    Directory of Open Access Journals (Sweden)

    Xiao-ming Li

    2017-01-01

    Full Text Available At present, most methodologies proposed to control over double fed induction generators (DFIGs are based on single machine model, where the interactions from network have been neglected. Considering this, this paper proposes a decentralized coordinated control of DFIG based on the neural interaction measurement observer. An artificial neural network is employed to approximate the nonlinear model of DFIG, and the approximation error due to neural approximation has been considered. A robust stabilization technique is also proposed to override the effect of approximation error. A H2 controller and a H∞ controller are employed to achieve specified engineering purposes, respectively. Then, the controller design is formulated as a mixed H2/H∞ optimization with constrains of regional pole placement and proportional plus integral (PI structure, which can be solved easily by using linear matrix inequality (LMI technology. The results of simulations are presented and discussed, which show the capabilities of DFIG with the proposed control strategy to fault-tolerant control of the maximum power point tracking (MPPT under slight sensor faults, low voltage ride-through (LVRT, and its contribution to power system transient stability support.

  14. Progress Toward Adaptive Integration and Optimization of Automated and Neural Processing Systems: Establishing Neural and Behavioral Benchmarks of Optimized Performance

    Science.gov (United States)

    2014-11-01

    grid, using an Advanced Brain Monitoring (ABM) ×24 system configured with the single-trial event - related potential (ERP) sensor strip and operating...ROC curve BCI brain-computer interface EEG electroencephalogram ERP event - related potential EVUS estimated volume under the surface FOV field of...stations. 15. SUBJECT TERMS rapid serial visual presentation, RSVP, EEG, neural classification, P300 , brain-computer interface 16. SECURITY

  15. Neural suppression of irrelevant information underlies optimal working memory performance.

    Science.gov (United States)

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  16. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  18. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  19. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  20. Neural suppression of irrelevant information underlies optimal working memory performance

    OpenAIRE

    Zanto, Theodore P.; Gazzaley, Adam

    2009-01-01

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechani...

  1. Neural ensemble dynamics underlying a long-term associative memory

    Science.gov (United States)

    Grewe, Benjamin F.; Gründemann, Jan; Kitch, Lacey J.; Lecoq, Jerome A.; Parker, Jones G.; Marshall, Jesse D.; Larkin, Margaret C.; Jercog, Pablo E.; Grenier, Francois; Li, Jin Zhong; Lüthi, Andreas; Schnitzer, Mark J.

    2017-01-01

    The brain’s ability to associate different stimuli is vital to long-term memory, but how neural ensembles encode associative memories is unknown. Here we studied how cell ensembles in the basal and lateral amygdala (BLA) encode associations between conditioned and unconditioned stimuli (CS, US). Using a miniature fluorescence microscope, we tracked BLA ensemble neural Ca2+ dynamics during fear learning and extinction over six days in behaving mice. Fear conditioning induced both up- and down-regulation of individual cells’ CS-evoked responses. This bi-directional plasticity mainly occurred after conditioning and reshaped the CS ensemble neural representation to gain similarity to the US-representation. During extinction training with repetitive CS presentations, the CS-representation became more distinctive without reverting to its original form. Throughout, the strength of the ensemble-encoded CS-US association predicted each mouse’s level of behavioral conditioning. These findings support a supervised learning model in which activation of the US-representation guides the transformation of the CS-representation. PMID:28329757

  2. Optical production systems using neural networks and symbolic substitution

    Science.gov (United States)

    Botha, Elizabeth; Casasent, David; Barnard, Etienne

    1988-01-01

    Two optical implementations of production systems are advanced. The production systems operate on a knowledge base where facts and rules are encoded as formulas in propositional calculus. The first implementation is a binary neural network. An analog neural network is used to include reasoning with uncertainties. The second implementation uses a new optical symbolic substitution correlator. This implementation is useful when a set of similar situations has to be handled in parallel on one processor.

  3. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  5. The neural bases underlying social risk perception in purchase decisions.

    Science.gov (United States)

    Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta

    2014-05-01

    Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental

  6. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  7. Neural mechanisms underlying social conformity in an ultimatum game.

    Science.gov (United States)

    Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong

    2013-01-01

    When individuals' actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as "social conformity." In the present study, we used event-related functional magnetic resonance imaging (fMRI) to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  8. Multiple neural network approaches to clinical expert systems

    Science.gov (United States)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  9. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  10. The Criticality Hypothesis in Neural Systems

    Science.gov (United States)

    Karimipanah, Yahya

    There is mounting evidence that neural networks of the cerebral cortex exhibit scale invariant dynamics. At the larger scale, fMRI recordings have shown evidence for spatiotemporal long range correlations. On the other hand, at the smaller scales this scale invariance is marked by the power law distribution of the size and duration of spontaneous bursts of activity, which are referred as neuronal avalanches. The existence of such avalanches has been confirmed by several studies in vitro and in vivo, among different species and across multiple scales, from spatial scale of MEG and EEG down to single cell resolution. This prevalent scale free nature of cortical activity suggests the hypothesis that the cortex resides at a critical state between two phases of order (short-lasting activity) and disorder (long-lasting activity). In addition, it has been shown, both theoretically and experimentally, that being at criticality brings about certain functional advantages for information processing. However, despite the plenty of evidence and plausibility of the neural criticality hypothesis, still very little is known on how the brain may leverage such criticality to facilitate neural coding. Moreover, the emergent functions that may arise from critical dynamics is poorly understood. In the first part of this thesis, we review several pieces of evidence for the neural criticality hypothesis at different scales, as well as some of the most popular theories of self-organized criticality (SOC). Thereafter, we will focus on the most prominent evidence from small scales, namely neuronal avalanches. We will explore the effect of adaptation and how it can maintain scale free dynamics even at the presence of external stimuli. Using calcium imaging we also experimentally demonstrate the existence of scale free activity at the cellular resolution in vivo. Moreover, by exploring the subsampling issue in neural data, we will find some fundamental constraints of the conventional methods

  11. Neural network based optimal control of HVAC&R systems

    Science.gov (United States)

    Ning, Min

    Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the

  12. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation

    OpenAIRE

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S.; Smolka, Michael N.

    2015-01-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs n...

  13. Neural adaptations underlying cross-education after unilateral strength training.

    Science.gov (United States)

    Fimland, Marius S; Helgerud, Jan; Solstad, Gerd Marie; Iversen, Vegard Moe; Leivseth, Gunnar; Hoff, Jan

    2009-12-01

    The purpose of this study was to investigate the effects of 4-week (16 sessions) unilateral, maximal isometric strength training on contralateral neural adaptations. Subjects were randomised to a strength training group (TG, n = 15) or to a control group (CG, n = 11). Both legs of both groups were tested for plantar flexion maximum voluntary isometric contractions (MVCs), surface electromyogram (EMG), H-reflexes and V-waves in the soleus (SOL) and gastrocnemius medialis (GM) superimposed during MVC and normalised by the M-wave (EMG/M(SUP), H(SUP)/M(SUP), V/M(SUP), respectively), before and after the training period. For the untrained leg, the TG increased compared to the CG for MVC torque (33%, P cross-education of strength.

  14. Stochastic Neural Field Theory and the System-Size Expansion

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.

  15. Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Särkämö, Teppo; Leo, Vera; Rodríguez-Fornells, Antoni; Saunavaara, Jani; Parkkola, Riitta; Soinila, Seppo

    2017-12-01

    Acquired amusia provides a unique opportunity to investigate the fundamental neural architectures of musical processing due to the transition from a functioning to defective music processing system. Yet, the white matter (WM) deficits in amusia remain systematically unexplored. To evaluate which WM structures form the neural basis for acquired amusia and its recovery, we studied 42 stroke patients longitudinally at acute, 3-month, and 6-month post-stroke stages using DTI [tract-based spatial statistics (TBSS) and deterministic tractography (DT)] and the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Non-recovered amusia was associated with structural damage and subsequent degeneration in multiple WM tracts including the right inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and frontal aslant tract (FAT), as well as in the corpus callosum (CC) and its posterior part (tapetum). In a linear regression analysis, the volume of the right IFOF was the main predictor of MBEA performance across time. Overall, our results provide a comprehensive picture of the large-scale deficits in intra- and interhemispheric structural connectivity underlying amusia, and conversely highlight which pathways are crucial for normal music perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An Inquiry into the Neural Plasticity Underlying Everyday Actions

    Directory of Open Access Journals (Sweden)

    Garrett Tisdale

    2017-11-01

    Full Text Available How does the brain change with respect to how we live our daily lives? Modern studies on how specific actions affect the anatomy of the brain have shown that different actions shape the way the brain is oriented. While individual studies might point towards these effects occurring in daily actions, the concept that morphological changes occur throughout the numerous fields of neuroplasticity based on daily actions has yet to become a well established and discussed phenomena. It is the goal of this article to view a few fields of neuroplasticity to answer this overarching question and review brain imaging studies indicating such morphological changes associated with the fields of neuroplasticity and everyday actions. To achieve this goal, a systematic approach revolving around scholarly search engines was used to briefly explore each studied field of interest. In this article, the activities of music production, video game play, and sleep are analyzed indicating such morphological change. These activities show changes to the respective areas of the brain in which the tasks are processed with a trend arising from the amount of time spent performing each action. It is shown from these fields of study that this classification of relating everyday actions to morphological change through neural plasticity does hold validity with respect to experimental studies.

  17. Common neural mechanisms underlying reversal learning by reward and punishment.

    Science.gov (United States)

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.

  18. An artificial neural network controller for intelligent transportation systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  19. Neural signal sampling via the low power wireless pico system.

    Science.gov (United States)

    Cieslewski, Grzegorz; Cheney, David; Gugel, Karl; Sanchez, Justin C; Principe, Jose C

    2006-01-01

    This paper presents a powerful new low power wireless system for sampling multiple channels of neural activity based on Texas Instruments MSP430 microprocessors and Nordic Semiconductor's ultra low power high bandwidth RF transmitters and receivers. The system's development process, component selection, features and test methodology are presented.

  20. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and ...

  1. NNSYSID - toolbox for system identification with neural networks

    DEFF Research Database (Denmark)

    Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad

    2002-01-01

    The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...

  2. Neural expert decision support system for stroke diagnosis

    Science.gov (United States)

    Kupershtein, Leonid M.; Martyniuk, Tatiana B.; Krencin, Myhail D.; Kozhemiako, Andriy V.; Bezsmertnyi, Yurii; Bezsmertna, Halyna; Kolimoldayev, Maksat; Smolarz, Andrzej; Weryńska-Bieniasz, RóŻa; Uvaysova, Svetlana

    2017-08-01

    In the work the hybrid expert system for stroke diagnosis was presented. The base of expert system consists of neural network and production rules. This program can quickly and accurately set to the patient preliminary and final diagnoses, get examination and treatment plans, print data of patient, analyze statistics data and perform parameterized search for patients.

  3. WeAidU-a decision support system for myocardial perfusion images using artificial neural networks.

    Science.gov (United States)

    Ohlsson, Mattias

    2004-01-01

    This paper presents a computer-based decision support system for automated interpretation of diagnostic heart images (called WeAidU), which is made available via the Internet. The system is based on image processing techniques, artificial neural networks (ANNs) and large well-validated medical databases. We present results using artificial neural networks, and compare with two other classification methods, on a retrospective data set containing 1320 images from the clinical routine. The performance of the artificial neural networks detecting infarction and ischemia in different parts of the heart, measured as areas under the receiver operating characteristic curves, is in the range 0.83-0.96. These results indicate a high potential for the tool as a clinical decision support system.

  4. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  5. Reject mechanisms for massively parallel neural network character recognition systems

    Science.gov (United States)

    Garris, Michael D.; Wilson, Charles L.

    1992-12-01

    Two reject mechanisms are compared using a massively parallel character recognition system implemented at NIST. The recognition system was designed to study the feasibility of automatically recognizing hand-printed text in a loosely constrained environment. The first method is a simple scalar threshold on the output activation of the winning neurode from the character classifier network. The second method uses an additional neural network trained on all outputs from the character classifier network to accept or reject assigned classifications. The neural network rejection method was expected to perform with greater accuracy than the scalar threshold method, but this was not supported by the test results presented. The scalar threshold method, even though arbitrary, is shown to be a viable reject mechanism for use with neural network character classifiers. Upon studying the performance of the neural network rejection method, analyses show that the two neural networks, the character classifier network and the rejection network, perform very similarly. This can be explained by the strong non-linear function of the character classifier network which effectively removes most of the correlation between character accuracy and all activations other than the winning activation. This suggests that any effective rejection network must receive information from the system which has not been filtered through the non-linear classifier.

  6. Neural-network-based fuzzy logic decision systems

    Science.gov (United States)

    Kulkarni, Arun D.; Giridhar, G. B.; Coca, Praveen

    1994-10-01

    During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the two approaches generally attack the design of `intelligent' system from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as reasoning in a high (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three layers map the input variables to fuzzy set membership functions. The last three layers implement the decision rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration we considered two examples. The first example deals with pixel classification in multispectral satellite images. In our second example we used the fuzzy decision system to analyze data from magnetic resonance imaging (MRI) scans for tissue classification.

  7. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  8. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    Science.gov (United States)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  9. Neural mechanisms underlying motivation of mental versus physical effort.

    Directory of Open Access Journals (Sweden)

    Liane Schmidt

    2012-02-01

    Full Text Available Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions as well as subregions of the dorsal basal ganglia (caudate and putamen. Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1 represent the reward expected from effort exertion, (2 correlate with the performance attained, and (3 switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia.

  10. Space-time system architecture for the neural optical computing

    Science.gov (United States)

    Lo, Yee-Man V.

    1991-02-01

    The brain can perform the tasks of associative recall detection recognition and optimization. In this paper space-time system field models of the brain are introduced. They are called the space-time maximum likelihood associative memory system (ST-ML-AMS) and the space-time adaptive learning system (ST-ALS). Performance of the system is analyzed using the probability of error in memory recall (PEMR) and the space-time neural capacity (ST-NC). 1.

  11. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  12. A NEURAL NETWORK BASED IRIS RECOGNITION SYSTEM FOR PERSONAL IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Usham Dias

    2010-10-01

    Full Text Available This paper presents biometric personal identification based on iris recognition using artificial neural networks. Personal identification system consists of localization of the iris region, normalization, enhancement and then iris pattern recognition using neural network. In this paper, through results obtained, we have shown that a person’s left and right eye are unique. In this paper, we also show that the network is sensitive to the initial weights and that over-training gives bad results. We also propose a fast algorithm for the localization of the inner and outer boundaries of the iris region. Results of simulations illustrate the effectiveness of the neural system in personal identification. Finally a hardware iris recognition model is proposed and implementation aspects are discussed.

  13. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  14. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  15. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  16. Dynamic causal models of neural system dynamics: current state ...

    Indian Academy of Sciences (India)

    2006-09-28

    Sep 28, 2006 ... Keywords. Dynamic causal modelling; EEG; effective connectivity; event-related potentials; fMRI; neural system ... In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing ...

  17. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    environments. The system developed includes a feature extractor and a modular neural network. The feature extractor consists of two stages. In the first stage ... environments is script/language identification (Muthusamy et al 1994; Hochberg et al 1997). ... In order to take advantage of the learning and generalization abilities ...

  18. A breathing circuit alarm system based on neural networks.

    Science.gov (United States)

    Orr, J A; Westenskow, D R

    1994-03-01

    The objectives of our study were (1) to implement intelligent respiratory alarms with a neural network; and (2) to increase alarm specificity and decrease false-alarm rates compared with current alarms. We trained a neural network to recognize 13 faults in an anesthesia breathing circuit. The system extracted 30 breath-to-breath features from the airway CO2, flow, and pressure signals. We created training data for the network by introducing 13 faults repeatedly in 5 dogs (616 total faults). We used the data to train the neural network using the backward error propagation algorithm. In animals, the trained network reported the alarms correctly for 95.0% of the faults when tested during controlled ventilation, and for 86.9% of the faults during spontaneous breathing. When tested in the operating room, the system found and correctly reported 54 of 57 faults that occurred during 43.6 hr of use. The alarm system produced a total of 74 false alarms during 43.6 hr of monitoring. Neural networks may be useful in creating intelligent anesthesia alarm systems.

  19. KCNQ potassium channels in sensory system and neural circuits.

    Science.gov (United States)

    Wang, Jing-jing; Li, Yang

    2016-01-01

    M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K(+) channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies.

  20. Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching.

    Science.gov (United States)

    Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E

    2017-01-01

    This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  2. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  3. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  4. Genetic manipulation of specific neural circuits by use of a viral vector system.

    Science.gov (United States)

    Kobayashi, Kenta; Kato, Shigeki; Kobayashi, Kazuto

    2017-01-05

    To understand the mechanisms underlying higher brain functions, we need to analyze the roles of specific neuronal pathways or cell types forming the complex neural networks. In the neuroscience field, the transgenic approach has provided a useful gene engineering tool for experimental studies of neural functions. The conventional transgenic technique requires the appropriate promoter regions that drive a neuronal type-specific gene expression, but the promoter sequences specifically functioning in each neuronal type are limited. Previously, we developed novel types of lentiviral vectors showing high efficiency of retrograde gene transfer in the central nervous system, termed highly efficient retrograde gene transfer (HiRet) vector and neuron-specific retrograde gene transfer (NeuRet) vector. The HiRet and NeuRet vectors enable genetical manipulation of specific neural pathways in diverse model animals in combination with conditional cell targeting, synaptic transmission silencing, and gene expression systems. These newly developed vectors provide powerful experimental strategies to investigate, more precisely, the machineries exerting various neural functions. In this review, we give an outline of the HiRet and NeuRet vectors and describe recent representative applications of these viral vectors for studies on neural circuits.

  5. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stochastic resonance in FitzHugh-Nagumo neural system driven by correlated non-Gaussian noise and Gaussian noise

    Science.gov (United States)

    Guo, Yong-Feng; Xi, Bei; Wei, Fang; Tan, Jian-Guo

    2017-12-01

    In this paper, the phenomenon of stochastic resonance in FitzHugh-Nagumo (FHN) neural system driven by correlated non-Gaussian noise and Gaussian white noise is investigated. First, the analytical expression of the stationary probability distribution is derived by using the path integral approach and the unified colored noise approximation. Then, we obtain the expression of signal-to-noise ratio (SNR) by applying the theory of two-state model. The results show that the phenomena of stochastic resonance and multiple stochastic resonance appear in FHN neural system under different values of parameters. The effects of the multiplicative noise intensity D and the additive noise intensity Q on the SNR are entirely different. In addition, the discharge behavior of FHN neural system is restrained when the value of Q is smaller. But, it is conducive to enhance signal response of FHN neural system when the values of Q and D are relatively larger.

  7. Teaching artificial neural systems to drive: Manual training techniques for autonomous systems

    Science.gov (United States)

    Shepanski, J. F.; Macy, S. A.

    1987-01-01

    A methodology was developed for manually training autonomous control systems based on artificial neural systems (ANS). In applications where the rule set governing an expert's decisions is difficult to formulate, ANS can be used to extract rules by associating the information an expert receives with the actions taken. Properly constructed networks imitate rules of behavior that permits them to function autonomously when they are trained on the spanning set of possible situations. This training can be provided manually, either under the direct supervision of a system trainer, or indirectly using a background mode where the networks assimilates training data as the expert performs its day-to-day tasks. To demonstrate these methods, an ANS network was trained to drive a vehicle through simulated freeway traffic.

  8. Neural - fuzzy approach for system identification

    NARCIS (Netherlands)

    Tien, B.T.

    1997-01-01

    Most real-world processes have nonlinear and complex dynamics. Conventional methods of constructing nonlinear models from first principles are time consuming and require a level of knowledge about the internal functioning of the system that is often not available. Consequently, in such

  9. Neural Computations in a Dynamical System with Multiple Time Scales

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  10. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  11. A Multilayer Feed Forward Small-World Neural Network Controller and Its Application on Electrohydraulic Actuation System

    Directory of Open Access Journals (Sweden)

    Xiaohu Li

    2013-01-01

    Full Text Available Being difficult to attain the precise mathematical models, traditional control methods such as proportional integral (PI and proportional integral differentiation (PID cannot meet the demands for real time and robustness when applied in some nonlinear systems. The neural network controller is a good replacement to overcome these shortcomings. However, the performance of neural network controller is directly determined by neural network model. In this paper, a new neural network model is constructed with a structure topology between the regular and random connection modes based on complex network, which simulates the brain neural network as far as possible, to design a better neural network controller. Then, a new controller is designed under small-world neural network model and is investigated in both linear and nonlinear systems control. The simulation results show that the new controller basing on small-world network model can improve the control precision by 30% in the case of system with random disturbance. Besides the good performance of the new controller in tracking square wave signals, which is demonstrated by the experiment results of direct drive electro-hydraulic actuation position control system, it works well on anti-interference performance.

  12. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    Science.gov (United States)

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  13. Functioning of Neural Systems Supporting Emotion Regulation in Anxiety-Prone Individuals

    OpenAIRE

    Campbell-Sills, Laura; Simmons, Alan N.; Lovero, Kathryn L.; Rochlin, Alexis A.; Martin P Paulus; Stein, Murray B.

    2010-01-01

    Previous neuroimaging studies suggest that prefrontal cortex (PFC) modulation of the amygdala and related limbic structures is an underlying neural substrate of effortful emotion regulation. Anxiety-prone individuals experience excessive negative emotions, signaling potential dysfunction of systems supporting down-regulation of negative emotions. We examined the hypothesis that anxious individuals require increased recruitment of lateral and medial PFC to decrease negative emotions. An emotio...

  14. Logistics systems optimization under competition

    DEFF Research Database (Denmark)

    Choi, Tsan Ming; Govindan, Kannan; Ma, Lijun

    2015-01-01

    numerical analysis and reveal that their proposed method significantly outperforms the classical method. They conduct their analysis from the manufacturer?s perspective. Technically, they convert the proposed FDEA model into a crisp linear programming optimization problem. As a result, the problem......Nowadays, optimization on logistics and supply chain systems is a crucial and critical issue in industrial and systems engineering. Important areas of logistics and supply chain systems include transportation control, inventory management, and facility location planning. Under a competitive market...... environment, decision making for all these critical areas requires more sophisticated mathematical modeling and analysis. Since finding the optimal solution of MCVRP is computationally expensive, they design a few guiding rules, which employ the searching history, to enhance the searching. They conduct...

  15. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  16. Neural mechanisms underlying the integration of situational information into attribution outcomes

    OpenAIRE

    Brosch, Tobias; Schiller, Daniela; Mojdehbakhsh, Rachel; Uleman, James S.; Phelps, Elizabeth A.

    2013-01-01

    When forming impressions and trying to figure out why other people behave the way they do, we should take into account not only dispositional factors (i.e. personality traits) but also situational constraints as potential causes for a behavior. However, in their attributions, people often ignore the importance of situational factors. To investigate the neural mechanisms underlying the integration of situational information into attributions, we decomposed the attribution process by separately...

  17. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  18. Recent progress in 'bioelectronics' research. Part 3. ; Study on underlying information processing mechanism of aplysia (sea slug) neural system. Baioerekutoronikusu eno michi (shorai wa saibogu mo). 3. ; Amefurashi shinkei kei no sado genri wo toki akasu (burein konpyuta) no jitsugen wo mezashite

    Energy Technology Data Exchange (ETDEWEB)

    Shiono, S. (Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Central Research Lab.)

    1994-02-20

    Aplysia has memorizing and learning ability, and is an ideal creature for the elucidation of the learning mechanism of neural system. In addition, it has large neurons which can be studied for many purposes. Their input and output can be clearly defined, and the existence of a neural network is quite obvious which performs the processing between them. The subject which the computer in the next century must learn from living things are the principles of two neural functions, i.e. 'learning' and 'super-parallel distributed information processing.' The operating mode of the neural system is super parallel distribution which is fundamentally different from that of the serial processing computer. The method which is most worthy of notice as a means of measuring many neurons comprising the neural network simultaneously is the use of light. If optical measurement method is employed, the generation of individual action potentials of many neurons comprising the neural network can be measured independently and simultaneously. The neural system of aplysia controls the movement of the gill very well using both analog and digital neurons. 10 refs., 8 figs.

  19. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  20. An auditory neural correlate suggests a mechanism underlying holistic pitch perception.

    Directory of Open Access Journals (Sweden)

    Daryl Wile

    Full Text Available Current theories of auditory pitch perception propose that cochlear place (spectral and activity timing pattern (temporal information are somehow combined within the brain to produce holistic pitch percepts, yet the neural mechanisms for integrating these two kinds of information remain obscure. To examine this process in more detail, stimuli made up of three pure tones whose components are individually resolved by the peripheral auditory system, but that nonetheless elicit a holistic, "missing fundamental" pitch percept, were played to human listeners. A technique was used to separate neural timing activity related to individual components of the tone complexes from timing activity related to an emergent feature of the complex (the envelope, and the region of the tonotopic map where information could originate from was simultaneously restricted by masking noise. Pitch percepts were mirrored to a very high degree by a simple combination of component-related and envelope-related neural responses with similar timing that originate within higher-frequency regions of the tonotopic map where stimulus components interact. These results suggest a coding scheme for holistic pitches whereby limited regions of the tonotopic map (spectral places carrying envelope- and component-related activity with similar timing patterns selectively provide a key source of neural pitch information. A similar mechanism of integration between local and emergent object properties may contribute to holistic percepts in a variety of sensory systems.

  1. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN’s robust, accurate decoding abilities. PMID:28225827

  2. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment.

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN's robust, accurate decoding abilities.

  3. Robust Finite-Time Stabilization of Fractional-Order Neural Networks With Discontinuous and Continuous Activation Functions Under Uncertainty.

    Science.gov (United States)

    Ding, Zhixia; Zeng, Zhigang; Wang, Leimin

    2017-03-10

    This paper is concerned with robust finite-time stabilization for a class of fractional-order neural networks (FNNs) with two types of activation functions (i.e., discontinuous and continuous activation function) under uncertainty. It is worth noting that there exist few results about FNNs with discontinuous activation functions, which is mainly because classical solutions and theories of differential equations cannot be applied in this case. Especially, there is no relevant finite-time stabilization research for such system, and this paper makes up for the gap. The existence of global solution under the framework of Filippov for such system is guaranteed by limiting discontinuous activation functions. According to set-valued analysis and Kakutani's fixed point theorem, we obtain the existence of equilibrium point. In particular, based on differential inclusion theory and fractional Lyapunov stability theory, several new sufficient conditions are given to ensure finite-time stabilization via a novel discontinuous controller, and the upper bound of the settling time for stabilization is estimated. In addition, we analyze the finite-time stabilization of FNNs with Lipschitz-continuous activation functions under uncertainty. The results of this paper improve corresponding ones of integer-order neural networks with discontinuous and continuous activation functions. Finally, three numerical examples are given to show the effectiveness of the theoretical results.

  4. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  5. Simulation and stability analysis of neural network based control scheme for switched linear systems.

    Science.gov (United States)

    Singh, H P; Sukavanam, N

    2012-01-01

    This paper proposes a new adaptive neural network based control scheme for switched linear systems with parametric uncertainty and external disturbance. A key feature of this scheme is that the prior information of the possible upper bound of the uncertainty is not required. A feedforward neural network is employed to learn this upper bound. The adaptive learning algorithm is derived from Lyapunov stability analysis so that the system response under arbitrary switching laws is guaranteed uniformly ultimately bounded. A comparative simulation study with robust controller given in [Zhang L, Lu Y, Chen Y, Mastorakis NE. Robust uniformly ultimate boundedness control for uncertain switched linear systems. Computers and Mathematics with Applications 2008; 56: 1709-14] is presented. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  7. A Neural Systems-Based Neurobiology and Neuropsychiatry Course: Integrating Biology, Psychodynamics, and Psychology in the Psychiatric Curriculum

    Science.gov (United States)

    Lacy, Timothy; Hughes, John D.

    2006-01-01

    Objective: Psychotherapy and biological psychiatry remain divided in psychiatry residency curricula. Behavioral neurobiology and neuropsychiatry provide a systems-level framework that allows teachers to integrate biology, psychodynamics, and psychology. Method: The authors detail the underlying assumptions and outline of a neural systems-based…

  8. Intelligent systems II complete approximation by neural network operators

    CERN Document Server

    Anastassiou, George A

    2016-01-01

    This monograph is the continuation and completion of the monograph, “Intelligent Systems: Approximation by Artificial Neural Networks” written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book’s results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries.  .

  9. Neural systems for choice and valuation with counterfactual learning signals.

    Science.gov (United States)

    Tobia, M J; Guo, R; Schwarze, U; Boehmer, W; Gläscher, J; Finckh, B; Marschner, A; Büchel, C; Obermayer, K; Sommer, T

    2014-04-01

    The purpose of this experiment was to test a computational model of reinforcement learning with and without fictive prediction error (FPE) signals to investigate how counterfactual consequences contribute to acquired representations of action-specific expected value, and to determine the functional neuroanatomy and neuromodulator systems that are involved. 80 male participants underwent dietary depletion of either tryptophan or tyrosine/phenylalanine to manipulate serotonin (5HT) and dopamine (DA), respectively. They completed 80 rounds (240 trials) of a strategic sequential investment task that required accepting interim losses in order to access a lucrative state and maximize long-term gains, while being scanned. We extended the standard Q-learning model by incorporating both counterfactual gains and losses into separate error signals. The FPE model explained the participants' data significantly better than a model that did not include counterfactual learning signals. Expected value from the FPE model was significantly correlated with BOLD signal change in the ventromedial prefrontal cortex (vmPFC) and posterior orbitofrontal cortex (OFC), whereas expected value from the standard model did not predict changes in neural activity. The depletion procedure revealed significantly different neural responses to expected value in the vmPFC, caudate, and dopaminergic midbrain in the vicinity of the substantia nigra (SN). Differences in neural activity were not evident in the standard Q-learning computational model. These findings demonstrate that FPE signals are an important component of valuation for decision making, and that the neural representation of expected value incorporates cortical and subcortical structures via interactions among serotonergic and dopaminergic modulator systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Soldiers and Marksmen Under Fire: Monitoring Performance with Neural Correlates of Small Arms Fire Localization

    Directory of Open Access Journals (Sweden)

    Jason eSherwin

    2013-03-01

    Full Text Available Important decisions in the heat of battle occur rapidly and a key aptitude of a good combat soldier is the ability to determine whether he is under fire. This rapid decision requires the soldier to make a judgment in a fraction of a second, based on a barrage of multisensory cues coming from the auditory, tactile and visual domains. The present study uses an auditory oddball paradigm to examine listener ability to differentiate shooter locations from audio recordings of small arms fire. More importantly, we address the neural correlates involved in this rapid decision process by employing single-trial analysis of electroencephalography (EEG. In particular, we examine small arms expert listeners as they differentiate the sounds of small arms firing events recorded at different observer positions relative to a shooter. Using signal detection theory, we find clear neural signatures related to shooter firing angle by identifying the times of neural discrimination on a trial-to-trial basis. Similar to previous results in oddball experiments, we find common windows relative to the response and the stimulus when neural activity discriminates between target stimuli (forward fire: observer 0° to firing angle vs. standards (off-axis fire: observer 90° to firing angle. We also find, using windows of maximum discrimination, that auditory target vs. standard discrimination yields neural sources in Brodmann Area 19 (BA 19, i.e., in the visual cortex. In summary, we show that single-trial analysis of EEG yields informative scalp distributions and source current localization of discriminating activity when the small arms experts discriminate between forward and off-axis fire observer positions. Furthermore, this perceptual decision implicates brain regions involved in visual processing, even though the task is purely auditory. Finally, we utilize these techniques to quantify the level of expertise in these subjects for the chosen task, having implications for

  11. Dissociable neural mechanisms underlying the modulation of pain and anxiety? An FMRI pilot study.

    Directory of Open Access Journals (Sweden)

    Katja Wiech

    Full Text Available The down-regulation of pain through beliefs is commonly discussed as a form of emotion regulation. In line with this interpretation, the analgesic effect has been shown to co-occur with reduced anxiety and increased activity in the ventrolateral prefrontal cortex (VLPFC, which is a key region of emotion regulation. This link between pain and anxiety modulation raises the question whether the two effects are rooted in the same neural mechanism. In this pilot fMRI study, we compared the neural basis of the analgesic and anxiolytic effect of two types of threat modulation: a "behavioral control" paradigm, which involves the ability to terminate a noxious stimulus, and a "safety signaling" paradigm, which involves visual cues that signal the threat (or absence of threat that a subsequent noxious stimulus might be of unusually high intensity. Analgesia was paralleled by VLPFC activity during behavioral control. Safety signaling engaged elements of the descending pain control system, including the rostral anterior cingulate cortex that showed increased functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction, in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral control but had no distinct neural signature during safety signaling. Our pilot data therefore suggest that analgesic and anxiolytic effects are instantiated in distinguishable neural mechanisms and differ between distinct stress- and pain-modulatory approaches, supporting the recent notion of multiple pathways subserving top-down modulation of the pain experience. Additional studies in larger cohorts are needed to follow up on these preliminary findings.

  12. [A telemetery system for neural signal acquiring and processing].

    Science.gov (United States)

    Wang, Min; Song, Yongji; Suen, Jiantao; Zhao, Yiliang; Jia, Aibin; Zhu, Jianping

    2011-02-01

    Recording and extracting characteristic brain signals in freely moving animals is the basic and significant requirement in the study of brain-computer interface (BCI). To record animal's behaving and extract characteristic brain signals simultaneously could help understand the complex behavior of neural ensembles. Here, a system was established to record and analyse extracellular discharge in freely moving rats for the study of BCI. It comprised microelectrode and micro-driver assembly, analog front end (AFE), programmer system on chip (PSoC), wireless communication and the LabVIEW used as the platform for the graphic user interface.

  13. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  14. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  15. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  16. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  17. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  18. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  19. Neural Network Target Identification System for False Alarm Reduction

    Science.gov (United States)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  20. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    Science.gov (United States)

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  1. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  2. System identification of an unmanned quadcopter system using MRAN neural

    Science.gov (United States)

    Pairan, M. F.; Shamsudin, S. S.

    2017-12-01

    This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.

  3. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  4. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    Science.gov (United States)

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  5. Neural system modeling and simulation using Hybrid Functional Petri Net.

    Science.gov (United States)

    Tang, Yin; Wang, Fei

    2012-02-01

    The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.

  6. Intelligent reservoir operation system based on evolving artificial neural networks

    Science.gov (United States)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  7. The ctenophore genome and the evolutionary origins of neural systems.

    Science.gov (United States)

    Moroz, Leonid L; Kocot, Kevin M; Citarella, Mathew R; Dosung, Sohn; Norekian, Tigran P; Povolotskaya, Inna S; Grigorenko, Anastasia P; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V; Jurka, Jerzy; Bobkov, Yuri V; Swore, Joshua J; Girardo, David O; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E; Rast, Jonathan P; Derelle, Romain; Solovyev, Victor V; Kondrashov, Fyodor A; Swalla, Billie J; Sweedler, Jonathan V; Rogaev, Evgeny I; Halanych, Kenneth M; Kohn, Andrea B

    2014-06-05

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.

  8. Metaplasticity as a Neural Substrate for Adaptive Learning and Choice under Uncertainty.

    Science.gov (United States)

    Farashahi, Shiva; Donahue, Christopher H; Khorsand, Peyman; Seo, Hyojung; Lee, Daeyeol; Soltani, Alireza

    2017-04-19

    Value-based decision making often involves integration of reward outcomes over time, but this becomes considerably more challenging if reward assignments on alternative options are probabilistic and non-stationary. Despite the existence of various models for optimally integrating reward under uncertainty, the underlying neural mechanisms are still unknown. Here we propose that reward-dependent metaplasticity (RDMP) can provide a plausible mechanism for both integration of reward under uncertainty and estimation of uncertainty itself. We show that a model based on RDMP can robustly perform the probabilistic reversal learning task via dynamic adjustment of learning based on reward feedback, while changes in its activity signal unexpected uncertainty. The model predicts time-dependent and choice-specific learning rates that strongly depend on reward history. Key predictions from this model were confirmed with behavioral data from non-human primates. Overall, our results suggest that metaplasticity can provide a neural substrate for adaptive learning and choice under uncertainty. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  10. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  11. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  12. The impact of abacus training on working memory and underlying neural correlates in young adults.

    Science.gov (United States)

    Dong, Shanshan; Wang, Chunjie; Xie, Ye; Hu, Yuzheng; Weng, Jian; Chen, Feiyan

    2016-09-22

    Abacus-based mental calculation (AMC) activates the frontoparietal areas largely overlapping with the working memory (WM) network. Given the critical role of WM in cognition, how to improve WM capability has attracted intensive attention in past years. However, it is still unclear whether WM could be enhanced by AMC training. The current research thus explored the impact of AMC training on verbal and visuospatial WM, as well as the underlying neural basis. Participants were randomly assigned to an abacus group and a control group. Their verbal WM was evaluated by digit/letter memory span (DMS/LMS) tests, and visuospatial WM was assessed by a visuospatial n-back task. Neural activity during the n-back task was examined using functional MRI. Our results showed reliable improvements of both verbal and visuospatial WM in the abacus group after 20-day AMC training but not in the control. In addition, the n-back task-induced activations in the right frontoparietal circuitry and left occipitotemporal junction (OTJ) declined as a result of training. Notably, the decreases in activity were positively correlated with performance gains across trained participants. These results suggest AMC training not only improves calculating skills but also have the potential to promote individuals' WM capabilities, which is associated with the functional plasticity of the common neural substrates. Copyright © 2016 IBRO. All rights reserved.

  13. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Science.gov (United States)

    Chang, Chih-Hao

    2013-01-01

    This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583

  14. Separate neural systems value immediate and delayed monetary rewards.

    Science.gov (United States)

    McClure, Samuel M; Laibson, David I; Loewenstein, George; Cohen, Jonathan D

    2004-10-15

    When humans are offered the choice between rewards available at different points in time, the relative values of the options are discounted according to their expected delays until delivery. Using functional magnetic resonance imaging, we examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery. We demonstrate that two separate systems are involved in such decisions. Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. Furthermore, the relative engagement of the two systems is directly associated with subjects' choices, with greater relative fronto-parietal activity when subjects choose longer term options.

  15. Examination of neural systems sub-serving facebook "addiction".

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  16. Neural mechanisms underlying the cost of task switching: an ERP study.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC. Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching. METHODOLOGY/PRINCIPAL FINDINGS: An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI and cue-stimulus interval (CSI were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP, and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC and posterior parietal cortex (PPC. CONCLUSIONS/SIGNIFICANCE: The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set.

  17. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  18. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  19. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  20. Using pulse width modulation for wireless transmission of neural signals in multichannel neural recording systems.

    Science.gov (United States)

    Yin, Ming; Ghovanloo, Maysam

    2009-08-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5- mum standard CMOS process and consumes 4.5 mW from +/-1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of approximately 2.56 Mb/s.

  1. A Chinese Named Entity Recognition System with Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Hui-Kang

    2017-01-01

    Full Text Available Named entity recognition (NER is a typical sequential labeling problem that plays an important role in natural language processing (NLP systems. In this paper, we discussed the details of applying a comprehensive model aggregating neural networks and conditional random field (CRF on Chinese NER tasks, and how to discovery character level features when implement a NER system in word level. We compared the difference between Chinese and English when modeling the character embeddings. We developed a NER system based on our analysis, it works well on the ACE 2004 and SIGHAN bakeoff 2006 MSRA dataset, and doesn’t rely on any gazetteers or handcraft features. We obtained F1 score of 82.3% on MSRA 2006.

  2. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko

    2016-08-01

    Synaptic plasticity is widely recognized to support adaptable information processing in the brain. Spike-timing-dependent plasticity, one subtype of plasticity, can lead to synchronous spike propagation with temporal spiking coding information. Recently, it was reported that in a noisy environment, like the actual brain, the spike-timing-dependent plasticity may be made efficient by the effect of stochastic resonance. In the stochastic resonance, the presence of noise helps a nonlinear system in amplifying a weak (under barrier) signal. However, previous studies have ignored the full variety of spiking patterns and many relevant factors in neural dynamics. Thus, in order to prove the physiological possibility for the enhancement of spike-timing-dependent plasticity by stochastic resonance, it is necessary to demonstrate that this stochastic resonance arises in realistic cortical neural systems. In this study, we evaluate this stochastic resonance phenomenon in the realistic cortical neural system described by the Izhikevich neuron model and compare the characteristics of typical spiking patterns of regular spiking, intrinsically bursting and chattering experimentally observed in the cortex.

  3. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  4. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  5. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Science.gov (United States)

    Arime, Yosefu; Akiyama, Kazufumi

    2017-01-01

    Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  6. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter), shifters (in whom speed and/or accuracy improved without degradation of the other parameter), and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI), 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r = -0.82) and the dorsal premotor cortex (PMddamh: r = 0.70); the correlations was much lesser (-0.16 0.25) in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r = 0.91). Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of bilateral PMd.

  7. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize self learning neural network technology to determine the structure of osteoporosis, immune system disease, and excess radiation...

  8. Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.

    Science.gov (United States)

    Miranda, Cláudia C; Fernandes, Tiago G; Diogo, M Margarida; Cabral, Joaquim M S

    2016-12-01

    The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli.

    Science.gov (United States)

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-10-03

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error.

  10. A comparison of neural correlates underlying social cognition in Klinefelter syndrome and autism.

    Science.gov (United States)

    Brandenburg-Goddard, Marcia N; van Rijn, Sophie; Rombouts, Serge A R B; Veer, Ilya M; Swaab, Hanna

    2014-12-01

    Klinefelter syndrome (KS) is a genetic syndrome characterized by the presence of an extra X chromosome that appears to increase the risk of psychopathology, such as autism symptoms. This study used functional magnetic resonance imaging to determine underlying mechanisms related to this risk, with the aim of gaining insight into neural mechanisms behind social-cognitive dysfunction in KS and autism, and understanding similarities and differences in social information processing deficits. Fourteen boys with KS, seventeen boys with autism spectrum disorders (ASD) and nineteen non-clinical male controls aged 10-18 years were scanned while matching and labeling facial expressions (i.e. face processing and affect labeling, respectively). No group differences in neural activation were found during face processing. However, during affect labeling, the ASD group showed increased activation in the amygdala compared with controls, while the KS group showed increased activation in frontal areas compared with both controls and the ASD group. No group differences in task performance were found. Although behavioral symptoms of social dysfunction appear similar both in boys with KS and ASD, this is the first study to demonstrate different underlying etiologies. These results may aid in identifying different pathways to autism symptoms, which may help understanding variability within the ASD spectrum. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. S1-2: The Temporal Aspect of Neural Activities Underlying the Perception of Biological Motion in Infants, Children, Adults, and Patients with Developmental Disorders

    Directory of Open Access Journals (Sweden)

    Masahiro Hirai

    2012-10-01

    Full Text Available It has been demonstrated that our visual system can extract rich visual information from point-light motion. Despite the fact that we can perceive human actions from point-light motion with a brief exposure, the temporal aspect of the neural activities underlying the perception of biological motion has not been well explored. In this talk, I'll introduce a series of behavioral, electroencephalography (EEG, and magnetoencephalography (MEG studies on biological motion perception and propose a hierarchical model for its processing based on these findings. I'll then show the developmental changes of the neural responses to biological motion in infants and children and how developmental disorders such as Williams Syndrome and pervasive development disorder (PDD alter its neural responses.

  12. Neural maps in insect versus vertebrate auditory systems.

    Science.gov (United States)

    Hildebrandt, K Jannis

    2014-02-01

    The convergent evolution of hearing in insects and vertebrates raises the question about similarity of the central representation of sound in these distant animal groups. Topographic representations of spectral, spatial and temporal cues have been widely described in mammals, but evidence for such maps is scarce in insects. Recent data on insect sound encoding provides evidence for an early integration of sound parameters to form highly-specific representation that predict behavioral output. In mammals, new studies investigating neural representation of perceptual features in behaving animals allow asking similar questions. A comparative approach may help in understanding principles underlying the formation of perceptual categories and behavioral plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Low-cost wireless neural recording system and software.

    Science.gov (United States)

    Gregory, Jeffrey A; Borna, Amir; Roy, Sabyasachi; Wang, Xiaoqin; Lewandowski, Brian; Schmidt, Marc; Najafi, Khalil

    2009-01-01

    We describe a flexible wireless neural recording system, which is comprised of a 15-channel analog FM transmitter, digital receiver and custom user interface software for data acquisition. The analog front-end is constructed from commercial off the shelf (COTS) components and weighs 6.3g (including batteries) and is capable of transmitting over 24 hours up to a range over 3m with a 25microV(rms) in-vivo noise floor. The Software Defined Radio (SDR) and the acquisition software provide a data acquisition platform with real time data display and can be customized based on the specifications of various experiments. The described system was characterized with in-vitro and in-vivo experiments and the results are presented.

  14. A direct-to-drive neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Justin P Kinney

    2015-09-01

    Full Text Available Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the data acquisition process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future.

  15. Fuzzy stochastic neural network model for structural system identification

    Science.gov (United States)

    Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong

    2017-01-01

    This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.

  16. Systems under Subhumid Tropical Conditions

    African Journals Online (AJOL)

    komla

    bilization in the stable SOM at the N demand side, N supply seems to be relatively well balanced by N demand. Some possible research directions related to N cycling and synchrony in agroforestry systems and other improved cropping systems are highlighted. Introduction available at all. In alley cropping systems, food.

  17. Multiagent Intrusion Detection Based on Neural Network Detectors and Artificial Immune System

    OpenAIRE

    Vaitsekhovich, L.; Golovko, V; Rubanau, V.

    2009-01-01

    In this article the artificial immune system and neural network techniques for intrusion detection have been addressed. The AIS allows detecting unknown samples of computer attacks. The integration of AIS and neural networks as detectors permits to increase performance of the system security. The detector structure is based on the integration of the different neural networks namely RNN and MLP. The KDD-99 dataset was used for experiments performing. The experimental results show that such int...

  18. Identification of the non-linear systems using internal recurrent neural networks

    Directory of Open Access Journals (Sweden)

    Bogdan CODRES

    2006-12-01

    Full Text Available In the past years utilization of neural networks took a distinct ampleness because of the following properties: distributed representation of information, capacity of generalization in case of uncontained situation in training data set, tolerance to noise, resistance to partial destruction, parallel processing. Another major advantage of neural networks is that they allow us to obtain the model of the investigated system, systems that is not necessarily to be linear. In fact, the true value of neural networks is seen in the case of identification and control of nonlinear systems. In this paper there are presented some identification techniques using neural networks.

  19. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  20. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  1. Optimal Workflow Scheduling in Critical Infrastructure Systems with Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Vukmirović

    2012-04-01

    Full Text Available Critical infrastructure systems (CISs, such as power grids, transportation systems, communication networks and water systems are the backbone of a country’s national security and industrial prosperity. These CISs execute large numbers of workflows with very high resource requirements that can span through different systems and last for a long time. The proper functioning and synchronization of these workflows is essential since humanity’s well-being is connected to it. Because of this, the challenge of ensuring availability and reliability of these services in the face of a broad range of operating conditions is very complicated. This paper proposes an architecture which dynamically executes a scheduling algorithm using feedback about the current status of CIS nodes. Different artificial neural networks (ANNs were created in order to solve the scheduling problem. Their performances were compared and as the main result of this paper, an optimal ANN architecture for workflow scheduling in CISs is proposed. A case study is shown for a meter data management system with measurements from a power distribution management system in Serbia. Performance tests show that significant improvement of the overall execution time can be achieved by ANNs.

  2. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation.

    Science.gov (United States)

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-12-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation.

  3. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation

    Science.gov (United States)

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-01-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation. PMID:25971590

  4. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  5. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  6. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans.

    Science.gov (United States)

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J; Bouret, Sébastien; Pessiglione, Mathias

    2015-02-04

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. Copyright © 2015 the authors 0270-6474/15/352308-13$15.00/0.

  7. Neural network configuration and efficiency underlies individual differences in spatial orientation ability.

    Science.gov (United States)

    Arnold, Aiden E G F; Protzner, Andrea B; Bray, Signe; Levy, Richard M; Iaria, Giuseppe

    2014-02-01

    Spatial orientation is a complex cognitive process requiring the integration of information processed in a distributed system of brain regions. Current models on the neural basis of spatial orientation are based primarily on the functional role of single brain regions, with limited understanding of how interaction among these brain regions relates to behavior. In this study, we investigated two sources of variability in the neural networks that support spatial orientation--network configuration and efficiency--and assessed whether variability in these topological properties relates to individual differences in orientation accuracy. Participants with higher accuracy were shown to express greater activity in the right supramarginal gyrus, the right precentral cortex, and the left hippocampus, over and above a core network engaged by the whole group. Additionally, high-performing individuals had increased levels of global efficiency within a resting-state network composed of brain regions engaged during orientation and increased levels of node centrality in the right supramarginal gyrus, the right primary motor cortex, and the left hippocampus. These results indicate that individual differences in the configuration of task-related networks and their efficiency measured at rest relate to the ability to spatially orient. Our findings advance systems neuroscience models of orientation and navigation by providing insight into the role of functional integration in shaping orientation behavior.

  8. Neural systems for evaluating speaker (Un)believability.

    Science.gov (United States)

    Jiang, Xiaoming; Sanford, Ryan; Pell, Marc D

    2017-04-30

    Our voice provides salient cues about how confident we sound, which promotes inferences about how believable we are. However, the neural mechanisms involved in these social inferences are largely unknown. Employing functional magnetic resonance imaging, we examined the brain networks and individual differences underlying the evaluation of speaker believability from vocal expressions. Participants (n = 26) listened to statements produced in a confident, unconfident, or "prosodically unmarked" (neutral) voice, and judged how believable the speaker was on a 4-point scale. We found frontal-temporal networks were activated for different levels of confidence, with the left superior and inferior frontal gyrus more activated for confident statements, the right superior temporal gyrus for unconfident expressions, and bilateral cerebellum for statements in a neutral voice. Based on listener's believability judgment, we observed increased activation in the right superior parietal lobule (SPL) associated with higher believability, while increased left posterior central gyrus (PoCG) was associated with less believability. A psychophysiological interaction analysis found that the anterior cingulate cortex and bilateral caudate were connected to the right SPL when higher believability judgments were made, while supplementary motor area was connected with the left PoCG when lower believability judgments were made. Personal characteristics, such as interpersonal reactivity and the individual tendency to trust others, modulated the brain activations and the functional connectivity when making believability judgments. In sum, our data pinpoint neural mechanisms that are involved when inferring one's believability from a speaker's voice and establish ways that these mechanisms are modulated by individual characteristics of a listener. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  10. A neural network architecture for implementation of expert systems for real time monitoring

    Science.gov (United States)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  11. Planning ATES systems under uncertainty

    Science.gov (United States)

    Jaxa-Rozen, Marc; Kwakkel, Jan; Bloemendal, Martin

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) can contribute to significant reductions in energy use within the built environment, by providing seasonal energy storage in aquifers for the heating and cooling of buildings. ATES systems have experienced a rapid uptake over the last two decades; however, despite successful experiments at the individual level, the overall performance of ATES systems remains below expectations - largely due to suboptimal practices for the planning and operation of systems in urban areas. The interaction between ATES systems and underground aquifers can be interpreted as a common-pool resource problem, in which thermal imbalances or interference could eventually degrade the storage potential of the subsurface. Current planning approaches for ATES systems thus typically follow the precautionary principle. For instance, the permitting process in the Netherlands is intended to minimize thermal interference between ATES systems. However, as shown in recent studies (Sommer et al., 2015; Bakr et al., 2013), a controlled amount of interference may benefit the collective performance of ATES systems. An overly restrictive approach to permitting is instead likely to create an artificial scarcity of available space, limiting the potential of the technology in urban areas. In response, master plans - which take into account the collective arrangement of multiple systems - have emerged as an increasingly popular alternative. However, permits and master plans both take a static, ex ante view of ATES governance, making it difficult to predict the effect of evolving ATES use or climactic conditions on overall performance. In particular, the adoption of new systems by building operators is likely to be driven by the available subsurface space and by the performance of existing systems; these outcomes are themselves a function of planning parameters. From this perspective, the interactions between planning authorities, ATES operators, and subsurface conditions

  12. Platforms for artificial neural networks : neurosimulators and performance prediction of MIMD-parallel systems

    NARCIS (Netherlands)

    Vuurpijl, L.G.

    1998-01-01

    In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to

  13. Biological channel modeling and implantable UWB antenna design for neural recording systems.

    Science.gov (United States)

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Rusch, Leslie A; Gosselin, Benoit

    2015-01-01

    Ultrawideband (UWB) short-range communication systems have proved to be valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size, and high data rates. Neural activity monitoring in the brain requires high data rate (800 kb/s per neural sensor), and we target a system supporting a large number of sensors, in particular, aggregate transmission above 430 Mb/s (∼512 sensors). Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage, and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver under these requirements. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulation and experiment. Our miniaturized antennas, 12 mm ×12 mm, need worst-case receiver sensitivities of -38 and -30.5 dBm for the first and second scenarios, respectively. These sensitivities allow us to successfully detect signals transmitted through tissues in the 3.1-10.6-GHz UWB band.

  14. Analysis of the developing neural system using an in vitro model by Raman spectroscopy.

    Science.gov (United States)

    Hashimoto, Kosuke; Kudoh, Suguru N; Sato, Hidetoshi

    2015-04-07

    We developed an in vitro model of early neural cell development. The maturation of a normal neural cell was studied in vitro using Raman spectroscopy for 120 days. The Raman spectra datasets were analyzed by principal component analysis (PCA) to investigate the relationship between maturation stages and molecular composition changes in neural cells. According to the PCA, the Raman spectra datasets can be classified into four larger groups. Previous electrophysiological studies have suggested that a normal neural cell goes through three maturation states. The groups we observed by Raman analysis showed good agreement with the electrophysiological results, except with the addition of a fourth state. The results demonstrated that Raman analysis was powerful to investigate the daily changes in molecular composition of the growing neural cell. This in vitro model system may be useful for future studies of the effects of endocrine disrupters in the developing early neural system.

  15. NNETS - NEURAL NETWORK ENVIRONMENT ON A TRANSPUTER SYSTEM

    Science.gov (United States)

    Villarreal, J.

    1994-01-01

    The primary purpose of NNETS (Neural Network Environment on a Transputer System) is to provide users a high degree of flexibility in creating and manipulating a wide variety of neural network topologies at processing speeds not found in conventional computing environments. To accomplish this purpose, NNETS supports back propagation and back propagation related algorithms. The back propagation algorithm used is an implementation of Rumelhart's Generalized Delta Rule. NNETS was developed on the INMOS Transputer. NNETS predefines a Back Propagation Network, a Jordan Network, and a Reinforcement Network to assist users in learning and defining their own networks. The program also allows users to configure other neural network paradigms from the NNETS basic architecture. The Jordan network is basically a feed forward network that has the outputs connected to a pseudo input layer. The state of the network is dependent on the inputs from the environment plus the state of the network. The Reinforcement network learns via a scalar feedback signal called reinforcement. The network propagates forward randomly. The environment looks at the outputs of the network to produce a reinforcement signal that is fed back to the network. NNETS was written for the INMOS C compiler D711B version 1.3 or later (MS-DOS version). A small portion of the software was written in the OCCAM language to perform the communications routing between processors. NNETS is configured to operate on a 4 X 10 array of Transputers in sequence with a Transputer based graphics processor controlled by a master IBM PC 286 (or better) Transputer. A RGB monitor is required which must be capable of 512 X 512 resolution. It must be able to receive red, green, and blue signals via BNC connectors. NNETS is meant for experienced Transputer users only. The program is distributed on 5.25 inch 1.2Mb MS-DOS format diskettes. NNETS was developed in 1991. Transputer and OCCAM are registered trademarks of Inmos Corporation. MS

  16. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Omar Payán-Serrano

    2017-05-01

    Full Text Available The aim of this paper is to investigate the prediction of maximum story drift of Multi-Degree of Freedom (MDOF structures subjected to dynamics wind load using Artificial Neural Networks (ANNs through the combination of several structural and turbulent wind parameters. The maximum story drift of 1600 MDOF structures under 16 simulated wind conditions are computed with the purpose of generating the data set for the networks training with the Levenberg–Marquardt method. The Shinozuka and Newmark methods are used to simulate the turbulent wind and dynamic response, respectively. In order to optimize the computational time required for the dynamic analyses, an array format based on the Shinozuka method is presented to perform the parallel computing. Finally, it is observed that the already trained ANNs allow for predicting adequately the maximum story drift with a correlation close to 99%.

  18. Under-Actuated Robot Manipulator Positioning Control Using Artificial Neural Network Inversion Technique

    Directory of Open Access Journals (Sweden)

    Ali T. Hasan

    2012-01-01

    Full Text Available This paper is devoted to solve the positioning control problem of underactuated robot manipulator. Artificial Neural Networks Inversion technique was used where a network represents the forward dynamics of the system trained to learn the position of the passive joint over the working space of a 2R underactuated robot. The obtained weights from the learning process were fixed, and the network was inverted to represent the inverse dynamics of the system and then used in the estimation phase to estimate the position of the passive joint for a new set of data the network was not previously trained for. Data used in this research are recorded experimentally from sensors fixed on the robot joints in order to overcome whichever uncertainties presence in the real world such as ill-defined linkage parameters, links flexibility, and backlashes in gear trains. Results were verified experimentally to show the success of the proposed control strategy.

  19. Quantum systems under frequency modulation

    Science.gov (United States)

    Silveri, M. P.; Tuorila, J. A.; Thuneberg, E. V.; Paraoanu, G. S.

    2017-05-01

    We review the physical phenomena that arise when quantum mechanical energy levels are modulated in time. The dynamics resulting from changes in the transition frequency is a problem studied since the early days of quantum mechanics. It has been of constant interest both experimentally and theoretically since, with the simple two-state model providing an inexhaustible source of novel concepts. When the transition frequency of a quantum system is modulated, several phenomena can be observed, such as Landau-Zener-Stückelberg-Majorana interference, motional averaging and narrowing, and the formation of dressed states with the appearance of sidebands in the spectrum. Adiabatic changes result in the accumulation of geometric phases, which can be used to create topological states. In recent years, an exquisite experimental control in the time domain was gained through the parameters entering the Hamiltonian, and high-fidelity readout schemes allowed the state of the system to be monitored non-destructively. These developments were made in the field of quantum devices, especially in superconducting qubits, as a well as in atomic physics, in particular in ultracold gases. As a result of these advances, it became possible to demonstrate many of the fundamental effects that arise in a quantum system when its transition frequencies are modulated. The purpose of this review is to present some of these developments, from two-state atoms and harmonic oscillators to multilevel and many-particle systems.

  20. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  1. Epigenetic mechanisms underlying nervous system diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2018-01-01

    Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...

  3. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  4. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  5. Neural computations underlying arbitration between model-based and model-free learning

    Science.gov (United States)

    Lee, Sang Wan; Shimojo, Shinsuke; O’Doherty, John P.

    2014-01-01

    SUMMARY There is accumulating neural evidence to support the existence of two distinct systems for guiding action-selection in the brain, a deliberative “model-based” and a reflexive “model-free” system. However, little is known about how the brain determines which of these systems controls behavior at one moment in time. We provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions. We show that inferior lateral prefrontal and frontopolar cortex encode both reliability signals and the output of a comparison between those signals, implicating these regions in the arbitration process. Moreover, connectivity between these regions and model-free valuation areas is negatively modulated by the degree of model-based control in the arbitrator, suggesting that arbitration may work through modulation of the model-free valuation system when the arbitrator deems that the model-based system should drive behavior. PMID:24507199

  6. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  7. Neural response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    2016-08-01

    Full Text Available Individuals with borderline personality disorder (BPD are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging. Eleven female patients with BPD without posttraumatic stress disorder and seventeen healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System, an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for two minutes. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex and the rostral cingulate zone. We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.

  8. On the Computational Power of Spiking Neural P Systems with Self-Organization

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-06-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.

  9. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN

    Directory of Open Access Journals (Sweden)

    LAHEEB MOHAMMAD IBRAHIM

    2010-12-01

    Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.

  10. An alternative respiratory sounds classification system utilizing artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  11. An alternative respiratory sounds classification system utilizing artificial neural networks.

    Science.gov (United States)

    Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen

    2015-01-01

    Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  12. Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex.

    Science.gov (United States)

    Vaz, Alex P; Yaffe, Robert B; Wittig, John H; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in successful memory formation in the human cortex is unknown. Measures of PAC are difficult to interpret, however. Both increases and decreases in PAC have been linked to memory encoding, and PAC may arise due to different neural mechanisms. Here, we use a waveform analysis to examine PAC in the human cortex as participants with intracranial electrodes performed a paired associates memory task. We found that successful memory formation exhibited significant decreases in left temporal lobe and prefrontal cortical PAC, and these two regions exhibited changes in PAC within different frequency bands. Two underlying neural mechanisms, nested oscillations and sharp waveforms, were responsible for the changes in these regions. Our data therefore suggest that decreases in measured cortical PAC during episodic memory reflect two distinct underlying mechanisms that are anatomically segregated in the human brain. Published by Elsevier Inc.

  13. Artificial neural network model for estimating the soil respiration under different land uses

    Science.gov (United States)

    Ebrahimi, Mitra; Sarikhani, Mohammad Reza; Safari Sinegani, Ali Akbar; Ahmadi, Abbas; Keesstra, Saskia

    2017-04-01

    Soil respiration is a biological process in microbes that convert organic carbon to atmospheric CO2. This process is considered to be one of the largest global carbon fluxes and is affected by different physicochemical and biological properties of soil, land usageuse, vegetation types and climate patterns. The aim of this study was to estimate the soil basal (BR) and substrate induced respiration (SIR) of 150 data obtained from soil samples collected from depth (0-25 cm) under different land uses by Artificial Neural Network. Soil samples were chosen from three provinces of Iran, with humid subtropical and semi-arid climate patterns. In each soil sample, soil texture, pH, electrical conductivity (EC), calcium carbonate equivalent (CCE), organic carbon (OC), OC fractionation data e.g. light fraction OC (LOC), heavy fraction OC (HOC), cold water extractable OC (COC) and warm water extractable OC (WOC), population of fungi, bacteria and actinomycete, BR and SIR were measured. Our goal was to use the most efficient ANN-model to predict soil respiration with simple soil data. Our results indicated that in an ANN model containing all the measured parameters, the R2 and RMSE values for BR prediction were 0.64 and 0.047 while these statistical indicators for SIR obtained 0.58 and 0.15, respectively. The R2 and RMSE values of the BR-ANN and SIR-ANN predicted models comprising 7 variables (including OC, pH, EC, CCE and soil texture) were estimated at 0.66, 0.043 and 0.52, 0.16, respectively. It was concluded that ANN modeling is a reliable method for predicting soil respiration. KEYWORDS: Artificial neural network; Land use; Soil physicochemical properties; Soil respiration; Soil microorganism

  14. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  15. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  16. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  17. Neural Control System in Obstacle Avoidance in Mobile Robots Using Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    A. Medina-Santiago

    2014-02-01

    Full Text Available This paper presents the development and implementation of neural control systems in mobile robots in obstacle avoidance in real time using ultrasonic sensors with complex strategies of decision-making in development (Matlab and Processing. An Arduino embedded platform is used to implement the neural control for field results.

  18. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  19. Fault diagnosis in satellite attitude control systems using artificial neural networkk

    Science.gov (United States)

    Ayodele I., Olanipekun

    The nonlinear behavior exhibited by altitude control system processes and also the presence of external constraints on the operating conditions causes hitch in the dynamics of system processes. This research work proposes a fault detection/tolerant prediction in an altitude control system. This is done through the artificial neural network fault detection by deploying the neural network approach. A fault detection and isolation module is developed in the actuator system of the Altitude Control System, thereby achieving the goal of this thesis. This can be done by two basic classification stages: Neural Residual Generator (Neural Observer)- This stage is responsible for generating residual errors that can reflect the real behavior of the entire process as against its normal conditions. Adaptive Neural Classifier - This stage is responsible for managing the isolation task of the fault detected by evaluating the generated residual errors from the neural estimator which gives detailed information about faults detected e.g., fault location and time. These two stages can be implemented by executing the tasks listed below: 1. Study and develop a generic three axis stabilized altitude control model based on the reaction wheels. This is established with three separate PD controllers designed for each reaction wheel of the satellite axis using the Matlab - SIMULINK. 2. Develop a dynamic neural network residual generator based on Dynamic Multilayer Perceptron Network (DMLP) which is then applied to the reaction wheel model designed commonly called the actuator in the altitude control system of a satellite 3. Develop a neural network adaptive classifier based on the Learning Vector Quantization (LVQ) model which is used for the isolation concept. The advantages of the proposed dynamic neural network and neural adaptive classifier approach are showcased.

  20. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  1. Honey characterization using computer vision system and artificial neural networks.

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid; Moghaddam-Charkari, Nasrollah; Barzegar, Mohsen

    2014-09-15

    This paper reports the development of a computer vision system (CVS) for non-destructive characterization of honey based on colour and its correlated chemical attributes including ash content (AC), antioxidant activity (AA), and total phenolic content (TPC). Artificial neural network (ANN) models were applied to transform RGB values of images to CIE L*a*b* colourimetric measurements and to predict AC, TPC and AA from colour features of images. The developed ANN models were able to convert RGB values to CIE L*a*b* colourimetric parameters with low generalization error of 1.01±0.99. In addition, the developed models for prediction of AC, TPC and AA showed high performance based on colour parameters of honey images, as the R(2) values for prediction were 0.99, 0.98, and 0.87, for AC, AA and TPC, respectively. The experimental results show the effectiveness and possibility of applying CVS for non-destructive honey characterization by the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  3. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model.......This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures...

  4. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  5. A neural systems-based neurobiology and neuropsychiatry course: integrating biology, psychodynamics, and psychology in the psychiatric curriculum.

    Science.gov (United States)

    Lacy, Timothy; Hughes, John D

    2006-01-01

    Psychotherapy and biological psychiatry remain divided in psychiatry residency curricula. Behavioral neurobiology and neuropsychiatry provide a systems-level framework that allows teachers to integrate biology, psychodynamics, and psychology. The authors detail the underlying assumptions and outline of a neural systems-based neuroscience course they teach at the National Capital Consortium Psychiatry Residency Program. They review course assessment reports and classroom observations. Self-report measures and teacher observations are encouraging. By the end of the course, residents are able to discuss both neurobiological and psychodynamic/psychological concepts of distributed biological neural networks. They verbalize an understanding that psychology is biology, that any distinction is artificial, and that both are valuable. A neuroscience curriculum founded on the underlying principles of behavioral neurobiology and neuropsychiatry is inherently anti-reductionistic and facilitates the acquisition of detailed information as well as critical thinking and cross-disciplinary correlations with psychological theories and psychotherapy.

  6. Neural Network Expert System in the Application of Tower Fault Diagnosis

    Science.gov (United States)

    Liu, Xiaoyang; Xia, Zhongwu; Tao, Zhiyong; Zhao, Zhenlian

    For the corresponding fuzzy relationship between the fault symptoms and the fault causes in the process of tower crane operation, this paper puts forward a kind of rapid new method of fast detection and diagnosis for common fault based on neural network expert system. This paper makes full use of expert system and neural network advantages, and briefly introduces the structure, function, algorithm and realization of the adopted system. Results show that the new algorithm is feasible and can achieve rapid faults diagnosis.

  7. Research on architecture of intelligent design platform for artificial neural network expert system

    Science.gov (United States)

    Gu, Honghong

    2017-09-01

    Based on the review of the development and current situation of CAD technology, the necessity of combination of artificial neural network and expert system, and then present an intelligent design system based on artificial neural network. Moreover, it discussed the feasibility of realization of a design-oriented expert system development tools on the basis of above combination. In addition, knowledge representation strategy and method and the solving process are given in this paper.

  8. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight

    Directory of Open Access Journals (Sweden)

    Daniel Pedrosa Alves

    Full Text Available ABSTRACT: Artificial neural networks (ANN are computational models inspired by the neural systems of living beings capable of learning from examples and using them to solve problems such as non-linear prediction, and pattern recognition, in addition to several other applications. In this study, ANN were used to predict the value of the area under the disease progress curve (AUDPC for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. However, a series of six evaluations over time is necessary to obtain the final area value for this pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four independent experiments were performed giving a total of 1836 plants infected with Phytophthora infestans pathogen. They were assessed every three days, comprised six opportunities and AUDPC calculations were performed by the conventional method. After the ANN were created it was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to conventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using the ANN created in an experiment to predict the AUDPC of the other experiments the average correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted values of the ANN and they were observed in six evaluations. We present in this study a new paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This new proposed paradigm might be adapted to different pathosystems.

  9. An artificial neural network system to identify alleles in reference electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone

    Directory of Open Access Journals (Sweden)

    Tatsuya eKobayashi

    2015-02-01

    Full Text Available Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions. This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division, anterior lateral division and posterior division of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Fos expression decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus via the opioidergic pathway.

  11. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  12. Stability of Neural Firing in the Trigeminal Nuclei under Mechanical Whisker Stimulation

    Directory of Open Access Journals (Sweden)

    Valeri A. Makarov

    2010-01-01

    Full Text Available Sensory information handling is an essentially nonstationary process even under a periodic stimulation. We show how the time evolution of ridges in the wavelet spectrum of spike trains can be used for quantification of the dynamical stability of the neuronal responses to a stimulus. We employ this method to study neuronal responses in trigeminal nuclei of the rat provoked by tactile whisker stimulation. Neurons from principalis (Pr5 and interpolaris (Sp5i show the maximal stability at the intermediate (50 ms stimulus duration, whereas Sp5o cells “prefer” shorter (10 ms stimulation. We also show that neurons in all three nuclei can perform as stimulus frequency filters. The response stability of about 33% of cells exhibits low-pass frequency dynamics. About 57% of cells have band-pass dynamics with the optimal frequency at 5 Hz for Pr5 and Sp5i, and 4 Hz for Sp5o, and the remaining 10% show no prominent dependence on the stimulus frequency. This suggests that the neural coding scheme in trigeminal nuclei is not fixed, but instead it adapts to the stimulus characteristics.

  13. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome.

    Science.gov (United States)

    Shpargel, Karl B; Starmer, Joshua; Wang, Chaochen; Ge, Kai; Magnuson, Terry

    2017-10-24

    Kabuki syndrome, a congenital craniofacial disorder, manifests from mutations in an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A) or a H3 lysine 4 methylase (KMT2D). However, the cellular and molecular etiology of histone-modifying enzymes in craniofacial disorders is unknown. We now establish Kabuki syndrome as a neurocristopathy, whereby the majority of clinical features are modeled in mice carrying neural crest (NC) deletion of UTX, including craniofacial dysmorphism, cardiac defects, and postnatal growth retardation. Female UTX NC knockout (FKO) demonstrates enhanced phenotypic severity over males (MKOs), due to partial redundancy with UTY, a Y-chromosome demethylase-dead homolog. Thus, NC cells may require demethylase-independent UTX activity. Consistently, Kabuki causative point mutations upstream of the JmjC domain do not disrupt UTX demethylation. We have isolated primary NC cells at a phenocritical postmigratory timepoint in both FKO and MKO mice, and genome-wide expression and histone profiling have revealed UTX molecular function in establishing appropriate chromatin structure to regulate crucial NC stem-cell signaling pathways. However, the majority of UTX regulated genes do not experience aberrations in H3K27me3 or H3K4me3, implicating alternative roles for UTX in transcriptional control. These findings are substantiated through demethylase-dead knockin mutation of UTX, which supports appropriate facial development. Published under the PNAS license.

  14. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  15. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  16. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  17. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  18. Simulation of Missile Autopilot with Two-Rate Hybrid Neural Network System

    Directory of Open Access Journals (Sweden)

    ASTROV, I.

    2007-04-01

    Full Text Available This paper proposes a two-rate hybrid neural network system, which consists of two artificial neural network subsystems. These neural network subsystems are used as the dynamic subsystems controllers.1 This is because such neuromorphic controllers are especially suitable to control complex systems. An illustrative example - two-rate neural network hybrid control of decomposed stochastic model of a rigid guided missile over different operating conditions - was carried out using the proposed two-rate state-space decomposition technique. This example demonstrates that this research technique results in simplified low-order autonomous control subsystems with various speeds of actuation, and shows the quality of the proposed technique. The obtained results show that the control tasks for the autonomous subsystems can be solved more qualitatively than for the original system. The simulation and animation results with use of software package Simulink demonstrate that this research technique would work for real-time stochastic systems.

  19. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  20. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  1. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  2. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system.

    Science.gov (United States)

    Johnson, Cameron; Venayagamoorthy, Ganesh Kumar; Mitra, Pinaki

    2009-01-01

    The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.

  3. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Directory of Open Access Journals (Sweden)

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  4. Adaptive Wavelet Neural Network Backstepping Sliding Mode Tracking Control for PMSM Drive System

    OpenAIRE

    Liu, Da; Li, Muguo

    2015-01-01

    This paper presents a wavelet neural network backstepping sliding mode controller (WNNBSSM) for permanent-magnet synchronous motor (PMSM) position servo control system. Backstepping sliding mode (BSSM) is utilized to guarantee favorable tracking performance and stability of the whole system, meanwhile, wavelet neural network (WNN) is used for approximating nonlinear uncertainties. The designed controller combined the merits of the backstepping sliding mode control with robust characteristics ...

  5. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  6. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  7. Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Wagner Peron; Silveira, Maria do Carmo G.; Lotufo, AnnaDiva P.; Minussi, Carlos. R. [Department of Electrical Engineering, Sao Paulo State University (UNESP), P.O. Box 31, 15385-000, Ilha Solteira, SP (Brazil)

    2006-04-15

    This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (author)

  8. NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems

    Directory of Open Access Journals (Sweden)

    Caglayan Ozan

    2017-10-01

    Full Text Available In this paper, we present nmtpy, a flexible Python toolkit based on Theano for training Neural Machine Translation and other neural sequence-to-sequence architectures. nmtpy decouples the specification of a network from the training and inference utilities to simplify the addition of a new architecture and reduce the amount of boilerplate code to be written. nmtpy has been used for LIUM’s top-ranked submissions to WMT Multimodal Machine Translation and News Translation tasks in 2016 and 2017.

  9. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  10. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  11. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    Science.gov (United States)

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.

  12. Prediction of a model enzymatic acidolysis system using neural networks

    Directory of Open Access Journals (Sweden)

    Güven, Aytaç

    2008-12-01

    Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de

  13. Insular neural system controls decision-making in healthy and methamphetamine-treated rats

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Katahira, Kentaro; Inutsuka, Ayumu; Fukumoto, Kazuya; Nakamura, Akihiro; Wang, Tian; Nagai, Taku; Sato, Jun; Sawada, Makoto; Ohira, Hideki; Yamanaka, Akihiro; Yamada, Kiyofumi

    2015-01-01

    Patients suffering from neuropsychiatric disorders such as substance-related and addictive disorders exhibit altered decision-making patterns, which may be associated with their behavioral abnormalities. However, the neuronal mechanisms underlying such impairments are largely unknown. Using a gambling test, we demonstrated that methamphetamine (METH)-treated rats chose a high-risk/high-reward option more frequently and assigned higher value to high returns than control rats, suggestive of changes in decision-making choice strategy. Immunohistochemical analysis following the gambling test revealed aberrant activation of the insular cortex (INS) and nucleus accumbens in METH-treated animals. Pharmacological studies, together with in vivo microdialysis, showed that the insular neural system played a crucial role in decision-making. Moreover, manipulation of INS activation using designer receptor exclusively activated by designer drug technology resulted in alterations to decision-making. Our findings suggest that the INS is a critical region involved in decision-making and that insular neural dysfunction results in risk-taking behaviors associated with altered decision-making. PMID:26150496

  14. Software implementation of artificial neural networks in automated intelligent systems

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2009-02-01

    Full Text Available  Application of neural networks technologies effectively decides the task of synthesis of origin of accident risk and gives out the vector of managing signals of network on incomplete and distorted information about the phenomena, events and processes which influence on safety flights.

  15. Credit Risk Evaluation System: An Artificial Neural Network Approach

    African Journals Online (AJOL)

    In this paper, we proposed an architecture which uses the theory of artificial neural networks and business rules to correctly determine whether a customer is good or bad. In the first step, by using clustering algorithm, clients are segmented into groups with similar features. In the second step, decision trees are built based ...

  16. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems.

    Science.gov (United States)

    Oldfield, Ronald G; Harris, Rayna M; Hofmann, Hans A

    2015-01-01

    The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.

  17. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    Science.gov (United States)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  18. Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.

    Science.gov (United States)

    Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine

    2014-08-01

    In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Neural mechanisms underlying the conditioned diminution of the unconditioned fear response.

    Science.gov (United States)

    Wood, Kimberly H; Ver Hoef, Lawrence W; Knight, David C

    2012-03-01

    Recognizing cues that predict an aversive event allows one to react more effectively under threatening conditions, and minimizes the reaction to the threat itself. This is demonstrated during Pavlovian fear conditioning when the unconditioned response (UCR) to a predictable unconditioned stimulus (UCS) is diminished compared to the UCR to an unpredictable UCS. The present study investigated the functional magnetic resonance imaging (fMRI) signal response associated with Pavlovian conditioned UCR diminution to better understand the relationship between individual differences in behavior and the neural mechanisms of the threat-related emotional response. Healthy volunteers participated in a fear conditioning study in which trait anxiety, skin conductance response (SCR), UCS expectancy, and the fMRI signal were assessed. During acquisition trials, a tone (CS+) was paired with a white noise UCS and a second tone (CS-) was presented without the UCS. Test trials consisted of the CS+ paired with the UCS, CS- paired with the UCS, and presentations of the UCS alone to assess conditioned UCR diminution. UCR diminution was observed within the dorsolateral PFC, dorsomedial PFC, cingulate cortex, inferior parietal lobule (IPL), anterior insula, and amygdala. The threat-related activity within the dorsolateral PFC, dorsomedial PFC, posterior cingulate cortex, and IPL varied with individual differences in trait anxiety. In addition, anticipatory (i.e. CS elicited) activity within the PFC showed an inverse relationship with threat-related (i.e. UCS elicited) activity within the PFC, IPL, and amygdala. Further, the emotional response (indexed via SCR) elicited by the threat was closely linked to amygdala activity. These findings are consistent with the view that the amygdala and PFC support learning-related processes that influence the emotional response evoked by a threat. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  1. Neural correlates of erotic stimulation under different levels of female sexual hormones.

    Directory of Open Access Journals (Sweden)

    Birgit Abler

    Full Text Available Previous studies have demonstrated variable influences of sexual hormonal states on female brain activation and the necessity to control for these in neuroimaging studies. However, systematic investigations of these influences, particularly those of hormonal contraceptives as compared to the physiological menstrual cycle are scarce. In the present study, we investigated the hormonal modulation of neural correlates of erotic processing in a group of females under hormonal contraceptives (C group; N = 12, and a different group of females (nC group; N = 12 not taking contraceptives during their mid-follicular and mid-luteal phases of the cycle. We used functional magnetic resonance imaging to measure hemodynamic responses as an estimate of brain activation during three different experimental conditions of visual erotic stimulation: dynamic videos, static erotic pictures, and expectation of erotic pictures. Plasma estrogen and progesterone levels were assessed in all subjects. No strong hormonally modulating effect was detected upon more direct and explicit stimulation (viewing of videos or pictures with significant activations in cortical and subcortical brain regions previously linked to erotic stimulation consistent across hormonal levels and stimulation type. Upon less direct and less explicit stimulation (expectation, activation patterns varied between the different hormonal conditions with various, predominantly frontal brain regions showing significant within- or between-group differences. Activation in the precentral gyrus during the follicular phase in the nC group was found elevated compared to the C group and positively correlated with estrogen levels. From the results we conclude that effects of hormonal influences on brain activation during erotic stimulation are weak if stimulation is direct and explicit but that female sexual hormones may modulate more subtle aspects of sexual arousal and behaviour as involved in sexual

  2. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas.

    Science.gov (United States)

    Zhong, Ziwei; Henry, Kenneth S; Heinz, Michael G

    2014-03-01

    People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Embedded System Synthesis under Memory Constraints

    DEFF Research Database (Denmark)

    Madsen, Jan; Bjørn-Jørgensen, Peter

    1999-01-01

    This paper presents a genetic algorithm to solve the system synthesis problem of mapping a time constrained single-rate system specification onto a given heterogeneous architecture which may contain irregular interconnection structures. The synthesis is performed under memory constraints, that is......, the algorithm takes into account the memory size of processors and the size of interface buffers of communication links, and in particular the complicated interplay of these. The presented algorithm is implemented as part of the LY-COS cosynthesis system....

  4. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model.

    Science.gov (United States)

    Mannella, Francesco; Mirolli, Marco; Baldassarre, Gianluca

    2016-01-01

    Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or "action-outcomes", e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior.

  5. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  6. Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems.

    Directory of Open Access Journals (Sweden)

    Jarred Younger

    2010-10-01

    Full Text Available The early stages of a new romantic relationship are characterized by intense feelings of euphoria, well-being, and preoccupation with the romantic partner. Neuroimaging research has linked those feelings to activation of reward systems in the human brain. The results of those studies may be relevant to pain management in humans, as basic animal research has shown that pharmacologic activation of reward systems can substantially reduce pain. Indeed, viewing pictures of a romantic partner was recently demonstrated to reduce experimental thermal pain. We hypothesized that pain relief evoked by viewing pictures of a romantic partner would be associated with neural activations in reward-processing centers. In this functional magnetic resonance imaging (fMRI study, we examined fifteen individuals in the first nine months of a new, romantic relationship. Participants completed three tasks under periods of moderate and high thermal pain: 1 viewing pictures of their romantic partner, 2 viewing pictures of an equally attractive and familiar acquaintance, and 3 a word-association distraction task previously demonstrated to reduce pain. The partner and distraction tasks both significantly reduced self-reported pain, although only the partner task was associated with activation of reward systems. Greater analgesia while viewing pictures of a romantic partner was associated with increased activity in several reward-processing regions, including the caudate head, nucleus accumbens, lateral orbitofrontal cortex, amygdala, and dorsolateral prefrontal cortex--regions not associated with distraction-induced analgesia. The results suggest that the activation of neural reward systems via non-pharmacologic means can reduce the experience of pain.

  7. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    Directory of Open Access Journals (Sweden)

    You Ning

    2013-01-01

    Full Text Available Adult neural stem cells (NSCs persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.

  8. Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2015-01-01

    This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...

  9. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.

    Science.gov (United States)

    Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra

    2014-09-01

    Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.

  10. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  11. Psychological Processing in Chronic Pain: A Neural Systems Approach

    Science.gov (United States)

    Simons, Laura; Elman, Igor; Borsook, David

    2014-01-01

    Our understanding of chronic pain involves complex brain circuits that include sensory, emotional, cognitive and interoceptive processing. The feed-forward interactions between physical (e.g., trauma) and emotional pain and the consequences of altered psychological status on the expression of pain have made the evaluation and treatment of chronic pain a challenge in the clinic. By understanding the neural circuits involved in psychological processes, a mechanistic approach to the implementation of psychology-based treatments may be better understood. In this review we evaluate some of the principle processes that may be altered as a consequence of chronic pain in the context of localized and integrated neural networks. These changes are ongoing, vary in their magnitude, and their hierarchical manifestations, and may be temporally and sequentially altered by treatments, and all contribute to an overall pain phenotype. Furthermore, we link altered psychological processes to specific evidence-based treatments to put forth a model of pain neuroscience psychology. PMID:24374383

  12. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    Science.gov (United States)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  13. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate.

    Science.gov (United States)

    Nitzan, Erez; Avraham, Oshri; Kahane, Nitza; Ofek, Shai; Kumar, Deepak; Kalcheim, Chaya

    2016-03-24

    The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. Together, our data suggest that BMP signaling is

  14. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a

  16. Prospects of application of artificial neural networks for forecasting of cargo transportation volume in transport systems

    Directory of Open Access Journals (Sweden)

    D. T. Yakupov

    2017-01-01

    Full Text Available The purpose of research – to identify the prospects for the use of neural network approach in relation to the tasks of economic forecasting of logistics performance, in particular of volume freight traffic in the transport system promiscuous regional freight traffic, as well as to substantiate the effectiveness of the use of artificial neural networks (ANN, as compared with the efficiency of traditional extrapolative methods of forecasting. The authors consider the possibility of forecasting to use ANN for these economic indicators not as an alternative to the traditional methods of statistical forecasting, but as one of the available simple means for solving complex problems.Materials and methods. When predicting the ANN, three methods of learning were used: 1 the Levenberg-Marquardt algorithm-network training stops when the generalization ceases to improve, which is shown by the increase in the mean square error of the output value; 2 Bayes regularization method - network training is stopped in accordance with the minimization of adaptive weights; 3 the method of scaled conjugate gradients, which is used to find the local extremum of a function on the basis of information about its values and gradient. The Neural Network Toolbox package is used for forecasting. The neural network model consists of a hidden layer of neurons with a sigmoidal activation function and an output neuron with a linear activation function, the input values of the dynamic time series, and the predicted value is removed from the output. For a more objective assessment of the prospects of the ANN application, the results of the forecast are presented in comparison with the results obtained in predicting the method of exponential smoothing.Results. When predicting the volumes of freight transportation by rail, satisfactory indicators of the verification of forecasting by both the method of exponential smoothing and ANN had been obtained, although the neural network

  17. A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Metin Demirtas

    2011-07-01

    Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.

  18. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  19. Survivability of systems under multiple factor impact

    Energy Technology Data Exchange (ETDEWEB)

    Korczak, Edward [Telecommunications Research Institute, Warsaw (Poland); Levitin, Gregory [Israel Electric Corporation Ltd., Haifa (Israel)]. E-mail: levitin@iec.co.il

    2007-02-15

    The paper considers vulnerable multi-state series-parallel systems operating under influence of external impacts. Both the external impacts and internal failures affect system survivability, which is determined as the probability of meeting a given demand. The external impacts are characterized by several destructive factors affecting the system or its parts simultaneously. In order to increase the system's survivability a multilevel protection against the destructive factors can be applied to its subsystems. In such systems, the protected subsystems can be destroyed only if all of the levels of their protection are destroyed. The paper presents an algorithm for evaluating the survivability of series-parallel systems with arbitrary configuration of multilevel protection against multiple destructive factor impacts. The algorithm is based on a composition of Boolean and the Universal Generating Function techniques. Illustrative examples are presented.

  20. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.

    Directory of Open Access Journals (Sweden)

    Marcus Kaiser

    2006-07-01

    Full Text Available It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps.

  1. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  2. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  3. Infants' somatotopic neural responses to seeing human actions: I've got you under my skin.

    Directory of Open Access Journals (Sweden)

    Joni N Saby

    Full Text Available Human infants rapidly learn new skills and customs via imitation, but the neural linkages between action perception and production are not well understood. Neuroscience studies in adults suggest that a key component of imitation-identifying the corresponding body part used in the acts of self and other-has an organized neural signature. In adults, perceiving someone using a specific body part (e.g., hand vs. foot is associated with activation of the corresponding area of the sensory and/or motor strip in the observer's brain-a phenomenon called neural somatotopy. Here we examine whether preverbal infants also exhibit somatotopic neural responses during the observation of others' actions. 14-month-old infants were randomly assigned to watch an adult reach towards and touch an object using either her hand or her foot. The scalp electroencephalogram (EEG was recorded and event-related changes in the sensorimotor mu rhythm were analyzed. Mu rhythm desynchronization was greater over hand areas of sensorimotor cortex during observation of hand actions and was greater over the foot area for observation of foot actions. This provides the first evidence that infants' observation of someone else using a particular body part activates the corresponding areas of sensorimotor cortex. We hypothesize that this somatotopic organization in the developing brain supports imitation and cultural learning. The findings connect developmental cognitive neuroscience, adult neuroscience, action representation, and behavioral imitation.

  4. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Science.gov (United States)

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  5. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Agustín Flores

    2014-01-01

    Full Text Available This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  6. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Study of the neural dynamics for understanding communication in terms of complex hetero systems.

    Science.gov (United States)

    Tsuda, Ichiro; Yamaguchi, Yoko; Hashimoto, Takashi; Okuda, Jiro; Kawasaki, Masahiro; Nagasaka, Yasuo

    2015-01-01

    The purpose of the research project was to establish a new research area named "neural information science for communication" by elucidating its neural mechanism. The research was performed in collaboration with applied mathematicians in complex-systems science and experimental researchers in neuroscience. The project included measurements of brain activity during communication with or without languages and analyses performed with the help of extended theories for dynamical systems and stochastic systems. The communication paradigm was extended to the interactions between human and human, human and animal, human and robot, human and materials, and even animal and animal. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Lorena P [Lorena Vargas Quintero, Optic and Computer Science Group - Universidad Popular del Cesar (Colombia); Barba, Leiner; Torres, C O; Mattos, L, E-mail: vargas.lorena@yahoo.com [Optic and Computer Science Group - Popular of Cesar University, Km 12, Valledupar (Colombia)

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  9. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    Science.gov (United States)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  10. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  11. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  12. Placebo-Activated Neural Systems are Linked to Antidepressant Responses

    Science.gov (United States)

    Peciña, Marta; Bohnert, Amy S. B.; Sikora, Magdalena; Avery, Erich T.; Langenecker, Scott A.; Mickey, Brian J.; Zubieta, Jon-Kar

    2016-01-01

    Importance High placebo responses have been observed across a wide range of pathologies, severely impacting drug development. Objective Here we examined neurochemical mechanisms underlying the formation of placebo effects in patients with Major Depressive Disorder (MDD). Participants Thirty-five medication-free MDD patients. Design and Intervention We performed a single-blinded two-week cross-over randomized controlled trial of two identical oral placebos (described as having either “active” or “inactive” fast-acting antidepressant-like effects) followed by a 10-week open-label treatment with a selective serotonin reuptake inhibitor (SSRI) or in some cases, another agent as clinically indicated. The volunteers were studied with PET and the μ-opioid receptor (MOR)-selective radiotracer [11C]carfentanil after each 1-week “inactive” and “active” oral placebo treatment. In addition, 1 mL of isotonic saline was administered intravenously (i.v.) within sight of the volunteer during PET scanning every 4 min over 20 min only after the 1-week active placebo treatment, with instructions that the compound may be associated with the activation of brain systems involved in mood improvement. This challenge stimulus was utilized to test the individual capacity to acutely activate endogenous opioid neurotransmision under expectations of antidepressant effect. Setting A University Health System. Main Outcomes and Measures Changes in depressive symptoms in response to “active” placebo and antidepressant. Baseline and activation measures of MOR binding. Results Higher baseline MOR binding in the nucleus accumbens (NAc) was associated with better response to antidepressant treatment (r=0.48; p=0.02). Reductions in depressive symptoms after 1-week of “active” placebo treatment, compared to the “inactive”, were associated with increased placebo-induced μ-opioid neurotransmission in a network of regions implicated in emotion, stress regulation, and the

  13. Neural systems for social cognition in Klinefelter syndrome (47.XXY) : evidence from fMRI

    NARCIS (Netherlands)

    van Rijn, S.; Swaab, H; Baas, D; de Haan, E; Kahn, R.S.; Aleman, A.

    Klinefelter syndrome (KS) is a chromosomal condition (47, XXY) that may help us to unravel gene-brain behavior pathways to psychopathology. The phenotype includes social cognitive impairments and increased risk for autism traits. We used functional MRI to study neural mechanisms underlying social

  14. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  15. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP-RBF neu...

  16. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  17. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    OpenAIRE

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expre...

  18. CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties

    Science.gov (United States)

    2017-03-01

    uncertainties. We discuss a ‘scenario generation’ circuit to non- parametrically estimate/emulate statistics of uncertain cost/constraints...are explored: (1) We discuss a ‘scenario generation’ circuit to non- parametrically estimate and emulate statistics of uncertain cost/constraints...uncertainties. The discussed mixed-signal, CMOS-based architecture of stochastically spiking neural network minimizes area/power of each cell and

  19. Neural activity underlying motor-action preparation and cognitive narrowing in approach-motivated goal states.

    Science.gov (United States)

    Gable, Philip A; Threadgill, A Hunter; Adams, David L

    2016-02-01

    High-approach-motivated (pre-goal) positive affect states encourage tenacious goal pursuit and narrow cognitive scope. As such, high approach-motivated states likely enhance the neural correlates of motor-action preparation to aid in goal acquisition. These neural correlates may also relate to the cognitive narrowing associated with high approach-motivated states. In the present study, we investigated motor-action preparation during pre-goal and post-goal states using an index of beta suppression over the motor cortex. The results revealed that beta suppression was greatest in pre-goal positive states, suggesting that higher levels of motor-action preparation occur during high approach-motivated positive states. Furthermore, beta and alpha suppression in the high approach-motivated positive states predicted greater cognitive narrowing. These results suggest that approach-motivated pre-goal states engage the neural substrates of motor-action preparation and cognitive narrowing. Individual differences in motor-action preparation relate to the degree of cognitive narrowing.

  20. Artificial language training reveals the neural substrates underlying addressed and assembled phonologies.

    Directory of Open Access Journals (Sweden)

    Leilei Mei

    Full Text Available Although behavioral and neuropsychological studies have suggested two distinct routes of phonological access, their neural substrates have not been clearly elucidated. Here, we designed an artificial language (based on Korean Hangul that can be read either through addressed (i.e., whole word mapping or assembled (i.e., grapheme-to-phoneme mapping phonology. Two matched groups of native English-speaking participants were trained in one of the two conditions, one hour per day for eight days. Behavioral results showed that both groups correctly named more than 90% of the trained words after training. At the neural level, we found a clear dissociation of the neural pathways for addressed and assembled phonologies: There was greater involvement of the anterior cingulate cortex, posterior cingulate cortex, right orbital frontal cortex, angular gyrus and middle temporal gyrus for addressed phonology, but stronger activation in the left precentral gyrus/inferior frontal gyrus and supramarginal gyrus for assembled phonology. Furthermore, we found evidence supporting the strategy-shift hypothesis, which postulates that, with practice, reading strategy shifts from assembled to addressed phonology. Specifically, compared to untrained words, trained words in the assembled phonology group showed stronger activation in the addressed phonology network and less activation in the assembled phonology network. Our results provide clear brain-imaging evidence for the dual-route models of reading.

  1. Predicting Carbonation Depth of Prestressed Concrete under Different Stress States Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chunhua Lu

    2009-01-01

    Full Text Available Two artificial neural networks (ANN, back-propagation neural network (BPNN and the radial basis function neural network (RBFNN, are proposed to predict the carbonation depth of prestressed concrete. In order to generate the training and testing data for the ANNs, an accelerated carbonation experiment was carried out, and the influence of stress level of concrete on carbonation process was taken into account especially. Then, based on the experimental results, the BPNN and RBFNN models which all take the stress level of concrete, water-cement ratio, cement-fine aggregate, cement-coarse aggregate ratio and testing age as input parameters were built and all the training and testing work was performed in MATLAB. It can be found that the two ANN models seem to have a high prediction and generalization capability in evaluation of carbonation depth, and the largest absolute percentage errors of BPNN and RBFNN are 10.88% and 8.46%, respectively. The RBFNN model shows a better prediction precision in comparison to BPNN model.

  2. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prediction of Phase Behavior in Microemulsion Systems Using Artificial Neural Networks

    Science.gov (United States)

    Richardson; Mbanefo; Aboofazeli; Lawrence; Barlow

    1997-03-15

    Preliminary investigations have been conducted to assess the potential for using (back-propagation, feed-forward) artificial neural networks to predict the phase behavior of quaternary microemulsion-forming systems, with a view to employing this type of methodology in the evaluation of novel cosurfactants for the formulation of pharmaceutically acceptable drug-delivery systems. The data employed in training the neural networks related to microemulsion systems containing lecithin, isopropyl myristate, and water, together with different types of cosurfactants, including short- and medium-chain alcohols, amines, acids, and ethylene glycol monoalkyl ethers. Previously unpublished phase diagrams are presented for four systems involving the cosurfactants 2-methyl-2-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol, and isopropanol, which, along with eight other published sets of data, are used to test the predictive ability of the trained networks. The pseudo-ternary phase diagrams for these systems are predicted using only four computed physicochemical properties for the cosurfactants involved. The artificial neural networks are shown to be highly successful in predicting phase behavior for these systems, achieving mean success rates of 96.7 and 91.6% for training and test data, respectively. The conclusion is reached that artificial neural networks can provide useful tools for the development of microemulsion-based drug-delivery systems.

  4. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  5. Gain Scheduling Control of Nonlinear Systems Based on Neural State Space Models

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Stoustrup, Jakob

    2003-01-01

    This paper presents a novel method for gain scheduling control of nonlinear systems based on extraction of local linear state space models from neural networks with direct application to robust control. A neural state space model of the system is first trained based on in- and output training sam...... control can be achieved by interpolating between each controller.In this paper, we propose to use the Youla-Jabr-Bongiorno-Kucera parameterization to achieve a smooth scheduling between the operating points with certain stability guarantees....

  6. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Science.gov (United States)

    Wang, L.; Zhang, Y. Y.; Ding, L.

    2006-10-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  7. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    Science.gov (United States)

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. System Identification Using Multilayer Differential Neural Networks: A New Result

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2012-01-01

    Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.

  9. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    Science.gov (United States)

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble

  10. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between "seen" trials and "not seen" trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both "seen" and "not seen" trials. There was no statistical difference in the ERP peak latencies between the "seen" and "not seen" trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between "seen" and "not seen" trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks

  11. RBF Neural Network of Sliding Mode Control for Time-Varying 2-DOF Parallel Manipulator System

    Directory of Open Access Journals (Sweden)

    Haizhong Chen

    2013-01-01

    Full Text Available This paper presents a radial basis function (RBF neural network control scheme for manipulators with actuator nonlinearities. The control scheme consists of a time-varying sliding mode control (TVSMC and an RBF neural network compensator. Since the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded. The whole scheme provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion.

  12. High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide

    Science.gov (United States)

    Artrith, Nongnuch; Morawietz, Tobias; Behler, Jörg

    2011-04-01

    Artificial neural networks represent an accurate and efficient tool to construct high-dimensional potential-energy surfaces based on first-principles data. However, so far the main drawback of this method has been the limitation to a single atomic species. We present a generalization to compounds of arbitrary chemical composition, which now enables simulations of a wide range of systems containing large numbers of atoms. The required incorporation of long-range interactions is achieved by combining the numerical accuracy of neural networks with an electrostatic term based on environment-dependent charges. Using zinc oxide as a benchmark system we show that the neural network potential-energy surface is in excellent agreement with density-functional theory reference calculations, while the evaluation is many orders of magnitude faster.

  13. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  14. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation

    Directory of Open Access Journals (Sweden)

    H.M. Endedijk

    2017-04-01

    Full Text Available Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other’s actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children’s interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction.

  15. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    Science.gov (United States)

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Bayesian system reliability assessment under fuzzy environments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.-C

    2004-03-01

    The Bayesian system reliability assessment under fuzzy environments is proposed in this paper. In order to apply the Bayesian approach, the fuzzy parameters are assumed as fuzzy random variables with fuzzy prior distributions. The (conventional) Bayes estimation method will be used to create the fuzzy Bayes point estimator of system reliability by invoking the well-known theorem called 'Resolution Identity' in fuzzy sets theory. On the other hand, we also provide the computational procedures to evaluate the membership degree of any given Bayes point estimate of system reliability. In order to achieve this purpose, we transform the original problem into a nonlinear programming problem. This nonlinear programming problem is then divided into four subproblems for the purpose of simplifying computation. Finally, the subproblems can be solved by using any commercial optimizers, e.g. GAMS or LINGO.

  17. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  18. Networked neural spheroid by neuro-bundle mimicking nervous system created by topology effect.

    Science.gov (United States)

    Jeong, Gi Seok; Chang, Joon Young; Park, Ji Soo; Lee, Seung-A; Park, DoYeun; Woo, Junsung; An, Heeyoung; Lee, C Justin; Lee, Sang-Hoon

    2015-03-22

    In most animals, the nervous system consists of the central nervous system (CNS) and the peripheral nervous system (PNS), the latter of which connects the CNS to all parts of the body. Damage and/or malfunction of the nervous system causes serious pathologies, including neurodegenerative disorders, spinal cord injury, and Alzheimer's disease. Thus, not surprising, considerable research effort, both in vivo and in vitro, has been devoted to studying the nervous system and signal transmission through it. However, conventional in vitro cell culture systems do not enable control over diverse aspects of the neural microenvironment. Moreover, formation of certain nervous system growth patterns in vitro remains a challenge. In this study, we developed a deep hemispherical, microchannel-networked, concave array system and applied it to generate three-dimensional nerve-like neural bundles. The deep hemicylindrical channel network was easily fabricated by exploiting the meniscus induced by the surface tension of a liquid poly(dimethylsiloxane) (PDMS) prepolymer. Neurospheroids spontaneously aggregated in each deep concave microwell and were networked to neighboring spheroids through the deep hemicylindrical channel. Notably, two types of satellite spheroids also formed in deep hemispherical microchannels through self-aggregation and acted as an anchoring point to enhance formation of nerve-like networks with neighboring spheroids. During neural-network formation, neural progenitor cells successfully differentiated into glial and neuronal cells. These cells secreted laminin, forming an extracellular matrix around the host and satellite spheroids. Electrical stimuli were transmitted between networked neurospheroids in the resulting nerve-like neural bundle, as detected by imaging Ca(2+) signals in responding cells.

  19. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    Science.gov (United States)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  20. Effect of abacus training on executive function development and underlying neural correlates in Chinese children.

    Science.gov (United States)

    Wang, Chunjie; Weng, Jian; Yao, Yuan; Dong, Shanshan; Liu, Yuqiu; Chen, Feiyan

    2017-10-01

    Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4th and 6th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6th grade. From the 4th to the 6th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Learning Efficiency of Consciousness System for Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Osama Shoubaky

    2014-12-01

    Full Text Available This paper presents learning efficiency of a consciousness system for robot using artificial neural network. The proposed conscious system consists of reason system, feeling system and association system. The three systems are modeled using Module of Nerves for Advanced Dynamics (ModNAD. Artificial neural network of the type of supervised learning with the back propagation is used to train the ModNAD. The reason system imitates behaviour and represents self-condition and other-condition. The feeling system represents sensation and emotion. The association system represents behaviour of self and determines whether self is comfortable or not. A robot is asked to perform cognition and tasks using the consciousness system. Learning converges to about 0.01 within about 900 orders for imitation, pain, solitude and the association modules. It converges to about 0.01 within about 400 orders for the comfort and discomfort modules. It can be concluded that learning in the ModNAD completed after a relatively small number of times because the learning efficiency of the ModNAD artificial neural network is good. The results also show that each ModNAD has a function to imitate and cognize emotion. The consciousness system presented in this paper may be considered as a fundamental step for developing a robot having consciousness and feelings similar to humans.

  2. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia.

    Science.gov (United States)

    Yuskaitis, Christopher J; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y; Pearl, Phillip L

    2015-08-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia.

  3. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications including Developmental Dyselxia

    Science.gov (United States)

    Yuskaitis, Christopher J.; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y.; Pearl, Phillip L.

    2017-01-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensory-motor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing, behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  4. Modified Neural Network for Dynamic Control and Operation of a Hybrid Generation Systems

    Directory of Open Access Journals (Sweden)

    Cong-Hui Huang

    2014-12-01

    Full Text Available This paper presents modified neural network for dynamic control and operation of a hybrid generation systems. PV and wind power are the primary power sources of the system to take full advantages of renewable energy, and the diesel-engine is used as a backup system. The simulation model of the hybrid system was developed using MATLAB Simulink. To achieve a fast and stable response for the real power control, the intelligent controller consists of a Radial Basis Function Network (RBFN and an modified Elman Neural Network (ENN for maximum power point tracking (MPPT. The pitch angle of wind turbine is controlled by ENN, and the PV system uses RBFN, where the output signal is used to control the DC I DC boost converters to achieve the MPPT. And the results show the hybrid generation system can effectively extract the maximum power from the PV and wind energy sources.

  5. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  6. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  7. How instructed knowledge modulates the neural systems of reward learning.

    Science.gov (United States)

    Li, Jian; Delgado, Mauricio R; Phelps, Elizabeth A

    2011-01-04

    Recent research in neuroeconomics has demonstrated that the reinforcement learning model of reward learning captures the patterns of both behavioral performance and neural responses during a range of economic decision-making tasks. However, this powerful theoretical model has its limits. Trial-and-error is only one of the means by which individuals can learn the value associated with different decision options. Humans have also developed efficient, symbolic means of communication for learning without the necessity for committing multiple errors across trials. In the present study, we observed that instructed knowledge of cue-reward probabilities improves behavioral performance and diminishes reinforcement learning-related blood-oxygen level-dependent (BOLD) responses to feedback in the nucleus accumbens, ventromedial prefrontal cortex, and hippocampal complex. The decrease in BOLD responses in these brain regions to reward-feedback signals was functionally correlated with activation of the dorsolateral prefrontal cortex (DLPFC). These results suggest that when learning action values, participants use the DLPFC to dynamically adjust outcome responses in valuation regions depending on the usefulness of action-outcome information.

  8. Animal Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tibor Trnovszky

    2017-01-01

    Full Text Available In this paper, the performances of well-known image recognition methods such as Principal Component Analysis (PCA, Linear Discriminant Analysis (LDA, Local Binary Patterns Histograms (LBPH and Support Vector Machine (SVM are tested and compared with proposed convolutional neural network (CNN for the recognition rate of the input animal images. In our experiments, the overall recognition accuracy of PCA, LDA, LBPH and SVM is demonstrated. Next, the time execution for animal recognition process is evaluated. The all experimental results on created animal database were conducted. This created animal database consist of 500 different subjects (5 classes/ 100 images for each class. The experimental result shows that the PCA features provide better results as LDA and LBPH for large training set. On the other hand, LBPH is better than PCA and LDA for small training data set. For proposed CNN we have obtained a recognition accuracy of 98%. The proposed method based on CNN outperforms the state of the art methods.

  9. Neural systemic impairment from whole-body vibration.

    Science.gov (United States)

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.

  10. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  11. Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain.

    Science.gov (United States)

    Salomons, Tim V; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J

    2015-02-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.

  12. Neural circuit dynamics underlying accumulation of time-varying evidence during perceptual decision making

    Directory of Open Access Journals (Sweden)

    Kong-Fatt Wong

    2007-11-01

    Full Text Available How do neurons in a decision circuit integrate time-varying signals, in favor of or against alternative choice options? To address this question, we used a recurrent neural circuit model to simulate an experiment in which monkeys performed a direction-discrimination task on a visual motion stimulus. In a recent study, it was found that brief pulses of motion perturbed neural activity in the lateral intraparietal area (LIP, and exerted corresponding effects on the monkey's choices and response times. Our model reproduces the behavioral observations and replicates LIP activity which, depending on whether the direction of the pulse is the same or opposite to that of a preferred motion stimulus, increases or decreases persistently over a few hundred milliseconds. Furthermore, our model accounts for the observation that the pulse exerts a weaker influence on LIP neuronal responses when the pulse is late relative to motion stimulus onset. We show that this violation of time-shift invariance (TSI is consistent with a recurrent circuit mechanism of time integration. We further examine time integration using two consecutive pulses of the same or opposite motion directions. The induced changes in the performance are not additive, and the second of the paired pulses is less effective than its standalone impact, a prediction that is experimentally testable. Taken together, these findings lend further support for an attractor network model of time integration in perceptual decision making.

  13. A New Method for Studying the Periodic System Based on a Kohonen Neural Network

    Science.gov (United States)

    Chen, David Zhekai

    2010-01-01

    A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…

  14. Artificial neural networks and support vector machine in banking computer systems

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2013-12-01

    Full Text Available In this paper, some artificial neural networks as well as a support vector machines have been studied due to bank computer system development. These approaches with the contact-less microprocessor technologies can upsurge the bank competitiveness by adding new functionalities. Moreover, some financial crisis influences can be declines.

  15. Neural Network Based Model of an Industrial Oil-Fired Boiler System ...

    African Journals Online (AJOL)

    In this study, an oil-fired boiler system is modeled as a multivariable plant with two inputs (feed water rate and oil-fired flow rate) and two outputs (steam temperature and pressure). The plant parameters are modeled using artificial neural network, based on experimental data collected directly from the physical plant.

  16. Image Classification System Based on Cortical Representations and Unsupervised Neural Network Learning

    NARCIS (Netherlands)

    Petkov, Nikolay

    1995-01-01

    A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input

  17. Comparable mechanisms for action and language: Neural systems behind intentions, goals and means

    NARCIS (Netherlands)

    Schie, H.T. van; Toni, I.; Bekkering, H.

    2006-01-01

    In this position paper we explore correspondence between neural systems for language and action starting from recent electrophysiological findings on the roles of posterior and frontal areas in goal-directed grasping actions. The paper compares the perceptual and motor organization for action and

  18. Comparison of different computer models of the neural control system of the lower urinary tract

    NARCIS (Netherlands)

    van Duin, F.; Rosier, P. F.; Bemelmans, B. L.; Wijkstra, H.; Debruyne, F. M.; van Oosterom, A.

    2000-01-01

    This paper presents a series of five models that were formulated for describing the neural control of the lower urinary tract in humans. A parsimonious formulation of the effect of the sympathetic system, the pre-optic area, and urethral afferents on the simulated behavior are included. In spite of

  19. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  20. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    . Additionally, weather disturbances such as solar heat gain can be anticipated and compensated for, while taking into account the slow dynamics of the floor. Together with a genetic algorithm, they provide a way to search for optimal future set-point sequences, when convexity and continuity in the solution......This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures...

  1. Building an Early Warning System for Crude Oil Price Using Neural Network

    Directory of Open Access Journals (Sweden)

    Wonho Song

    2010-12-01

    Full Text Available In this paper, a crisis index for the oil price shock is defined and a neural network model is specified for the prediction of the crisis index. This paper contributes to the literature in three ways. First, we build an early warning system for crude oil price. Although the oil price became one of the most important price index recently, no research efforts have been made to build an early warning system for crude oil price. Second, the neural network (NN model is used to construct the early warning sysIn this paper, a crisis index for the oil price shock is defined and a neural network model is specified for the prediction of the crisis index. This paper contributes to the literature in three ways. First, we build an early warning system for crude oil price. Although the oil price became one of the most important price index recently, no research efforts have been made to build an early warning system for crude oil price. Second, the neural network (NN model is used to construct the early warning system. Most early warning systems are built based on the signaling approach. In this paper, we show that the neural network models are more flexible and have greater potential as EWS than the signaling approach. Third, we allow the multi-level crisis index. Previous models allowed only a zero/one crisis index whereas our model permits as many levels as possible. With this new model, we try to answer whether the oil price collapse following the historical peak in 2008 was predictable. We compare the results from the NN model with those from the ordered probit (OP model, and show that the oil price crisis and the following crash were predictable by the NN model, but not by the OP model.

  2. A neural network approach to fault detection in spacecraft attitude determination and control systems

    Science.gov (United States)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  3. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System

    Science.gov (United States)

    Manikumari, N.; Murugappan, A.; Vinodhini, G.

    2017-07-01

    Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 – 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.

  4. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  5. A configurable realtime DWT-based neural data compression and communication VLSI system for wireless implants.

    Science.gov (United States)

    Yang, Yuning; Kamboh, Awais M; Mason, Andrew J

    2014-04-30

    This paper presents the design of a complete multi-channel neural recording compression and communication system for wireless implants that addresses the challenging simultaneous requirements for low power, high bandwidth and error-free communication. The compression engine implements discrete wavelet transform (DWT) and run length encoding schemes and offers a practical data compression solution that faithfully preserves neural information. The communication engine encodes data and commands separately into custom-designed packet structures utilizing a protocol capable of error handling. VLSI hardware implementation of these functions, within the design constraints of a 32-channel neural compression implant, is presented. Designed in 0.13μm CMOS, the core of the neural compression and communication chip occupies only 1.21mm(2) and consumes 800μW of power (25μW per channel at 26KS/s) demonstrating an effective solution for intra-cortical neural interfaces. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  7. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  8. Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.

  9. Targeted drug delivery system to neural cells utilizes the nicotinic acetylcholine receptor.

    Science.gov (United States)

    Huey, Rachel; O'Hagan, Barry; McCarron, Paul; Hawthorne, Susan

    2017-06-15

    Drug delivery to the brain is still a major challenge in the field of therapeutics, especially for large and hydrophilic compounds. In order to achieve drug delivery of therapeutic concentration in the central nervous system, the problematic blood brain barrier (BBB) must be overcome. This work presents the formulation of a targeted nanoparticle-based drug delivery system using a specific neural cell targeting ligand, rabies virus derived peptide (RDP). Characterization studies revealed that RDP could be conjugated to drug-loaded PLGA nanoparticles of average diameter 257.10±22.39nm and zeta potential of -5.51±0.73mV. In vitro studies showed that addition of RDP to nanoparticles enhanced drug accumulation in a neural cell line specifically as opposed to non-neural cell lines. It was revealed that this drug delivery system is reliant upon nicotinic acetylcholine receptor (nAChR) function for RDP-facilitated effects, supporting a cellular uptake mechanism of action. The specific neural cell targeting capabilities of RDP via the nAChR offers a non-toxic, non-invasive and promising approach to the delivery of therapeutics to the brain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. CITY TRANSPORT SYSTEM ECOLOGICAL STATE FORECASTING WITH THE USE OF NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Andrey Lyamzin

    2017-11-01

    Full Text Available Purpose: The purpose of this work is to develop an effective model for city transport system ecological state assessment using neural networks general concept. Methods: The proposed model is based on two neural networks work, taking into account the traffic density effect and the transit capacity level on urban areas. Results: Based on the synthesis of the fuzzy sets theory and neural networks basic principles, the city transport system ecological state assessing model is developed. The graphical representation of the model is given. A forecast reliability high degree is provided even at low learning rates and high dynamics of changing statistical data in the city transit traffic conditions. Conclusions: The use of fuzzy neural networks makes it possible to state a complete correspondence between fuzzy inference procedure mathematical representation and the urban transport system structure. The proposed model allows to formulate well-defined environmental guidelines when making decisions in the transit traffic field, taking into account the interests of enterprises, transport and the urban population, with the subsequent distribution of traffic flows in time and geographical space of the city industrial areas.

  11. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  12. An Intelligent Active Video Surveillance System Based on the Integration of Virtual Neural Sensors and BDI Agents

    Science.gov (United States)

    Gregorio, Massimo De

    In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.

  13. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  14. Neural Mechanisms Underlying Affective Theory of Mind in Violent Antisocial Personality Disorder and/or Schizophrenia.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Müller, Bernhard W; Wiltfang, Jens; Brüne, Martin; Forsting, Michael; Gizewski, Elke R; Leygraf, Norbert; Hodgins, Sheilagh

    2017-10-21

    Among violent offenders with schizophrenia, there are 2 sub-groups, one with and one without, conduct disorder (CD) and antisocial personality disorder (ASPD), who differ as to treatment response and alterations of brain structure. The present study aimed to determine whether the 2 groups also differ in Theory of Mind and neural activations subsuming this task. Five groups of men were compared: 3 groups of violent offenders-schizophrenia plus CD/ASPD, schizophrenia with no history of antisocial behavior prior to illness onset, and CD/ASPD with no severe mental illness-and 2 groups of non-offenders, one with schizophrenia and one without (H). Participants completed diagnostic interviews, the Psychopathy Checklist Screening Version Interview, the Interpersonal Reactivity Index, authorized access to clinical and criminal files, and underwent functional magnetic resonance imaging while completing an adapted version of the Reading-the-Mind-in-the-Eyes Task (RMET). Relative to H, nonviolent and violent men with schizophrenia and not CD/ASPD performed more poorly on the RMET, while violent offenders with CD/ASPD, both those with and without schizophrenia, performed similarly. The 2 groups of violent offenders with CD/ASPD, both those with and without schizophrenia, relative to the other groups, displayed higher levels of activation in a network of prefrontal and temporal-parietal regions and reduced activation in the amygdala. Relative to men without CD/ASPD, both groups of violent offenders with CD/ASPD displayed a distinct pattern of neural responses during emotional/mental state attribution pointing to distinct and comparatively successful processing of social information. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Gong Ailing; Zeng Chunhua [Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Wang Hua, E-mail: zchh2009@126.com [Province Engineering Research Center of Industrial Energy Conservation and New Technology, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)

    2011-08-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter {lambda} can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay {tau}. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay {tau} increases below the critical value of {lambda}. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and {tau} increase, i.e. a noise intensity D or Q and a time delay {tau} exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of {lambda}. The noise correlation parameter {lambda} first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, {lambda} increases it.

  16. DEVELOPMENT OF A COMPUTER SYSTEM FOR IDENTITY AUTHENTICATION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Timur Kartbayev

    2017-03-01

    Full Text Available The aim of the study is to increase the effectiveness of automated face recognition to authenticate identity, considering features of change of the face parameters over time. The improvement of the recognition accuracy, as well as consideration of the features of temporal changes in a human face can be based on the methodology of artificial neural networks. Hybrid neural networks, combining the advantages of classical neural networks and fuzzy logic systems, allow using the network learnability along with the explanation of the findings. The structural scheme of intelligent system for identification based on artificial neural networks is proposed in this work. It realizes the principles of digital information processing and identity recognition taking into account the forecast of key characteristics’ changes over time (e.g., due to aging. The structural scheme has a three-tier architecture and implements preliminary processing, recognition and identification of images obtained as a result of monitoring. On the basis of expert knowledge, the fuzzy base of products is designed. It allows assessing possible changes in key characteristics, used to authenticate identity based on the image. To take this possibility into consideration, a neuro-fuzzy network of ANFIS type was used, which implements the algorithm of Tagaki-Sugeno. The conducted experiments showed high efficiency of the developed neural network and a low value of learning errors, which allows recommending this approach for practical implementation. Application of the developed system of fuzzy production rules that allow predicting changes in individuals over time, will improve the recognition accuracy, reduce the number of authentication failures and improve the efficiency of information processing and decision-making in applications, such as authentication of bank customers, users of mobile applications, or in video monitoring systems of sensitive sites.

  17. A four-channel microelectronic system for neural signal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Xie Shushan; Wang Zhigong; Li Wenyuan [Institute of RF- and OE-ICs, Southeast University, Nanjing 210096 (China); Lue Xiaoying; Pan Haixian, E-mail: zgwang@seu.edu.c [State Key Laboratory of Bio-Electronics, Southeast University, Nanjing 210096 (China)

    2009-12-15

    This paper presents a microelectronic system which is capable of making a signal record and functional electric stimulation of an injured spinal cord. As a requirement of implantable engineering for the regeneration microelectronic system, the system is of low noise, low power, small size and high performance. A front-end circuit and two high performance OPAs (operational amplifiers) have been designed for the system with different functions, and the two OPAs are a low-noise low-power two-stage OPA and a constant-g{sub m} RTR input and output OPA. The system has been realized in CSMC 0.5-{mu}m CMOS technology. The test results show that the system satisfies the demands of neuron signal regeneration. (semiconductor integrated circuits)

  18. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    Directory of Open Access Journals (Sweden)

    Nasser Talebi

    2014-01-01

    Full Text Available Occurrence of faults in wind energy conversion systems (WECSs is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS is required. Recurrent neural networks (RNNs have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  19. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  20. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Directory of Open Access Journals (Sweden)

    Yiyong Gou

    2017-04-01

    Full Text Available A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinearities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equivalent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstepping control technique, a constrained adaptive neural network controller is designed, and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.

  1. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  2. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  3. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    Science.gov (United States)

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  4. Computation and dissipative dynamical systems in neural networks for classification

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank

    2015-01-01

    Foundational issues related to learning, processing and representation underlying pattern recognition have been discussed in history and in recent times. The scientific approach to pattern recognition could provide new tools to investigate these foundational issues, which in turn could inform the

  5. Active Control of Complex Systems via Dynamic (Recurrent) Neural Networks

    Science.gov (United States)

    1992-05-30

    present in the underlying fluid dynamics, biology , chemistry, economics, etc. of observed processes. Robert May and others have demonstrated that process...3 _ ___ 2b__ 2’__ ___ ’T (miec) Wk=100 Figure___ 5.2_ (cotined) Firt-Ode Kernel CoptdbIeebr- aqa Aloih sn5DfeetSothn eat I. ____ _E__30 O(28I x(t) x(t

  6. Review of Data Preprocessing Methods for Sign Language Recognition Systems based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zorins Aleksejs

    2016-12-01

    Full Text Available The article presents an introductory analysis of relevant research topic for Latvian deaf society, which is the development of the Latvian Sign Language Recognition System. More specifically the data preprocessing methods are discussed in the paper and several approaches are shown with a focus on systems based on artificial neural networks, which are one of the most successful solutions for sign language recognition task.

  7. Central Neural Control of the Cardiovascular System: Current Perspectives

    Science.gov (United States)

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  8. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  9. Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

    Science.gov (United States)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Friehs, Gerhard M.; Black, Michael J.

    2012-01-01

    We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer screen, hold it still, and click on the area of interest. This direct brain–computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity of a small population of neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants could control the cursor motion and click on specified targets with a small error rate (click 2-D cursor control of a personal computer. PMID:21278024

  10. The dual origin of the peripheral olfactory system: placode and neural crest

    Directory of Open Access Journals (Sweden)

    Katoh Hiroyuki

    2011-09-01

    Full Text Available Abstract Background The olfactory epithelium (OE has a unique capacity for continuous neurogenesis, extending axons to the olfactory bulb with the assistance of olfactory ensheathing cells (OECs. The OE and OECs have been believed to develop solely from the olfactory placode, while the neural crest (NC cells have been believed to contribute only the underlying structural elements of the olfactory system. In order to further elucidate the role of NC cells in olfactory development, we examined the olfactory system in the transgenic mice Wnt1-Cre/Floxed-EGFP and P0-Cre/Floxed-EGFP, in which migrating NC cells and its descendents permanently express GFP, and conducted transposon-mediated cell lineage tracing studies in chick embryos. Results Examination of these transgenic mice revealed GFP-positive cells in the OE, demonstrating that NC-derived cells give rise to OE cells with morphologic and antigenic properties identical to placode-derived cells. OECs were also positive for GFP, confirming their NC origin. Cell lineage tracing studies performed in chick embryos confirmed the migration of NC cells into the OE. Furthermore, spheres cultured from the dissociated cells of the olfactory mucosa demonstrated self-renewal and trilineage differentiation capacities (neurons, glial cells, and myofibroblasts, demonstrating the presence of NC progenitors in the olfactory mucosa. Conclusion Our data demonstrates that the NC plays a larger role in the development of the olfactory system than previously believed, and suggests that NC-derived cells may in part be responsible for the remarkable capacity of the OE for neurogenesis and regeneration.

  11. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    Science.gov (United States)

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  13. Social pain and social gain in the adolescent brain: A common neural circuitry underlying both positive and negative social evaluation

    Science.gov (United States)

    Dalgleish, Tim; Walsh, Nicholas D.; Mobbs, Dean; Schweizer, Susanne; van Harmelen, Anne-Laura; Dunn, Barnaby; Dunn, Valerie; Goodyer, Ian; Stretton, Jason

    2017-01-01

    Social interaction inherently involves the subjective evaluation of cues salient to social inclusion and exclusion. Testifying to the importance of such social cues, parts of the neural system dedicated to the detection of physical pain, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been shown to be equally sensitive to the detection of social pain experienced after social exclusion. However, recent work suggests that this dACC-AI matrix may index any socially pertinent information. We directly tested the hypothesis that the dACC-AI would respond to cues of both inclusion and exclusion, using a novel social feedback fMRI paradigm in a population-derived sample of adolescents. We show that the dACC and left AI are commonly activated by feedback cues of inclusion and exclusion. Our findings suggest that theoretical accounts of the dACC-AI network as a neural alarm system restricted within the social domain to the processing of signals of exclusion require significant revision. PMID:28169323

  14. High-dimensional neural network potentials for multicomponent systems: First applications to zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Artrith, Nongnuch; Morawietz, Tobias; Maschke, Marcus; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2010-07-01

    Recently, artificial neural networks (NN) trained to first-principles data have shown to provide accurate potential energy surfaces for systems containing a single atomic species. In this work we present an extension of the NN approach to multicomponent systems by introducing physically motivated terms to deal with long-range interactions. This is a necessary condition for studying binary systems and general multicomponent systems with significant charge transfer. The capabilities of the method are demonstrated for crystal structures, amorphous structures, clusters, and surfaces of zinc oxide as a benchmark system. We show that the predicted energies and forces are in excellent agreement with reference density-functional theory calculations.

  15. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  16. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  17. Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin.

    Science.gov (United States)

    Lebedev, Alexander V; Lövdén, Martin; Rosenthal, Gidon; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2015-08-01

    Ego-disturbances have been a topic in schizophrenia research since the earliest clinical descriptions of the disorder. Manifesting as a feeling that one's "self," "ego," or "I" is disintegrating or that the border between one's self and the external world is dissolving, "ego-disintegration" or "dissolution" is also an important feature of the psychedelic experience, such as is produced by psilocybin (a compound found in "magic mushrooms"). Fifteen healthy subjects took part in this placebo-controlled study. Twelve-minute functional MRI scans were acquired on two occasions: subjects received an intravenous infusion of saline on one occasion (placebo) and 2 mg psilocybin on the other. Twenty-two visual analogue scale ratings were completed soon after scanning and the first principal component of these, dominated by items referring to "ego-dissolution", was used as a primary measure of interest in subsequent analyses. Employing methods of connectivity analysis and graph theory, an association was found between psilocybin-induced ego-dissolution and decreased functional connectivity between the medial temporal lobe and high-level cortical regions. Ego-dissolution was also associated with a "disintegration" of the salience network and reduced interhemispheric communication. Addressing baseline brain dynamics as a predictor of drug-response, individuals with lower diversity of executive network nodes were more likely to experience ego-dissolution under psilocybin. These results implicate MTL-cortical decoupling, decreased salience network integrity, and reduced inter-hemispheric communication in psilocybin-induced ego disturbance and suggest that the maintenance of "self"or "ego," as a perceptual phenomenon, may rest on the normal functioning of these systems. © 2015 Wiley Periodicals, Inc.

  18. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  19. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  20. Robust MPC for a non-linear system - a neural network approach

    Science.gov (United States)

    Luzar, Marcel; Witczak, Marcin

    2014-12-01

    The aim of the paper is to design a robust actuator fault-tolerant control for a non-linear discrete-time system. Considered system is described by the Linear Parameter-Varying (LPV) model obtained with recurrent neural network. The proposed solution starts with a discretetime quasi-LPV system identification using artificial neural network. Subsequently, the robust controller is proposed, which does not take into account actuator saturation level and deals with the previously estimated faults. To check if the compensation problem is feasible, the robust invariant set is employed, which takes into account actuator saturation level. When the current state does not belong to the set, then a predictive control is performed in order to make such set larger. This makes it possible to increase the domain of attraction, which makes the proposed methodology an efficient solution for the fault-tolerant control. The last part of the paper presents an experimental results regarding wind turbines.

  1. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle.

    Science.gov (United States)

    Ossewaarde, Lindsey; Hermans, Erno J; van Wingen, Guido A; Kooijman, Sabine C; Johansson, Inga-Maj; Bäckström, Torbjörn; Fernández, Guillén

    2010-01-01

    Hormonal fluctuations across the menstrual cycle are thought to play a central role in premenstrual mood symptoms. In agreement, fluctuations in gonadal hormone levels affect brain processes in regions involved in emotion regulation. Recent findings, however, implicate psychological stress as a potential mediating factor and thus, we investigated whether effects of moderate psychological stress on relevant brain regions interact with menstrual cycle phase. Twenty-eight healthy women were tested in a crossover design with menstrual cycle phase (late luteal versus late follicular) and stress (stress induction versus control) as within-subject factors. After stress induction (or control), we probed neural responses to facial expressions using fMRI. During the late luteal phase, negative affect was highest and the stress-induced increase in heart rate was mildly augmented. fMRI data of the control condition replicate previous findings of elevated amygdala and medial prefrontal cortex responses when comparing the late luteal with the late follicular phase. Importantly, stress induction had opposite effects in the two cycle phases, with unexpected lower response magnitudes in the late luteal phase. Moreover, the larger the increase in allopregnanolone concentration across the menstrual cycle was, the smaller the amygdala and medial prefrontal cortex responses were after stress induction in the late luteal phase. Our findings show that moderate psychological stress influences menstrual cycle effects on activity in the emotion regulation circuitry. These results provide potential insights into how fluctuations in allopregnanolone that naturally occur during the menstrual cycle may change stress vulnerability.

  3. Reduced Fidelity of Neural Representation Underlies Episodic Memory Decline in Normal Aging.

    Science.gov (United States)

    Zheng, Li; Gao, Zhiyao; Xiao, Xiaoqian; Ye, Zhifang; Chen, Chuansheng; Xue, Gui

    2017-06-07

    Emerging studies have emphasized the importance of the fidelity of cortical representation in forming enduring episodic memory. No study, however, has examined whether there are age-related reductions in representation fidelity that can explain memory declines in normal aging. Using functional MRI and multivariate pattern analysis, we found that older adults showed reduced representation fidelity in the visual cortex, which accounted for their decreased memory performance even after controlling for the contribution of reduced activation level. This reduced fidelity was specifically due to older adults' poorer item-specific representation, not due to their lower activation level and variance, greater variability in neuro-vascular coupling, or decreased selectivity of categorical representation (i.e., dedifferentiation). Older adults also showed an enhanced subsequent memory effect in the prefrontal cortex based on activation level, and their prefrontal activation was associated with greater fidelity of representation in the visual cortex and better memory performance. The fidelity of cortical representation thus may serve as a promising neural index for better mechanistic understanding of the memory declines and its compensation in normal aging. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  5. Neural Responses to Truth Telling and Risk Propensity under Asymmetric Information.

    Science.gov (United States)

    Suzuki, Hideo; Misaki, Masaya; Krueger, Frank; Bodurka, Jerzy

    2015-01-01

    Trust is multi-dimensional because it can be characterized by subjective trust, trust antecedent, and behavioral trust. Previous research has investigated functional brain responses to subjective trust (e.g., a judgment of trustworthiness) or behavioral trust (e.g., decisions to trust) in perfect information, where all relevant information is available to all participants. In contrast, we conducted a novel examination of the patterns of functional brain activity to a trust antecedent, specifically truth telling, in asymmetric information, where one individual has more information than others, with the effect of varying risk propensity. We used functional magnetic resonance imaging (fMRI) and recruited 13 adults, who played the Communication Game, where they served as the "Sender" and chose either truth telling (true advice) or lie telling (false advice) regarding the best payment allocation for their partner. Our behavioral results revealed that subjects with recreational high risk tended to choose true advice. Moreover, fMRI results yielded that the choices of true advice were associated with increased cortical activation in the anterior rostral medial and frontopolar prefrontal cortices, middle frontal cortex, temporoparietal junction, and precuneus. Furthermore, when we specifically evaluated a role of the bilateral amygdala as the region of interest (ROI), decreased amygdala response was associated with high risk propensity, regardless of truth telling or lying. In conclusion, our results have implications for how differential functions of the cortical areas may contribute to the neural processing of truth telling.

  6. Preservation of neuronal functions by exosomes derived from different human neural cell types under ischemic conditions.

    Science.gov (United States)

    Deng, Mingyang; Xiao, Han; Peng, Hongling; Yuan, Huan; Xu, Yunxiao; Zhang, Guangsen; Tang, Jianguang; Hu, Zhiping

    2017-11-27

    Stem cell-based therapies have been reported in protecting cerebral infarction-induced neuronal dysfunction and death. However, most studies used rat/mouse neuron as model cell when treated with stem cell or exosomes. Whether these findings can be translated from rodent to humans has been in doubt. Here, we used human embryonic stem cell-derived neurons to detect the protective potential of exosomes against ischemia. Neurons were treated with in vitro oxygen-glucose deprivation (OGD) for 1 h. For treatment group, different exosomes were derived from neuron, embryonic stem cell, neural progenitor cell and astrocyte differentiated from H9 human embryonic stem cell and added to culture medium 30 min after OGD (100 μg/mL). Western blotting was performed 12 h after OGD, while cell counting and electrophysiological recording were performed 48 h after OGD. We found that these exosomes attenuated OGD-induced neuronal death, Mammalian target of rapamycin (mTOR), pro-inflammatory and apoptotic signaling pathway changes, as well as basal spontaneous synaptic transmission inhibition in varying degrees. The results implicate the protective effect of exosomes on OGD-induced neuronal death and dysfunction in human embryonic stem cell-derived neurons, potentially through their modulation on mTOR, pro-inflammatory and apoptotic signaling pathways. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Neural correlates of exemplar novelty processing under different spatial attention conditions.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens Max; Düzel, Emrah; Schoenfeld, Mircea Ariel

    2009-11-01

    The detection of novel events and their identification is a basic prerequisite in a rapidly changing environment. Recently, the processing of novelty has been shown to rely on the hippocampus and to be associated with activity in reward-related areas. The present study investigated the influence of spatial attention on neural processing of novel relative to frequently presented standard and target stimuli. Never-before-seen Mandelbrot-fractals absent of semantic content were employed as stimulus material. Consistent with current theories, novelty activated a widespread network of brain areas including the hippocampus. No activity, however, could be observed in reward-related areas with the novel stimuli absent of a semantic meaning employed here. In the perceptual part of the novelty-processing network a region in the lingual gyrus was found to specifically process novel events when they occurred outside the focus of spatial attention. These findings indicate that the initial detection of unexpected novel events generally occurs in specialized perceptual areas within the ventral visual stream, whereas activation of reward-related areas appears to be restricted to events that do possess a semantic content indicative of the biological relevance of the stimulus.

  8. Investigation of neural-net based control strategies for improved power system dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sobajic, D.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The ability to accurately predict the behavior of a dynamic system is of essential importance in monitoring and control of complex processes. In this regard recent advances in neural-net base system identification represent a significant step toward development and design of a new generation of control tools for increased system performance and reliability. The enabling functionality is the one of accurate representation of a model of a nonlinear and nonstationary dynamic system. This functionality provides valuable new opportunities including: (1) The ability to predict future system behavior on the basis of actual system observations, (2) On-line evaluation and display of system performance and design of early warning systems, and (3) Controller optimization for improved system performance. In this presentation, we discuss the issues involved in definition and design of learning control systems and their impact on power system control. Several numerical examples are provided for illustrative purpose.

  9. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  10. An Artificial Neural System for Autonomous Undersea Vehicles

    Science.gov (United States)

    1988-07-01

    Scale. Phylum Example Advance Ability Protozoa Paramecium No Nervous System Swim Food Discrimination Coelenterata Hydra Nerve Nets Spontaneity Anemone...Statolith Righting Jellyfish Escape Flatworms Planaria Bilateral Symmetry Kinesis Head Ganglion Taxis Commissures Conditioning Muhisensors Roundworms...to examine how nature has developed these capabilities. First, basic reflexes were established to orient the animal to critical features in its

  11. Modeling Root Length Density of Field Grown Potatoes under Different Irrigation Strategies and Soil Textures Using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, A R; Andersen, Mathias Neumann

    2014-01-01

    Root length density (RLD) is a highly wanted parameter for use in crop growth modeling but difficult to measure under field conditions. Therefore, artificial neural networks (ANNs) were implemented to predict the RLD of field grown potatoes that were subject to three irrigation strategies and three...... soil textures with different soil water status and soil densities. The objectives of the study were to test whether soil textural information, soil water status, and soil density might be used by ANN to simulate RLD at harvest. In the study 63 data pairs were divided into data sets of training (80......% of the data) and testing (20% of the data). A feed forward three-layer perceptron network and the sigmoid, hyperbolic tangent, and linear transfer functions were used for the ANN modeling. The RLDs (target variable) in different soil layers were predicted by nine ANNs representing combinations (models...

  12. Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration.

    Science.gov (United States)

    Rutherford, Erin L; Lowery, Laura Anne

    2016-12-01

    Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Power prediction in mobile communication systems using an optimal neural-network structure.

    Science.gov (United States)

    Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J

    1997-01-01

    Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.

  14. Looking for underlying features in automatic and reviewed seismic bulletins through a neural network

    Science.gov (United States)

    Carluccio, R.; Console, R.; Chiappini, M.; Chiappini, S.

    2009-12-01

    SEL1 bulletins are, among all IDC products, a fundamental tool for NDCs in their task of national assessment of compliance with the CTBT. This is because SEL1s are expected to be disseminated within 2 hours from the occurrence of any detected waveform event, and the National Authorities are supposed to take a political decision in nearly real time, especially in the case when the event could triggers the request for an on site inspection. In this context not only the rapidity, but also the reliability of the SEL1 is a fundamental requirement. Our last years experience gained in the comparison between SEL1 and Italian Seismic Bulletin events has shown that SEL1s usually contain a big fraction of bogus events (sometimes close to 50%). This is due to many factors, all related to the availability of processing data and to the fast automatic algorithms involved. On the other hand, REBs are much more reliable as proved by our experience. Therefore, in spite of their relevant time delay by which they are distributed, which prevents their real-time use, REBs can be still useful in a retrospective way as reference information for comparison with SEL1s. This study tries to set up a sort of logical filter on the SEL1s that, while maintaining the rapidity requirements, improves their reliability. Our idea is based on the assumption that the SEL1s are produced by systematic algorithm of phase association and therefore some patterns among the input and output data could exist and be recognized. Our approach was initially based on a set of rules suggested by human experts on their personal experience, and its application on large datasets on a global scale. Other approaches not involving human interaction (data mining techniques) do exist. This study refers specifically to a semi-automatic approach: fitting of multi-parametric relationships hidden in the data set, through the application of neural networks by an algorithm of supervised learning. Full SEL1 and REB bulletins from

  15. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    Science.gov (United States)

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor

  16. Colour or shape: examination of neural processes underlying mental flexibility in posttraumatic stress disorder.

    Science.gov (United States)

    Pang, E W; Sedge, P; Grodecki, R; Robertson, A; MacDonald, M J; Jetly, R; Shek, P N; Taylor, M J

    2014-08-05

    Posttraumatic stress disorder (PTSD) is a mental disorder that stems from exposure to one or more traumatic events. While PTSD is thought to result from a dysregulation of emotional neurocircuitry, neurocognitive difficulties are frequently reported. Mental flexibility is a core executive function that involves the ability to shift and adapt to new information. It is essential for appropriate social-cognitive behaviours. Magnetoencephalography (MEG), a neuroimaging modality with high spatial and temporal resolution, has been used to track the progression of brain activation during tasks of mental flexibility called set-shifting. We hypothesized that the sensitivity of MEG would be able to capture the abnormal neurocircuitry implicated in PTSD and this would negatively impact brain regions involved in set-shifting. Twenty-two soldiers with PTSD and 24 matched control soldiers completed a colour-shape set-shifting task. MEG data were recorded and source localized to identify significant brain regions involved in the task. Activation latencies were obtained by analysing the time course of activation in each region. The control group showed a sequence of activity that involved dorsolateral frontal cortex, insula and posterior parietal cortices. The soldiers with PTSD showed these activations but they were interrupted by activations in paralimbic regions. This is consistent with models of PTSD that suggest dysfunctional neurocircuitry is driven by hyper-reactive limbic areas that are not appropriately modulated by prefrontal cortical control regions. This is the first study identifying the timing and location of atypical neural responses in PTSD with set-shifting and supports the model that hyperactive limbic structures negatively impact cognitive function.

  17. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  18. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Directory of Open Access Journals (Sweden)

    Aleksi J. Sihvonen

    2017-07-01

    Full Text Available Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM and morphometry (VBM study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV and white matter volume (WMV changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90, we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA. Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of

  19. Comparison of MLP neural network and neuro-fuzzy system in transcranial Doppler signals recorded from the cerebral vessels.

    Science.gov (United States)

    Hardalaç, Firat

    2008-04-01

    Transcranial Doppler signals recorded from cerebral vessels of 110 patients were transferred to a personal computer by using a 16 bit sound card. Spectral analyses of Transcranial Doppler signals were performed for determining the Multi Layer Perceptron (MLP) neural network and neuro Ankara-fuzzy system inputs. In order to do a good interpretation and rapid diagnosis, FFT parameters of Transcranial Doppler signals classified using MLP neural network and neuro-fuzzy system. Our findings demonstrated that 92% correct classification rate was obtained from MLP neural network, and 86% correct classification rate was obtained from neuro-fuzzy system.

  20. An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

    Directory of Open Access Journals (Sweden)

    Amiri S

    2013-12-01

    Full Text Available Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM, white matter (WM and cerebrospinal fluid (CSF, but only if the obtained segmentation results are correct. Due to image artifacts such as noise, low contrast and intensity non-uniformity, there are some classifcation errors in the results of image segmentation. Objective: An automated algorithm based on multi-layer perceptron neural networks (MLPNN is presented for segmenting MR images. The system is to identify two tissues of WM and GM in human brain 2D structural MR images. A given 2D image is processed to enhance image intensity and to remove extra cerebral tissue. Thereafter, each pixel of the image under study is represented using 13 features (8 statistical and 5 non- statistical features and is classifed using a MLPNN into one of the three classes WM and GM or unknown. Results: The developed MR image segmentation algorithm was evaluated using 20 real images. Training using only one image, the system showed robust performance when tested using the remaining 19 images. The average Jaccard similarity index and Dice similarity metric for the GM and WM tissues were estimated to be 75.7 %, 86.0% for GM, and 67.8% and 80.7%for WM, respectively. Conclusion: The obtained performances are encouraging and show that the presented method may assist with segmentation of 2D MR images especially where categorizing WM and GM is of interest.

  1. A screening system for smear-negative pulmonary tuberculosis using artificial neural networks.

    Science.gov (United States)

    de O Souza Filho, João B; de Seixas, José Manoel; Galliez, Rafael; de Bragança Pereira, Basilio; de Q Mello, Fernanda C; Dos Santos, Alcione Miranda; Kritski, Afranio Lineu

    2016-08-01

    Molecular tests show low sensitivity for smear-negative pulmonary tuberculosis (PTB). A screening and risk assessment system for smear-negative PTB using artificial neural networks (ANNs) based on patient signs and symptoms is proposed. The prognostic and risk assessment models exploit a multilayer perceptron (MLP) and inspired adaptive resonance theory (iART) network. Model development considered data from 136 patients with suspected smear-negative PTB in a general hospital. MLP showed higher sensitivity (100%, 95% confidence interval (CI) 78-100%) than the other techniques, such as support vector machine (SVM) linear (86%; 95% CI 60-96%), multivariate logistic regression (MLR) (79%; 95% CI 53-93%), and classification and regression tree (CART) (71%; 95% CI 45-88%). MLR showed a slightly higher specificity (85%; 95% CI 59-96%) than MLP (80%; 95% CI 54-93%), SVM linear (75%, 95% CI 49-90%), and CART (65%; 95% CI 39-84%). In terms of the area under the receiver operating characteristic curve (AUC), the MLP model exhibited a higher value (0.918, 95% CI 0.824-1.000) than the SVM linear (0.796, 95% CI 0.651-0.970) and MLR (0.782, 95% CI 0.663-0.960) models. The significant signs and symptoms identified in risk groups are coherent with clinical practice. In settings with a high prevalence of smear-negative PTB, the system can be useful for screening and also to aid clinical practice in expediting complementary tests for higher risk patients. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Distributed Energy Neural Network Integration System: Year One Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Regan, T.; Sinnock, H.; Davis, A.

    2003-06-01

    This report describes the work of Orion Engineering Corp. to develop a DER household controller module and demonstrate the ability of a group of these controllers to operate through an intelligent, neighborhood controller. The controllers will provide a smart, technologically advanced, simple, efficient, and economic solution for aggregating a community of small distributed generators into a larger single, virtual generator capable of selling power or other services to a utility, independent system operator (ISO), or other entity in a coordinated manner.

  3. Internal models and neural computation in the vestibular system

    OpenAIRE

    Green, Andrea M.; Dora E. Angelaki

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem–...

  4. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  5. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  6. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  7. Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, Auralee [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Bowring, Daniel [Fermilab; Chase, Brian [Fermilab; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Steimel, Jim [Fermilab

    2016-06-01

    As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.

  8. The NPY system and its neural and neuroendocrine regulation of bone.

    Science.gov (United States)

    Khor, Ee Cheng; Baldock, Paul

    2012-06-01

    The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.

  9. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    Science.gov (United States)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  10. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  11. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  12. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  13. Neural Systems Involved When Attending to a Speaker.

    Science.gov (United States)

    Kamourieh, Salwa; Braga, Rodrigo M; Leech, Robert; Newbould, Rexford D; Malhotra, Paresh; Wise, Richard J S

    2015-11-01

    Remembering what a speaker said depends on attention. During conversational speech, the emphasis is on working memory, but listening to a lecture encourages episodic memory encoding. With simultaneous interference from background speech, the need for auditory vigilance increases. We recreated these context-dependent demands on auditory attention in 2 ways. The first was to require participants to attend to one speaker in either the absence or presence of a distracting background speaker. The second was to alter the task demand, requiring either an immediate or delayed recall of the content of the attended speech. Across 2 fMRI studies, common activated regions associated with segregating attended from unattended speech were the right anterior insula and adjacent frontal operculum (aI/FOp), the left planum temporale, and the precuneus. In contrast, activity in a ventral right frontoparietal system was dependent on both the task demand and the presence of a competing speaker. Additional multivariate analyses identified other domain-general frontoparietal systems, where activity increased during attentive listening but was modulated little by the need for speech stream segregation in the presence of 2 speakers. These results make predictions about impairments in attentive listening in different communicative contexts following focal or diffuse brain pathology. © The Author 2015. Published by Oxford University Press.

  14. The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective

    Directory of Open Access Journals (Sweden)

    Joseph Billingsley

    2017-05-01

    Full Text Available Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model’s claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part.

  15. The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective.

    Science.gov (United States)

    Billingsley, Joseph; Losin, Elizabeth A R

    2017-01-01

    Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model's claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part.

  16. Calculation of transmission system losses for the Taiwan Power Company by the artificial neural network with time decayed weight

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.C.; Chen, B.K.; Mo, P.C. [Tatung Inst. of Tech., Taipei (Taiwan, Province of China)

    1995-12-31

    For energy conservation and improvement of power system operation efficiency, how to reduce the transmission system losses becomes an important topic of grave concern. To understand the cause, and to evaluate the amount, of the losses are the prior steps to diminish them. To simplify the evaluation procedure without losing too much accuracy, this paper adopts the artificial neural network, which is a model free network, to analyze the transmission system losses. As the artificial neural network with time decayed weight has the capability of learning, memorizing, and forgetting, it is more suitable for a power system with gradually changing characteristics. By using this artificial neural network, the estimation of transmission system losses will be more precise. In this paper, comparison will be made between the results of artificial neural network analysis and polynomial loss equations analysis.

  17. Use of neural networks in the capacitance imaging system. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Fasching, G.E.; Loudin, W.J.; Paton, D.E.; Smith, N.S. Jr.

    1993-10-01

    The US Department of Energy`s Morgantown Energy Technology Center (METC) has developed a capacitance imaging system (CIS) to support its fluidized-bed research programs. The CIS uses 400 electric displacement current measurements taken between combinations of pairs of 32 electrodes to obtain a measure of the fluidized-bed material density in the volume between the electrodes. The measurements are simultaneously made for three other sets of horizontally-oriented 32 electrodes with the four sets evenly spaced vertically. This report describes the development of a method of using the 400 current measurements per level as the input to a neural network to produce the 193-pixel density estimates defined for each level. A 417-neuron subnetwork using 4,047 weights is defined as the system used to determine a set of 32-pixel densities in one of the annular regions of the fluidized-bed cross section. The same subnetwork with different values of weights is used for the other five annular regions that cover the rest of the cross section. An averaging technique is used to determine the density of the small central region. The methods used to optimize the set of weights for each of the six subnetworks are described. The results of tests using calibration electric current data as inputs to the neural system showed that these density estimates have less error than three previously developed methods of converting current measurements into pixel density maps. A comparison of the density maps produced by the neural system and the alternate three methods using input fluidization data also indicates the superior performance of the neural network approach.

  18. Reconfigurable embedded system architecture for next-generation Neural Signal Processing.

    Science.gov (United States)

    Balasubramanian, Karthikeyan; Obeid, Iyad

    2010-01-01

    This work presents a new architectural framework for next generation Neural Signal Processing (NSP). The essential features of the NSP hardware platform include scalability, reconfigurability, real-time processing ability and data storage. This proposed framework has been implemented in a proof-of-concept NSP prototype using an embedded system architecture synthesized in a Xilinx(®)Virtex(®)5 development board. The prototype includes a threshold-based spike detector and a fuzzy logic-based spike sorter.

  19. Aplikasi Model Artificial Neural Network Terintegrasi dengan Geographycal Information System untuk Evaluasi Kesesuaian Lahan Perkebunan Kakao

    OpenAIRE

    Hermantoro; Rudiyanto; Slamet Suprayogi

    2008-01-01

    Land evaluation for specific purpose in plantation sector become very important due to increasing the competition in land use and the development of plantation sector. Land evaluation produces information of land economic values for specific land use. The objective of the research is to develop land evaluation method for cocoa estate using integrated model Artificial Neural Network (ANN) and Geographical Information System (GIS). Back propagation ANN model were used to predict cocoa yield bas...

  20. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm.

    Science.gov (United States)

    Tra, Viet; Kim, Jaeyoung; Khan, Sheraz Ali; Kim, Jong-Myon

    2017-12-06

    This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing's speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.

  1. Memory trace in feeding neural circuitry underlying conditioned taste aversion in Lymnaea.

    Directory of Open Access Journals (Sweden)

    Etsuro Ito

    Full Text Available BACKGROUND: The pond snail Lymnaea stagnalis can maintain a conditioned taste aversion (CTA as a long-term memory. Previous studies have shown that the inhibitory postsynaptic potential (IPSP evoked in the neuron 1 medial (N1M cell by activation of the cerebral giant cell (CGC in taste aversion-trained snails was larger and lasted longer than that in control snails. The N1M cell is one of the interneurons in the feeding central pattern generator (CPG, and the CGC is a key regulatory neuron for the feeding CPG. METHODOLOGY/PRINCIPLE FINDINGS: Previous studies have suggested that the neural circuit between the CGC and the N1M cell consists of two synaptic connections: (1 the excitatory connection from the CGC to the neuron 3 tonic (N3t cell and (2 the inhibitory connection from the N3t cell to the N1M cell. However, because the N3t cell is too small to access consistently by electrophysiological methods, in the present study the synaptic inputs from the CGC to the N3t cell and those from the N3t cell to the N1M cell were monitored as the monosynaptic excitatory postsynaptic potential (EPSP recorded in the large B1 and B3 motor neurons, respectively. The evoked monosynaptic EPSPs of the B1 motor neurons in the brains isolated from the taste aversion-trained snails were identical to those in the control snails, whereas the spontaneous monosynaptic EPSPs of the B3 motor neurons were significantly enlarged. CONCLUSION/SIGNIFICANCE: These results suggest that, after taste aversion training, the monosynaptic inputs from the N3t cell to the following neurons including the N1M cell are specifically facilitated. That is, one of the memory traces for taste aversion remains as an increase in neurotransmitter released from the N3t cell. We thus conclude that the N3t cell suppresses the N1M cell in the feeding CPG, in response to the conditioned stimulus in Lymnaea CTA.

  2. Altered Dynamics Between Neural Systems Sub-serving Decisions for Unhealthy Food

    Directory of Open Access Journals (Sweden)

    Qinghua eHe

    2014-11-01

    Full Text Available Using BOLD functional magnetic resonance imaging (fMRI techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT, and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14-21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG, and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex.These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating.

  3. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    Science.gov (United States)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  4. Evolving a neural olfactorimotor system in virtual and real olfactory environments.

    Science.gov (United States)

    Rhodes, Paul A; Anderson, Todd O

    2012-01-01

    To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments.

  5. Neural plasticity of development and learning.

    Science.gov (United States)

    Galván, Adriana

    2010-06-01

    Development and learning are powerful agents of change across the lifespan that induce robust structural and functional plasticity in neural systems. An unresolved question in developmental cognitive neuroscience is whether development and learning share the same neural mechanisms associated with experience-related neural plasticity. In this article, I outline the conceptual and practical challenges of this question, review insights gleaned from adult studies, and describe recent strides toward examining this topic across development using neuroimaging methods. I suggest that development and learning are not two completely separate constructs and instead, that they exist on a continuum. While progressive and regressive changes are central to both, the behavioral consequences associated with these changes are closely tied to the existing neural architecture of maturity of the system. Eventually, a deeper, more mechanistic understanding of neural plasticity will shed light on behavioral changes across development and, more broadly, about the underlying neural basis of cognition. (c) 2010 Wiley-Liss, Inc.

  6. Decision making under uncertainty in a spiking neural network model of the basal ganglia

    NARCIS (Netherlands)

    Héricé, C.; Khalil, R.; Moftah, M.; Boraud, T.; Guthrie, M.J.; Garenne, A.

    2016-01-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used

  7. Neural Mechanisms Underlying Social Intelligence and Their Relationship with the Performance of Sales Managers

    NARCIS (Netherlands)

    R.C. Dietvorst (Roeland)

    2010-01-01

    textabstractIdentifying the drivers of salespeople’s performance, strategies and moral behavior have been under the scrutiny of marketing scholars for many years. The functioning of the drivers of salespeople’s behaviors rests on processes going on in the minds of salespeople. However, research to

  8. Passivation and control of partially known SISO nonlinear systems via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    Reyes-Reyes J.

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  9. Vestibular system and neural correlates of motion sickness

    Science.gov (United States)

    Miller, Alan D.

    1986-01-01

    Initial studies re-examine the role of certain central nervous system structures in the production of vestibular-induced vomiting and vomiting in general. All experiments were conducted using cats. Since these studies demonstrated that the essential role of various central structures in vestibular-induced vomiting is only poorly understood, efforts were re-directed to study the control of the effector muscles (diaphragm and abdominal muscles) that produce the pressure changes responsible for vomiting, with the goal of determining how this control mechanism is engaged during motion sickness. Experiments were conducted to localize the motoneurons that innervate the individual abdominal muscles and the portion of the diaphragm that surrounds the esophagus. A central question regarding respiratory muscle control during vomiting is whether these muscles are activated via the same brain stem pre-motor neurons that provide descending respiratory drive and/or by other descending input(s). In other experiments, the use of a combination of pitch and roll motions to produce motion sickness in unrestrained cats was evaluated. This stimulus combination can produce vomiting in only the most susceptible cats and is thus not as provacative a stimulus for cats as vertical linear acceleration.

  10. A low-cost multichannel wireless neural stimulation system for freely roaming animals

    Science.gov (United States)

    Alam, Monzurul; Chen, Xi; Fernandez, Eduardo

    2013-12-01

    Objectives. Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. Approach. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. Main results. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. Significance. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.

  11. Dissociable neural systems for analogy and metaphor: implications for the neuroscience of creativity.

    Science.gov (United States)

    Vartanian, Oshin

    2012-08-01

    Two recent reviews of the neuroimaging literature on creativity have pointed to inconsistent findings across studies, calling into question the usefulness of the theoretical constructs motivating the search for its neural bases. However, it is argued that consistent patterns of neural activation do emerge when the cognitive process and the neuroimaging method are kept uniform across studies. To demonstrate this empirically, the activation likelihood estimation (ALE) method was used to conduct quantitative meta-analyses of functional magnetic resonance imaging (fMRI) experiments of analogy and metaphor - two processes related to creativity and included in the recent reviews. The results demonstrated that analogy and metaphor reliably activate consistent but dissociable brain regions across fMRI studies. The implications of the findings for cognitive theories of analogy and metaphor are discussed. Furthermore, these results demonstrate that to the extent that creativity has heterogeneous sources, its neural instantiation will vary as a function of the underlying cognitive processes. ©2011 The British Psychological Society.

  12. A swarm optimized neural network system for classification of microcalcification in mammograms.

    Science.gov (United States)

    Dheeba, J; Selvi, S Tamil

    2012-10-01

    Early detection of microcalcification clusters in breast tissue will significantly increase the survival rate of the patients. Radiologists use mammography for breast cancer diagnosis at early stage. It is a very challenging and difficult task for radiologists to correctly classify the abnormal regions in the breast tissue, because mammograms are noisy images. To improve the accuracy rate of detection of breast cancer, a novel intelligent computer aided classifier is used, which detects the presence of microcalcification clusters. In this paper, an innovative approach for detection of microcalcification in digital mammograms using Swarm Optimization Neural Network (SONN) is used. Prior to classification Laws texture features are extracted from the image to capture descriptive texture information. These features are used to extract texture energy measures from the Region of Interest (ROI) containing microcalcification (MC). A feedforward neural network is used for detection of abnormal regions in breast tissue is optimally designed using Particle Swarm Optimization algorithm. The proposed intelligent classifier is evaluated based on the MIAS database where 51 malignant, 63 benign and 208 normal images are utilized. The approach has also been tested on 216 real time clinical images having abnormalities which showed that the results are statistically significant. With the proposed methodology, the area under the ROC curve (A ( z )) reached 0.9761 for MIAS database and 0.9138 for real clinical images. The classification results prove that the proposed swarm optimally tuned neural network highly contribute to computer-aided diagnosis of breast cancer.

  13. Social cognitive conflict resolution: Contributions of domain general and domain specific neural systems

    Science.gov (United States)

    Zaki, Jamil; Hennigan, Kelly; Weber, Jochen; Ochsner, Kevin N.

    2010-01-01

    Cognitive control mechanisms allow individuals to behave adaptively in the face of complex and sometimes conflicting information. While the neural bases of these control mechanisms have been examined in many contexts, almost no attention has been paid to their role in resolving conflicts between competing social cues, which is surprising, given that cognitive conflicts are part of many social interactions. Evidence about the neural processing of social information suggests that two systems—the mirror neuron system (MNS) and mental state attribution system (MSAS)—are specialized for processing nonverbal and contextual social cues, respectively. This could support a model of social cognitive conflict resolution in which competition between social cues would recruit domain-general cognitive control mechanisms, which in turn would bias processing towards the MNS or MSAS. Such biasing could also alter social behaviors, such as inferences made about the internal states of others. We tested this model by scanning participants using fMRI while they drew inferences about social targets' emotional states based on congruent or incongruent nonverbal and contextual social cues. Conflicts between social cues recruited the anterior cingulate and lateral prefrontal cortex, brain areas associated with domain-general control processes. This activation was accompanied by biasing of neural activity towards areas in the MNS or MSAS, which tracked, respectively, with perceivers' behavioral reliance on nonverbal or contextual cues when drawing inferences about targets' emotions. Together, these data provide evidence about both domain general and domain specific mechanisms involved in resolving social cognitive conflicts. PMID:20573895

  14. Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm

    Directory of Open Access Journals (Sweden)

    Veronica Chan

    2017-03-01

    Full Text Available This paper presents the application of a neural network rule extraction algorithm, called the piece-wise linear artificial neural network or PWL-ANN algorithm, on a carbon capture process system dataset. The objective of the application is to enhance understanding of the intricate relationships among the key process parameters. The algorithm extracts rules in the form of multiple linear regression equations by approximating the sigmoid activation functions of the hidden neurons in an artificial neural network (ANN. The PWL-ANN algorithm overcomes the weaknesses of the statistical regression approach, in which accuracies of the generated predictive models are often not satisfactory, and the opaqueness of the ANN models. The results show that the generated PWL-ANN models have accuracies that are as high as the originally trained ANN models of the four datasets of the carbon capture process system. An analysis of the extracted rules and the magnitude of the coefficients in the equations revealed that the three most significant parameters of the CO2 production rate are the steam flow rate through reboiler, reboiler pressure, and the CO2 concentration in the flue gas.

  15. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  16. Consensus-based distributed cooperative learning from closed-loop neural control systems.

    Science.gov (United States)

    Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang

    2015-02-01

    In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.

  17. NONLINEAR SYSTEM MODELING USING SINGLE NEURON CASCADED NEURAL NETWORK FOR REAL-TIME APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. Himavathi

    2012-04-01

    Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.

  18. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

    Science.gov (United States)

    Kang, Min-Joo

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802

  19. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    Science.gov (United States)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  20. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    Science.gov (United States)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  1. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  2. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  3. 20 CFR 404.1077 - Individuals under railroad retirement system.

    Science.gov (United States)

    2010-04-01

    ... Self-Employment § 404.1077 Individuals under railroad retirement system. If you are an employee or... business. Your services are covered under the railroad retirement system. Self-Employment Income ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Individuals under railroad retirement system...

  4. Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems

    Science.gov (United States)

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C.; Zhou, Changsong

    2013-01-01

    The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy

  5. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  6. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.

    Directory of Open Access Journals (Sweden)

    Yuhan Chen

    Full Text Available The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter α, and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of α, resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of α values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real

  7. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.

    Science.gov (United States)

    Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Friehs, Gerhard M; Black, Michael J

    2011-04-01

    We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer screen, hold it still, and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity of a small population of neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants could control the cursor motion and click on specified targets with a small error rate (one participant). This study suggests that signals from a small ensemble of motor cortical neurons (∼40) can be used for natural point-and-click 2-D cursor control of a personal computer.

  8. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  9. Neural activity underlying tinnitus generation : Results from PET and fMRI

    NARCIS (Netherlands)

    Lanting, C. P.; de Kleine, E.; van Dijk, P.

    Tinnitus is the percept of sound that is not related to an acoustic source outside the body. For many forms of tinnitus, mechanisms in the central nervous system are believed to play an important role in the pathology. Specifically, three mechanisms have been proposed to underlie tinnitus: (1)

  10. Convergence of Asymptotic Systems of Non-autonomous Neural Network Models with Infinite Distributed Delays

    Science.gov (United States)

    Oliveira, José J.

    2017-10-01

    In this paper, we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.

  11. Nonlinear System Identification Using Neural Networks Trained with Natural Gradient Descent

    Directory of Open Access Journals (Sweden)

    Ibnkahla Mohamed

    2003-01-01

    Full Text Available We use natural gradient (NG learning neural networks (NNs for modeling and identifying nonlinear systems with memory. The nonlinear system is comprised of a discrete-time linear filter followed by a zero-memory nonlinearity . The NN model is composed of a linear adaptive filter followed by a two-layer memoryless nonlinear NN. A Kalman filter-based technique and a search-and-converge method have been employed for the NG algorithm. It is shown that the NG descent learning significantly outperforms the ordinary gradient descent and the Levenberg-Marquardt (LM procedure in terms of convergence speed and mean squared error (MSE performance.

  12. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    Science.gov (United States)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  13. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats.

    Science.gov (United States)

    Numan, Michael; Stolzenberg, Danielle S

    2009-01-01

    The medial preoptic area (MPOA) and dopamine (DA) neural systems interact to regulate maternal behavior in rats. Two DA systems are involved: the mesolimbic DA system and the incerto-hypothalamic DA system. The hormonally primed MPOA regulates the appetitive aspects of maternal behavior by activating mesolimbic DA input to the shell region of the nucleus accumbens (NAs). DA action on MPOA via the incerto-hypothalamic system may interact with steroid and peptide hormone effects so that MPOA output to the mesolimbic DA system is facilitated. Neural oxytocin facilitates the onset of maternal behavior by actions at critical nodes in this circuitry. DA-D1 receptor agonist action on either the MPOA or NAs can substitute for the effects of estradiol in stimulating the onset of maternal behavior, suggesting an overlap in underlying cellular mechanisms between estradiol and DA. Maternal memory involves the neural plasticity effects of mesolimbic DA activity. Finally, early life stressors may affect the development of MPOA-DA interactions and maternal behavior.

  14. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  15. Dynamical systems, attractors, and neural circuits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Paul Miller

    2016-05-01

    Full Text Available Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic—they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  16. Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.

    Science.gov (United States)

    Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M

    2011-08-01

    During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.

  17. A hybrid fuzzy-neural system for computer-aided diagnosis of ultrasound kidney images using prominent features.

    Science.gov (United States)

    Bommanna Raja, K; Madheswaran, M; Thyagarajah, K

    2008-02-01

    The objective of this work is to develop and implement a computer-aided decision support system for an automated diagnosis and classification of ultrasound kidney images. The proposed method distinguishes three kidney categories namely normal, medical renal diseases and cortical cyst. For the each pre-processed ultrasound kidney image, 36 features are extracted. Two types of decision support systems, optimized multi-layer back propagation network and hybrid fuzzy-neural system have been developed with these features for classifying the kidney categories. The performance of the hybrid fuzzy-neural system is compared with the optimized multi-layer back propagation network in terms of classification efficiency, training and testing time. The results obtained show that fuzzy-neural system provides higher classification efficiency with minimum training and testing time. It has also been found that instead of using all 36 features, ranking the features enhance classification efficiency. The outputs of the decision support systems are validated with medical expert to measure the actual efficiency. The overall discriminating capability of the systems is accessed with performance evaluation measure, f-score. It has been observed that the performance of fuzzy-neural system is superior compared to optimized multi-layer back propagation network. Such hybrid fuzzy-neural system with feature extraction algorithms and pre-processing scheme helps in developing computer-aided diagnosis system for ultrasound kidney images and can be used as a secondary observer in clinical decision making.

  18. A MapReduce Based High Performance Neural Network in Enabling Fast Stability Assessment of Power Systems

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-01-01

    Full Text Available Transient stability assessment is playing a vital role in modern power systems. For this purpose, machine learning techniques have been widely employed to find critical conditions and recognize transient behaviors based on massive data analysis. However, an ever increasing volume of data generated from power systems poses a number of challenges to traditional machine learning techniques, which are computationally intensive running on standalone computers. This paper presents a MapReduce based high performance neural network to enable fast stability assessment of power systems. Hadoop, which is an open-source implementation of the MapReduce model, is first employed to parallelize the neural network. The parallel neural network is further enhanced with HaLoop to reduce the computation overhead incurred in the iteration process of the neural network. In addition, ensemble techniques are employed to accommodate the accuracy loss of the parallelized neural network in classification. The parallelized neural network is evaluated with both the IEEE 68-node system and a real power system from the aspects of computation speedup and stability assessment.

  19. Genetic Algorithms for Optimal Reactive Power Compensation of a Power System with Wind Generators based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    L. Krichen

    2007-03-01

    Full Text Available In this paper, we develop a method to maintain an acceptable voltages profile and minimization of active losses of a power system including wind generators in real time. These tasks are ensured by acting on capacitor and inductance benches implemented in the consuming nodes. To solve this problem, we minimize an objective function associated to active losses under constraints imposed on the voltages and the reactive productions of the various benches. The minimization procedure was realised by the use of genetic algorithms (GA. The major disadvantage of this technique is that it requires a significant computing time thus not making it possible to deal with the problem in real time. After a training phase, a neural model has the capacity to provide a good estimation of the voltages, the reactive productions and the losses for forecast curves of the load and the wind speed, in real time.

  20. Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems

    Science.gov (United States)

    Lima, Pedro; Beard, Randal

    1992-01-01

    The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a

  1. Neural and psychophysiological correlates of human performance under stress and high mental workload.

    Science.gov (United States)

    Mandrick, Kevin; Peysakhovich, Vsevolod; Rémy, Florence; Lepron, Evelyne; Causse, Mickaël

    2016-12-01

    In our anxiogenic and stressful world, the maintenance of an optimal cognitive performance is a constant challenge. It is particularly true in complex working environments (e.g. flight deck, air traffic control tower), where individuals have sometimes to cope with a high mental workload and stressful situations. Several models (i.e. processing efficiency theory, cognitive-energetical framework) have attempted to provide a conceptual basis on how human performance is modulated by high workload and stress/anxiety. These models predict that stress can reduce human cognitive efficiency, even in the absence of a visible impact on the task performance. Performance may be protected under stress thanks to compensatory effort, but only at the expense of a cognitive cost. Yet, the psychophysiological cost of this regulation remains unclear. We designed two experiments involving pupil diameter, cardiovascular and prefrontal oxygenation measurements. Participants performed the Toulouse N-back Task that intensively engaged both working memory and mental calculation processes under the threat (or not) of unpredictable aversive sounds. The results revealed that higher task difficulty (higher n level) degraded the performance and induced an increased tonic pupil diameter, heart rate and activity in the lateral prefrontal cortex, and a decreased phasic pupil response and heart rate variability. Importantly, the condition of stress did not impact the performance, but at the expense of a psychophysiological cost as demonstrated by lower phasic pupil response, and greater heart rate and prefrontal activity. Prefrontal cortex seems to be a central region for mitigating the influence of stress because it subserves crucial functions (e.g. inhibition, working memory) that can promote the engagement of coping strategies. Overall, findings confirmed the psychophysiological cost of both mental effort and stress. Stress likely triggered increased motivation and the recruitment of additional

  2. A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure

    Science.gov (United States)

    Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.

    2015-01-01

    The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…

  3. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  4. Neural synchrony within the motor system: what have we learned so far?

    Directory of Open Access Journals (Sweden)

    Bernadette C. M. van Wijk

    2012-09-01

    Full Text Available Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity.

  5. Toward a distributed free-floating wireless implantable neural recording system.

    Science.gov (United States)

    Pyungwoo Yeon; Xingyuan Tong; Byunghun Lee; Mirbozorgi, Abdollah; Ash, Bruce; Eckhardt, Helmut; Ghovanloo, Maysam

    2016-08-01

    To understand the complex correlations between neural networks across different regions in the brain and their functions at high spatiotemporal resolution, a tool is needed for obtaining long-term single unit activity (SUA) across the entire brain area. The concept and preliminary design of a distributed free-floating wireless implantable neural recording (FF-WINeR) system are presented, which can enabling SUA acquisition by dispersedly implanting tens to hundreds of untethered 1 mm3 neural recording probes, floating with the brain and operating wirelessly across the cortical surface. For powering FF-WINeR probes, a 3-coil link with an intermediate high-Q resonator provides a minimum S21 of -22.22 dB (in the body medium) and -21.23 dB (in air) at 2.8 cm coil separation, which translates to 0.76%/759 μW and 0.6%/604 μW of power transfer efficiency (PTE) / power delivered to a 9 kΩ load (PDL), in body and air, respectively. A mock-up FF-WINeR is implemented to explore microassembly method of the 1×1 mm2 micromachined silicon die with a bonding wire-wound coil and a tungsten micro-wire electrode. Circuit design methods to fit the active circuitry in only 0.96 mm2 of die area in a 130 nm standard CMOS process, and satisfy the strict power and performance requirements (in simulations) are discussed.

  6. Do horizontal saccadic eye movements increase interhemispheric coherence? Investigation of a hypothesized neural mechanism underlying EMDR

    Directory of Open Access Journals (Sweden)

    Zoe eSamara

    2011-03-01

    Full Text Available Series of horizontal saccadic eye movements (EMs are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye-movement desensitization and reprocessing (EMDR therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG. Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants’ interhemispheric coherence or that improvements in recall were correlated with such changes in coherence. These findings cast doubt on the interhemispheric interaction hypothesis, and therefore may have important implications for future research on the neurobiological mechanism underlying EMDR.

  7. Design a PID Controller for Suspension System by Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    M. Heidari

    2013-01-01

    Full Text Available This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation neural network (BPN has been used for determining the gain parameters of a PID controller for suspension system of automotive. The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marquardt algorithm training with 10 neurons in the one hidden layer. Training was continued until the mean squared error is less than . Desired error value was achieved in the BPN, and the BPN was tested with both data used and not used for training. By training of this network, it is possible to estimate the gain parameters of PID controller at any condition. The inputs of network are automotive velocity, overshoot percentage, settling time, and steady state error of suspension system response. Also outputs of the net are the gain parameters of PID controller. Resultant low relative error value of the ANN model indicates the usability of the BPN in this area.

  8. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System.

    Science.gov (United States)

    Uesaka, Toshihiro; Nagashimada, Mayumi; Enomoto, Hideki

    2015-07-08

    Elucidation of the cellular identity of neuronal precursors provides mechanistic insights into the development and pathophysiology of the nervous system. In the enteric nervous system (ENS), neurogenesis persists from midgestation to the postnatal period. Cellular mechanism underlying the long-term neurogenesis in the ENS has remained unclear. Using genetic fate mapping in mice, we show here that a subset of Schwann cell precursors (SCPs), which invades the gut alongside the extrinsic nerves, adopts a neuronal fate in the postnatal period and contributes to the ENS. We found SCP-derived neurogenesis in the submucosal region of the small intestine in the absence of vagal neural crest-derived ENS precursors. Under physiological conditions, SCPs comprised up to 20% of enteric neurons in the large intestine and gave rise mainly to restricted neuronal subtypes, calretinin-expressing neurons. Genetic ablation of Ret, the signaling receptor for glial cell line-derived neurotrophic factor, in SCPs caused colonic oligoganglionosis, indicating that SCP-derived neurogenesis is essential to ENS integrity. Identification of Schwann cells as a physiological neurogenic source provides novel insight into the development and disorders of neural crest-derived tissues. Elucidating the cellular identity of neuronal precursors provides novel insights into development and function of the nervous system. The enteric nervous system (ENS) is innervated richly by extrinsic nerve fibers, but little is known about the significance of extrinsic innervation to the structural integrity of the ENS. This report reveals that a subset of Schwann cell precursors (SCPs), which invades the gut alongside the extrinsic nerves, adopts a neuronal fate and differentiates into specific neuronal subtypes. SCP-specific ablation of the Ret gene leads to colonic oligoganglionosis, demonstrating a crucial role of SCP-derived neurogenesis in ENS development. Cross-lineage differentiation capacity in SCPs suggests

  9. Neurocognitive mechanisms underlying social learning in infancy: infants' neural processing of the effects of others' actions.

    Science.gov (United States)

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Social transmission of knowledge is one of the reasons for human evolutionary success, and it has been suggested that already human infants possess eminent social learning abilities. However, nothing is known about the neurocognitive mechanisms that subserve infants' acquisition of novel action knowledge through the observation of other people's actions and their consequences in the physical world. In an electroencephalogram study on social learning in infancy, we demonstrate that 9-month-old infants represent the environmental effects of others' actions in their own motor system, although they never achieved these effects themselves before. The results provide first insights into the neurocognitive basis of human infants' unique ability for social learning of novel action knowledge.

  10. Changes in Neural Activity Underlying Working Memory after Computerized Cognitive Training in Older Adults.

    Science.gov (United States)

    Tusch, Erich S; Alperin, Brittany R; Ryan, Eliza; Holcomb, Phillip J; Mohammed, Abdul H; Daffner, Kirk R

    2016-01-01

    Computerized cognitive training (CCT) may counter the impact of aging on cognition, but both the efficacy and neurocognitive mechanisms underlying CCT remain controversial. In this study, 35 older individuals were randomly assigned to Cogmed adaptive working memory (WM) CCT or an active control CCT, featuring five weeks of five ∼40 min sessions per week. Before and after the 5-week intervention, event-related potentials were measured while subjects completed a visual n-back task with three levels of demand (0-back, 1-back, 2-back). The anterior P3a served as an index of directing attention and the posterior P3b as an index of categorization/WM updating. We hypothesized that adaptive CCT would be associated with decreased P3 amplitude at low WM demand and increased P3 amplitude at high WM demand. The adaptive CCT group exhibited a training-related increase in the amplitude of the anterior P3a and posterior P3b in response to target stimuli across n-back tasks, while subjects in the active control CCT group demonstrated a post-training decrease in the anterior P3a. Performance did not differ between groups or sessions. Larger overall P3 amplitudes were strongly associated with better task performance. Increased post-CCT P3 amplitude correlated with improved task performance; this relationship was especially robust at high task load. Our findings suggest that adaptive WM training was associated with increased orienting of attention, as indexed by the P3a, and the enhancement of categorization/WM updating processes, as indexed by the P3b. Increased P3 amplitude was linked to improved performance; however. there was no direct association between adaptive training and improved performance.

  11. Changes in neural activity underlying working memory after computerized cognitive training in older adults

    Directory of Open Access Journals (Sweden)

    Erich Tusch

    2016-11-01

    Full Text Available Computerized cognitive training (CCT may counter the impact of aging on cognition, but both the efficacy and neurocognitive mechanisms underlying CCT remain controversial. In this study, 35 older individuals were randomly assigned to Cogmed adaptive working memory (WM CCT or an active control CCT, featuring five weeks of five ~40 minute sessions per week. Before and after the 5-week intervention, ERPs were measured while subjects completed a visual n-back task with 3 levels of demand (0-back, 1-back, 2-back. The anterior P3a served as an index of directing attention and the posterior P3b as an index of categorization/WM updating. We hypothesized that adaptive CCT would be associated with decreased P3 amplitude at low WM demand and increased P3 amplitude at high WM demand. The adaptive CCT group exhibited a training-related increase in the amplitude of the anterior P3a and posterior P3b in response to target stimuli across n-back tasks, while subjects in the active control CCT group demonstrated a post-training decrease in the anterior P3a. Performance did not differ between groups or sessions. Larger overall P3 amplitudes were strongly associated with better task performance. Increased post-CCT P3 amplitude correlated with improved task performance; this relationship was especially robust at high task load. Our findings suggest that adaptive WM training was associated with increased orienting of attention, as indexed by the P3a, and the enhancement of categorization/WM updating processes, as indexed by the P3b. Increased P3 amplitude was linked to improved performance; however there was no direct association between adaptive training and improved performance.

  12. The cerebellum: A neural system for the study of reinforcement learning

    Directory of Open Access Journals (Sweden)

    Rodney A. Swain

    2011-03-01

    Full Text Available In its strictest application, the term reinforcement learning refers to a computational approach to learning in which an agent (often a machine interacts with a mutable environment to maximize reward through trial and error. The approach borrows essentials from several fields, most notably Computer Science, Behavioral Neuroscience, and Psychology. At the most basic level, a neural system capable of mediating reinforcement learning must be able to acquire sensory information about the external environment and internal milieu (either directly or through connectivities with other brain regions, must be able to select a behavior to be executed, and must be capable of providing evaluative feedback about the success of that behavior. Given that Psychology informs us that reinforcers, both positive and negative, are stimuli or consequences that increase the probability that the immediately antecedent behavior will be repeated and that reinforcer strength or viability is modulated by the organism’s past experience with the reinforcer, its affect, and even the state of its muscles (e.g., eyes open or closed; it is the case that any neural system that supports reinforcement learning must also be sensitive to these same considerations. Once learning is established, such a neural system must finally be able to maintain continued response expression and prevent response drift. In this report, we examine both historical and recent evidence that the cerebellum satisfies all of these requirements. While we report evidence from a variety of learning paradigms, the majority of our discussion will focus on classical conditioning of the rabbit eye blink response as an ideal model system for the study of reinforcement and reinforcement learning.

  13. A new approach for sizing stand alone photovoltaic systems based in neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)

    2005-02-01

    Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)

  14. Neural basis of attachment-caregiving systems interaction: insights from neuroimaging studies

    Science.gov (United States)

    Lenzi, Delia; Trentini, Cristina; Tambelli, Renata; Pantano, Patrizia

    2015-01-01

    The attachment and the caregiving system are complementary systems which are active simultaneously in infant and mother interactions. This ensures the infant survival and optimal social, emotional, and cognitive development. In this brief review we first define the characteristics of these two behavioral systems and the theory that links them, according to what Bowlby called the “attachment-caregiving social bond” (Bowlby, 1969). We then follow with those neuroimaging studies that have focused on this particular issue, i.e., those which have studied the activation of the careging system in women (using infant stimuli) and have explored how the individual attachment model (through the Adult Attachment Interview) modulates its activity. Studies report altered activation in limbic and prefrontal areas and in basal ganglia and hypothalamus/pituitary regions. These altered activations are thought to be the neural substrate of the attachment-caregiving systems interaction. PMID:26379578

  15. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  16. Neural basis of attachment-caregiving systems interaction:insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Delia eLenzi

    2015-08-01

    Full Text Available The attachment and the caregiving system are complementary systems which are active simultaneously in infant and mother interactions. This ensures the infant survival and optimal social, emotional and cognitive development. In this brief review we first define the characteristics of these two behavioral systems and the theory that links them, according to what Bowlby called the attachment-caregiving social bond (Bowlby, 1969. We then follow with those neuroimaging studies that have focused on this particular issue, i.e. those which have studied the activation of the careging system in women (using infant stimuli and have explored how the individual attachment model (through the Adult Attachment Interview modulates its activity. Studies report altered activation in limbic and prefrontal areas and in basal ganglia and hypothalamus/pituitary regions. These altered activations are thought to be the neural substrate of the attachment-caregiving systems interaction.

  17. Reactive Power based Model Reference Neural Learning Adaptive System for Speed Estimation in Sensor-less Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    K Sedhuraman

    2012-12-01

    Full Text Available In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS is proposed. The model reference adaptive system (MRAS based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI. The non-linear mapping capability of a neural network (NN and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS. In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS and reactive power based (RP-MRNLAS. The reactive power- based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab/Simulink. The superiority of the RP- MRNLAS technique is demonstrated

  18. A VLSI field-programmable mixed-signal array to perform neural signal processing and neural modeling in a prosthetic system.

    Science.gov (United States)

    Bamford, Simeon A; Hogri, Roni; Giovannucci, Andrea; Taub, Aryeh H; Herreros, Ivan; Verschure, Paul F M J; Mintz, Matti; Del Giudice, Paolo

    2012-07-01

    A very-large-scale integration field-programmable mixed-signal array specialized for neural signal processing and neural modeling has been designed. This has been fabricated as a core on a chip prototype intended for use in an implantable closed-loop prosthetic system aimed at rehabilitation of the learning of a discrete motor response. The chosen experimental context is cerebellar classical conditioning of the eye-blink response. The programmable system is based on the intimate mixing of switched capacitor analog techniques with low speed digital computation; power saving innovations within this framework are presented. The utility of the system is demonstrated by the implementation of a motor classical conditioning model applied to eye-blink conditioning in real time with associated neural signal processing. Paired conditioned and unconditioned stimuli were repeatedly presented to an ane