WorldWideScience

Sample records for neural spiking activity

  1. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  2. Noise influence on spike activation in a Hindmarsh–Rose small-world neural network

    International Nuclear Information System (INIS)

    Zhe, Sun; Micheletto, Ruggero

    2016-01-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh−Rose (H−R) neural networks. (paper)

  3. Noise influence on spike activation in a Hindmarsh-Rose small-world neural network

    Science.gov (United States)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.

  4. Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures

    International Nuclear Information System (INIS)

    Xue Ming; Wang Jiang; Deng Bin; Wei Xi-Le; Yu Hai-Tao; Chen Ying-Yuan

    2013-01-01

    The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the ‘Zusanli’ point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate-independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture. (interdisciplinary physics and related areas of science and technology)

  5. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  6. An Overview of Bayesian Methods for Neural Spike Train Analysis

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2013-01-01

    Full Text Available Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial overview of Bayesian methods and their representative applications in neural spike train analysis, at both single neuron and population levels. On the theoretical side, we focus on various approximate Bayesian inference techniques as applied to latent state and parameter estimation. On the application side, the topics include spike sorting, tuning curve estimation, neural encoding and decoding, deconvolution of spike trains from calcium imaging signals, and inference of neuronal functional connectivity and synchrony. Some research challenges and opportunities for neural spike train analysis are discussed.

  7. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  8. Spiking neural network for recognizing spatiotemporal sequences of spikes

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2004-01-01

    Sensory neurons in many brain areas spike with precise timing to stimuli with temporal structures, and encode temporally complex stimuli into spatiotemporal spikes. How the downstream neurons read out such neural code is an important unsolved problem. In this paper, we describe a decoding scheme using a spiking recurrent neural network. The network consists of excitatory neurons that form a synfire chain, and two globally inhibitory interneurons of different types that provide delayed feedforward and fast feedback inhibition, respectively. The network signals recognition of a specific spatiotemporal sequence when the last excitatory neuron down the synfire chain spikes, which happens if and only if that sequence was present in the input spike stream. The recognition scheme is invariant to variations in the intervals between input spikes within some range. The computation of the network can be mapped into that of a finite state machine. Our network provides a simple way to decode spatiotemporal spikes with diverse types of neurons

  9. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  10. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  11. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  13. Hardware implementation of stochastic spiking neural networks.

    Science.gov (United States)

    Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni

    2012-08-01

    Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.

  14. iSpike: a spiking neural interface for the iCub robot

    International Nuclear Information System (INIS)

    Gamez, D; Fidjeland, A K; Lazdins, E

    2012-01-01

    This paper presents iSpike: a C++ library that interfaces between spiking neural network simulators and the iCub humanoid robot. It uses a biologically inspired approach to convert the robot’s sensory information into spikes that are passed to the neural network simulator, and it decodes output spikes from the network into motor signals that are sent to control the robot. Applications of iSpike range from embodied models of the brain to the development of intelligent robots using biologically inspired spiking neural networks. iSpike is an open source library that is available for free download under the terms of the GPL. (paper)

  15. Temporal Correlations and Neural Spike Train Entropy

    International Nuclear Information System (INIS)

    Schultz, Simon R.; Panzeri, Stefano

    2001-01-01

    Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a 'brute force' approach

  16. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  17. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  18. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  19. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  20. Spike Neural Models Part II: Abstract Neural Models

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2018-02-01

    Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.

  1. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.

    Science.gov (United States)

    de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A

    2015-01-01

    Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  2. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks

    Directory of Open Access Journals (Sweden)

    Daniel ede Santos-Sierra

    2015-11-01

    Full Text Available Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions cite{Pyragas}, where the slave neuron is able to anticipate in time the behaviour of the master one. In this paper we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI, one of the main features of the neural response associated to the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  3. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  4. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan; Naous, Rawan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2015-01-01

    . Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards

  5. Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); S.M. Bohte (Sander)

    2016-01-01

    textabstractBiological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on

  6. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.

    Science.gov (United States)

    Werner, Thilo; Vianello, Elisa; Bichler, Olivier; Garbin, Daniele; Cattaert, Daniel; Yvert, Blaise; De Salvo, Barbara; Perniola, Luca

    2016-01-01

    In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications. Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural network (nW range) may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM) as easy to program and low energy (Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  7. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  8. Pulsed neural networks consisting of single-flux-quantum spiking neurons

    International Nuclear Information System (INIS)

    Hirose, T.; Asai, T.; Amemiya, Y.

    2007-01-01

    An inhibitory pulsed neural network was developed for brain-like information processing, by using single-flux-quantum (SFQ) circuits. It consists of spiking neuron devices that are coupled to each other through all-to-all inhibitory connections. The network selects neural activity. The operation of the neural network was confirmed by computer simulation. SFQ neuron devices can imitate the operation of the inhibition phenomenon of neural networks

  9. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  10. A Markovian event-based framework for stochastic spiking neural networks.

    Science.gov (United States)

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  11. Parametric models to relate spike train and LFP dynamics with neural information processing.

    Science.gov (United States)

    Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan

    2012-01-01

    Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial

  12. Financial time series prediction using spiking neural networks.

    Science.gov (United States)

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  13. Character recognition from trajectory by recurrent spiking neural networks.

    Science.gov (United States)

    Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan

    2017-07-01

    Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.

  14. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan

    2015-04-01

    Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.

  15. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  16. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-06

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  17. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    Science.gov (United States)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  18. Correlations decrease with propagation of spiking activity in the mouse barrel cortex

    Directory of Open Access Journals (Sweden)

    Gayathri Nattar Ranganathan

    2011-05-01

    Full Text Available Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex.

  19. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  20. Linking structure and activity in nonlinear spiking networks.

    Science.gov (United States)

    Ocker, Gabriel Koch; Josić, Krešimir; Shea-Brown, Eric; Buice, Michael A

    2017-06-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  1. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    Science.gov (United States)

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  2. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  3. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    Science.gov (United States)

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  4. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

  5. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Dual roles for spike signaling in cortical neural populations

    Directory of Open Access Journals (Sweden)

    Dana eBallard

    2011-06-01

    Full Text Available A prominent feature of signaling in cortical neurons is that of randomness in the action potential. The output of a typical pyramidal cell can be well fit with a Poisson model, and variations in the Poisson rate repeatedly have been shown to be correlated with stimuli. However while the rate provides a very useful characterization of neural spike data, it may not be the most fundamental description of the signaling code. Recent data showing γ frequency range multi-cell action potential correlations, together with spike timing dependent plasticity, are spurring a re-examination of the classical model, since precise timing codes imply that the generation of spikes is essentially deterministic. Could the observed Poisson randomness and timing determinism reflect two separate modes of communication, or do they somehow derive from a single process? We investigate in a timing-based model whether the apparent incompatibility between these probabilistic and deterministic observations may be resolved by examining how spikes could be used in the underlying neural circuits. The crucial component of this model draws on dual roles for spike signaling. In learning receptive fields from ensembles of inputs, spikes need to behave probabilistically, whereas for fast signaling of individual stimuli, the spikes need to behave deterministically. Our simulations show that this combination is possible if deterministic signals using γ latency coding are probabilistically routed through different members of a cortical cell population at different times. This model exhibits standard features characteristic of Poisson models such as orientation tuning post-stimulus histograms and exponential interval histograms. In addition it makes testable predictions that follow from the γ latency coding.

  7. Comparison of Classifier Architectures for Online Neural Spike Sorting.

    Science.gov (United States)

    Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood

    2017-04-01

    High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.

  8. Self-control with spiking and non-spiking neural networks playing games.

    Science.gov (United States)

    Christodoulou, Chris; Banfield, Gaye; Cleanthous, Aristodemos

    2010-01-01

    Self-control can be defined as choosing a large delayed reward over a small immediate reward, while precommitment is the making of a choice with the specific aim of denying oneself future choices. Humans recognise that they have self-control problems and attempt to overcome them by applying precommitment. Problems in exercising self-control, suggest a conflict between cognition and motivation, which has been linked to competition between higher and lower brain functions (representing the frontal lobes and the limbic system respectively). This premise of an internal process conflict, lead to a behavioural model being proposed, based on which, we implemented a computational model for studying and explaining self-control through precommitment behaviour. Our model consists of two neural networks, initially non-spiking and then spiking ones, representing the higher and lower brain systems viewed as cooperating for the benefit of the organism. The non-spiking neural networks are of simple feed forward multilayer type with reinforcement learning, one with selective bootstrap weight update rule, which is seen as myopic, representing the lower brain and the other with the temporal difference weight update rule, which is seen as far-sighted, representing the higher brain. The spiking neural networks are implemented with leaky integrate-and-fire neurons with learning based on stochastic synaptic transmission. The differentiating element between the two brain centres in this implementation is based on the memory of past actions determined by an eligibility trace time constant. As the structure of the self-control problem can be likened to the Iterated Prisoner's Dilemma (IPD) game in that cooperation is to defection what self-control is to impulsiveness or what compromising is to insisting, we implemented the neural networks as two players, learning simultaneously but independently, competing in the IPD game. With a technique resembling the precommitment effect, whereby the

  9. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  10. A review on cluster estimation methods and their application to neural spike data

    Science.gov (United States)

    Zhang, James; Nguyen, Thanh; Cogill, Steven; Bhatti, Asim; Luo, Lingkun; Yang, Samuel; Nahavandi, Saeid

    2018-06-01

    The extracellular action potentials recorded on an electrode result from the collective simultaneous electrophysiological activity of an unknown number of neurons. Identifying and assigning these action potentials to their firing neurons—‘spike sorting’—is an indispensable step in studying the function and the response of an individual or ensemble of neurons to certain stimuli. Given the task of neural spike sorting, the determination of the number of clusters (neurons) is arguably the most difficult and challenging issue, due to the existence of background noise and the overlap and interactions among neurons in neighbouring regions. It is not surprising that some researchers still rely on visual inspection by experts to estimate the number of clusters in neural spike sorting. Manual inspection, however, is not suitable to processing the vast, ever-growing amount of neural data. To address this pressing need, in this paper, thirty-three clustering validity indices have been comprehensively reviewed and implemented to determine the number of clusters in neural datasets. To gauge the suitability of the indices to neural spike data, and inform the selection process, we then calculated the indices by applying k-means clustering to twenty widely used synthetic neural datasets and one empirical dataset, and compared the performance of these indices against pre-existing ground truth labels. The results showed that the top five validity indices work consistently well across variations in noise level, both for the synthetic datasets and the real dataset. Using these top performing indices provides strong support for the determination of the number of neural clusters, which is essential in the spike sorting process.

  11. A review on cluster estimation methods and their application to neural spike data.

    Science.gov (United States)

    Zhang, James; Nguyen, Thanh; Cogill, Steven; Bhatti, Asim; Luo, Lingkun; Yang, Samuel; Nahavandi, Saeid

    2018-06-01

    The extracellular action potentials recorded on an electrode result from the collective simultaneous electrophysiological activity of an unknown number of neurons. Identifying and assigning these action potentials to their firing neurons-'spike sorting'-is an indispensable step in studying the function and the response of an individual or ensemble of neurons to certain stimuli. Given the task of neural spike sorting, the determination of the number of clusters (neurons) is arguably the most difficult and challenging issue, due to the existence of background noise and the overlap and interactions among neurons in neighbouring regions. It is not surprising that some researchers still rely on visual inspection by experts to estimate the number of clusters in neural spike sorting. Manual inspection, however, is not suitable to processing the vast, ever-growing amount of neural data. To address this pressing need, in this paper, thirty-three clustering validity indices have been comprehensively reviewed and implemented to determine the number of clusters in neural datasets. To gauge the suitability of the indices to neural spike data, and inform the selection process, we then calculated the indices by applying k-means clustering to twenty widely used synthetic neural datasets and one empirical dataset, and compared the performance of these indices against pre-existing ground truth labels. The results showed that the top five validity indices work consistently well across variations in noise level, both for the synthetic datasets and the real dataset. Using these top performing indices provides strong support for the determination of the number of neural clusters, which is essential in the spike sorting process.

  12. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  13. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  14. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    Science.gov (United States)

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  15. Fast computation with spikes in a recurrent neural network

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.; Seung, H. Sebastian

    2002-01-01

    Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner

  16. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  17. On the Universality and Non-Universality of Spiking Neural P Systems With Rules on Synapses.

    Science.gov (United States)

    Song, Tao; Xu, Jinbang; Pan, Linqiang

    2015-12-01

    Spiking neural P systems with rules on synapses are a new variant of spiking neural P systems. In the systems, the neuron contains only spikes, while the spiking/forgetting rules are moved on the synapses. It was obtained that such system with 30 neurons (using extended spiking rules) or with 39 neurons (using standard spiking rules) is Turing universal. In this work, this number is improved to 6. Specifically, we construct a Turing universal spiking neural P system with rules on synapses having 6 neurons, which can generate any set of Turing computable natural numbers. As well, it is obtained that spiking neural P system with rules on synapses having less than two neurons are not Turing universal: i) such systems having one neuron can characterize the family of finite sets of natural numbers; ii) the family of sets of numbers generated by the systems having two neurons is included in the family of semi-linear sets of natural numbers.

  18. Anticipating Activity in Social Media Spikes

    OpenAIRE

    Higham, Desmond J.; Grindrod, Peter; Mantzaris, Alexander V.; Otley, Amanda; Laflin, Peter

    2014-01-01

    We propose a novel mathematical model for the activity of microbloggers during an external, event-driven spike. The model leads to a testable prediction of who would become most active if a spike were to take place. This type of information is of great interest to commercial organisations, governments and charities, as it identifies key players who can be targeted with information in real time when the network is most receptive. The model takes account of the fact that dynamic interactions ev...

  19. Spike neural models (part I: The Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2017-05-01

    Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.

  20. Different propagation speeds of recalled sequences in plastic spiking neural networks

    Science.gov (United States)

    Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.

    2015-03-01

    Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in

  1. Stimulus Sensitivity of a Spiking Neural Network Model

    Science.gov (United States)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  2. Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity

    Science.gov (United States)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-05-01

    The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.

  3. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    Science.gov (United States)

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  4. Neural spike sorting using iterative ICA and a deflation-based approach.

    Science.gov (United States)

    Tiganj, Z; Mboup, M

    2012-12-01

    We propose a spike sorting method for multi-channel recordings. When applied in neural recordings, the performance of the independent component analysis (ICA) algorithm is known to be limited, since the number of recording sites is much lower than the number of neurons. The proposed method uses an iterative application of ICA and a deflation technique in two nested loops. In each iteration of the external loop, the spiking activity of one neuron is singled out and then deflated from the recordings. The internal loop implements a sequence of ICA and sorting for removing the noise and all the spikes that are not fired by the targeted neuron. Then a final step is appended to the two nested loops in order to separate simultaneously fired spikes. We solve this problem by taking all possible pairs of the sorted neurons and apply ICA only on the segments of the signal during which at least one of the neurons in a given pair was active. We validate the performance of the proposed method on simulated recordings, but also on a specific type of real recordings: simultaneous extracellular-intracellular. We quantify the sorting results on the extracellular recordings for the spikes that come from the neurons recorded intracellularly. The results suggest that the proposed solution significantly improves the performance of ICA in spike sorting.

  5. Transformation-invariant visual representations in self-organizing spiking neural networks.

    Science.gov (United States)

    Evans, Benjamin D; Stringer, Simon M

    2012-01-01

    The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT) learning. However, it has not previously been investigated how transformation-invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP) where the change in synaptic strength is dependent on the relative times of the spikes emitted by the presynaptic and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF) neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model parameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  6. Transform-invariant visual representations in self-organizing spiking neural networks

    Directory of Open Access Journals (Sweden)

    Benjamin eEvans

    2012-07-01

    Full Text Available The ventral visual pathway achieves object and face recognition by building transform-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transform invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT learning. However, it has not previously been investigated how transform invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP where the change in synaptic strength is dependent on the relative times of the spikes emitted by the pre- and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model pa- rameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  7. An efficient automated parameter tuning framework for spiking neural networks.

    Science.gov (United States)

    Carlson, Kristofor D; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier.

  8. Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model

    Science.gov (United States)

    Panda, Priyadarshini; Srinivasa, Narayan

    2018-01-01

    A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples. We evaluate our approach on the UCF-101 dataset. Our experiments demonstrate that our proposed reservoir achieves 81.3/87% Top-1/Top-5 accuracy, respectively, on the 101-class data while requiring just 8 video examples per class for training. Our results establish a new benchmark for action recognition from limited video examples for spiking neural models while yielding competitive accuracy with respect to state-of-the-art non-spiking neural models. PMID:29551962

  9. Evolving Spiking Neural Networks for Recognition of Aged Voices.

    Science.gov (United States)

    Silva, Marco; Vellasco, Marley M B R; Cataldo, Edson

    2017-01-01

    The aging of the voice, known as presbyphonia, is a natural process that can cause great change in vocal quality of the individual. This is a relevant problem to those people who use their voices professionally, and its early identification can help determine a suitable treatment to avoid its progress or even to eliminate the problem. This work focuses on the development of a new model for the identification of aging voices (independently of their chronological age), using as input attributes parameters extracted from the voice and glottal signals. The proposed model, named Quantum binary-real evolving Spiking Neural Network (QbrSNN), is based on spiking neural networks (SNNs), with an unsupervised training algorithm, and a Quantum-Inspired Evolutionary Algorithm that automatically determines the most relevant attributes and the optimal parameters that configure the SNN. The QbrSNN model was evaluated in a database composed of 120 records, containing samples from three groups of speakers. The results obtained indicate that the proposed model provides better accuracy than other approaches, with fewer input attributes. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Training spiking neural networks to associate spatio-temporal input-output spike patterns

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2013-01-01

    In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the prop...

  11. Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Cawley, Seamus; Bruintjes, Tom; Smit, Gerardus Johannes Maria; McGinley, Brian; Carrillo, Snaider; Harkin, Jim; McDaid, Liam

    2013-01-01

    Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in

  12. Event-driven processing for hardware-efficient neural spike sorting

    Science.gov (United States)

    Liu, Yan; Pereira, João L.; Constandinou, Timothy G.

    2018-02-01

    Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.

  13. Brian: a simulator for spiking neural networks in Python

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2008-11-01

    Full Text Available Brian is a new simulator for spiking neural networks, written in Python (http://brian.di.ens.fr. It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  14. Brian: a simulator for spiking neural networks in python.

    Science.gov (United States)

    Goodman, Dan; Brette, Romain

    2008-01-01

    "Brian" is a new simulator for spiking neural networks, written in Python (http://brian. di.ens.fr). It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  15. Spiking neural networks on high performance computer clusters

    Science.gov (United States)

    Chen, Chong; Taha, Tarek M.

    2011-09-01

    In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.

  16. Training Spiking Neural Models Using Artificial Bee Colony

    Science.gov (United States)

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  17. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    Science.gov (United States)

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  18. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    Science.gov (United States)

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  19. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    Science.gov (United States)

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  20. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of cross-correlated delay shift rule in spiking neural networks for interictal spike detection.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Cabrerizo, Mercedes; Adjouadi, Malek

    2016-08-01

    This study proposes a Cross-Correlated Delay Shift (CCDS) supervised learning rule to train neurons with associated spatiotemporal patterns to classify spike patterns. The objective of this study was to evaluate the feasibility of using the CCDS rule to automate the detection of interictal spikes in electroencephalogram (EEG) data on patients with epilepsy. Encoding is the initial yet essential step for spiking neurons to process EEG patterns. A new encoding method is utilized to convert the EEG signal into spike patterns. The simulation results show that the proposed algorithm identified 69 spikes out of 82 spikes, or 84% detection rate, which is quite high considering the subtleties of interictal spikes and the tediousness of monitoring long EEG records. This CCDS rule is also benchmarked by ReSuMe on the same task.

  2. Decoding spatiotemporal spike sequences via the finite state automata dynamics of spiking neural networks

    International Nuclear Information System (INIS)

    Jin, Dezhe Z

    2008-01-01

    Temporally complex stimuli are encoded into spatiotemporal spike sequences of neurons in many sensory areas. Here, we describe how downstream neurons with dendritic bistable plateau potentials can be connected to decode such spike sequences. Driven by feedforward inputs from the sensory neurons and controlled by feedforward inhibition and lateral excitation, the neurons transit between UP and DOWN states of the membrane potentials. The neurons spike only in the UP states. A decoding neuron spikes at the end of an input to signal the recognition of specific spike sequences. The transition dynamics is equivalent to that of a finite state automaton. A connection rule for the networks guarantees that any finite state automaton can be mapped into the transition dynamics, demonstrating the equivalence in computational power between the networks and finite state automata. The decoding mechanism is capable of recognizing an arbitrary number of spatiotemporal spike sequences, and is insensitive to the variations of the spike timings in the sequences

  3. A Low Noise Amplifier for Neural Spike Recording Interfaces

    Directory of Open Access Journals (Sweden)

    Jesus Ruiz-Amaya

    2015-09-01

    Full Text Available This paper presents a Low Noise Amplifier (LNA for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.

  4. Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control.

    Science.gov (United States)

    Vlachos, Ioannis; Deniz, Taşkin; Aertsen, Ad; Kumar, Arvind

    2016-02-01

    There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.

  5. Macroscopic phase-resetting curves for spiking neural networks

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G. Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  6. Macroscopic phase-resetting curves for spiking neural networks.

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  7. [A wavelet neural network algorithm of EEG signals data compression and spikes recognition].

    Science.gov (United States)

    Zhang, Y; Liu, A; Yu, K

    1999-06-01

    A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.

  8. STDP-based spiking deep convolutional neural networks for object recognition.

    Science.gov (United States)

    Kheradpisheh, Saeed Reza; Ganjtabesh, Mohammad; Thorpe, Simon J; Masquelier, Timothée

    2018-03-01

    Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware

  9. Synaptic energy drives the information processing mechanisms in spiking neural networks.

    Science.gov (United States)

    El Laithy, Karim; Bogdan, Martin

    2014-04-01

    Flow of energy and free energy minimization underpins almost every aspect of naturally occurring physical mechanisms. Inspired by this fact this work establishes an energy-based framework that spans the multi-scale range of biological neural systems and integrates synaptic dynamic, synchronous spiking activity and neural states into one consistent working paradigm. Following a bottom-up approach, a hypothetical energy function is proposed for dynamic synaptic models based on the theoretical thermodynamic principles and the Hopfield networks. We show that a synapse exposes stable operating points in terms of its excitatory postsynaptic potential as a function of its synaptic strength. We postulate that synapses in a network operating at these stable points can drive this network to an internal state of synchronous firing. The presented analysis is related to the widely investigated temporal coherent activities (cell assemblies) over a certain range of time scales (binding-by-synchrony). This introduces a novel explanation of the observed (poly)synchronous activities within networks regarding the synaptic (coupling) functionality. On a network level the transitions from one firing scheme to the other express discrete sets of neural states. The neural states exist as long as the network sustains the internal synaptic energy.

  10. Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data

    Science.gov (United States)

    Deng, Xinyi

    2016-08-01

    population spiking data. Lastly, we proposed a general three-step paradigm that allows us to relate behavioral outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas, which is a step towards closed-loop therapies for psychological diseases using real-time neural stimulation. These methods are suitable for real-time implementation for content-based feedback experiments.

  11. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data

    Directory of Open Access Journals (Sweden)

    Evangelos Stromatias

    2017-06-01

    Full Text Available This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77% and Poker-DVS (100% real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  12. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.

    Science.gov (United States)

    Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2017-01-01

    This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  13. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  14. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  15. A novel analytical characterization for short-term plasticity parameters in spiking neural networks.

    Science.gov (United States)

    O'Brien, Michael J; Thibeault, Corey M; Srinivasa, Narayan

    2014-01-01

    Short-term plasticity (STP) is a phenomenon that widely occurs in the neocortex with implications for learning and memory. Based on a widely used STP model, we develop an analytical characterization of the STP parameter space to determine the nature of each synapse (facilitating, depressing, or both) in a spiking neural network based on presynaptic firing rate and the corresponding STP parameters. We demonstrate consistency with previous work by leveraging the power of our characterization to replicate the functional volumes that are integral for the previous network stabilization results. We then use our characterization to predict the precise transitional point from the facilitating regime to the depressing regime in a simulated synapse, suggesting in vitro experiments to verify the underlying STP model. We conclude the work by integrating our characterization into a framework for finding suitable STP parameters for self-sustaining random, asynchronous activity in a prescribed recurrent spiking neural network. The systematic process resulting from our analytical characterization improves the success rate of finding the requisite parameters for such networks by three orders of magnitude over a random search.

  16. A stochastic-field description of finite-size spiking neural networks.

    Science.gov (United States)

    Dumont, Grégory; Payeur, Alexandre; Longtin, André

    2017-08-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

  17. Efficient computation in adaptive artificial spiking neural networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)

    2017-01-01

    textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of

  18. Neural Spike Train Synchronisation Indices: Definitions, Interpretations and Applications.

    Science.gov (United States)

    Halliday, D M; Rosenberg, J R

    2017-04-24

    A comparison of previously defined spike train syncrhonization indices is undertaken within a stochastic point process framework. The second order cumulant density (covariance density) is shown to be common to all the indices. Simulation studies were used to investigate the sampling variability of a single index based on the second order cumulant. The simulations used a paired motoneurone model and a paired regular spiking cortical neurone model. The sampling variability of spike trains generated under identical conditions from the paired motoneurone model varied from 50% { 160% of the estimated value. On theoretical grounds, and on the basis of simulated data a rate dependence is present in all synchronization indices. The application of coherence and pooled coherence estimates to the issue of synchronization indices is considered. This alternative frequency domain approach allows an arbitrary number of spike train pairs to be evaluated for statistically significant differences, and combined into a single population measure. The pooled coherence framework allows pooled time domain measures to be derived, application of this to the simulated data is illustrated. Data from the cortical neurone model is generated over a wide range of firing rates (1 - 250 spikes/sec). The pooled coherence framework correctly characterizes the sampling variability as not significant over this wide operating range. The broader applicability of this approach to multi electrode array data is briefly discussed.

  19. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  20. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  1. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    International Nuclear Information System (INIS)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-01-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing

  2. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  3. Bumps, breathers, and waves in a neural network with spike frequency adaptation

    International Nuclear Information System (INIS)

    Coombes, S.; Owen, M.R.

    2005-01-01

    We introduce a continuum model of neural tissue that includes the effects of spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon nonlocal network connectivity, synaptic response, and the firing rate of a single neuron. We consider a phenomenological model of SFA via a simple state-dependent threshold firing rate function. As without SFA, Mexican-hat connectivity allows for the existence of spatially localized states (bumps). Importantly recent Evans function techniques are used to show that bumps may destabilize leading to the emergence of breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Simulations confirm our theoretical predictions and illustrate the rich behavior of this model

  4. System-Level Design of a 64-Channel Low Power Neural Spike Recording Sensor.

    Science.gov (United States)

    Delgado-Restituto, Manuel; Rodriguez-Perez, Alberto; Darie, Angela; Soto-Sanchez, Cristina; Fernandez-Jover, Eduardo; Rodriguez-Vazquez, Angel

    2017-04-01

    This paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration algorithm which individually configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by the embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330 μW.

  5. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  6. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  7. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

    Directory of Open Access Journals (Sweden)

    Jan Hahne

    2017-05-01

    Full Text Available Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  8. Structured chaos shapes spike-response noise entropy in balanced neural networks

    Directory of Open Access Journals (Sweden)

    Guillaume eLajoie

    2014-10-01

    Full Text Available Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability -- spike-train entropy. This leads to important insights on the variability of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complemented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows -- a phenomenon that depends on ``extensive chaos, as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.

  9. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    Science.gov (United States)

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  10. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Toward relating the subthalamic nucleus spiking activity to the local field potentials acquired intranuclearly

    International Nuclear Information System (INIS)

    Michmizos, K P; Nikita, K S; Sakas, D

    2011-01-01

    Studies on neurophysiological correlates of the functional magnetic resonance imaging (fMRI) signals reveal a strong relationship between the local field potential (LFP) acquired invasively and metabolic signal changes in fMRI experiments. Most of these studies failed to reveal an analogous relationship between metabolic signals and the spiking activity. That would allow for the prediction of the neural activity exclusively from the fMRI signals. However, the relationship between fMRI signals and spiking activity can be inferred indirectly provided that the LFPs can be used to predict the spiking activity of the area. Until now, only the LFP–spike relationship in cortical areas has been examined. Herein, we show that the spiking activity can be predicted by the LFPs acquired in a deep nucleus, namely the subthalamic nucleus (STN), using a nonlinear cascade model. The model can reproduce the spike patterns inside the motor area of the STN that represent information about the motor plans. Our findings expand the possibility of further recruiting non-invasive neuroimaging techniques to understand the activity of the STN and predict or even control movement

  12. Reconstruction of sparse connectivity in neural networks from spike train covariances

    International Nuclear Information System (INIS)

    Pernice, Volker; Rotter, Stefan

    2013-01-01

    The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally and theoretically. The influence of recurrent connections on covariances can be characterized directly in linear models, where connectivity in the network is described by a matrix of linear coupling kernels. However, as indirect connections also give rise to covariances, the inverse problem of inferring network structure from covariances can generally not be solved unambiguously. Here we study to what degree this ambiguity can be resolved if the sparseness of neural networks is taken into account. To reconstruct a sparse network, we determine the minimal set of linear couplings consistent with the measured covariances by minimizing the L 1 norm of the coupling matrix under appropriate constraints. Contrary to intuition, after stochastic optimization of the coupling matrix, the resulting estimate of the underlying network is directed, despite the fact that a symmetric matrix of count covariances is used for inference. The performance of the new method is best if connections are neither exceedingly sparse, nor too dense, and it is easily applicable for networks of a few hundred nodes. Full coupling kernels can be obtained from the matrix of full covariance functions. We apply our method to networks of leaky integrate-and-fire neurons in an asynchronous–irregular state, where spike train covariances are well described by a linear model. (paper)

  13. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks

    NARCIS (Netherlands)

    Martens, M.B. (Marijn B.); A.R. Houweling (Arthur); E. Tiesinga, P.H. (Paul H.)

    2017-01-01

    textabstractNeuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide

  14. On the robustness of EC-PC spike detection method for online neural recording.

    Science.gov (United States)

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    Science.gov (United States)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  16. A graph-Laplacian-based feature extraction algorithm for neural spike sorting.

    Science.gov (United States)

    Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos

    2009-01-01

    Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.

  17. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Science.gov (United States)

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  18. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  19. Gradient Learning in Spiking Neural Networks by Dynamic Perturbation of Conductances

    International Nuclear Information System (INIS)

    Fiete, Ila R.; Seung, H. Sebastian

    2006-01-01

    We present a method of estimating the gradient of an objective function with respect to the synaptic weights of a spiking neural network. The method works by measuring the fluctuations in the objective function in response to dynamic perturbation of the membrane conductances of the neurons. It is compatible with recurrent networks of conductance-based model neurons with dynamic synapses. The method can be interpreted as a biologically plausible synaptic learning rule, if the dynamic perturbations are generated by a special class of 'empiric' synapses driven by random spike trains from an external source

  20. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  1. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    Full Text Available Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  2. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Science.gov (United States)

    Hutt, Axel; Mierau, Andreas; Lefebvre, Jérémie

    Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  3. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Directory of Open Access Journals (Sweden)

    Hidetoshi Konno

    2018-01-01

    Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.

  4. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Science.gov (United States)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  5. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  6. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  7. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays.

    Science.gov (United States)

    Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam

    2017-11-01

    Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.

  8. A Frank mixture copula family for modeling higher-order correlations of neural spike counts

    International Nuclear Information System (INIS)

    Onken, Arno; Obermayer, Klaus

    2009-01-01

    In order to evaluate the importance of higher-order correlations in neural spike count codes, flexible statistical models of dependent multivariate spike counts are required. Copula families, parametric multivariate distributions that represent dependencies, can be applied to construct such models. We introduce the Frank mixture family as a new copula family that has separate parameters for all pairwise and higher-order correlations. In contrast to the Farlie-Gumbel-Morgenstern copula family that shares this property, the Frank mixture copula can model strong correlations. We apply spike count models based on the Frank mixture copula to data generated by a network of leaky integrate-and-fire neurons and compare the goodness of fit to distributions based on the Farlie-Gumbel-Morgenstern family. Finally, we evaluate the importance of using proper single neuron spike count distributions on the Shannon information. We find notable deviations in the entropy that increase with decreasing firing rates. Moreover, we find that the Frank mixture family increases the log likelihood of the fit significantly compared to the Farlie-Gumbel-Morgenstern family. This shows that the Frank mixture copula is a useful tool to assess the importance of higher-order correlations in spike count codes.

  9. Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI

    Directory of Open Access Journals (Sweden)

    Massimiliano eGiulioni

    2012-02-01

    Full Text Available We demonstrate bistable attractor dynamics in a spiking neural network implemented with neuromorphic VLSI hardware. The on-chip network consists of three interacting populations (two excitatory, one inhibitory of integrate-and-fire (LIF neurons. One excitatory population is distinguished by strong synaptic self-excitation, which sustains meta-stable states of ‘high’ and ‘low’-firing activity. Depending on the overall excitability, transitions to the ‘high’ state may be evoked by external stimulation, or may occur spontaneously due to random activity fluctuations. In the former case, the ‘high’ state retains a working memory of a stimulus until well after its release. In the latter case, ‘high’ states remain stable for seconds, three orders of magnitude longer than the largest time-scale implemented in the circuitry. Evoked and spontaneous transitions form a continuum and may exhibit a wide range of latencies, depending on the strength of external stimulation and of recurrent synaptic excitation. In addition, we investigated corrupted ‘high’ states comprising neurons of both excitatory populations. Within a basin of attraction, the network dynamics corrects such states and re-establishes the prototypical ‘high’ state. We conclude that, with effective theoretical guidance, full-fledged attractor dynamics can be realized with comparatively small populations of neuromorphic hardware neurons.

  10. Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI.

    Science.gov (United States)

    Giulioni, Massimiliano; Camilleri, Patrick; Mattia, Maurizio; Dante, Vittorio; Braun, Jochen; Del Giudice, Paolo

    2011-01-01

    We demonstrate bistable attractor dynamics in a spiking neural network implemented with neuromorphic VLSI hardware. The on-chip network consists of three interacting populations (two excitatory, one inhibitory) of leaky integrate-and-fire (LIF) neurons. One excitatory population is distinguished by strong synaptic self-excitation, which sustains meta-stable states of "high" and "low"-firing activity. Depending on the overall excitability, transitions to the "high" state may be evoked by external stimulation, or may occur spontaneously due to random activity fluctuations. In the former case, the "high" state retains a "working memory" of a stimulus until well after its release. In the latter case, "high" states remain stable for seconds, three orders of magnitude longer than the largest time-scale implemented in the circuitry. Evoked and spontaneous transitions form a continuum and may exhibit a wide range of latencies, depending on the strength of external stimulation and of recurrent synaptic excitation. In addition, we investigated "corrupted" "high" states comprising neurons of both excitatory populations. Within a "basin of attraction," the network dynamics "corrects" such states and re-establishes the prototypical "high" state. We conclude that, with effective theoretical guidance, full-fledged attractor dynamics can be realized with comparatively small populations of neuromorphic hardware neurons.

  11. Validation of neural spike sorting algorithms without ground-truth information.

    Science.gov (United States)

    Barnett, Alex H; Magland, Jeremy F; Greengard, Leslie F

    2016-05-01

    The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Science.gov (United States)

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  13. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  14. Active Neural Localization

    OpenAIRE

    Chaplot, Devendra Singh; Parisotto, Emilio; Salakhutdinov, Ruslan

    2018-01-01

    Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of tradition...

  15. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    Science.gov (United States)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  16. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Directory of Open Access Journals (Sweden)

    Yoonsik Shim

    2016-10-01

    Full Text Available We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP. The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  17. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Science.gov (United States)

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  18. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    Science.gov (United States)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  19. Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    International Nuclear Information System (INIS)

    Yoshioka, Masahiko

    2002-01-01

    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatiotemporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatiotemporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast α function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with α function is reduced to the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision

  20. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  1. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    Science.gov (United States)

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  3. Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.

    Science.gov (United States)

    Sinapayen, Lana; Masumori, Atsushi; Ikegami, Takashi

    2017-01-01

    Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically inspired neural network. Using carefully timed external stimulation, the network can be driven towards a desired dynamical state. We term this principle "Learning by Stimulation Avoidance" (LSA). We demonstrate through simulation that the minimal sufficient conditions leading to LSA in artificial networks are also sufficient to reproduce learning results similar to those obtained in biological neurons by Shahaf and Marom, and in addition explains synaptic pruning. We examined the underlying mechanism by simulating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that LSA has a higher explanatory power than existing hypotheses about the response of biological neural networks to external simulation, and can be used as a learning rule for an embodied application: learning of wall avoidance by a simulated robot. In other works, reinforcement learning with spiking networks can be obtained through global reward signals akin simulating the dopamine system; we believe that this is the first project demonstrating sensory-motor learning with random spiking networks through Hebbian learning relying on environmental conditions without a separate reward system.

  4. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  5. Optimizing Semantic Pointer Representations for Symbol-Like Processing in Spiking Neural Networks.

    Science.gov (United States)

    Gosmann, Jan; Eliasmith, Chris

    2016-01-01

    The Semantic Pointer Architecture (SPA) is a proposal of specifying the computations and architectural elements needed to account for cognitive functions. By means of the Neural Engineering Framework (NEF) this proposal can be realized in a spiking neural network. However, in any such network each SPA transformation will accumulate noise. By increasing the accuracy of common SPA operations, the overall network performance can be increased considerably. As well, the representations in such networks present a trade-off between being able to represent all possible values and being only able to represent the most likely values, but with high accuracy. We derive a heuristic to find the near-optimal point in this trade-off. This allows us to improve the accuracy of common SPA operations by up to 25 times. Ultimately, it allows for a reduction of neuron number and a more efficient use of both traditional and neuromorphic hardware, which we demonstrate here.

  6. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  7. Limits to high-speed simulations of spiking neural networks using general-purpose computers.

    Science.gov (United States)

    Zenke, Friedemann; Gerstner, Wulfram

    2014-01-01

    To understand how the central nervous system performs computations using recurrent neuronal circuitry, simulations have become an indispensable tool for theoretical neuroscience. To study neuronal circuits and their ability to self-organize, increasing attention has been directed toward synaptic plasticity. In particular spike-timing-dependent plasticity (STDP) creates specific demands for simulations of spiking neural networks. On the one hand a high temporal resolution is required to capture the millisecond timescale of typical STDP windows. On the other hand network simulations have to evolve over hours up to days, to capture the timescale of long-term plasticity. To do this efficiently, fast simulation speed is the crucial ingredient rather than large neuron numbers. Using different medium-sized network models consisting of several thousands of neurons and off-the-shelf hardware, we compare the simulation speed of the simulators: Brian, NEST and Neuron as well as our own simulator Auryn. Our results show that real-time simulations of different plastic network models are possible in parallel simulations in which numerical precision is not a primary concern. Even so, the speed-up margin of parallelism is limited and boosting simulation speeds beyond one tenth of real-time is difficult. By profiling simulation code we show that the run times of typical plastic network simulations encounter a hard boundary. This limit is partly due to latencies in the inter-process communications and thus cannot be overcome by increased parallelism. Overall, these results show that to study plasticity in medium-sized spiking neural networks, adequate simulation tools are readily available which run efficiently on small clusters. However, to run simulations substantially faster than real-time, special hardware is a prerequisite.

  8. Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses

    International Nuclear Information System (INIS)

    Cofré, Rodrigo; Cessac, Bruno

    2013-01-01

    We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based integrate-and-fire neural network, driven by Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or generalized linear models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions

  9. Spike-timing computation properties of a feed-forward neural network model

    Directory of Open Access Journals (Sweden)

    Drew Benjamin Sinha

    2014-01-01

    Full Text Available Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g. serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses.

  10. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  11. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    Science.gov (United States)

    Rallapalli, Varsha H.

    2016-01-01

    Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  12. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  13. Extraction and characterization of essential discharge patterns from multisite recordings of spiking ongoing activity.

    Directory of Open Access Journals (Sweden)

    Riccardo Storchi

    Full Text Available Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns.Our technique introduces two important novelties and enables to insulate essential patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on a fixed spike number k in order to detect N-dimensional arrays (k-sequences, whose sum over all dimension is k. Then k-sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R to evaluate the average pattern complexity, the structure of essential classes and their stability in time.We validated this algorithm with four kinds of surrogated activity, ranging from random to very regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable, moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of ongoing and potentially stimulated activity. Combined with time-frequency analysis of LFPs could provide a powerful multiscale approach linking population

  14. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks.

    Science.gov (United States)

    Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H

    2017-02-01

    Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.

  15. FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

    Directory of Open Access Journals (Sweden)

    T. Pasupathi

    2014-05-01

    Full Text Available Image recognition is a technology which can be used in various applications such as medical image recognition systems, security, defense video tracking, and factory automation. In this paper we present a novel pipelined architecture of an adaptive integrated Artificial Neural Network for image recognition. In our proposed work we have combined the feature of spiking neuron concept with ANN to achieve the efficient architecture for image recognition. The set of training images are trained by ANN and target output has been identified. Real time videos are captured and then converted into frames for testing purpose and the image were recognized. The machine can operate at up to 40 frames/sec using images acquired from the camera. The system has been implemented on XC3S400 SPARTAN-3 Field Programmable Gate Arrays.

  16. VLSI implementation of a bio-inspired olfactory spiking neural network.

    Science.gov (United States)

    Hsieh, Hung-Yi; Tang, Kea-Tiong

    2012-07-01

    This paper presents a low-power, neuromorphic spiking neural network (SNN) chip that can be integrated in an electronic nose system to classify odor. The proposed SNN takes advantage of sub-threshold oscillation and onset-latency representation to reduce power consumption and chip area, providing a more distinct output for each odor input. The synaptic weights between the mitral and cortical cells are modified according to an spike-timing-dependent plasticity learning rule. During the experiment, the odor data are sampled by a commercial electronic nose (Cyranose 320) and are normalized before training and testing to ensure that the classification result is only caused by learning. Measurement results show that the circuit only consumed an average power of approximately 3.6 μW with a 1-V power supply to discriminate odor data. The SNN has either a high or low output response for a given input odor, making it easy to determine whether the circuit has made the correct decision. The measurement result of the SNN chip and some well-known algorithms (support vector machine and the K-nearest neighbor program) is compared to demonstrate the classification performance of the proposed SNN chip.The mean testing accuracy is 87.59% for the data used in this paper.

  17. Studying the mechanisms of the Somatic Marker Hypothesis in Spiking Neural Networks (SNN

    Directory of Open Access Journals (Sweden)

    Manuel GONZÁLEZ

    2013-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, a mechanism of emotional bias in decision making is studied using Spiking Neural Networks to simulate the associative and recurrent networks involved. The results obtained are along the lines of those proposed by A. Damasio as part of the Somatic Marker Hypothesis, in particular, that, in absence of emotional input, the decision making is driven by the rational input alone. Appropriate representations for the Objective and Emotional Values are also suggested, provided a spike representation (code of the information.

  18. Studying the mechanisms of the Somatic Marker Hypothesis in Spiking Neural Networks (SNN

    Directory of Open Access Journals (Sweden)

    Alejandro JIMÉNEZ-RODRÍGUEZ

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, a mechanism of emotional bias in decision making is studied using Spiking Neural Networks to simulate the associative and recurrent networks involved. The results obtained are along the lines of those proposed by A. Damasio as part of the Somatic Marker Hypothesis, in particular, that, in absence of emotional input, the decision making is driven by the rational input alone. Appropriate representations for the Objective and Emotional Values are also suggested, provided a spike representation (code of the information.

  19. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    Directory of Open Access Journals (Sweden)

    Marc Ebner

    2011-01-01

    Full Text Available Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”. Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot” suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of

  20. Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone.

    Directory of Open Access Journals (Sweden)

    Felipe Gerhard

    Full Text Available Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired recordings or by post-hoc histology. More recently, causal network inference algorithms have been proposed to deduce connectivity directly from electrophysiological signals, such as extracellularly recorded spiking activity. Usually, these algorithms have not been validated on a neurophysiological data set for which the actual circuitry is known. Recent work has shown that traditional network inference algorithms based on linear models typically fail to identify the correct coupling of a small central pattern generating circuit in the stomatogastric ganglion of the crab Cancer borealis. In this work, we show that point process models of observed spike trains can guide inference of relative connectivity estimates that match the known physiological connectivity of the central pattern generator up to a choice of threshold. We elucidate the necessary steps to derive faithful connectivity estimates from a model that incorporates the spike train nature of the data. We then apply the model to measure changes in the effective connectivity pattern in response to two pharmacological interventions, which affect both intrinsic neural dynamics and synaptic transmission. Our results provide the first successful application of a network inference algorithm to a circuit for which the actual physiological synapses between neurons are known. The point process methodology presented here generalizes well to larger networks and can describe the statistics of neural populations. In general we show that advanced statistical models allow for the characterization of effective network structure, deciphering underlying network dynamics and estimating information-processing capabilities.

  1. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  2. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Directory of Open Access Journals (Sweden)

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  3. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    Science.gov (United States)

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  4. Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems

    Directory of Open Access Journals (Sweden)

    Gabriel A. Fonseca Guerra

    2017-12-01

    Full Text Available Constraint satisfaction problems (CSP are at the core of numerous scientific and technological applications. However, CSPs belong to the NP-complete complexity class, for which the existence (or not of efficient algorithms remains a major unsolved question in computational complexity theory. In the face of this fundamental difficulty heuristics and approximation methods are used to approach instances of NP (e.g., decision and hard optimization problems. The human brain efficiently handles CSPs both in perception and behavior using spiking neural networks (SNNs, and recent studies have demonstrated that the noise embedded within an SNN can be used as a computational resource to solve CSPs. Here, we provide a software framework for the implementation of such noisy neural solvers on the SpiNNaker massively parallel neuromorphic hardware, further demonstrating their potential to implement a stochastic search that solves instances of P and NP problems expressed as CSPs. This facilitates the exploration of new optimization strategies and the understanding of the computational abilities of SNNs. We demonstrate the basic principles of the framework by solving difficult instances of the Sudoku puzzle and of the map color problem, and explore its application to spin glasses. The solver works as a stochastic dynamical system, which is attracted by the configuration that solves the CSP. The noise allows an optimal exploration of the space of configurations, looking for the satisfiability of all the constraints; if applied discontinuously, it can also force the system to leap to a new random configuration effectively causing a restart.

  5. Real-time radionuclide identification in γ-emitter mixtures based on spiking neural network

    International Nuclear Information System (INIS)

    Bobin, C.; Bichler, O.; Lourenço, V.; Thiam, C.; Thévenin, M.

    2016-01-01

    Portal radiation monitors dedicated to the prevention of illegal traffic of nuclear materials at international borders need to deliver as fast as possible a radionuclide identification of a potential radiological threat. Spectrometry techniques applied to identify the radionuclides contributing to γ-emitter mixtures are usually performed using off-line spectrum analysis. As an alternative to these usual methods, a real-time processing based on an artificial neural network and Bayes’ rule is proposed for fast radionuclide identification. The validation of this real-time approach was carried out using γ-emitter spectra ( 241 Am, 133 Ba, 207 Bi, 60 Co, 137 Cs) obtained with a high-efficiency well-type NaI(Tl). The first tests showed that the proposed algorithm enables a fast identification of each γ-emitting radionuclide using the information given by the whole spectrum. Based on an iterative process, the on-line analysis only needs low-statistics spectra without energy calibration to identify the nature of a radiological threat. - Highlights: • A fast radionuclide identification algorithm applicable in spectroscopic portal monitors is presented. • The proposed algorithm combines a Bayesian sequential approach and a spiking neural network. • The algorithm was validated using the mixture of γ-emitter spectra provided by a well-type NaI(Tl) detector. • The radionuclide identification process is implemented using the whole γ-spectrum without energy calibration.

  6. Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems.

    Science.gov (United States)

    Fonseca Guerra, Gabriel A; Furber, Steve B

    2017-01-01

    Constraint satisfaction problems (CSP) are at the core of numerous scientific and technological applications. However, CSPs belong to the NP-complete complexity class, for which the existence (or not) of efficient algorithms remains a major unsolved question in computational complexity theory. In the face of this fundamental difficulty heuristics and approximation methods are used to approach instances of NP (e.g., decision and hard optimization problems). The human brain efficiently handles CSPs both in perception and behavior using spiking neural networks (SNNs), and recent studies have demonstrated that the noise embedded within an SNN can be used as a computational resource to solve CSPs. Here, we provide a software framework for the implementation of such noisy neural solvers on the SpiNNaker massively parallel neuromorphic hardware, further demonstrating their potential to implement a stochastic search that solves instances of P and NP problems expressed as CSPs. This facilitates the exploration of new optimization strategies and the understanding of the computational abilities of SNNs. We demonstrate the basic principles of the framework by solving difficult instances of the Sudoku puzzle and of the map color problem, and explore its application to spin glasses. The solver works as a stochastic dynamical system, which is attracted by the configuration that solves the CSP. The noise allows an optimal exploration of the space of configurations, looking for the satisfiability of all the constraints; if applied discontinuously, it can also force the system to leap to a new random configuration effectively causing a restart.

  7. Population activity statistics dissect subthreshold and spiking variability in V1.

    Science.gov (United States)

    Bányai, Mihály; Koman, Zsombor; Orbán, Gergő

    2017-07-01

    Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of

  8. Event management for large scale event-driven digital hardware spiking neural networks.

    Science.gov (United States)

    Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean

    2013-09-01

    The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.

    Science.gov (United States)

    Han, Bing; Taha, Tarek M

    2010-04-01

    There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.

  10. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  11. Feature extraction using extrema sampling of discrete derivatives for spike sorting in implantable upper-limb neural prostheses.

    Science.gov (United States)

    Zamani, Majid; Demosthenous, Andreas

    2014-07-01

    Next generation neural interfaces for upper-limb (and other) prostheses aim to develop implantable interfaces for one or more nerves, each interface having many neural signal channels that work reliably in the stump without harming the nerves. To achieve real-time multi-channel processing it is important to integrate spike sorting on-chip to overcome limitations in transmission bandwidth. This requires computationally efficient algorithms for feature extraction and clustering suitable for low-power hardware implementation. This paper describes a new feature extraction method for real-time spike sorting based on extrema analysis (namely positive peaks and negative peaks) of spike shapes and their discrete derivatives at different frequency bands. Employing simulation across different datasets, the accuracy and computational complexity of the proposed method are assessed and compared with other methods. The average classification accuracy of the proposed method in conjunction with online sorting (O-Sort) is 91.6%, outperforming all the other methods tested with the O-Sort clustering algorithm. The proposed method offers a better tradeoff between classification error and computational complexity, making it a particularly strong choice for on-chip spike sorting.

  12. The detection of intestinal spike activity on surface electroenterograms

    Energy Technology Data Exchange (ETDEWEB)

    Ye-Lin, Y; Garcia-Casado, J; Martinez-de-Juan, J L; Prats-Boluda, G [Instituto interuniversitario de investigacion en bioingenierIa y tecnologIa orientada al ser humano (I3BH), Universidad Politecnica de Valencia, Camino de Vera, s/n, Ed. 8E, Acceso N, 2a, planta 46022 Valencia (Spain); Ponce, J L [Department of Surgery, Hospital Universitario La Fe de Valencia, Avenida Campanar n0. 51, 46009 Valencia (Spain)], E-mail: yiye@eln.upv.es, E-mail: jgarciac@eln.upv.es, E-mail: jlmartinez@eln.upv.es, E-mail: geprabo@eln.upv.es, E-mail: drjlponce@ono.com

    2010-02-07

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 {+-} 0.10 for channel 1 and 0.57 {+-} 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  13. The detection of intestinal spike activity on surface electroenterograms

    International Nuclear Information System (INIS)

    Ye-Lin, Y; Garcia-Casado, J; Martinez-de-Juan, J L; Prats-Boluda, G; Ponce, J L

    2010-01-01

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 ± 0.10 for channel 1 and 0.57 ± 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  14. Spike frequency adaptation is a possible mechanism for control of attractor preference in auto-associative neural networks

    Science.gov (United States)

    Roach, James; Sander, Leonard; Zochowski, Michal

    Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).

  15. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.

    Science.gov (United States)

    Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi

    2018-01-01

    Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    Science.gov (United States)

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

  17. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity

    Directory of Open Access Journals (Sweden)

    Benjamin eDummer

    2014-09-01

    Full Text Available A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, J. Comp. Neurosci. 2000 and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide excellent approximations to the autocorrelation of spike trains in the recurrent network.

  18. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery

    DEFF Research Database (Denmark)

    Grønlykke, L; Knudsen, M L; Høgenhaven, H

    2008-01-01

    To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE).......To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE)....

  19. Pharmacodynamics of remifentanil. Induced intracranial spike activity in mesial temporal lobe epilepsy

    DEFF Research Database (Denmark)

    Kjær, Troels Wesenberg; Hogenhaven, Hans; Lee, Andrea P

    2017-01-01

    that remifentanil potentiates spike activity is in agreement with previous findings from smaller studies. Furthermore, we were able to describe the pharmacodynamics of the remifentanil effect on spike activity. Peri-operative provocation with remifentanil may play a future role in guiding neurosurgical intervention...

  20. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses

    Directory of Open Access Journals (Sweden)

    Makoto Nishiyama

    2010-06-01

    Full Text Available GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and post-synaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and post-synaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD” at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA with LTP timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”. Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD” to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing and frequency dependences of long-term synaptic modifications in the hippocampus.

  1. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  2. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors

    Directory of Open Access Journals (Sweden)

    Farida Veliev

    2017-08-01

    Full Text Available The emergence of nanoelectronics applied to neural interfaces has started few decades ago, and aims to provide new tools for replacing or restoring disabled functions of the nervous systems as well as further understanding the evolution of such complex organization. As the same time, graphene and other 2D materials have offered new possibilities for integrating micro and nano-devices on flexible, transparent, and biocompatible substrates, promising for bio and neuro-electronics. In addition to many bio-suitable features of graphene interface, such as, chemical inertness and anti-corrosive properties, its optical transparency enables multimodal approach of neuronal based systems, the electrical layer being compatible with additional microfluidics and optical manipulation ports. The convergence of these fields will provide a next generation of neural interfaces for the reliable detection of single spike and record with high fidelity activity patterns of neural networks. Here, we report on the fabrication of graphene field effect transistors (G-FETs on various substrates (silicon, sapphire, glass coverslips, and polyimide deposited onto Si/SiO2 substrates, exhibiting high sensitivity (4 mS/V, close to the Dirac point at VLG < VD and low noise level (10−22 A2/Hz, at VLG = 0 V. We demonstrate the in vitro detection of the spontaneous activity of hippocampal neurons in-situ-grown on top of the graphene sensors during several weeks in a millimeter size PDMS fluidics chamber (8 mm wide. These results provide an advance toward the realization of biocompatible devices for reliable and high spatio-temporal sensing of neuronal activity for both in vitro and in vivo applications.

  3. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    Science.gov (United States)

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.

    Science.gov (United States)

    Kim, Elmer K; Wellnitz, Scott A; Bourdon, Sarah M; Lumpkin, Ellen A; Gerling, Gregory J

    2012-07-23

    The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent's characteristic response

  5. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery

    DEFF Research Database (Denmark)

    Gronlykke, L.; Knudsen, M.L.; Hogenhaven, H.

    2008-01-01

    . Electrocorticography (ECoG) recordings were performed on the intraventricular hippocampus and from the anterior inferior temporal and lateral neocortex before and after a 300 microg intravenous bolus of remifentanil. Spike activity was quantified as spike-count per minute. RESULTS: A significant increase (P

  6. Multichannel interictal spike activity detection using time-frequency entropy measure.

    Science.gov (United States)

    Thanaraj, Palani; Parvathavarthini, B

    2017-06-01

    Localization of interictal spikes is an important clinical step in the pre-surgical assessment of pharmacoresistant epileptic patients. The manual selection of interictal spike periods is cumbersome and involves a considerable amount of analysis workload for the physician. The primary focus of this paper is to automate the detection of interictal spikes for clinical applications in epilepsy localization. The epilepsy localization procedure involves detection of spikes in a multichannel EEG epoch. Therefore, a multichannel Time-Frequency (T-F) entropy measure is proposed to extract features related to the interictal spike activity. Least squares support vector machine is used to train the proposed feature to classify the EEG epochs as either normal or interictal spike period. The proposed T-F entropy measure, when validated with epilepsy dataset of 15 patients, shows an interictal spike classification accuracy of 91.20%, sensitivity of 100% and specificity of 84.23%. Moreover, the area under the curve of Receiver Operating Characteristics plot of 0.9339 shows the superior classification performance of the proposed T-F entropy measure. The results of this paper show a good spike detection accuracy without any prior information about the spike morphology.

  7. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    Science.gov (United States)

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  8. Sound Source Localization Through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    Directory of Open Access Journals (Sweden)

    Christoph Beck

    2016-10-01

    Full Text Available Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  9. Copula Regression Analysis of Simultaneously Recorded Frontal Eye Field and Inferotemporal Spiking Activity during Object-Based Working Memory

    Science.gov (United States)

    Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin

    2015-01-01

    Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909

  10. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A; Carrillo, Richard R; Ros, Eduardo; Luque, Niceto R

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  11. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  12. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.

    Science.gov (United States)

    Bill, Johannes; Legenstein, Robert

    2014-01-01

    Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network's spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic architectures.

  13. Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis.

    Science.gov (United States)

    Bhaduri, Aritra; Banerjee, Amitava; Roy, Subhrajit; Kar, Sougata; Basu, Arindam

    2018-03-01

    We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.

  14. Pooling and correlated neural activity

    Directory of Open Access Journals (Sweden)

    Robert Rosenbaum

    2010-04-01

    Full Text Available Correlations between spike trains can strongly modulate neuronal activity and affect the ability of neurons to encode information. Neurons integrate inputs from thousands of afferents. Similarly, a number of experimental techniques are designed to record pooled cell activity. We review and generalize a number of previous results that show how correlations between cells in a population can be amplified and distorted in signals that reflect their collective activity. The structure of the underlying neuronal response can significantly impact correlations between such pooled signals. Therefore care needs to be taken when interpreting pooled recordings, or modeling networks of cells that receive inputs from large presynaptic populations. We also show that the frequently observed runaway synchrony in feedforward chains is primarily due to the pooling of correlated inputs.

  15. Single-trial estimation of stimulus and spike-history effects on time-varying ensemble spiking activity of multiple neurons: a simulation study

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki

    2013-01-01

    Neurons in cortical circuits exhibit coordinated spiking activity, and can produce correlated synchronous spikes during behavior and cognition. We recently developed a method for estimating the dynamics of correlated ensemble activity by combining a model of simultaneous neuronal interactions (e.g., a spin-glass model) with a state-space method (Shimazaki et al. 2012 PLoS Comput Biol 8 e1002385). This method allows us to estimate stimulus-evoked dynamics of neuronal interactions which is reproducible in repeated trials under identical experimental conditions. However, the method may not be suitable for detecting stimulus responses if the neuronal dynamics exhibits significant variability across trials. In addition, the previous model does not include effects of past spiking activity of the neurons on the current state of ensemble activity. In this study, we develop a parametric method for simultaneously estimating the stimulus and spike-history effects on the ensemble activity from single-trial data even if the neurons exhibit dynamics that is largely unrelated to these effects. For this goal, we model ensemble neuronal activity as a latent process and include the stimulus and spike-history effects as exogenous inputs to the latent process. We develop an expectation-maximization algorithm that simultaneously achieves estimation of the latent process, stimulus responses, and spike-history effects. The proposed method is useful to analyze an interaction of internal cortical states and sensory evoked activity

  16. Neural coding with spikes and bursts: characterizing neurons and networks with noisy input

    NARCIS (Netherlands)

    Zeldenrust, F.

    2012-01-01

    De hersenen verwerken voortdurend informatie uit hun omgeving. Fleur Zeldenrust onderzocht op het niveau van hersencellen (neuronen) hoe deze informatieverwerking plaatsvindt, ofwel wat de ‘neurale code’ is. Dit onderzocht ze met zowel experimentele waarnemingen als theoretische modellen. Zeldenrust

  17. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  18. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  19. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  20. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  1. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Directory of Open Access Journals (Sweden)

    Peter Stratton

    Full Text Available The head direction (HD system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology, and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  2. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Science.gov (United States)

    Stratton, Peter; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2011-01-01

    The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  3. Modulation of the spike activity of neocortex neurons during a conditioned reflex.

    Science.gov (United States)

    Storozhuk, V M; Sanzharovskii, A V; Sachenko, V V; Busel, B I

    2000-01-01

    Experiments were conducted on cats to study the effects of iontophoretic application of glutamate and a number of modulators on the spike activity of neurons in the sensorimotor cortex during a conditioned reflex. These studies showed that glutamate, as well as exerting a direct influence on neuron spike activity, also had a delayed facilitatory action lasting 10-20 min after iontophoresis was finished. Adrenomimetics were found to have a double modulatory effect on intracortical glutamate connections: inhibitory and facilitatory effects were mediated by beta1 and beta2 adrenoceptors respectively. Although dopamine, like glutamate, facilitated neuron spike activity during the period of application, the simultaneous facilitatory actions of glutamate and L-DOPA were accompanied by occlusion of spike activity, and simultaneous application of glutamate and haloperidol suppressed spike activity associated with the conditioned reflex response. Facilitation thus appears to show a significant level of dependence on metabotropic glutamate receptors which, like dopamine receptors, are linked to the intracellular medium via Gi proteins.

  4. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".

    Science.gov (United States)

    Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  5. Superficial dorsal horn neurons with double spike activity in the rat.

    Science.gov (United States)

    Rojas-Piloni, Gerardo; Dickenson, Anthony H; Condés-Lara, Miguel

    2007-05-29

    Superficial dorsal horn neurons promote the transfer of nociceptive information from the periphery to supraspinal structures. The membrane and discharge properties of spinal cord neurons can alter the reliability of peripheral signals. In this paper, we analyze the location and response properties of a particular class of dorsal horn neurons that exhibits double spike discharge with a very short interspike interval (2.01+/-0.11 ms). These neurons receive nociceptive C-fiber input and are located in laminae I-II. Double spikes are generated spontaneously or by depolarizing current injection (interval of 2.37+/-0.22). Cells presenting double spike (interval 2.28+/-0.11) increased the firing rate by electrical noxious stimulation, as well as, in the first minutes after carrageenan injection into their receptive field. Carrageenan is a polysaccharide soluble in water and it is used for producing an experimental model of semi-chronic pain. In the present study carrageenan also produces an increase in the interval between double spikes and then, reduced their occurrence after 5-10 min. The results suggest that double spikes are due to intrinsic membrane properties and that their frequency is related to C-fiber nociceptive activity. The present work shows evidence that double spikes in superficial spinal cord neurones are related to the nociceptive stimulation, and they are possibly part of an acute pain-control mechanism.

  6. Streaming Parallel GPU Acceleration of Large-Scale filter-based Spiking Neural Networks

    NARCIS (Netherlands)

    L.P. Slazynski (Leszek); S.M. Bohte (Sander)

    2012-01-01

    htmlabstractThe arrival of graphics processing (GPU) cards suitable for massively parallel computing promises a↵ordable large-scale neural network simulation previously only available at supercomputing facil- ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of

  7. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    Science.gov (United States)

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  8. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.

    Science.gov (United States)

    Hagen, Espen; Ness, Torbjørn V; Khosrowshahi, Amir; Sørensen, Christina; Fyhn, Marianne; Hafting, Torkel; Franke, Felix; Einevoll, Gaute T

    2015-04-30

    New, silicon-based multielectrodes comprising hundreds or more electrode contacts offer the possibility to record spike trains from thousands of neurons simultaneously. This potential cannot be realized unless accurate, reliable automated methods for spike sorting are developed, in turn requiring benchmarking data sets with known ground-truth spike times. We here present a general simulation tool for computing benchmarking data for evaluation of spike-sorting algorithms entitled ViSAPy (Virtual Spiking Activity in Python). The tool is based on a well-established biophysical forward-modeling scheme and is implemented as a Python package built on top of the neuronal simulator NEURON and the Python tool LFPy. ViSAPy allows for arbitrary combinations of multicompartmental neuron models and geometries of recording multielectrodes. Three example benchmarking data sets are generated, i.e., tetrode and polytrode data mimicking in vivo cortical recordings and microelectrode array (MEA) recordings of in vitro activity in salamander retinas. The synthesized example benchmarking data mimics salient features of typical experimental recordings, for example, spike waveforms depending on interspike interval. ViSAPy goes beyond existing methods as it includes biologically realistic model noise, synaptic activation by recurrent spiking networks, finite-sized electrode contacts, and allows for inhomogeneous electrical conductivities. ViSAPy is optimized to allow for generation of long time series of benchmarking data, spanning minutes of biological time, by parallel execution on multi-core computers. ViSAPy is an open-ended tool as it can be generalized to produce benchmarking data or arbitrary recording-electrode geometries and with various levels of complexity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  10. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces

    Science.gov (United States)

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena

    2013-06-01

    Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  11. Closed loop interactions between spiking neural network and robotic simulators based on MUSIC and ROS

    Directory of Open Access Journals (Sweden)

    Philipp Weidel

    2016-08-01

    Full Text Available In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS to the Multi-Simulator Coordinator (MUSIC. This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning.

  12. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W.; Peters, Judith C.; Possel, Jessy K.; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  13. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  14. A thermal spike analysis of low energy ion activated surface processes

    International Nuclear Information System (INIS)

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  15. The dynamic brain: from spiking neurons to neural masses and cortical fields.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    2008-08-01

    Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the

  16. Learning Universal Computations with Spikes

    Science.gov (United States)

    Thalmeier, Dominik; Uhlmann, Marvin; Kappen, Hilbert J.; Memmesheimer, Raoul-Martin

    2016-01-01

    Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. PMID:27309381

  17. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Grasselli

    2016-03-01

    Full Text Available The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning.

  18. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Science.gov (United States)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  19. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Matthew W Self

    2016-03-01

    Full Text Available Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  20. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.

    Science.gov (United States)

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.

  1. Decoding thalamic afferent input using microcircuit spiking activity.

    Science.gov (United States)

    Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N

    2015-04-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.

  2. A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects.

    Science.gov (United States)

    Doborjeh, Maryam Gholami; Wang, Grace Y; Kasabov, Nikola K; Kydd, Robert; Russell, Bruce

    2016-09-01

    This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects.

  3. Dopamine-signalled reward predictions generated by competitive excitation and inhibition in a spiking neural network model

    Directory of Open Access Journals (Sweden)

    Paul eChorley

    2011-05-01

    Full Text Available Dopaminergic neurons in the mammalian substantia nigra displaycharacteristic phasic responses to stimuli which reliably predict thereceipt of primary rewards. These responses have been suggested toencode reward prediction-errors similar to those used in reinforcementlearning. Here, we propose a model of dopaminergic activity in whichprediction error signals are generated by the joint action ofshort-latency excitation and long-latency inhibition, in a networkundergoing dopaminergic neuromodulation of both spike-timing dependentsynaptic plasticity and neuronal excitability. In contrast toprevious models, sensitivity to recent events is maintained by theselective modification of specific striatal synapses, efferent tocortical neurons exhibiting stimulus-specific, temporally extendedactivity patterns. Our model shows, in the presence of significantbackground activity, (i a shift in dopaminergic response from rewardto reward predicting stimuli, (ii preservation of a response tounexpected rewards, and (iii a precisely-timed below-baseline dip inactivity observed when expected rewards are omitted.

  4. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  5. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright

  6. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  7. Deep Spiking Networks

    NARCIS (Netherlands)

    O'Connor, P.; Welling, M.

    2016-01-01

    We introduce an algorithm to do backpropagation on a spiking network. Our network is "spiking" in the sense that our neurons accumulate their activation into a potential over time, and only send out a signal (a "spike") when this potential crosses a threshold and the neuron is reset. Neurons only

  8. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  9. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  10. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.

    Science.gov (United States)

    Zhang, Xu; Foderaro, Greg; Henriquez, Craig; Ferrari, Silvia

    2018-03-01

    Recent developments in neural stimulation and recording technologies are providing scientists with the ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant impact in the neuroscience field by delivering optical firing control with the precision and spatiotemporal resolution required for investigating information processing and plasticity in biological brains. While a number of training algorithms have been developed to date for spiking neural network (SNN) models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) performance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mechanisms beyond our control. This paper presents a weight-free training algorithm that relies solely on adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance. The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demonstrated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown environment.

  11. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  12. Treatment characteristics of various sediment components spiked with 2-chlorobiphenyl using reactive activated carbon.

    Science.gov (United States)

    Choi, Hyeok

    2018-04-05

    Previously, the concept of reactive activated carbon (RAC), where the porous structure of activated carbon (AC) is impregnated with palladized zerovalent iron, has been proposed to be effective to adsorb and dechlorinate polychlorinated biphenyls (PCBs). To explain the low dechlorination of PCBs bound to actual aquatic sediments under remediation with RAC, this study investigated the role of various solid organic and inorganic sediment components in adsorbing and desorbing PCBs. Detailed fate and transport mechanism of 2-chlorinated biphenyl (2-ClBP) spiked to sediment components, including kaolin, montmorillonite (MMT), coal, graphite, AC, and their mixture, was revealed. Adsorption and holding capability of sediment components toward 2-ClBP strongly influenced amount of spiked 2-ClBP, amount of desorbed 2-ClBP, overall dechlorination of 2-ClBP to biphenyl (BP), and eventual partitioning of 2-ClBP and BP to water, sediment component, and RAC. Order of the amount of spiked 2-ClBP to sediment components after drying, following AC > mixture > coal > graphite > kaolin > MMT, was in agreements (in opposite direction) with order of the amount of desorbed 2-ClBP and order of overall 2-ClBP dechlorination. Substantial role of organic components in aquatic sediments for holding 2-ClBP and thus preventing it from dechlorination on RAC was proven. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  14. Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks.

    Science.gov (United States)

    Kasabov, Nikola K; Doborjeh, Maryam Gholami; Doborjeh, Zohreh Gholami

    2017-04-01

    This paper introduces a new methodology for dynamic learning, visualization, and classification of functional magnetic resonance imaging (fMRI) as spatiotemporal brain data. The method is based on an evolving spatiotemporal data machine of evolving spiking neural networks (SNNs) exemplified by the NeuCube architecture [1]. The method consists of several steps: mapping spatial coordinates of fMRI data into a 3-D SNN cube (SNNc) that represents a brain template; input data transformation into trains of spikes; deep, unsupervised learning in the 3-D SNNc of spatiotemporal patterns from data; supervised learning in an evolving SNN classifier; parameter optimization; and 3-D visualization and model interpretation. Two benchmark case study problems and data are used to illustrate the proposed methodology-fMRI data collected from subjects when reading affirmative or negative sentences and another one-on reading a sentence or seeing a picture. The learned connections in the SNNc represent dynamic spatiotemporal relationships derived from the fMRI data. They can reveal new information about the brain functions under different conditions. The proposed methodology allows for the first time to analyze dynamic functional and structural connectivity of a learned SNN model from fMRI data. This can be used for a better understanding of brain activities and also for online generation of appropriate neurofeedback to subjects for improved brain functions. For example, in this paper, tracing the 3-D SNN model connectivity enabled us for the first time to capture prominent brain functional pathways evoked in language comprehension. We found stronger spatiotemporal interaction between left dorsolateral prefrontal cortex and left temporal while reading a negated sentence. This observation is obviously distinguishable from the patterns generated by either reading affirmative sentences or seeing pictures. The proposed NeuCube-based methodology offers also a superior classification accuracy

  15. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  16. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Lo

    2016-08-01

    Full Text Available Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor neural circuit mechanism with discrimination in perception.

  17. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    Science.gov (United States)

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  18. Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator

    Directory of Open Access Journals (Sweden)

    Richard P Drewes

    2009-05-01

    Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.

  19. Race modulates neural activity during imitation

    Science.gov (United States)

    Losin, Elizabeth A. Reynolds; Iacoboni, Marco; Martin, Alia; Cross, Katy A.; Dapretto, Mirella

    2014-01-01

    Imitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate. Prior studies of the neural underpinnings of imitation have not considered the effects of race. Here we measured neural activity with fMRI while European American participants imitated meaningless gestures performed by actors of their own race, and two racial outgroups, African American, and Chinese American. Participants also passively observed the actions of these actors and their portraits. Frontal, parietal and occipital areas were differentially activated while participants imitated actors of different races. More activity was present when imitating African Americans than the other racial groups, perhaps reflecting participants' reported lack of experience with and negative attitudes towards this group, or the group's lower perceived social status. This pattern of neural activity was not found when participants passively observed the gestures of the actors or simply looked at their faces. Instead, during face-viewing neural responses were overall greater for own-race individuals, consistent with prior race perception studies not involving imitation. Our findings represent a first step in elucidating neural mechanisms involved in cultural learning, a process that influences almost every aspect of our lives but has thus far received little neuroscientific study. PMID:22062193

  20. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  1. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  2. Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks.

    Science.gov (United States)

    Gong, Yubing; Xu, Bo; Wu, Ya'nan

    2013-09-01

    In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.

  3. Automatic EEG spike detection.

    Science.gov (United States)

    Harner, Richard

    2009-10-01

    Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.

  4. Statistical analysis and decoding of neural activity in the rodent geniculate ganglion using a metric-based inference system.

    Directory of Open Access Journals (Sweden)

    Wei Wu

    Full Text Available We analyzed the spike discharge patterns of two types of neurons in the rodent peripheral gustatory system, Na specialists (NS and acid generalists (AG to lingual stimulation with NaCl, acetic acid, and mixtures of the two stimuli. Previous computational investigations found that both spike rate and spike timing contribute to taste quality coding. These studies used commonly accepted computational methods, but they do not provide a consistent statistical evaluation of spike trains. In this paper, we adopted a new computational framework that treated each spike train as an individual data point for computing summary statistics such as mean and variance in the spike train space. We found that these statistical summaries properly characterized the firing patterns (e. g. template and variability and quantified the differences between NS and AG neurons. The same framework was also used to assess the discrimination performance of NS and AG neurons and to remove spontaneous background activity or "noise" from the spike train responses. The results indicated that the new metric system provided the desired decoding performance and noise-removal improved stimulus classification accuracy, especially of neurons with high spontaneous rates. In summary, this new method naturally conducts statistical analysis and neural decoding under one consistent framework, and the results demonstrated that individual peripheral-gustatory neurons generate a unique and reliable firing pattern during sensory stimulation and that this pattern can be reliably decoded.

  5. The effect of an exogenous magnetic field on neural coding in deep spiking neural networks.

    Science.gov (United States)

    Guo, Lei; Zhang, Wei; Zhang, Jialei

    2018-01-01

    A ten-layer feed forward network is constructed in the presence of an exogenous alternating magnetic field. Specifically, our results indicate that for rate coding, the firing rate is significantly increased in the presence of an exogenous alternating magnetic field and particularly with increasing enhancement of the alternating magnetic field amplitude. For temporal coding, the interspike intervals of the spiking sequence are decreased and the distribution of the interspike intervals of the spiking sequence tends to be uniform in the presence of alternating magnetic field.

  6. Impact of substance P on the correlation of spike train evoked by electro acupuncture

    International Nuclear Information System (INIS)

    Jin, Chen; Zhang, Xuan; Wang, Jiang; Guo, Yi; Zhao, Xue; Guo, Yong-Ming

    2016-01-01

    Highlights: • We analyze spike trains induced by EA before and after inhibiting SP in PC6 area. • Inhibiting SP leads to an increase of spiking rate of median nerve. • SP may modulate membrane potential to affect the spiking rate. • SP has an influence on long-range correlation of spike train evoked by EA. • SP play an important role in EA-induced neural spiking and encoding. - Abstract: Substance P (SP) participates in the neural signal transmission evoked by electro-acupuncture (EA). This paper investigates the impact of SP on the correlation of spike train in the median nerve evoked by EA at 'Neiguan' acupoint (PC6). It shows that the spiking rate and interspike interval (ISI) distribution change obviously after inhibiting SP. This variation of spiking activity indicates that SP affects the temporal structure of spike train through modulating the action potential on median nerve filaments. Furtherly, the correlation coefficient and scaling exponent are considered to measure the correlation of spike train. Scaled Windowed Variance (SWV) method is applied to calculate scaling exponent which quantifies the long-range correlation of the neural electrical signals. It is found that the correlation coefficients of ISI increase after inhibiting SP released. In addition, the scaling exponents of neuronal spike train have significant differences between before and after inhibiting SP. These findings demonstrate that SP has an influence on the long-range correlation of spike train. Our results indicate that SP may play an important role in EA-induced neural spiking and encoding.

  7. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  8. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections.

    Science.gov (United States)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan; Veesler, David

    2017-11-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to initiate infection. The S protein is a major determinant of the zoonotic potential of coronaviruses and is also the main target of the host humoral immune response. We report here the 3.5 Å resolution cryo-electron microscopy structure of the S glycoprotein trimer from the pathogenic porcine deltacoronavirus (PDCoV), which belongs to the recently identified delta genus. Structural and glycoproteomics data indicate that the glycans of PDCoV S are topologically conserved when compared with the human respiratory coronavirus HCoV-NL63 S, resulting in similar surface areas being shielded from neutralizing antibodies and implying that both viruses are under comparable immune pressure in their respective hosts. The structure further reveals a shortened S 2 ' activation loop, containing a reduced number of basic amino acids, which participates to rendering the spike largely protease-resistant. This property distinguishes PDCoV S from recently characterized betacoronavirus S proteins and suggests that the S protein of enterotropic PDCoV has evolved to tolerate the protease-rich environment of the small intestine and to fine-tune its fusion activation to avoid premature triggering and reduction of infectivity. IMPORTANCE Coronaviruses use transmembrane spike (S) glycoprotein trimers to promote host attachment and fusion of the viral and cellular membranes. We determined a near-atomic resolution cryo-electron microscopy structure of the S ectodomain trimer from the pathogenic porcine deltacoronavirus (PDCoV), which is responsible for diarrhea in piglets and has had devastating consequences for the swine industry worldwide. Structural and glycoproteomics data reveal that PDCoV S is

  9. Neural network based pattern matching and spike detection tools and services--in the CARMEN neuroinformatics project.

    Science.gov (United States)

    Fletcher, Martyn; Liang, Bojian; Smith, Leslie; Knowles, Alastair; Jackson, Tom; Jessop, Mark; Austin, Jim

    2008-10-01

    In the study of information flow in the nervous system, component processes can be investigated using a range of electrophysiological and imaging techniques. Although data is difficult and expensive to produce, it is rarely shared and collaboratively exploited. The Code Analysis, Repository and Modelling for e-Neuroscience (CARMEN) project addresses this challenge through the provision of a virtual neuroscience laboratory: an infrastructure for sharing data, tools and services. Central to the CARMEN concept are federated CARMEN nodes, which provide: data and metadata storage, new, thirdparty and legacy services, and tools. In this paper, we describe the CARMEN project as well as the node infrastructure and an associated thick client tool for pattern visualisation and searching, the Signal Data Explorer (SDE). We also discuss new spike detection methods, which are central to the services provided by CARMEN. The SDE is a client application which can be used to explore data in the CARMEN repository, providing data visualization, signal processing and a pattern matching capability. It performs extremely fast pattern matching and can be used to search for complex conditions composed of many different patterns across the large datasets that are typical in neuroinformatics. Searches can also be constrained by specifying text based metadata filters. Spike detection services which use wavelet and morphology techniques are discussed, and have been shown to outperform traditional thresholding and template based systems. A number of different spike detection and sorting techniques will be deployed as services within the CARMEN infrastructure, to allow users to benchmark their performance against a wide range of reference datasets.

  10. Differential Activation of Fast-Spiking and Regular-Firing Neuron Populations During Movement and Reward in the Dorsal Medial Frontal Cortex

    Science.gov (United States)

    Insel, Nathan; Barnes, Carol A.

    2015-01-01

    The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory–excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state. PMID:24700585

  11. Low blood glucose precipitates spike-and-wave activity in genetically predisposed animals.

    Science.gov (United States)

    Reid, Christopher A; Kim, Tae Hwan; Berkovic, Samuel F; Petrou, Steven

    2011-01-01

    Absence epilepsies are common, with a major genetic contribution to etiology. Certain environmental factors can influence absence occurrence but a complete understanding of absence precipitation is lacking. Herein we investigate if lowering blood glucose increases spike-wave activity in mouse models with varying seizure susceptibility. Three mouse models were used: an absence seizure model based on the knockin of a human GABA(A) γ2(R43Q) mutation (DBA(R43Q)), the spike-wave discharge (SWD)-prone DBA/2J strain, and the seizure resistant C57Bl/6 strain. Electrocorticography (ECoG) studies were recorded to determine SWDs during hypoglycemia induced by insulin or overnight fasting. An insulin-mediated reduction in blood glucose levels to 4 mm (c.a. 40% reduction) was sufficient to double SWD occurrence in the DBA(R43Q) model and in the SWD-prone DBA/2J mouse strain. Larger reductions in blood glucose further increased SWDs in both these models. However, even with large reductions in blood glucose, no discharges were observed in the seizure-resistant C57Bl/6 mouse strain. Injection of glucose reversed the impact of insulin on SWDs in the DBA(R43Q) model, supporting a reduction in blood glucose as the modulating influence. Overnight fasting reduced blood glucose levels to 4.5 mm (c.a. 35% reduction) and, like insulin, caused a doubling in occurrence of SWDs. Low blood glucose can precipitate SWDs in genetically predisposed animal models and should be considered as a potential environmental risk factor in patients with absence epilepsy. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  12. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  13. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.

    Science.gov (United States)

    Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra

    2018-06-01

    The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

  14. Spike sorting for polytrodes: a divide and conquer approach

    Directory of Open Access Journals (Sweden)

    Nicholas V. Swindale

    2014-02-01

    Full Text Available In order to determine patterns of neural activity, spike signals recorded by extracellular electrodes have to be clustered (sorted with the aim of ensuring that each cluster represents all the spikes generated by an individual neuron. Many methods for spike sorting have been proposed but few are easily applicable to recordings from polytrodes which may have 16 or more recording sites. As with tetrodes, these are spaced sufficiently closely that signals from single neurons will usually be recorded on several adjacent sites. Although this offers a better chance of distinguishing neurons with similarly shaped spikes, sorting is difficult in such cases because of the high dimensionality of the space in which the signals must be classified. This report details a method for spike sorting based on a divide and conquer approach. Clusters are initially formed by assigning each event to the channel on which it is largest. Each channel-based cluster is then sub-divided into as many distinct clusters as possible. These are then recombined on the basis of pairwise tests into a final set of clusters. Pairwise tests are also performed to establish how distinct each cluster is from the others. A modified gradient ascent clustering (GAC algorithm is used to do the clustering. The method can sort spikes with minimal user input in times comparable to real time for recordings lasting up to 45 minutes. Our results illustrate some of the difficulties inherent in spike sorting, including changes in spike shape over time. We show that some physiologically distinct units may have very similar spike shapes. We show that RMS measures of spike shape similarity are not sensitive enough to discriminate clusters that can otherwise be separated by principal components analysis. Hence spike sorting based on least-squares matching to templates may be unreliable. Our methods should be applicable to tetrodes and scaleable to larger multi-electrode arrays (MEAs.

  15. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    Science.gov (United States)

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as

  16. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    Directory of Open Access Journals (Sweden)

    Arno Onken

    2016-11-01

    Full Text Available Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations, in their temporal dimension (temporal neural response variations, or in their combination (temporally coordinated neural population firing. Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together, temporal firing patterns (temporal activation of these groups of neurons and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial. We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine

  17. Spike propagation in driven chain networks with dominant global inhibition

    International Nuclear Information System (INIS)

    Chang Wonil; Jin, Dezhe Z.

    2009-01-01

    Spike propagation in chain networks is usually studied in the synfire regime, in which successive groups of neurons are synaptically activated sequentially through the unidirectional excitatory connections. Here we study the dynamics of chain networks with dominant global feedback inhibition that prevents the synfire activity. Neural activity is driven by suprathreshold external inputs. We analytically and numerically demonstrate that spike propagation along the chain is a unique dynamical attractor in a wide parameter regime. The strong inhibition permits a robust winner-take-all propagation in the case of multiple chains competing via the inhibition.

  18. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  19. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  20. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  1. Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment.

    Science.gov (United States)

    Capecci, Elisa; Kasabov, Nikola; Wang, Grace Y

    2015-08-01

    The paper presents a methodology for the analysis of functional changes in brain activity across different conditions and different groups of subjects. This analysis is based on the recently proposed NeuCube spiking neural network (SNN) framework and more specifically on the analysis of the connectivity of a NeuCube model trained with electroencephalography (EEG) data. The case study data used to illustrate this method is EEG data collected from three groups-subjects with opiate addiction, patients undertaking methadone maintenance treatment, and non-drug users/healthy control group. The proposed method classifies more accurately the EEG data than traditional statistical and artificial intelligence (AI) methods and can be used to predict response to treatment and dose-related drug effect. But more importantly, the method can be used to compare functional brain activities of different subjects and the changes of these activities as a result of treatment, which is a step towards a better understanding of both the EEG data and the brain processes that generated it. The method can also be used for a wide range of applications, such as a better understanding of disease progression or aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.

    Science.gov (United States)

    Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P

    2012-03-01

    Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.

  3. iRaster: a novel information visualization tool to explore spatiotemporal patterns in multiple spike trains.

    Science.gov (United States)

    Somerville, J; Stuart, L; Sernagor, E; Borisyuk, R

    2010-12-15

    Over the last few years, simultaneous recordings of multiple spike trains have become widely used by neuroscientists. Therefore, it is important to develop new tools for analysing multiple spike trains in order to gain new insight into the function of neural systems. This paper describes how techniques from the field of visual analytics can be used to reveal specific patterns of neural activity. An interactive raster plot called iRaster has been developed. This software incorporates a selection of statistical procedures for visualization and flexible manipulations with multiple spike trains. For example, there are several procedures for the re-ordering of spike trains which can be used to unmask activity propagation, spiking synchronization, and many other important features of multiple spike train activity. Additionally, iRaster includes a rate representation of neural activity, a combined representation of rate and spikes, spike train removal and time interval removal. Furthermore, it provides multiple coordinated views, time and spike train zooming windows, a fisheye lens distortion, and dissemination facilities. iRaster is a user friendly, interactive, flexible tool which supports a broad range of visual representations. This tool has been successfully used to analyse both synthetic and experimentally recorded datasets. In this paper, the main features of iRaster are described and its performance and effectiveness are demonstrated using various types of data including experimental multi-electrode array recordings from the ganglion cell layer in mouse retina. iRaster is part of an ongoing research project called VISA (Visualization of Inter-Spike Associations) at the Visualization Lab in the University of Plymouth. The overall aim of the VISA project is to provide neuroscientists with the ability to freely explore and analyse their data. The software is freely available from the Visualization Lab website (see www.plymouth.ac.uk/infovis). Copyright © 2010

  4. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming [Nanjing University School of Medicine, Department of Medical Imaging, Jinling Hospital, Nanjing (China); Yang, Fang; Li, Qian [Nanjing University School of Medicine, Department of Neurology, Jinling Hospital, Nanjing (China); Hu, Zheng [Nanjing Children' s Hospital, Department of Neurology, Nanjing (China); Dante, Mantini [Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven (Belgium); Li, Kai [Suzhou University, Laboratory of Molecular Medicine, Suzhou (China)

    2017-05-15

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  5. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    International Nuclear Information System (INIS)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming; Yang, Fang; Li, Qian; Hu, Zheng; Dante, Mantini; Li, Kai

    2017-01-01

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  6. A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties

    Science.gov (United States)

    Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426

  7. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections

    NARCIS (Netherlands)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost|info:eu-repo/dai/nl/338018328; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao|info:eu-repo/dai/nl/411296272; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan|info:eu-repo/dai/nl/273306049; Veesler, David

    2017-01-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to

  8. An Activity for Demonstrating the Concept of a Neural Circuit

    Science.gov (United States)

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  9. Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity.

    Science.gov (United States)

    Feng, Zhouyan; Durand, Dominique M

    2006-04-01

    It has been shown that a low-calcium high-potassium solution can generate ictal-like epileptiform activity in vitro and in vivo. Moreover, during status epileptiform activity, the concentration of [K+]o increases, and the concentration of [Ca2+]o decreases in brain tissue. Therefore we tested the hypothesis that long-lasting persistent spike activity, similar to one of the patterns of status epilepticus, could be generated by a high-potassium, low-calcium solution in the hippocampus in vivo. Artificial cerebrospinal fluid was perfused over the surface of the exposed left dorsal hippocampus of anesthetized rats. A stimulating electrode and a recording probe were placed in the CA1 region. By elevating K+ concentration from 6 to 12 mM in the perfusate solution, the typical firing pattern of low-calcium ictal bursts was transformed into persistent spike activity in the CA1 region with synaptic transmission being suppressed by calcium chelator EGTA. The activity was characterized by double spikes repeated at a frequency approximately 4 Hz that could last for >1 h. The analysis of multiple unit activity showed that both elevating [K+]o and lowering [Ca2+]o decreased the inhibition period after the response of paired-pulse stimulation, indicating a suppression of the after-hyperpolarization (AHP) activity. These results suggest that persistent status epilepticus-like spike activity can be induced by nonsynaptic mechanisms when synaptic transmission is blocked. The unique double-spike pattern of this activity is presumably caused by higher K+ concentration augmenting the frequency of typical low-calcium nonsynaptic burst activity.

  10. Identifying Emotions on the Basis of Neural Activation.

    Science.gov (United States)

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  11. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  12. The Ripple Pond: Enabling Spiking Networks to See

    Directory of Open Access Journals (Sweden)

    Saeed eAfshar

    2013-11-01

    Full Text Available We present the biologically inspired Ripple Pond Network (RPN, a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilising the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable temporal patterns and the use of asynchronous frames for information binding.

  13. The ripple pond: enabling spiking networks to see.

    Science.gov (United States)

    Afshar, Saeed; Cohen, Gregory K; Wang, Runchun M; Van Schaik, André; Tapson, Jonathan; Lehmann, Torsten; Hamilton, Tara J

    2013-01-01

    We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable TP and the use of asynchronous frames for information binding.

  14. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.

    Science.gov (United States)

    MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars

    2017-06-01

    The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.

  15. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  16. Neural activity associated with self-reflection.

    Science.gov (United States)

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  17. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  18. Unsupervised clustering with spiking neurons by sparse temporal coding and multi-layer RBF networks

    NARCIS (Netherlands)

    S.M. Bohte (Sander); J.A. La Poutré (Han); J.N. Kok (Joost)

    2000-01-01

    textabstractWe demonstrate that spiking neural networks encoding information in spike times are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on

  19. Stress-Induced Impairment of a Working Memory Task: Role of Spiking Rate and Spiking History Predicted Discharge

    Science.gov (United States)

    Devilbiss, David M.; Jenison, Rick L.; Berridge, Craig W.

    2012-01-01

    Stress, pervasive in society, contributes to over half of all work place accidents a year and over time can contribute to a variety of psychiatric disorders including depression, schizophrenia, and post-traumatic stress disorder. Stress impairs higher cognitive processes, dependent on the prefrontal cortex (PFC) and that involve maintenance and integration of information over extended periods, including working memory and attention. Substantial evidence has demonstrated a relationship between patterns of PFC neuron spiking activity (action-potential discharge) and components of delayed-response tasks used to probe PFC-dependent cognitive function in rats and monkeys. During delay periods of these tasks, persistent spiking activity is posited to be essential for the maintenance of information for working memory and attention. However, the degree to which stress-induced impairment in PFC-dependent cognition involves changes in task-related spiking rates or the ability for PFC neurons to retain information over time remains unknown. In the current study, spiking activity was recorded from the medial PFC of rats performing a delayed-response task of working memory during acute noise stress (93 db). Spike history-predicted discharge (SHPD) for PFC neurons was quantified as a measure of the degree to which ongoing neuronal discharge can be predicted by past spiking activity and reflects the degree to which past information is retained by these neurons over time. We found that PFC neuron discharge is predicted by their past spiking patterns for nearly one second. Acute stress impaired SHPD, selectively during delay intervals of the task, and simultaneously impaired task performance. Despite the reduction in delay-related SHPD, stress increased delay-related spiking rates. These findings suggest that neural codes utilizing SHPD within PFC networks likely reflects an additional important neurophysiological mechanism for maintenance of past information over time. Stress

  20. Large-scale multielectrode recording and stimulation of neural activity

    International Nuclear Information System (INIS)

    Sher, A.; Chichilnisky, E.J.; Dabrowski, W.; Grillo, A.A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A.M.; Mathieson, K.; Petrusca, D.

    2007-01-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

  1. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  2. A memristive spiking neuron with firing rate coding

    Directory of Open Access Journals (Sweden)

    Marina eIgnatov

    2015-10-01

    Full Text Available Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2 and on the chemical electromigration cell Ag/TiO2-x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  3. Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Directory of Open Access Journals (Sweden)

    Emre eNeftci

    2014-01-01

    Full Text Available Restricted Boltzmann Machines (RBMs and Deep Belief Networks have been demonstrated to perform efficiently in variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The reverberating activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP carries out the weight updates in an online, asynchronous fashion.We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  4. Event-driven contrastive divergence for spiking neuromorphic systems.

    Science.gov (United States)

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2013-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  5. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  6. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  7. Neural Activity Reveals Preferences Without Choices

    Science.gov (United States)

    Smith, Alec; Bernheim, B. Douglas; Camerer, Colin

    2014-01-01

    We investigate the feasibility of inferring the choices people would make (if given the opportunity) based on their neural responses to the pertinent prospects when they are not engaged in actual decision making. The ability to make such inferences is of potential value when choice data are unavailable, or limited in ways that render standard methods of estimating choice mappings problematic. We formulate prediction models relating choices to “non-choice” neural responses and use them to predict out-of-sample choices for new items and for new groups of individuals. The predictions are sufficiently accurate to establish the feasibility of our approach. PMID:25729468

  8. Population-wide distributions of neural activity during perceptual decision-making

    Science.gov (United States)

    Machens, Christian

    2018-01-01

    Cortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells. We put our main focus on data recorded in awake animals that perform simple decision-making tasks and consider statistical distributions of activity throughout cortex, across sensory, associative, and motor areas. We transversally review the complexity of these distributions, from distributions of firing rates and metrics of spike-train structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the dynamical evolution of neural population activity and the distributions of (pairwise) neural interactions. This approach reveals shared patterns of statistical organization across cortex, including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) distributions of tuning parameters for sensory (and motor) variables, which show an extensive extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide dynamics that reveal rotations of internal representations over time, whose traces can be found both in stimulus-driven and internally generated activity. We discuss how these insights are leading us away from the notion of discrete classes of cells, and are acting as powerful constraints on theories and models of cortical organization and population coding. PMID:23123501

  9. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  10. Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides.

    Science.gov (United States)

    Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor

    2018-01-01

    Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.

  11. A reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons” [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rainer Engelken

    2016-08-01

    Full Text Available Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  12. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  13. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  14. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  15. Mapping spikes to sensations

    Directory of Open Access Journals (Sweden)

    Maik Christopher Stüttgen

    2011-11-01

    Full Text Available Single-unit recordings conducted during perceptual decision-making tasks have yielded tremendous insights into the neural coding of sensory stimuli. In such experiments, detection or discrimination behavior (the psychometric data is observed in parallel with spike trains in sensory neurons (the neurometric data. Frequently, candidate neural codes for information read-out are pitted against each other by transforming the neurometric data in some way and asking which code’s performance most closely approximates the psychometric performance. The code that matches the psychometric performance best is retained as a viable candidate and the others are rejected. In following this strategy, psychometric data is often considered to provide an unbiased measure of perceptual sensitivity. It is rarely acknowledged that psychometric data result from a complex interplay of sensory and non-sensory processes and that neglect of these processes may result in misestimating psychophysical sensitivity. This again may lead to erroneous conclusions regarding the adequacy of neural candidate codes. In this review, we first discuss requirements on the neural data for a subsequent neurometric-psychometric comparison. We then focus on different psychophysical tasks for the assessment of detection and discrimination performance and the cognitive processes that may underlie their execution. We discuss further factors that may compromise psychometric performance and how they can be detected or avoided. We believe that these considerations point to shortcomings in our understanding of the processes underlying perceptual decisions, and therefore offer potential for future research.

  16. Information transmission with spiking Bayesian neurons

    International Nuclear Information System (INIS)

    Lochmann, Timm; Deneve, Sophie

    2008-01-01

    Spike trains of cortical neurons resulting from repeatedpresentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output variability. In particular, does this variability imply spike generation to be intrinsically stochastic? We consider a model neuron that estimates optimally the current state of a time-varying binary variable (e.g. presence of a stimulus) by integrating incoming spikes. The unit signals its current estimate to other units with spikes whenever the estimate increased by a fixed amount. As shown previously, this computation results in integrate and fire dynamics with Poisson-like output spike trains. This output variability is entirely due to the stochastic input rather than noisy spike generation. As a result such a deterministic neuron can transmit most of the information about the time varying stimulus. This contrasts with a standard model of sensory neurons, the linear-nonlinear Poisson (LNP) model which assumes that most variability in output spike trains is due to stochastic spike generation. Although it yields the same firing statistics, we found that such noisy firing results in the loss of most information. Finally, we use this framework to compare potential effects of top-down attention versus bottom-up saliency on information transfer with spiking neurons

  17. Fitting neuron models to spike trains

    Directory of Open Access Journals (Sweden)

    Cyrille eRossant

    2011-02-01

    Full Text Available Computational modeling is increasingly used to understand the function of neural circuitsin systems neuroscience.These studies require models of individual neurons with realisticinput-output properties.Recently, it was found that spiking models can accurately predict theprecisely timed spike trains produced by cortical neurons in response tosomatically injected currents,if properly fitted. This requires fitting techniques that are efficientand flexible enough to easily test different candidate models.We present a generic solution, based on the Brian simulator(a neural network simulator in Python, which allowsthe user to define and fit arbitrary neuron models to electrophysiological recordings.It relies on vectorization and parallel computing techniques toachieve efficiency.We demonstrate its use on neural recordings in the barrel cortex andin the auditory brainstem, and confirm that simple adaptive spiking modelscan accurately predict the response of cortical neurons. Finally, we show how a complexmulticompartmental model can be reduced to a simple effective spiking model.

  18. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  19. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  20. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  1. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  2. Neural Activity During The Formation Of A Giant Auditory Synapse

    NARCIS (Netherlands)

    M.C. Sierksma (Martijn)

    2018-01-01

    markdownabstractThe formation of synapses is a critical step in the development of the brain. During this developmental stage neural activity propagates across the brain from synapse to synapse. This activity is thought to instruct the precise, topological connectivity found in the sensory central

  3. Noise-enhanced coding in phasic neuron spike trains.

    Science.gov (United States)

    Ly, Cheng; Doiron, Brent

    2017-01-01

    The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.

  4. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  5. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    Science.gov (United States)

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  6. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  7. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    Science.gov (United States)

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    Science.gov (United States)

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  9. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    Science.gov (United States)

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  11. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  12. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  13. Typology of nonlinear activity waves in a layered neural continuum.

    Science.gov (United States)

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  14. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  15. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Science.gov (United States)

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-12-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  16. On the origin of reproducible sequential activity in neural circuits

    Science.gov (United States)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  17. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  18. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  19. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  20. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.

    Science.gov (United States)

    Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E

    2017-03-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering

  1. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  2. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  3. Parallel optical control of spatiotemporal neuronal spike activity using high-frequency digital light processingtechnology

    Directory of Open Access Journals (Sweden)

    Jason eJerome

    2011-08-01

    Full Text Available Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses Digital-Light-Processing (DLP technology to generate 2-dimensional (2D stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 µm and temporal (>13kHz resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 x 2.07 mm2 of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  4. Electricity market price spike analysis by a hybrid data model and feature selection technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2010-01-01

    In a competitive electricity market, energy price forecasting is an important activity for both suppliers and consumers. For this reason, many techniques have been proposed to predict electricity market prices in the recent years. However, electricity price is a complex volatile signal owning many spikes. Most of electricity price forecast techniques focus on the normal price prediction, while price spike forecast is a different and more complex prediction process. Price spike forecasting has two main aspects: prediction of price spike occurrence and value. In this paper, a novel technique for price spike occurrence prediction is presented composed of a new hybrid data model, a novel feature selection technique and an efficient forecast engine. The hybrid data model includes both wavelet and time domain variables as well as calendar indicators, comprising a large candidate input set. The set is refined by the proposed feature selection technique evaluating both relevancy and redundancy of the candidate inputs. The forecast engine is a probabilistic neural network, which are fed by the selected candidate inputs of the feature selection technique and predict price spike occurrence. The efficiency of the whole proposed method for price spike occurrence forecasting is evaluated by means of real data from the Queensland and PJM electricity markets. (author)

  5. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  6. Improved SpikeProp for Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Falah Y. H. Ahmed

    2013-01-01

    Full Text Available A spiking neurons network encodes information in the timing of individual spike times. A novel supervised learning rule for SpikeProp is derived to overcome the discontinuities introduced by the spiking thresholding. This algorithm is based on an error-backpropagation learning rule suited for supervised learning of spiking neurons that use exact spike time coding. The SpikeProp is able to demonstrate the spiking neurons that can perform complex nonlinear classification in fast temporal coding. This study proposes enhancements of SpikeProp learning algorithm for supervised training of spiking networks which can deal with complex patterns. The proposed methods include the SpikeProp particle swarm optimization (PSO and angle driven dependency learning rate. These methods are presented to SpikeProp network for multilayer learning enhancement and weights optimization. Input and output patterns are encoded as spike trains of precisely timed spikes, and the network learns to transform the input trains into target output trains. With these enhancements, our proposed methods outperformed other conventional neural network architectures.

  7. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  8. Realistic thermodynamic and statistical-mechanical measures for neural synchronization.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2014-04-15

    Synchronized brain rhythms, associated with diverse cognitive functions, have been observed in electrical recordings of brain activity. Neural synchronization may be well described by using the population-averaged global potential VG in computational neuroscience. The time-averaged fluctuation of VG plays the role of a "thermodynamic" order parameter O used for describing the synchrony-asynchrony transition in neural systems. Population spike synchronization may be well visualized in the raster plot of neural spikes. The degree of neural synchronization seen in the raster plot is well measured in terms of a "statistical-mechanical" spike-based measure Ms introduced by considering the occupation and the pacing patterns of spikes. The global potential VG is also used to give a reference global cycle for the calculation of Ms. Hence, VG becomes an important collective quantity because it is associated with calculation of both O and Ms. However, it is practically difficult to directly get VG in real experiments. To overcome this difficulty, instead of VG, we employ the instantaneous population spike rate (IPSR) which can be obtained in experiments, and develop realistic thermodynamic and statistical-mechanical measures, based on IPSR, to make practical characterization of the neural synchronization in both computational and experimental neuroscience. Particularly, more accurate characterization of weak sparse spike synchronization can be achieved in terms of realistic statistical-mechanical IPSR-based measure, in comparison with the conventional measure based on VG. Copyright © 2014. Published by Elsevier B.V.

  9. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals

    Science.gov (United States)

    Schuck, Renaud; Go, Mary Ann; Garasto, Stefania; Reynolds, Stephanie; Dragotti, Pier Luigi; Schultz, Simon R.

    2018-04-01

    Objective. Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as travelling salesman scanning (TSS) have been developed to maximize cellular sampling rate by scanning only select regions in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We thus aimed to develop a new scanning algorithm which produces minimal inertia trajectories, and compare its performance with existing scanning algorithms. Approach. We describe here the adaptive spiral scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR). Main Results. Using surrogate neuron spatial position data, we show that SSA acquisition rates are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for in vitro hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to ‘park’ the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Cramér-Rao Bound on evoked calcium traces recorded

  10. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  11. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes.

    Science.gov (United States)

    Kayama, Tasuku; Suzuki, Ikuro; Odawara, Aoi; Sasaki, Takuya; Ikegaya, Yuji

    2018-01-01

    In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Surfing a spike wave down the ventral stream.

    Science.gov (United States)

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  14. Bayesian population decoding of spiking neurons.

    Science.gov (United States)

    Gerwinn, Sebastian; Macke, Jakob; Bethge, Matthias

    2009-01-01

    The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a 'spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

  15. Bayesian population decoding of spiking neurons

    Directory of Open Access Journals (Sweden)

    Sebastian Gerwinn

    2009-10-01

    Full Text Available The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a `spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

  16. Effect of the sub-threshold periodic current forcing on the regularity and the synchronization of neuronal spiking activity

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet; Agaoglu, Sukriye Nihal

    2006-01-01

    We first investigate the amplitude effect of the subthreshold periodic forcing on the regularity of the spiking events by using the coefficient of variation of interspike intervals. We show that the resonance effect in the coefficient of variation, which is dependent on the driving frequency for larger membrane patch sizes, disappears when the amplitude of the subthreshold forcing is decreased. Then, we demonstrate that the timings of the spiking events of a noisy and periodically driven neuron concentrate on a specific phase of the stimulus. We also show that increasing the intensity of the noise causes the phase probability density of the spiking events to get smaller values, and eliminates differences in the phase locking behavior of the neuron for different patch sizes

  17. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Directory of Open Access Journals (Sweden)

    Christopher L Buckley

    2018-01-01

    Full Text Available During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results

  18. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  19. Activation of mGluR5 induces spike afterdepolarization and enhanced excitability in medium spiny neurons of the nucleus accumbens by modulating persistent Na+ currents

    Science.gov (United States)

    D’Ascenzo, Marcello; Podda, Maria Vittoria; Fellin, Tommaso; Azzena, Gian Battista; Haydon, Philip; Grassi, Claudio

    2009-01-01

    The involvement of metabotropic glutamate receptors type 5 (mGluR5) in drug-induced behaviours is well-established but limited information is available on their functional roles in addiction-relevant brain areas like the nucleus accumbens (NAc). This study demonstrates that pharmacological and synaptic activation of mGluR5 increases the spike discharge of medium spiny neurons (MSNs) in the NAc. This effect was associated with the appearance of a slow afterdepolarization (ADP) which, in voltage-clamp experiments, was recorded as a slowly inactivating inward current. Pharmacological studies showed that ADP was elicited by mGluR5 stimulation via G-protein-dependent activation of phospholipase C and elevation of intracellular Ca2+ levels. Both ADP and spike aftercurrents were significantly inhibited by the Na+ channel-blocker, tetrodotoxin (TTX). Moreover, the selective blockade of persistent Na+ currents (INaP), achieved by NAc slice pre-incubation with 20 nm TTX or 10 μm riluzole, significantly reduced the ADP amplitude, indicating that this type of Na+ current is responsible for the mGluR5-dependent ADP. mGluR5 activation also produced significant increases in INaP, and the pharmacological blockade of this current prevented the mGluR5-induced enhancement of spike discharge. Collectively, these data suggest that mGluR5 activation upregulates INaP in MSNs of the NAc, thereby inducing an ADP that results in enhanced MSN excitability. Activation of mGluR5 will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of drug-induced behaviours. PMID:19433572

  20. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.

    Science.gov (United States)

    Birznieks, Ingvars; Vickery, Richard M

    2017-05-22

    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Spike-timing-based computation in sound localization.

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  2. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.

    Science.gov (United States)

    Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane

    2017-06-01

    Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.

  3. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data

    Science.gov (United States)

    Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane

    2017-06-01

    Objective. Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. Approach. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. Main results. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. Significance. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.

  4. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  5. Fast convergence of spike sequences to periodic patterns in recurrent networks

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2002-01-01

    The dynamical attractors are thought to underlie many biological functions of recurrent neural networks. Here we show that stable periodic spike sequences with precise timings are the attractors of the spiking dynamics of recurrent neural networks with global inhibition. Almost all spike sequences converge within a finite number of transient spikes to these attractors. The convergence is fast, especially when the global inhibition is strong. These results support the possibility that precise spatiotemporal sequences of spikes are useful for information encoding and processing in biological neural networks

  6. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear...

  7. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    connectivity was strongest between central and cerebellar regions. Our results show that neural coupling within motor networks is modulated in distinct frequency bands depending on the motor task. They provide evidence that dynamic causal modeling in combination with EEG source analysis is a valuable tool......Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the task......-dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  8. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Yi

    Full Text Available Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding.

  9. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... at low levels in principal cells. Positive modulators of Nav1.1 channels are for this reason considered potential candidates for the treatment of cognitive disorders. Here we examined the effect of the novel positive modulator of voltage-gated sodium channels Lu AE98134. We found that Lu AE98134...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...

  10. Quantitative Comparative Analysis of the Bio-Active and Toxic Constituents of Leaves and Spikes of Schizonepeta tenuifolia at Different Harvesting Times

    Directory of Open Access Journals (Sweden)

    Anwei Ding

    2011-10-01

    Full Text Available A GC-MS-Selected Ion Monitoring (SIM detection method was developed for simultaneous determination of four monoterpenes: (--menthone, (+-pulegone, (--limonene and (+-menthofuran as the main bio-active and toxic constituents, and four other main compounds in the volatile oils of Schizonepeta tenuifolia (ST leaves and spikes at different harvesting times. The results showed that the method was simple, sensitive and reproducible, and that harvesting time was a possible key factor in influencing the quality of ST leaves, but not its spikes. The research might be helpful for determining the harvesting time of ST samples and establishing a validated method for the quality control of ST volatile oil and other relative products.

  11. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A simple method for estimating the entropy of neural activity

    International Nuclear Information System (INIS)

    Berry II, Michael J; Tkačik, Gašper; Dubuis, Julien; Marre, Olivier; Da Silveira, Rava Azeredo

    2013-01-01

    The number of possible activity patterns in a population of neurons grows exponentially with the size of the population. Typical experiments explore only a tiny fraction of the large space of possible activity patterns in the case of populations with more than 10 or 20 neurons. It is thus impossible, in this undersampled regime, to estimate the probabilities with which most of the activity patterns occur. As a result, the corresponding entropy—which is a measure of the computational power of the neural population—cannot be estimated directly. We propose a simple scheme for estimating the entropy in the undersampled regime, which bounds its value from both below and above. The lower bound is the usual ‘naive’ entropy of the experimental frequencies. The upper bound results from a hybrid approximation of the entropy which makes use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We apply our simple scheme to artificial data, in order to check their accuracy; we also compare its performance to those of several previously defined entropy estimators. We then apply it to actual measurements of neural activity in populations with up to 100 cells. Finally, we discuss the similarities and differences between the proposed simple estimation scheme and various earlier methods. (paper)

  13. Time Resolution Dependence of Information Measures for Spiking Neurons: Scaling and Universality

    Directory of Open Access Journals (Sweden)

    James P Crutchfield

    2015-08-01

    Full Text Available The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step towards that larger goal is todevelop information measures for individual output processes, including information generation (entropy rate, stored information (statisticalcomplexity, predictable information (excess entropy, and active information accumulation (bound information rate. We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., $tau$-entropy rates that diverge less quickly than the firing rate indicate interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.

  14. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    Science.gov (United States)

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  15. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

    Directory of Open Access Journals (Sweden)

    Bogdan C. Raducanu

    2017-10-01

    Full Text Available We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm and 12 reference pixels (20 µm × 80 µm, densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678. Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission.

  16. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  17. Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method

    International Nuclear Information System (INIS)

    Nasser, Hassan; Cessac, Bruno; Marre, Olivier

    2013-01-01

    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In the first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have focused on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In the second part, we present a new method based on Monte Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles. (paper)

  18. Multineuronal Spike Sequences Repeat with Millisecond Precision

    Directory of Open Access Journals (Sweden)

    Koki eMatsumoto

    2013-06-01

    Full Text Available Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.

  19. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  20. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  1. Neural activity in the hippocampus during conflict resolution.

    Science.gov (United States)

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  3. Preparatory neural activity predicts performance on a conflict task.

    Science.gov (United States)

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  4. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  5. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    Science.gov (United States)

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  6. Decoding spikes in a spiking neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, University of Sussex, Brighton BN1 9QH (United Kingdom); Ding, Mingzhou [Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2004-06-04

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs.

  7. Decoding spikes in a spiking neuronal network

    International Nuclear Information System (INIS)

    Feng Jianfeng; Ding, Mingzhou

    2004-01-01

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs

  8. Predictive coding of dynamical variables in balanced spiking networks.

    Science.gov (United States)

    Boerlin, Martin; Machens, Christian K; Denève, Sophie

    2013-01-01

    Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated.

  9. Social power and approach-related neural activity.

    Science.gov (United States)

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  10. Modulation of Neural Activity during Guided Viewing of Visual Art.

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is

  11. Evoking prescribed spike times in stochastic neurons

    Science.gov (United States)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  12. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine.

    Science.gov (United States)

    Palma, Jesse; Grossberg, Stephen; Versace, Massimiliano

    2012-01-01

    Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network

  13. Persistence and storage of activity patterns in spiking recurrent cortical networks:Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    Directory of Open Access Journals (Sweden)

    Jesse ePalma

    2012-06-01

    Full Text Available Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM. Theorems in the 1970’s showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 milliseconds or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners

  14. Complexity optimization and high-throughput low-latency hardware implementation of a multi-electrode spike-sorting algorithm.

    Science.gov (United States)

    Dragas, Jelena; Jackel, David; Hierlemann, Andreas; Franke, Felix

    2015-03-01

    Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction.

  15. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  16. Goal-Directed Decision Making with Spiking Neurons.

    Science.gov (United States)

    Friedrich, Johannes; Lengyel, Máté

    2016-02-03

    Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules

  17. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    Directory of Open Access Journals (Sweden)

    William P. Horan

    2014-01-01

    Conclusions: Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  18. Natural lecithin promotes neural network complexity and activity

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  19. Natural lecithin promotes neural network complexity and activity.

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-05-27

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications.

  20. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  1. Spike: Artificial intelligence scheduling for Hubble space telescope

    Science.gov (United States)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  2. Effects of Near-Infrared Laser on Neural Cell Activity

    International Nuclear Information System (INIS)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-01-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19% higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5-5.0 deg. C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  3. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  4. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  5. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  6. Span: spike pattern association neuron for learning spatio-temporal spike patterns.

    Science.gov (United States)

    Mohemmed, Ammar; Schliebs, Stefan; Matsuda, Satoshi; Kasabov, Nikola

    2012-08-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.

  7. Spike-timing dependent plasticity and the cognitive map

    Directory of Open Access Journals (Sweden)

    Daniel eBush

    2010-10-01

    Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  8. Spike-timing dependent plasticity and the cognitive map.

    Science.gov (United States)

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-01-01

    Since the discovery of place cells - single pyramidal neurons that encode spatial location - it has been hypothesized that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modeled using auto-associative networks, which utilize rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighboring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post-synaptic firing according to a spike-timing dependent plasticity (STDP) rule. Furthermore, electrophysiology studies have identified persistent "theta-coded" temporal correlations in place cell activity in vivo, characterized by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post-synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilizes this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  9. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    , the correlation of ECoG activity to kinematic parameters of arm movement is context-dependent, an important constraint to consider in future development of BMI systems. The third chapter delves into a fundamental organizational principle of the primate motor system---cortical control of contralateral limb movements. However, ipsilateral motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in ipsilateral primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. We also recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.

  10. Statistical properties of superimposed stationary spike trains.

    Science.gov (United States)

    Deger, Moritz; Helias, Moritz; Boucsein, Clemens; Rotter, Stefan

    2012-06-01

    The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.

  11. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  12. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  13. Models of neural dynamics in brain information processing - the developments of 'the decade'

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2002-10-31

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  14. Solving constraint satisfaction problems with networks of spiking neurons

    Directory of Open Access Journals (Sweden)

    Zeno eJonke

    2016-03-01

    Full Text Available Network of neurons in the brain apply – unlike processors in our current generation ofcomputer hardware – an event-based processing strategy, where short pulses (spikes areemitted sparsely by neurons to signal the occurrence of an event at a particular point intime. Such spike-based computations promise to be substantially more power-efficient thantraditional clocked processing schemes. However it turned out to be surprisingly difficult todesign networks of spiking neurons that can solve difficult computational problems on the levelof single spikes (rather than rates of spikes. We present here a new method for designingnetworks of spiking neurons via an energy function. Furthermore we show how the energyfunction of a network of stochastically firing neurons can be shaped in a quite transparentmanner by composing the networks of simple stereotypical network motifs. We show that thisdesign approach enables networks of spiking neurons to produce approximate solutions todifficult (NP-hard constraint satisfaction problems from the domains of planning/optimizationand verification/logical inference. The resulting networks employ noise as a computationalresource. Nevertheless the timing of spikes (rather than just spike rates plays an essential rolein their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines and Gibbs sampling.

  15. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  16. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  17. Pontas evocadas por estímulos somatossensitivos e atividade epileptiforme no eletrencefalograma em crianças "normais" Somatosensory evoked spikes and epileptiform activity in "normal" children

    Directory of Open Access Journals (Sweden)

    Lineu C. Fonseca

    2003-09-01

    Full Text Available Estudamos a ocorrência de potenciais de alta voltagem evocados por estímulos somatossensitivos - pontas evocadas (PE - e de atividade epileptiforme espontânea (AE no EEG de 173 crianças normais de 7 a 11 anos de idade. Durante o EEG, dez percussões foram realizadas nas mãos e pés. Foi avaliada a ocorrência de PE acompanhando cada um dos estímulos e a presença de AE. AE foi observada em quatro crianças (2,3%: pontas centroparietais em duas, complexos de ponta-onda lenta generalizados em uma e pontas parietais e temporais médias em uma. Uma menina de 10 anos de idade (0,58% teve ao EEG pontas parietais medianas evocadas pela percussão do pé esquerdo. Este EEG era normal quanto a outros aspectos. Nossos achados de AE em crianças normais são similares aos encontrados em estudos de outros países. Constatamos que espículas somatossensitivas podem ser observadas em crianças normais o que sugere uma natureza funcional ligada à idade.Little is known about somatosensory evoked spikes (SES in the EEG of normal children. We studied the occurrence of SES and spontaneous epileptiform activity (SEA in 173 normal children ageg 7 to 11 years. During the EEG ten taps were applied to both hands and feet. The occurrence of high voltage potentials evoked by each stimulation of one or both heels or hands (SES and the occurrence of SEA were evaluated. SEA was observed in four children (2.3 %: central/parietal spikes in two cases, generalized spike-and-wave in one, and parietal/midtemporal spikes in one case. A ten years old girl (0,58% had SES on median parietal region by tapping the left foot. This EEG was otherwise normal. Our findings of SEA are similar to those obtained in other normal populations. SES can be observed in normal children. These SES suggest that we are dealing with an age-related functional phenomenon.

  18. Integration of active devices on smart polymers for neural interfaces

    Science.gov (United States)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  19. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  20. Sociocultural patterning of neural activity during self-reflection.

    Science.gov (United States)

    Ma, Yina; Bang, Dan; Wang, Chenbo; Allen, Micah; Frith, Chris; Roepstorff, Andreas; Han, Shihui

    2014-01-01

    Western cultures encourage self-construals independent of social contexts, whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional magnetic resonance imaging, we monitored neural responses from adults in East Asian (Chinese) and Western (Danish) cultural contexts during judgments of social, mental and physical attributes of themselves and public figures to assess cultural influences on self-referential processing of personal attributes in different dimensions. We found that judgments of self vs a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e. interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection by changing the weight of the mPFC and TPJ in the social brain network.

  1. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  2. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  3. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  4. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Alexander eHuk

    2012-10-01

    Full Text Available A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP. In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1 empirical questions not yet answered by existing data; (2 implementation issues related to how neural circuits could actually implement the mechanisms suggested by both physiology and psychology; and (3 ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general encoding-decoding framework that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.

  5. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  6. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  7. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  8. Simulating large-scale spiking neuronal networks with NEST

    OpenAIRE

    Schücker, Jannis; Eppler, Jochen Martin

    2014-01-01

    The Neural Simulation Tool NEST [1, www.nest-simulator.org] is the simulator for spiking neural networkmodels of the HBP that focuses on the dynamics, size and structure of neural systems rather than on theexact morphology of individual neurons. Its simulation kernel is written in C++ and it runs on computinghardware ranging from simple laptops to clusters and supercomputers with thousands of processor cores.The development of NEST is coordinated by the NEST Initiative [www.nest-initiative.or...

  9. Emotion disrupts neural activity during selective attention in psychopathy.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Heller, Wendy; Herrington, John D; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-03-01

    Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes.

  10. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  12. Effects of Onion (Allium cepa L. Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Sun-Ho Kim

    2011-06-01

    Full Text Available Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes,α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L. extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50 of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose, a strong α-glucosidase inhibitor in the Sprague-Dawley (SD rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast in EOS-treated SD rats (0.5 g-EOS/kg was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL. The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL. Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053 on sucrase and maltase activities in intestine were evaluated in SD rat model

  13. What if? Neural activity underlying semantic and episodic counterfactual thinking.

    Science.gov (United States)

    Parikh, Natasha; Ruzic, Luka; Stewart, Gregory W; Spreng, R Nathan; De Brigard, Felipe

    2018-05-25

    Counterfactual thinking (CFT) is the process of mentally simulating alternative versions of known facts. In the past decade, cognitive neuroscientists have begun to uncover the neural underpinnings of CFT, particularly episodic CFT (eCFT), which activates regions in the default network (DN) also activated by episodic memory (eM) recall. However, the engagement of DN regions is different for distinct kinds of eCFT. More plausible counterfactuals and counterfactuals about oneself show stronger activity in DN regions compared to implausible and other- or object-focused counterfactuals. The current study sought to identify a source for this difference in DN activity. Specifically, self-focused counterfactuals may also be more plausible, suggesting that DN core regions are sensitive to the plausibility of a simulation. On the other hand, plausible and self-focused counterfactuals may involve more episodic information than implausible and other-focused counterfactuals, which would imply DN sensitivity to episodic information. In the current study, we compared episodic and semantic counterfactuals generated to be plausible or implausible against episodic and semantic memory reactivation using fMRI. Taking multivariate and univariate approaches, we found that the DN is engaged more during episodic simulations, including eM and all eCFT, than during semantic simulations. Semantic simulations engaged more inferior temporal and lateral occipital regions. The only region that showed strong plausibility effects was the hippocampus, which was significantly engaged for implausible CFT but not for plausible CFT, suggestive of binding more disparate information. Consequences of these findings for the cognitive neuroscience of mental simulation are discussed. Published by Elsevier Inc.

  14. Optimal Hierarchical Modular Topologies for Producing Limited Sustained Activation of Neural Networks

    OpenAIRE

    Kaiser, Marcus; Hilgetag, Claus C.

    2010-01-01

    An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show...

  15. Population spikes in cortical networks during different functional states.

    Directory of Open Access Journals (Sweden)

    Shirley eMark

    2012-07-01

    Full Text Available Brain computational challenges vary between behavioral states. Engaged animals react according to incoming sensory information, while in relaxed and sleeping states consolidation of the learned information is believed to take place. Different states are characterized by different forms of cortical activity. We study a possible neuronal mechanism for generating these diverse dynamics and suggest their possible functional significance. Previous studies demonstrated that brief synchronized increase in a neural firing (Population Spikes can be generated in homogenous recurrent neural networks with short-term synaptic depression. Here we consider more realistic networks with clustered architecture. We show that the level of synchronization in neural activity can be controlled smoothly by network parameters. The network shifts from asynchronous activity to a regime in which clusters synchronized separately, then, the synchronization between the clusters increases gradually to fully synchronized state. We examine the effects of different synchrony levels on the transmission of information by the network. We find that the regime of intermediate synchronization is preferential for the flow of information between sparsely connected areas. Based on these results, we suggest that the regime of intermediate synchronization corresponds to engaged behavioral state of the animal, while global synchronization is exhibited during relaxed and sleeping states.

  16. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  17. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    Science.gov (United States)

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  18. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  19. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  20. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The neural basis of the bystander effect--the influence of group size on neural activity when witnessing an emergency.

    Science.gov (United States)

    Hortensius, Ruud; de Gelder, Beatrice

    2014-06-01

    Naturalistic observation and experimental studies in humans and other primates show that observing an individual in need automatically triggers helping behavior. The aim of the present study is to clarify the neurofunctional basis of social influences on individual helping behavior. We investigate whether when participants witness an emergency, while performing an unrelated color-naming task in an fMRI scanner, the number of bystanders present at the emergency influences neural activity in regions related to action preparation. The results show a decrease in activity with the increase in group size in the left pre- and postcentral gyri and left medial frontal gyrus. In contrast, regions related to visual perception and attention show an increase in activity. These results demonstrate the neural mechanisms of social influence on automatic action preparation that is at the core of helping behavior when witnessing an emergency. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.

    Science.gov (United States)

    Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang

    2016-01-01

    Network of neurons in the brain apply-unlike processors in our current generation of computer hardware-an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling.

  3. Neural activity associated with metaphor comprehension: spatial analysis.

    Science.gov (United States)

    Sotillo, María; Carretié, Luis; Hinojosa, José A; Tapia, Manuel; Mercado, Francisco; López-Martín, Sara; Albert, Jacobo

    2005-01-03

    Though neuropsychological data indicate that the right hemisphere (RH) plays a major role in metaphor processing, other studies suggest that, at least during some phases of this processing, a RH advantage may not exist. The present study explores, through a temporally agile neural signal--the event-related potentials (ERPs)--, and through source-localization algorithms applied to ERP recordings, whether the crucial phase of metaphor comprehension presents or not a RH advantage. Participants (n=24) were submitted to a S1-S2 experimental paradigm. S1 consisted of visually presented metaphoric sentences (e.g., "Green lung of the city"), followed by S2, which consisted of words that could (i.e., "Park") or could not (i.e., "Semaphore") be defined by S1. ERPs elicited by S2 were analyzed using temporal principal component analysis (tPCA) and source-localization algorithms. These analyses revealed that metaphorically related S2 words showed significantly higher N400 amplitudes than non-related S2 words. Source-localization algorithms showed differential activity between the two S2 conditions in the right middle/superior temporal areas. These results support the existence of an important RH contribution to (at least) one phase of metaphor processing and, furthermore, implicate the temporal cortex with respect to that contribution.

  4. Trait motivation moderates neural activation associated with goal pursuit.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Sutton, Bradley P; Heller, Wendy

    2012-06-01

    Research has indicated that regions of left and right dorsolateral prefrontal cortex (DLPFC) are involved in integrating the motivational and executive function processes related to, respectively, approach and avoidance goals. Given that sensitivity to pleasant and unpleasant stimuli is an important feature of conceptualizations of approach and avoidance motivation, it is possible that these regions of DLPFC are preferentially activated by valenced stimuli. The present study tested this hypothesis by using a task in which goal pursuit was threatened by distraction from valenced stimuli while functional magnetic resonance imaging data were collected. The analyses examined whether the impact of trait approach and avoidance motivation on the neural processes associated with executive function differed depending on the valence or arousal level of the distractor stimuli. The present findings support the hypothesis that the regions of DLPFC under investigation are involved in integrating motivational and executive function processes, and they also indicate the involvement of a number of other brain areas in maintaining goal pursuit. However, DLPFC did not display differential sensitivity to valence.

  5. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.

    Science.gov (United States)

    McKinstry, Jeffrey L; Edelman, Gerald M

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.

  6. Building functional networks of spiking model neurons.

    Science.gov (United States)

    Abbott, L F; DePasquale, Brian; Memmesheimer, Raoul-Martin

    2016-03-01

    Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.

  7. Self-reported empathy and neural activity during action imitation and observation in schizophrenia.

    Science.gov (United States)

    Horan, William P; Iacoboni, Marco; Cross, Katy A; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K; Green, Michael F

    2014-01-01

    Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions. Between-group activation differences, as well as relationships between activation and self-reported empathy, were evaluated. Both patients and controls similarly activated neural systems previously associated with these tasks. We found no significant between-group differences in task-related activations. There were, however, between-group differences in the correlation between self-reported empathy and right inferior frontal (pars opercularis) activity during observation of facial emotional expressions. As in previous studies, controls demonstrated a positive association between brain activity and empathy scores. In contrast, the pattern in the patient group reflected a negative association between brain activity and empathy. Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  8. Establishing a Statistical Link between Network Oscillations and Neural Synchrony.

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhou

    2015-10-01

    Full Text Available Pairs of active neurons frequently fire action potentials or "spikes" nearly synchronously (i.e., within 5 ms of each other. This spike synchrony may occur by chance, based solely on the neurons' fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may subserve computation for a specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way, spike synchrony is a feature of neural data that should be explained. A point process regression framework has been developed previously for this purpose, using generalized linear models (GLMs. In this framework, the observed number of synchronous spikes is compared to the number predicted by chance under varying assumptions about the factors that affect each of the individual neuron's firing-rate functions. An important possible source of spike synchrony is network-wide oscillations, which may provide an essential mechanism of network information flow. To establish the statistical link between spike synchrony and network-wide oscillations, we have integrated oscillatory field potentials into our point process regression framework. We first extended a previously-published model of spike-field association and showed that we could recover phase relationships between oscillatory field potentials and firing rates. We then used this new framework to demonstrate the statistical relationship between oscillatory field potentials and spike synchrony in: 1 simulated neurons, 2 in vitro recordings of hippocampal CA1 pyramidal cells, and 3 in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method for establishing a statistical link between network oscillations and neural synchrony.

  9. Near scale-free dynamics in neural population activity of waking/sleeping rats revealed by multiscale analysis.

    Directory of Open Access Journals (Sweden)

    Leonid A Safonov

    Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.

  10. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    Directory of Open Access Journals (Sweden)

    Mehrshad Salmasi

    2012-07-01

    Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.

  11. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    Science.gov (United States)

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  13. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  14. Anisotropy of ongoing neural activity in the primate visual cortex

    Directory of Open Access Journals (Sweden)

    Maier A

    2014-09-01

    Full Text Available Alexander Maier,1 Michele A Cox,1 Kacie Dougherty,1 Brandon Moore,1 David A Leopold2 1Department of Psychology, College of Arts and Science, Vanderbilt University, Nashville, TN, USA; 2Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and radial extents. This review consolidates previously published findings from our group in order to compare and contrast the spatial profile of neural activity coherence across these distinct cortical dimensions. We focus on studies of ongoing local field potential (LFP data obtained simultaneously from multiple sites in the primary visual cortex in two types of experiments in which electrode contacts were spaced either along the cortical surface or at different laminar positions. These studies demonstrate that across both dimensions the coherence of ongoing LFP fluctuations diminishes as a function of interelectrode distance, although the nature and spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coherence declines gradually and continuously away from a given position. In contrast, across the cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern of ongoing LFP coherence is similar when animals are at rest and when they are engaged in a behavioral task. These results point to the existence of partially segregated laminar zones of cortical processing that extend tangentially within the laminar compartments and are thus oriented orthogonal to the cortical columns. We interpret these electrophysiological observations in light of the known anatomical organization of

  15. Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Weiguo Song

    Full Text Available Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson's disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1 in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.

  16. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    OpenAIRE

    Mehrshad Salmasi; Homayoun Mahdavi-Nasab

    2012-01-01

    Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in n...

  17. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  18. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    OpenAIRE

    Francisco Javier Ordóñez; Daniel Roggen

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we pro...

  19. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  20. The changes in drug binding activity of GABA receptor and animal neural-behavior after gamma irradiation

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Zhao Naikun; Xue Hong; Wang Zihui

    2004-01-01

    Objective: The purpose of this study was to investigate the effect of irradiation on gamma-aminobutyric-acid receptor (GABA-R) as well as behavioral changes after brain 60 Co γ-irradiation. Methods: The mice were irradiated with gamma rays (20 Gy; 10 Gy and 5 Gy) . The drug binding activity of GABA receptor in brain receptor was measured by fluorescence anisotropy (FA) and equilibrium dissociation constants. The behavioral changes were observed by the locomotor activity test, elevated plus-maze test and hole-board test at 1, 10, 24 and 48 hr after irradiation. Results: 1. The drug binding activity of the GABA receptor was decreased and the equilibrium dissociation constant (K d ) was significantly increased compared with the negative control group 2 hr after irradiation, and a spike value appeared at 24 hr. It showed that the irradiation might damage or decrease the binding activity and the bio-activity of GABA receptor. 2. The animal experiment confirmed that the irradiated animal model showed neural-behavioral changes of anxiety or depression. 3. The decreased binding activity of GABA receptor and changes in behavior of irradiated animal were dependent on radiation intensity. 4. The changes of behavior was similar to the blocked GABA receptor group. It suggests the relationship of radiation and GABA receptor. Conclusion: These results suggest that GABA receptor may be involved in radiation injury. The functional changes of GABA receptor may be an induction factor of behavioral disorder. The article also discussed the effect of anxiety and results obtained from the point of view of GABA receptor system involvement in the changes observed after irradiation. (authors)

  1. Dynamics of a modified Hindmarsh-Rose neural model with random perturbations: Moment analysis and firing activities

    Science.gov (United States)

    Mondal, Argha; Upadhyay, Ranjit Kumar

    2017-11-01

    In this paper, an attempt has been made to understand the activity of mean membrane voltage and subsidiary system variables with moment equations (i.e., mean, variance and covariance's) under noisy environment. We consider a biophysically plausible modified Hindmarsh-Rose (H-R) neural system injected by an applied current exhibiting spiking-bursting phenomenon. The effects of predominant parameters on the dynamical behavior of a modified H-R system are investigated. Numerically, it exhibits period-doubling, period halving bifurcation and chaos phenomena. Further, a nonlinear system has been analyzed for the first and second order moments with additive stochastic perturbations. It has been solved using fourth order Runge-Kutta method and noisy systems by Euler's scheme. It has been demonstrated that the firing properties of neurons to evoke an action potential in a certain parameter space of the large exact systems can be estimated using an approximated model. Strong stimulation can cause a change in increase or decrease of the firing patterns. Corresponding to a fixed set of parameter values, the firing behavior and dynamical differences of the collective variables of a large, exact and approximated systems are investigated.

  2. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2012-01-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans. (paper)

  3. The Effects of Guanfacine and Phenylephrine on a Spiking Neuron Model of Working Memory.

    Science.gov (United States)

    Duggins, Peter; Stewart, Terrence C; Choo, Xuan; Eliasmith, Chris

    2017-01-01

    We use a spiking neural network model of working memory (WM) capable of performing the spatial delayed response task (DRT) to investigate two drugs that affect WM: guanfacine (GFC) and phenylephrine (PHE). In this model, the loss of information over time results from changes in the spiking neural activity through recurrent connections. We reproduce the standard forgetting curve and then show that this curve changes in the presence of GFC and PHE, whose application is simulated by manipulating functional, neural, and biophysical properties of the model. In particular, applying GFC causes increased activity in neurons that are sensitive to the information currently being remembered, while applying PHE leads to decreased activity in these same neurons. Interestingly, these differential effects emerge from network-level interactions because GFC and PHE affect all neurons equally. We compare our model to both electrophysiological data from neurons in monkey dorsolateral prefrontal cortex and to behavioral evidence from monkeys performing the DRT. Copyright © 2016 Cognitive Science Society, Inc.

  4. Causal Inference and Explaining Away in a Spiking Network

    Science.gov (United States)

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  5. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  6. Neural Activity during Encoding Predicts False Memories Created by Misinformation

    Science.gov (United States)

    Okado, Yoko; Stark, Craig E. L.

    2005-01-01

    False memories are often demonstrated using the misinformation paradigm, in which a person's recollection of a witnessed event is altered after exposure to misinformation about the event. The neural basis of this phenomenon, however, remains unknown. The authors used fMRI to investigate encoding processes during the viewing of an event and…

  7. Voltage Estimation in Active Distribution Grids Using Neural Networks

    DEFF Research Database (Denmark)

    Pertl, Michael; Heussen, Kai; Gehrke, Oliver

    2016-01-01

    the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...

  8. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The

  9. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. The race to learn: spike timing and STDP can coordinate learning and recall in CA3.

    Science.gov (United States)

    Nolan, Christopher R; Wyeth, Gordon; Milford, Michael; Wiles, Janet

    2011-06-01

    The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1. Copyright © 2010 Wiley-Liss, Inc.

  11. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    Science.gov (United States)

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  12. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Dejan Pecevski

    2011-12-01

    Full Text Available An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away" and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  13. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion

    International Nuclear Information System (INIS)

    Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  14. Evolving spiking networks with variable resistive memories.

    Science.gov (United States)

    Howard, Gerard; Bull, Larry; de Lacy Costello, Ben; Gale, Ella; Adamatzky, Andrew

    2014-01-01

    Neuromorphic computing is a brainlike information processing paradigm that requires adaptive learning mechanisms. A spiking neuro-evolutionary system is used for this purpose; plastic resistive memories are implemented as synapses in spiking neural networks. The evolutionary design process exploits parameter self-adaptation and allows the topology and synaptic weights to be evolved for each network in an autonomous manner. Variable resistive memories are the focus of this research; each synapse has its own conductance profile which modifies the plastic behaviour of the device and may be altered during evolution. These variable resistive networks are evaluated on a noisy robotic dynamic-reward scenario against two static resistive memories and a system containing standard connections only. The results indicate that the extra behavioural degrees of freedom available to the networks incorporating variable resistive memories enable them to outperform the comparative synapse types.

  15. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733

  16. Performance evaluation of PCA-based spike sorting algorithms.

    Science.gov (United States)

    Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George

    2008-09-01

    Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.

  17. Spikes Filtering with Neural Networks: a Two-Stage Detection System Filtrage des pics par des réseaux neuronaux : un système de détection à deux étages

    Directory of Open Access Journals (Sweden)

    Mousset E.

    2006-11-01

    Full Text Available A two-stage system for detecting spikes in seismic data has been developed, each stage using neural networks (NN techniques. The first stage is trained and used on a running preprocessing window over traces ; its goal is to satisfy the three following criteria (by decreasing priority :(a Maximize the number of detections. (b Minimize the CPU-cost. (c Minimize the number of false alarms. The second stage processes the first stage's alarms in order to discriminate between true and false ones. Several preprocessing techniques, and especially their discriminatory power (to separate noise and signal were tested :(a Based on energy criteria. (b Based on frequency spectrum. (c Based on signal attributes, as Hilbert attributes, or other signal features. Several NN architectures, with global, local and constrained connections were compared. NN behavior at neighborhood of decision area was observed in order to determine a selection method of relevant decision thresholds. The first stage was tested on raw traces issued from 250 shots of a real twodimensional onshore seismic campaign. Three different migrated sections (Dip Moveout were compared. The first was obtained by applying on the latter raw traces a conventional processing sequence including an equalization phase, the second by omitting the equalization phase and the third by both including a prior NN filtering of raw traces and omitting the equalization phase. Afin de détecter les spikes au sein des traces sismiques brutes, nous avons développé un système composé de deux étages, chacun d'eux faisant intervenir un réseau de neurones artificiels dans ses calculs. Le premier réseau est entraîné pour traiter chaque trace au moyen d'une f