WorldWideScience

Sample records for neural substrate responsible

  1. Neural substrates of sublexical processing for spelling.

    Science.gov (United States)

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mapping the neural substrates involved in maternal responsiveness and lamb olfactory memory in parturient ewes using Fos imaging.

    Science.gov (United States)

    Keller, Matthieu; Meurisse, Maryse; Lévy, Frédéric

    2004-12-01

    In sheep, recognition of the familiar lamb by the mother depends on the learning of its olfactory signature after parturition. The authors quantified Fos changes in order to identify brain regions activated during lamb odor memory formation. Brain activation was compared with those measured in anosmic ewes displaying maternal behavior but not individual lamb recognition. In intact ewes, parturition induced significant increase in Fos expression in olfactory cortical regions and in cortical amygdala, whereas in anosmic mothers, Fos expression was very low. In contrast, no difference was observed between intact and anosmic ewes in hypothalamic areas and medial amygdala, suggesting a differentiation between the neural network controlling maternal responsiveness and that involved in olfactory lamb memory.

  3. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson's disease: a kinesthetic imagery approach.

    Science.gov (United States)

    Maillet, Audrey; Thobois, Stéphane; Fraix, Valérie; Redouté, Jérôme; Le Bars, Didier; Lavenne, Franck; Derost, Philippe; Durif, Franck; Bloem, Bastiaan R; Krack, Paul; Pollak, Pierre; Debû, Bettina

    2015-03-01

    Gait disturbances, including freezing of gait, are frequent and disabling symptoms of Parkinson's disease. They often respond poorly to dopaminergic treatments. Although recent studies have shed some light on their neural correlates, their modulation by dopaminergic treatment remains quite unknown. Specifically, the influence of levodopa on the networks involved in motor imagery (MI) of parkinsonian gait has not been directly studied, comparing the off and on medication states in the same patients. We therefore conducted an [H2 (15) 0] Positron emission tomography study in eight advanced parkinsonian patients (mean disease duration: 12.3 ± 3.8 years) presenting with levodopa-responsive gait disorders and FoG, and eight age-matched healthy subjects. All participants performed three tasks (MI of gait, visual imagery and a control task). Patients were tested off, after an overnight withdrawal of all antiparkinsonian treatment, and on medication, during consecutive mornings. The order of conditions was counterbalanced between subjects and sessions. Results showed that imagined gait elicited activations within motor and frontal associative areas, thalamus, basal ganglia and cerebellum in controls. Off medication, patients mainly activated premotor-parietal and pontomesencephalic regions. Levodopa increased activation in motor regions, putamen, thalamus, and cerebellum, and reduced premotor-parietal and brainstem involvement. Areas activated when patients are off medication may represent compensatory mechanisms. The recruitment of these accessory circuits has also been reported for upper-limb movements in Parkinson's disease, suggesting a partly overlapping pathophysiology between imagined levodopa-responsive gait disorders and appendicular signs. Our results also highlight a possible cerebellar contribution in the pathophysiology of parkinsonian gait disorders through kinesthetic imagery. © 2014 Wiley Periodicals, Inc.

  4. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson's disease: a kinesthetic imagery approach

    NARCIS (Netherlands)

    Maillet, A.; Thobois, S.; Fraix, V.; Redoute, J.; Bars, D. Le; Lavenne, F.; Derost, P.; Durif, F.; Bloem, B.R.; Krack, P.; Pollak, P.; Debu, B.

    2015-01-01

    Gait disturbances, including freezing of gait, are frequent and disabling symptoms of Parkinson's disease. They often respond poorly to dopaminergic treatments. Although recent studies have shed some light on their neural correlates, their modulation by dopaminergic treatment remains quite unknown.

  5. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Redolar-Ripoll, Diego

    2012-08-01

    Full Text Available The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of goal-directed behavior. The neural substrate underling this processing of reward information is a reliable way of improving learning and memory processes. Evidence from several studies indicates that this neural system can facilitate memory consolidation in a wide variety of learning tasks. From a molecular perspective, certain cardinal features of reward have been described as forms of memory. Studies of human addicts and studies in animal models of addiction show that chronic drug exposure produces stable changes in the brain at the cellular and molecular levels that underlie the long-lasting behavioral plasticity associated with addiction. These molecular and cellular adaptations involved in addiction are also implicated in learning and memory processes. Dopamine seems to be a critical common signal to activate different genetic mechanisms that ultimately remodel synapses and circuits. Despite memory is an active and complex process mediated by different brain areas, the neural substrate of reward is able to improve memory consolidation in a several paradigms. We believe that there are many equivalent traits between reward and learning and memory processes.

  6. The structural neural substrate of subjective happiness.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2015-11-20

    Happiness is a subjective experience that is an ultimate goal for humans. Psychological studies have shown that subjective happiness can be measured reliably and consists of emotional and cognitive components. However, the neural substrates of subjective happiness remain unclear. To investigate this issue, we used structural magnetic resonance imaging and questionnaires that assessed subjective happiness, the intensity of positive and negative emotional experiences, and purpose in life. We found a positive relationship between the subjective happiness score and gray matter volume in the right precuneus. Moreover, the same region showed an association with the combined positive and negative emotional intensity and purpose in life scores. Our findings suggest that the precuneus mediates subjective happiness by integrating the emotional and cognitive components of happiness.

  7. Shared neural substrates of apraxia and aphasia.

    Science.gov (United States)

    Goldenberg, Georg; Randerath, Jennifer

    2015-08-01

    Apraxia is regularly associated with aphasia, but there is controversy whether their co-occurrence is the expression of a common basic deficit or results from anatomical proximity of their neural substrates. However, neither aphasia nor apraxia is an indivisible entity. Both diagnoses embrace diverse manifestations that may occur more or less independently from each other. Thus, the question whether apraxia is always accompanied by aphasia may lead to conflicting answers depending on which of their manifestations are considered. We used voxel based lesion symptom mapping (VLSM) for exploring communalities between lesion sites associated with aphasia and with apraxia. Linguistic impairment was assessed by the Aachen Aphasia Test (AAT) subtests naming, comprehension, repetition, written language, and Token Test. Apraxia was examined for imitation of meaningless hand and finger postures and for pantomime of tool use. There were two areas of overlap between aphasia and apraxia. Lesions in the anterior temporal lobe interfered with pantomime of tool use and with all linguistic tests. In the left inferior parietal lobe there was a large area where lesions were associated with defective imitation of hand postures and with poor scores on written language and the Token Test. Within this large area there were also two spots in supramarginal and angular gyrus where lesions were also associated with defective pantomime. We speculate that the coincidence of language impairment and defective pantomime after anterior temporal lesions is due to impaired access to semantic memory. The combination of defective imitation of hand postures with poor scores on Token Test and written language is not easily compatible with a crucial role of parietal regions for the conversion of concepts of intended actions into motor commands. It accords better with a role of left inferior parietal lobe regions for the categorical perception of spatial relationships. Copyright © 2015 Elsevier Ltd. All

  8. Neural substrates of decision-making.

    Science.gov (United States)

    Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E

    2016-06-01

    Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  10. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Science.gov (United States)

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  11. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  12. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    Science.gov (United States)

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    and global functional outcome. This study evaluated neural substrates of impaired AER in schizophrenia using a combined event-related potential/resting-state fMRI approach. Patients showed impaired mismatch negativity response to emotionally relevant frequency modulated tones along with impaired functional connectivity between auditory and medial temporal (anterior insula) cortex. These deficits contributed in parallel to impaired AER and accounted for ∼50% of variance in AER performance. Overall, these findings demonstrate the importance of both auditory-level dysfunction and impaired auditory/insula connectivity in the pathophysiology of social cognitive dysfunction in schizophrenia. Copyright © 2015 the authors 0270-6474/15/3514910-13$15.00/0.

  13. Control of neural stem cell survival by electroactive polymer substrates.

    Directory of Open Access Journals (Sweden)

    Vanessa Lundin

    Full Text Available Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy, a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs. NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS, tosylate (TsO, perchlorate (ClO(4 and chloride (Cl, showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS but low on PPy containing TsO, ClO(4 and Cl. On PPy(DBS, NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  14. Fractionating the Neural Substrates of Incidental Recognition Memory

    Science.gov (United States)

    Greene, Ciara M.; Vidaki, Kleio; Soto, David

    2015-01-01

    Familiar stimuli are typically accompanied by decreases in neural response relative to the presentation of novel items, but these studies often include explicit instructions to discriminate old and new items; this creates difficulties in partialling out the contribution of top-down intentional orientation to the items based on recognition goals.…

  15. Neural substrates of approach-avoidance conflict decision-making

    Science.gov (United States)

    Aupperle, Robin L.; Melrose, Andrew J.; Francisco, Alex; Paulus, Martin P.; Stein, Murray B.

    2014-01-01

    Animal approach-avoidance conflict paradigms have been used extensively to operationalize anxiety, quantify the effects of anxiolytic agents, and probe the neural basis of fear and anxiety. Results from human neuroimaging studies support that a frontal-striatal-amygdala neural circuitry is important for approach-avoidance learning. However, the neural basis of decision-making is much less clear in this context. Thus, we combined a recently developed human approach-avoidance paradigm with functional magnetic resonance imaging (fMRI) to identify neural substrates underlying approach-avoidance conflict decision-making. Fifteen healthy adults completed the approach-avoidance conflict (AAC) paradigm during fMRI. Analyses of variance were used to compare conflict to non-conflict (avoid-threat and approach-reward) conditions and to compare level of reward points offered during the decision phase. Trial-by-trial amplitude modulation analyses were used to delineate brain areas underlying decision-making in the context of approach/avoidance behavior. Conflict trials as compared to the non-conflict trials elicited greater activation within bilateral anterior cingulate cortex (ACC), anterior insula, and caudate, as well as right dorsolateral prefrontal cortex. Right caudate and lateral PFC activation was modulated by level of reward offered. Individuals who showed greater caudate activation exhibited less approach behavior. On a trial-by-trial basis, greater right lateral PFC activation related to less approach behavior. Taken together, results suggest that the degree of activation within prefrontal-striatal-insula circuitry determines the degree of approach versus avoidance decision-making. Moreover, the degree of caudate and lateral PFC activation is related to individual differences in approach-avoidance decision-making. Therefore, the AAC paradigm is ideally suited to probe anxiety-related processing differences during approach-avoidance decision-making. PMID:25224633

  16. Structural neural substrates of reading the mind in the eyes

    Directory of Open Access Journals (Sweden)

    Wataru eSato

    2016-04-01

    Full Text Available The ability to read the minds of others in their eyes plays an important role in human adaptation to social environments. Behavioral studies have resulted in the development of a test to measure this ability (Reading the Mind in the Eyes Test, revised version; Eyes Test, and have demonstrated that this ability is consistent over time. Although functional neuroimaging studies revealed brain activation while performing the Eyes Test, the structural neural substrates supporting consistent performance on the Eyes Test remain unclear. In this study we assessed the Eyes Test and analyzed structural magnetic resonance images using voxel-based morphometry in healthy participants. Test performance was positively associated with the gray matter volumes of the dorsomedial prefrontal cortex, inferior parietal lobule (temporoparietal junction, and precuneus in the left hemisphere. These results suggest that the fronto-temporoparietal network structures support the consistent ability to read the mind in the eyes.

  17. Social cognition and neural substrates of face perception: implications for neurodevelopmental and neuropsychiatric disorders.

    Science.gov (United States)

    Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J

    2014-04-15

    Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Common neural substrates for visual working memory and attention.

    Science.gov (United States)

    Mayer, Jutta S; Bittner, Robert A; Nikolić, Danko; Bledowski, Christoph; Goebel, Rainer; Linden, David E J

    2007-06-01

    Humans are severely limited in their ability to memorize visual information over short periods of time. Selective attention has been implicated as a limiting factor. Here we used functional magnetic resonance imaging to test the hypothesis that this limitation is due to common neural resources shared by visual working memory (WM) and selective attention. We combined visual search and delayed discrimination of complex objects and independently modulated the demands on selective attention and WM encoding. Participants were presented with a search array and performed easy or difficult visual search in order to encode one or three complex objects into visual WM. Overlapping activation for attention-demanding visual search and WM encoding was observed in distributed posterior and frontal regions. In the right prefrontal cortex and bilateral insula blood oxygen-level-dependent activation additively increased with increased WM load and attentional demand. Conversely, several visual, parietal and premotor areas showed overlapping activation for the two task components and were severely reduced in their WM load response under the condition with high attentional demand. Regions in the left prefrontal cortex were selectively responsive to WM load. Areas selectively responsive to high attentional demand were found within the right prefrontal and bilateral occipital cortex. These results indicate that encoding into visual WM and visual selective attention require to a high degree access to common neural resources. We propose that competition for resources shared by visual attention and WM encoding can limit processing capabilities in distributed posterior brain regions.

  19. Exploring the Neural Substrates of Phonological Recovery for Symposium: Neural Correlates of Recovery and Rehabilitation

    Directory of Open Access Journals (Sweden)

    Pelagie M Beeson

    2015-10-01

    All participants improved written language abilities in response to treatment, but one subgroup was limited in their ability to regain phonological skills. Both anterior and posterior components of the perisylvian phonological network were damaged in that group. These findings are consistent with fMRI activation when healthy adults write nonwords, and provide insight regarding neural support necessary for phonological rehabilitation.

  20. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Directory of Open Access Journals (Sweden)

    Dominique Derjean

    2010-12-01

    Full Text Available It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  1. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.

  2. Abnormal neural responses to social exclusion in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Victoria B Gradin

    Full Text Available Social exclusion is an influential concept in politics, mental health and social psychology. Studies on healthy subjects have implicated the medial prefrontal cortex (mPFC, a region involved in emotional and social information processing, in neural responses to social exclusion. Impairments in social interactions are common in schizophrenia and are associated with reduced quality of life. Core symptoms such as delusions usually have a social content. However little is known about the neural underpinnings of social abnormalities. The aim of this study was to investigate the neural substrates of social exclusion in schizophrenia. Patients with schizophrenia and healthy controls underwent fMRI while participating in a popular social exclusion paradigm. This task involves passing a 'ball' between the participant and two cartoon representations of other subjects. The extent of social exclusion (ball not being passed to the participant was parametrically varied throughout the task. Replicating previous findings, increasing social exclusion activated the mPFC in controls. In contrast, patients with schizophrenia failed to modulate mPFC responses with increasing exclusion. Furthermore, the blunted response to exclusion correlated with increased severity of positive symptoms. These data support the hypothesis that the neural response to social exclusion differs in schizophrenia, highlighting the mPFC as a potential substrate of impaired social interactions.

  3. Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.

    Science.gov (United States)

    Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M

    2012-02-01

    We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Disgust proneness and associated neural substrates in obesity.

    Science.gov (United States)

    Watkins, Tristan J; Di Iorio, Christina R; Olatunji, Bunmi O; Benningfield, Margaret M; Blackford, Jennifer U; Dietrich, Mary S; Bhatia, Monisha; Theiss, Justin D; Salomon, Ronald M; Niswender, Kevin; Cowan, Ronald L

    2016-03-01

    Defects in experiencing disgust may contribute to obesity by allowing for the overconsumption of food. However, the relationship of disgust proneness and its associated neural locus has yet to be explored in the context of obesity. Thirty-three participants (17 obese, 16 lean) completed the Disgust Propensity and Sensitivity Scale-Revised and a functional magnetic resonance imaging paradigm where images from 4 categories (food, contaminates, contaminated food or fixation) were randomly presented. Independent two-sample t-tests revealed significantly lower levels of Disgust Sensitivity for the obese group (mean score = 14.7) compared with the lean group (mean score = 17.6, P = 0.026). The obese group had less activation in the right insula than the lean group when viewing contaminated food images. Multiple regression with interaction analysis revealed one left insula region where the association of Disgust Sensitivity scores with activation differed by group when viewing contaminated food images. These interaction effects were driven by the negative correlation of Disgust Sensitivity scores with beta values extracted from the left insula in the obese group (r = -0.59) compared with a positive correlation in the lean group (r = 0.65). Given these body mass index-dependent differences in Disgust Sensitivity and neural responsiveness to disgusting food images, it is likely that altered Disgust Sensitivity may contribute to obesity. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Neural Substrates of Semantic Prospection – Evidence from the Dementias

    Science.gov (United States)

    Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier

    2016-01-01

    The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of

  6. Neural Substrates of Semantic Prospection – Evidence from the Dementias

    Directory of Open Access Journals (Sweden)

    Muireann eIrish

    2016-05-01

    Full Text Available The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15 and disease-matched behavioral-variant frontotemporal dementia (n = 15, neurodegenerative disorders characterized by significant medial temporal lobe and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic and non-personal (semantic domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1 weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between grey matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of

  7. The neural substrates of impaired finger tapping regularity after stroke.

    Science.gov (United States)

    Calautti, Cinzia; Jones, P Simon; Guincestre, Jean-Yves; Naccarato, Marcello; Sharma, Nikhil; Day, Diana J; Carpenter, T Adrian; Warburton, Elizabeth A; Baron, Jean-Claude

    2010-03-01

    Not only finger tapping speed, but also tapping regularity can be impaired after stroke, contributing to reduced dexterity. The neural substrates of impaired tapping regularity after stroke are unknown. Previous work suggests damage to the dorsal premotor cortex (PMd) and prefrontal cortex (PFCx) affects externally-cued hand movement. We tested the hypothesis that these two areas are involved in impaired post-stroke tapping regularity. In 19 right-handed patients (15 men/4 women; age 45-80 years; purely subcortical in 16) partially to fully recovered from hemiparetic stroke, tri-axial accelerometric quantitative assessment of tapping regularity and BOLD fMRI were obtained during fixed-rate auditory-cued index-thumb tapping, in a single session 10-230 days after stroke. A strong random-effect correlation between tapping regularity index and fMRI signal was found in contralesional PMd such that the worse the regularity the stronger the activation. A significant correlation in the opposite direction was also present within contralesional PFCx. Both correlations were maintained if maximal index tapping speed, degree of paresis and time since stroke were added as potential confounds. Thus, the contralesional PMd and PFCx appear to be involved in the impaired ability of stroke patients to fingertap in pace with external cues. The findings for PMd are consistent with repetitive TMS investigations in stroke suggesting a role for this area in affected-hand movement timing. The inverse relationship with tapping regularity observed for the PFCx and the PMd suggests these two anatomically-connected areas negatively co-operate. These findings have implications for understanding the disruption and reorganization of the motor systems after stroke. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Neural substrates of interpreting actions and emotions from body postures.

    Science.gov (United States)

    Kana, Rajesh K; Travers, Brittany G

    2012-04-01

    Accurately reading the body language of others may be vital for navigating the social world, and this ability may be influenced by factors, such as our gender, personality characteristics and neurocognitive processes. This fMRI study examined the brain activation of 26 healthy individuals (14 women and 12 men) while they judged the action performed or the emotion felt by stick figure characters appearing in different postures. In both tasks, participants activated areas associated with visual representation of the body, motion processing and emotion recognition. Behaviorally, participants demonstrated greater ease in judging the physical actions of the characters compared to judging their emotional states, and participants showed more activation in areas associated with emotion processing in the emotion detection task, whereas they showed more activation in visual, spatial and action-related areas in the physical action task. Gender differences emerged in brain responses, such that men showed greater activation than women in the left dorsal premotor cortex in both tasks. Finally, participants higher in self-reported empathy demonstrated greater activation in areas associated with self-referential processing and emotion interpretation. These results suggest that empathy levels and sex of the participant may affect neural responses to emotional body language.

  9. Affective neural response to restricted interests in autism spectrum disorders.

    Science.gov (United States)

    Cascio, Carissa J; Foss-Feig, Jennifer H; Heacock, Jessica; Schauder, Kimberly B; Loring, Whitney A; Rogers, Baxter P; Pryweller, Jennifer R; Newsom, Cassandra R; Cockhren, Jurnell; Cao, Aize; Bolton, Scott

    2014-01-01

    Restricted interests are a class of repetitive behavior in autism spectrum disorders (ASD) whose intensity and narrow focus often contribute to significant interference with daily functioning. While numerous neuroimaging studies have investigated executive circuits as putative neural substrates of repetitive behavior, recent work implicates affective neural circuits in restricted interests. We sought to explore the role of affective neural circuits and determine how restricted interests are distinguished from hobbies or interests in typical development. We compared a group of children with ASD to a typically developing (TD) group of children with strong interests or hobbies, employing parent report, an operant behavioral task, and functional imaging with personalized stimuli based on individual interests. While performance on the operant task was similar between the two groups, parent report of intensity and interference of interests was significantly higher in the ASD group. Both the ASD and TD groups showed increased BOLD response in widespread affective neural regions to the pictures of their own interest. When viewing pictures of other children's interests, the TD group showed a similar pattern, whereas BOLD response in the ASD group was much more limited. Increased BOLD response in the insula and anterior cingulate cortex distinguished the ASD from the TD group, and parent report of the intensity and interference with daily life of the child's restricted interest predicted insula response. While affective neural network response and operant behavior are comparable in typical and restricted interests, the narrowness of focus that clinically distinguishes restricted interests in ASD is reflected in more interference in daily life and aberrantly enhanced insula and anterior cingulate response to individuals' own interests in the ASD group. These results further support the involvement of affective neural networks in repetitive behaviors in ASD. © 2013 The

  10. A common neural substrate for perceiving and knowing about color

    Science.gov (United States)

    Simmons, W. Kyle; Ramjee, Vimal; Beauchamp, Michael S.; McRae, Ken; Martin, Alex; Barsalou, Lawrence W.

    2013-01-01

    Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain’s modality-specific systems. PMID:17575989

  11. Outcome dependency alters the neural substrates of impression formation

    Science.gov (United States)

    Ames, Daniel L.; Fiske, Susan T.

    2015-01-01

    How do people maintain consistent impressions of other people when other people are often inconsistent? The present research addresses this question by combining recent neuroscientific insights with ecologically meaningful behavioral methods. Participants formed impressions of real people whom they met in a personally involving situation. fMRI and supporting behavioral data revealed that outcome dependency (i.e., depending on another person for a desired outcome) alters previously identified neural dynamics of impression formation. Consistent with past research, a functional localizer identified a region of dorsomedial PFC previously linked to social impression formation. In the main task, this ROI revealed the predicted patterns of activity across outcome dependency conditions: greater BOLD response when information confirmed (vs. violated) social expectations if participants were outcome-independent and the reverse pattern if participants were outcome-dependent. We suggest that, although social perceivers often discount expectancy-disconfirming information as noise, being dependent on another person for a desired outcome focuses impression-formation processing on the most diagnostic information, rather than on the most tractable information. PMID:23850465

  12. Response variance in functional maps: neural darwinism revisited.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  13. Response variance in functional maps: neural darwinism revisited.

    Science.gov (United States)

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  14. Losing the rose tinted glasses: neural substrates of unbiased belief updating in depression

    Directory of Open Access Journals (Sweden)

    Neil eGarrett

    2014-08-01

    Full Text Available Recent evidence suggests that a state of good mental health is associated with biased processing of information that supports a positively skewed view of the future. Depression, on the other hand, is associated with unbiased processing of such information. Here, we use brain imaging in conjunction with a belief update task administered to clinically depressed patients and healthy controls to characterize brain activity that supports unbiased belief updating in clinically depressed individuals. Our results reveal that unbiased belief updating in depression is mediated by strong neural coding of estimation errors in response to both good news (in left inferior frontal gyrus and bilateral superior frontal gyrus and bad news (in right inferior parietal lobule and right inferior frontal gyrus regarding the future. In contrast, intact mental health was linked to a relatively attenuated neural coding of bad news about the future. These findings identify a neural substrate mediating the breakdown of biased updating in Major Depression Disorder, which may be essential for mental health.

  15. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    Directory of Open Access Journals (Sweden)

    Suck Won Hong

    2014-01-01

    Full Text Available Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs, that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay, intracellular oxidative stress (with ROS assay, and membrane integrity (with LDH assay. Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine.

  16. Identifying the neural substrates of intrinsic motivation during task performance.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall

    2017-10-01

    Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.

  17. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.

    Science.gov (United States)

    Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro

    2005-07-06

    To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.

  18. Religious beliefs influence neural substrates of self-reflection in Tibetans.

    Science.gov (United States)

    Wu, Yanhong; Wang, Cheng; He, Xi; Mao, Lihua; Zhang, Li

    2010-06-01

    Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness' in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self.

  19. A neural substrate for object permanence in monkey inferotemporal cortex

    OpenAIRE

    Puneeth, NC; Arun, SP

    2016-01-01

    We take it for granted that objects continue to exist after being occluded. This knowledge ? known as object permanence ? is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following it...

  20. The neural substrates of social influence on decision making.

    Science.gov (United States)

    Tomlin, Damon; Nedic, Andrea; Prentice, Deborah A; Holmes, Philip; Cohen, Jonathan D

    2013-01-01

    The mechanisms that govern human learning and decision making under uncertainty have been the focus of intense behavioral and, more recently, neuroscientific investigation. Substantial progress has been made in building models of the processes involved, and identifying underlying neural mechanisms using simple, two-alternative forced choice decision tasks. However, less attention has been given to how social information influences these processes, and the neural systems that mediate this influence. Here we sought to address these questions by using tasks similar to ones that have been used to study individual decision making behavior, and adding conditions in which participants were given trial-by-trial information about the performance of other individuals (their choices and/or their rewards) simultaneously playing the same tasks. We asked two questions: How does such information about the behavior of others influence performance in otherwise simple decision tasks, and what neural systems mediate this influence? We found that bilateral insula exhibited a parametric relationship to the degree of misalignment of the individual's performance with those of others in the group. Furthermore, activity in the bilateral insula significantly predicted participants' subsequent choices to align their behavior with others in the group when they were misaligned either in their choices (independent of success) or their degree of success (independent of specific choices). These findings add to the growing body of empirical data suggesting that the insula participates in an important way in social information processing and decision making.

  1. A neural substrate for object permanence in monkey inferotemporal cortex.

    Science.gov (United States)

    Puneeth, N C; Arun, S P

    2016-08-03

    We take it for granted that objects continue to exist after being occluded. This knowledge - known as object permanence - is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following its occlusion, or unexpectedly after occlusion of a different object. Some neurons produced a larger (surprise) signal when the object emerged unexpectedly, whereas other neurons produced a larger (match) signal when the object reappeared as expected. Neurons carrying match signals also reinstated selective delay period activity just before the object emerged. Thus, signals related to object permanence are present in IT neurons and may arise through an interplay of memory and match computations.

  2. Simple neural substrate predicts complex rhythmic structure in duetting birds

    Science.gov (United States)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  3. Critical Neural Substrates for Correcting Unexpected Trajectory Errors and Learning from Them

    Science.gov (United States)

    Mutha, Pratik K.; Sainburg, Robert L.; Haaland, Kathleen Y.

    2011-01-01

    Our proficiency at any skill is critically dependent on the ability to monitor our performance, correct errors and adapt subsequent movements so that errors are avoided in the future. In this study, we aimed to dissociate the neural substrates critical for correcting unexpected trajectory errors and learning to adapt future movements based on…

  4. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  5. Neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions.

    Science.gov (United States)

    Gilam, Gadi; Lin, Tamar; Raz, Gal; Azrielant, Shir; Fruchter, Eyal; Ariely, Dan; Hendler, Talma

    2015-10-15

    In managing our way through interpersonal conflict, anger might be crucial in determining whether the dispute escalates to aggressive behaviors or resolves cooperatively. The Ultimatum Game (UG) is a social decision-making paradigm that provides a framework for studying interpersonal conflict over division of monetary resources. Unfair monetary UG-offers elicit anger and while accepting them engages regulatory processes, rejecting them is regarded as an aggressive retribution. Ventro-medial prefrontal-cortex (vmPFC) activity has been shown to relate to idiosyncratic tendencies in accepting unfair offers possibly through its role in emotion regulation. Nevertheless, standard UG paradigms lack fundamental aspects of real-life social interactions in which one reacts to other people in a response contingent fashion. To uncover the neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions, we incorporated on-line verbal negotiations with an obnoxious partner in a repeated-UG during fMRI scanning. We hypothesized that vmPFC activity will differentiate between individuals with high or low monetary gains accumulated throughout the game and reflect a divergence in the associated emotional experience. We found that as individuals gained more money, they reported less anger but also more positive feelings and had slower sympathetic response. In addition, high-gain individuals had increased vmPFC activity, but also decreased brainstem activity, which possibly reflected the locus coeruleus. During the more angering unfair offers, these individuals had increased dorsal-posterior Insula (dpI) activity which functionally coupled to the medial-thalamus (mT). Finally, both vmPFC activity and dpI-mT connectivity contributed to increased gain, possibly by modulating the ongoing subjective emotional experience. These ecologically valid findings point towards a neural mechanism that might nurture pro-social interactions by

  6. Neural Substrates of Spontaneous Narrative Production in Focal Neurodegenerative Disease

    Science.gov (United States)

    Gola, Kelly A.; Thorne, Avril; Veldhuisen, Lisa D.; Felix, Cordula M.; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P.; Stanley, Christine M.; Glenn, Shenly; Miller, Bruce L.; Rankin, Katherine P.

    2016-01-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups and may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics in these patients. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls) were analysed for storytelling characteristics and frequency, and videos of the interactions were rated for patients' social attentiveness. Compared to controls, svPPAs also told more stories and autobiographical stories, and perseverated on aspects of self during storytelling. ADs told fewer autobiographical stories than NCs, and svPPAs and bvFTDs failed to attend to social cues. Storytelling characteristics were associated with a processing speed and mental flexibility, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, evaluations, and social attention correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  7. Games in the Brain: Neural Substrates of Gambling Addiction.

    Science.gov (United States)

    Murch, W Spencer; Clark, Luke

    2016-10-01

    As a popular form of recreational risk taking, gambling games offer a paradigm for decision neuroscience research. As an individual behavior, gambling becomes dysfunctional in a subset of the population, with debilitating consequences. Gambling disorder has been recently reconceptualized as a "behavioral addiction" in the DSM-5, based on emerging parallels with substance use disorders. Why do some individuals undergo this transition from recreational to disordered gambling? The biomedical model of problem gambling is a "brain disorder" account that posits an underlying neurobiological abnormality. This article first delineates the neural circuitry that underpins gambling-related decision making, comprising ventral striatum, ventromedial prefrontal cortex, dopaminergic midbrain, and insula, and presents evidence for pathophysiology in this circuitry in gambling disorder. These biological dispositions become translated into clinical disorder through the effects of gambling games. This influence is better articulated in a public health approach that describes the interplay between the player and the (gambling) product. Certain forms of gambling, including electronic gambling machines, appear to be overrepresented in problem gamblers. These games harness psychological features, including variable ratio schedules, near-misses, "losses disguised as wins," and the illusion of control, which modulate the core decision-making circuitry that is perturbed in gambling disorder. © The Author(s) 2015.

  8. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  9. Diminished neural responses predict enhanced intrinsic motivation and sensitivity to external incentive.

    Science.gov (United States)

    Marsden, Karen E; Ma, Wei Ji; Deci, Edward L; Ryan, Richard M; Chiu, Pearl H

    2015-06-01

    The duration and quality of human performance depend on both intrinsic motivation and external incentives. However, little is known about the neuroscientific basis of this interplay between internal and external motivators. Here, we used functional magnetic resonance imaging to examine the neural substrates of intrinsic motivation, operationalized as the free-choice time spent on a task when this was not required, and tested the neural and behavioral effects of external reward on intrinsic motivation. We found that increased duration of free-choice time was predicted by generally diminished neural responses in regions associated with cognitive and affective regulation. By comparison, the possibility of additional reward improved task accuracy, and specifically increased neural and behavioral responses following errors. Those individuals with the smallest neural responses associated with intrinsic motivation exhibited the greatest error-related neural enhancement under the external contingency of possible reward. Together, these data suggest that human performance is guided by a "tonic" and "phasic" relationship between the neural substrates of intrinsic motivation (tonic) and the impact of external incentives (phasic).

  10. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  11. Comprehensibility and neural substrate of communicative gestures in severe aphasia.

    Science.gov (United States)

    Hogrefe, Katharina; Ziegler, Wolfram; Weidinger, Nicole; Goldenberg, Georg

    2017-08-01

    Communicative gestures can compensate incomprehensibility of oral speech in severe aphasia, but the brain damage that causes aphasia may also have an impact on the production of gestures. We compared the comprehensibility of gestural communication of persons with severe aphasia and non-aphasic persons and used voxel based lesion symptom mapping (VLSM) to determine lesion sites that are responsible for poor gestural expression in aphasia. On group level, persons with aphasia conveyed more information via gestures than controls indicating a compensatory use of gestures in persons with severe aphasia. However, individual analysis showed a broad range of gestural comprehensibility. VLSM suggested that poor gestural expression was associated with lesions in anterior temporal and inferior frontal regions. We hypothesize that likely functional correlates of these localizations are selection of and flexible changes between communication channels as well as between different types of gestures and between features of actions and objects that are expressed by gestures. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Excessive Neural Responses and Visual Discomfort

    Directory of Open Access Journals (Sweden)

    L O'Hare

    2014-08-01

    Full Text Available Spatially and temporally periodic patterns can look aversive to some individuals (Wilkins et al, 1984, Brain, 107, 989-1017, especially clinical populations such as migraine (Marcus and Soso, 1989, Arch Neurol., 46(10, 1129-32 epilepsy (Wilkins, Darby and Binnie, 1979, Brain, 102, 1-25. It has been suggested that this might be due to excessive neural responses (Juricevic, Land, Wilkins and Webster, 2010, Perception, 39(7, 884-899. Spatial frequency content has been shown to affect both relative and absolute discomfort judgements for spatially periodic riloid stimuli (Clark, O'Hare and Hibbard, 2013, Perception, ECVP Supp.; O'Hare, Clark and Hibbard, 2013, Perception ECVP Supplement. The current study investigated the possibility of whether neural correlates of visual discomfort from periodic stimuli could be measured using EEG. Stimuli were first matched for perceived contrast using a self adjustment task. EEG measurements were then obtained, alongside subjective discomfort judgements. Subjective discomfort judgements support those found previously, under various circumstances, indicating that spatial frequency plays a role in the perceived discomfort of periodic images. However, trends in EEG responses do not appear to have a straightforward relationship to subjective discomfort judgements.

  13. Probing neural cell behaviors through micro-/nano-patterned chitosan substrates

    International Nuclear Information System (INIS)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Chen, Wen-Shiang; Wang, Yang-Kao; Cheng, Chao-Min

    2015-01-01

    In this study, we describe the development of surface-modified chitosan substrates to examine topographically related Neuro-2a cell behaviors. Different functional groups can be modified on chitosan surfaces to probe Neuro-2a cell morphology. To prepare chitosan substrates with micro/nano-scaled features, we demonstrated an easy-to-handle method that combined photolithography, inductively coupled plasma reactive ion etching, Ag nanoparticle-assisted etching, and solution casting. The results show that Neuro-2a cells preferred to adhere to a flat chitosan surface rather than a nanotextured chitosan surface as evidenced by greater immobilization and differentiation, suggesting that surface topography is crucial for neural patterning. In addition, we developed chitosan substrates with different geometric patterns and flat region depth; this allowed us to re-arrange or re-pattern Neuro-2a cell colonies at desired locations. We found that a polarity-induced micropattern provided the most suitable surface pattern for promoting neural network formation on a chitosan substrate. The cellular polarity of single Neuro-2a cell spreading correlated to a diamond-like geometry and neurite outgrowth was induced from the corners toward the grooves of the structures. This study provide greater insight into neurobiology, including neurotransmitter screening, electrophysiological stimulation platforms, and biomedical engineering. (paper)

  14. Neural responses to advantageous and disadvantageous inequity

    Directory of Open Access Journals (Sweden)

    Klaus eFliessbach

    2012-06-01

    Full Text Available In this paper we study neural responses to inequitable distributions of rewards despite equal performance. We specifically focus on differences between advantageous (AI and disadvantageous inequity (DI. AI and DI were realized in a hyperscanning fMRI experiment with pairs of subjects simultaneously performing a task in adjacent scanners and observing both subjects' rewards. Results showed i hypoactivation of the ventral striatum under DI but not under AI; ii inequity induced activation of medial and dorsolateral prefrontal regions, that were stronger under DI than AI; iii correlations between subjective evaluations of DI and amygdala activity, and between AI evaluation and right ventrolateral prefrontal activity. Our study provides neurophysiological evidence for different cognitive processes that occur when exposed to DI and AI, respectively. Our data is compatible with the assumption that any form of inequity represents a norm violation, but that important differences between AI and DI emerge from an asymmetric involvement of status concerns.

  15. Neural Synchrony during Response Production and Inhibition

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P.

    2012-01-01

    Inhibition of irrelevant information (conflict monitoring) and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs) elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG) recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300–600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations. PMID:22745691

  16. Neural synchrony during response production and inhibition.

    Directory of Open Access Journals (Sweden)

    Viktor Müller

    Full Text Available Inhibition of irrelevant information (conflict monitoring and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300-600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations.

  17. Selective attention modulates neural substrates of repetition priming and "implicit" visual memory: suppressions and enhancements revealed by FMRI.

    Science.gov (United States)

    Vuilleumier, Patrik; Schwartz, Sophie; Duhoux, Stéphanie; Dolan, Raymond J; Driver, Jon

    2005-08-01

    Attention can enhance processing for relevant information and suppress this for ignored stimuli. However, some residual processing may still arise without attention. Here we presented overlapping outline objects at study, with subjects attending to those in one color but not the other. Attended objects were subsequently recognized on a surprise memory test, whereas there was complete amnesia for ignored items on such direct explicit testing; yet reliable behavioral priming effects were found on indirect testing. Event-related fMRI examined neural responses to previously attended or ignored objects, now shown alone in the same or mirror-reversed orientation as before, intermixed with new items. Repetition-related decreases in fMRI responses for objects previously attended and repeated in the same orientation were found in the right posterior fusiform, lateral occipital, and left inferior frontal cortex. More anterior fusiform regions also showed some repetition decreases for ignored objects, irrespective of orientation. View-specific repetition decreases were found in the striate cortex, particularly for previously attended items. In addition, previously ignored objects produced some fMRI response increases in the bilateral lingual gyri, relative to new objects. Selective attention at exposure can thus produce several distinct long-term effects on processing of stimuli repeated later, with neural response suppression stronger for previously attended objects, and some response enhancement for previously ignored objects, with these effects arising in different brain areas. Although repetition decreases may relate to positive priming phenomena, the repetition increases for ignored objects shown here for the first time might relate to processes that can produce "negative priming" in some behavioral studies. These results reveal quantitative and qualitative differences between neural substrates of long-term repetition effects for attended versus unattended objects.

  18. The effect of micro-ECoG substrate footprint on the meningeal tissue response

    Science.gov (United States)

    Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.

    2014-08-01

    Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.

  19. Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction.

    Science.gov (United States)

    Bowen, Michael T; Neumann, Inga D

    2017-12-01

    Drugs that act on the brain oxytocin (OXT) system may provide a much-needed treatment breakthrough for substance-use disorders. Targeting the brain OXT system has the potential to treat addiction to all major classes of addictive substance and to intervene across all stages of the addiction cycle. Emerging evidence suggests that OXT is able to interfere with such a wide range of addictive behaviours for such a wide range of addictive substances by rebalancing core neural systems that become dysregulated over the course of addiction. By improving our understanding of these interactions between OXT and the neural substrates of addiction, we will not only improve our understanding of addiction, but also our ability to effectively treat these devastating disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Directory of Open Access Journals (Sweden)

    Yoko Saito

    Full Text Available Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET. We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song, sung lyrics on a single pitch (lyrics, and the sung syllable 'la' on original pitches (melody. The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  1. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Science.gov (United States)

    Saito, Yoko; Ishii, Kenji; Sakuma, Naoko; Kawasaki, Keiichi; Oda, Keiichi; Mizusawa, Hidehiro

    2012-01-01

    Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET). We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song), sung lyrics on a single pitch (lyrics), and the sung syllable 'la' on original pitches (melody). The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control) that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control) showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  2. Common neural substrates support speech and non-speech vocal tract gestures

    OpenAIRE

    Chang, Soo-Eun; Kenney, Mary Kay; Loucks, Torrey M.J.; Poletto, Christopher J.; Ludlow, Christy L.

    2009-01-01

    The issue of whether speech is supported by the same neural substrates as non-speech vocal-tract gestures has been contentious. In this fMRI study we tested whether producing non-speech vocal tract gestures in humans shares the same functional neuroanatomy as non-sense speech syllables. Production of non-speech vocal tract gestures, devoid of phonological content but similar to speech in that they had familiar acoustic and somatosensory targets, were compared to the production of speech sylla...

  3. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  4. The neural substrates of person perception: spontaneous use of financial and moral status knowledge.

    Science.gov (United States)

    Cloutier, J; Ambady, N; Meagher, T; Gabrieli, J D E

    2012-07-01

    The current study examines the effect of status information on the neural substrates of person perception. In an event-related fMRI experiment, participants were presented with photographs of faces preceded with information denoting either: low or high financial status (e.g., "earns $25,000" or "earns $350,000"), or low or high moral status (e.g., "is a tobacco executive" or "does cancer research"). Participants were asked to form an impression of the targets, but were not instructed to explicitly evaluate their social status. Building on previous brain-imaging investigations, regions of interest analyses were performed for brain regions expected to support either cognitive (i.e., intraparietal sulcus) or emotional (i.e., ventromedial prefrontal cortex) components of social status perception. Activation of the intraparietal sulcus was found to be sensitive to the financial status of individuals while activation of the ventromedial prefrontal cortex was sensitive to the moral status of individuals. The implications of these results towards uncovering the neural substrates of status perception and, more broadly, the extended network of brain regions involved in person perception are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Sleep modulates the neural substrates of both spatial and contextual memory consolidation.

    Directory of Open Access Journals (Sweden)

    Géraldine Rauchs

    Full Text Available It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post

  6. Distinct neural substrates of affective and cognitive theory of mind impairment in semantic dementia.

    Science.gov (United States)

    Bejanin, Alexandre; Chételat, Gaël; Laisney, Mickael; Pélerin, Alice; Landeau, Brigitte; Merck, Catherine; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Desgranges, Béatrice

    2017-06-01

    Using structural MRI, we investigated the brain substrates of both affective and cognitive theory of mind (ToM) in 19 patients with semantic dementia. We also ran intrinsic connectivity analyses to identify the networks to which the substrates belong and whether they are functionally disturbed in semantic dementia. In line with previous studies, we observed a ToM impairment in patients with semantic dementia even when semantic memory was regressed out. Our results also highlighted different neural bases according to the nature (affective or cognitive) of the representations being inferred. The affective ToM deficit was associated with atrophy in the amygdala, suggesting the involvement of emotion-processing deficits in this impairment. By contrast, cognitive ToM performances were correlated with the volume of medial prefrontal and parietal regions, as well as the right frontal operculum. Intrinsic connectivity analyses revealed decreased functional connectivity, mainly between midline cortical regions and temporal regions. They also showed that left medial temporal regions were functionally isolated, a further possible hindrance to normal social cognitive functioning in semantic dementia. Overall, this study addressed for the first time the neuroanatomical substrates of both cognitive and affective ToM disruption in semantic dementia, highlighting disturbed connectivity within the networks that sustain these abilities.

  7. Consecutive Acupuncture Stimulations Lead to Significantly Decreased Neural Responses

    NARCIS (Netherlands)

    Yeo, S.; Choe, I.H.; Noort, M.W.M.L. van den; Bosch, M.P.C.; Lim, S.

    2010-01-01

    Objective: Functional magnetic resonance imaging (fMRI), in combination with block design paradigms with consecutive acupuncture stimulations, has often been used to investigate the neural responses to acupuncture. In this study, we investigated whether previous acupuncture stimulations can affect

  8. Responses of low pressure Andersen sampler for collecting substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, K. [Research Reactor Institute, Kyoto University, Osaka (Japan); Yamada, Y.; Miyamoto, K.; Shimo, M. [Division of Radiotoxicology and Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2000-05-01

    Some types of low pressure cascade impactors (Andersen, Berner, Davies, and MOUDI etc) have been used to measure the activity size distribution of radon progeny in the environment. In spite of their careful uses, their nonideal responses are not adequately known. Some important factors such as the wall loss, electrostatic attraction, and the surface nature of collecting substrates may affect the reliability of the impactor data. Size selective characteristics of a low pressure Andersen sampler for various collecting substrates were examined in a radon exposure chamber using several kinds of liquid (DOS) or solid (carnauba wax) carrier aerosols labelled with radon progeny. These carrier aerosols were produced by commercial condensation aerosol generator. Tested collecting substrates were, (1) uncoated clean stainless steel plate, (2) silicone oil or grease coated stainless steel plate, (3) polyethylene sheet covered stainless steel plate, (4) membrane filter, (5) glass fiber filter, and (6) quartz fiber filter. In the case of collecting liquid or sticky carrier aerosols, the effect of particle bounce was small and nearly any substrates might used on the impaction plate. On the other hand, in the case of solid carrier aerosols, an adhesive layer such as grease or oil might have to be applied to the substrate. It was concluded that a low pressure cascade impactor such as Andersen sampler might need an appropriate calibration procedure including the interstage characteristics for determining the accurate activity size distribution. (author)

  9. Neural Substrates of Similarity and Rule-based Strategies in Judgment

    Directory of Open Access Journals (Sweden)

    Bettina eVon Helversen

    2014-10-01

    Full Text Available Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI, we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved.

  10. Neural and Behavioural substrates of subtypes of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Ahmed A. Moustafa

    2013-12-01

    Full Text Available Parkinson’s disease (PD is a neurological disorder, associated with rigidity, bradykinesia, and resting tremor, among other motor symptoms. In addition, patients with PD also show cognitive and psychiatric dysfunction, including dementia, mild cognitive impairment, depression, hallucinations, among others. Interestingly, the occurrence of these symptoms –motor, cognitive, and psychiatric—vary among individuals, such that a subgroup of PD patients might show some of the symptoms, but another subgroup does not. This has prompted neurologists and scientists to subtype PD patients depending on the severity of symptoms they show. Neural studies have also mapped different motor, cognitive, and psychiatric symptoms in PD to different brain networks. In this review, we discuss the neural and behavioral substrates of most common subtypes of PD patients, that are related to the occurrence of (a resting tremor (vs. nontremor-dominant, (b mild cognitive impairment, (c dementia, (d impulse control disorders, (e depression, and/or (f hallucinations. We end by discussing the relationship among subtypes of PD subgroups, and the relationship among motor, cognitive, psychiatric factors in PD.

  11. What Neural Substrates Trigger the Adept Scientific Pattern Discovery by Biologists?

    Science.gov (United States)

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-04-01

    This study investigated the neural correlates of experts and novices during biological object pattern detection using an fMRI approach in order to reveal the neural correlates of a biologist's superior pattern discovery ability. Sixteen healthy male participants (8 biologists and 8 non-biologists) volunteered for the study. Participants were shown fifteen series of organism pictures and asked to detect patterns amid stimulus pictures. Primary findings showed significant activations in the right middle temporal gyrus and inferior parietal lobule amongst participants in the biologist (expert) group. Interestingly, the left superior temporal gyrus was activated in participants from the non-biologist (novice) group. These results suggested that superior pattern discovery ability could be related to a functional facilitation of the parieto-temporal network, which is particularly driven by the right middle temporal gyrus and inferior parietal lobule in addition to the recruitment of additional brain regions. Furthermore, the functional facilitation of the network might actually pertain to high coherent processing skills and visual working memory capacity. Hence, study results suggested that adept scientific thinking ability can be detected by neuronal substrates, which may be used as criteria for developing and evaluating a brain-based science curriculum and test instrument.

  12. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation.

    Science.gov (United States)

    Limb, Charles J; Braun, Allen R

    2008-02-27

    To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences) was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar) cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance) as well as deactivation of limbic structures (that regulate motivation and emotional tone). This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

  13. Differential neural substrates of working memory and cognitive skill learning in healthy young volunteers

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    It is known that different neural circuits are involved in working memory and cognitive skill learning that represent explicit and implicit memory functions, respectively. In the present study, we investigated the metabolic correlates of working memory and cognitive skill learning with correlation analysis of FDG PET images. Fourteen right-handed healthy subjects (age, 24 ± 2 yr; 5 males and 9 females) underwent brain FDG PET and neuropsychological testing. Two-back task and weather prediction task were used for the evaluation of working memory and cognitive skill learning, respectively, Correlation between regional glucose metabolism and cognitive task performance was examined using SPM99. A significant positive correlation between 2-back task performance and regional glucose metabolism was found in the prefrontal regions and superior temporal gyri bilaterally. In the first term of weather prediction task the task performance correlated positively with glucose metabolism in the bilateral prefrontal areas, left middle temporal and posterior cingulate gyri, and left thalamus. In the second and third terms of the task, the correlation found in the prefrontal areas, superior temporal and anterior cingulate gyri bilaterally, right insula, left parahippocampal gyrus, and right caudate nucleus. We identified the neural substrates that are related with performance of working memory and cognitive skill learning. These results indicate that brain regions associated with the explicit memory system are recruited in early periods of cognitive skill learning, but additional brain regions including caudate nucleus are involved in late periods of cognitive skill learning

  14. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    Science.gov (United States)

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  15. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation.

    Directory of Open Access Journals (Sweden)

    Charles J Limb

    Full Text Available To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance as well as deactivation of limbic structures (that regulate motivation and emotional tone. This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

  16. Differential neural substrates of working memory and cognitive skill learning in healthy young volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    It is known that different neural circuits are involved in working memory and cognitive skill learning that represent explicit and implicit memory functions, respectively. In the present study, we investigated the metabolic correlates of working memory and cognitive skill learning with correlation analysis of FDG PET images. Fourteen right-handed healthy subjects (age, 24 {+-} 2 yr; 5 males and 9 females) underwent brain FDG PET and neuropsychological testing. Two-back task and weather prediction task were used for the evaluation of working memory and cognitive skill learning, respectively, Correlation between regional glucose metabolism and cognitive task performance was examined using SPM99. A significant positive correlation between 2-back task performance and regional glucose metabolism was found in the prefrontal regions and superior temporal gyri bilaterally. In the first term of weather prediction task the task performance correlated positively with glucose metabolism in the bilateral prefrontal areas, left middle temporal and posterior cingulate gyri, and left thalamus. In the second and third terms of the task, the correlation found in the prefrontal areas, superior temporal and anterior cingulate gyri bilaterally, right insula, left parahippocampal gyrus, and right caudate nucleus. We identified the neural substrates that are related with performance of working memory and cognitive skill learning. These results indicate that brain regions associated with the explicit memory system are recruited in early periods of cognitive skill learning, but additional brain regions including caudate nucleus are involved in late periods of cognitive skill learning.

  17. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory

    Directory of Open Access Journals (Sweden)

    Kara J Blacker

    2016-11-01

    Full Text Available Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM: spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations versus relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations versus relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.

  18. The neural substrates of procrastination: A voxel-based morphometry study.

    Science.gov (United States)

    Hu, Yue; Liu, Peiwei; Guo, Yiqun; Feng, Tingyong

    2018-03-01

    Procrastination is a pervasive phenomenon across different cultures and brings about lots of serious consequences, including performance, subjective well-being, and even public policy. However, little is known about the neural substrates of procrastination. In order to shed light upon this question, we investigated the neuroanatomical substrates of procrastination across two independent samples using voxel-based morphometry (VBM) method. The whole-brain analysis showed procrastination was positively correlated with the graymatter (GM) volume of clusters in the parahippocampal gyrus (PHG) and the orbital frontal cortex (OFC), while negatively correlated with the GM volume of clusters in the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) in sample one (151 participants). We further conducted a verification procedure on another sample (108 participants) using region-of-interest analysis to examine the reliability of these results. Results showed procrastination can be predicted by the GM volume of the OFC and the MFG. The present findings suggest that the MFG and OFC, which are the key regions of self-control and emotion regulation, may play an important role in procrastination. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Neural responses to macronutrients: hedonic and homeostatic mechanisms.

    Science.gov (United States)

    Tulloch, Alastair J; Murray, Susan; Vaicekonyte, Regina; Avena, Nicole M

    2015-05-01

    The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs.

    Science.gov (United States)

    Kring, Ann M; Barch, Deanna M

    2014-05-01

    A range of emotional and motivation impairments have long been clinically documented in people with schizophrenia, and there has been a resurgence of interest in understanding the psychological and neural mechanisms of the so-called "negative symptoms" in schizophrenia, given their lack of treatment responsiveness and their role in constraining function and life satisfaction in this illness. Negative symptoms comprise two domains, with the first covering diminished motivation and pleasure across a range of life domains and the second covering diminished verbal and non-verbal expression and communicative output. In this review, we focus on four aspects of the motivation/pleasure domain, providing a brief review of the behavioral and neural underpinnings of this domain. First, we cover liking or in-the-moment pleasure: immediate responses to pleasurable stimuli. Second, we cover anticipatory pleasure or wanting, which involves prediction of a forthcoming enjoyable outcome (reward) and feeling pleasure in anticipation of that outcome. Third, we address motivation, which comprises effort computation, which involves figuring out how much effort is needed to achieve a desired outcome, planning, and behavioral response. Finally, we cover the maintenance emotional states and behavioral responses. Throughout, we consider the behavioral manifestations and brain representations of these four aspects of motivation/pleasure deficits in schizophrenia. We conclude with directions for future research as well as implications for treatment. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  1. Young adult smokers' neural response to graphic cigarette warning labels

    Directory of Open Access Journals (Sweden)

    Adam E. Green

    2016-06-01

    Conclusions: In this sample of young adult smokers, GWLs promoted neural activation in brain regions involved in cognitive and affective decision-making and memory formation and the effects of GWLs did not differ on branded or plain cigarette packaging. These findings complement other recent neuroimaging GWL studies conducted with older adult smokers and with adolescents by demonstrating similar patterns of neural activation in response to GWLs among young adult smokers.

  2. Racial bias in neural empathic responses to pain.

    Directory of Open Access Journals (Sweden)

    Luis Sebastian Contreras-Huerta

    Full Text Available Recent studies have shown that perceiving the pain of others activates brain regions in the observer associated with both somatosensory and affective-motivational aspects of pain, principally involving regions of the anterior cingulate and anterior insula cortex. The degree of these empathic neural responses is modulated by racial bias, such that stronger neural activation is elicited by observing pain in people of the same racial group compared with people of another racial group. The aim of the present study was to examine whether a more general social group category, other than race, could similarly modulate neural empathic responses and perhaps account for the apparent racial bias reported in previous studies. Using a minimal group paradigm, we assigned participants to one of two mixed-race teams. We use the term race to refer to the Chinese or Caucasian appearance of faces and whether the ethnic group represented was the same or different from the appearance of the participant' own face. Using fMRI, we measured neural empathic responses as participants observed members of their own group or other group, and members of their own race or other race, receiving either painful or non-painful touch. Participants showed clear group biases, with no significant effect of race, on behavioral measures of implicit (affective priming and explicit group identification. Neural responses to observed pain in the anterior cingulate cortex, insula cortex, and somatosensory areas showed significantly greater activation when observing pain in own-race compared with other-race individuals, with no significant effect of minimal groups. These results suggest that racial bias in neural empathic responses is not influenced by minimal forms of group categorization, despite the clear association participants showed with in-group more than out-group members. We suggest that race may be an automatic and unconscious mechanism that drives the initial neural responses to

  3. Racial Bias in Neural Empathic Responses to Pain

    Science.gov (United States)

    Contreras-Huerta, Luis Sebastian; Baker, Katharine S.; Reynolds, Katherine J.; Batalha, Luisa; Cunnington, Ross

    2013-01-01

    Recent studies have shown that perceiving the pain of others activates brain regions in the observer associated with both somatosensory and affective-motivational aspects of pain, principally involving regions of the anterior cingulate and anterior insula cortex. The degree of these empathic neural responses is modulated by racial bias, such that stronger neural activation is elicited by observing pain in people of the same racial group compared with people of another racial group. The aim of the present study was to examine whether a more general social group category, other than race, could similarly modulate neural empathic responses and perhaps account for the apparent racial bias reported in previous studies. Using a minimal group paradigm, we assigned participants to one of two mixed-race teams. We use the term race to refer to the Chinese or Caucasian appearance of faces and whether the ethnic group represented was the same or different from the appearance of the participant' own face. Using fMRI, we measured neural empathic responses as participants observed members of their own group or other group, and members of their own race or other race, receiving either painful or non-painful touch. Participants showed clear group biases, with no significant effect of race, on behavioral measures of implicit (affective priming) and explicit group identification. Neural responses to observed pain in the anterior cingulate cortex, insula cortex, and somatosensory areas showed significantly greater activation when observing pain in own-race compared with other-race individuals, with no significant effect of minimal groups. These results suggest that racial bias in neural empathic responses is not influenced by minimal forms of group categorization, despite the clear association participants showed with in-group more than out-group members. We suggest that race may be an automatic and unconscious mechanism that drives the initial neural responses to observed pain in

  4. Neural substrates of sexual desire in individuals with problematic hypersexual behavior

    Directory of Open Access Journals (Sweden)

    Ji-Woo eSeok

    2015-11-01

    Full Text Available Studies on the characteristics of individuals with hypersexual disorder have been accumulating due to increasing concerns about problematic hypersexual behavior (PHB. Currently, relatively little is known about the underlying behavioral and neural mechanisms of sexual desire. Our study aimed to investigate the neural correlates of sexual desire with event-related functional magnetic resonance imaging (fMRI. Twenty-three individuals with PHB and 22 age-matched healthy controls were scanned while they passively viewed sexual and nonsexual stimuli. The subjects’ levels of sexual desire were assessed in response to each sexual stimulus. Relative to controls, individuals with PHB experienced more frequent and enhanced sexual desire during exposure to sexual stimuli. Greater activation was observed in the caudate nucleus, inferior parietal lobe, dorsal anterior cingulate gyrus, thalamus, and dorsolateral prefrontal cortex in the PHB group than in the control group. In addition, the hemodynamic patterns in the activated areas differed between the groups. Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions. In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB.

  5. Functional neural networks underlying response inhibition in adolescents and adults.

    Science.gov (United States)

    Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2007-07-19

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.

  6. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  7. Neural substrates of the impaired effort expenditure decision making in schizophrenia.

    Science.gov (United States)

    Huang, Jia; Yang, Xin-Hua; Lan, Yong; Zhu, Cui-Ying; Liu, Xiao-Qun; Wang, Ye-Fei; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K

    2016-09-01

    Unwillingness to expend more effort to pursue high value rewards has been associated with motivational anhedonia in schizophrenia (SCZ) and abnormal dopamine activity in the nucleus accumbens (NAcc). The authors hypothesized that dysfunction of the NAcc and the associated forebrain regions are involved in the impaired effort expenditure decision-making of SCZ. A 2 (reward magnitude: low vs. high) × 3 (probability: 20% vs. 50% vs. 80%) event-related fMRI design in the effort-expenditure for reward task (EEfRT) was used to examine the neural response of 23 SCZ patients and 23 demographically matched control participants when the participants made effort expenditure decisions to pursue uncertain rewards. SCZ patients were significantly less likely to expend high level of effort in the medium (50%) and high (80%) probability conditions than healthy controls. The neural response in the NAcc, the posterior cingulate gyrus and the left medial frontal gyrus in SCZ patients were weaker than healthy controls and did not linearly increase with an increase in reward magnitude and probability. Moreover, NAcc activity was positively correlated with the willingness to expend high-level effort and concrete consummatory pleasure experience. NAcc and posterior cingulate dysfunctions in SCZ patients may be involved in their impaired effort expenditure decision-making. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. The neural substrates of impaired prosodic detection in schizophrenia and its sensorial antecedents.

    Science.gov (United States)

    Leitman, David I; Hoptman, Matthew J; Foxe, John J; Saccente, Erica; Wylie, Glenn R; Nierenberg, Jay; Jalbrzikowski, Maria; Lim, Kelvin O; Javitt, Daniel C

    2007-03-01

    Individuals with schizophrenia show severe deficits in their ability to decode emotions based upon vocal inflection (affective prosody). This study examined neural substrates of prosodic dysfunction in schizophrenia with voxelwise analysis of diffusion tensor magnetic resonance imaging (MRI). Affective prosodic performance was assessed in 19 patients with schizophrenia and 19 comparison subjects with the Voice Emotion Identification Task (VOICEID), along with measures of basic pitch perception and executive processing (Wisconsin Card Sorting Test). Diffusion tensor MRI fractional anisotropy valves were used for voxelwise correlation analyses. In a follow-up experiment, performance on a nonaffective prosodic perception task was assessed in an additional cohort of 24 patients and 17 comparison subjects. Patients showed significant deficits in VOICEID and Distorted Tunes Task performance. Impaired VOICEID performance correlated significantly with lower fractional anisotropy values within primary and secondary auditory pathways, orbitofrontal cortex, corpus callosum, and peri-amygdala white matter. Impaired Distorted Tunes Task performance also correlated with lower fractional anisotropy in auditory and amygdalar pathways but not prefrontal cortex. Wisconsin Card Sorting Test performance in schizophrenia correlated primarily with prefrontal fractional anisotropy. In the follow-up study, significant deficits were observed as well in nonaffective prosodic performance, along with significant intercorrelations among sensory, affective prosodic, and nonaffective measures. Schizophrenia is associated with both structural and functional disturbances at the level of primary auditory cortex. Such deficits contribute significantly to patients' inability to decode both emotional and semantic aspects of speech, highlighting the importance of sensorial abnormalities in social communicatory dysfunction in schizophrenia.

  9. Introduction to the special section on the neural substrate of analogical reasoning and metaphor comprehension.

    Science.gov (United States)

    Bassok, Miriam; Dunbar, Kevin N; Holyoak, Keith J

    2012-03-01

    The special section on the neural substrate of relational reasoning includes 4 articles that address the processes and brain regions involved in analogical reasoning (Green, Kraemer, Fugelsang, Gray, & Dunbar, 2011; Maguire, McClelland, Donovan, Tillman, & Krawczyk, 2011) and in metaphor comprehension (Chettih, Durgin, & Grodner, 2011; Prat, Mason, & Just, 2011). We see this work as an example of how neuroscience approaches to cognition can lead to increased understanding of cognitive processes. In this brief introduction, we first situate the 4 articles in the context of prior cognitive neuroscience work on relational reasoning. We then highlight the main issues explored in these articles: different sources of complexity and difficulty in relational processing, potential differences between the roles of the 2 hemispheres, and the impact of individual differences in various cognitive abilities. The 4 articles illustrate a range of methodologies, including functional magnetic resonance imaging (fMRI; Green et al., 2011; Prat et al., 2011), event-related potentials (ERPs; Maguire et al., 2011), and different types of semantic priming (Chettih et al., 2011; Prat et al., 2011). They highlight the connections between research on analogy and on metaphor comprehension and suggest, collectively, that a cognitive neuroscience approach to relational reasoning can lead to converging conclusions. 2012 APA, all rights reserved

  10. Distinct and Shared Endophenotypes of Neural Substrates in Bipolar and Major Depressive Disorders.

    Directory of Open Access Journals (Sweden)

    Toshio Matsubara

    Full Text Available Little is known about disorder-specific biomarkers of bipolar disorder (BD and major depressive disorder (MDD. Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs of individuals with BD, MDD group (17 patients with MDD, 17 FDRs of individuals with MDD, and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT, respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM volume of the anterior cingulate cortex (ACC; p = 0.01 and left insula (p < 0.01. FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01, and patients with BD showed significantly smaller ACC (p < 0.01 and left insular GM volume (p < 0.01 than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05. Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.

  11. Common neural substrates support speech and non-speech vocal tract gestures.

    Science.gov (United States)

    Chang, Soo-Eun; Kenney, Mary Kay; Loucks, Torrey M J; Poletto, Christopher J; Ludlow, Christy L

    2009-08-01

    The issue of whether speech is supported by the same neural substrates as non-speech vocal tract gestures has been contentious. In this fMRI study we tested whether producing non-speech vocal tract gestures in humans shares the same functional neuroanatomy as non-sense speech syllables. Production of non-speech vocal tract gestures, devoid of phonological content but similar to speech in that they had familiar acoustic and somatosensory targets, was compared to the production of speech syllables without meaning. Brain activation related to overt production was captured with BOLD fMRI using a sparse sampling design for both conditions. Speech and non-speech were compared using voxel-wise whole brain analyses, and ROI analyses focused on frontal and temporoparietal structures previously reported to support speech production. Results showed substantial activation overlap between speech and non-speech function in regions. Although non-speech gesture production showed greater extent and amplitude of activation in the regions examined, both speech and non-speech showed comparable left laterality in activation for both target perception and production. These findings posit a more general role of the previously proposed "auditory dorsal stream" in the left hemisphere--to support the production of vocal tract gestures that are not limited to speech processing.

  12. The neural substrate and functional integration of uncertainty in decision making: an information theory approach.

    Science.gov (United States)

    Goñi, Joaquín; Aznárez-Sanado, Maite; Arrondo, Gonzalo; Fernández-Seara, María; Loayza, Francis R; Heukamp, Franz H; Pastor, María A

    2011-03-09

    Decision making can be regarded as the outcome of cognitive processes leading to the selection of a course of action among several alternatives. Borrowing a central measurement from information theory, Shannon entropy, we quantified the uncertainties produced by decisions of participants within an economic decision task under different configurations of reward probability and time. These descriptors were used to obtain blood oxygen level-dependent (BOLD) signal correlates of uncertainty and two clusters codifying the Shannon entropy of task configurations were identified: a large cluster including parts of the right middle cingulate cortex (MCC) and left and right pre-supplementary motor areas (pre-SMA) and a small cluster at the left anterior thalamus. Subsequent functional connectivity analyses using the psycho-physiological interactions model identified areas involved in the functional integration of uncertainty. Results indicate that clusters mostly located at frontal and temporal cortices experienced an increased connectivity with the right MCC and left and right pre-SMA as the uncertainty was higher. Furthermore, pre-SMA was also functionally connected to a rich set of areas, most of them associative areas located at occipital and parietal lobes. This study provides a map of the human brain segregation and integration (i.e., neural substrate and functional connectivity respectively) of the uncertainty associated to an economic decision making paradigm.

  13. The insula: a critical neural substrate for craving and drug seeking under conflict and risk.

    Science.gov (United States)

    Naqvi, Nasir H; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-05-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking-the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. © 2014 New York Academy of Sciences.

  14. The neural substrate and functional integration of uncertainty in decision making: an information theory approach.

    Directory of Open Access Journals (Sweden)

    Joaquín Goñi

    Full Text Available Decision making can be regarded as the outcome of cognitive processes leading to the selection of a course of action among several alternatives. Borrowing a central measurement from information theory, Shannon entropy, we quantified the uncertainties produced by decisions of participants within an economic decision task under different configurations of reward probability and time. These descriptors were used to obtain blood oxygen level-dependent (BOLD signal correlates of uncertainty and two clusters codifying the Shannon entropy of task configurations were identified: a large cluster including parts of the right middle cingulate cortex (MCC and left and right pre-supplementary motor areas (pre-SMA and a small cluster at the left anterior thalamus. Subsequent functional connectivity analyses using the psycho-physiological interactions model identified areas involved in the functional integration of uncertainty. Results indicate that clusters mostly located at frontal and temporal cortices experienced an increased connectivity with the right MCC and left and right pre-SMA as the uncertainty was higher. Furthermore, pre-SMA was also functionally connected to a rich set of areas, most of them associative areas located at occipital and parietal lobes. This study provides a map of the human brain segregation and integration (i.e., neural substrate and functional connectivity respectively of the uncertainty associated to an economic decision making paradigm.

  15. Neural responses to exclusion predict susceptibility to social influence.

    Science.gov (United States)

    Falk, Emily B; Cascio, Christopher N; O'Donnell, Matthew Brook; Carp, Joshua; Tinney, Francis J; Bingham, C Raymond; Shope, Jean T; Ouimet, Marie Claude; Pradhan, Anuj K; Simons-Morton, Bruce G

    2014-05-01

    Social influence is prominent across the lifespan, but sensitivity to influence is especially high during adolescence and is often associated with increased risk taking. Such risk taking can have dire consequences. For example, in American adolescents, traffic-related crashes are leading causes of nonfatal injury and death. Neural measures may be especially useful in understanding the basic mechanisms of adolescents' vulnerability to peer influence. We examined neural responses to social exclusion as potential predictors of risk taking in the presence of peers in recently licensed adolescent drivers. Risk taking was assessed in a driving simulator session occurring approximately 1 week after the neuroimaging session. Increased activity in neural systems associated with the distress of social exclusion and mentalizing during an exclusion episode predicted increased risk taking in the presence of a peer (controlling for solo risk behavior) during a driving simulator session outside the neuroimaging laboratory 1 week later. These neural measures predicted risky driving behavior above and beyond self-reports of susceptibility to peer pressure and distress during exclusion. These results address the neural bases of social influence and risk taking; contribute to our understanding of social and emotional function in the adolescent brain; and link neural activity in specific, hypothesized, regions to risk-relevant outcomes beyond the neuroimaging laboratory. Results of this investigation are discussed in terms of the mechanisms underlying risk taking in adolescents and the public health implications for adolescent driving. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.

  16. Differentiating neural reward responsiveness in autism versus ADHD

    Directory of Open Access Journals (Sweden)

    Gregor Kohls

    2014-10-01

    Full Text Available Although attention deficit hyperactivity disorders (ADHD and autism spectrum disorders (ASD share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC. A significant group by reward type interaction effect emerged in the ventral striatum with greater activation to monetary versus social reward only in TDC, whereas subjects with ADHD responded equally strong to both reward types, and subjects with ASD showed low striatal reactivity across both reward conditions. Moreover, disorder-specific neural abnormalities were revealed, including medial prefrontal hyperactivation in response to social reward in ADHD versus ventral striatal hypoactivation in response to monetary reward in ASD. Shared dysfunction was characterized by fronto-striato-parietal hypoactivation in both clinical groups when money was at stake. Interestingly, lower neural activation within parietal circuitry was associated with higher autistic traits across the entire study sample. In sum, the present findings concur with the assumption that both ASD and ADHD display distinct and shared neural dysfunction in response to reward.

  17. Neural substrates of negativity bias in women with and without major depression.

    Science.gov (United States)

    Gollan, Jackie K; Connolly, Megan; Buchanan, Angel; Hoxha, Denada; Rosebrock, Laina; Cacioppo, John; Csernansky, John; Wang, Xue

    2015-07-01

    The functional localization of negativity bias, an influential index of emotion information processing, has yet to be identified. Depressed (n=47) and healthy participants (n=58) completed a clinical interview for DSM-IV Axis I disorders, symptom checklists, a behavioral task to measure negativity bias, and then viewed positive and negative images of social and nonsocial scenes during an event-related fMRI task. Two subsamples of participants with high (i.e., 75%; n=26) and low (i.e., 25%; n=26) negativity bias scores were as included in subsequent analyses to examine neural differences. Depressed participants with a higher, relative to lower, negative bias showed significantly greater neural activation in the left inferior frontal gyrus. High negativity bias evokes a distinctive pattern of brain activation in the frontal cortex of depressed participants. Increased activation occurred in the left inferior frontal gyrus, related to Brodmann area 44, which is associated with language and semantic processing, response inhibition, and cognitive reappraisal. This finding may reflect an abnormality in integrative emotional processing rather than processing of individual emotional dimensions in depressed participants with negativity bias. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Neural substrates of reliability-weighted visual-tactile multisensory integration

    Directory of Open Access Journals (Sweden)

    Michael S Beauchamp

    2010-06-01

    Full Text Available As sensory systems deteriorate in aging or disease, the brain must relearn the appropriate weights to assign each modality during multisensory integration. Using blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI of human subjects, we tested a model for the neural mechanisms of sensory weighting, termed “weighted connections”. This model holds that the connection weights between early and late areas vary depending on the reliability of the modality, independent of the level of early sensory cortex activity. When subjects detected viewed and felt touches to the hand, a network of brain areas was active, including visual areas in lateral occipital cortex, somatosensory areas in inferior parietal lobe, and multisensory areas in the intraparietal sulcus (IPS. In agreement with the weighted connection model, the connection weight measured with structural equation modeling between somatosensory cortex and IPS increased for somatosensory-reliable stimuli, and the connection weight between visual cortex and IPS increased for visual-reliable stimuli. This double dissociation of connection strengths was similar to the pattern of behavioral responses during incongruent multisensory stimulation, suggesting that weighted connections may be a neural mechanism for behavioral reliability weighting.for behavioral reliability weighting.

  19. The neural substrates of semantic memory deficits in early Alzheimer's disease: Clues from semantic priming effects and FDG-PET

    International Nuclear Information System (INIS)

    Giffard, B.; Laisney, M.; Mezenge, F.; De la Sayette, V.; Eustache, F.; Desgranges, B.

    2008-01-01

    The neural substrates responsible for semantic dysfunction during the early stages of AD have yet to be clearly identified. After a brief overview of the literature on normal and pathological semantic memory, we describe a new approach, designed to provide fresh insights into semantic deficits in AD. We mapped the correlations between resting-state brain glucose utilisation measured by FDG-PET and semantic priming scores in a group of 17 AD patients. The priming task, which yields a particularly pure measurement of semantic memory, was composed of related pairs of words sharing an attribute relationship (e.g. tiger-stripe). The priming scores correlated positively with the metabolism of the superior temporal areas on both sides, especially the right side, and this correlation was shown to be specific to the semantic priming effect.This pattern of results is discussed in the light of recent theoretical models of semantic memory, and suggests that a dysfunction of the right superior temporal cortex may contribute to early semantic deficits, characterised by the loss of specific features of concepts in AD. (authors)

  20. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Belinda J. Liddell

    2016-06-01

    Full Text Available A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD. However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1 fear dysregulation; (2 attentional biases to threat; (3 emotion and autobiographical memory; (4 self-referential processing; and (5 attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article:

  1. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder.

    Science.gov (United States)

    Liddell, Belinda J; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.

  2. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  3. Continuity and change in children's longitudinal neural responses to numbers.

    Science.gov (United States)

    Emerson, Robert W; Cantlon, Jessica F

    2015-03-01

    Human children possess the ability to approximate numerical quantity nonverbally from a young age. Over the course of early childhood, children develop increasingly precise representations of numerical values, including a symbolic number system that allows them to conceive of numerical information as Arabic numerals or number words. Functional brain imaging studies of adults report that activity in bilateral regions of the intraparietal sulcus (IPS) represents a key neural correlate of numerical cognition. Developmental neuroimaging studies indicate that the right IPS develops its number-related neural response profile more rapidly than the left IPS during early childhood. One prediction that can be derived from previous findings is that there is longitudinal continuity in the number-related neural responses of the right IPS over development while the development of the left IPS depends on the acquisition of numerical skills. We tested this hypothesis using fMRI in a longitudinal design with children ages 4 to 9. We found that neural responses in the right IPS are correlated over a 1-2-year period in young children whereas left IPS responses change systematically as a function of children's numerical discrimination acuity. The data are consistent with the hypothesis that functional properties of the right IPS in numerical processing are stable over early childhood whereas the functions of the left IPS are dynamically modulated by the development of numerical skills. © 2014 John Wiley & Sons Ltd.

  4. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Alessandro Gozzi

    Full Text Available Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R and orexin-2 (OX2R. Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat.

  5. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  6. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  7. Motivational orientation modulates the neural response to reward.

    Science.gov (United States)

    Linke, Julia; Kirsch, Peter; King, Andrea V; Gass, Achim; Hennerici, Michael G; Bongers, André; Wessa, Michèle

    2010-02-01

    Motivational orientation defines the source of motivation for an individual to perform a particular action and can either originate from internal desires (e.g., interest) or external compensation (e.g., money). To this end, motivational orientation should influence the way positive or negative feedback is processed during learning situations and this might in turn have an impact on the learning process. In the present study, we thus investigated whether motivational orientation, i.e., extrinsic and intrinsic motivation modulates the neural response to reward and punishment as well as learning from reward and punishment in 33 healthy individuals. To assess neural responses to reward, punishment and learning of reward contingencies we employed a probabilistic reversal learning task during functional magnetic resonance imaging. Extrinsic and intrinsic motivation were assessed with a self-report questionnaire. Rewarding trials fostered activation in the medial orbitofrontal cortex and anterior cingulate gyrus (ACC) as well as the amygdala and nucleus accumbens, whereas for punishment an increased neural response was observed in the medial and inferior prefrontal cortex, the superior parietal cortex and the insula. High extrinsic motivation was positively correlated to increased neural responses to reward in the ACC, amygdala and putamen, whereas a negative relationship between intrinsic motivation and brain activation in these brain regions was observed. These findings show that motivational orientation indeed modulates the responsiveness to reward delivery in major components of the human reward system and therefore extends previous results showing a significant influence of individual differences in reward-related personality traits on the neural processing of reward. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Do political and economic choices rely on common neural substrates? A systematic review of the emerging neuropolitics literature

    Directory of Open Access Journals (Sweden)

    Sekoul eKrastev

    2016-02-01

    Full Text Available The methods of cognitive neuroscience are beginning to be applied to the study of political behavior. The neural substrates of value-based decision-making have been extensively examined in economic contexts; this might provide a powerful starting point for understanding political decision-making. Here, we asked to what extent the neuropolitics literature to date has used conceptual frameworks and experimental designs that make contact with the reward-related approaches that have dominated decision neuroscience. We then asked whether the studies of political behavior that can be considered in this light implicate the brain regions that have been associated with subjective value related to economic rewards. We performed a systematic literature review to identify papers addressing the neural substrates of political behavior and extracted the fMRI studies reporting behavioral measures of subjective value as defined in decision neuroscience studies of reward. A minority of neuropolitics studies met these criteria and relatively few brain activation foci from these studies overlapped with regions where activity has been related to subjective value. These findings show modest influence of reward-focused decision neuroscience on neuropolitics research to date. Whether the neural substrates of subjective value identified in economic choice paradigms generalize to political choice thus remains an open question. We argue that systematically addressing the commonalities and differences in these two classes of value-based choice will be important in developing a more comprehensive model of the brain basis of human decision-making.

  9. Do Political and Economic Choices Rely on Common Neural Substrates? A Systematic Review of the Emerging Neuropolitics Literature.

    Science.gov (United States)

    Krastev, Sekoul; McGuire, Joseph T; McNeney, Denver; Kable, Joseph W; Stolle, Dietlind; Gidengil, Elisabeth; Fellows, Lesley K

    2016-01-01

    The methods of cognitive neuroscience are beginning to be applied to the study of political behavior. The neural substrates of value-based decision-making have been extensively examined in economic contexts; this might provide a powerful starting point for understanding political decision-making. Here, we asked to what extent the neuropolitics literature to date has used conceptual frameworks and experimental designs that make contact with the reward-related approaches that have dominated decision neuroscience. We then asked whether the studies of political behavior that can be considered in this light implicate the brain regions that have been associated with subjective value related to "economic" reward. We performed a systematic literature review to identify papers addressing the neural substrates of political behavior and extracted the fMRI studies reporting behavioral measures of subjective value as defined in decision neuroscience studies of reward. A minority of neuropolitics studies met these criteria and relatively few brain activation foci from these studies overlapped with regions where activity has been related to subjective value. These findings show modest influence of reward-focused decision neuroscience on neuropolitics research to date. Whether the neural substrates of subjective value identified in economic choice paradigms generalize to political choice thus remains an open question. We argue that systematically addressing the commonalities and differences in these two classes of value-based choice will be important in developing a more comprehensive model of the brain basis of human decision-making.

  10. Do Political and Economic Choices Rely on Common Neural Substrates? A Systematic Review of the Emerging Neuropolitics Literature

    Science.gov (United States)

    Krastev, Sekoul; McGuire, Joseph T.; McNeney, Denver; Kable, Joseph W.; Stolle, Dietlind; Gidengil, Elisabeth; Fellows, Lesley K.

    2016-01-01

    The methods of cognitive neuroscience are beginning to be applied to the study of political behavior. The neural substrates of value-based decision-making have been extensively examined in economic contexts; this might provide a powerful starting point for understanding political decision-making. Here, we asked to what extent the neuropolitics literature to date has used conceptual frameworks and experimental designs that make contact with the reward-related approaches that have dominated decision neuroscience. We then asked whether the studies of political behavior that can be considered in this light implicate the brain regions that have been associated with subjective value related to “economic” reward. We performed a systematic literature review to identify papers addressing the neural substrates of political behavior and extracted the fMRI studies reporting behavioral measures of subjective value as defined in decision neuroscience studies of reward. A minority of neuropolitics studies met these criteria and relatively few brain activation foci from these studies overlapped with regions where activity has been related to subjective value. These findings show modest influence of reward-focused decision neuroscience on neuropolitics research to date. Whether the neural substrates of subjective value identified in economic choice paradigms generalize to political choice thus remains an open question. We argue that systematically addressing the commonalities and differences in these two classes of value-based choice will be important in developing a more comprehensive model of the brain basis of human decision-making. PMID:26941703

  11. Characterizing root response phenotypes by neural network analysis

    OpenAIRE

    Hatzig, Sarah V.; Schiessl, Sarah; Stahl, Andreas; Snowdon, Rod J.

    2015-01-01

    Roots play an immediate role as the interface for water acquisition. To improve sustainability in low-water environments, breeders of major crops must therefore pay closer attention to advantageous root phenotypes; however, the complexity of root architecture in response to stress can be difficult to quantify. Here, the Sholl method, an established technique from neurobiology used for the characterization of neural network anatomy, was adapted to more adequately describe root responses to osm...

  12. Personality traits modulate neural responses to emotions expressed in music.

    Science.gov (United States)

    Park, Mona; Hennig-Fast, Kristina; Bao, Yan; Carl, Petra; Pöppel, Ernst; Welker, Lorenz; Reiser, Maximilian; Meindl, Thomas; Gutyrchik, Evgeny

    2013-07-26

    Music communicates and evokes emotions. The number of studies on the neural correlates of musical emotion processing is increasing but few have investigated the factors that modulate these neural activations. Previous research has shown that personality traits account for individual variability of neural responses. In this study, we used functional magnetic resonance imaging (fMRI) to investigate how the dimensions Extraversion and Neuroticism are related to differences in brain reactivity to musical stimuli expressing the emotions happiness, sadness and fear. 12 participants (7 female, M=20.33 years) completed the NEO-Five Factor Inventory (NEO-FFI) and were scanned while performing a passive listening task. Neurofunctional analyses revealed significant positive correlations between Neuroticism scores and activations in bilateral basal ganglia, insula and orbitofrontal cortex in response to music expressing happiness. Extraversion scores were marginally negatively correlated with activations in the right amygdala in response to music expressing fear. Our findings show that subjects' personality may have a predictive power in the neural correlates of musical emotion processing and should be considered in the context of experimental group homogeneity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Sub-meninges implantation reduces immune response to neural implants.

    Science.gov (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  14. Neural substrates of view-invariant object recognition developed without experiencing rotations of the objects.

    Science.gov (United States)

    Okamura, Jun-Ya; Yamaguchi, Reona; Honda, Kazunari; Wang, Gang; Tanaka, Keiji

    2014-11-05

    One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. Copyright © 2014 the authors 0270-6474/14/3415047-13$15.00/0.

  15. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  16. Temperature and angular dependence of substrate response in SEGR

    International Nuclear Information System (INIS)

    Mouret, I.; Allenspach, M.; Schrimpf, R.D.; Brews, J.R.; Galloway, K.F.

    1994-01-01

    This work examines the role of the substrate response in determining the temperature and angular dependence of Single-Event Gate Rupture (SEGR). Experimental data indicate that the likelihood of SEGR increases when the temperature of the device is increased or when the incident angle is made closer to normal. In this work, simulations are used to explore this influence of high temperature on SEGR and to support physical explanations for this effect. The reduced hole mobility at high temperature causes the hole concentration at the oxide-silicon interface to be greater, increasing the transient oxide field near the strike position. In addition, numerical calculations show that the transient oxide field decreases as the ion's angle of incidence is changed from normal. This decreased field suggests a lowered likelihood for SEGR, in agreement with the experimental trend

  17. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    Science.gov (United States)

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind

  18. Nemesia root hair response to paper pulp substrate for micropropagation.

    Science.gov (United States)

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  19. Young Adult Smokers' Neural Response to Graphic Cigarette Warning Labels.

    Science.gov (United States)

    Green, Adam E; Mays, Darren; Falk, Emily B; Vallone, Donna; Gallagher, Natalie; Richardson, Amanda; Tercyak, Kenneth P; Abrams, David B; Niaura, Raymond S

    2016-06-01

    The study examined young adult smokers' neural response to graphic warning labels (GWLs) on cigarette packs using functional magnetic resonance imaging (fMRI). Nineteen young adult smokers ( M age 22.9, 52.6% male, 68.4% non-white, M 4.3 cigarettes/day) completed pre-scan, self-report measures of demographics, cigarette smoking behavior, and nicotine dependence, and an fMRI scanning session. During the scanning session participants viewed cigarette pack images (total 64 stimuli, viewed 4 seconds each) that varied based on the warning label (graphic or visually occluded control) and pack branding (branded or plain packaging) in an event-related experimental design. Participants reported motivation to quit (MTQ) in response to each image using a push-button control. Whole-brain blood oxygenation level-dependent (BOLD) functional images were acquired during the task. GWLs produced significantly greater self-reported MTQ than control warnings ( p branded versus plain cigarette packages. In this sample of young adult smokers, GWLs promoted neural activation in brain regions involved in cognitive and affective decision-making and memory formation and the effects of GWLs did not differ on branded or plain cigarette packaging. These findings complement other recent neuroimaging GWL studies conducted with older adult smokers and with adolescents by demonstrating similar patterns of neural activation in response to GWLs among young adult smokers.

  20. Neural substrates of male parochial altruism are modulated by testosterone and behavioral strategy.

    Science.gov (United States)

    Reimers, Luise; Büchel, Christian; Diekhof, Esther K

    2017-08-01

    Parochial altruism refers to ingroup favoritism and outgroup hostility and has recently been linked to testosterone. Here, we investigated the neurobiological mechanism of parochial altruism in male soccer fans playing the ultimatum game (UG) against ingroup and outgroup members (i.e., fans of the favorite or of a rivalling team) using functional magnetic resonance imaging. Our results suggest that individual differences in altruistic tendency influence the tendency for parochialism. While altruistic subjects rejected unfair offers independent of team membership, the more self-oriented 'pro-selfs' displayed a stronger ingroup bias and rejected outgroup offers more often. However, during a second session that introduced a team competition the altruists adapted to this parochial pattern. Behavioral strategy was further characterized by dissociable and context-dependent correlations between endogenous testosterone and neural responses in the anterior insula and the ventromedial prefrontal cortex. In sum, the present findings indicate that parochial altruism is shaped by individual differences in testosterone and behavioral strategy. In that way the results are in line with evolutionary theories of both individual and group selection. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Anticipation of high arousal aversive and positive movie clips engages common and distinct neural substrates.

    Science.gov (United States)

    Greenberg, Tsafrir; Carlson, Joshua M; Rubin, Denis; Cha, Jiook; Mujica-Parodi, Lilianne

    2015-04-01

    The neural correlates of anxious anticipation have been primarily studied with aversive and neutral stimuli. In this study, we examined the effect of valence on anticipation by using high arousal aversive and positive stimuli and a condition of uncertainty (i.e. either positive or aversive). The task consisted of predetermined cues warning participants of upcoming aversive, positive, 'uncertain' (either aversive or positive) and neutral movie clips. Anticipation of all affective clips engaged common regions including the anterior insula, dorsal anterior cingulate cortex, thalamus, caudate, inferior parietal and prefrontal cortex that are associated with emotional experience, sustained attention and appraisal. In contrast, the nucleus accumbens and medial prefrontal cortex, regions implicated in reward processing, were selectively engaged during anticipation of positive clips (depicting sexually explicit content) and the mid-insula, which has been linked to processing aversive stimuli, was selectively engaged during anticipation of aversive clips (depicting graphic medical procedures); these three areas were also activated during anticipation of 'uncertain' clips reflecting a broad preparatory response for both aversive and positive stimuli. These results suggest that a common circuitry is recruited in anticipation of affective clips regardless of valence, with additional areas preferentially engaged depending on whether expected stimuli are negative or positive. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  3. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  4. Can responses to basic non-numerical visual features explain neural numerosity responses?

    Science.gov (United States)

    Harvey, Ben M; Dumoulin, Serge O

    2017-04-01

    Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Optimization of the selection process of the co-substrates for chicken manure fermentation using neural modeling

    Directory of Open Access Journals (Sweden)

    Lewicki Andrzej

    2016-01-01

    Full Text Available Intense development of research equipment leads directly to increasing cognitive abilities. However, along with the raising amount of data generated, the development of the techniques allowing the analysis is also essential. Currently, one of the most dynamically developing branch of computer science and mathematics are the Artificial Neural Networks (ANN. Their main advantage is very high ability to solve the regression and approximation issues. This paper presents the possibility of application of artificial intelligence methods to optimize the selection of co-substrates intended for methane fermentation of chicken manure. 4-layer MLP network has proven to be the optimal structure modeling the obtained empirical data.

  6. Brain substrates of implicit and explicit memory: the importance of concurrently acquired neural signals of both memory types.

    Science.gov (United States)

    Voss, Joel L; Paller, Ken A

    2008-11-01

    A comprehensive understanding of human memory requires cognitive and neural descriptions of memory processes along with a conception of how memory processing drives behavioral responses and subjective experiences. One serious challenge to this endeavor is that an individual memory process is typically operative within a mix of other contemporaneous memory processes. This challenge is particularly disquieting in the context of implicit memory, which, unlike explicit memory, transpires without the subject necessarily being aware of memory retrieval. Neural correlates of implicit memory and neural correlates of explicit memory are often investigated in different experiments using very different memory tests and procedures. This strategy poses difficulties for elucidating the interactions between the two types of memory process that may result in explicit remembering, and for determining the extent to which certain neural processing events uniquely contribute to only one type of memory. We review recent studies that have succeeded in separately assessing neural correlates of both implicit memory and explicit memory within the same paradigm using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI), with an emphasis on studies from our laboratory. The strategies we describe provide a methodological framework for achieving valid assessments of memory processing, and the findings support an emerging conceptualization of the distinct neurocognitive events responsible for implicit and explicit memory.

  7. Effects of the BDNF Val66Met polymorphism on neural responses to facial emotion.

    Science.gov (United States)

    Mukherjee, Prerona; Whalley, Heather C; McKirdy, James W; McIntosh, Andrew M; Johnstone, Eve C; Lawrie, Stephen M; Hall, Jeremy

    2011-03-31

    The brain derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with affective disorders, but its role in emotion processing has not been fully established. Due to the clinically heterogeneous nature of these disorders, studying the effect of genetic variation in the BDNF gene on a common attribute such as fear processing may elucidate how the BDNF Val66Met polymorphism impacts brain function. Here we use functional magnetic resonance imaging examine the effect of the BDNF Val66Met genotype on neural activity for fear processing. Forty healthy participants performed an implicit fear task during scanning, where subjects made gender judgments from facial images with neutral or fearful emotion. Subjects were tested for facial emotion recognition post-scan. Functional connectivity was investigated using psycho-physiological interactions. Subjects were genotyped for the BDNF Val66Met polymorphism and the measures compared between genotype groups. Met carriers showed overactivation in the anterior cingulate cortex (ACC), brainstem and insula bilaterally for fear processing, along with reduced functional connectivity from the ACC to the left hippocampus, and impaired fear recognition ability. The results show that during fear processing, Met allele carriers show an increased neural response in regions previously implicated in mediating autonomic arousal. Further, the Met carriers show decreased functional connectivity with the hippocampus, which may reflect differential retrieval of emotional associations. Together, these effects show significant differences in the neural substrate for fear processing with genetic variation in BDNF. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Divergent neural responses to narrative speech in disorders of consciousness.

    Science.gov (United States)

    Iotzov, Ivan; Fidali, Brian C; Petroni, Agustin; Conte, Mary M; Schiff, Nicholas D; Parra, Lucas C

    2017-11-01

    Clinical assessment of auditory attention in patients with disorders of consciousness is often limited by motor impairment. Here, we employ intersubject correlations among electroencephalography responses to naturalistic speech in order to assay auditory attention among patients and healthy controls. Electroencephalographic data were recorded from 20 subjects with disorders of consciousness and 14 healthy controls during of two narrative audio stimuli, presented both forwards and time-reversed. Intersubject correlation of evoked electroencephalography signals were calculated, comparing responses of both groups to those of the healthy control subjects. This analysis was performed blinded and subsequently compared to the diagnostic status of each patient based on the Coma Recovery Scale-Revised. Subjects with disorders of consciousness exhibit significantly lower intersubject correlation than healthy controls during narrative speech. Additionally, while healthy subjects had higher intersubject correlation values in forwards versus backwards presentation, neural responses did not vary significantly with the direction of playback in subjects with disorders of consciousness. Increased intersubject correlation values in the backward speech condition were noted with improving disorder of consciousness diagnosis, both in cross-sectional analysis and in a subset of patients with longitudinal data. Intersubject correlation of neural responses to narrative speech audition differentiates healthy controls from patients and appears to index clinical diagnoses in disorders of consciousness.

  9. Memorable Audiovisual Narratives Synchronize Sensory and Supramodal Neural Responses

    Science.gov (United States)

    2016-01-01

    Abstract Our brains integrate information across sensory modalities to generate perceptual experiences and form memories. However, it is difficult to determine the conditions under which multisensory stimulation will benefit or hinder the retrieval of everyday experiences. We hypothesized that the determining factor is the reliability of information processing during stimulus presentation, which can be measured through intersubject correlation of stimulus-evoked activity. We therefore presented biographical auditory narratives and visual animations to 72 human subjects visually, auditorily, or combined, while neural activity was recorded using electroencephalography. Memory for the narrated information, contained in the auditory stream, was tested 3 weeks later. While the visual stimulus alone led to no meaningful retrieval, this related stimulus improved memory when it was combined with the story, even when it was temporally incongruent with the audio. Further, individuals with better subsequent memory elicited neural responses during encoding that were more correlated with their peers. Surprisingly, portions of this predictive synchronized activity were present regardless of the sensory modality of the stimulus. These data suggest that the strength of sensory and supramodal activity is predictive of memory performance after 3 weeks, and that neural synchrony may explain the mnemonic benefit of the functionally uninformative visual context observed for these real-world stimuli. PMID:27844062

  10. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yihuan Tsai

    2015-07-01

    Full Text Available Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC-derived neural progenitor cells (hNPCs, a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS, could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i defined, xeno-free conditions for their expansion and neuronal differentiation and (ii scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol (P4VP, that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery.

  11. Expressive suppression and neural responsiveness to nonverbal affective cues.

    Science.gov (United States)

    Petrican, Raluca; Rosenbaum, R Shayna; Grady, Cheryl

    2015-10-01

    Optimal social functioning occasionally requires concealment of one's emotions in order to meet one's immediate goals and environmental demands. However, because emotions serve an important communicative function, their habitual suppression disrupts the flow of social exchanges and, thus, incurs significant interpersonal costs. Evidence is accruing that the disruption in social interactions, linked to habitual expressive suppression use, stems not only from intrapersonal, but also from interpersonal causes, since the suppressors' restricted affective displays reportedly inhibit their interlocutors' emotionally expressive behaviors. However, expressive suppression use is not known to lead to clinically significant social impairments. One explanation may be that over the lifespan, individuals who habitually suppress their emotions come to compensate for their interlocutors' restrained expressive behaviors by developing an increased sensitivity to nonverbal affective cues. To probe this issue, the present study used functional magnetic resonance imaging (fMRI) to scan healthy older women while they viewed silent videos of a male social target displaying nonverbal emotional behavior, together with a brief verbal description of the accompanying context, and then judged the target's affect. As predicted, perceivers who reported greater habitual use of expressive suppression showed increased neural processing of nonverbal affective cues. This effect appeared to be coordinated in a top-down manner via cognitive control. Greater neural processing of nonverbal cues among perceivers who habitually suppress their emotions was linked to increased ventral striatum activity, suggestive of increased reward value/personal relevance ascribed to emotionally expressive nonverbal behaviors. These findings thus provide neural evidence broadly consistent with the hypothesized link between habitual use of expressive suppression and compensatory development of increased responsiveness to

  12. Social hierarchy modulates neural responses of empathy for pain.

    Science.gov (United States)

    Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang; Luo, Yue-Jia

    2016-03-01

    Recent evidence indicates that empathic responses to others' pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets' pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others' pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven's Advanced Progressive Matrices.

    Science.gov (United States)

    Chen, Zhencai; De Beuckelaer, Alain; Wang, Xu; Liu, Jia

    2017-11-24

    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven's Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain connectivity (GBC) analysis which averages functional connectivity of a voxel in relation to all other voxels in the brain, distinct neural correlates of these two reasoning types were found. For visuospatial reasoning, negative correlations were observed in both the primary visual cortex (PVC) and the precuneus, and positive correlations were observed in the temporal lobe. For verbal-analytic reasoning, negative correlations were observed in the right inferior frontal gyrus (rIFG), dorsal anterior cingulate cortex and temporoparietal junction, and positive correlations were observed in the angular gyrus. Furthermore, an interaction between GBC value and type of reasoning was found in the PVC, rIFG and the temporal lobe. These findings suggest that visuospatial reasoning benefits more from elaborate perception to stimulus features, whereas verbal-analytic reasoning benefits more from feature integration and hypothesis testing. In sum, the present study offers, for different types of reasoning in gF, first empirical evidence of separate neural substrates in the resting brain.

  14. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  15. Neural Substrates for Processing Task-Irrelevant Sad Images in Adolescents

    Science.gov (United States)

    Wang, Lihong; Huettel, Scott; De Bellis, Michael D.

    2008-01-01

    Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral…

  16. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  17. Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse.

    Science.gov (United States)

    Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor

    2017-07-01

    Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    Science.gov (United States)

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability

  19. Roman Catholic beliefs produce characteristic neural responses to moral dilemmas.

    Science.gov (United States)

    Christensen, Julia F; Flexas, Albert; de Miguel, Pedro; Cela-Conde, Camilo J; Munar, Enric

    2014-02-01

    This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances-but thou shalt not kill.

  20. Learning quadratic receptive fields from neural responses to natural stimuli.

    Science.gov (United States)

    Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

    2013-07-01

    Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

  1. Atypical neural substrates of Embedded Figures Task performance in children with Autism Spectrum Disorders

    OpenAIRE

    Lee, Philip S.; Foss-Feig, Jennifer; Henderson, Joshua G.; Kenworthy, Lauren E.; Gilotty, Lisa; Gaillard, William D.; Vaidya, Chandan J.

    2007-01-01

    Superior performance on the Embedded Figures Task (EFT) has been attributed to weak central coherence in perceptual processing in Autism Spectrum Disorders (ASD). The present study used functional magnetic resonance imaging to examine the neural basis of EFT performance in 7-12 year old ASD children and age and IQ matched controls. ASD children activated only a subset of the distributed network of regions activated in controls. In frontal cortex, control children activated left dorsolateral, ...

  2. Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval

    OpenAIRE

    Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.

    2011-01-01

    Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), partic...

  3. Can responses to basic non-numerical visual features explain neural numerosity responses?

    NARCIS (Netherlands)

    Harvey, Ben M; Dumoulin, Serge O

    2017-01-01

    Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and

  4. Brain substrates of implicit and explicit memory: The importance of concurrently acquired neural signals of both memory types

    OpenAIRE

    Voss, Joel L.; Paller, Ken A.

    2008-01-01

    A comprehensive understanding of human memory requires cognitive and neural descriptions of memory processes along with a conception of how memory processing drives behavioral responses and subjective experiences. One serious challenge to this endeavor is that an individual memory process is typically operative within a mix of other contemporaneous memory processes. This challenge is particularly disquieting in the context of implicit memory, which, unlike explicit memory, transpires without ...

  5. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians

    OpenAIRE

    Malinda J. McPherson; Frederick S. Barrett; Monica Lopez-Gonzalez; Patpong Jiradejvong; Charles J. Limb

    2016-01-01

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvise...

  6. Attention enhances contrast appearance via increased input baseline of neural responses.

    Science.gov (United States)

    Cutrone, Elizabeth K; Heeger, David J; Carrasco, Marisa

    2014-12-30

    Covert spatial attention increases the perceived contrast of stimuli at attended locations, presumably via enhancement of visual neural responses. However, the relation between perceived contrast and the underlying neural responses has not been characterized. In this study, we systematically varied stimulus contrast, using a two-alternative, forced-choice comparison task to probe the effect of attention on appearance across the contrast range. We modeled performance in the task as a function of underlying neural contrast-response functions. Fitting this model to the observed data revealed that an increased input baseline in the neural responses accounted for the enhancement of apparent contrast with spatial attention. © 2014 ARVO.

  7. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats.

    Science.gov (United States)

    Smirnov, M S; Kiyatkin, E A

    2010-01-20

    Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such

  8. Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues.

    Science.gov (United States)

    Allen, Justine J; Mäthger, Lydia M; Barbosa, Alexandra; Buresch, Kendra C; Sogin, Emilia; Schwartz, Jillian; Chubb, Charles; Hanlon, Roger T

    2010-04-07

    Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.

  9. Adolescents' behavioral and neural responses to e-cigarette advertising.

    Science.gov (United States)

    Chen, Yvonnes; Fowler, Carina H; Papa, Vlad B; Lepping, Rebecca J; Brucks, Morgan G; Fox, Andrew T; Martin, Laura E

    2018-03-01

    Although adolescents are a group heavily targeted by the e-cigarette industry, research in cue-reactivity has not previously examined adolescents' behavioral and neural responses to e-cigarette advertising. This study addressed this gap through two experiments. In Experiment One, adult traditional cigarette smokers (n = 41) and non-smokers (n = 41) answered questions about e-cigarette and neutral advertising images. The 40 e-cigarette advertising images that most increased desire to use the product were matched to 40 neutral advertising images with similar content. In Experiment Two, the 80 advertising images selected in Experiment One were presented to adolescents (n = 30) during an functional magnetic resonance imaging brain scan. There was a range of traditional cigarette smoking across the sample with some adolescents engaging in daily smoking and others who had never smoked. Adolescents self-reported that viewing the e-cigarette advertising images increased their desire to smoke. Additionally, all participants regardless of smoking statuses showed significantly greater brain activation to e-cigarette advertisements in areas associated with cognitive control (left middle frontal gyrus), reward (right medial frontal gyrus), visual processing/attention (left lingual gyrus/fusiform gyrus, right inferior parietal lobule, left posterior cingulate, left angular gyrus) and memory (right parahippocampus, left insula). Further, an exploratory analysis showed that compared with age-matched non-smokers (n = 7), adolescent smokers (n = 7) displayed significantly greater neural activation to e-cigarette advertising images in the left inferior temporal gyrus/fusiform gyrus, compared with their responses to neutral advertising images. Overall, participants' brain responses to e-cigarette advertisements suggest a need to further investigate the long-run impact of e-cigarette advertising on adolescents. © 2017 Society for the Study of Addiction.

  10. Neural Correlates of the Cortisol Awakening Response in Humans.

    Science.gov (United States)

    Boehringer, Andreas; Tost, Heike; Haddad, Leila; Lederbogen, Florian; Wüst, Stefan; Schwarz, Emanuel; Meyer-Lindenberg, Andreas

    2015-08-01

    The cortisol rise after awakening (cortisol awakening response, CAR) is a core biomarker of hypothalamic-pituitary-adrenal (HPA) axis regulation related to psychosocial stress and stress-related psychiatric disorders. However, the neural regulation of the CAR has not been examined in humans. Here, we studied neural regulation related to the CAR in a sample of 25 healthy human participants using an established psychosocial stress paradigm together with multimodal functional and structural (voxel-based morphometry) magnetic resonance imaging. Across subjects, a smaller CAR was associated with reduced grey matter volume and increased stress-related brain activity in the perigenual ACC, a region which inhibits HPA axis activity during stress that is implicated in risk mechanisms and pathophysiology of stress-related mental diseases. Moreover, functional connectivity between the perigenual ACC and the hypothalamus, the primary controller of HPA axis activity, was associated with the CAR. Our findings provide support for a role of the perigenual ACC in regulating the CAR in humans and may aid future research on the pathophysiology of stress-related illnesses, such as depression, and environmental risk for illnesses such as schizophrenia.

  11. Proposers’ Economic Status Affects Behavioral and Neural Responses to Unfairness

    Directory of Open Access Journals (Sweden)

    Yijie Zheng

    2017-05-01

    Full Text Available Economic status played an important role in the modulation of economic decision making. The present fMRI study aimed at investigating how economic status modulated behavioral and neural responses to unfairness in a modified Ultimatum Game (UG. During scanning, participants played as responders in the UG, and they were informed of the economic status of proposers before receiving offers. At the behavioral level, higher rejection rates and lower fairness ratings were revealed when proposers were in high economic status than in low economic status. Besides, the most time-consuming decisions tended to occur at lower unfairness level when the proposers were in high (relative to low economic status. At the neural level, stronger activation of left thalamus was revealed when fair offers were proposed by proposers in high rather than in low economic status. Greater activation of right medial prefrontal cortex was revealed during acceptance to unfair offers in high economic status condition rather than in low economic status condition. Taken together, these findings shed light on the significance of proposers’ economic status in responders’ social decision making in UG.

  12. Rituals decrease the neural response to performance failure

    Directory of Open Access Journals (Sweden)

    Nicholas M. Hobson

    2017-05-01

    Full Text Available Rituals are found in all types of performance domains, from high-stakes athletics and military to the daily morning preparations of the working family. Yet despite their ubiquity and widespread importance for humans, we know very little of ritual’s causal basis and how (if at all they facilitate goal-directed performance. Here, in a fully pre-registered pre/post experimental design, we examine a candidate proximal mechanism, the error-related negativity (ERN, in testing the prediction that ritual modulates neural performance-monitoring. Participants completed an arbitrary ritual—novel actions repeated at home over one week—followed by an executive function task in the lab during electroencephalographic (EEG recording. Results revealed that relative to pre rounds, participants showed a reduced ERN in the post rounds, after completing the ritual in the lab. Despite a muted ERN, there was no evidence that the reduction in neural monitoring led to performance deficit (nor a performance improvement. Generally, the findings are consistent with the longstanding view that ritual buffers against uncertainty and anxiety. Our results indicate that ritual guides goal-directed performance by regulating the brain’s response to personal failure.

  13. The Racer’s Brain – How Domain Expertise is Reflected in the Neural Substrates of Driving

    Directory of Open Access Journals (Sweden)

    Otto eLappi

    2015-11-01

    Full Text Available A fundamental question in human brain plasticity is how sensory, motor, and cognitive functions adapt in the process of skill acquisition extended over a period of many years. Recently, there has emerged a growing interest in cognitive neuroscience on studying the functional and structural differences in the brains of elite athletes. Elite performance in sports, music or the arts, allows us to observe sensorimotor and cognitive performance at the limits of human capability. In this mini-review we look at driving expertise. The emerging brain imaging literature on the neural substrates of real and simulated driving is reviewed (for the first time, and used as the context for interpreting recent findings on the differences between racing drivers and non-athlete controls. Also the cognitive psychology and cognitive neuroscience of expertise are discussed.

  14. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.

    Science.gov (United States)

    Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A

    2015-07-01

    Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.

  15. Intraoperative Neural Response Telemetry and Neural Recovery Function: a Comparative Study between Adults and Children

    Directory of Open Access Journals (Sweden)

    Carvalho, Bettina

    2014-04-01

    Full Text Available Introduction Neural response telemetry (NRT is a method of capturing the action potential of the distal portion of the auditory nerve in cochlear implant (CI users, using the CI itself to elicit and record the answers. In addition, it can also measure the recovery function of the auditory nerve (REC, that is, the refractory properties of the nerve. It is not clear in the literature whether the responses from adults are the same as those from children. Objective To compare the results of NRT and REC between adults and children undergoing CI surgery. Methods Cross-sectional, descriptive, and retrospective study of the results of NRT and REC for patients undergoing IC at our service. The NRT is assessed by the level of amplitude (microvolts and REC as a function of three parameters: A (saturation level, in microvolts, t0 (absolute refractory period, in seconds, and tau (curve of the model function, measured in three electrodes (apical, medial, and basal. Results Fifty-two patients were evaluated with intraoperative NRT (26 adults and 26 children, and 24 with REC (12 adults and 12 children. No statistically significant difference was found between intraoperative responses of adults and children for NRT or for REC's three parameters, except for parameter A of the basal electrode. Conclusion The results of intraoperative NRT and REC were not different between adults and children, except for parameter A of the basal electrode.

  16. Individual differences in regulatory focus predict neural response to reward.

    Science.gov (United States)

    Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J

    2017-08-01

    Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.

  17. The neural basis of responsibility attribution in decision-making.

    Directory of Open Access Journals (Sweden)

    Peng Li

    Full Text Available Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  18. The neural basis of responsibility attribution in decision-making.

    Science.gov (United States)

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  19. The neural substrates of cognitive flexibility are related to individual differences in preschool irritability: A fNIRS investigation

    Directory of Open Access Journals (Sweden)

    Yanwei Li

    2017-06-01

    Full Text Available Preschool (age 3–5 is a phase of rapid development in both cognition and emotion, making this a period in which the neurodevelopment of each domain is particularly sensitive to that of the other. During this period, children rapidly learn how to flexibly shift their attention between competing demands and, at the same time, acquire critical emotion regulation skills to respond to negative affective challenges. The integration of cognitive flexibility and individual differences in irritability may be an important developmental process of early childhood maturation. However, at present it is unclear if they share common neural substrates in early childhood. Our main goal was to examine the neural correlates of cognitive flexibility in preschool children and test for associations with irritability. Forty-six preschool aged children completed a novel, child-appropriate, Stroop task while dorsolateral prefrontal cortex (DLPFC activation was recorded using functional Near Infrared Spectroscopy (fNIRS. Parents rated their child’s irritability. Results indicated that left DLPFC activation was associated with cognitive flexibility and positively correlated with irritability. Right DLPFC activation was also positively correlated with irritability. Results suggest the entwined nature of cognitive and emotional neurodevelopment during a developmental period of rapid and mutual acceleration.

  20. Neural substrates of trait impulsivity, anhedonia, and irritability: Mechanisms of heterotypic comorbidity between externalizing disorders and unipolar depression.

    Science.gov (United States)

    Zisner, Aimee; Beauchaine, Theodore P

    2016-11-01

    Trait impulsivity, which is often defined as a strong preference for immediate over delayed rewards and results in behaviors that are socially inappropriate, maladaptive, and short-sighted, is a predisposing vulnerability to all externalizing spectrum disorders. In contrast, anhedonia is characterized by chronically low motivation and reduced capacity to experience pleasure, and is common to depressive disorders. Although externalizing and depressive disorders have virtually nonoverlapping diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, heterotypic comorbidity between them is common. Here, we review common neural substrates of trait impulsivity, anhedonia, and irritability, which include both low tonic mesolimbic dopamine activity and low phasic mesolimbic dopamine responding to incentives during reward anticipation and associative learning. We also consider how other neural networks, including bottom-up emotion generation systems and top-down emotion regulation systems, interact with mesolimbic dysfunction to result in alternative manifestations of psychiatric illness. Finally, we present a model that emphasizes a translational, transdiagnostic approach to understanding externalizing/depression comorbidity. This model should refine ways in which internalizing and externalizing disorders are studied, classified, and treated.

  1. Neural substrates underlying balanced time perspective: A combined voxel-based morphometry and resting-state functional connectivity study.

    Science.gov (United States)

    Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong

    2017-08-14

    Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex.

    Science.gov (United States)

    Petroni, Agustin; Cohen, Samantha S; Ai, Lei; Langer, Nicolas; Henin, Simon; Vanderwal, Tamara; Milham, Michael P; Parra, Lucas C

    2018-01-01

    Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.

  3. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    Science.gov (United States)

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  4. Neural substrates of social facilitation effects on incentive-based performance

    Science.gov (United States)

    Chib, Vikram S; Adachi, Ryo; O’Doherty, John P

    2018-01-01

    Abstract Throughout our lives we must perform tasks while being observed by others. Previous studies have shown that the presence of an audience can cause increases in an individual’s performance as compared to when they are not being observed—a phenomenon called ‘social facilitation’. However, the neural mechanisms underlying this effect, in the context of skilled-task performance for monetary incentives, are not well understood. We used functional magnetic resonance imaging to monitor brain activity while healthy human participants performed a skilled-task during conditions in which they were paid based on their performance and observed and not observed by an audience. We found that during social facilitation, social signals represented in the dorsomedial prefrontal cortex (dmPFC) enhanced reward value computations in ventromedial prefrontal cortex (vmPFC). We also found that functional connectivity between dmPFC and ventral striatum was enhanced when participants exhibited social facilitation effects, indicative of a means by which social signals serve to modulate brain regions involved in regulating behavioral motivation. These findings illustrate how neural processing of social judgments gives rise to the enhanced motivational state that results in social facilitation of incentive-based performance. PMID:29648653

  5. Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.

    Science.gov (United States)

    Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L

    2012-02-01

    Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Neural substrates and behavioral profiles of romantic jealousy and its temporal dynamics.

    Science.gov (United States)

    Sun, Yan; Yu, Hongbo; Chen, Jie; Liang, Jie; Lu, Lin; Zhou, Xiaolin; Shi, Jie

    2016-06-07

    Jealousy is not only a way of experiencing love but also a stabilizer of romantic relationships, although morbid romantic jealousy is maladaptive. Being engaged in a formal romantic relationship can tune one's romantic jealousy towards a specific target. Little is known about how the human brain processes romantic jealousy by now. Here, by combining scenario-based imagination and functional MRI, we investigated the behavioral and neural correlates of romantic jealousy and their development across stages (before vs. after being in a formal relationship). Romantic jealousy scenarios elicited activations primarily in the basal ganglia (BG) across stages, and were significantly higher after the relationship was established in both the behavioral rating and BG activation. The intensity of romantic jealousy was related to the intensity of romantic happiness, which mainly correlated with ventral medial prefrontal cortex activation. The increase in jealousy across stages was associated with the tendency for interpersonal aggression. These results bridge the gap between the theoretical conceptualization of romantic jealousy and its neural correlates and shed light on the dynamic changes in jealousy.

  7. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior.

    Science.gov (United States)

    Bailey, Matthew R; Simpson, Eleanor H; Balsam, Peter D

    2016-09-01

    All mobile organisms rely on adaptive motivated behavior to overcome the challenges of living in an environment in which essential resources may be limited. A variety of influences ranging from an organism's environment, experiential history, and physiological state all influence a cost-benefit analysis which allows motivation to energize behavior and direct it toward specific goals. Here we review the substantial amount of research aimed at discovering the interconnected neural circuits which allow organisms to carry-out the cost-benefit computations which allow them to behave in adaptive ways. We specifically focus on how the brain deals with different types of costs, including effort requirements, delays to reward and payoff riskiness. An examination of this broad literature highlights the importance of the extended neural circuits which enable organisms to make decisions about these different types of costs. This involves Cortical Structures, including the Anterior Cingulate Cortex (ACC), the Orbital Frontal Cortex (OFC), the Infralimbic Cortex (IL), and prelimbic Cortex (PL), as well as the Baso-Lateral Amygdala (BLA), the Nucleus Accumbens (NAcc), the Ventral Pallidal (VP), the Sub Thalamic Nucleus (STN) among others. Some regions are involved in multiple aspects of cost-benefit computations while the involvement of other regions is restricted to information relating to specific types of costs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Empathy and Stress Related Neural Responses in Maternal Decision Making

    Directory of Open Access Journals (Sweden)

    S. Shaun Ho

    2014-06-01

    Full Text Available Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers’ emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child’s unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural correlates of child feedback to caregiving decisions. In Part 1 of the study, 33 female participants were recruited to undergo a lab-based mild stressor, the Social Evaluation Test (SET, and then in Part 2 of the study, a subset of the participants, fourteen mothers, performed a Parenting Decision Making Task (PDMT in an fMRI setting. Four dimensions of dispositional empathy based on the Interpersonal Reactivity Index were measured in all participants – Personal Distress, Empathic Concern, Perspective Taking, and Fantasy. Overall, we found that the Personal Distress and Perspective Taking were associated with greater and lesser cortisol reactivity, respectively. The four types of empathy were distinctly associated with the negative (versus positive child feedback activation in the brain. Personal Distress was associated with amygdala and hypothalamus activation, Empathic Concern with the left ventral striatum, ventrolateral prefrontal cortex (VLPFC, and supplemental motor area (SMA activation, and Fantasy with the septal area, right SMA and VLPFC activation. Interestingly, hypothalamus-septal coupling during the negative feedback condition was associated with less PDMT-related cortisol reactivity. The roles of distinct forms of dispositional empathy in neural and stress responses are discussed.

  9. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians.

    Science.gov (United States)

    McPherson, Malinda J; Barrett, Frederick S; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2016-01-04

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvised music that they felt represented the emotion expressed in the photographs. Here we show that activity in prefrontal and other brain networks involved in creativity is highly modulated by emotional context. Furthermore, emotional intent directly modulated functional connectivity of limbic and paralimbic areas such as the amygdala and insula. These findings suggest that emotion and creativity are tightly linked, and that the neural mechanisms underlying creativity may depend on emotional state.

  10. The neural response in short-term visual recognition memory for perceptual conjunctions.

    Science.gov (United States)

    Elliott, R; Dolan, R J

    1998-01-01

    Short-term visual memory has been widely studied in humans and animals using delayed matching paradigms. The present study used positron emission tomography (PET) to determine the neural substrates of delayed matching to sample for complex abstract patterns over a 5-s delay. More specifically, the study assessed any differential neural response associated with remembering individual perceptual properties (color only and shape only) compared to conjunction between these properties. Significant activations associated with short-term visual memory (all memory conditions compared to perceptuomotor control) were observed in extrastriate cortex, medial and lateral parietal cortex, anterior cingulate, inferior frontal gyrus, and the thalamus. Significant deactivations were observed throughout the temporal cortex. Although the requirement to remember color compared to shape was associated with subtly different patterns of blood flow, the requirement to remember perceptual conjunctions between these features was not associated with additional specific activations. These data suggest that visual memory over a delay of the order of 5 s is mainly dependent on posterior perceptual regions of the cortex, with the exact regions depending on the perceptual aspect of the stimuli to be remembered.

  11. The neural substrates associated with attentional resources and difficulty of concurrent processing of the two verbal tasks.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Sadato, Norihiro; Watanabe, Yasuyoshi

    2012-07-01

    The kana pick-out test has been widely used in Japan to evaluate the ability to divide attention in both adult and pediatric patients. However, the neural substrates underlying the ability to divide attention using the kana pick-out test, which requires participants to pick out individual letters (vowels) in a story while also reading for comprehension, thus requiring simultaneous allocation of attention to both activities, are still unclear. Moreover, outside of the clinical area, neuroimaging studies focused on the mechanisms of divided attention during complex story comprehension are rare. Thus, the purpose of the present study, to clarify the neural substrates of kana pick-out test, improves our current understanding of the basic neural mechanisms of dual task performance in verbal memory function. We compared patterns of activation in the brain obtained during performance of the individual tasks of vowel identification and story comprehension, to levels of activation when participants performed the two tasks simultaneously during the kana pick-out test. We found that activations of the left dorsal inferior frontal gyrus and superior parietal lobule increase in functional connectivity to a greater extent during the dual task condition compared to the two single task conditions. In contrast, activations of the left fusiform gyrus and middle temporal gyrus, which are significantly involved in picking out letters and complex sentences during story comprehension, respectively, were reduced in the dual task condition compared to during the two single task conditions. These results suggest that increased activations of the dorsal inferior frontal gyrus and superior parietal lobule during dual task performance may be associated with the capacity for attentional resources, and reduced activations of the left fusiform gyrus and middle temporal gyrus may reflect the difficulty of concurrent processing of the two tasks. In addition, the increase in synchronization between

  12. Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz.

    Directory of Open Access Journals (Sweden)

    Gabriel F Donnay

    Full Text Available Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication.

  13. Atypical neural substrates of Embedded Figures Task performance in children with Autism Spectrum Disorder.

    Science.gov (United States)

    Lee, Philip S; Foss-Feig, Jennifer; Henderson, Joshua G; Kenworthy, Lauren E; Gilotty, Lisa; Gaillard, William D; Vaidya, Chandan J

    2007-10-15

    Superior performance on the Embedded Figures Task (EFT) has been attributed to weak central coherence in perceptual processing in Autism Spectrum Disorder (ASD). The present study used functional magnetic resonance imaging to examine the neural basis of EFT performance in 7- to 12-year-old ASD children and age- and IQ-matched controls. ASD children activated only a subset of the distributed network of regions activated in controls. In frontal cortex, control children activated left dorsolateral, medial and dorsal premotor regions whereas ASD children only activated the dorsal premotor region. In parietal and occipital cortices, activation was bilateral in control children but unilateral (left superior parietal and right occipital) in ASD children. Further, extensive bilateral ventral temporal activation was observed in control, but not ASD children. ASD children performed the EFT at the same level as controls but with reduced cortical involvement, suggesting that disembedded visual processing is accomplished parsimoniously by ASD relative to typically developing brains.

  14. Neural substrate of body size: illusory feeling of shrinking of the waist.

    Directory of Open Access Journals (Sweden)

    H Henrik Ehrsson

    2005-12-01

    Full Text Available The perception of the size and shape of one's body (body image is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments.

  15. Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz.

    Science.gov (United States)

    Donnay, Gabriel F; Rankin, Summer K; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2014-01-01

    Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication.

  16. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    grown on PMMA resembled closely to that of cells grown on the control surface, thus confirming the biocompatibility of PMMA. Additionally, the astrocyte GFAP gene expressions of cells grown on PMMA were lower than the control, signifying a lack of astrocyte reactivity. Based on the findings from the biomaterials study, it was decided to optimize PMMA by changing the surface characteristic of the material. Through the process of hot embossing, nanopatterns were placed on the surface in order to test the hypothesis that nanopatterning can improve the cellular response to the material. Results of this study agreed with current literature showing that topography effects protein and cell behavior. It was concluded that for the use in neural electrode fabrication and design, the 3600mm/gratings pattern feature sizes were optimal. The 3600 mm/gratings pattern depicted cell alignment along the nanopattern, less protein adsorption, less cell adhesion, proliferation and viability, inhibition of GFAP and MAP2k1 compared to all other substrates tested. Results from the initial biomaterials study also indicated platinum was negatively affected the cells and may not be a suitable material for neural electrodes. This lead to pursuing studies with iridium oxide and platinum alloy wires for the glial scar assay. Iridium oxide advantages of lower impedance and higher charge injection capacity would appear to make iridium oxide more favorable for neural electrode fabrication. However, results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Astrocytes cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Results from the nanopatterning PMMA study prompted a more thorough investigation of the nanopatterning effects using an organotypic brain slice model. PDMS was utilized as the substrate due to its optimal physical properties

  17. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  18. An investigation of the neural substrates of mind wandering induced by viewing traditional Chinese landscape paintings

    Directory of Open Access Journals (Sweden)

    Tingting eWang

    2015-01-01

    Full Text Available The present study was conducted to investigate whether the calming effect induced by viewing traditional Chinese landscape paintings would make disengagement from that mental state more difficult, as measured by performance on a cognitive control task. In Experiment 1 we examined the subjective experience of viewing traditional Chinese landscape paintings vs. realistic oil landscape paintings in a behavioral study. Our results confirmed that, as predicted, traditional Chinese landscape paintings induce greater levels of relaxation and mind wandering and lower levels of object-oriented absorption and recognition, compared to realistic oil landscape paintings. In Experiment 2 we used functional Magnetic Resonance Imaging (fMRI to explore the behavioural and neural effects of viewing traditional Chinese landscape paintings on a task requiring cognitive control (i.e., the flanker task—administered immediately following exposure to paintings. Contrary to our prediction, the behavioural data demonstrated that compared to realistic oil landscape paintings, exposure to traditional Chinese landscape paintings had no effect on performance on the flanker task. However, the neural data demonstrated an interaction effect such that there was greater activation in the inferior parietal cortex (IPC and the superior frontal gyrus (SFG on incongruent compared with congruent flanker trials when participants switched from viewing traditional Chinese landscape paintings to the flanker task than when they switched from realistic oil landscape paintings. These results suggest that switching from traditional Chinese landscape paintings placed greater demands on the brain’s attention and working memory networks during the flanker task than did switching from realistic oil landscape paintings.

  19. Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Static bending-mode response

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2013-02-01

    Full Text Available Magnetoelectric (ME coefficients for bending excitation in static magnetic fields and the bending response of multilayer composites with alternating magnetostrictive (MS and piezoelectric (PE layers on a substrate are investigated systematically. Theory and closed-form analytic solutions for the static magnetoelectric and the bending response coefficients are presented. Results of systematic variation of layer numbers, layer sequences, PE volume fractions, substrate thicknesses, and four different material systems (employing FeCoBSi, Terfenol-D, AlN, PZT, and Si are given for a fixed total composite thickness of 5μm. Among more than 105 structures investigated the greatest static ME coefficient of 62.3 V/cmOe is predicted for all odd layer number FeCoBSi-AlN multilayer composites on a Si substrate at vanishing substrate thickness and a PE material fraction of 38%. Varying the substrate thickness from 0μm to 20μm and the PE fraction from 0% to 100%, broad parameter regions of high ME coefficients are found for odd and large layer number nanocomposites. These regions are further enhanced to narrow maxima at vanishing substrate thickness, which correspond to structures of vanishing static bending response. For bilayers and even layer number cases broad maxima of the ME coefficient are observed at nonzero substrates and bending response. The optimal layer sequence and PE fraction depend on the material system. Bending response maxima occur at zero Si substrate thickness and nonzero PE fractions for bilayers. For multilayers nonzero Si substrates and zero PE fractions are found to be optimal. Structures of even ME layer numbers of PE-MS...Sub layer sequence display regions of vanishing bending response with large ME coefficients, i.e., produced by longitudinal excitation.

  20. Subtypes of trait impulsivity differentially correlate with neural responses to food choices

    NARCIS (Netherlands)

    van der Laan, Laura N.; Barendse, Marjolein E. A.; Viergever, Max A.; Smeets, Paul A. M.

    2016-01-01

    Impulsivity is a personality trait that is linked to unhealthy eating and overweight. A few studies assessed how impulsivity relates to neural responses to anticipating and tasting food, but it is unknown how impulsivity relates to neural responses during food choice. Although impulsivity is a

  1. Substrate metabolism in the metabolic response to injury

    NARCIS (Netherlands)

    Romijn, J. A.

    2000-01-01

    In healthy subjects the metabolic response to starvation invokes regulatory mechanisms aimed at conservation of protein mass. This response is characterized by a decrease in energy expenditure and a progressive decrease in urinary N excretion. Many non-endocrine diseases induce anorexia and a

  2. Time response of temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos

    2010-01-01

    In a PWR nuclear power plant, the primary coolant temperature and feedwater temperature are measured using RTDs (Resistance Temperature Detectors). These RTDs typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. The response time of RTDs is characterized by a single parameter called the Plunge Time Constant defined as the time it takes the sensor output to achieve 63.2 percent of its final value after a step change in temperature. Nuclear reactor service conditions are difficult to reproduce in the laboratory, and an in-situ test method called LCSR (Loop Current Step Response) test was developed to measure remotely the response time of RTDs. >From this test, the time constant of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat-transfer model. This calculation is not simple and requires specialized personnel. For this reason an Artificial Neural Network has been developed to predict the time constant of RTD from LCSR test transient. It eliminates the transformations involved in the LCSR application. A series of LCSR tests on RTDs generates the response transients of the sensors, the input data of the networks. Plunge tests are used to determine the time constants of the RTDs, the desired output of the ANN, trained using these sets of input/output data. This methodology was firstly applied to theoretical data simulating 10 RTDs with different time constant values, resulting in an average error of about 0.74 %. Experimental data from three different RTDs was used to predict time constant resulting in a maximum error of 3,34 %. The time constants values predicted from ANN were compared with those obtained from traditional way resulting in an average error of about 18 % and that shows the network is able to predict accurately the sensor time constant. (author)

  3. Schwann cell response on polypyrrole substrates upon electrical stimulation.

    Science.gov (United States)

    Forciniti, Leandro; Ybarra, Jose; Zaman, Muhammad H; Schmidt, Christine E

    2014-06-01

    Current injury models suggest that Schwann cell (SC) migration and guidance are necessary for successful regeneration and synaptic reconnection after peripheral nerve injury. The ability of conducting polymers such as polypyrrole (PPy) to exhibit chemical, contact and electrical stimuli for cells has led to much interest in their use for neural conduits. Despite this interest, there has been very little research on the effect that electrical stimulation (ES) using PPy has on SC behavior. Here we investigate the mechanism by which SCs interact with PPy in the presence of an electric field. Additionally, we explored the effect that the adsorption of different serum proteins on PPy upon the application of an electric field has on SC migration. The results indicate an increase in average displacement of the SC with ES, resulting in a net anodic migration. Moreover, indirect effects of protein adsorption due to the oxidation of the film upon the application of ES were shown to have a larger effect on migration speed than on migration directionality. These results suggest that SC migration speed is governed by an integrin- or receptor-mediated mechanism, whereas SC migration directionality is governed by electrically mediated phenomena. These data will prove invaluable in optimizing conducting polymers for their different biomedical applications such as nerve repair. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    Science.gov (United States)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  5. The neural substrate of analogical reasoning: an fMRI study.

    Science.gov (United States)

    Luo, Qian; Perry, Conrad; Peng, Danling; Jin, Zhen; Xu, Duo; Ding, Guosheng; Xu, Shiyong

    2003-10-01

    This study investigated the anatomical substrate of analogical reasoning using functional magnetic resonance imaging. In the study, subjects performed a verbal analogy task (e.g., soldier is to army as drummer is to band) and, to control for activation caused by purely semantic access, a semantic judgment task. Significant activation differences between the verbal analogy and the semantic judgment task were found bilaterally in the prefrontal cortex (right BA 11/BA 47 and left BA45), the fusiform gyrus, and the basal ganglia; left lateralized in the postero-superior temporal gyrus (BA 22) and the (para) hippocampal region; and right lateralized in the anterior cingulate. The role of these areas in analogical reasoning is discussed.

  6. Acute LSD effects on response inhibition neural networks.

    Science.gov (United States)

    Schmidt, A; Müller, F; Lenz, C; Dolder, P C; Schmid, Y; Zanchi, D; Lang, U E; Liechti, M E; Borgwardt, S

    2017-10-02

    Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations. In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire. Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery. Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.

  7. Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness

    Science.gov (United States)

    Goli-Malekabadi, Zahra; Tafazzoli-shadpour, Mohammad; Tamayol, Ali; Seyedjafari, Ehsan

    2017-01-01

    Introduction: Substrate stiffness regulates cellular behavior as cells experience different stiffness values of tissues in the body. For example, endothelial cells (ECs) covering the inner layer of blood vessels are exposed to different stiffness values due to various pathologic and physiologic conditions. Despite numerous studies, cells by time span sense mechanical properties of the substrate, but the response is not well understood. We hypothesized that time is a major determinant influencing the behavior of cells seeded on substrates of varying stiffness. Methods: We monitored cell spreading, internal structure, 3D topography, and the viability of ECs over 24 hours of culture on polydimethylsiloxane (PDMS) substrates with two different degrees of elastic modulus. Results: Despite significant differences in cell spreading after cell seeding, cells showed a similar shape and internal structure after 24 hours of culture on both soft and stiff substrates. However, 3D topographical images confirmed existence of rich lamellipodia and filopodia around the cells cultured on stiffer PDMS substrates. Conclusion: It was concluded that the response of ECs to the substrate stiffness was time dependent with initial enhanced cellular spreading and viability on stiffer substrates. Results can provide a better comprehension of cell mechanotransduction for tissue engineering applications. PMID:28546952

  8. Neural substrates for sexual and thermoregulatory behavior in the male leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Edwards, Nora; Kriegsfeld, Lance; Crews, David

    2004-12-10

    The preoptic area-anterior hypothalamus (POAH) continuum is critical for the integration of environmental, physiological, and behavioral cues associated with reproduction in vertebrates. In the present study, radiofrequency lesions in the POAH abolished sexual behavior in the leopard gecko (Eublepharis macularius). Furthermore, results suggest a differential effect of POAH lesions on those behaviors regarded as appetitive (tail vibration and grip) and those regarded as consummatory (mounting and copulation), with consummatory behaviors being affected to a greater extent. E. macularius is an ectothermic vertebrate that modulates body temperature behaviorally relative to ambient temperature. In vertebrates, the POAH is also an important integrator of thermoregulation. Thus, the present study investigated whether lesions that disrupt reproductive behavior also disrupt body temperature regulation. While virtually all males displayed diurnal rhythms in thermoregulatory behavior prior to surgery, this pattern was abolished in a small proportion of animals bearing POAH lesions. Lesions that abolished thermoregulatory rhythms involved the suprachiasmatic nucleus (SCN), whereas lesions confined to the POAH, while dramatically influencing sexual behavior, did not affect thermoregulatory rhythms or temperature set point. Together, these findings identify the POAH as an important neural locus regulating sexual behavior but not thermoregulation and suggest that the SCN acts as a pacemaker controlling daily behavioral temperature regulation in this species.

  9. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  10. Trust as commodity: social value orientation affects the neural substrates of learning to cooperate.

    Science.gov (United States)

    Lambert, Bruno; Declerck, Carolyn H; Emonds, Griet; Boone, Christophe

    2017-04-01

    Individuals differ in their motives and strategies to cooperate in social dilemmas. These differences are reflected by an individual's social value orientation: proselfs are strategic and motivated to maximize self-interest, while prosocials are more trusting and value fairness. We hypothesize that when deciding whether or not to cooperate with a random member of a defined group, proselfs, more than prosocials, adapt their decisions based on past experiences: they 'learn' instrumentally to form a base-line expectation of reciprocity. We conducted an fMRI experiment where participants (19 proselfs and 19 prosocials) played 120 sequential prisoner's dilemmas against randomly selected, anonymous and returning partners who cooperated 60% of the time. Results indicate that cooperation levels increased over time, but that the rate of learning was steeper for proselfs than for prosocials. At the neural level, caudate and precuneus activation were more pronounced for proselfs relative to prosocials, indicating a stronger reliance on instrumental learning and self-referencing to update their trust in the cooperative strategy. © The Author (2017). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Neural substrates of embodied natural beauty and social endowed beauty: An fMRI study.

    Science.gov (United States)

    Zhang, Wei; He, Xianyou; Lai, Siyan; Wan, Juan; Lai, Shuxian; Zhao, Xueru; Li, Darong

    2017-08-02

    What are the neural mechanisms underlying beauty based on objective parameters and beauty based on subjective social construction? This study scanned participants with fMRI while they performed aesthetic judgments on concrete pictographs and abstract oracle bone scripts. Behavioral results showed both pictographs and oracle bone scripts were judged to be more beautiful when they referred to beautiful objects and positive social meanings, respectively. Imaging results revealed regions associated with perceptual, cognitive, emotional and reward processing were commonly activated both in beautiful judgments of pictographs and oracle bone scripts. Moreover, stronger activations of orbitofrontal cortex (OFC) and motor-related areas were found in beautiful judgments of pictographs, whereas beautiful judgments of oracle bone scripts were associated with putamen activity, implying stronger aesthetic experience and embodied approaching for beauty were elicited by the pictographs. In contrast, only visual processing areas were activated in the judgments of ugly pictographs and negative oracle bone scripts. Results provide evidence that the sense of beauty is triggered by two processes: one based on the objective parameters of stimuli (embodied natural beauty) and the other based on the subjective social construction (social endowed beauty).

  12. The impact of iconic gestures on foreign language word learning and its neural substrate.

    Science.gov (United States)

    Macedonia, Manuela; Müller, Karsten; Friederici, Angela D

    2011-06-01

    Vocabulary acquisition represents a major challenge in foreign language learning. Research has demonstrated that gestures accompanying speech have an impact on memory for verbal information in the speakers' mother tongue and, as recently shown, also in foreign language learning. However, the neural basis of this effect remains unclear. In a within-subjects design, we compared learning of novel words coupled with iconic and meaningless gestures. Iconic gestures helped learners to significantly better retain the verbal material over time. After the training, participants' brain activity was registered by means of fMRI while performing a word recognition task. Brain activations to words learned with iconic and with meaningless gestures were contrasted. We found activity in the premotor cortices for words encoded with iconic gestures. In contrast, words encoded with meaningless gestures elicited a network associated with cognitive control. These findings suggest that memory performance for newly learned words is not driven by the motor component as such, but by the motor image that matches an underlying representation of the word's semantics. Copyright © 2010 Wiley-Liss, Inc.

  13. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone.

    Science.gov (United States)

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-12-17

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    S. Sathish

    2016-12-01

    Full Text Available The main purpose of this study to increase the optimal conditions for biogas yield from anaerobic digestion of agricultural waste (Rice Straw using Response Surface Methodology (RSM and Artificial Neural Network (ANN. In the development of predictive models temperature, pH, substrate concentration and agitation time are conceived as model variables. The experimental results show that the liner model terms of temperature, substrate concentration and pH, agitation time have significance of interactive effects (p < 0.05. The results manifest that the optimum process parameters affected on biogas yield increase from the ANN model when compared to RSM model. The ANN model indicates that it is much more accurate and reckons the values of maximum biogas yield when compared to RSM model.

  15. Phase-response curves and synchronized neural networks.

    Science.gov (United States)

    Smeal, Roy M; Ermentrout, G Bard; White, John A

    2010-08-12

    We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity.

  16. Neural markers of a greater female responsiveness to social stimuli

    Directory of Open Access Journals (Sweden)

    Zani Alberto

    2008-06-01

    Full Text Available Abstract Background There is fMRI evidence that women are neurally predisposed to process infant laughter and crying. Other findings show that women might be more empathic and sensitive than men to emotional facial expressions. However, no gender difference in the brain responses to persons and unanimated scenes has hitherto been demonstrated. Results Twenty-four men and women viewed 220 images portraying persons or landscapes and ERPs were recorded from 128 sites. In women, but not in men, the N2 component (210–270 was much larger to persons than to scenes. swLORETA showed significant bilateral activation of FG (BA19/37 in both genders when viewing persons as opposed to scenes. Only women showed a source of activity in the STG and in the right MOG (extra-striate body area, EBA, and only men in the left parahippocampal area (PPA. Conclusion A significant gender difference was found in activation of the left and right STG (BA22 and the cingulate cortex for the subtractive condition women minus men, thus indicating that women might have a greater preference or interest for social stimuli (faces and persons.

  17. A Common Neural Substrate for Language Production and Verbal Working Memory

    Science.gov (United States)

    Acheson, Daniel J.; Hamidi, Massihullah; Binder, Jeffrey R.; Postle, Bradley R.

    2011-01-01

    Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. "Working memory, thought, and action." New York, NY: Oxford University Press,…

  18. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    OpenAIRE

    Elzinga, B.M.; Bremner, J.D.

    2002-01-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced...

  19. Neural substrate of initiation of cross-modal working memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yangyang Zhang

    Full Text Available Cross-modal working memory requires integrating stimuli from different modalities and it is associated with co-activation of distributed networks in the brain. However, how brain initiates cross-modal working memory retrieval remains not clear yet. In the present study, we developed a cued matching task, in which the necessity for cross-modal/unimodal memory retrieval and its initiation time were controlled by a task cue appeared in the delay period. Using functional magnetic resonance imaging (fMRI, significantly larger brain activations were observed in the left lateral prefrontal cortex (l-LPFC, left superior parietal lobe (l-SPL, and thalamus in the cued cross-modal matching trials (CCMT compared to those in the cued unimodal matching trials (CUMT. However, no significant differences in the brain activations prior to task cue were observed for sensory stimulation in the l-LPFC and l-SPL areas. Although thalamus displayed differential responses to the sensory stimulation between two conditions, the differential responses were not the same with responses to the task cues. These results revealed that the frontoparietal-thalamus network participated in the initiation of cross-modal working memory retrieval. Secondly, the l-SPL and thalamus showed differential activations between maintenance and working memory retrieval, which might be associated with the enhanced demand for cognitive resources.

  20. Neural substrate of initiation of cross-modal working memory retrieval.

    Science.gov (United States)

    Zhang, Yangyang; Hu, Yang; Guan, Shuchen; Hong, Xiaolong; Wang, Zhaoxin; Li, Xianchun

    2014-01-01

    Cross-modal working memory requires integrating stimuli from different modalities and it is associated with co-activation of distributed networks in the brain. However, how brain initiates cross-modal working memory retrieval remains not clear yet. In the present study, we developed a cued matching task, in which the necessity for cross-modal/unimodal memory retrieval and its initiation time were controlled by a task cue appeared in the delay period. Using functional magnetic resonance imaging (fMRI), significantly larger brain activations were observed in the left lateral prefrontal cortex (l-LPFC), left superior parietal lobe (l-SPL), and thalamus in the cued cross-modal matching trials (CCMT) compared to those in the cued unimodal matching trials (CUMT). However, no significant differences in the brain activations prior to task cue were observed for sensory stimulation in the l-LPFC and l-SPL areas. Although thalamus displayed differential responses to the sensory stimulation between two conditions, the differential responses were not the same with responses to the task cues. These results revealed that the frontoparietal-thalamus network participated in the initiation of cross-modal working memory retrieval. Secondly, the l-SPL and thalamus showed differential activations between maintenance and working memory retrieval, which might be associated with the enhanced demand for cognitive resources.

  1. Behavioral and neural responses to infant and adult tears : The impact of maternal love withdrawal

    NARCIS (Netherlands)

    Hendricx-Riem, M.M.E.; van IJzendoorn, M.H.; De Carli, P.; Vingerhoets, A.J.J.M.; Bakermans-Kranenburg, M. J.

    2017-01-01

    The current study examined behavioral and neural responses to infant and adult tears, taking into account childhood experiences with parental love-withdrawal. With functional MRI (fMRI), we measured neural reactivity to pictures of infants and adults with and without tears on their faces in

  2. Adolescent neural response to reward is related to participant sex and task motivation.

    Science.gov (United States)

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J

    2017-02-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Person- and place-selective neural substrates for entity-specific semantic access.

    Science.gov (United States)

    Fairhall, Scott L; Anzellotti, Stefano; Ubaldi, Silvia; Caramazza, Alfonso

    2014-07-01

    Object-category has a pronounced effect on the representation of objects in higher level visual cortex. However, the influence of category on semantic/conceptual processes is less well characterized. In the present study, we conduct 2 fMRI experiments to investigate the semantic processing of information specific to individual people and places (entities). First, during picture presentation, we determined which brain regions show category-selective increases during access to entity-specific semantic information (i.e., nationality) in comparison to general-category discrimination (person vs. place). In the second experiment, we presented either words or pictures to assess the independence of entity-specific category-selective semantic representations from the processes used to access those representations. Convergent results from these 2 experiments show that brain regions exhibiting a category-selective increase during entity-specific semantic access are the same as those that show a supramodal (word/picture) category-selective response during the same task. These responses were different from classical "perceptual" category-selective responses and were evident in the medial precuneus for people and in the retrosplenial complex as well as anterior/superior sections of the transverse occipital sulcus and parahippocampal gyrus for places. These results reveal the pervasive influence of object-category in cortical organization, which extends to aspects of semantic knowledge arbitrarily related to physical/perceptual properties. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The neural substrates of semantic memory deficits in early Alzheimer's disease: Clues from semantic priming effects and FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Giffard, B.; Laisney, M.; Mezenge, F.; De la Sayette, V.; Eustache, F.; Desgranges, B. [Univ Caen Basse Normandie, INSERM, U923, Unite Rech, EPHE, Lab Neuropsychol, CHU Cote Nacre, GIP Cyceron, F-14033 Caen (France)

    2008-07-01

    The neural substrates responsible for semantic dysfunction during the early stages of AD have yet to be clearly identified. After a brief overview of the literature on normal and pathological semantic memory, we describe a new approach, designed to provide fresh insights into semantic deficits in AD. We mapped the correlations between resting-state brain glucose utilisation measured by FDG-PET and semantic priming scores in a group of 17 AD patients. The priming task, which yields a particularly pure measurement of semantic memory, was composed of related pairs of words sharing an attribute relationship (e.g. tiger-stripe). The priming scores correlated positively with the metabolism of the superior temporal areas on both sides, especially the right side, and this correlation was shown to be specific to the semantic priming effect.This pattern of results is discussed in the light of recent theoretical models of semantic memory, and suggests that a dysfunction of the right superior temporal cortex may contribute to early semantic deficits, characterised by the loss of specific features of concepts in AD. (authors)

  5. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    Science.gov (United States)

    Elzinga, B M; Bremner, J D

    2002-06-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed.

  6. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    Science.gov (United States)

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  7. A common neural substrate for language production and verbal working memory.

    Science.gov (United States)

    Acheson, Daniel J; Hamidi, Massihullah; Binder, Jeffrey R; Postle, Bradley R

    2011-06-01

    Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. Working memory, thought, and action. New York, NY: Oxford University Press, 2007]. We explore the alternative hypothesis that maintenance in VWM is subserved by temporary activation of the language production system [Acheson, D. J., & MacDonald, M. C. Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135, 50-68, 2009b]. Specifically, we hypothesized that for stimuli lacking a semantic representation (e.g., nonwords such as mun), maintenance in VWM can be achieved by cycling information back and forth between the stages of phonological encoding and articulatory planning. First, fMRI was used to identify regions associated with two different stages of language production planning: the posterior superior temporal gyrus (pSTG) for phonological encoding (critical for VWM of nonwords) and the middle temporal gyrus (MTG) for lexical-semantic retrieval (not critical for VWM of nonwords). Next, in the same subjects, these regions were targeted with repetitive transcranial magnetic stimulation (rTMS) during language production and VWM task performance. Results showed that rTMS to the pSTG, but not the MTG, increased error rates on paced reading (a language production task) and on delayed serial recall of nonwords (a test of VWM). Performance on a lexical-semantic retrieval task (picture naming), in contrast, was significantly sensitive to rTMS of the MTG. Because rTMS was guided by language production-related activity, these results provide the first causal evidence that maintenance in VWM directly depends on the long-term representations and processes used in speech production.

  8. Identifying the relevant dependencies of the neural network response on characteristics of the input space

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This talk presents an approach to identify those characteristics of the neural network inputs that are most relevant for the response and therefore provides essential information to determine the systematic uncertainties.

  9. Impact of BDNF Val66Met and 5-HTTLPR polymorphism variants on neural substrates related to sadness and executive function.

    Science.gov (United States)

    Wang, L; Ashley-Koch, A; Steffens, D C; Krishnan, K R R; Taylor, W D

    2012-04-01

    The brain-derived neurotrophic factor (BDNF) Val(66) Met allelic variation is linked to both the occurrence of mood disorders and antidepressant response. These findings are not universally observed, and the mechanism by which this variation results in increased risk for mood disorders is unclear. One possible explanation is an epistatic relationship with other neurotransmitter genes associated with depression risk, such as the serotonin-transporter-linked promotor region (5-HTTLPR). Further, it is unclear how the coexistence of the BDNF Met and 5-HTTLPR S variants affects the function of the affective and cognitive control systems. To address this question, we conducted a functional magnetic resonance imaging (fMRI) study in 38 older adults (20 healthy and 18 remitted from major depressive disorder). Subjects performed an emotional oddball task during the fMRI scan and provided blood samples for genotyping. Our analyses examined the relationship between genotypes and brain activation to sad distractors and attentional targets. We found that 5-HTTLPR S allele carriers exhibited stronger activation in the amygdala in response to sad distractors, whereas BDNF Met carriers exhibited increased activation to sad stimuli but decreased activation to attentional targets in the dorsolateral prefrontal and dorsomedial prefrontal cortices. In addition, subjects with both the S allele and Met allele genes exhibited increased activation to sad stimuli in the subgenual cingulate and posterior cingulate. Our results indicate that the Met allele alone or in combination with 5-HTTLPR S allele may increase reactivity to sad stimuli, which might represent a neural mechanism underlying increased depression vulnerability. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  10. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude....

  11. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders

    Science.gov (United States)

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-01-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)–amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC–amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC–amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC–amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC–amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014

  12. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders.

    Science.gov (United States)

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-10-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. © 2014 The British Pharmacological Society.

  13. State of expectancy modulates the neural response to visual food stimuli in humans.

    Science.gov (United States)

    Malik, Saima; McGlone, Francis; Dagher, Alain

    2011-04-01

    Human brain imaging studies demonstrate distributed activation of limbic, paralimbic and sensory systems to food and food-associated cues. Activity in this circuit may be modulated by internal factors, such as hunger, and cognitive factors. Anticipation to eat is one such factor, which likely impacts consummatory behavior. Here, the neural substrates of food expectancy were identified in 10 healthy male participants who underwent two whole-brain functional Magnetic Resonance Imaging scans on separate days. Fasted subjects viewed images of food and scenery, in two counterbalanced states. During one condition, subjects were 'expecting' to eat right after the scan and during the other they were 'not expecting' to eat for 1 h after the scan. Food pictures compared with scenery yielded bilateral activation in visual areas as well as in the left insula and amygdala in both conditions. The left dorsolateral prefrontal cortex, hippocampus and putamen were additionally activated in the 'not expecting' condition while right orbitofrontal cortex activity was enhanced in the 'expecting' condition. These data suggest that cognitive manipulations affect the response to food cues in the prefrontal cortex, in areas involved in the planning and control of motivated behaviors, while the amygdala and insula responded equally in both conditions, consistent with a more basic role in homeostatically driven appetitive behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Discrepancy of neural response between exogenous and endogenous task switching: an event-related potentials study.

    Science.gov (United States)

    Miyajima, Maki; Toyomaki, Atsuhito; Hashimoto, Naoki; Kusumi, Ichiro; Murohashi, Harumitsu; Koyama, Tsukasa

    2012-08-01

    Task switching is a well-known cognitive paradigm to explore task-set reconfiguration processes such as rule shifting. In particular, endogenous task switching is thought to differ qualitatively from stimulus-triggered exogenous task switching. However, no previous study has examined the neural substrate of endogenous task switching. The purpose of the present study is to explore the differences between event-related potential responses to exogenous and endogenous rule switching at cue stimulus. We modified two patterns of cued switching tasks: exogenous (bottom-up) rule switching and endogenous (top-down) rule switching. In each task cue stimulus was configured to induce switching or maintaining rule. In exogenous switching tasks, late positive deflection was larger in the switch rule condition than in the maintain rule condition. However, in endogenous switching tasks late positive deflection was unexpectedly larger in the maintain-rule condition than in the switch-rule condition. These results indicate that exogenous rule switching is explicit stimulus-driven processes, whereas endogenous rule switching is implicitly parallel processes independent of external stimulus.

  15. Variation in stonefly (Nemoura cinerea Retzius) growth and development in response to hydraulic and substrate conditions

    NARCIS (Netherlands)

    Franken, R.J.M.; Gardeniers, J.J.P.; Beijer, J.A.J.; Peeters, E.T.H.M.

    2008-01-01

    Spatial heterogeneity among microhabitat patches in aquatic ecosystems creates refuges (e.g., substrate interstices) that protect organisms against a variety of environmental constraints. Aquatic insects have evolved the ability to alter their life-history traits in response to environmental

  16. In vitro generation of three-dimensional substrate-adherent embryonic stem cell-derived neural aggregates for application in animal models of neurological disorders.

    Science.gov (United States)

    Hargus, Gunnar; Cui, Yi-Fang; Dihné, Marcel; Bernreuther, Christian; Schachner, Melitta

    2012-05-01

    In vitro-differentiated embryonic stem (ES) cells comprise a useful source for cell replacement therapy, but the efficiency and safety of a translational approach are highly dependent on optimized protocols for directed differentiation of ES cells into the desired cell types in vitro. Furthermore, the transplantation of three-dimensional ES cell-derived structures instead of a single-cell suspension may improve graft survival and function by providing a beneficial microenvironment for implanted cells. To this end, we have developed a new method to efficiently differentiate mouse ES cells into neural aggregates that consist predominantly (>90%) of postmitotic neurons, neural progenitor cells, and radial glia-like cells. When transplanted into the excitotoxically lesioned striatum of adult mice, these substrate-adherent embryonic stem cell-derived neural aggregates (SENAs) showed significant advantages over transplanted single-cell suspensions of ES cell-derived neural cells, including improved survival of GABAergic neurons, increased cell migration, and significantly decreased risk of teratoma formation. Furthermore, SENAs mediated functional improvement after transplantation into animal models of Parkinson's disease and spinal cord injury. This unit describes in detail how SENAs are efficiently derived from mouse ES cells in vitro and how SENAs are isolated for transplantation. Furthermore, methods are presented for successful implantation of SENAs into animal models of Huntington's disease, Parkinson's disease, and spinal cord injury to study the effects of stem cell-derived neural aggregates in a disease context in vivo.

  17. Neural Substrates of Social Emotion Regulation: A fMRI Study on Imitation and Expressive Suppression to Dynamic Facial Signals

    Directory of Open Access Journals (Sweden)

    Pascal eVrticka

    2013-02-01

    Full Text Available Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI in 20 healthy participants who saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task. fMRI results revealed higher activity in regions associated with emotion (e.g., the insula, motor function (e.g., motor cortex, and theory of mind during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and expressive suppression modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

  18. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses

    Directory of Open Access Journals (Sweden)

    Mattia Rigotti

    2010-10-01

    Full Text Available Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics, the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding. A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.

  19. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  20. Cooperative and Competitive Contextual Effects on Social Cognitive and Empathic Neural Responses

    Directory of Open Access Journals (Sweden)

    Minhye Lee

    2018-06-01

    Full Text Available We aimed to differentiate the neural responses to cooperative and competitive contexts, which are the two of the most important social contexts in human society. Healthy male college students were asked to complete a Tetris-like task requiring mental rotation skills under individual, cooperative, and competitive contexts in an fMRI scanner. While the participants completed the task, pictures of others experiencing pain evoking emotional empathy randomly appeared to capture contextual effects on empathic neural responses. Behavioral results indicated that, in the presence of cooperation, participants solved the tasks more accurately and quickly than what they did when in the presence of competition. The fMRI results revealed activations in the dorsolateral prefrontal cortex (dlPFC and dorsomedial prefrontal cortex (dmPFC related to executive functions and theory of mind when participants performed the task under both cooperative and competitive contexts, whereas no activation of such areas was observed in the individual context. Cooperation condition exhibited stronger neural responses in the ventromedial prefrontal cortex (vmPFC and dmPFC than competition condition. Competition condition, however, showed marginal neural responses in the cerebellum and anterior insular cortex (AIC. The two social contexts involved stronger empathic neural responses to other’s pain than the individual context, but no substantial differences between cooperation and competition were present. Regions of interest analyses revealed that individual’s trait empathy modulated the neural activity in the state empathy network, the AIC, and the dorsal anterior cingulate cortex (dACC depending on the social context. These results suggest that cooperation improves task performance and activates neural responses associated with reward and mentalizing. Furthermore, the interaction between trait- and state-empathy was explored by correlation analyses between individual

  1. A novel method for extraction of neural response from single channel cochlear implant auditory evoked potentials.

    Science.gov (United States)

    Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz

    2017-02-01

    Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Neural Mechanisms of Improvements in Social Motivation after Pivotal Response Treatment: Two Case Studies

    Science.gov (United States)

    Voos, Avery C.; Pelphrey, Kevin A.; Tirrell, Jonathan; Bolling, Danielle Z.; Vander Wyk, Brent; Kaiser, Martha D.; McPartland, James C.; Volkmar, Fred R.; Ventola, Pamela

    2013-01-01

    Pivotal response treatment (PRT) is an empirically validated behavioral treatment that has widespread positive effects on communication, behavior, and social skills in young children with autism spectrum disorder (ASD). For the first time, functional magnetic resonance imaging was used to identify the neural correlates of successful response to…

  3. Shared beliefs enhance shared feelings: religious/irreligious identifications modulate empathic neural responses.

    Science.gov (United States)

    Huang, Siyuan; Han, Shihui

    2014-01-01

    Recent neuroimaging research has revealed stronger empathic neural responses to same-race compared to other-race individuals. Is the in-group favouritism in empathic neural responses specific to race identification or a more general effect of social identification-including those based on religious/irreligious beliefs? The present study investigated whether and how intergroup relationships based on religious/irreligious identifications modulate empathic neural responses to others' pain expressions. We recorded event-related brain potentials from Chinese Christian and atheist participants while they perceived pain or neutral expressions of Chinese faces that were marked as being Christians or atheists. We found that both Christian and atheist participants showed stronger neural activity to pain (versus neutral) expressions at 132-168 ms and 200-320 ms over the frontal region to those with the same (versus different) religious/irreligious beliefs. The in-group favouritism in empathic neural responses was also evident in a later time window (412-612 ms) over the central/parietal regions in Christian but not in atheist participants. Our results indicate that the intergroup relationship based on shared beliefs, either religious or irreligious, can lead to in-group favouritism in empathy for others' suffering.

  4. Neuron's eye view: Inferring features of complex stimuli from neural responses.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2017-08-01

    Full Text Available Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world-contrast and luminance for vision, pitch and intensity for sound-and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set.

  5. Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Resonant bending-mode response

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2013-05-01

    Full Text Available Resonant bending-mode magnetoelectric (ME coefficients of magnetostrictive-piezoelectric multilayer cantilevers are calculated analytically using a model developed for arbitrary multilayers on a substrate. Without quality factor effects the ME coefficient maxima in the four-dimensional parameter space of layer numbers, layer sequences, piezoelectric volume fractions, and substrate thicknesses are found to be essentially constant for nonzero substrate thickness. Global maxima occur for bilayers without substrates. Vanishing magnetoelectric response regions result from voltage cancellation in piezoelectric layers or absence of bending-mode excitation. They are determined by the neutral plane position in the multilayer stack. With Q-factor effects dominated by viscous air damping ME coefficients strongly increase with cantilever thickness primarily due to increasing resonance frequencies. The results yield a layer specific prediction of ME coefficients, resonance frequencies, and Q-factors in arbitrary multilayers and thus distinction of linear-coupling and Q-factor effects from exchange interaction, interface, or nonlinear ME effects.

  6. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  7. Neural Markers of Responsiveness to the Environment in Human Sleep

    DEFF Research Database (Denmark)

    Andrillon, Thomas; Poulsen, Andreas Trier; Hansen, Lars Kai

    2016-01-01

    by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep...... could be related to modulation in sleep depth. InREMsleep, however, this relationship was reversed.Wetherefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can...... be processed in lighter stages but suppressed in deeper stages. Last, our results suggest drastically different gating mechanisms in NREM and REM sleep....

  8. Relationship between neural response and adaptation selectivity to form and color: an ERP study

    Directory of Open Access Journals (Sweden)

    Ilias eRentzeperis

    2012-04-01

    Full Text Available Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERP. ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.

  9. Response of neural reward regions to food cues in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Cascio Carissa J

    2012-05-01

    Full Text Available Abstract Background One hypothesis for the social deficits that characterize autism spectrum disorders (ASD is diminished neural reward response to social interaction and attachment. Prior research using established monetary reward paradigms as a test of non-social reward to compare with social reward may involve confounds in the ability of individuals with ASD to utilize symbolic representation of money and the abstraction required to interpret monetary gains. Thus, a useful addition to our understanding of neural reward circuitry in ASD includes a characterization of the neural response to primary rewards. Method We asked 17 children with ASD and 18 children without ASD to abstain from eating for at least four hours before an MRI scan in which they viewed images of high-calorie foods. We assessed the neural reward network for increases in the blood oxygenation level dependent (BOLD signal in response to the food images Results We found very similar patterns of increased BOLD signal to these images in the two groups; both groups showed increased BOLD signal in the bilateral amygdala, as well as in the nucleus accumbens, orbitofrontal cortex, and insula. Direct group comparisons revealed that the ASD group showed a stronger response to food cues in bilateral insula along the anterior-posterior gradient and in the anterior cingulate cortex than the control group, whereas there were no neural reward regions that showed higher activation for controls than for ASD. Conclusion These results suggest that neural response to primary rewards is not diminished but in fact shows an aberrant enhancement in children with ASD.

  10. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    Science.gov (United States)

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  11. Rat liver responsiveness to gluconeogenic substrates during insulin-induced hypoglycemia

    Directory of Open Access Journals (Sweden)

    H.M. de Souza

    2001-06-01

    Full Text Available Hepatic responsiveness to gluconeogenic substrates during insulin-induced hypoglycemia was investigated. For this purpose, livers were perfused with a saturating concentration of 2 mM glycerol, 5 mM L-alanine or 5 mM L-glutamine as gluconeogenic substrates. All experiments were performed 1 h after an ip injection of saline (CN group or 1 IU/kg of insulin (IN group. The IN group showed higher (P<0.05 hepatic glucose production from glycerol, L-alanine and L-glutamine and higher (P<0.05 production of L-lactate, pyruvate and urea from L-alanine and L-glutamine. In addition, ip injection of 100 mg/kg glycerol, L-alanine and L-glutamine promoted glucose recovery. The results indicate that the hepatic capacity to produce glucose from gluconeogenic precursors was increased during insulin-induced hypoglycemia.

  12. Different neural and cognitive response to emotional faces in healthy monozygotic twins at risk of depression

    DEFF Research Database (Denmark)

    Miskowiak, K W; Glerup, L; Vestbo, C

    2015-01-01

    while performing a gender discrimination task. After the scan, they were given a faces dot-probe task, a facial expression recognition task and questionnaires assessing mood, personality traits and coping strategies. RESULTS: High-risk twins showed increased neural response to happy and fearful faces...... processing. These task-related changes in neural responses in high-risk twins were accompanied by impaired gender discrimination performance during face processing. They also displayed increased attention vigilance for fearful faces and were slower at recognizing facial expressions relative to low......BACKGROUND: Negative cognitive bias and aberrant neural processing of emotional faces are trait-marks of depression. Yet it is unclear whether these changes constitute an endophenotype for depression and are also present in healthy individuals with hereditary risk for depression. METHOD: Thirty...

  13. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  14. Gender differences in the neural response to acupuncture: Clinical implications

    NARCIS (Netherlands)

    Yeo, S.; Rosen, B.; Bosch, M.P.C.; Noort, M.W.M.L. van den; Lim, S.

    2016-01-01

    Objective: To examine gender differences and similarities in the psychophysical and brain responses to acupuncture at GB34, a point that is frequently used to treat motor function issues in Traditional Chinese Medicine. Methods: Functional MRI (fMRI) was used to measure brain activation in response

  15. The Neural Basis of Cognitive Control: Response Selection and Inhibition

    Science.gov (United States)

    Goghari, Vina M.; MacDonald, Angus W., III

    2009-01-01

    The functional neuroanatomy of tasks that recruit different forms of response selection and inhibition has to our knowledge, never been directly addressed in a single fMRI study using similar stimulus-response paradigms where differences between scanning time and sequence, stimuli, and experimenter instructions were minimized. Twelve right-handed…

  16. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  17. The neural markers of an imminent failure of response inhibition.

    Science.gov (United States)

    Bengson, Jesse J; Mangun, George R; Mazaheri, Ali

    2012-01-16

    In his novel Ulysses, James Joyce wrote that mistakes are the "…portals of discovery". The present study investigated the pre-stimulus oscillatory EEG signatures of selective attention and motor preparation that predicted failures of overt response inhibition. We employed a trial-by-trial spatial cueing task using a go/no-go response paradigm with bilateral target stimuli. Subjects were required to covertly attend to the spatial location cued on each trial and respond to most of the number targets (go trials) at that location while withholding responses for one designated number (no-go trials). We analyzed the post-cue/pre-target spectral patterns comparing no-go trials in which a response occurred in error (False Alarms, FA) with trials in which participants correctly withheld a response (Correct Rejections, CR). We found that cue-induced occipital alpha (8-12 Hz) lateralization and inter-frequency anti-correlations between the motor beta (18-24 Hz) and pre-frontal theta (3-5 Hz) bands each independently predicted subsequent failures of response inhibition. Based on these findings, we infer that independent perceptual and motor mechanisms operate in parallel to contribute to failures of response inhibition. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Larger Neural Responses Produce BOLD Signals That Begin Earlier in Time

    Directory of Open Access Journals (Sweden)

    Serena eThompson

    2014-06-01

    Full Text Available Functional MRI analyses commonly rely on the assumption that the temporal dynamics of hemodynamic response functions (HRFs are independent of the amplitude of the neural signals that give rise to them. The validity of this assumption is particularly important for techniques that use fMRI to resolve sub-second timing distinctions between responses, in order to make inferences about the ordering of neural processes. Whether or not the detailed shape of the HRF is independent of neural response amplitude remains an open question, however. We performed experiments in which we measured responses in primary visual cortex (V1 to large, contrast-reversing checkerboards at a range of contrast levels, which should produce varying amounts of neural activity. Ten subjects (ages 22-52 were studied in each of two experiments using 3 Tesla scanners. We used rapid, 250 msec, temporal sampling (repetition time, or TR and both short and long inter-stimulus interval (ISI stimulus presentations. We tested for a systematic relationship between the onset of the HRF and its amplitude across conditions, and found a strong negative correlation between the two measures when stimuli were separated in time (long- and medium-ISI experiments, but not the short-ISI experiment. Thus, stimuli that produce larger neural responses, as indexed by HRF amplitude, also produced HRFs with shorter onsets. The relationship between amplitude and latency was strongest in voxels with lowest mean-normalized variance (i.e., parenchymal voxels. The onset differences observed in the longer-ISI experiments are likely attributable to mechanisms of neurovascular coupling, since they are substantially larger than reported differences in the onset of action potentials in V1 as a function of response amplitude.

  19. Chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence.

    NARCIS (Netherlands)

    Will, G.J.; Van, Lier P.A.; Crone, E.A.; Guroglu, B.

    2016-01-01

    This functional Magnetic Resonance Imaging (fMRI) study examined subjective and neural responses to social exclusion in adolescents (age 12-15) who either had a stable accepted (n = 27; 14 males) or a chronic rejected (n = 19; 12 males) status among peers from age 6 to 12. Both groups of adolescents

  20. Play It Again: Neural Responses to Reunion with Excluders Predicted by Attachment Patterns

    Science.gov (United States)

    White, Lars O.; Wu, Jia; Borelli, Jessica L.; Mayes, Linda C.; Crowley, Michael J.

    2013-01-01

    Reunion behavior following stressful separations from caregivers is often considered the single most sensitive clue to infant attachment patterns. Extending these ideas to middle childhood/early adolescence, we examined participants' neural responses to reunion with peers who had previously excluded them. We recorded event-related potentials…

  1. Neural Responses to Peer Rejection in Anxious Adolescents: Contributions from the Amygdala-Hippocampal Complex

    Science.gov (United States)

    Lau, Jennifer Y. F.; Guyer, Amanda E.; Tone, Erin B.; Jenness, Jessica; Parrish, Jessica M.; Pine, Daniel S.; Nelson, Eric E.

    2012-01-01

    Peer rejection powerfully predicts adolescent anxiety. While cognitive differences influence anxious responses to social feedback, little is known about neural contributions. Twelve anxious and twelve age-, gender- and IQ-matched, psychiatrically healthy adolescents received "not interested" and "interested" feedback from unknown peers during a…

  2. Neural and genetic underpinnings of response inhibition in adolescents with attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    van Rooij, Daan

    2015-01-01

    In the huidige thesis onderzoek ik de neurale en genetische onderbouwing van response inhibitie in een groot cohort van adolescenten met ADHD, hun onaangedane siblings en gezonde controles. Ieder van de vier onderzoekshoofdstukken beantwoord een aparte vraag hieromtrent. In het tweede hoofdstuk van

  3. Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation

    CSIR Research Space (South Africa)

    Ngwangwa, HM

    2010-04-01

    Full Text Available -1 Journal of Terramechanics Volume 47, Issue 2, April 2010, Pages 97-111 Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation H.M. Ngwangwaa, P.S. Heynsa, , , F...

  4. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    Science.gov (United States)

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  5. The Neural Substrates of Recognition Memory for Verbal Information: Spanning the Divide between Short- and Long-Term Memory

    Science.gov (United States)

    Buchsbaum, Bradley R.; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-01-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research…

  6. Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven's Advanced Progressive Matrices

    NARCIS (Netherlands)

    Chen, Zhencai; De Beuckelaer, A.; Wang, Xu; Liu, Jia

    2017-01-01

    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven’s Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain

  7. Cultures differ in the ability to enhance affective neural responses.

    Science.gov (United States)

    Varnum, Michael E W; Hampton, Ryan S

    2017-10-01

    The present study (N = 55) used an event-related potential paradigm to investigate whether cultures differ in the ability to upregulate affective responses. Using stimuli selected from the International Affective Picture System, we found that European-Americans (N = 29) enhanced central-parietal late positive potential (LPP) (400-800 ms post-stimulus) responses to affective stimuli when instructed to do so, whereas East Asians (N = 26) did not. We observed cultural differences in the ability to enhance central-parietal LPP responses for both positively and negativelyvalenced stimuli, and the ability to enhance these two types of responses was positively correlated for Americans but negatively for East Asians. These results are consistent with the notion that cultural variations in norms and values regarding affective expression and experiences shape how the brain regulates emotions.

  8. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation.

    Science.gov (United States)

    Bagherifard, Sara; Ghelichi, Ramin; Khademhosseini, Ali; Guagliano, Mario

    2014-06-11

    Cell-substrate interface is known to control the cell response and subsequent cell functions. Among the various biophysical signals, grain structure, which indicates the repeating arrangement of atoms in the material, has also proved to play a role of significant importance in mediating the cell activities. Moreover, refining the grain size through severe plastic deformation is known to provide the processed material with novel mechanical properties. The potential application of such advanced materials as biomedical implants has recently been evaluated by investigating the effect of different substrate grain sizes on a wide variety of cell activities. In this review, recent advances in biomedical applications of severe plastic deformation techniques are highlighted with special attention to the effect of the obtained nano/ultra-fine-grain size on cell-substrate interactions. Various severe plastic deformation techniques used for this purpose are discussed presenting a brief description of the mechanism for each process. The results obtained for each treatment on cell morphology, adhesion, proliferation, and differentiation, as well as the in vivo studies, are discussed. Finally, the advantages and challenges regarding the application of these techniques to produce multifunctional bio-implant materials are addressed.

  9. Substrate texture affects female cricket walking response to male calling song

    Science.gov (United States)

    Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.

    2018-03-01

    Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.

  10. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells.

    Science.gov (United States)

    Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada

    2017-03-28

    Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.

  11. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    International Nuclear Information System (INIS)

    Nakanishi, Jun; Nakayama, Hidekazu; Horiike, Yasuhiro; Yamaguchi, Kazuo; Garcia, Andres J

    2011-01-01

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG 7 ). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni 2+ -ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG 7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII 7-10 ) to the irradiated regions. In contrast, when bovine serum albumin-a major serum protein-was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII 7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  12. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Jun; Nakayama, Hidekazu; Horiike, Yasuhiro [World Premier International (WPI) Research Center Initiative, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science - NIMS (Japan); Yamaguchi, Kazuo [Department of Chemistry, Faculty of Science and Research Institute for Photofunctionalized Materials, Kanagawa University (Japan); Garcia, Andres J, E-mail: NAKANISHI.Jun@nims.go.jp [Institute for Bioengineering and Bioscience, Woodruff School of Mechanical Engineering, Georgia Institute of Technology (United States)

    2011-08-15

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG{sub 7}). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni{sup 2+}-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG{sub 7} underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII{sub 7-10}) to the irradiated regions. In contrast, when bovine serum albumin-a major serum protein-was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII{sub 7-10} was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  13. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Directory of Open Access Journals (Sweden)

    Jun Nakanishi, Hidekazu Nakayama, Kazuo Yamaguchi, Andres J Garcia and Yasuhiro Horiike

    2011-01-01

    Full Text Available The development of methods for the off–on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs of three disulfide compounds containing (i a photocleavable poly(ethylene glycol (PEG, (ii nitrilotriacetic acid (NTA and (iii hepta(ethylene glycol (EG7. Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag sequences in its Ni2+-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII7–10 to the irradiated regions. In contrast, when bovine serum albumin—a major serum protein—was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  14. Overlapping neural response to the pain or harm of people, animals, and nature.

    Science.gov (United States)

    Mathur, Vani A; Cheon, Bobby K; Harada, Tokiko; Scimeca, Jason M; Chiao, Joan Y

    2016-01-29

    Interpersonal pain perception is a fundamental and evolutionarily beneficial social process. While critical for navigating the social world, whether or not people rely on similar processes to perceive and respond to the harm of the non-human biological world remains largely unknown. Here we investigate whether neural reactivity toward the suffering of other people is distinct from or overlapping with the neural response to pain and harm inflicted upon non-human entities, specifically animals and nature. We used fMRI to measure neural activity while participants (n=15) perceived and reported how badly they felt for the pain or harm of humans, animals, and nature, relative to neutral situations. Neural regions associated with perceiving the pain of other people (e.g. dorsal anterior cingulate cortex, bilateral anterior insula) were similarly recruited when perceiving and responding to painful scenes across people, animals, and nature. These results suggest that similar brain responses are relied upon when perceiving the harm of social and non-social biological entities, broadly construed, and that activity within the dorsal anterior cingulate cortex and bilateral anterior insula in response to pain-relevant stimuli is not uniquely specific to humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Body mass is positively associated with neural response to sweet taste, but not alcohol, among drinkers.

    Science.gov (United States)

    Gardiner, Casey K; YorkWilliams, Sophie L; Bryan, Angela D; Hutchison, Kent E

    2017-07-28

    Obesity is a large and growing public health concern, presenting enormous economic and health costs to individuals and society. A burgeoning literature demonstrates that overweight and obese individuals display different neural processing of rewarding stimuli, including caloric substances, as compared to healthy weight individuals. However, much extant research on the neurobiology of obesity has focused on addiction models, without highlighting potentially separable neural underpinnings of caloric intake versus substance use. The present research explores these differences by examining neural response to alcoholic beverages and a sweet non-alcoholic beverage, among a sample of individuals with varying weight status and patterns of alcohol use and misuse. Participants received tastes of a sweet beverage (litchi juice) and alcoholic beverages during fMRI scanning. When controlling for alcohol use, elevated weight status was associated with increased activation in response to sweet taste in regions including the cingulate cortex, hippocampus, precuneus, and fusiform gyrus. However, weight status was not associated with neural response to alcoholic beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    Science.gov (United States)

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts

  17. The neural markers of an imminent failure of response inhibition

    NARCIS (Netherlands)

    Bengson, Jesse J.; Mangun, George R.; Mazaheri, Ali

    2012-01-01

    In his novel Ulysses, James Joyce wrote that mistakes are the "...portals of discovery". The present study investigated the pre-stimulus oscillatory EEG signatures of selective attention and motor preparation that predicted failures of overt response inhibition. We employed a trial-by-trial spatial

  18. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.

    Science.gov (United States)

    Kim, Elmer K; Wellnitz, Scott A; Bourdon, Sarah M; Lumpkin, Ellen A; Gerling, Gregory J

    2012-07-23

    The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent's characteristic response

  19. The neural response to maternal stimuli: an ERP study.

    Directory of Open Access Journals (Sweden)

    Lili Wu

    Full Text Available Mothers are important to all humans. Research has established that maternal information affects individuals' cognition, emotion, and behavior. We measured event-related potentials (ERPs to examine attentional and evaluative processing of maternal stimuli while participants completed a Go/No-go Association Task that paired mother or others words with good or bad evaluative words. Behavioral data showed that participants responded faster to mother words paired with good than the mother words paired with bad but showed no difference in response to these others across conditions, reflecting a positive evaluation of mother. ERPs showed larger P200 and N200 in response to mother than in response to others, suggesting that mother attracted more attention than others. In the subsequent time window, mother in the mother + bad condition elicited a later and larger late positive potential (LPP than it did in the mother + good condition, but this was not true for others, also suggesting a positive evaluation of mother. These results suggest that people differentiate mother from others during initial attentional stage, and evaluative mother positively during later stage.

  20. Application of artificial neural networks for response surface modelling in HPLC method development

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2012-01-01

    Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.

  1. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands

    Science.gov (United States)

    Donohue, Sarah E.; Appelbaum, Lawrence G.; McKay, Cameron C.; Woldorff, Marty G.

    2016-01-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity ‘Ninc’ was observed for all conditions, which was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917

  3. Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts

    Science.gov (United States)

    Babo-Rebelo, Mariana; Richter, Craig G.

    2016-01-01

    The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. SIGNIFICANCE STATEMENT The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by

  4. Adolescent girls' neural response to reward mediates the relation between childhood financial disadvantage and depression.

    Science.gov (United States)

    Romens, Sarah E; Casement, Melynda D; McAloon, Rose; Keenan, Kate; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2015-11-01

    Children who experience socioeconomic disadvantage are at heightened risk for developing depression; however, little is known about neurobiological mechanisms underlying this association. Low socioeconomic status (SES) during childhood may confer risk for depression through its stress-related effects on the neural circuitry associated with processing monetary rewards. In a prospective study, we examined the relationships among the number of years of household receipt of public assistance from age 5-16 years, neural activation during monetary reward anticipation and receipt at age 16, and depression symptoms at age 16 in 123 girls. Number of years of household receipt of public assistance was positively associated with heightened response in the medial prefrontal cortex during reward anticipation, and this heightened neural response mediated the relationship between socioeconomic disadvantage and current depression symptoms, controlling for past depression. Chronic exposure to socioeconomic disadvantage in childhood may alter neural circuitry involved in reward anticipation in adolescence, which in turn may confer risk for depression. © 2015 Association for Child and Adolescent Mental Health.

  5. Modeling of Throughput in Production Lines Using Response Surface Methodology and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Federico Nuñez-Piña

    2018-01-01

    Full Text Available The problem of assigning buffers in a production line to obtain an optimum production rate is a combinatorial problem of type NP-Hard and it is known as Buffer Allocation Problem. It is of great importance for designers of production systems due to the costs involved in terms of space requirements. In this work, the relationship among the number of buffer slots, the number of work stations, and the production rate is studied. Response surface methodology and artificial neural network were used to develop predictive models to find optimal throughput values. 360 production rate values for different number of buffer slots and workstations were used to obtain a fourth-order mathematical model and four hidden layers’ artificial neural network. Both models have a good performance in predicting the throughput, although the artificial neural network model shows a better fit (R=1.0000 against the response surface methodology (R=0.9996. Moreover, the artificial neural network produces better predictions for data not utilized in the models construction. Finally, this study can be used as a guide to forecast the maximum or near maximum throughput of production lines taking into account the buffer size and the number of machines in the line.

  6. Neural responses to kindness and malevolence differ in illness and recovery in women with anorexia nervosa.

    Science.gov (United States)

    McAdams, Carrie J; Lohrenz, Terry; Montague, P Read

    2015-12-01

    In anorexia nervosa, problems with social relationships contribute to illness, and improvements in social support are associated with recovery. Using the multiround trust game and 3T MRI, we compare neural responses in a social relationship in three groups of women: women with anorexia nervosa, women in long-term weight recovery from anorexia nervosa, and healthy comparison women. Surrogate markers related to social signals in the game were computed each round to assess whether the relationship was improving (benevolence) or deteriorating (malevolence) for each subject. Compared with healthy women, neural responses to benevolence were diminished in the precuneus and right angular gyrus in both currently-ill and weight-recovered subjects with anorexia, but neural responses to malevolence differed in the left fusiform only in currently-ill subjects. Next, using a whole-brain regression, we identified an office assessment, the positive personalizing bias, that was inversely correlated with neural activity in the occipital lobe, the precuneus and posterior cingulate, the bilateral temporoparietal junctions, and dorsal anterior cingulate, during benevolence for all groups of subjects. The positive personalizing bias is a self-report measure that assesses the degree with which a person attributes positive experiences to other people. These data suggest that problems in perceiving kindness may be a consistent trait related to the development of anorexia nervosa, whereas recognizing malevolence may be related to recovery. Future work on social brain function, in both healthy and psychiatric populations, should consider positive personalizing biases as a possible marker of neural differences related to kindness perception. © 2015 Wiley Periodicals, Inc.

  7. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration

    OpenAIRE

    Addis, Donna Rose; Wong, Alana T.; Schacter, Daniel L.

    2006-01-01

    People can consciously re-experience past events and pre-experience possible future events. This fMRI study examined the neural regions mediating the construction and elaboration of past and future events. Participants were cued with a noun for 20 seconds and instructed to construct a past or future event within a specified time period (week, year, 5–20 years). Once participants had the event in mind, they made a button press and for the remainder of the 20 seconds elaborated on the event. Im...

  8. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Walshe Muriel

    2011-01-01

    Full Text Available Abstract Background Impairments in executive function and language processing are characteristic of both schizophrenia and bipolar disorder. Their functional neuroanatomy demonstrate features that are shared as well as specific to each disorder. Determining the distinct pattern of neural responses in schizophrenia and bipolar disorder may provide biomarkers for their diagnoses. Methods 104 participants underwent functional magnetic resonance imaging (fMRI scans while performing a phonological verbal fluency task. Subjects were 32 patients with schizophrenia in remission, 32 patients with bipolar disorder in an euthymic state, and 40 healthy volunteers. Neural responses to verbal fluency were examined in each group, and the diagnostic potential of the pattern of the neural responses was assessed with machine learning analysis. Results During the verbal fluency task, both patient groups showed increased activation in the anterior cingulate, left dorsolateral prefrontal cortex and right putamen as compared to healthy controls, as well as reduced deactivation of precuneus and posterior cingulate. The magnitude of activation was greatest in patients with schizophrenia, followed by patients with bipolar disorder and then healthy individuals. Additional recruitment in the right inferior frontal and right dorsolateral prefrontal cortices was observed in schizophrenia relative to both bipolar disorder and healthy subjects. The pattern of neural responses correctly identified individual patients with schizophrenia with an accuracy of 92%, and those with bipolar disorder with an accuracy of 79% in which mis-classification was typically of bipolar subjects as healthy controls. Conclusions In summary, both schizophrenia and bipolar disorder are associated with altered function in prefrontal, striatal and default mode networks, but the magnitude of this dysfunction is particularly marked in schizophrenia. The pattern of response to verbal fluency is highly

  9. Associations between maternal negative affect and adolescent's neural response to peer evaluation

    Science.gov (United States)

    Tan, Patricia Z.; Lee, Kyung Hwa; Dahl, Ronald E.; Nelson, Eric E.; Stroud, Laura J.; Siegle, Greg J.; Morgan, Judith K.; Silk, Jennifer S.

    2016-01-01

    Parenting is often implicated as a potential source of individual differences in youths’ emotional information processing. The present study examined whether parental affect is related to an important aspect of adolescent emotional development, response to peer evaluation. Specifically, we examined relations between maternal negative affect, observed during parent–adolescent discussion of an adolescent-nominated concern with which s/he wants parental support, and adolescent neural responses to peer evaluation in 40 emotionally healthy and depressed adolescents. We focused on a network of ventral brain regions involved in affective processing of social information: the amygdala, anterior insula, nucleus accumbens, and subgenual anterior cingulate, as well as the ventrolateral prefrontal cortex. Maternal negative affect was not associated with adolescent neural response to peer rejection. However, longer durations of maternal negative affect were associated with decreased responsivity to peer acceptance in the amygdala, left anterior insula, subgenual anterior cingulate, and left nucleus accumbens. These findings provide some of the first evidence that maternal negative affect is associated with adolescents’ neural processing of social rewards. Findings also suggest that maternal negative affect could contribute to alterations in affective processing, specifically, dampening the saliency and/or reward of peer interactions during adolescence. PMID:24613174

  10. Associations between maternal negative affect and adolescent's neural response to peer evaluation

    Directory of Open Access Journals (Sweden)

    Patricia Z. Tan

    2014-04-01

    Full Text Available Parenting is often implicated as a potential source of individual differences in youths’ emotional information processing. The present study examined whether parental affect is related to an important aspect of adolescent emotional development, response to peer evaluation. Specifically, we examined relations between maternal negative affect, observed during parent–adolescent discussion of an adolescent-nominated concern with which s/he wants parental support, and adolescent neural responses to peer evaluation in 40 emotionally healthy and depressed adolescents. We focused on a network of ventral brain regions involved in affective processing of social information: the amygdala, anterior insula, nucleus accumbens, and subgenual anterior cingulate, as well as the ventrolateral prefrontal cortex. Maternal negative affect was not associated with adolescent neural response to peer rejection. However, longer durations of maternal negative affect were associated with decreased responsivity to peer acceptance in the amygdala, left anterior insula, subgenual anterior cingulate, and left nucleus accumbens. These findings provide some of the first evidence that maternal negative affect is associated with adolescents’ neural processing of social rewards. Findings also suggest that maternal negative affect could contribute to alterations in affective processing, specifically, dampening the saliency and/or reward of peer interactions during adolescence.

  11. Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms

    Directory of Open Access Journals (Sweden)

    Melynda D. Casement

    2014-04-01

    Full Text Available Developmental models of psychopathology posit that exposure to social stressors may confer risk for depression in adolescent girls by disrupting neural reward circuitry. The current study tested this hypothesis by examining the relationship between early adolescent social stressors and later neural reward processing and depressive symptoms. Participants were 120 girls from an ongoing longitudinal study of precursors to depression across adolescent development. Low parental warmth, peer victimization, and depressive symptoms were assessed when the girls were 11 and 12 years old, and participants completed a monetary reward guessing fMRI task and assessment of depressive symptoms at age 16. Results indicate that low parental warmth was associated with increased response to potential rewards in the medial prefrontal cortex (mPFC, striatum, and amygdala, whereas peer victimization was associated with decreased response to potential rewards in the mPFC. Furthermore, concurrent depressive symptoms were associated with increased reward anticipation response in mPFC and striatal regions that were also associated with early adolescent psychosocial stressors, with mPFC and striatal response mediating the association between social stressors and depressive symptoms. These findings are consistent with developmental models that emphasize the adverse impact of early psychosocial stressors on neural reward processing and risk for depression in adolescence.

  12. Neural mechanisms linking social status and inflammatory responses to social stress.

    Science.gov (United States)

    Muscatell, Keely A; Dedovic, Katarina; Slavich, George M; Jarcho, Michael R; Breen, Elizabeth C; Bower, Julienne E; Irwin, Michael R; Eisenberger, Naomi I

    2016-06-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  14. Intranasal oxytocin increases neural responses to social reward in post-traumatic stress disorder.

    Science.gov (United States)

    Nawijn, Laura; van Zuiden, Mirjam; Koch, Saskia B J; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2017-02-01

    Therapeutic alliance and perceived social support are important predictors of treatment response for post-traumatic stress disorder (PTSD). Intranasal oxytocin administration may enhance treatment response by increasing sensitivity for social reward and thereby therapeutic alliance and perceived social support. As a first step to investigate this therapeutical potential, we investigated whether intranasal oxytocin enhances neural sensitivity to social reward in PTSD patients. Male and female police officers with (n = 35) and without PTSD (n = 37) were included in a double-blind, randomized, placebo-controlled cross-over fMRI study. After intranasal oxytocin (40 IU) and placebo administration, a social incentive delay task was conducted to investigate neural responses during social reward and punishment anticipation and feedback. Under placebo, PTSD patients showed reduced left anterior insula (AI) responses to social rewards (i.e. happy faces) compared with controls. Oxytocin administration increased left AI responses during social reward in PTSD patients, such that PTSD patients no longer differed from controls under placebo. Furthermore, in PTSD patients, oxytocin increased responses to social reward in the right putamen. By normalizing abberant insula responses and increasing putamen responses to social reward, oxytocin administration may enhance sensitivity for social support and therapeutic alliance in PTSD patients. Future studies are needed to investigate clinical effects of oxytocin. © The Author (2016). Published by Oxford University Press.

  15. What's in a child's face? : effects of facial resemblance, love withdrawal, empathy and context on behavioral and neural responses

    NARCIS (Netherlands)

    Heckendorf, E.

    2018-01-01

    The aim of this thesis is to increase our knowledge of individual differences in the neural processing and appraisal of children’s faces that differ in their degree of resemblance with the participant’s face. Chapter 2 focuses on participants’ neural responses to child faces that differ in

  16. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  17. High-content profiling of cell responsiveness to graded substrates based on combinyatorially variant polymers.

    Science.gov (United States)

    Liu, Er; Treiser, Matthew D; Patel, Hiral; Sung, Hak-Joon; Roskov, Kristen E; Kohn, Joachim; Becker, Matthew L; Moghe, Prabhas V

    2009-08-01

    We have developed a novel approach combining high information and high throughput analysis to characterize cell adhesive responses to biomaterial substrates possessing gradients in surface topography. These gradients were fabricated by subjecting thin film blends of tyrosine-derived polycarbonates, i.e. poly(DTE carbonate) and poly(DTO carbonate) to a gradient temperature annealing protocol. Saos-2 cells engineered with a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on the gradient substrates to assess the effects of nanoscale surface topology and roughness that arise during the phase separation process on cell attachment and adhesion strength. The high throughput imaging approach allowed us to rapidly identify the "global" and "high content" structure-property relationships between cell adhesion and biomaterial properties such as polymer chemistry and topography. This study found that cell attachment and spreading increased monotonically with DTE content and were significantly elevated at the position with intermediate regions corresponding to the highest "gradient" of surface roughness, while GFP-f farnesylation intensity descriptors were sensitively altered by surface roughness, even in cells with comparable levels of spreading.

  18. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  19. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    Science.gov (United States)

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  20. Do Hostile School Environments Promote Social Deviance by Shaping Neural Responses to Social Exclusion?

    Science.gov (United States)

    Schriber, Roberta A; Rogers, Christina R; Ferrer, Emilio; Conger, Rand D; Robins, Richard W; Hastings, Paul D; Guyer, Amanda E

    2018-03-01

    The present study examined adolescents' neural responses to social exclusion as a mediator of past exposure to a hostile school environment (HSE) and later social deviance, and whether family connectedness buffered these associations. Participants (166 Mexican-origin adolescents, 54.4% female) reported on their HSE exposure and family connectedness across Grades 9-11. Six months later, neural responses to social exclusion were measured. Finally, social deviance was self-reported in Grades 9 and 12. The HSE-social deviance link was mediated by greater reactivity to social deviance in subgenual anterior cingulate cortex, a region from the social pain network also implicated in social susceptibility. However, youths with stronger family bonds were protected from this neurobiologically mediated path. These findings suggest a complex interplay of risk and protective factors that impact adolescent behavior through the brain. © 2018 Society for Research on Adolescence.

  1. PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors.

    Science.gov (United States)

    Gaber, Zachary B; Butler, Samantha J; Novitch, Bennett G

    2013-10-01

    Distinct classes of neurons and glial cells in the developing spinal cord arise at specific times and in specific quantities from spatially discrete neural progenitor domains. Thus, adjacent domains can exhibit marked differences in their proliferative potential and timing of differentiation. However, remarkably little is known about the mechanisms that account for this regional control. Here, we show that the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) plays a critical role shaping patterns of neuronal differentiation by gating the expression of Fibroblast Growth Factor (FGF) Receptor 3 and responsiveness of progenitors to FGFs. PLZF elevation increases FGFR3 expression and STAT3 pathway activity, suppresses neurogenesis, and biases progenitors towards glial cell production. In contrast, PLZF loss reduces FGFR3 levels, leading to premature neuronal differentiation. Together, these findings reveal a novel transcriptional strategy for spatially tuning the responsiveness of distinct neural progenitor groups to broadly distributed mitogenic signals in the embryonic environment.

  2. Differentiation-Dependent Motility-Responses of Developing Neural Progenitors to Optogenetic Stimulation

    Directory of Open Access Journals (Sweden)

    Tímea Köhidi

    2017-12-01

    Full Text Available During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.

  3. A computational relationship between thalamic sensory neural responses and contrast perception.

    Science.gov (United States)

    Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A

    2015-01-01

    Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.

  4. Increased neural responses to empathy for pain might explain how acute stress increases prosociality

    OpenAIRE

    Tomova, L.; Majdand?i?, J.; Hummer, A.; Windischberger, C.; Heinrichs, M.; Lamm, C.

    2016-01-01

    Abstract Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of...

  5. Maternal neural responses to infant cries and faces: relationships with substance use

    Directory of Open Access Journals (Sweden)

    Nicole eLandi

    2011-06-01

    Full Text Available Substance abuse in pregnant and recently postpartum women is a major public health concern because of effects on the infant and on the ability of the adult to care for the infant. In addition to the negative health effects of teratogenic substances on fetal development, substance use can contribute to difficulties associated with the social and behavioral aspects of parenting. Neural circuits associated with parenting behavior overlap with circuits involved in addiction (e.g., frontal, striatal and limbic systems and thus may be co-opted for the craving/reward cycle associated with substance use and abuse and be less available for parenting. The current study investigates the degree to which neural circuits associated with parenting are disrupted in mothers who are substance-using. Specifically, we used functional magnetic resonance imaging to examine the neural response to emotional infant cues (faces and cries in substance-using compared to non-using mothers. In response to both faces (of varying emotional valence and cries (of varying distress levels, substance-using mothers evidenced reduced neural activation in regions that have been previously implicated in reward and motivation as well as regions involved in cognitive control. Specifically, in response to faces, substance users showed reduced activation in prefrontal regions, including the dorsolateral and ventromedial prefrontal cortex, as well as visual processing (occipital lobes and limbic regions (parahippocampus and amygdala. Similarly, in response to infant cries substance-using mothers showed reduced activation relative to non-using mothers in prefrontal regions, auditory sensory processing regions, insula and limbic regions (parahippocampus and amygdala. These findings suggest that infant stimuli may be less salient for substance-using mothers, and such reduced saliency may impair developing infant-caregiver attachment and the ability of mothers to respond appropriately to their

  6. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence

    OpenAIRE

    Guyer, Amanda E.; Jarcho, Johanna M.; Pérez-Edgar, Koraly; Degnan, Kathryn A.; Pine, Daniel S.; Fox, Nathan A.; Nelson, Eric E.

    2015-01-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children’s caregiving context. The convergence of a child’s temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The p...

  7. A face a mother could love: depression-related maternal neural responses to infant emotion faces.

    Science.gov (United States)

    Laurent, Heidemarie K; Ablow, Jennifer C

    2013-01-01

    Depressed mothers show negatively biased responses to their infants' emotional bids, perhaps due to faulty processing of infant cues. This study is the first to examine depression-related differences in mothers' neural response to their own infant's emotion faces, considering both effects of perinatal depression history and current depressive symptoms. Primiparous mothers (n = 22), half of whom had a history of major depressive episodes (with one episode occurring during pregnancy and/or postpartum), were exposed to images of their own and unfamiliar infants' joy and distress faces during functional neuroimaging. Group differences (depression vs. no-depression) and continuous effects of current depressive symptoms were tested in relation to neural response to own infant emotion faces. Compared to mothers with no psychiatric diagnoses, those with depression showed blunted responses to their own infant's distress faces in the dorsal anterior cingulate cortex. Mothers with higher levels of current symptomatology showed reduced responses to their own infant's joy faces in the orbitofrontal cortex and insula. Current symptomatology also predicted lower responses to own infant joy-distress in left-sided prefrontal and insula/striatal regions. These deficits in self-regulatory and motivational response circuits may help explain parenting difficulties in depressed mothers.

  8. Effects of Acute Alcohol Intoxication on Empathic Neural Responses for Pain

    Directory of Open Access Journals (Sweden)

    Yang Hu

    2018-01-01

    Full Text Available The questions whether and how empathy for pain can be modulated by acute alcohol intoxication in the non-dependent population remain unanswered. To address these questions, a double-blind, placebo-controlled, within-subject study design was adopted in this study, in which healthy social drinkers were asked to complete a pain-judgment task using pictures depicting others' body parts in painful or non-painful situations during fMRI scanning, either under the influence of alcohol intoxication or placebo conditions. Empathic neural activity for pain was reduced by alcohol intoxication only in the dorsal anterior cingulate cortex (dACC. More interestingly, we observed that empathic neural activity for pain in the right anterior insula (rAI was significantly correlated with trait empathy only after alcohol intoxication, along with impaired functional connectivity between the rAI and the fronto-parietal attention network. Our results reveal that alcohol intoxication not only inhibits empathic neural responses for pain but also leads to trait empathy inflation, possibly via impaired top-down attentional control. These findings help to explain the neural mechanism underlying alcohol-related social problems.

  9. Evidence of Rapid Modulation by Social Information of Subjective, Physiological, and Neural Responses to Emotional Expressions.

    Science.gov (United States)

    Mermillod, Martial; Grynberg, Delphine; Pio-Lopez, Léo; Rychlowska, Magdalena; Beffara, Brice; Harquel, Sylvain; Vermeulen, Nicolas; Niedenthal, Paula M; Dutheil, Frédéric; Droit-Volet, Sylvie

    2017-01-01

    Recent research suggests that conceptual or emotional factors could influence the perceptual processing of stimuli. In this article, we aimed to evaluate the effect of social information (positive, negative, or no information related to the character of the target) on subjective (perceived and felt valence and arousal), physiological (facial mimicry) as well as on neural (P100 and N170) responses to dynamic emotional facial expressions (EFE) that varied from neutral to one of the six basic emotions. Across three studies, the results showed reduced ratings of valence and arousal of EFE associated with incongruent social information (Study 1), increased electromyographical responses (Study 2), and significant modulation of P100 and N170 components (Study 3) when EFE were associated with social (positive and negative) information (vs. no information). These studies revealed that positive or negative social information reduces subjective responses to incongruent EFE and produces a similar neural and physiological boost of the early perceptual processing of EFE irrespective of their congruency. In conclusion, the article suggests that the presence of positive or negative social context modulates early physiological and neural activity preceding subsequent behavior.

  10. Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa

    Science.gov (United States)

    Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2011-01-01

    Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807

  11. Differential neural responses to food images in women with bulimia versus anorexia nervosa.

    Science.gov (United States)

    Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2011-01-01

    Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.

  12. Evidence of Rapid Modulation by Social Information of Subjective, Physiological, and Neural Responses to Emotional Expressions

    Directory of Open Access Journals (Sweden)

    Martial Mermillod

    2018-01-01

    Full Text Available Recent research suggests that conceptual or emotional factors could influence the perceptual processing of stimuli. In this article, we aimed to evaluate the effect of social information (positive, negative, or no information related to the character of the target on subjective (perceived and felt valence and arousal, physiological (facial mimicry as well as on neural (P100 and N170 responses to dynamic emotional facial expressions (EFE that varied from neutral to one of the six basic emotions. Across three studies, the results showed reduced ratings of valence and arousal of EFE associated with incongruent social information (Study 1, increased electromyographical responses (Study 2, and significant modulation of P100 and N170 components (Study 3 when EFE were associated with social (positive and negative information (vs. no information. These studies revealed that positive or negative social information reduces subjective responses to incongruent EFE and produces a similar neural and physiological boost of the early perceptual processing of EFE irrespective of their congruency. In conclusion, the article suggests that the presence of positive or negative social context modulates early physiological and neural activity preceding subsequent behavior.

  13. Modelling the perceptual similarity of facial expressions from image statistics and neural responses.

    Science.gov (United States)

    Sormaz, Mladen; Watson, David M; Smith, William A P; Young, Andrew W; Andrews, Timothy J

    2016-04-01

    The ability to perceive facial expressions of emotion is essential for effective social communication. We investigated how the perception of facial expression emerges from the image properties that convey this important social signal, and how neural responses in face-selective brain regions might track these properties. To do this, we measured the perceptual similarity between expressions of basic emotions, and investigated how this is reflected in image measures and in the neural response of different face-selective regions. We show that the perceptual similarity of different facial expressions (fear, anger, disgust, sadness, happiness) can be predicted by both surface and feature shape information in the image. Using block design fMRI, we found that the perceptual similarity of expressions could also be predicted from the patterns of neural response in the face-selective posterior superior temporal sulcus (STS), but not in the fusiform face area (FFA). These results show that the perception of facial expression is dependent on the shape and surface properties of the image and on the activity of specific face-selective regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The influence of cochlear traveling wave and neural adaptation on auditory brainstem responses

    DEFF Research Database (Denmark)

    Junius, D.; Dau, Torsten

    2005-01-01

    of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed...... by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL......), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz...

  15. Neural Substrates of Interactive Musical Improvisation: An fMRI Study of ‘Trading Fours’ in Jazz

    Science.gov (United States)

    Donnay, Gabriel F.; Rankin, Summer K.; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J.

    2014-01-01

    Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication. PMID:24586366

  16. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    Science.gov (United States)

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  17. Transcriptional response of Hoxb genes to retinoid signalling is regionally restricted along the neural tube rostrocaudal axis.

    Science.gov (United States)

    Carucci, Nicoletta; Cacci, Emanuele; Nisi, Paola S; Licursi, Valerio; Paul, Yu-Lee; Biagioni, Stefano; Negri, Rodolfo; Rugg-Gunn, Peter J; Lupo, Giuseppe

    2017-04-01

    During vertebrate neural development, positional information is largely specified by extracellular morphogens. Their distribution, however, is very dynamic due to the multiple roles played by the same signals in the developing and adult neural tissue. This suggests that neural progenitors are able to modify their competence to respond to morphogen signalling and autonomously maintain positional identities after their initial specification. In this work, we take advantage of in vitro culture systems of mouse neural stem/progenitor cells (NSPCs) to show that NSPCs isolated from rostral or caudal regions of the mouse neural tube are differentially responsive to retinoic acid (RA), a pivotal morphogen for the specification of posterior neural fates. Hoxb genes are among the best known RA direct targets in the neural tissue, yet we found that RA could promote their transcription only in caudal but not in rostral NSPCs. Correlating with these effects, key RA-responsive regulatory regions in the Hoxb cluster displayed opposite enrichment of activating or repressing histone marks in rostral and caudal NSPCs. Finally, RA was able to strengthen Hoxb chromatin activation in caudal NSPCs, but was ineffective on the repressed Hoxb chromatin of rostral NSPCs. These results suggest that the response of NSPCs to morphogen signalling across the rostrocaudal axis of the neural tube may be gated by the epigenetic configuration of target patterning genes, allowing long-term maintenance of intrinsic positional values in spite of continuously changing extrinsic signals.

  18. Boys with conduct problems and callous-unemotional traits: Neural response to reward and punishment and associations with treatment response

    Directory of Open Access Journals (Sweden)

    Amy L. Byrd

    2018-04-01

    Full Text Available Abnormalities in reward and punishment processing are implicated in the development of conduct problems (CP, particularly among youth with callous-unemotional (CU traits. However, no studies have examined whether CP children with high versus low CU traits exhibit differences in the neural response to reward and punishment. A clinic-referred sample of CP boys with high versus low CU traits (ages 8–11; n = 37 and healthy controls (HC; n = 27 completed a fMRI task assessing reward and punishment processing. CP boys also completed a randomized control trial examining the effectiveness of an empirically-supported intervention (i.e., Stop-Now-And-Plan; SNAP. Primary analyses examined pre-treatment differences in neural activation to reward and punishment, and exploratory analyses assessed whether these differences predicted treatment outcome. Results demonstrated associations between CP and reduced amygdala activation to punishment independent of age, race, IQ and co-occurring ADHD and internalizing symptoms. CU traits were not associated with reward or punishment processing after accounting for covariates and no differences were found between CP boys with high versus low CU traits. While boys assigned to SNAP showed a greater reduction in CP, differences in neural activation were not associated with treatment response. Findings suggest that reduced sensitivity to punishment is associated with early-onset CP in boys regardless of the level of CU traits. Keywords: Conduct problems, Callous-unemotional (CU traits, Reward, Punishment, fMRI

  19. Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth.

    Science.gov (United States)

    Burger, Kyle S; Stice, Eric

    2014-02-01

    Although soft drinks are heavily advertised, widely consumed, and have been associated with obesity, little is understood regarding neural responsivity to soft drink intake, anticipated intake, and advertisements. Functional MRI was used to assess examine neural response to carbonated soft drink intake, anticipated intake and advertisement exposure as well as milkshake intake in 27 adolescents that varied on soft drink consumer status. Intake and anticipated intake of carbonated Coke® activated regions implicated in gustatory, oral somatosensory, and reward processing, yet high-fat/sugar milkshake intake elicited greater activation in these regions vs. Coke intake. Advertisements highlighting the Coke product vs. nonfood control advertisements, but not the Coke logo, activated gustatory and visual brain regions. Habitual Coke consumers vs. nonconsumers showed greater posterior cingulate responsivity to Coke logo ads, suggesting that the logo is a conditioned cue. Coke consumers exhibited less ventrolateral prefrontal cortex responsivity during anticipated Coke intake relative to nonconsumers. Results indicate that soft drinks activate reward and gustatory regions, but are less potent in activating these regions than high-fat/sugar beverages, and imply that habitual soft drink intake promotes hyper-responsivity of regions encoding salience/attention toward brand specific cues and hypo-responsivity of inhibitory regions while anticipating intake. Copyright © 2013 The Obesity Society.

  20. Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth

    Science.gov (United States)

    Burger, Kyle S.; Stice, Eric

    2014-01-01

    OBJECTIVE Although soft drinks are heavily advertised, widely consumed, and have been associated with obesity, little is understood regarding neural responsivity to soft drink intake, anticipated intake, and advertisements. METHODS Functional MRI was used to assess examine neural response to carbonated soft drink intake, anticipated intake and advertisement exposure as well as milkshake intake in 27 adolescents that varied on soft drink consumer status. RESULTS Intake and anticipated intake of carbonated Coke® activated regions implicated in gustatory, oral somatosensory, and reward processing, yet high-fat/sugar milkshake intake elicited greater activation in these regions versus Coke intake. Advertisements highlighting the Coke product vs. non-food control advertisements, but not the Coke logo, activated gustatory and visual brain regions. Habitual Coke consumers vs. non-consumers showed greater posterior cingulate responsivity to Coke logo ads, suggesting that the logo is a conditioned cue. Coke consumers exhibited less ventrolateral prefrontal cortex responsivity during anticipated Coke intake relative to non-consumers. CONCLUSIONS Results indicate that soft drinks activate reward and gustatory regions, but are less potent in activating these regions than high-fat/sugar beverages, and imply that habitual soft drink intake promotes hyper-responsivity of regions encoding salience/attention toward brand specific cues and hypo-responsivity of inhibitory regions while anticipating intake. PMID:23836764

  1. Common and distinct neural mechanisms of attentional switching and response conflict.

    Science.gov (United States)

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Different neural and cognitive response to emotional faces in healthy monozygotic twins at risk of depression.

    Science.gov (United States)

    Miskowiak, K W; Glerup, L; Vestbo, C; Harmer, C J; Reinecke, A; Macoveanu, J; Siebner, H R; Kessing, L V; Vinberg, M

    2015-05-01

    Negative cognitive bias and aberrant neural processing of emotional faces are trait-marks of depression. Yet it is unclear whether these changes constitute an endophenotype for depression and are also present in healthy individuals with hereditary risk for depression. Thirty healthy, never-depressed monozygotic (MZ) twins with a co-twin history of depression (high risk group: n = 13) or without co-twin history of depression (low-risk group: n = 17) were enrolled in a functional magnetic resonance imaging (fMRI) study. During fMRI, participants viewed fearful and happy faces while performing a gender discrimination task. After the scan, they were given a faces dot-probe task, a facial expression recognition task and questionnaires assessing mood, personality traits and coping strategies. High-risk twins showed increased neural response to happy and fearful faces in dorsal anterior cingulate cortex (ACC), dorsomedial prefrontal cortex (dmPFC), pre-supplementary motor area and occipito-parietal regions compared to low-risk twins. They also displayed stronger negative coupling between amygdala and pregenual ACC, dmPFC and temporo-parietal regions during emotional face processing. These task-related changes in neural responses in high-risk twins were accompanied by impaired gender discrimination performance during face processing. They also displayed increased attention vigilance for fearful faces and were slower at recognizing facial expressions relative to low-risk controls. These effects occurred in the absence of differences between groups in mood, subjective state or coping. Different neural response and functional connectivity within fronto-limbic and occipito-parietal regions during emotional face processing and enhanced fear vigilance may be key endophenotypes for depression.

  3. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    Science.gov (United States)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  4. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings

    NARCIS (Netherlands)

    van Rooij, Daan; Hartman, Catharina A.; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2015-01-01

    Introduction: Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if

  5. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.

    Science.gov (United States)

    Chen, Ao; Peter, Varghese; Wijnen, Frank; Schnack, Hugo; Burnham, Denis

    2018-04-21

    Language experience shapes musical and speech pitch processing. We investigated whether speaking a lexical tone language natively modulates neural processing of pitch in language and music as well as their correlation. We tested tone language (Mandarin Chinese), and non-tone language (Dutch) listeners in a passive oddball paradigm measuring mismatch negativity (MMN) for (i) Chinese lexical tones and (ii) three-note musical melodies with similar pitch contours. For lexical tones, Chinese listeners showed a later MMN peak than the non-tone language listeners, whereas for MMN amplitude there were no significant differences between groups. Dutch participants also showed a late discriminative negativity (LDN). In the music condition two MMNs, corresponding to the two notes that differed between the standard and the deviant were found for both groups, and an LDN were found for both the Dutch and the Chinese listeners. The music MMNs were significantly right lateralized. Importantly, significant correlations were found between the lexical tone and the music MMNs for the Dutch but not the Chinese participants. The results suggest that speaking a tone language natively does not necessarily enhance neural responses to pitch either in language or in music, but that it does change the nature of neural pitch processing: non-tone language speakers appear to perceive lexical tones as musical, whereas for tone language speakers, lexical tones and music may activate different neural networks. Neural resources seem to be assigned differently for the lexical tones and for musical melodies, presumably depending on the presence or absence of long-term phonological memory traces. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The influence of emotional priming on the neural substrates of memory: a prospective fMRI study using portrait art stimuli.

    Science.gov (United States)

    Baeken, Chris; De Raedt, Rudi; Van Schuerbeek, Peter; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-07-16

    Events coupled with an emotional context seem to be better retained than non-emotional events. The aim of our study was to investigate whether an emotional context could influence the neural substrates of memory associations with novel portrait art stimuli. In the current prospective fMRI study, we have investigated for one specific visual art form (modern artistic portraits with a high degree of abstraction) whether memory is influenced by priming with emotional facial pictures. In total forty healthy female volunteers in the same age range were recruited for the study. Twenty of these women participated in a prospective brain imaging memory paradigm and were asked to memorize a series of similar looking, but different portraits. After randomization, for twelve participants (Group 1), a third of the portraits was emotionally primed with approach-related pictures (smiling baby faces), a third with withdrawal-related pictures (baby faces with severe dermatological conditions), and another third with neutral images. Group 2 consisted of eight participants and they were not primed. Then, during an fMRI session 2h later, these portraits were viewed in random order intermixed with a set of new (previously unseen) ones, and the participants had to decide for each portrait whether or not they had already been seen. In a separate experiment, a different sample of twenty healthy females (Group 3) rated their mood after being exposed to the same art stimuli, without priming. The portraits did not evoke significant mood changes by themselves, supporting their initial neutral emotional character (Group 3). The correct decision on whether the portraits were Familiar of Unfamiliar led to similar neuronal activations in brain areas implicated in visual and attention processing for both groups (Groups 1 and 2). In contrast, whereas primed participants showed significant higher neuronal activities in the left midline superior frontal cortex (Brodmann area (BA) 6), unprimed

  7. Social priming modulates the neural response to ostracism: a new exploratory approach.

    Science.gov (United States)

    Hudac, Caitlin M

    2018-04-16

    The present study sought to evaluate whether social priming modulates neural responses to ostracism, such that making arbitrary interpersonal decisions increases the experience of social exclusion more than making arbitrary physical decisions. This exploratory event-related potential (ERP) study utilized the Lunchroom task, in which adults (N = 28) first selected one of two options that included either interpersonal or physical descriptors. Participants then received ostracism outcome feedback within a lunchroom scenario in which they were either excluded (e.g. sitting alone) or included (e.g. surrounded by others). While the N2 component was sensitive to priming decision condition, only the P3 component discriminated between ostracism decisions. Further inspection of the neural sources indicated that the amygdala, anterior cingulate cortex, and superior temporal gyrus were more engaged for exclusion than inclusion conditions during both N2 and P3 temporal windows. Evaluation of temporal source dynamics suggest that the effects of ostracism are predominant between 250-500 ms and were larger following interpersonal than physical decisions. These results suggest that being ostracized evokes a larger neural response that is modulated following priming of the social brain.

  8. Viscoelastic response of neural cells governed by the deposition of amyloid-β peptides (Aβ)

    Science.gov (United States)

    Gong, Ze; You, Ran; Chang, Raymond Chuen-Chung; Lin, Yuan

    2016-06-01

    Because of its intimate relation with Alzheimer's disease (AD), the question of how amyloid-β peptide (Aβ) deposition alters the membrane and cytoskeltal structure of neural cells and eventually their mechanical response has received great attention. In this study, the viscoelastic properties of primary neurons subjected to various Aβ treatments were systematically characterized using atomic force microrheology. It was found that both the storage ( G ') and loss ( G ″) moduli of neural cells are rate-dependent and grow by orders of magnitude as the driving frequency ω varies from 1 to 100 Hz. However, a much stronger frequency dependence was observed in the loss moduli (with a scaling exponent of ˜0.96) than that in G ' ( ˜ ω 0.2 ). Furthermore, both cell moduli increase gradually within the first 6 h of Aβ treatment before steady-state values are reached, with a higher dosage of Aβ leading to larger changes in cell properties. Interestingly, we showed that the measured neuron response can be well-explained by a power law structural damping model. Findings here establish a quantitative link between Aβ accumulation and the physical characteristics of neural cells and hence could provide new insights into how disorders like AD affect the progression of different neurological processes from a mechanics point of view.

  9. Reduced reward-related neural response to mimicry in individuals with autism.

    Science.gov (United States)

    Hsu, Chun-Ting; Neufeld, Janina; Chakrabarti, Bhismadev

    2018-03-01

    Mimicry is a facilitator of social bonds in humans, from infancy. This facilitation is made possible through changing the reward value of social stimuli; for example, we like and affiliate more with people who mimic us. Autism spectrum disorders (ASD) are marked by difficulties in forming social bonds. In this study, we investigate whether the reward-related neural response to being mimicked is altered in individuals with ASD, using a simple conditioning paradigm. Multiple studies in humans and nonhuman primates have established a crucial role for the ventral striatal (VS) region in responding to rewards. In this study, adults with ASD and matched controls first underwent a conditioning task outside the scanner, where they were mimicked by one face and 'anti-mimicked' by another. In the second part, participants passively viewed the conditioned faces in a 3T MRI scanner using a multi-echo sequence. The differential neural response towards mimicking vs. anti-mimicking faces in the VS was tested for group differences as well as an association with self-reported autistic traits. Multiple regression analysis revealed lower left VS response to mimicry (mimicking > anti-mimicking faces) in the ASD group compared to controls. The VS response to mimicry was negatively correlated with autistic traits across the whole sample. Our results suggest that for individuals with ASD and high autistic traits, being mimicked is associated with lower reward-related neural response. This result points to a potential mechanism underlying the difficulties reported by many of individuals with ASD in building social rapport. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. The missing link: Mothers’ neural response to infant cry related to infant attachment behaviors

    Science.gov (United States)

    Laurent, Heidemarie K.; Ablow, Jennifer C.

    2012-01-01

    This study addresses a gap in the attachment literature by investigating maternal neural response to cry related to infant attachment classifications and behaviors. Twenty-two primiparous mothers and their 18-month old infants completed the Strange Situation Procedure (SS) to elicit attachment behaviors. During a separate functional MRI session, mothers were exposed to their own infant’s cry sound, as well as an unfamiliar infant’s cry and control sound. Maternal neural response to own infant cry related to both overall attachment security and specific infant behaviors. Mothers of less secure infants maintained greater activation to their cry in left parahippocampal and amygdala regions and the right posterior insula. consistent with a negative schematic response bias. Mothers of infants exhibiting more avoidant or contact maintaining behaviors during the SS showed diminished response across left prefrontal, parietal, and cerebellar areas involved in attentional processing and cognitive control. Mothers of infants exhibiting more disorganized behavior showed reduced response in bilateral temporal and subcallosal areas relevant to social cognition and emotion regulation. No differences by attachment classification were found. Implications for attachment transmission models are discussed. PMID:22982277

  11. The missing link: mothers' neural response to infant cry related to infant attachment behaviors.

    Science.gov (United States)

    Laurent, Heidemarie K; Ablow, Jennifer C

    2012-12-01

    This study addresses a gap in the attachment literature by investigating maternal neural response to cry related to infant attachment classifications and behaviors. Twenty-two primiparous mothers and their 18-month old infants completed the Strange Situation (SS) procedure to elicit attachment behaviors. During a separate functional MRI session, mothers were exposed to their own infant's cry sound, as well as an unfamiliar infant's cry and control sound. Maternal neural response to own infant cry related to both overall attachment security and specific infant behaviors. Mothers of less secure infants maintained greater activation to their cry in left parahippocampal and amygdala regions and the right posterior insula consistent with a negative schematic response bias. Mothers of infants exhibiting more avoidant or contact maintaining behaviors during the SS showed diminished response across left prefrontal, parietal, and cerebellar areas involved in attentional processing and cognitive control. Mothers of infants exhibiting more disorganized behavior showed reduced response in bilateral temporal and subcallosal areas relevant to social cognition and emotion regulation. No differences by attachment classification were found. Implications for attachment transmission models are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A neural model for transient identification in dynamic processes with 'don't know' response

    International Nuclear Information System (INIS)

    Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto

    2003-01-01

    This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation

  13. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez, E-mail: rcsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  14. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez

    2011-01-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  15. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Energy Technology Data Exchange (ETDEWEB)

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  16. Neural responses to multimodal ostensive signals in 5-month-old infants.

    Directory of Open Access Journals (Sweden)

    Eugenio Parise

    Full Text Available Infants' sensitivity to ostensive signals, such as direct eye contact and infant-directed speech, is well documented in the literature. We investigated how infants interpret such signals by assessing common processing mechanisms devoted to them and by measuring neural responses to their compounds. In Experiment 1, we found that ostensive signals from different modalities display overlapping electrophysiological activity in 5-month-old infants, suggesting that these signals share neural processing mechanisms independently of their modality. In Experiment 2, we found that the activation to ostensive signals from different modalities is not additive to each other, but rather reflects the presence of ostension in either stimulus stream. These data support the thesis that ostensive signals obligatorily indicate to young infants that communication is directed to them.

  17. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Directory of Open Access Journals (Sweden)

    Karin Petrini

    Full Text Available In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music, visual (musician's movements only, and auditory emotional (music only displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound than for emotionally matching music performances (combining the musician's movements with matching emotional sound as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  18. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder.

    Science.gov (United States)

    Zhang, Jin-Tao; Yao, Yuan-Wei; Potenza, Marc N; Xia, Cui-Cui; Lan, Jing; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Ma, Shan-Shan; Fang, Xiao-Yi

    2016-01-01

    Internet gaming disorder (IGD) is characterized by high levels of craving for online gaming and related cues. Since addiction-related cues can evoke increased activation in brain areas involved in motivational and reward processing and may engender gaming behaviors or trigger relapse, ameliorating cue-induced craving may be a promising target for interventions for IGD. This study compared neural activation between 40 IGD and 19 healthy control (HC) subjects during an Internet-gaming cue-reactivity task and found that IGD subjects showed stronger activation in multiple brain areas, including the dorsal striatum, brainstem, substantia nigra, and anterior cingulate cortex, but lower activation in the posterior insula. Furthermore, twenty-three IGD subjects (CBI + group) participated in a craving behavioral intervention (CBI) group therapy, whereas the remaining 17 IGD subjects (CBI - group) did not receive any intervention, and all IGD subjects were scanned during similar time intervals. The CBI + group showed decreased IGD severity and cue-induced craving, enhanced activation in the anterior insula and decreased insular connectivity with the lingual gyrus and precuneus after receiving CBI. These findings suggest that CBI is effective in reducing craving and severity in IGD, and it may exert its effects by altering insula activation and its connectivity with regions involved in visual processing and attention bias.

  19. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Jin-Tao Zhang

    2016-01-01

    Full Text Available Internet gaming disorder (IGD is characterized by high levels of craving for online gaming and related cues. Since addiction-related cues can evoke increased activation in brain areas involved in motivational and reward processing and may engender gaming behaviors or trigger relapse, ameliorating cue-induced craving may be a promising target for interventions for IGD. This study compared neural activation between 40 IGD and 19 healthy control (HC subjects during an Internet-gaming cue-reactivity task and found that IGD subjects showed stronger activation in multiple brain areas, including the dorsal striatum, brainstem, substantia nigra, and anterior cingulate cortex, but lower activation in the posterior insula. Furthermore, twenty-three IGD subjects (CBI+ group participated in a craving behavioral intervention (CBI group therapy, whereas the remaining 17 IGD subjects (CBI− group did not receive any intervention, and all IGD subjects were scanned during similar time intervals. The CBI+ group showed decreased IGD severity and cue-induced craving, enhanced activation in the anterior insula and decreased insular connectivity with the lingual gyrus and precuneus after receiving CBI. These findings suggest that CBI is effective in reducing craving and severity in IGD, and it may exert its effects by altering insula activation and its connectivity with regions involved in visual processing and attention bias.

  20. A model of microsaccade-related neural responses induced by short-term depression in thalamocortical synapses

    Directory of Open Access Journals (Sweden)

    Wujie eYuan

    2013-04-01

    Full Text Available Microsaccades during fixation have been suggested to counteract visual fading. Recent experi- ments have also observed microsaccade-related neural responses from cellular record, scalp elec- troencephalogram (EEG and functional magnetic resonance imaging (fMRI. The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1 is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depres- sion (STD in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades.

  1. A model of microsaccade-related neural responses induced by short-term depression in thalamocortical synapses

    Science.gov (United States)

    Yuan, Wu-Jie; Dimigen, Olaf; Sommer, Werner; Zhou, Changsong

    2013-01-01

    Microsaccades during fixation have been suggested to counteract visual fading. Recent experiments have also observed microsaccade-related neural responses from cellular record, scalp electroencephalogram (EEG), and functional magnetic resonance imaging (fMRI). The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1) is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depression (STD) in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades. PMID:23630494

  2. How linear response shaped models of neural circuits and the quest for alternatives.

    Science.gov (United States)

    Herfurth, Tim; Tchumatchenko, Tatjana

    2017-10-01

    In the past decades, many mathematical approaches to solve complex nonlinear systems in physics have been successfully applied to neuroscience. One of these tools is the concept of linear response functions. However, phenomena observed in the brain emerge from fundamentally nonlinear interactions and feedback loops rather than from a composition of linear filters. Here, we review the successes achieved by applying the linear response formalism to topics, such as rhythm generation and synchrony and by incorporating it into models that combine linear and nonlinear transformations. We also discuss the challenges encountered in the linear response applications and argue that new theoretical concepts are needed to tackle feedback loops and non-equilibrium dynamics which are experimentally observed in neural networks but are outside of the validity regime of the linear response formalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neural Correlates of Response Inhibition and Conflict Control on Facial Expressions

    Directory of Open Access Journals (Sweden)

    Tongran Liu

    2018-01-01

    Full Text Available Response inhibition and conflict control on affective information can be regarded as two important emotion regulation and cognitive control processes. The emotional Go/Nogo flanker paradigm was adopted and participant’s event-related potentials (ERPs were analyzed to investigate how response inhibition and conflict control interplayed. The behavioral findings revealed that participants showed higher accuracy to identify happy faces in congruent condition relative to that in incongruent condition. The electrophysiological results manifested that response inhibition and conflict control interplayed during the detection/conflict monitoring stage, and Nogo-N2 was more negative in the incongruent trials than the congruent trials. With regard to the inhibitory control/conflict resolution stage, Nogo responses induced greater frontal P3 and parietal P3 responses than Go responses did. The difference waveforms of N2 and parietal P3 showed that response inhibition and conflict control had distinct processes, and the multiple responses requiring both conflict control and response inhibition processes induced stronger monitoring and resolution processes than conflict control. The current study manifested that response inhibition and conflict control on emotional information required separable neural mechanisms during emotion regulation processes.

  4. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  5. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence

    Science.gov (United States)

    Guyer, Amanda E.; Jarcho, Johanna M.; Pérez-Edgar, Koraly; Degnan, Kathryn A.; Pine, Daniel S.; Fox, Nathan A.; Nelson, Eric E.

    2015-01-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children’s caregiving context. The convergence of a child’s temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The present study used functional neuroimaging to assess the moderating effects of different parenting styles on neural response to peer rejection in two groups of adolescents characterized by their early childhood temperament (Mage = 17.89 years, N= 39, 17 males, 22 females; 18 with BI; 21 without BI). The moderating effects of authoritarian and authoritative parenting styles were examined in three brain regions linked with social anxiety: ventrolateral prefrontal cortex (vlPFC), striatum, and amygdala. In youth characterized with BI in childhood, but not in those without BI, diminished responses to peer rejection in vlPFC were associated with higher levels of authoritarian parenting. In contrast, all youth showed decreased caudate response to peer rejection at higher levels of authoritative parenting. These findings indicate that BI in early life relates to greater neurobiological sensitivity to variance in parenting styles, particularly harsh parenting, in late adolescence. These results are discussed in relation to biopsychosocial models of development. PMID:25588884

  6. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  7. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence.

    Science.gov (United States)

    Guyer, Amanda E; Jarcho, Johanna M; Pérez-Edgar, Koraly; Degnan, Kathryn A; Pine, Daniel S; Fox, Nathan A; Nelson, Eric E

    2015-07-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children's caregiving context. The convergence of a child's temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The present study used functional neuroimaging to assess the moderating effects of different parenting styles on neural response to peer rejection in two groups of adolescents characterized by their early childhood temperament (M(age) = 17.89 years, N = 39, 17 males, 22 females; 18 with BI; 21 without BI). The moderating effects of authoritarian and authoritative parenting styles were examined in three brain regions linked with social anxiety: ventrolateral prefrontal cortex (vlPFC), striatum, and amygdala. In youth characterized with BI in childhood, but not in those without BI, diminished responses to peer rejection in vlPFC were associated with higher levels of authoritarian parenting. In contrast, all youth showed decreased caudate response to peer rejection at higher levels of authoritative parenting. These findings indicate that BI in early life relates to greater neurobiological sensitivity to variance in parenting styles, particularly harsh parenting, in late adolescence. These results are discussed in relation to biopsychosocial models of development.

  8. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  9. An fMRI paradigm based on Williams inhibition test to study the neural substrates of attention and inhibitory control.

    Science.gov (United States)

    Dores, Artemisa R; Barbosa, Fernando; Carvalho, Irene P; Almeida, Isabel; Guerreiro, Sandra; da Rocha, Benedita Martins; Cunha, Gil; Castelo Branco, Miguel; de Sousa, Liliana; Castro Caldas, Alexandre

    2017-12-01

    The purpose of this study is to present an fMRI paradigm, based on the Williams inhibition test (WIT), to study attentional and inhibitory control and their neuroanatomical substrates. We present an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioral performances of healthy participants from those of individuals with acquired brain injury. Stroop and Simon tests present similarities with WIT, but this latter is more demanding. We analyze the BOLD signal in 10 healthy participants performing the WIT. The dorsolateral prefrontal cortex, the inferior prefrontal cortex, the anterior cingulate cortex, and the posterior cingulate cortex were defined for specified region of interest analysis. We additionally compare behavioral data (hits, errors, reaction times) of the healthy participants with those of eight acquired brain injury patients. Data were analyzed with GLM-based random effects and Mann-Whitney tests. Results show the involvement of the defined regions and indicate that the WIT is sensitive to brain lesions. This WIT-based block design paradigm can be used as a research methodology for behavioral and neuroimaging studies of the attentional and inhibitory components of executive functions.

  10. Neural response to pictorial health warning labels can predict smoking behavioral change.

    Science.gov (United States)

    Riddle, Philip J; Newman-Norlund, Roger D; Baer, Jessica; Thrasher, James F

    2016-11-01

    In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants' self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals' intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers). © The Author (2016). Published by Oxford University Press.

  11. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism.

    Science.gov (United States)

    Chervyakov, Alexander V; Sinitsyn, Dmitry O; Piradov, Michael A

    2016-01-01

    HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  12. A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability

    Directory of Open Access Journals (Sweden)

    Salvatore Fusco

    2016-02-01

    Full Text Available Summary: Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1 is modulated in neural stem and progenitor cells (NSCs by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein and Sirt-1 (Sirtuin 1, two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis. : Using a combination of in vitro and in vivo studies, Fusco et al. find that excess glucose impairs the self-renewal capacity of neural stem cells through a molecular circuit that involves the transcription factor CREB and Sirtuin 1. The authors suggest that this circuitry may link nutrient excess with neurodegeneration and brain aging. Keywords: neural stem cells, adult neurogenesis, CREB, Sirt-1, nutrients, metabolism, diabetes

  13. FMRI Study of Neural Responses to Implicit Infant Emotion in Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Jenni Leppanen

    2017-05-01

    Full Text Available Difficulties in social–emotional processing have been proposed to play an important role in the development and maintenance of anorexia nervosa (AN. Few studies, thus far, have investigated neural processes that underlie these difficulties, including processing emotional facial expressions. However, the majority of these studies have investigated neural responses to adult emotional display, which may be confounded by elevated sensitivity to social rank and threat in AN. Therefore, the aim of this study was to investigate the neural processes underlying implicit processing of positively and negatively valenced infant emotional display in AN. Twenty-one adult women with AN and twenty-six healthy comparison (HC women were presented with images of positively valenced, negatively valenced, and neutral infant faces during a fMRI scan. Significant differences between the groups in positive > neutral and negative > neutral contrasts were investigated in a priori regions of interest, including the bilateral amygdala, insula, and lateral prefrontal cortex (PFC. The findings revealed that the AN participants showed relatively increased recruitment while the HC participants showed relatively reduced recruitment of the bilateral amygdala and the right dorsolateral PFC in the positive > neutral contrast. In the negative > neutral contrast, the AN group showed relatively increased recruitment of the left posterior insula while the HC groups showed relatively reduced recruitment of this region. These findings suggest that people with AN may engage in implicit prefrontal down-regulation of elevated limbic reactivity to positively social–emotional stimuli.

  14. Functional connectivity substrates for tDCS response in Minimally Conscious State patients

    Directory of Open Access Journals (Sweden)

    Carlo Cavaliere

    2016-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI of 16 sub-acute and chronic MCS patients (6 tDCS responders who successively received a single left dorsolateral prefrontal cortex (DLPFC tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network and default-mode network was performed.TDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus.Our findings suggest that a prior high connectivity with regions belonging to extrinsic control network can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.

  15. Neural correlates of treatment response in depressed bipolar adolescents during emotion processing.

    Science.gov (United States)

    Diler, Rasim Somer; Ladouceur, Cecile D; Segreti, Annamaria; Almeida, Jorge R C; Birmaher, Boris; Axelson, David A; Phillips, Mary L; Pan, Lisa A

    2013-06-01

    Depressive mood in adolescents with bipolar disorder (BDd) is associated with significant morbidity and mortality, but we have limited information about neural correlates of depression and treatment response in BDd. Ten adolescents with BDd (8 females, mean age = 15.6 ± 0.9) completed two (fearful and happy) face gender labeling fMRI experiments at baseline and after 6-weeks of open treatment. Whole-brain analysis was used at baseline to compare their neural activity with those of 10 age and sex-matched healthy controls (HC). For comparisons of the neural activity at baseline and after treatment of youth with BDd, region of interest analysis for dorsal/ventral prefrontal, anterior cingulate, and amygdala activity, and significant regions identified by wholebrain analysis between BDd and HC were analyzed. There was significant improvement in depression scores (mean percentage change on the Child Depression Rating Scale-Revised 57 % ± 28). Neural activity after treatment was decreased in left occipital cortex in the intense fearful experiment, but increased in left insula, left cerebellum, and right ventrolateral prefrontal cortex in the intense happy experiment. Greater improvement in depression was associated with baseline higher activity in ventral ACC to mild happy faces. Study sample size was relatively small for subgroup analysis and consisted of mainly female adolescents that were predominantly on psychotropic medications during scanning. Our results of reduced negative emotion processing versus increased positive emotion processing after treatment of depression (improvement of cognitive bias to negative and away from positive) are consistent with the improvement of depression according to Beck's cognitive theory.

  16. Altered neural responses to heat pain in drug-naive patients with Parkinson disease.

    Science.gov (United States)

    Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike

    2017-08-01

    Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.

  17. Sex differences in neural responses to stress and alcohol context cues.

    Science.gov (United States)

    Seo, Dongju; Jia, Zhiru; Lacadie, Cheryl M; Tsou, Kristen A; Bergquist, Keri; Sinha, Rajita

    2011-11-01

    Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. This study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized stress, alcohol-cue, and neutral-relaxing scenarios. Stress and alcohol-cue exposure increased activity in the cortico-limbic-striatal circuit (P left anterior insula, striatum, and visuomotor regions (parietal and occipital lobe, and cerebellum). Activity in the left dorsal striatum increased during stress, while bilateral ventral striatum activity was evident during alcohol-cue exposure. Men displayed greater stress-related activations in the mPFC, rostral ACC, posterior insula, amygdala, and hippocampus than women, whereas women showed greater alcohol-cue-related activity in the superior and middle frontal gyrus (SFG/MFG) than men. Stress-induced anxiety was positively associated with activity in emotion-modulation regions, including the medial OFC, ventromedial PFC, left superior-mPFC, and rostral ACC in men, but in women with activation in the SFG/MFG, regions involved in cognitive processing. Alcohol craving was significantly associated with the striatum (encompassing dorsal, and ventral) in men, supporting its involvement in alcohol "urge" in healthy men. These results indicate sex differences in neural processing of stress and alcohol-cue experiences and have implications for sex-specific vulnerabilities to stress- and alcohol-related psychiatric disorders. Copyright © 2010 Wiley-Liss, Inc.

  18. Attraction, Oviposition Preferences, and Olfactory Responses of Corn-Infesting Ulidiidae (Diptera) to Various Host-Based Substrates.

    Science.gov (United States)

    Owens, D; Nuessly, G S; Kendra, P E; Colquhoun, T A; Seal, D R

    2017-08-01

    Fresh market sweet corn (Zea mays L., convar. saccharata var. rugosa, Poales: Poaceae) ears produced in Florida are damaged by the larvae of Euxesta stigmatias Loew, Euxesta eluta Loew, and Chaetopsis massyla Walker (Diptera: Ulidiidae) that renders ears unmarketable. No standard lure exists for monitoring these pests. Oviposition substrate and attractant bioassays were designed to identify attractive substrates for further semiochemical investigation. Frass from the fall armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae), was more attractive than other ovipositional substrates tested for E. eluta and C. massyla, and resulted in greater ovipositional output. Tassel-derived armyworm frass was more attractive than leaf-derived frass for oviposition. Frass also resulted in greater oviposition output by two species. In attraction bioassays, frass was generally preferred over the corresponding corn tissue, and only C. massyla demonstrated a preference for silk-frass over tassel-frass. The most promising substrates were then evaluated by electroantennography (EAG) to quantify olfactory responses. Frass volatiles also elicited greater antennal responses than corn volatiles. With tassel-frass, greater amplitude EAG responses were recorded from immature E. eluta female antennae, while mature female E. stigmatias exhibited greater responses. Equivalent antennal response to silk-frass was observed from E. eluta. Overall, silk-frass elicited the greatest EAG responses among all three fly species. Our results indicate that armyworm frass is an important resource in the chemical ecology of corn-infesting silk flies, and this substrate warrants further investigation for potential attractants that may facilitate development of novel management tools for these pests. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Bilingualism increases neural response consistency and attentional control: evidence for sensory and cognitive coupling.

    Science.gov (United States)

    Krizman, Jennifer; Skoe, Erika; Marian, Viorica; Kraus, Nina

    2014-01-01

    Auditory processing is presumed to be influenced by cognitive processes - including attentional control - in a top-down manner. In bilinguals, activation of both languages during daily communication hones inhibitory skills, which subsequently bolster attentional control. We hypothesize that the heightened attentional demands of bilingual communication strengthens connections between cognitive (i.e., attentional control) and auditory processing, leading to greater across-trial consistency in the auditory evoked response (i.e., neural consistency) in bilinguals. To assess this, we collected passively-elicited auditory evoked responses to the syllable [da] in adolescent Spanish-English bilinguals and English monolinguals and separately obtained measures of attentional control and language ability. Bilinguals demonstrated enhanced attentional control and more consistent brainstem and cortical responses. In bilinguals, but not monolinguals, brainstem consistency tracked with language proficiency and attentional control. We interpret these enhancements in neural consistency as the outcome of strengthened attentional control that emerged from experience communicating in two languages. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effects of feeding level and the presence of a foraging substrate on the behaviour and stress physiological response of individually housed gilts

    NARCIS (Netherlands)

    Leeuw, de J.A.; Ekkel, E.D.

    2004-01-01

    The effects of feeding level (unrestricted, UR and restricted, R) and the presence of a foraging substrate (no substrate, NS and substrate, S; wood chips on the floor) on both the behaviour and stress physiological response were studied in a 2 x 2 factorial design. In three batches and two rooms, 96

  1. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  2. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement.

    Science.gov (United States)

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2016-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

  3. Neural responses to gains and losses in children of suicide attempters.

    Science.gov (United States)

    Tsypes, Aliona; Owens, Max; Hajcak, Greg; Gibb, Brandon E

    2017-02-01

    [Correction Notice: An Erratum for this article was reported in Vol 126(2) of Journal of Abnormal Psychology (see record 2016-56318-001). In the article, Figure 1 had incorrect axis labels. There was also an error in the abstract, which did not state that ΔFN was calculated as FN to losses minus FN to gains. All versions of this article have been corrected.] Suicidal behavior aggregates within families, yet the specific mechanisms of suicide-risk transmission are poorly understood. Despite some evidence that abnormal patterns of reward responsiveness might constitute one such potential mechanism, empirical evidence is lacking. The goal of this study was to examine neural responses to gains and losses in children of suicide attempters with no personal history of suicide attempt (SA) themselves. To objectively assess these neural responses, we used feedback negativity (FN), a psychophysiological marker of responsiveness to reward and loss. Participants were 66 parents and their 7-11-year-old children (22 with parental history of SA and 44 demographically and clinically matched children of parents with no SA history). Diagnostic interviews were used to gather information about psychiatric diagnoses, symptoms, and histories of suicidal thoughts and behaviors. Children also completed a guessing task, during which continuous electroencephalography (EEG) was recorded. The FN was scored as the mean amplitude, 275-375 ms, following gain or loss feedback at frontocentral sites (Fz and FCz). Children of suicide attempters exhibited significantly more negative ΔFN (i.e., FN to losses minus FN to gains) than children of parents with no SA history. We found that this difference in ΔFN was due specifically to children of parents with a history of SA exhibiting a stronger response to loss, and no group differences were observed for responses to gains. The results suggest that an increased neural response to loss might represent one of the potential pathways of the familial

  4. Relationship between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents.

    Directory of Open Access Journals (Sweden)

    Harriet A Allen

    response to parental teaching and modelling of behaviour. Parental restrictive feeding and parental teaching and modelling affected neural responses to food cues in different ways, depending on motivations and diagnoses, illustrating a social influence on neural responses to food cues.

  5. Relationship between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents

    Science.gov (United States)

    Chambers, Alison; Blissett, Jacqueline; Chechlacz, Magdalena; Barrett, Timothy; Higgs, Suzanne; Nouwen, Arie

    2016-01-01

    parental teaching and modelling of behaviour. Parental restrictive feeding and parental teaching and modelling affected neural responses to food cues in different ways, depending on motivations and diagnoses, illustrating a social influence on neural responses to food cues. PMID:27479051

  6. Community structure analysis of rejection sensitive personality profiles: A common neural response to social evaluative threat?

    Science.gov (United States)

    Kortink, Elise D; Weeda, Wouter D; Crowley, Michael J; Gunther Moor, Bregtje; van der Molen, Melle J W

    2018-06-01

    Monitoring social threat is essential for maintaining healthy social relationships, and recent studies suggest a neural alarm system that governs our response to social rejection. Frontal-midline theta (4-8 Hz) oscillatory power might act as a neural correlate of this system by being sensitive to unexpected social rejection. Here, we examined whether frontal-midline theta is modulated by individual differences in personality constructs sensitive to social disconnection. In addition, we examined the sensitivity of feedback-related brain potentials (i.e., the feedback-related negativity and P3) to social feedback. Sixty-five undergraduate female participants (mean age = 19.69 years) participated in the Social Judgment Paradigm, a fictitious peer-evaluation task in which participants provided expectancies about being liked/disliked by peer strangers. Thereafter, they received feedback signaling social acceptance/rejection. A community structure analysis was employed to delineate personality profiles in our data. Results provided evidence of two subgroups: one group scored high on attachment-related anxiety and fear of negative evaluation, whereas the other group scored high on attachment-related avoidance and low on fear of negative evaluation. In both groups, unexpected rejection feedback yielded a significant increase in theta power. The feedback-related negativity was sensitive to unexpected feedback, regardless of valence, and was largest for unexpected rejection feedback. The feedback-related P3 was significantly enhanced in response to expected social acceptance feedback. Together, these findings confirm the sensitivity of frontal midline theta oscillations to the processing of social threat, and suggest that this alleged neural alarm system behaves similarly in individuals that differ in personality constructs relevant to social evaluation.

  7. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    Science.gov (United States)

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  8. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2003-12-01

    Logic is widely considered the basis of rationality. Logical choices, however, are often influenced by emotional responses, sometimes to our detriment, sometimes to our advantage. To understand the neural basis of emotionally neutral ("cold") and emotionally salient ("hot") reasoning we studied 19 volunteers using event-related fMRI, as they made logical judgments about arguments that varied in emotional saliency. Despite identical logical form and content categories across "hot" and "cold" reasoning conditions, lateral and ventral medial prefrontal cortex showed reciprocal response patterns as a function of emotional saliency of content. "Cold" reasoning trials resulted in enhanced activity in lateral/dorsal lateral prefrontal cortex (L/DLPFC) and suppression of activity in ventral medial prefrontal cortex (VMPFC). By contrast, "hot" reasoning trials resulted in enhanced activation in VMPFC and suppression of activation in L/DLPFC. This reciprocal engagement of L/DLPFC and VMPFC provides evidence for a dynamic neural system for reasoning, the configuration of which is strongly influenced by emotional saliency.

  9. Branding and a child's brain: an fMRI study of neural responses to logos.

    Science.gov (United States)

    Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing.

  10. Attention Strongly Modulates Reliability of Neural Responses to Naturalistic Narrative Stimuli.

    Science.gov (United States)

    Ki, Jason J; Kelly, Simon P; Parra, Lucas C

    2016-03-09

    Attentional engagement is a major determinant of how effectively we gather information through our senses. Alongside the sheer growth in the amount and variety of information content that we are presented with through modern media, there is increased variability in the degree to which we "absorb" that information. Traditional research on attention has illuminated the basic principles of sensory selection to isolated features or locations, but it provides little insight into the neural underpinnings of our attentional engagement with modern naturalistic content. Here, we show in human subjects that the reliability of an individual's neural responses with respect to a larger group provides a highly robust index of the level of attentional engagement with a naturalistic narrative stimulus. Specifically, fast electroencephalographic evoked responses were more strongly correlated across subjects when naturally attending to auditory or audiovisual narratives than when attention was directed inward to a mental arithmetic task during stimulus presentation. This effect was strongest for audiovisual stimuli with a cohesive narrative and greatly reduced for speech stimuli lacking meaning. For compelling audiovisual narratives, the effect is remarkably strong, allowing perfect discrimination between attentional state across individuals. Control experiments rule out possible confounds related to altered eye movement trajectories or order of presentation. We conclude that reliability of evoked activity reproduced across subjects viewing the same movie is highly sensitive to the attentional state of the viewer and listener, which is aided by a cohesive narrative. Copyright © 2016 Ki et al.

  11. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  12. Chronic Childhood Peer Rejection is Associated with Heightened Neural Responses to Social Exclusion During Adolescence.

    Science.gov (United States)

    Will, Geert-Jan; van Lier, Pol A C; Crone, Eveline A; Güroğlu, Berna

    2016-01-01

    This functional Magnetic Resonance Imaging (fMRI) study examined subjective and neural responses to social exclusion in adolescents (age 12-15) who either had a stable accepted (n = 27; 14 males) or a chronic rejected (n = 19; 12 males) status among peers from age 6 to 12. Both groups of adolescents reported similar increases in distress after being excluded in a virtual ball-tossing game (Cyberball), but adolescents with a history of chronic peer rejection showed higher activity in brain regions previously linked to the detection of, and the distress caused by, social exclusion. Specifically, compared with stably accepted adolescents, chronically rejected adolescents displayed: 1) higher activity in the dorsal anterior cingulate cortex (dACC) during social exclusion and 2) higher activity in the dACC and anterior prefrontal cortex when they were incidentally excluded in a social interaction in which they were overall included. These findings demonstrate that chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence, which has implications for understanding the processes through which peer rejection may lead to adverse effects on mental health over time.

  13. Like or dislike? Affective preference modulates neural response to others' gains and losses.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available Previous studies have demonstrated that the brain responds differentially to others' gains and losses relative to one's own, moderated by social context factors such as competition and interpersonal relationships. In the current study, we tested the hypothesis that the neural response to others' outcomes could be modulated by a short-term induced affective preference. We engaged 17 men and 18 women in a social-exchange game, in which two confederates played fairly or unfairly. Both men and women rated the fair player as likable and the unfair players as unlikable. Afterwards, ERPs were recorded while participants observed each confederates playing a gambling game individually. This study examines feedback related negativity (FRN, an ERP component sensitive to negative feedback. ANOVA showed a significant interaction in which females but not males displayed stronger FRNs when observing likable players' outcomes compared to unlikable ones'. However, males did not respond differently under either circumstance. These findings suggest that, at least in females, the neural response is influenced by a short-term induced affective preference.

  14. Behavioral and neural responses to infant and adult tears: The impact of maternal love withdrawal.

    Science.gov (United States)

    Riem, Madelon M E; van IJzendoorn, Marinus H; De Carli, Pietro; Vingerhoets, Ad J J M; Bakermans-Kranenburg, Marian J

    2017-09-01

    The current study examined behavioral and neural responses to infant and adult tears, taking into account childhood experiences with parental love-withdrawal. With functional MRI (fMRI), we measured neural reactivity to pictures of infants and adults with and without tears on their faces in nulliparous women with varying childhood experiences of maternal use of love withdrawal. Behavioral responses to infant and adult tears were measured with an approach-avoidance task. We found that individuals with experiences of love withdrawal showed less amygdala and insula reactivity to adult tears, but love withdrawal did not affect amygdala and insula reactivity to infant tears. During the approach-avoidance task, individuals responded faster to adult tears in the approach condition compared with the avoidance condition, indicating that adult tears facilitate approach behavior. Individuals responded faster to infant tears than to adult tears, regardless of approach or avoidance condition. Our findings suggest that infant tears are highly salient and may, therefore, overrule the effects of contextual and personal characteristics that influence the perception of adult crying. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    Science.gov (United States)

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten

    2018-03-01

    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Resonant magnetoelectric response of cantilevers with magnetostrictive and piezoelectric layers on opposite sides of the substrate

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2013-06-01

    Full Text Available A theory is derived for the bending-mode magnetoelectric coefficients at resonance for magnetostrictive and piezoelectric layers on opposite sides of a substrate. Results are given for the transverse ME coefficient in the Metglas-Si-AlN system with magnetic field excitation parallel and electric polarization perpendicular to the cantilever. The center-substrate layer sequence is found to produce about 50 % enhancement of the magnetoelectric effect compared to magnetoelectric bilayers on one side of a substrate. Up to about 10 % additional enhancement of the ME effect is predicted if the magnetostrictive and piezoelectric layers are separated from the substrate by spacer layers with lower Youngs modulus. Lowest order bending mode resonance frequencies are given.

  17. Practice makes perfect: the neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Honda Manabu

    2006-12-01

    Full Text Available Abstract Background It has yet to be determined whether visual-tactile cross-modal plasticity due to visual deprivation, particularly in the primary visual cortex (V1, is solely due to visual deprivation or if it is a result of long-term tactile training. Here we conducted an fMRI study with normally-sighted participants who had undergone long-term training on the tactile shape discrimination of the two dimensional (2D shapes on Mah-Jong tiles (Mah-Jong experts. Eight Mah-Jong experts and twelve healthy volunteers who were naïve to Mah-Jong performed a tactile shape matching task using Mah-Jong tiles with no visual input. Furthermore, seven out of eight experts performed a tactile shape matching task with unfamiliar 2D Braille characters. Results When participants performed tactile discrimination of Mah-Jong tiles, the left lateral occipital cortex (LO and V1 were activated in the well-trained subjects. In the naïve subjects, the LO was activated but V1 was not activated. Both the LO and V1 of the well-trained subjects were activated during Braille tactile discrimination tasks. Conclusion The activation of V1 in subjects trained in tactile discrimination may represent altered cross-modal responses as a result of long-term training.

  18. Effect of BDNF val(66)met polymorphism on declarative memory and its neural substrate: a meta-analysis.

    Science.gov (United States)

    Kambeitz, Joseph P; Bhattacharyya, Sagnik; Kambeitz-Ilankovic, Lana M; Valli, Isabel; Collier, David A; McGuire, Philip

    2012-10-01

    Brain derived neurotrophic factor (BDNF) is a critical component of the molecular mechanism of memory formation. Variation in the BDNF gene, particularly the rs6265 (val(66)met) single nucleotide polymorphism (SNP), has been linked to variability in human memory performance and to both the structure and physiological response of the hippocampus, which plays a central role in memory processing. However, these effects have not been consistently reported, which may reflect the modest size of the samples studied to date. Employing a meta-analytic approach, we examined the effect of the BDNF val(66)met polymorphism on human memory (5922 subjects) and hippocampal structure (2985 subjects) and physiology (362 subjects). Our results suggest that variations in the rs6265 SNP of the BDNF gene have a significant effect on memory performance, and on both the structure and physiology of the hippocampus, with carriers of the met allele being adversely affected. These results underscore the role of BDNF in moderating variability between individuals in human memory performance and in mediating some of the neurocognitive impairments underlying neuropsychiatric disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson’s disease

    DEFF Research Database (Denmark)

    van der Vegt, Joyce P M; Hulme, Oliver J; Zittel, Simone

    2013-01-01

    healthy age-matched control subjects underwent whole-brain functional magnetic resonance imaging while they performed a simple two-choice gambling task resulting in stochastic and parametrically variable monetary gains and losses. In patients with Parkinson's disease, the neural response to reward outcome......Parkinson's disease results from the degeneration of dopaminergic neurons in the substantia nigra, manifesting as a spectrum of motor, cognitive and affective deficits. Parkinson's disease also affects reward processing, but disease-related deficits in reinforcement learning are thought to emerge...... at a slower pace than motor symptoms as the degeneration progresses from dorsal to ventral striatum. Dysfunctions in reward processing are difficult to study in Parkinson's disease as most patients have been treated with dopaminergic drugs, which sensitize reward responses in the ventral striatum, commonly...

  20. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    Science.gov (United States)

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex

    Directory of Open Access Journals (Sweden)

    Ricardo eGómez-Nieto

    2014-07-01

    Full Text Available The acoustic startle reflex (ASR is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs, neurons in the caudal pontine reticular nucleus (PnC, and motoneurons in the medulla and spinal cord. It is well established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioural techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1. Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviourally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviours and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural

  2. Neural responses to smoking stimuli are influenced by smokers' attitudes towards their own smoking behaviour.

    Directory of Open Access Journals (Sweden)

    Bastian Stippekohl

    Full Text Available An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users whereas others are discontent (dissonant users. Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli and stimuli associated with the terminal stage (END-smoking-stimuli of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant

  3. Neural responses to smoking stimuli are influenced by smokers' attitudes towards their own smoking behaviour.

    Science.gov (United States)

    Stippekohl, Bastian; Winkler, Markus H; Walter, Bertram; Kagerer, Sabine; Mucha, Ronald F; Pauli, Paul; Vaitl, Dieter; Stark, Rudolf

    2012-01-01

    An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users) whereas others are discontent (dissonant users). Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli) and stimuli associated with the terminal stage (END-smoking-stimuli) of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula) in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex) compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli) are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli) seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant smokers

  4. The presence of a culturally similar or dissimilar social partner affects neural responses to emotional stimuli

    Directory of Open Access Journals (Sweden)

    Kate A. Woodcock

    2013-06-01

    Full Text Available Background: Emotional responding is sensitive to social context; however, little emphasis has been placed on the mechanisms by which social context effects changes in emotional responding. Objective: We aimed to investigate the effects of social context on neural responses to emotional stimuli to inform on the mechanisms underpinning context-linked changes in emotional responding. Design: We measured event-related potential (ERP components known to index specific emotion processes and self-reports of explicit emotion regulation strategies and emotional arousal. Female Chinese university students observed positive, negative, and neutral photographs, whilst alone or accompanied by a culturally similar (Chinese or dissimilar researcher (British. Results: There was a reduction in the positive versus neutral differential N1 amplitude (indexing attentional capture by positive stimuli in the dissimilar relative to alone context. In this context, there was also a corresponding increase in amplitude of a frontal late positive potential (LPP component (indexing engagement of cognitive control resources. In the similar relative to alone context, these effects on differential N1 and frontal LPP amplitudes were less pronounced, but there was an additional decrease in the amplitude of a parietal LPP component (indexing motivational relevance in response to positive stimuli. In response to negative stimuli, the differential N1 component was increased in the similar relative to dissimilar and alone (trend context. Conclusion: These data suggest that neural processes engaged in response to emotional stimuli are modulated by social context. Possible mechanisms for the social-context-linked changes in attentional capture by emotional stimuli include a context-directed modulation of the focus of attention, or an altered interpretation of the emotional stimuli based on additional information proportioned by the context.

  5. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    Science.gov (United States)

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune

  6. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    Science.gov (United States)

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  7. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    Science.gov (United States)

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  8. Reduced tract integrity of the model for social communication is a neural substrate of social communication deficits in autism spectrum disorder.

    Science.gov (United States)

    Lo, Yu-Chun; Chen, Yu-Jen; Hsu, Yung-Chin; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen

    2017-05-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication subserves social language functions, we hypothesized that the tract integrity of the model for social communication may be reduced in ASD, and the reduction may be related to social communication deficits. Sixty-two right-handed boys with ASD and 55 typically developing (TD) boys received clinical evaluations, intelligence tests, the Social Communication Questionnaire (SCQ), and MRI scans. Generalized fractional anisotropy (GFA) was measured by diffusion spectrum imaging to indicate the microstructural integrity of the tracts for each level of the social communication model. Group difference in the tract integrity and its relationship with the SCQ subscales of social communication and social interaction were investigated. We found that the GFA values of the superior longitudinal fasciculus III (SLF III, level 1) and the frontal aslant tracts (FAT, level 2) were decreased in ASD compared to TD. Moreover, the GFA values of the SLF III and the FAT were associated with the social interaction subscale in ASD. The tract integrity of the model for social communication is reduced in ASD, and the reduction is associated with impaired social interaction. Our results support that reduced tract integrity of the model for social communication might be a neural substrate of social communication deficits in ASD. © 2016 Association for Child and Adolescent Mental Health.

  9. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks.

    Directory of Open Access Journals (Sweden)

    Petros-Pavlos Ypsilantis

    Full Text Available Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.

  10. The effect of surface wave propagation on neural responses to vibration in primate glabrous skin.

    Directory of Open Access Journals (Sweden)

    Louise R Manfredi

    Full Text Available Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.

  11. The Effects of Experimental Manipulation of Sleep Duration on Neural Response to Food Cues.

    Science.gov (United States)

    Demos, Kathryn E; Sweet, Lawrence H; Hart, Chantelle N; McCaffery, Jeanne M; Williams, Samantha E; Mailloux, Kimberly A; Trautvetter, Jennifer; Owens, Max M; Wing, Rena R

    2017-11-01

    Despite growing literature on neural food cue responsivity in obesity, little is known about how the brain processes food cues following partial sleep deprivation and whether short sleep leads to changes similar to those observed in obesity. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that short sleep leads to increased reward-related and decreased inhibitory control-related processing of food cues.In a within-subject design, 30 participants (22 female, mean age = 36.7 standard deviation = 10.8 years, body mass index range 20.4-40.7) completed four nights of 6 hours/night time-in-bed (TIB; short sleep) and four nights of 9 hours/night TIB (long sleep) in random counterbalanced order in their home environments. Following each sleep condition, participants completed an fMRI scan while viewing food and nonfood images.A priori region of interest analyses revealed increased activity to food in short versus long sleep in regions of reward processing (eg, nucleus accumbens/putamen) and sensory/motor signaling (ie, right paracentral lobule, an effect that was most pronounced in obese individuals). Contrary to the hypothesis, whole brain analyses indicated greater food cue responsivity during short sleep in an inhibitory control region (right inferior frontal gyrus) and ventral medial prefrontal cortex, which has been implicated in reward coding and decision-making (false discovery rate corrected q = 0.05).These findings suggest that sleep restriction leads to both greater reward and control processing in response to food cues. Future research is needed to understand the dynamic functional connectivity between these regions during short sleep and whether the interplay between these neural processes determines if one succumbs to food temptation. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Neural response in obsessive-compulsive washers depends on individual fit of triggers

    Directory of Open Access Journals (Sweden)

    Ali eBaioui

    2013-04-01

    Full Text Available BackgroundPatients with obsessive-compulsive disorder (OCD have highly idiosyncratic triggers. To fully understand which role this idiosyncrasy plays in the neurobiological mechanisms behind OCD, it is necessary to elucidate the impact of individualization regarding the applied investigation methods.This functional magnetic resonance imaging (fMRI study explores the neural correlates of contamination/washing-related OCD with a highly individualized symptom provocation paradigm. Additionally, it is the first study to directly compare individualized and standardized symptom provocation. MethodsNineteen patients with washing compulsions created individual OCD hierarchies, which later served as instructions to photograph their own individualized stimulus sets. The patients and 19 case-by-case matched healthy controls participated in a symptom provocation fMRI experiment with individualized and standardized stimulus sets created for each patient. ResultsOCD patients compared to healthy controls displayed stronger activation in the basal ganglia (nucleus accumbens, nucleus caudatus, pallidum for individualized symptom provocation. Using standardized symptom provocation, this group comparison led to stronger activation in the nucleus caudatus. The direct comparison of between-group effects for both symptom provocation approaches revealed stronger activation of the orbitofronto-striatal network for individualized symptom provocation.ConclusionsThe present study provides insight into the differential impact of individualized and standardized symptom provocation on the orbitofronto-striatal network of OCD washers. Behavioral and neural responses imply a higher symptom-specificity of individualized symptom provocation.

  13. "Loser" or "Popular"?: Neural response to social status words in adolescents with major depressive disorder.

    Science.gov (United States)

    Silk, Jennifer S; Lee, Kyung Hwa; Kerestes, Rebecca; Griffith, Julianne M; Dahl, Ronald E; Ladouceur, Cecile D

    2017-12-01

    Concerns about social status are ubiquitous during adolescence, with information about social status often conveyed in text formats. Depressed adolescents may show alterations in the functioning of neural systems supporting processing of social status information. We examined whether depressed youth exhibited altered neural activation to social status words in temporal and prefrontal cortical regions thought to be involved in social cognitive processing, and whether this response was associated with development. Forty-nine adolescents (ages 10-18; 35 female), including 20 with major depressive disorder and 29 controls, were scanned while identifying the valence of words that connoted positive and negative social status. Results indicated that depressed youth showed reduced late activation to social status (vs neutral) words in the superior temporal cortex (STC) and medial prefrontal cortex (MPFC); whereas healthy youth did not show any significant differences between word types. Depressed youth also showed reduced late activation in the dorsolateral prefrontal cortex and fusiform gyrus to negative (vs positive) social status words; whereas healthy youth showed the opposite pattern. Finally, age was positively associated with MPFC activation to social status words. Findings suggest that hypoactivation in the "social cognitive brain network" might be implicated in altered interpersonal functioning in adolescent depression. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Structured chaos shapes spike-response noise entropy in balanced neural networks

    Directory of Open Access Journals (Sweden)

    Guillaume eLajoie

    2014-10-01

    Full Text Available Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability -- spike-train entropy. This leads to important insights on the variability of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complemented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows -- a phenomenon that depends on ``extensive chaos, as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.

  15. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  16. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  17. Integrating the behavioral and neural dynamics of response selection in a dual-task paradigm: a dynamic neural field model of Dux et al. (2009).

    Science.gov (United States)

    Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P

    2014-02-01

    People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.

  18. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    Science.gov (United States)

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  19. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomoaki, E-mail: t-yamada@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Yasumoto, Jun; Ito, Daisuke; Yoshino, Masahito; Nagasaki, Takanori [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8 and Synchrotron X-ray Group, National Institute for Materials Science, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Department of Innovative and Engineered Material, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Imai, Yasuhiko [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kiguchi, Takanori [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi [Department of Innovative and Engineered Material, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2015-08-21

    The converse piezoelectric responses of (111)- and (001)-epitaxial tetragonal Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} [PZT] films were compared to investigate the orientation dependence of the substrate clamping effect. Synchrotron X-ray diffraction (XRD) and piezoelectric force microscopy revealed that the as-grown (111)-PZT film has a polydomain structure with normal twin boundaries that are changed by the poling process to inclined boundaries, as predicted by Romanov et al. [Phys. Status Solidi A 172, 225 (1999)]. Time-resolved synchrotron XRD under bias voltage showed the negligible impact of substrate clamping on the piezoelectric response in the (111)-PZT film, unlike the case for (001)-PZT film. The origin of the negligible clamping effect in the (111)-PZT film is discussed from the viewpoint of the elastic properties and the compensation of lattice distortion between neighboring domains.

  20. Negligible substrate clamping effect on piezoelectric response in (111)-epitaxial tetragonal Pb(Zr, Ti)O3 films

    International Nuclear Information System (INIS)

    Yamada, Tomoaki; Yasumoto, Jun; Ito, Daisuke; Yoshino, Masahito; Nagasaki, Takanori; Sakata, Osami; Imai, Yasuhiko; Kiguchi, Takanori; Shiraishi, Takahisa; Shimizu, Takao; Funakubo, Hiroshi

    2015-01-01

    The converse piezoelectric responses of (111)- and (001)-epitaxial tetragonal Pb(Zr 0.35 Ti 0.65 )O 3 [PZT] films were compared to investigate the orientation dependence of the substrate clamping effect. Synchrotron X-ray diffraction (XRD) and piezoelectric force microscopy revealed that the as-grown (111)-PZT film has a polydomain structure with normal twin boundaries that are changed by the poling process to inclined boundaries, as predicted by Romanov et al. [Phys. Status Solidi A 172, 225 (1999)]. Time-resolved synchrotron XRD under bias voltage showed the negligible impact of substrate clamping on the piezoelectric response in the (111)-PZT film, unlike the case for (001)-PZT film. The origin of the negligible clamping effect in the (111)-PZT film is discussed from the viewpoint of the elastic properties and the compensation of lattice distortion between neighboring domains

  1. Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α.

    Science.gov (United States)

    Addington, C P; Dharmawaj, S; Heffernan, J M; Sirianni, R W; Stabenfeldt, S E

    2017-07-01

    The chemokine SDF-1α plays a critical role in mediating stem cell response to injury and disease and has specifically been shown to mobilize neural progenitor/stem cells (NPSCs) towards sites of neural injury. Current neural transplant paradigms within the brain suffer from low rates of retention and engraftment after injury. Therefore, increasing transplant sensitivity to injury-induced SDF-1α represents a method for increasing neural transplant efficacy. Previously, we have reported on a hyaluronic acid-laminin based hydrogel (HA-Lm gel) that increases NPSC expression of SDF-1α receptor, CXCR4, and subsequently, NPSC chemotactic migration towards a source of SDF-1α in vitro. The study presented here investigates the capacity of the HA-Lm gel to promote NPSC response to exogenous SDF-1α in vivo. We observed the HA-Lm gel to significantly increase NPSC transplant retention and migration in response to SDF-1α in a manner critically dependent on signaling via the SDF-1α-CXCR4 axis. This work lays the foundation for development of a more effective cell therapy for neural injury, but also has broader implications in the fields of tissue engineering and regenerative medicine given the essential roles of SDF-1α across injury and disease states. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Age Differences in Neural Response to Stereotype Threat and Resiliency for Self-Referenced Information

    Directory of Open Access Journals (Sweden)

    Gabriel eColton

    2013-09-01

    Full Text Available To investigate the contribution of cortical midline regions to stereotype threat and resiliency, we compared age groups in an event-related functional MRI study. During scanning, seventeen younger and sixteen older adults judged whether words stereotypical of aging and control words described them. Judging stereotype words versus control words revealed higher activations in posterior midline regions associated with self-referencing, including the precuneus, for older adults compared to younger adults. While heightening salience of stereotypes can evoke a threat response, detrimentally affecting performance, invoking stereotypes can also lead to a phenomenon called resilience, where older adults use those stereotypes to create downward social comparisons to other older adults and elevate their own self-perception. In an exploration of brain regions underlying stereotype threat responses as well as resilience responses, we found significant activation in older adults for threat over resilient responses in posterior midline regions including the precuneus, associated with self-reflective thought, and parahippocampal gyrus, implicated in autobiographical memory. These findings have implications for understanding how aging stereotypes may affect the engagement of regions associated with contextual and social processing of self-relevant information, indicating ways in which stereotype threat can affect the engagement of neural resources with age.

  3. Substrate utilization and thermogenic responses to beta-adrenergic stimulation in obese subjects with NIDDM.

    NARCIS (Netherlands)

    Blaak, E.E.; Saris, W.H.M.; Wolffenbuttel, B.H.R.

    1999-01-01

    OBJECTIVE: This study intended to investigate disturbances in beta-adrenergically-mediated substrate utilization and thermogenesis in obese subjects with mild non insulin-dependent diabetes mellitus (NIDDM). DESIGN: Following a baseline period of 30 min, the beta-agonist isoproterenol (ISO) was

  4. Substrate utilization and thermogenic responses to beta-adrenergic stimulation in obese subjects with NIDDM

    NARCIS (Netherlands)

    Blaak, E E; Saris, W H; Wolffenbuttel, B H

    OBJECTIVE: This study intended to investigate disturbances in beta-adrenergically-mediated substrate utilization and thermogenesis in obese subjects with mild non insulin-dependent diabetes mellitus (NIDDM). DESIGN: Following a baseline period of 30 min, the beta-agonist isoproterenol (ISO) was

  5. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands.

    Science.gov (United States)

    Saks, Valdur; Favier, Roland; Guzun, Rita; Schlattner, Uwe; Wallimann, Theo

    2006-12-15

    This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle. This approach shows that a key regulator of fatty acid oxidation is the energy demand. Alterations in malonyl-CoA would not be the reason for, but rather the consequence of, the increased fatty acid oxidation at elevated workloads, when the level of acetyl-CoA decreases due to shifts in the kinetics of the Krebs cycle. This would make malonyl-CoA a feedback regulator that allows acyl-CoA entry into mitochondrial matrix space only when it is needed. Regulation of malonyl-CoA levels by AMPK does not seem to work as a master on-off switch, but rather as a modulator of fatty acid import.

  6. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Science.gov (United States)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  7. Reduced substrate supply limits the temperature response of soil organic carbon decomposition

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  8. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  9. Neural predictors of individual differences in response to math tutoring in primary-grade school children.

    Science.gov (United States)

    Supekar, Kaustubh; Swigart, Anna G; Tenison, Caitlin; Jolles, Dietsje D; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod

    2013-05-14

    Now, more than ever, the ability to acquire mathematical skills efficiently is critical for academic and professional success, yet little is known about the behavioral and neural mechanisms that drive some children to acquire these skills faster than others. Here we investigate the behavioral and neural predictors of individual differences in arithmetic skill acquisition in response to 8-wk of one-to-one math tutoring. Twenty-four children in grade 3 (ages 8-9 y), a critical period for acquisition of basic mathematical skills, underwent structural and resting-state functional MRI scans pretutoring. A significant shift in arithmetic problem-solving strategies from counting to fact retrieval was observed with tutoring. Notably, the speed and accuracy of arithmetic problem solving increased with tutoring, with some children improving significantly more than others. Next, we examined whether pretutoring behavioral and brain measures could predict individual differences in arithmetic performance improvements with tutoring. No behavioral measures, including intelligence quotient, working memory, or mathematical abilities, predicted performance improvements. In contrast, pretutoring hippocampal volume predicted performance improvements. Furthermore, pretutoring intrinsic functional connectivity of the hippocampus with dorsolateral and ventrolateral prefrontal cortices and the basal ganglia also predicted performance improvements. Our findings provide evidence that individual differences in morphometry and connectivity of brain regions associated with learning and memory, and not regions typically involved in arithmetic processing, are strong predictors of responsiveness to math tutoring in children. More generally, our study suggests that quantitative measures of brain structure and intrinsic brain organization can provide a more sensitive marker of skill acquisition than behavioral measures.

  10. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.

    Science.gov (United States)

    Cohen, Michael X; Gulbinaite, Rasa

    2017-02-15

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Interpersonal relationship modulates the behavioral and neural responses during moral decision-making.

    Science.gov (United States)

    Zhan, Youlong; Xiao, Xiao; Li, Jin; Liu, Lei; Chen, Jie; Fan, Wei; Zhong, Yiping

    2018-04-13

    Interpersonal relationship (IR) may play an important role in moral decision-making. However, it is little known about how IR influences neural and behavioral responses during moral decision-making. The present study utilized the dilemma scenario-priming paradigm to examine the time course of the different intimate IR (friend, acquaintance, or stranger) impacts on the emotional and cognitive processes during moral decision-making. Results showed that participants made less altruistic decisions with increased decision times and experienced more unpleasure for strangers versus friends and acquaintances. Moreover, at the early moral intuitional process, there was no significance difference observed at N1 under different intimate IR; however, at the emotional process, larger P260 which reflects the dilemma conflicts and negative emotional responses, was elicited when moral decision-making for strangers; at the later cognitive process, such difference was also observed at LPP (300-450 ms) which indexes the later top-down cognitive appraisal and reasoning processes. However, such differences were not observed between friends and acquaintances. Results indicate that IR modulates the emotional and cognitive processes during moral decision-making, suggesting that the closer the IR is, the weaker the dilemma conflicts and emotional responses are, and the more efficient this conflicts are solved. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles

    Science.gov (United States)

    Rojas, Camilo; Tedesco, Mariateresa; Massobrio, Paolo; Marino, Attilio; Ciofani, Gianni; Martinoia, Sergio; Raiteri, Roberto

    2018-06-01

    Objective. We aim to develop a novel non-invasive or minimally invasive method for neural stimulation to be applied in the study and treatment of brain (dys)functions and neurological disorders. Approach. We investigate the electrophysiological response of in vitro neuronal networks when subjected to low-intensity pulsed acoustic stimulation, mediated by piezoelectric nanoparticles adsorbed on the neuronal membrane. Main results. We show that the presence of piezoelectric barium titanate nanoparticles induces, in a reproducible way, an increase in network activity when excited by stationary ultrasound waves in the MHz regime. Such a response can be fully recovered when switching the ultrasound pulse off, depending on the generated pressure field amplitude, whilst it is insensitive to the duration of the ultrasound pulse in the range 0.5 s–1.5 s. We demonstrate that the presence of piezoelectric nanoparticles is necessary, and when applying the same acoustic stimulation to neuronal cultures without nanoparticles or with non-piezoelectric nanoparticles with the same size distribution, no network response is observed. Significance. We believe that our results open up an extremely interesting approach when coupled with suitable functionalization strategies of the nanoparticles in order to address specific neurons and/or brain areas and applied in vivo, thus enabling remote, non-invasive, and highly selective modulation of the activity of neuronal subpopulations of the central nervous system of mammalians.

  13. Increased neural responses to empathy for pain might explain how acute stress increases prosociality.

    Science.gov (United States)

    Tomova, L; Majdandžic, J; Hummer, A; Windischberger, C; Heinrichs, M; Lamm, C

    2017-03-01

    Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others' pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others' emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. © The Author (2016). Published by Oxford University Press.

  14. Response of wetland herbaceous communities to gradients of light and substrate following disturbance by thermal pollution

    Science.gov (United States)

    Dunn, Christopher P.; Scott, Michael L.

    1987-01-01

    The influence of thermal disturbance and site characteristics on distribution of herbs was studied in portions of a 3020 ha wetland in the southeastern USA. Presence-absence of 52 species in 130 0.25 m2 plots was determined from four sites with different disturbance histories and from an undisturbed site. Data from the four disturbed sites were ordinated by detrended correspondence analysis. Differences in species composition among sites (coarse scale) were associated with water depth, light, and substrate type. Within a site (at a fine scale), correlation of environmental variables with ordination scores at a chronically disturbed site was weakly correlated with light (r=0.50). At two sites with episodic disturbance, species composition correlated significantly and positively with substrate and water depth. At a recovering site, vegetation patterns were moderately correlated with water depth (r=−0.52). Species richness was correlated with substrate type along the disturbance gradient. Our results are consistent the intermediate disturbance hypothesis and the subsidy-stress gradient concept.

  15. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    Science.gov (United States)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  16. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System

    Science.gov (United States)

    Shadmehr, Reza

    2016-01-01

    When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning. We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles, and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people, individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system. SIGNIFICANCE STATEMENT Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor

  17. The time-course of cortico-limbic neural responses to air hunger.

    Science.gov (United States)

    Binks, Andrew P; Evans, Karleyton C; Reed, Jeffrey D; Moosavi, Shakeeb H; Banzett, Robert B

    2014-12-01

    Several studies have mapped brain regions associated with acute dyspnea perception. However, the time-course of brain activity during sustained dyspnea is unknown. Our objective was to determine the time-course of neural activity when dyspnea is sustained. Eight healthy subjects underwent brain blood oxygen level dependent functional magnetic imaging (BOLD-fMRI) during mechanical ventilation with constant mild hypercapnia (∼ 45 mm Hg). Subjects rated dyspnea (air hunger) via visual analog scale (VAS). Tidal volume (V(T)) was alternated every 90 s between high VT (0.96 ± 0.23 L) that provided respiratory comfort (12 ± 6% full scale) and low V(T) (0.48 ± 0.08 L) which evoked air hunger (56 ± 11% full scale). BOLD signal was extracted from a priori brain regions and combined with VAS data to determine air hunger related neural time-course. Air hunger onset was associated with BOLD signal increases that followed two distinct temporal profiles within sub-regions of the anterior insula, anterior cingulate and prefrontal cortices (cortico-limbic circuitry): (1) fast, BOLD signal peak 40s. BOLD signal during air hunger offset followed fast and slow temporal profiles symmetrical, but inverse (signal decreases) to the time-courses of air hunger onset. We conclude that differential cortico-limbic circuit elements have unique contributions to dyspnea sensation over time. We suggest that previously unidentified sub-regions are responsible for either the acute awareness or maintenance of dyspnea. These data enhance interpretation of previous studies and inform hypotheses for future dyspnea research. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neural response to reward anticipation in those with depression with and without panic disorder.

    Science.gov (United States)

    Gorka, Stephanie M; Huggins, Ashley A; Fitzgerald, Daniel A; Nelson, Brady D; Phan, K Luan; Shankman, Stewart A

    2014-08-01

    One of the hallmark features of major depressive disorder (MDD) is reduced reward anticipation. There have been mixed findings in the literature as to whether reward anticipation deficits in MDD are related to diminished mesolimbic activation and/or enhanced dorsal anterior cingulate activation (dACC). One of the reasons for these mixed findings is that these studies have typically not addressed the role of comorbid anxiety, a class of disorders which frequently co-occur with depression and have a common neurobiology. The aim of the current study was to examine group differences in neural responses to reward anticipation in 40 adults with either: (1) current MDD with no lifetime diagnosis of an anxiety disorder (MDD-only), (2) current MDD with comorbid panic disorder (MDD-PD), or (3) no lifetime diagnosis of psychopathology. All participants completed a passive slot machine task during a functional magnetic resonance imaging (fMRI) scan. Analyses indicated that there were no group differences in activation of mesolimbic reward regions; however, the MDD-only group exhibited greater dACC activation during the anticipation of rewards compared with the healthy controls and the comorbid MDD-PD group (who did not differ from each other). The sample size was small which limits generalizability. These findings provide preliminary support for the role of hyperactive dACC functioning in reduced reward anticipation in MDD. They also indicate that comorbid anxiety may alter the association between MDD and neural responding to reward anticipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Neural responses to ambiguity involve domain-general and domain-specific emotion processing systems.

    Science.gov (United States)

    Neta, Maital; Kelley, William M; Whalen, Paul J

    2013-04-01

    Extant research has examined the process of decision making under uncertainty, specifically in situations of ambiguity. However, much of this work has been conducted in the context of semantic and low-level visual processing. An open question is whether ambiguity in social signals (e.g., emotional facial expressions) is processed similarly or whether a unique set of processors come on-line to resolve ambiguity in a social context. Our work has examined ambiguity using surprised facial expressions, as they have predicted both positive and negative outcomes in the past. Specifically, whereas some people tended to interpret surprise as negatively valenced, others tended toward a more positive interpretation. Here, we examined neural responses to social ambiguity using faces (surprise) and nonface emotional scenes (International Affective Picture System). Moreover, we examined whether these effects are specific to ambiguity resolution (i.e., judgments about the ambiguity) or whether similar effects would be demonstrated for incidental judgments (e.g., nonvalence judgments about ambiguously valenced stimuli). We found that a distinct task control (i.e., cingulo-opercular) network was more active when resolving ambiguity. We also found that activity in the ventral amygdala was greater to faces and scenes that were rated explicitly along the dimension of valence, consistent with findings that the ventral amygdala tracks valence. Taken together, there is a complex neural architecture that supports decision making in the presence of ambiguity: (a) a core set of cortical structures engaged for explicit ambiguity processing across stimulus boundaries and (b) other dedicated circuits for biologically relevant learning situations involving faces.

  20. The Neural Responses to Social Cooperation in Gain and Loss Context.

    Directory of Open Access Journals (Sweden)

    Peng Sun

    Full Text Available Cooperation is pervasive and constitutes the core behavioral principle of human social life. Previous studies have revealed that mutual cooperation was reliably correlated with two reward-related brain regions, the ventral striatum and the orbitofrontal cortex. Using functional magnetic resonance imaging (fMRI, this study sought to investigate how the loss and gain contexts modulated the neural responses to mutual cooperation. Twenty-five female participants were scanned when they played a series of one-shot prisoner's dilemma games in the loss and gain contexts. Specifically, participants and partners independently chose to either cooperate with each other or not, and each was awarded or deprived of (in the gain context or the loss context, respectively a sum of money which depended upon the interaction of their choices. Behavioral results indicated that participants cooperated in nearly half of the experiment trials and reported higher level of positive emotions for mutual cooperation in both contexts, but they cooperated more in the gain than in the loss context. At the neural level, stronger activities in the orbitofrontal cortex were observed for mutual cooperation compared with the other three outcomes in both contexts, while stronger activation in ventral striatum associated with mutual cooperation was observed in the gain context only. Together, our data indicated that, even in the one-shot interaction under loss context, participants still exhibited preference for cooperation and the rewarding experience from a mutually cooperative social interaction activated the ventral striatum and the orbitofrontal cortex, but the loss context weakened the association between the ventral striatum activation and mutual cooperation.

  1. Neural responses during social and self-knowledge tasks in bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Carrie J Mcadams

    2013-09-01

    Full Text Available Self-evaluation closely dependent upon body shape and weight is one of the defining criteria for bulimia nervosa. We studied 53 adult women, 17 with bulimia nervosa, 18 with a recent history of anorexia nervosa, and 18 healthy comparison women, using three different fMRI tasks that required thinking about self-knowledge and social interactions: the Social Identity task, the Physical Identity task, and the Social Attribution task. Previously, we identified regions of interest (ROI in the same tasks using whole brain voxel-wise comparisons of the healthy comparison women and women with a recent history of anorexia nervosa. Here, we report on the neural activations in those ROIs in subjects with bulimia nervosa. In the Social Attribution task, we examined activity in the right temporoparietal junction, an area frequently associated with mentalization. In the Social Identity task, we examined activity in the precuneus and dorsal anterior cingulate. In the Physical Identity task, we examined activity in a ventral region of the dorsal anterior cingulate. Interestingly, in all tested regions, the average activation in subjects with bulimia was more than the average activation levels seen in the subjects with a history of anorexia but less than that seen in healthy subjects. In three regions, the right temporoparietal junction, the precuneus, and the dorsal anterior cingulate, group responses in the subjects with bulimia were significantly different from healthy subjects but not subjects with anorexia. The neural activations of people with bulimia nervosa performing fMRI tasks engaging social processing are more similar to people with anorexia nervosa than healthy people. This suggests biological measures of social processes may be helpful in characterizing individuals with eating disorders.

  2. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    Science.gov (United States)

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  3. Interplay between grain structure and protein adsorption on functional response of osteoblasts: ultrafine-grained versus coarse-grained substrates.

    Science.gov (United States)

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-01-01

    The rapid adsorption of proteins is the starting and primary biological response that occurs when a biomedical device is implanted in the physiological system. The biological response, however, depends on the surface characteristics of the device. Considering the significant interest in nano-/ultrafine surfaces and nanostructured coatings, we describe here, the interplay between grain structure and protein adsorption (bovine serum albumin: BSA) on osteoblasts functions by comparing nanograined/ultrafine-grained (NG/UFG) and coarse-grained (CG: grain size in the micrometer range) substrates by investigating cell-substrate interactions. The protein adsorption on NG/UFG surface was beneficial in favorably modulating biological functions including cell attachment, proliferation, and viability, whereas the effect was less pronounced on protein adsorbed CG surface. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on protein adsorbed NG/UFG surface. The functional response followed the sequence: NG/UFG(BSA) > NG/UFG > CG(BSA) > CG. The differences in the cellular response on bare and protein adsorbed NG/UFG and CG surfaces are attributed to cumulative contribution of grain structure and degree of hydrophilicity. The study underscores the potential advantages of protein adsorption on artificial biomedical devices to enhance the bioactivity and regulate biological functions. Copyright © 2012 Wiley Periodicals, Inc.

  4. Influence of DAT1 and COMT variants on neural activation during response inhibition in adolescents with attention-deficit/hyperactivity disorder and healthy controls

    NARCIS (Netherlands)

    van Rooij, D.; Hoekstra, P. J.; Bralten, J.; Hakobjan, M.; Oosterlaan, J.; Franke, B.; Rommelse, N.; Buitelaar, J. K.; Hartman, C. A.

    2015-01-01

    Background. Impairment of response inhibition has been implicated in attention-deficit/hyperactivity disorder (ADHD). Dopamine neurotransmission has been linked to the behavioural and neural correlates of response inhibition. The current study aimed to investigate the relationship of polymorphisms

  5. Neural and cortisol responses during play with human and computer partners in children with autism

    Science.gov (United States)

    Edmiston, Elliot Kale; Merkle, Kristen

    2015-01-01

    Children with autism spectrum disorder (ASD) exhibit impairment in reciprocal social interactions, including play, which can manifest as failure to show social preference or discrimination between social and nonsocial stimuli. To explore mechanisms underlying these deficits, we collected salivary cortisol from 42 children 8–12 years with ASD or typical development during a playground interaction with a confederate child. Participants underwent functional MRI during a prisoner’s dilemma game requiring cooperation or defection with a human (confederate) or computer partner. Search region of interest analyses were based on previous research (e.g. insula, amygdala, temporal parietal junction—TPJ). There were significant group differences in neural activation based on partner and response pattern. When playing with a human partner, children with ASD showed limited engagement of a social salience brain circuit during defection. Reduced insula activation during defection in the ASD children relative to TD children, regardless of partner type, was also a prominent finding. Insula and TPJ BOLD during defection was also associated with stress responsivity and behavior in the ASD group under playground conditions. Children with ASD engage social salience networks less than TD children during conditions of social salience, supporting a fundamental disturbance of social engagement. PMID:25552572

  6. A comparison between neural response telemetry via cochleostomy or the round window approach in cochlear implantation.

    Science.gov (United States)

    Hamerschmidt, Rogério; Schuch, Luiz Henrique; Rezende, Rodrigo Kopp; Wiemes, Gislaine Richter Minhoto; Oliveira, Adriana Kosma Pires de; Mocellin, Marcos

    2012-01-01

    There are two techniques for cochlear implant (CI) electrode placement: cochleostomy and the round window (RW) approach. This study aims to compare neural response telemetry (NRT) results immediately after surgery to check for possible differences on auditory nerve stimulation between these two techniques. This is a prospective cross-sectional study. Twenty-three patients were enrolled. Six patients underwent surgery by cochleostomy and 17 had it through the RW approach. Mean charge units (MCU) for high frequency sounds: patients submitted to the RW approach had a mean value of 190.4 (± 29.2) while cochleostomy patients averaged 187.8 (± 32.7); p = 0.71. MCU for mid frequency sounds: patients submitted to the RW approach had a mean value of 192.5 (± 22) while cochleostomy patients averaged 178.5 (± 18.5); p = 0.23. MCU for low frequency sounds: patients submitted to the RW approach had a mean value of 183.3 (± 25) while cochleostomy patients averaged 163.8 (± 19.3); p = 0.19. This study showed no differences in the action potential of the distal portion of the auditory nerve in patients with multichannel cochlear implants submitted to surgery by cochleostomy or through the RW approach, using the implant itself to generate stimuli and record responses. Both techniques equally stimulate the cochlear nerve. Therefore, the choice of approach can be made based on the surgeon's own preference and experience.

  7. Impacts of religious semantic priming on an intertemporal discounting task: Response time effects and neural correlates.

    Science.gov (United States)

    Morgan, Jonathan; Clark, Dustin; Tripodis, Yorghos; Halloran, Christopher S; Minsky, April; Wildman, Wesley J; Durso, Raymon; McNamara, Patrick

    2016-08-01

    The purpose of this study is to test the hypothesis that religious primes would influence intertemporal discounting behaviors in neurotypical older adults, but not in participants with Parkinson's disease (PD). Furthermore, we predicted that this priming effect would be related to functional connectivity within neural networks mediating religious cognition, decision-making, reward valuing, and prospection processes. Contrary to past research with young adults, we found a significant positive relationship between religiosity and discounting rates. Religious semantic primes did not reliably shift individual discounting rates. But religious controls did respond more quickly to intertemporal decisions under the religious priming condition than the neutral condition, compared to response time differences among the participants with PD. Differences in response time were significantly associated with functional connectivity between the nucleus accumbens and various regions, including the left anterior cingulate cortex and Brodmann areas 10 and 46 in the right dorsolateral prefrontal cortex. These results suggest that religious primes influence discounting behavior via dopaminergic meso-limbic and right dorsolateral prefrontal supporting cognitive valuation and prospection processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Psychogenic and neural visual-cue response in PD dopamine dysregulation syndrome.

    Science.gov (United States)

    Loane, Clare; Wu, Kit; O'Sullivan, Sean S; Lawrence, Andrew D; Woodhead, Zoe; Lees, Andrew J; Piccini, Paola; Politis, Marios

    2015-11-01

    Dopamine dysregulation syndrome (DDS) in Parkinson's disease (PD) patients refers to the compulsive use of dopaminergic replacement therapy and has serious psycho-social consequences. Mechanisms underlying DDS are not clear although has been linked to dysfunctional brain reward networks. With fMRI, we investigate behavioral and neural response to drug-cues in six PD DDS patients and 12 PD control patients in both the ON and OFF medication state. Behavioral measures of liking, wanting and subjectively 'feeling ON medication' were also collected. Behaviorally, PD DDS patients feel less ON and want their drugs more at baseline compared to PD controls. Following drug-cue exposure, PD DDS patients feel significantly more ON medication, which correlates with significant increases in reward related regions. The results demonstrate that exposure to drug-cues increases the subjective feeling of being 'ON' medication which corresponds to dysfunctional activation in reward related regions in PD DDS patients. These findings should be extended in future studies. Visual stimuli being sufficient to elicit behavioral response through neuroadaptations could have direct implications to the management of addictive behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Breaking cover: neural responses to slow and fast camouflage-breaking motion.

    Science.gov (United States)

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei

    2015-08-22

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.

  10. Predictive modelling of the dielectric response of plasmonic substrates: application to the interpretation of ellipsometric spectra

    Science.gov (United States)

    Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.

    2018-03-01

    A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.

  11. Poinsettia Growth and Development Response to Container Root Substrate with Biochar

    Directory of Open Access Journals (Sweden)

    Yanjun Guo

    2018-01-01

    Full Text Available A greenhouse study was conducted to evaluate the growth and development of poinsettia ‘Prestige Red’ (Euphorbia pulcherrima grown in a commercial peat-based potting mix (Sunshine Mix #1 amended with biochar at 0%, 20%, 40%, 60%, 80%, or 100% (by volume at four different fertigation regimes: F1: 100 to 200 mg·L−1 nitrogen (N, F2: 200 to 300 mg·L−1 N (control, F3: 300 to 400 mg·L−1 N, or F4: 400 to 500 mg·L−1 N. The experiment was a two-factor factorial design with 10 replications for each combination of biochar by fertigation. As the percentage of biochar increased, root substrate pore space and bulk density increased, while container capacity decreased. Root rot and red bract necrosis only occurred in F4 combined with 100% biochar. Plants grown in 40% biochar had a similar growth and development to those in 0% biochar. Up to 80% biochar, plants exhibited no significant change, except in terms of dry weight, which decreased at higher biochar percentages (60% and 80%. In summary, at a fertigation rate of 100 mg·L−1 N to 400 mg·L−1 N, up to 80% biochar could be used as an amendment to peat-based root substrate with acceptable growth reduction and no changes in quality.

  12. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  13. How right is left? Handedness modulates neural responses during morphosyntactic processing.

    Science.gov (United States)

    Grey, Sarah; Tanner, Darren; van Hell, Janet G

    2017-08-15

    Most neurocognitive models of language processing generally assume population-wide homogeneity in the neural mechanisms used during language comprehension, yet individual differences are known to influence these neural mechanisms. In this study, we focus on handedness as an individual difference hypothesized to affect language comprehension. Left-handers and right-handers with a left-handed blood relative, or familial sinistrals, are hypothesized to process language differently than right-handers with no left-handed relatives (Hancock and Bever, 2013; Ullman, 2004). Yet, left-handers are often excluded from neurocognitive language research, and familial sinistrality in right-handers is often not taken into account. In the current study we used event-related potentials to test morphosyntactic processing in three groups that differed in their handedness profiles: left-handers (LH), right-handers with a left-handed blood relative (RH FS+), and right-handers with no reported left-handed blood relative (RH FS-; both right-handed groups were previously tested by Tanner and Van Hell, 2014). Results indicated that the RH FS- group showed only P600 responses during morphosyntactic processing whereas the LH and RH FS+ groups showed biphasic N400-P600 patterns. N400s in LH and RH FS+ groups are consistent with theories that associate left-handedness (self or familial) with increased reliance on lexical/semantic mechanisms during language processing. Inspection of individual-level results illustrated that variability in RH FS- individuals' morphosyntactic processing was remarkably low: most individuals were P600-dominant. In contrast, LH and RH FS+ individuals showed marked variability in brain responses, which was similar for both groups: half of individuals were N400-dominant and half were P600-dominant. Our findings have implications for neurocognitive models of language that have been largely formulated around data from only right-handers without accounting for familial

  14. Negative affect and neural response to palatable food intake in bulimia nervosa.

    Science.gov (United States)

    Bohon, Cara; Stice, Eric

    2012-06-01

    Binge eating is often preceded by reports of negative affect, but the mechanism by which affect may lead to binge eating is unclear. This study evaluated the effect of negative affect on neural response to anticipation and receipt of palatable food in women with bulimia nervosa (BN) versus healthy controls. We also evaluated connectivity between the amygdala and reward-related brain regions. Females with and without BN (n=26) underwent functional magnetic resonance imaging (fMRI) during receipt and anticipated receipt of chocolate milkshake and a tasteless solution. We measured negative affect just prior to the scan. Women with BN showed a positive correlation between negative affect and activity in the putamen, caudate, and pallidum during anticipated receipt of milkshake (versus tasteless solution). There were no significant relations between negative affect and receipt of milkshake. Connectivity analyses revealed a greater relation of amygdala activity to activation in the left putamen and insula during anticipated receipt of milkshake in the bulimia group relative to the control group. The opposite pattern was found for the taste of milkshake; the control group showed a greater relation of amygdala activity to activation in the left putamen and insula in response to milkshake receipt than the bulimia group. Results show that as negative affect increases, so does responsivity of reward regions to anticipated intake of palatable food, implying that negative affect may increase the reward value of food for individuals with bulimia nervosa or that negative affect has become a conditioned cue due to a history of binge eating in a negative mood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Neural and behavioral responses to attractiveness in adult and infant faces.

    Science.gov (United States)

    Hahn, Amanda C; Perrett, David I

    2014-10-01

    Facial attractiveness provides a very powerful motivation for sexual and parental behavior. We therefore review the importance of faces to the study of neurobiological control of human reproductive motivations. For heterosexual individuals there is a common brain circuit involving the nucleus accumbens, the medial prefrontal, dorsal anterior cingulate and the orbitofrontal cortices that is activated more by attractive than unattractive faces, particularly for faces of the opposite sex. Behavioral studies indicate parallel effects of attractiveness on incentive salience or willingness to work to see faces. There is some evidence that the reward value of opposite sex attractiveness is more pronounced in men than women, perhaps reflecting the greater importance assigned to physical attractiveness by men when evaluating a potential mate. Sex differences and similarities in response to facial attractiveness are reviewed. Studies comparing heterosexual and homosexual observers indicate the orbitofrontal cortex and mediodorsal thalamus are more activated by faces of the desired sex than faces of the less-preferred sex, independent of observer gender or sexual orientation. Infant faces activate brain regions that partially overlap with those responsive to adult faces. Infant faces provide a powerful stimulus, which also elicits sex differences in behavior and brain responses that appear dependent on sex hormones. There are many facial dimensions affecting perceptions of attractiveness that remain unexplored in neuroimaging, and we conclude by suggesting that future studies combining parametric manipulation of face images, brain imaging, hormone assays and genetic polymorphisms in receptor sensitivity are needed to understand the neural and hormonal mechanisms underlying reproductive drives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    International Nuclear Information System (INIS)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline; McElhinny, Kyle M.; Evans, Paul G.; Calcagno, Barbara O.; Acevedo, Aldo

    2016-01-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  17. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); McElhinny, Kyle M.; Evans, Paul G. [Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin-Madison, WI 53706 (United States); Calcagno, Barbara O. [Department of General Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); Acevedo, Aldo, E-mail: aldo.acevedo@upr.edu [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico)

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  18. Neural response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    2016-08-01

    Full Text Available Individuals with borderline personality disorder (BPD are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging. Eleven female patients with BPD without posttraumatic stress disorder and seventeen healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System, an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for two minutes. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex and the rostral cingulate zone. We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.

  19. Neural basis for brain responses to TV commercials: a high-resolution EEG study.

    Science.gov (United States)

    Astolfi, Laura; De Vico Fallani, F; Cincotti, F; Mattia, D; Bianchi, L; Marciani, M G; Salinari, S; Colosimo, A; Tocci, A; Soranzo, R; Babiloni, F

    2008-12-01

    all the cortical networks and their behavior during the memorization of TV commercials. Such techniques could also be relevant in neuroeconomics and neuromarketing for the investigation of the neural substrates subserving other decision-making and recognition tasks.

  20. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  1. Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine.

    Science.gov (United States)

    Calipari, Erin S; Godino, Arthur; Peck, Emily G; Salery, Marine; Mervosh, Nicholas L; Landry, Joseph A; Russo, Scott J; Hurd, Yasmin L; Nestler, Eric J; Kiraly, Drew D

    2018-01-16

    Cocaine addiction is characterized by dysfunction in reward-related brain circuits, leading to maladaptive motivation to seek and take the drug. There are currently no clinically available pharmacotherapies to treat cocaine addiction. Through a broad screen of innate immune mediators, we identify granulocyte-colony stimulating factor (G-CSF) as a potent mediator of cocaine-induced adaptations. Here we report that G-CSF potentiates cocaine-induced increases in neural activity in the nucleus accumbens (NAc) and prefrontal cortex. In addition, G-CSF injections potentiate cocaine place preference and enhance motivation to self-administer cocaine, while not affecting responses to natural rewards. Infusion of G-CSF neutralizing antibody into NAc blocks the ability of G-CSF to modulate cocaine's behavioral effects, providing a direct link between central G-CSF action in NAc and cocaine reward. These results demonstrate that manipulating G-CSF is sufficient to alter the motivation for cocaine, but not natural rewards, providing a pharmacotherapeutic avenue to manipulate addictive behaviors without abuse potential.

  2. Neural responses to unfairness and fairness depend on self-contribution to the income.

    Science.gov (United States)

    Guo, Xiuyan; Zheng, Li; Cheng, Xuemei; Chen, Menghe; Zhu, Lei; Li, Jianqi; Chen, Luguang; Yang, Zhiliang

    2014-10-01

    Self-contribution to the income (individual achievement) was an important factor which needs to be taken into individual's fairness considerations. This study aimed at elucidating the modulation of self-contribution to the income, on recipient's responses to unfairness in the Ultimatum Game. Eighteen participants were scanned while they were playing an adapted version of the Ultimatum Game as responders. Before splitting money, the proposer and the participant (responder) played the ball-guessing game. The responder's contribution to the income was manipulated by both the participant's and the proposer's accuracy in the ball-guessing game. It turned out that the participants more often rejected unfair offers and gave lower fairness ratings when they played a more important part in the earnings. At the neural level, anterior insula, anterior cingulate cortex, dorsolateral prefrontal cortex and temporoparietal junction showed greater activities to unfairness when self-contribution increased, whereas ventral striatum and medial orbitofrontal gyrus showed higher activations to fair (vs unfair) offers in the other-contributed condition relative to the other two. Besides, the activations of right dorsolateral prefrontal cortex during unfair offers showed positive correlation with rejection rates in the self-contributed condition. These findings shed light on the significance of self-contribution in fairness-related social decision-making processes. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response.

    Science.gov (United States)

    Aron, Arthur; Ketay, Sarah; Hedden, Trey; Aron, Elaine N; Rose Markus, Hazel; Gabrieli, John D E

    2010-06-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies-observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences.

  4. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Directory of Open Access Journals (Sweden)

    Małgorzata Kossowska

    2018-03-01

    Full Text Available Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure. We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400 due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure, religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure.

  6. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure.

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure).

  7. Difference in neural response to social exclusion observation and subsequent altruism between adolescents and adults.

    Science.gov (United States)

    Tousignant, Béatrice; Eugène, Fanny; Sirois, Katia; Jackson, Philip L

    2017-04-13

    Empathy and prosocial behaviors toward peers promote successful social development and creation of significant long-term relationships, but surprisingly little is known about the maturation of these skills during the period of adolescence. As the majority of studies have used questionnaires or pain observation paradigms, it remains unknown whether the empathic response of adolescents differs from that of adults in a paradigm that is closer to everyday life. In the current study, fMRI was used to examine the neural correlates of social exclusion observation and subsequent prosocial behavior in 20 adolescents (aged 12-17 years) and 20 adults (aged 22-30 years) while playing a ball-tossing game with what they believed to be real individuals. Observing someone being excluded compared to observing equal inclusion of all players elicited a significantly higher activation of the IFG (pars triangularis) in adults compared to adolescents. When given the opportunity to directly help the excluded player during the game, adolescents showed significantly less prosocial behavior than adults, which was underpinned by a significantly lower activity in the right temporoparietal junction, medial/dorsomedial prefrontal cortex and fusiform face area. These findings might indicate that adolescents have a lower propensity to take the victim's perspective and share his or her distress when witnessing social exclusion, which leads to a lower altruistic motivation to help. The factors that could generate what can be interpreted as a downward modulation of empathy during adolescence are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure). PMID:29636709

  9. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  10. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders.

    Science.gov (United States)

    Marin, Marie-France; Zsido, Rachel G; Song, Huijin; Lasko, Natasha B; Killgore, William D S; Rauch, Scott L; Simon, Naomi M; Milad, Mohammed R

    2017-06-01

    The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Two-day fear conditioning and extinction paradigm. Skin conductance responses, blood oxygenation level-dependent responses, trait anxiety scores from the State Trait Anxiety Inventory-Trait Form, and functional connectivity. This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation

  11. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    Directory of Open Access Journals (Sweden)

    A. Eršte

    2016-03-01

    Full Text Available We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE and polypropylene (PP, which are at present used in foil capacitors. Stable values of the dielectric constant ε′≈5 (being twice higher than in HDPE and PP over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  12. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  13. Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects.

    Science.gov (United States)

    Vautin, R G; Berkley, M A

    1977-09-01

    1. The activity of single cortical cells in area 17 of anesthetized and unanesthetized cats was recorded in response to prolonged stimulation with moving stimuli. 2. Under the appropriate conditions, all cells observed showed a progressive response decrement during the stimulation period, regardless of cell classification, i.e., simple, complex, or hypercomplex. 3. The observed response decrement was shown to be largely cortical in origin and could be adequately described with an exponential function of the form R = Rf +(R1-Rf)e-t/T. Time constants derived from such calculations yielded values ranging from 1.92 to 12.45 s under conditions of optimal-stimulation. 4. Most cells showed poststimulation effects, usually a brief period of reduced responsiveness that recovered exponentially. Recovery was essentially complete in about 5-35 s. 5. The degree to which stimuli were effective at inducing response was shown to have significant effects on the magnitude of the response decrement. 6. Several cells showed neural patterns of response and recovery that suggested the operation of intracortical inhibitory mechanisms. 7. A simple two-process model that adequately describes the behavior of all the studied cells is presented. 8. Because the properties of the cells studied correlate well with human psychophysical measures of contour and movement adaptation and recovery, a causal relationship to similar neural mechanisms in humans is suggested.

  14. Differences in neural responses to reward and punishment processing between anorexia nervosa subtypes: An fMRI study.

    Science.gov (United States)

    Murao, Ema; Sugihara, Genichi; Isobe, Masanori; Noda, Tomomi; Kawabata, Michiko; Matsukawa, Noriko; Takahashi, Hidehiko; Murai, Toshiya; Noma, Shun'ichi

    2017-09-01

    Anorexia nervosa (AN) includes the restricting (AN-r) and binge-eating/purging (AN-bp) subtypes, which have been reported to differ regarding their underlying pathophysiologies as well as their behavioral patterns. However, the differences in neural mechanisms of reward systems between AN subtypes remain unclear. The aim of the present study was to explore differences in the neural processing of reward and punishment between AN subtypes. Twenty-three female patients with AN (11 AN-r and 12 AN-bp) and 20 healthy women underwent functional magnetic resonance imaging while performing a monetary incentive delay task. Whole-brain one-way analysis of variance was conducted to test between-group differences. There were significant group differences in brain activation in the rostral anterior cingulate cortex and right posterior insula during loss anticipation, with increased brain activation in the AN-bp group relative to the AN-r and healthy women groups. No significant differences were found during gain anticipation. AN-bp patients showed altered neural responses to punishment in brain regions implicated in emotional arousal. Our findings suggest that individuals with AN-bp are more sensitive to potential punishment than individuals with AN-r and healthy individuals at the neural level. The present study provides preliminary evidence that there are neurobiological differences between AN subtypes with regard to the reward system, especially punishment processing. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  15. Beauty is in the belief of the beholder: cognitive influences on the neural response to facial attractiveness.

    Science.gov (United States)

    Thiruchselvam, Ravi; Harper, Jessica; Homer, Abigail L

    2016-12-01

    Judgments of facial attractiveness are central to decision-making in various domains, but little is known about the extent to which they are malleable. In this study, we used EEG/ERP methods to examine two novel influences on neural and subjective responses to facial attractiveness: an observer's expectation and repetition. In each trial of our task, participants viewed either an ordinary or attractive face. To alter expectations, the faces were preceded by a peer-rating that ostensibly reflected the overall attractiveness value assigned to that face by other individuals. To examine the impact of repetition, trials were presented twice throughout the experimental session. Results showed that participants' expectations about a person's attractiveness level powerfully altered both the neural response (i.e. the late positive potential; LPP) and self-reported attractiveness ratings. Intriguingly, repetition enhanced both the LPP and self-reported attractiveness as well. Exploratory analyses further suggested that both observer expectation and repetition modulated early neural responses (i.e. the early posterior negativity; EPN) elicited by facial attractiveness. Collectively, these results highlight novel influences on a core social judgment that underlies individuals' affective lives. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    Science.gov (United States)

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Beauty is in the belief of the beholder: cognitive influences on the neural response to facial attractiveness

    Science.gov (United States)

    Thiruchselvam, Ravi; Harper, Jessica; Homer, Abigail L.

    2016-01-01

    Judgments of facial attractiveness are central to decision-making in various domains, but little is known about the extent to which they are malleable. In this study, we used EEG/ERP methods to examine two novel influences on neural and subjective responses to facial attractiveness: an observer’s expectation and repetition. In each trial of our task, participants viewed either an ordinary or attractive face. To alter expectations, the faces were preceded by a peer-rating that ostensibly reflected the overall attractiveness value assigned to that face by other individuals. To examine the impact of repetition, trials were presented twice throughout the experimental session. Results showed that participants’ expectations about a person’s attractiveness level powerfully altered both the neural response (i.e. the late positive potential; LPP) and self-reported attractiveness ratings. Intriguingly, repetition enhanced both the LPP and self-reported attractiveness as well. Exploratory analyses further suggested that both observer expectation and repetition modulated early neural responses (i.e. the early posterior negativity; EPN) elicited by facial attractiveness. Collectively, these results highlight novel influences on a core social judgment that underlies individuals’ affective lives. PMID:27522090

  18. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    DEFF Research Database (Denmark)

    Andreasson, E.; Jenkins, T.; Brodersen, P.

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used...

  19. Pupation Behaviors and Emergence Successes of Ectropis grisescens (Lepidoptera: Geometridae) in Response to Different Substrate Types and Moisture Contents.

    Science.gov (United States)

    Wang, Huifang; Ma, Tao; Xiao, Qiang; Cao, Panrong; Chen, Xuan; Wen, Yuzhen; Xiong, Hongpeng; Qin, Wenquan; Liang, Shiping; Jian, Shengzhe; Li, Yanjun; Sun, Zhaohui; Wen, Xiujun; Wang, Cai

    2017-12-08

    Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  1. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  2. Optical response of large-area aluminum-coated nano-bucket arrays on flexible PET substrates

    Science.gov (United States)

    Hohertz, Donna; Chuo, Yindar; Omrane, Badr; Landrock, Clint; Kavanagh, Karen L.

    2014-09-01

    The high-cost of fabrication of nanohole arrays for extraordinary optical transmission, surface-plasmon-resonance-based sensors, inhibits their widespread commercial adoption. Production typically involves the application of small-area patterning techniques, such as focused-ion-beam milling, and electron-beam lithography onto high-cost gold-coated substrates. Moving to lower-cost manufacturing is a critical step for applications such as the detection of environmental oil-leaks, or water quality assurance. In these applications, the sensitivity requirements are relatively low, and a bio-compatible inert surface, such as gold, is unnecessary. We report on the optical response of aluminum-coated nano-bucket arrays fabricated on flexible polyethylene terephthalate substrates. The arrays are fabricated using an economical roll-to-roll UV-casting process from large sheets of nickel templates generated from master quartz stamps. The nano-featured surface is subsequently coated with 50 nm of thermally-evaporated aluminum. The roll-to-roll production process has a 97% yield over a 600 m roll producing nano-buckets with 240 nm diameters, 300 nm deep, with a 70° taper. When exposed to a series of refractive index standards (glucose solutions), changes in the locations of the resonance transmission peaks result in optical sensitivities as high as 390 ± 20 nm/RIU. The peak transmission is approximately 5% of illumination, well within the sensitivity requirements of most common low-cost detectors.

  3. Culture in the mind's mirror: how anthropology and neuroscience can inform a model of the neural substrate for cultural imitative learning.

    Science.gov (United States)

    Losin, Elizabeth A Reynolds; Dapretto, Mirella; Iacoboni, Marco

    2009-01-01

    Cultural neuroscience, the study of how cultural experience shapes the brain, is an emerging subdiscipline in the neurosciences. Yet, a foundational question to the study of culture and the brain remains neglected by neuroscientific inquiry: "How does cultural information get into the brain in the first place?" Fortunately, the tools needed to explore the neural architecture of cultural learning - anthropological theories and cognitive neuroscience methodologies - already exist; they are merely separated by disciplinary boundaries. Here we review anthropological theories of cultural learning derived from fieldwork and modeling; since cultural learning theory suggests that sophisticated imitation abilities are at the core of human cultural learning, we focus our review on cultural imitative learning. Accordingly we proceed to discuss the neural underpinnings of imitation and other mechanisms important for cultural learning: learning biases, mental state attribution, and reinforcement learning. Using cultural neuroscience theory and cognitive neuroscience research as our guides, we then propose a preliminary model of the neural architecture of cultural learning. Finally, we discuss future studies needed to test this model and fully explore and explain the neural underpinnings of cultural imitative learning.

  4. The van der Waals interaction of microparticles with a substrate characterized by a nonlocal response

    International Nuclear Information System (INIS)

    Dorofeyev, Illarion

    2007-01-01

    The van der Waals energy of the system constituted by a microparticle and a solid surface characterized by a nonlocal response is calculated taking into account an influence of another microparticle. A saturation of the dispersion interaction at short distances from the surface both for the spectral density of energy and for the total energy is shown. The known McLachlan expression for the pair and triple energies in the case of local media directly follows from the obtained general expression

  5. Buffering social influence: neural correlates of response inhibition predict driving safety in the presence of a peer.

    Science.gov (United States)

    Cascio, Christopher N; Carp, Joshua; O'Donnell, Matthew Brook; Tinney, Francis J; Bingham, C Raymond; Shope, Jean T; Ouimet, Marie Claude; Pradhan, Anuj K; Simons-Morton, Bruce G; Falk, Emily B

    2015-01-01

    Adolescence is a period characterized by increased sensitivity to social cues, as well as increased risk-taking in the presence of peers. For example, automobile crashes are the leading cause of death for adolescents, and driving with peers increases the risk of a fatal crash. Growing evidence points to an interaction between neural systems implicated in cognitive control and social and emotional context in predicting adolescent risk. We tested such a relationship in recently licensed teen drivers. Participants completed an fMRI session in which neural activity was measured during a response inhibition task, followed by a separate driving simulator session 1 week later. Participants drove alone and with a peer who was randomly assigned to express risk-promoting or risk-averse social norms. The experimentally manipulated social context during the simulated drive moderated the relationship between individual differences in neural activity in the hypothesized cognitive control network (right inferior frontal gyrus, BG) and risk-taking in the driving context a week later. Increased activity in the response inhibition network was not associated with risk-taking in the presence of a risky peer but was significantly predictive of safer driving in the presence of a cautious peer, above and beyond self-reported susceptibility to peer pressure. Individual differences in recruitment of the response inhibition network may allow those with stronger inhibitory control to override risky tendencies when in the presence of cautious peers. This relationship between social context and individual differences in brain function expands our understanding of neural systems involved in top-down cognitive control during adolescent development.

  6. Neural Specialization for Speech in the First Months of Life

    Science.gov (United States)

    Shultz, Sarah; Vouloumanos, Athena; Bennett, Randi H.; Pelphrey, Kevin

    2014-01-01

    How does the brain's response to speech change over the first months of life? Although behavioral findings indicate that neonates' listening biases are sharpened over the first months of life, with a species-specific preference for speech emerging by 3 months, the neural substrates underlying this developmental change are unknown. We…

  7. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Science.gov (United States)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  8. Quantifying the determinants of decremental response in critical ventricular tachycardia substrate.

    Science.gov (United States)

    Beheshti, Mohammadali; Nayyar, Sachin; Magtibay, Karl; Massé, Stéphane; Porta-Sanchez, Andreu; Haldar, Shouvik; Bhaskaran, Abhishek; Vigmond, Edward; Nanthakumar, Kumaraswamy

    2018-05-28

    Decremental response evoked with extrastimulation (DEEP) is a useful tool for determining diastolic return path of ventricular tachycardia (VT). Though a targeted VT ablation is feasible with this approach, determinants of DEEP response have not been studied OBJECTIVES: To elucidate the effects of clinically relevant factors, specifically, the proximity of the stimulation site to the arrhythmogenic scar, stimulation wave direction, number of channels open in the scar, size of the scar and number of extra stimuli on decrement and entropy of DEEP potentials. In a 3-dimensional bi-domain simulation of human ventricular tissue (TNNP cell model), an irregular subendocardial myopathic region was generated. An irregular channel of healthy tissue with five potential entry branches was shaped into the myopathic region. A bipolar electrogram was derived from two electrodes positioned in the centre of the myopathic region. Evoked delays between far-field and local Electrogram (EGM) following an extrastimulus (S1-S2, 500-350 ms) were measured as the stimulation site, channel branches, and inexcitable tissue size were altered. Stimulation adjacent to the inexcitable tissue from the side opposite to the point-of-entry produces longest DEEP delay. The DEEP delay shortens when the stimulation point is farther away from the scar, and it decreases maximally when stimulation is done from a site beside a conduction barrier. Entropy increases with S2 when stimulation site is from farther away. An unprotected channel structure with multiple side-branch openings had shorter DEEP delay compared to a protected channel structure with a paucity of additional side-branch openings and a point-of-entry on the side opposite to the pacing source. Addition of a second shorter extrastimulus did not universally lead to higher DEEP delay CONCLUSIONS: Location and direction of the wavefront in relation to scar entry and size of scar determine the degree of evoked response while the number of

  9. Evaluation and statistical judgement of neural responses to sinusoidal stimulation in cases with superimposed drift and noise.

    Science.gov (United States)

    Jastreboff, P W

    1979-06-01

    Time histograms of neural responses evoked by sinuosidal stimulation often contain a slow drifting and an irregular noise which disturb Fourier analysis of these responses. Section 2 of this paper evaluates the extent to which a linear drift influences the Fourier analysis, and develops a combined Fourier and linear regression analysis for detecting and correcting for such a linear drift. Usefulness of this correcting method is demonstrated for the time histograms of actual eye movements and Purkinje cell discharges evoked by sinusoidal rotation of rabbits in the horizontal plane. In Sect. 3, the analysis of variance is adopted for estimating the probability of the random occurrence of the response curve extracted by Fourier analysis from noise. This method proved to be useful for avoiding false judgements as to whether the response curve was meaningful, particularly when the response was small relative to the contaminating noise.

  10. Neural Response to Biological Motion in Healthy Adults Varies as a Function of Autistic-Like Traits

    Directory of Open Access Journals (Sweden)

    Meghan H. Puglia

    2017-07-01

    Full Text Available Perception of biological motion is an important social cognitive ability that has been mapped to specialized brain regions. Perceptual deficits and neural differences during biological motion perception have previously been associated with autism, a disorder classified by social and communication difficulties and repetitive and restricted interests and behaviors. However, the traits associated with autism are not limited to diagnostic categories, but are normally distributed within the general population and show the same patterns of heritability across the continuum. In the current study, we investigate whether self-reported autistic-like traits in healthy adults are associated with variable neural response during passive viewing of biological motion displays. Results show that more autistic-like traits, particularly those associated with the communication domain, are associated with increased neural response in key regions involved in social cognitive processes, including prefrontal and left temporal cortices. This distinct pattern of activation might reflect differential neurodevelopmental processes for individuals with varying autistic-like traits, and highlights the importance of considering the full trait continuum in future work.

  11. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies.

    Science.gov (United States)

    Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.

  12. An approach to unfold the response of a multi-element system using an artificial neural network

    International Nuclear Information System (INIS)

    Cordes, E.; Fehrenbacher, G.; Schuetz, R.; Sprunck, M.; Hahn, K.; Hofmann, R.; Wahl, W.

    1998-01-01

    An unfolding procedure is proposed which aims at obtaining spectral information of a neutron radiation field by the analysis of the response of a multi-element system consisting of converter type semiconductors. For the unfolding procedure an artificial neural network (feed forward network), trained by the back-propagation method, was used. The response functions of the single elements to neutron radiation were calculated by application of a computational model for an energy range from 10 -2 eV to 10 MeV. The training of the artificial neural network was based on the computation of responses of a six-element system for a set of 300 neutron spectra and the application of the back-propagation method. The validation was performed by the unfolding of 100 computed responses. Two unfolding examples were pointed out for the determination of the neutron spectra. The spectra resulting from the unfolding procedure agree well with the original spectra used for the response computation

  13. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    Science.gov (United States)

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemically emulsified crude oil as substrate for bacterial oxidation : differences in species response

    International Nuclear Information System (INIS)

    Bruheim, P.; Eimhjellen, K.

    1998-01-01

    The ability of bacterial species to oxidize alkanes in crude oil in water emulsions was studied. Alkanes in crude oil need specific physiological adaptations to the microorganisms. Synthesis of biosurfactants has been considered as a prerequisite for either specific adhesion mechanisms to large oil drops or emulsification of oil followed by uptake of submicron oil droplets. In this study four bacterial species were tested. Emulsions were prepared by nonionic sorbitan ester and polyoxyethylene ether surfactants. The oxidation rates were measured. Both positive and negative effects of surfactant amendments were observed. The same surfactant affected different bacteria in different ways. The response to the surfactant amendment depended on the physiological state of the bacteria. The results showed that surfactants resulted in decreased cell adhesion to the oil phase for all the bacteria. 19 refs., 3 tabs., 4 figs

  15. Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Dhivyaa Alagappan

    2009-04-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  16. Functional overlap of top-down emotion regulation and generation: an fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions.

    Science.gov (United States)

    Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri

    2014-09-01

    One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.

  17. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Dinca, V., E-mail: dincavalentina@yahoo.com [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Alloncle, P.; Delaporte, P. [Aix-Marseille University, CNRS, LP3 Laboratory, Campus de Luminy, 13288 Marseille (France); Ion, V. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Faculty of Physics, University of Bucharest, 077125 Magurele (Romania); Rusen, L.; Filipescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, Magurele, Bucharest (Romania); Luculescu, C.; Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania)

    2015-10-15

    Highlights: • Roughness gradients are obtained in one step by applying single laser pulses and sample tilting. • BSA protein and cell dependence behavior onto gradient characteristics was studied. • The degradation of the samples by lysozyme was correlated to its ability to access the textured area. - Abstract: Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan–collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  18. Self-construal differences in neural responses to negative social cues.

    Science.gov (United States)

    Liddell, Belinda J; Felmingham, Kim L; Das, Pritha; Whitford, Thomas J; Malhi, Gin S; Battaglini, Eva; Bryant, Richard A

    2017-10-01

    Cultures differ substantially in representations of the self. Whereas individualistic cultural groups emphasize an independent self, reflected in processing biases towards centralized salient objects, collectivistic cultures are oriented towards an interdependent self, attending to contextual associations between visual cues. It is unknown how these perceptual biases may affect brain activity in response to negative social cues. Moreover, while some studies have shown that individual differences in self-construal moderate cultural group comparisons, few have examined self-construal differences separate to culture. To investigate these issues, a final sample of a group of healthy participants high in trait levels of collectivistic self-construal (n=16) and individualistic self-construal (n=19), regardless of cultural background, completed a negative social cue evaluation task designed to engage face/object vs context-specific neural processes whilst undergoing fMRI scanning. Between-group analyses revealed that the collectivistic group exclusively engaged the parahippocampal gyrus (parahippocampal place area) - a region critical to contextual integration - during negative face processing - suggesting compensatory activations when contextual information was missing. The collectivist group also displayed enhanced negative context dependent brain activity involving the left superior occipital gyrus/cuneus and right anterior insula. By contrast, the individualistic group did not engage object or localized face processing regions as predicted, but rather demonstrated heightened appraisal and self-referential activations in medial prefronta