WorldWideScience

Sample records for neural secretion epithelial

  1. THE BUFFER CAPACITY OF AIRWAY EPITHELIAL SECRETIONS

    Directory of Open Access Journals (Sweden)

    Dusik eKim

    2014-06-01

    Full Text Available The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF. The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 µl volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO3- is the major buffer. Peak buffer capacity (β increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO3- secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO3- secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  2. The buffer capacity of airway epithelial secretions.

    Science.gov (United States)

    Kim, Dusik; Liao, Jie; Hanrahan, John W

    2014-01-01

    The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO(-) 3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO(-) 3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO(-) 3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  3. Regulated Mucin Secretion from Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Bruce Adler

    2013-09-01

    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  4. Role of calcium signaling in epithelial bicarbonate secretion.

    Science.gov (United States)

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Analysis of the proteome of human airway epithelial secretions

    Directory of Open Access Journals (Sweden)

    Park Yongsung

    2011-01-01

    Full Text Available Abstract Background Airway surface liquid, often referred to as mucus, is a thin layer of fluid covering the luminal surface that plays an important defensive role against foreign particles and chemicals entering the lungs. Airway mucus contains various macromolecules, the most abundant being mucin glycoproteins, which contribute to its defensive function. Airway epithelial cells cultured in vitro secrete mucins and nonmucin proteins from their apical surface that mimics mucus production in vivo. The current study was undertaken to identify the polypeptide constituents of human airway epithelial cell secretions to gain a better understanding of the protein composition of respiratory mucus. Results Fifty-five proteins were identified in the high molecular weight fraction of apical secretions collected from in vitro cultures of well-differentiated primary human airway epithelial cells and isolated under physiological conditions. Among these were MUC1, MUC4, MUC5B, and MUC16 mucins. By proteomic analysis, the nonmucin proteins could be classified as inflammatory, anti-inflammatory, anti-oxidative, and/or anti-microbial. Conclusions Because the majority of the nonmucin proteins possess molecular weights less than that selected for analysis, it is theoretically possible that they may associate with the high molecular weight and negatively charged mucins to form a highly ordered structural organization that is likely to be important for maintaining the proper defensive function of airway mucus.

  6. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion.

    Science.gov (United States)

    Barrios, Juliana; Patel, Kruti R; Aven, Linh; Achey, Rebecca; Minns, Martin S; Lee, Yoonjoo; Trinkaus-Randall, Vickery E; Ai, Xingbin

    2017-09-01

    Pulmonary neuroendocrine cells (PNECs) are the only innervated airway epithelial cells. To what extent neural innervation regulates PNEC secretion and function is unknown. Here, we discover that neurotrophin 4 (NT4) plays an essential role in mucus overproduction after early life allergen exposure by orchestrating PNEC innervation and secretion of GABA. We found that PNECs were the only cellular source of GABA in airways. In addition, PNECs expressed NT4 as a target-derived mechanism underlying PNEC innervation during development. Early life allergen exposure elevated the level of NT4 and caused PNEC hyperinnervation and nodose neuron hyperactivity. Associated with aberrant PNEC innervation, the authors discovered that GABA hypersecretion was required for the induction of mucin Muc5ac expression. In contrast, NT4-/- mice were protected from allergen-induced mucus overproduction and changes along the nerve-PNEC axis without any defects in inflammation. Last, GABA installation restored mucus overproduction in NT4-/- mice after early life allergen exposure. Together, our findings provide the first evidence for NT4-dependent neural regulation of PNEC secretion of GABA in a neonatal disease model. Targeting the nerve-PNEC axis may be a valid treatment strategy for mucus overproduction in airway diseases, such as childhood asthma.-Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y., Trinkaus-Randall, V. E., Ai, X. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. © FASEB.

  7. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    This study aimed to investigate the antifungal activity of skin secretions from selected frogs (Amietia fuscigula, Strongylopus grayi and Xenopus laevis) and one toad (Amietophrynus pantherinus) of the south Western Cape Province of South Africa. Initially, different extraction techniques for the collection of skin secretions ...

  8. Morphine Attenuates Apically-Directed Cytokine Secretion from Intestinal Epithelial Cells in Response to Enteric Pathogens

    Directory of Open Access Journals (Sweden)

    Amanda J. Brosnahan

    2014-04-01

    Full Text Available Epithelial cells represent the first line of host immune defense at mucosal surfaces. Although opioids appear to increase host susceptibility to infection, no studies have examined opioid effects on epithelial immune functions. We tested the hypothesis that morphine alters vectorial cytokine secretion from intestinal epithelial cell (IPEC-J2 monolayers in response to enteropathogens. Both entero-adherent Escherichia coli O157:H7 and entero-invasive Salmonella enterica serovar Typhimurium increased apically-directed IL-6 secretion and bi-directional IL-8 secretion from epithelial monolayers, but only IL-6 secretion evoked by E. coli was reduced by morphine acting through a naloxone-sensitive mechanism. Moreover, the respective type 4 and 5 Toll-like receptor agonists, lipopolysaccharide and flagellin, increased IL-8 secretion from monolayers, which was also attenuated by morphine pretreatment. These results suggest that morphine decreases cytokine secretion and potentially phagocyte migration and activation directed towards the mucosal surface; actions that could increase host susceptibility to some enteric infections.

  9. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  11. Silibinin regulates gene expression, production and secretion of mucin from cultured airway epithelial cells.

    Science.gov (United States)

    Kim, Kil-Dong; Lee, Hyun Jae; Lim, Seung Pyong; Sikder, Asaduzzaman; Lee, Su Yel; Lee, Choong Jae

    2012-09-01

    We investigated whether silibinin significantly affects gene expression, production and secretion of mucin from cultured airway epithelial cells. Confluent NCI-H292 cells were pretreated with silibinin for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or TNF-α for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The effect of silibinin on TNF-α-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of silibinin to assess the effect on mucin secretion using ELISA. The results were as follows: (i) silibinin inhibited the expression of the MUC5AC mucin gene induced by EGF, PMA or TNF-α from NCI-H292 cells; (ii) silibinin also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (iii) silibinin inhibited the activation of NF-κB p65 by TNF-α in NCI-H292 cells; (iv) silibinin significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that silibinin can regulate gene expression, production and secretion of mucin by directly acting on airway epithelial cells. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells.

    Science.gov (United States)

    Lee, Su Yel; Lee, Hyun Jae; Sikder, Md Asaduzzaman; Shin, Hyun-Dae; Kim, Jang-Hyun; Chang, Gyu Tae; Seok, Jeong Ho; Lee, Choong Jae

    2012-07-01

    The study investigated whether resveratrol significantly affects mucin gene expression, production and secretion from airway epithelial cells. Confluent NCI-H292 cells were pretreated with resveratrol for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) and TNF-α (tumor necrosis factor-α) for 24 h, respectively. The MUC5AC gene expression and mucin protein production were measured by RT-PCR and ELISA. The effect of resveratrol on TNF-α- or PMA-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of resveratrol to assess the effect on mucin secretion using ELISA. The results were as follows: (1) resveratrol inhibited the expression of MUC5AC gene induced by EGF or PMA or TNF-α from NCI-H292 cells; (2) resveratrol also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (3) resveratrol inhibited the activation of NF-κB p65 by TNF-α or PMA in NCI-H292 cells; (4) resveratrol significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that resveratrol can regulate mucin gene expression, production and secretion, by directly acting on airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Airway epithelial DUOX1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses

    Science.gov (United States)

    Hristova, Milena; Habibovic, Aida; Veith, Carmen; Janssen-Heininger, Yvonne M.W.; Dixon, Anne E.; Geiszt, Miklos; van der Vliet, Albert

    2015-01-01

    Background The interleukin (IL)-1 family member IL-33 plays a critical role in type-2 innate immune responses to allergens, and is an important mediator of allergic asthma. The mechanisms by which allergens provoke epithelial IL-33 secretion are still poorly understood. Objective Based on previous findings indicating involvement of the NADPH oxidase DUOX1 in epithelial wound responses, we explored the potential involvement of DUOX1 in allergen-induced IL-33 secretion and potential alterations in airways of subjects with asthma. Methods Cultured human or murine airway epithelial cells or mice were subjected to acute challenge with Alternaria alternata or house dust mite (HDM), and secretion of IL-33 and activation of subsequent type 2 responses were determined. The role of DUOX1 was explored using siRNA approaches and DUOX1-deficient mice. Cultured nasal epithelial cells from healthy or asthmatic subjects were evaluated for DUOX1 expression and allergen-induced responses. Results In vitro or in vivo allergen challenge resulted in rapid airway epithelial IL-33 secretion, which critically depended on DUOX1-mediated activation of epithelial epidermal growth factor receptor (EGFR) and the protease calpain-2, via a redox-dependent mechanism involving cysteine oxidation within EGFR and the tyrosine kinase Src. Primary nasal epithelial cells from subjects with allergic asthma were found to express elevated DUOX1 and IL-33, and demonstrated enhanced IL-33 secretion in response to allergen challenge compared to nasal epithelial cells from non-asthmatic subjects. Conclusion Our findings implicate epithelial DUOX1 as a pivotal mediator of IL-33-dependent activation of innate airway type 2 immune responses to common airborne allergens, and indicate that enhanced DUOX1 expression and IL-33 secretion may present important contributing features of allergic asthma. PMID:26597162

  14. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Carly Cuman

    2015-10-01

    Full Text Available Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM from blastocysts that failed to implant (non-implanted compared to blastocysts that implanted (implanted. Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs. miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  15. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion.

    Science.gov (United States)

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-10-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  16. Neural regulation of glucagon-like peptide-1 secretion in pigs

    DEFF Research Database (Denmark)

    Hansen, Lene; Lampert, Sarah; Mineo, Hitoshi

    2004-01-01

    Glucagon-like peptide (GLP)-1 is secreted rapidly from the intestine postprandially. We therefore investigated its possible neural regulation. With the use of isolated perfused porcine ileum, GLP-1 secretion was measured in response to electrical stimulation of the mixed, perivascular nerve supply...

  17. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements.

    Science.gov (United States)

    Schwingshackl, Andreas; Roan, Esra; Teng, Bin; Waters, Christopher M

    2015-01-01

    TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the changes in cytokine secretion from TREK-1

  18. Paracoccidioides brasiliensis induces cytokine secretion in epithelial cells in a protease-activated receptor-dependent (PAR) manner.

    Science.gov (United States)

    de Oliveira, Priscila; Juliano, Maria Aparecida; Tanaka, Aparecida Sadae; Carmona, Adriana Karaoglanovic; Dos Santos, Saara Maria Batista; de Barros, Bianca Carla Silva Campitelli; Maza, Paloma Korehisa; Puccia, Rosana; Suzuki, Erika

    2017-04-01

    Paracoccidioides brasiliensis is one of the etiological agents of the human systemic mycosis paracoccidioidomycosis. Protease-activated receptors (PARs) are expressed in many cell types and comprise a family of G protein-coupled receptors (PAR-1, PAR-2, and PAR-4), which may be activated by proteases secreted by several pathogens. In the present study, we showed that the pathogenic fungus P. brasiliensis secretes components that promote interleukin (IL)-6 and IL-8 secretion by the lung epithelial cell line A549. Cytokine secretion was reduced by antagonistic peptides for PAR-1 and PAR-2, but not for PAR-4. P. brasiliensis proteases were isolated from fungal culture supernatants in a p-aminomethylbenzamidine-Sepharose column. The obtained fractions were tested for enzymatic activity against fluorescence resonance energy transfer (FRET) peptides derived from sequences that spanned the activation sites of human PARs. The eluted fraction, termed PbP, contained protease activities that were able to hydrolyze the FRET peptides. PbP also induced IL-6 and IL-8 secretion in A549 epithelial cells, which was reduced upon heat inactivation of PbP, incubation with antagonistic peptides for PAR-1 and PAR-2, and the protease inhibitors aprotinin, leupeptin, and E-64. Together, these results show for the first time that P. brasiliensis yeasts secrete proteases that activate PARs in lung epithelial cells, leading to cytokine secretion.

  19. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    Science.gov (United States)

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α2 -macroglobulin family chaperone, including albumin, transferrin, α1 -antitrypsin, α1 -antichymotrypsin, α2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Effects of ATP release on mucin5AC secretion in airway epithelial cells by mechanical stretching.

    Science.gov (United States)

    Zhang, Ting; Liu, Chunyi; Zhou, Xiangdong; Kolosov, Victor P; Perelman, Juliy M

    2014-01-01

    This study is to determine the effects of ATP and Ca(2+) on mucin5AC (MUC5AC) overexpression in airway epithelial cells in mechanical ventilation. Oxygen was injected into the closed box used in this study to increase the pressure. Gravity-driven draining flow led to formation of a thin liquid film on the upper portion of cell monolayer, exposing cells to the tension forces at the air-liquid interface. The levels of MUC5AC protein and ATP in culture medium were detected by ELISA and high performance liquid chromatography, respectively. Ca(2+) and MUC5AC mRNA in culture cells were detected by flow cytometry and RT-PCR, respectively. Mechanical stretching increased the expression of MUC5AC in cells and the concentration of MUC5AC and ATP in supernatant. BAPTA-AM and EGTA partially reduced the increases in the concentrations of MUC5AC and ATP in supernatant with mechanical ventilation. BAPTA-AM completely inhibited ATP in supernatant with normal breathing conditions. Our results showed that mechanical ventilation increases the secretion of MUC5AC in airway epithelial cells. This is possibly related to Ca(2+)-dependent ATP release and intracellular and external Ca(2+). © 2014 by the Association of Clinical Scientists, Inc.

  1. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  2. A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier.

    Directory of Open Access Journals (Sweden)

    Bharathi Govindarajan

    Full Text Available The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs. MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168, which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection.

  3. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    Science.gov (United States)

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  4. Hochuekkito, a Kampo (Traditional Japanese Herbal Medicine, and its Polysaccharide Portion Stimulate G-CSF Secretion from Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tsukasa Matsumoto

    2010-01-01

    Full Text Available Kampo (traditional Japanese herbal medicines are taken orally due to which the gastric mucosal immune system may act as one of the major targets for the expression of pharmacological activity. The inner surface of the intestinal tract possesses a large area of mucosal membranes, and the intestinal epithelial cells sit at the interface between a lumen and a lymphocyte-rich lamina propria. The cross talk that occurs between these compartments serves to maintain intestinal homeostasis, and the cytokine network plays an important role in the cross talk. In this study, the effect of Hochuekkito (HET, one of Kampo medicines, on cytokine secretion of intestinal epithelial cells was investigated. When murine normal colonic epithelial cell-line MCE301 cells were stimulated with HET, the contents of granulocyte colony-stimulating factor (G-CSF in the conditioned medium were significantly increased in dose- and time-dependent manners. The enhanced G-CSF gene transcription in MCE301 cells by the stimulation of HET was observed by RT-PCR. The enhanced G-CSF secretion by HET was also observed in C3H/HeJ mice-derived primary cultured colonic epithelial cells. When the HET was fractionated, only the polysaccharide fraction (F-5 enhanced the G-CSF secretion of MCE301 cells, and the activity of F-5 lost after the treatment of periodate that can degrade the carbohydrate moiety. These results suggest that HET enhances secretion of G-CSF from colonic epithelial cells and the polysaccharide is one of the active ingredients of HET. The enhanced G-CSF secretion by HET may partly contribute to the clinically observed various pharmacological activities of HET including immunomodulating activity.

  5. Candida albicans and Candida parapsilosis rapidly up-regulate galectin-3 secretion by human gingival epithelial cells.

    Science.gov (United States)

    Tamai, Riyoko; Kiyoura, Yusuke

    2014-02-01

    Galectin-3 is a β-galactoside-binding C-type lectin that plays an important role in innate immunity. The purpose of this study was to determine whether Candida albicans and Candida parapsilosis up-regulate galectin-3 secretion by human gingival epithelial cells and gingival fibroblasts. Ca9-22, a human gingival epithelial cell line, and human gingival fibroblasts were incubated in the presence or absence of C. albicans or C. parapsilosis without serum. Levels of secreted human galectin-3 in culture supernatants were measured by enzyme-linked immunosorbent assay. We also pretreated Ca9-22 cells with cytochalasin D (an actin polymerization inhibitor), ALLN (a calpain inhibitor) and LY294002 [a phosphatidylinositol-3 kinase (PI3K) inhibitor] to determine whether the up-regulation of galectin-3 secretion was mediated by cytoskeletal changes, protease activity, or PI3K signaling. Galectin-3 secretion was significantly and rapidly up-regulated by live C. albicans and C. parapsilosis, as well as heat-killed C. albicans. In addition, cytochalasin D, LY294002 and ALLN did not inhibit the up-regulation in galectin-3 secretion. These results suggest that both live and heat-killed C. albicans and C. parapsilosis may increase the activity of the innate immune system and invasion by other microorganisms via up-regulation of galectin-3 secretion.

  6. Leptin positively regulates MUC5AC production and secretion induced by interleukin-13 in human bronchial epithelial cells.

    Science.gov (United States)

    Hao, Wanming; Wang, Jing; Zhang, Yu; Wang, Yunying; Sun, Lixin; Han, Wei

    2017-11-18

    Mucus hypersecretion and plugging of lower respiratory tract airways due to mucus plugs have long been recognized as the leading cause of the morbidity and mortality in asthma. MUC5AC protein is a major component of airway mucus. Here, we showed that interleukin (IL)-13 induced MUC5AC production and secretion, and leptin expression in the human bronchial epithelial cell line-16 (HBE16) cells in a concentration-dependent manner. Leptin knockdown suppressed MUC5AC production and secretion induced by IL-13. We further investigated the molecular mechanism by which leptin functioned, and found that leptin regulated IL-13-induced MUC5AC production and secretion via the JAK2-STAT3 pathway. Subsequently, Munc18b, a limiting component of the exocytic machinery of airway epithelial and mast cells, was found that when knockdown, MUC5AC secretion was significantly inhibited. SABiosciences ChIP search tool identified three STAT3 binding sites with Munc18b promoter. Chromatin immunoprecipitation analysis further confirmed that Stat3 upregulated Munc18b expression by directly binding to its promoter. These data suggested that leptin promotes MUC5AC secretion via JAK2-STAT3-MUNC18b regulatory network. Taken together, our data highlight a positive feedback role and molecular mechanism for leptin in the control of MUC5AC production and secretion from airway epithelial cells stimulated by IL-13, which encourage further exploration of the therapeutic potentials of manipulating leptin in the treatment of mucus hypersecretion in chronic inflammation lung diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  8. Impact of Mycotoxins Secreted by Aspergillus Molds on the Inflammatory Response of Human Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yélian Marc Bossou

    2017-06-01

    Full Text Available Exposure to molds and mycotoxins not only contributes to the onset of respiratory disease, it also affects the ocular surface. Very few published studies concern the evaluation of the effect of mycotoxin exposure on ocular cells. The present study investigates the effects of aflatoxin B1 (AFB1 and gliotoxin, two mycotoxins secreted by Aspergillus molds, on the biological activity of the human corneal epithelial (HCE cells. After 24, 48, and 72 h of exposure, cellular viability and inflammatory response were assessed. Both endpoint cell viability colorimetric assays and continuous cell impedance measurements, providing noninvasive real-time assessment of the effect on cells, were performed. Cytokine gene expression and interleukin-8 release were quantified. Gliotoxin appeared more cytotoxic than AFB1 but, at the same time, led to a lower increase of the inflammatory response reflecting its immunosuppressive properties. Real-time cell impedance measurement showed a distinct profile of cytotoxicity for both mycotoxins. HCE cells appeared to be a well-suited in vitro model to study ocular surface reactivity following biological contaminant exposure. Low, but persistent inflammation, caused by environmental factors, such as fungal toxins, leads to irritation and sensitization, and could be responsible for allergic manifestations which, in turn, could lead to mucosal hyper-reactivity.

  9. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  10. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni.

    Science.gov (United States)

    Scanlan, Eoin; Ardill, Laura; Whelan, Matthew V X; Shortt, Claire; Nally, Jarlath E; Bourke, Billy; Ó Cróinín, Tadhg

    2017-04-01

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which this could be mediated. A significant correlation between more relaxed DNA supercoiling and an increased ability of C. jejuni strains to penetrate human epithelial cells was demonstrated. Directly inducing relaxation of DNA supercoiling in C. jejuni was shown to significantly increase invasion of epithelial cells. Mutants in the fibronectin binding proteins CadF and FlpA still displayed an increased invasion after treatment with novobiocin suggesting these proteins were not essential for the observed phenotype. However, a large increase in protein secretion from multiple C. jejuni strains upon relaxation of DNA supercoiling was demonstrated. This increase in protein secretion was not mediated by outer membrane vesicles and appeared to be dependent on an intact flagellar structure. This study identifies relaxation of DNA supercoiling as playing a key role in enhancing C. jejuni pathogenesis during infection of the human intestine and identifies proteins present in a specific invasion associated secretome induced by relaxation of DNA supercoiling. © 2016 John Wiley & Sons Ltd.

  11. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats.

    Science.gov (United States)

    Jasper, M S; Engeland, W C

    1994-02-01

    An ultradian rhythm in adrenal secretion of corticosterone has been described in awake rats using intra-adrenal microdialysis. To determine the role of the autonomic innervation of the adrenal on the expression of the corticosterone rhythm, adrenal extracellular fluid was sampled by intra-adrenal microdialysis in intact (CTRL) and splanchnicectomized (SPLNX) rats 5-7 h before (light period) and after dark onset (dark period). Experiments conducted 1, 2, or 5 days after surgical insertion of the microdialysis probe consisted of continuous collection of dialysate at intervals of 10 min. Time domain pulse detection using PC-PULSAR showed that 5 days after surgery, SPLNX decreased interpulse interval (IPI) during the light period, but had no effect during the dark period, resulting in the loss of the diurnal rhythm in corticosterone secretion. Although diurnal modulation of both pulse amplitude and pulse frequency was observed, only the frequency was altered by SPLNX. In CTRL animals IPI increased at 5 days postsurgery, relative to 1 and 2 days, but the amplitude of normalized secretory pulses did not change. The decrease in IPI caused by SPLNX was observed 5 days, but not 1 or 2 days after surgery, suggesting that surgical stress obscures the inhibitory effect of splanchnic neural activity. Power spectral analysis showed significant periodicities in corticosterone secretion rate in individual CTRL and SPLNX animals at 1, 2, and 5 days. One day after surgery, SPLNX reduced the frequency of the ultradian rhythm detected by power spectral analysis. This finding suggests that splanchnic neural activity may increase pulse frequency in stressed rats, in opposition to the effect seen after extended recovery from surgery. In conclusion, our data suggest that the nadir of the diurnal rhythm in corticosterone secretion results in part from neural inhibitory control. Splanchnic neural innervation may also have an excitatory role in the adrenocortical stress response.

  12. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.

    Science.gov (United States)

    Gukasyan, Hovhannes J; Lee, Vincent H L; Kim, Kwang-Jin; Kannan, Ram

    2002-04-01

    Metabolism and transport of glutathione (GSH), the endogenous thiol antioxidant, in conjunctival tissue to date are poorly understood. The purpose of the present study was to define transport characteristics of GSH in primary cultured rabbit conjunctival epithelial cells (RCECs). RCECs were grown on membrane filters to exhibit tight barrier properties (transepithelial electrical resistance, TEER, approximately 1 k(Omega)/cm(2)). Uptake, efflux, and transepithelial transport of GSH were determined in the presence or absence of extracellular Na(+) under conditions of inhibition of GSH biosynthesis and degradation. Uptake was determined at 15 minutes after instillation of (3)H-GSH to the apical or basolateral bathing fluid. GSH efflux was estimated from the time course of release of prebiosynthesized (35)S-GSH. Transepithelial transport was assessed by instillation of (3)H-GSH in either the apical or basolateral bathing fluid, followed by sampling from respective contralateral sides. Apical uptake and efflux showed Na(+) dependency up to 65%. GSH uptake in the initial 15 minutes was linear in the presence of 1 mM GSH (labeled and unlabeled) in Na(+)-containing buffer. The uptake rate was higher from the apical fluid than from the basolateral fluid. A Hill analysis of the Na(+)-dependent process yielded a coupling ratio for Na(+) to GSH of 1.25:1. The efflux rate of GSH into the apical fluid was marginally dependent on the apical presence of Na(+) and was significantly greater than that in the basolateral fluid. Basolateral efflux of GSH was primarily Na(+) independent, whereas basolateral uptake almost exclusively was Na(+) dependent. Depolarizing the RCEC membrane potential decreased GSH efflux into either apical or basolateral fluids (5 pmol/min small middle dot 10(6) cells). Hyperpolarization significantly increased the rate of GSH efflux into the apical fluid (120 pmol/min small middle dot 10(6) cells), whereas the basolateral efflux was not affected. Apparent

  13. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2017-06-01

    Full Text Available Intestinal Cl− secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl− secretion in human intestinal epithelial (T84 cells. FFA inhibited cAMP-dependent Cl− secretion in T84 cell monolayers with IC50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl− channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K+ channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca2+-dependent Cl− secretion with IC50 of ∼10 μM. FFA inhibited activities of Ca2+-activated Cl− channels and KCa3.1, a Ca2+-activated basolateral K+ channels, but had no effect on activities of Na+–K+–Cl− cotransporters and Na+–K+ ATPases. These results indicate that FFA inhibits both cAMP and Ca2+-dependent Cl− secretion by suppressing activities of both apical Cl− channels and basolateral K+ channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas.

  14. Secreted autotransporter toxin (Sat) triggers autophagy in epithelial cells that relies on cell detachment.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Comenge, Yannick; Ruby, Vincent; Amsellem, Raymonde; Nicolas, Valérie; Servin, Alain L

    2011-07-01

    The secreted autotransporter toxin, Sat, which belongs to the subfamily of serine protease autotransporters of Enterobacteriaceae, acts as a virulence factor in extraintestinal and intestinal pathogenic strains of Escherichia coli. We observed that HeLa cells exposed to the cell-free culture supernatant of recombinant strain AAEC185p(Sat-IH11128) producing the Sat toxin (CFCS(Sat) ), displayed dramatic disorganization of the F-actin cytoskeleton before loosening cell-to-cell junctions and detachment. Examination of the effect of Sat on GFP-microtubule-associated protein light chain 3 (LC3) HeLa cells revealed that CFCS(Sat) -induced autophagy follows CFCS(Sat) -induced F-actin cytoskeleton rearrangement. The induced autophagy shows an acceleration of the autophagy flux soon after Sat treatment, followed later by a blockade of the flux leading to the accumulation of large GFP-LC3-positive vacuoles in the cell cytoplasm. CFCS(Sat) did not induce cell detachment in autophagy-deficient mouse embryonic fibroblasts in contrast with wild-type mouse embryonic fibroblasts. The CFCS(Sat) -induced large GFP-LC3 dots do not display the characteristics of autophagolysosomes including expression of cathepsin D and Lamp-1 and 2 proteins, and Lysotracker Red- and DQ-BSA-positive labelling. We provide evidences that CFCS(Sat) -induced autophagy is not a cell response intended to get rid of the intracellular toxin. By a pharmacological blockers approach, we found that the blockade of Erk1/2 and p38 MAPKs, but not JNK, inhibited the CFCS(Sat) -induced autophagy and cell detachment whereas phosphatidylinositol-3 kinase blockers inhibiting canonical autophagy were inactive. When attached CFCS(Sat) -treated cells start to detach they showed caspase-independent cell death and rearrangements of the focal adhesion-associated vinculin and paxillin. Collectively, our results support that Sat triggers autophagy in epithelial cells that relies on its cell-detachment effect. © 2011 Blackwell

  15. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Bruce A Stanton

    Full Text Available P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF. Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR.The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  16. Role of protein tyrosine kinase in the effect of IP6 on IL-8 secretion in intestinal epithelial cells.

    Science.gov (United States)

    Wawszczyk, Joanna; Orchel, Arkadiusz; Kapral, Małgorzata; Wéglarz, Ludmiła

    2013-01-01

    Phytic acid (IP6) is a major fiber-associated component of a diet physiologically present in human intestines. Studies showed that this phytochemical can modulate immune functions of intestinal epithelium through regulation of proinflammatory cytokines secretion but mechanisms underlying these cellular response to IP6 have weakly been examined, as yet. The aim of this study was to determine the role of protein tyrosine kinase (PTK) in secretion of IL-8, a central proinflammatory cytokine, by unstimulated and IL-1beta-stimulated intestinal epithelial cells Caco-2 treated with IP6 (1 and 2.5 mM). To study the involvement of PTK signal pathway in IL-8 secretion, inhibitors of phosphotyrosine phosphatase (sodium orthovanadate, OV) and tyrosine kinase (genistein, GEN) were incubated with Caco-2 cells prior to IP6 treatment. IP6 had suppressive effect on basal and IL-1beta-stimulated IL-8 secretion by cells. The effect of OV on IL-8 release by cells treated with IP6 was different under constitutive and stimulated conditions. Secretion of IL-8 was significantly down-regulated in cells with GEN and GEN plus IP6 treatment. In addition, total PTK activity in both unstimulated and IL-1beta stimulated cells was determined in the presence of IP6. The results suggest that physiological intestinal concentrations of IP6 may have an inhibitory effect on IL-8 secretion by Caco-2 cells and one of the mechanisms of its action is the inhibition of PTK signaling cascade. The study revealed for the first time that PTKs could be one of the molecular targets for IP6 effects in the intestinal epithelial cells.

  17. Brucella invasion of human intestinal epithelial cells elicits a weak proinflammatory response but a significant CCL20 secretion.

    Science.gov (United States)

    Ferrero, Mariana C; Fossati, Carlos A; Rumbo, Martín; Baldi, Pablo C

    2012-10-01

    In spite of the frequent acquisition of Brucella infection by the oral route in humans, the interaction of the bacterium with cells of the intestinal mucosa has been poorly studied. Here, we show that different Brucella species can invade human colonic epithelial cell lines (Caco-2 and HT-29), in which only smooth species can replicate efficiently. Infection with smooth strains did not produce a significant cytotoxicity, while the rough strain RB51 was more cytotoxic. Infection of Caco-2 cells or HT-29 cells with either smooth or rough strains of Brucella did not result in an increased secretion of TNF-α, IL-1β, MCP-1, IL-10 or TGF-β as compared with uninfected controls, whereas all the infections induced the secretion of IL-8 and CCL20 by both cell types. The MCP-1 response to flagellin from Salmonella typhimurium was similar in Brucella-infected or uninfected cells, ruling out a bacterial inhibitory mechanism as a reason for the weak proinflammatory response. Infection did not modify ICAM-1 expression levels in Caco-2 cells, but increased them in HT-29 cells. These results suggest that Brucella induces only a weak proinflammatory response in gut epithelial cells, but produces a significant CCL20 secretion. The latter may be important for bacterial dissemination given the known ability of Brucella to survive in dendritic cells. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  19. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  20. The influence of radiotherapy on IL-2 and IL-6 secretions of mucous membrane epithelial cells of wistar small intestine.

    Science.gov (United States)

    Liu, Bin; Li, Xiaoling; Ai, Fulu; Wang, Tianlu; Chen, Yun; Zhang, Hao

    2015-01-01

    The aim of the study was to investigate the influence of radiotherapy on IL-2 and IL-6 secretions of mucous epithelial cells of small intestine and the inhibition effect of deproteinized calf blood extractive (DCBE, also known as Actovegin in trade name) on apoptosis of mucous epithelial cells of small intestine. 50 wistars were randomly divided into 5 groups with 10 in each including normal group (NG), radiation group (RG), low-dose Actovegin group (L-AG), middle-dose Actovegin group (M-AG), and high-dose Actovegin (H-AG). High-energy X-ray linear accelerator was used for abdominal irradiation of RG, L-AG, M-AG, and H-AG at the exposure dose of 9.0 Gy to establish the wistar radiation damage model. Modeling wistars were injected with medicine for successive 4 days, and their small intestinal mucosas were extracted as pathological sections; then fully automated analyzer was employed to detect their IL-2 and IL-6 levels. Immunohistochemical analysis was carried out to explore the effect of Actovegin on apoptosis of mucous membrane epithelial cells of small intestine. The IL-2 and IL-6 levels of RG are significantly higher than other groups and differences are statistically significant (P 0.05). Compared with RG, the villus height, membrane thickness, crypt depth, and whole layer thickness significantly improved (P membrane epithelial cells of radioactive enteritis.

  1. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Elham Hashemi

    2017-01-01

    Full Text Available As the key producer of cerebrospinal fluid (CSF, the choroid plexus (CP provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2, as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

  2. Ezrin/Exocyst complex regulates mucin 5AC secretion induced by neutrophil elastase in human airway epithelial cells.

    Science.gov (United States)

    Li, Qi; Li, Na; Liu, Chun-Yi; Xu, Rui; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang-Dong

    2015-01-01

    Increased mucin secretion is a characteristic feature of many chronic airway diseases, particularly during periods of exacerbation; however, the exact mechanism of mucin secretion remains unclear. Ezrin, which is a specific marker of apical membranes, is predominantly concentrated in exocyst-rich cell surface structures, crosslinking the actin cytoskeleton with the plasma membrane. In the present study, we examined whether Ezrin is involved in mucin 5AC (MUC5AC) secretion after neutrophil elastase (NE) attack, and we investigated the role of the exocyst complex docking protein Sec3 in this process. NE was used as a stimulator in a 16HBE14o- cell culture model. The expression and location of Ezrin and Sec3 were investigated, and the interaction between Ezrin and Sec3 in 16HBE14o-cells was assayed after treatment with NE, Ezrin siRNA, Sec3 siRNA, neomycin or PIP2-Ab. We found that Ezrin was highly expressed in the bronchi of humans with chronic airway diseases. NE induced robust MUC5AC protein secretion. The Ezrin siRNA, Sec3 siRNA, and neomycin treatments led to impaired MUC5AC secretion in cells. Both Ezrin and Sec3 were recruited primarily to the cytoplasmic membrane after NE stimulation, and the neomycin and PIP2-Ab treatments abrogated this effect. Immunoprecipitation analysis revealed that Ezrin and Sec3 combined to form complexes; however, these complexes could not be detected in Ezrin∆1-333 mutant-transfected cells, even when PIP2 was added. These results demonstrate that Ezrin/Sec3 complexes are essential for MUC5AC secretion in NE-stimulated airway epithelial cells and that PIP2 is of critical importance in the formation of these complexes. © 2015 S. Karger AG, Basel.

  3. Ezrin/Exocyst Complex Regulates Mucin 5AC Secretion Induced by Neutrophil Elastase in Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Qi Li

    2015-01-01

    Full Text Available Background/Aim: Increased mucin secretion is a characteristic feature of many chronic airway diseases, particularly during periods of exacerbation; however, the exact mechanism of mucin secretion remains unclear. Ezrin, which is a specific marker of apical membranes, is predominantly concentrated in exocyst-rich cell surface structures, crosslinking the actin cytoskeleton with the plasma membrane. In the present study, we examined whether Ezrin is involved in mucin 5AC (MUC5AC secretion after neutrophil elastase (NE attack, and we investigated the role of the exocyst complex docking protein Sec3 in this process. Methods: NE was used as a stimulator in a 16HBE14o- cell culture model. The expression and location of Ezrin and Sec3 were investigated, and the interaction between Ezrin and Sec3 in 16HBE14o-cells was assayed after treatment with NE, Ezrin siRNA, Sec3 siRNA, neomycin or PIP2-Ab. Results: We found that Ezrin was highly expressed in the bronchi of humans with chronic airway diseases. NE induced robust MUC5AC protein secretion. The Ezrin siRNA, Sec3 siRNA, and neomycin treatments led to impaired MUC5AC secretion in cells. Both Ezrin and Sec3 were recruited primarily to the cytoplasmic membrane after NE stimulation, and the neomycin and PIP2-Ab treatments abrogated this effect. Immunoprecipitation analysis revealed that Ezrin and Sec3 combined to form complexes; however, these complexes could not be detected in Ezrin∆1-333 mutant-transfected cells, even when PIP2 was added. Conclusions: These results demonstrate that Ezrin/Sec3 complexes are essential for MUC5AC secretion in NE-stimulated airway epithelial cells and that PIP2 is of critical importance in the formation of these complexes.

  4. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure.

    Science.gov (United States)

    Ray, Heather J; Niswander, Lee A

    2016-04-01

    The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors. © 2016. Published by The Company of Biologists Ltd.

  5. Regulation of interleukin-6 secretion by the two-pore-domain potassium channel Trek-1 in alveolar epithelial cells.

    Science.gov (United States)

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; Lim, Keng Gat; Tigyi, Gabor; Narayanan, Damodaran; Jaggar, Jonathan H; Waters, Christopher M

    2013-02-15

    We recently proposed a role for the two-pore-domain K(+) (K2P) channel Trek-1 in the regulation of cytokine release from mouse alveolar epithelial cells (AECs) by demonstrating decreased interleukin-6 (IL-6) secretion from Trek-1-deficient cells, but the underlying mechanisms remained unknown. This study was designed to investigate the mechanisms by which Trek-1 decreases IL-6 secretion. We hypothesized that Trek-1 regulates tumor necrosis factor-α (TNF-α)-induced IL-6 release via NF-κB-, p38-, and PKC-dependent pathways. We found that Trek-1 deficiency decreased IL-6 secretion from mouse and human AECs at both transcriptional and translational levels. While NF-κB/p65 phosphorylation was unchanged, p38 phosphorylation was decreased in Trek-1-deficient cells, and pharmacological inhibition of p38 decreased IL-6 secretion in control but not Trek-1-deficient cells. Similarly, pharmacological inhibition of PKC also decreased IL-6 release, and we found decreased phosphorylation of the isoforms PKC/PKDμ (Ser(744/748)), PKCθ, PKCδ, PKCα/βII, and PKCζ/λ, but not PKC/PKDμ (Ser(916)) in Trek-1-deficient AECs. Phosphorylation of PKCθ, a Ca(2+)-independent isoform, was intact in control cells but impaired in Trek-1-deficient cells. Furthermore, TNF-α did not elevate the intracellular Ca(2+) concentration in control or Trek-1-deficient cells, and removal of extracellular Ca(2+) did not impair IL-6 release. In summary, we report the expression of Trek-1 in human AECs and propose that Trek-1 deficiency may alter both IL-6 translation and transcription in AECs without affecting Ca(2+) signaling. The results of this study identify Trek-1 as a new potential target for the development of novel treatment strategies against acute lung injury.

  6. Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret.

    Science.gov (United States)

    Kanoh, Soichiro; Tanabe, Tsuyoshi; Rubin, Bruce K

    2011-10-01

    IL-8 is an important activator and chemoattractant for neutrophils that is produced by normal human bronchial epithelial (NHBE) cells through mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) p65 pathways. Dapsone, a synthetic sulfone, is widely used to treat chronic neutrophil dermatoses. We investigated the effects of dapsone on polarized IL-8 secretion from lipopolysaccharide (LPS)-stimulated NHBE cells and further evaluated its ability to decrease LPS-induced inflammation in the ferret airway. NHBE cells were grown at air-liquid interface (ALI) to ciliated differentiation. Baseline and endotoxin (LPS)-stimulated IL-8 secretion was measured by enzyme-linked immunosorbent assay at air and basal sides with and without dapsone. Western blotting was used to determine signaling pathways. In vivo, ferrets were exposed to intratracheal LPS over a period of 5 days. Once inflammation was established, oral or nebulized dapsone was administered for 5 days. Intraepithelial neutrophil accumulation was analyzed histologically, and mucociliary transport was measured on the excised trachea. Dapsone, 1 μg/mL, did not influence unstimulated (basal) IL-8 secretion. Apical LPS stimulation induced both apical and basolateral IL-8, but basolateral LPS increased only basolateral IL-8. Dapsone inhibited polarized IL-8 secretion from ALI-conditioned cells. Dapsone also decreased LPS-induced IL-8 mRNA level. LPS led to phosphorylation of extracellular signal-regulated kinase 1/2, but not p38 MAPK or c-Jun NH(2)-terminal kinase. LPS also induced NF-κB p65 phosphorylation, an effect that was inhibited by dapsone. Both oral and aerosol dapsone decreased LPS-induced intraepithelial neutrophil accumulation, but only treatment with aerosol dapsone restored mucociliary transport to normal. Dapsone, given either systemically or as an aerosol, may be useful in treating neutrophilic airway inflammation.

  7. Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells.

    Science.gov (United States)

    Clauzure, Mariángeles; Valdivieso, Ángel G; Massip-Copiz, María M; Mori, Consuelo; Dugour, Andrea V; Figueroa, Juan M; Santa-Coloma, Tomás A

    2017-08-01

    Cystic fibrosis (CF) is caused by mutations in the CFTR gene, which encodes a cAMP-regulated chloride channel. Several cellular functions are altered in CF cells. However, it is not clear how the CFTR failure induces those alterations. We have found previously several genes differentially expressed in CF cells, including c-Src, MUC1, MTND4, and CISD1 (CFTR-dependent genes). Recently, we also reported the existence of several chloride-dependent genes, among them GLRX5 and RPS27. Here, varying the intracellular chloride concentration [Cl(-) ]i of IB3-1 CF bronchial epithelial cells, we show that IL-1β mRNA expression and secretion are also under Cl(-) modulation. The response to Cl(-) is biphasic, with maximal effects at 75 mM Cl(-) . The regulation of the IL-1β mRNA expression involves an IL-1β autocrine effect, since in the presence of the IL-1β receptor antagonist IL1RN or anti-IL-1β blocking antibody, the mRNA response to Cl(-) disappeared. Similar effects were obtained with the JNK inhibitor SP600125, the c-Src inhibitor PP2 and the IKK inhibitor III (BMS-345541). On the other hand, the IL-1β secretion is still modulated by Cl(-) in the presence of IL-1RN, IL-1β blocking antibody, or cycloheximide, suggesting that Cl(-) is affecting the IL-1β maturation/secretion, which in turn starts an autocrine positive feedback loop. In conclusion, the Cl(-) anion acts as a second messenger for CFTR, modulating the IL-1β maturation/secretion. The results also imply that, depending on its intracellular concentration, Cl(-) could be a pro-inflammatory mediator. J. Cell. Biochem. 118: 2131-2140, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, plays an important role in cell-to-cell communication during colitis.

    Directory of Open Access Journals (Sweden)

    Saravanan Ayyadurai

    Full Text Available PepT1 is a member of the proton-oligopeptide cotransporter family SLC15, which mediates the transport of di/tripeptides from intestinal lumen into epithelial cells. MicroRNAs (miRNAs, a small noncoding RNAs (21-23 nucleotides, post-transcriptionally regulate gene expression by binding to the 3'-untranslated regions (UTRs of their target mRNAs. Although the role of most miRNAs remains elusive, they have been implicated in vital cellular functions such as intestinal epithelial cells differentiation, proliferation, and apoptosis. In the present study, we investigated the effect of intestinal epithelial PepT1 expression on microRNA (miRNA expression/secretion in the colons of control mice and in mice with experimentally induced colonic inflammation (colitis. The colonic miRNA expression was deregulated in both colitis and control mice but the deregulation of miRNA expression/secretion was specific to colonic tissue and did not affect other tissues such as spleen and liver. Intestinal epithelial PepT1-dependent deregulation of colonic miRNA expression not only affects epithelial cells but also other cell types, such as intestinal macrophages. Importantly, we found the miRNA 23b which was known to be involved in inflammatory bowel disease was secreted and transported between cells to impose a gene-silencing effect on recipient intestinal macrophages. Based on our data, we may conclude that the expression of a specific protein, PepT1, in the intestine affects local miRNA expression/secretion in the colon on a tissue specific manner and may play an important role during the induction and progression of colitis. Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, could play a crucial role in cell-to-cell communication during colitis.

  9. Innate immunity in the vagina (part I): estradiol inhibits HBD2 and elafin secretion by human vaginal epithelial cells.

    Science.gov (United States)

    Patel, Mickey V; Fahey, John V; Rossoll, Richard M; Wira, Charles R

    2013-05-01

    Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E₂), progesterone (P₄) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. E₂ significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E₂ -treated cells had no anti-HIV activity, while that from E₂ /P₄ -treated cells significantly inhibited HIV-BaL infection. The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E₂, suggesting that innate immune protection varies in the vagina across the menstrual cycle. © 2013 John Wiley & Sons A/S.

  10. Innate Immunity in the Vagina (Part I): Estradiol Inhibits HBD2 and Elafin Secretion by Human Vaginal Epithelial Cells

    Science.gov (United States)

    Patel, Mickey V.; Fahey, John V.; Rossoll, Richard M.; Wira, Charles R.

    2013-01-01

    Problem Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. Method of study Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E2), progesterone (P4) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. Results E2 significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E2-treated cells had no anti-HIV activity, while that from E2/P4-treated cells significantly inhibited HIV-BaL infection. Conclusion The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E2, suggesting that innate immune protection varies in the vagina across the menstrual cycle. PMID:23398087

  11. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    Directory of Open Access Journals (Sweden)

    Nikolaos eMandalos

    2014-09-01

    Full Text Available Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A Conditional by Inversion Sox2 allele (Sox2COIN has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV. Sox2EpINV/+(H haploinsufficient and conditional (Sox2EpINV/mosaic mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions that are important for the cell flow in the developing head.

  12. Effect of bradykinin on TGF-β1-induced retinal pigment epithelial cell proliferation and extracellular matrix secretion.

    Science.gov (United States)

    Cai, Wenting; Wei, Qingquan; Liu, Qingyu; Ren, Chengda; Liu, Junling; Zhang, Ruiling; He, Mengmei; Wang, Qianyi; Du, Yaru; Yu, Jing

    2016-11-10

    To evaluate the effect of bradykinin (BK) on TGF-β1-induced retinal pigment epithelial (RPE) cell proliferation and extracellular matrix secretion and to elucidate the relationship between BK and the Erk/Akt signaling pathway. The effects of BK on TGF-β1-induced RPE cell proliferation were examined via CCK-8 assay. Cell culture supernatant collagen I concentrations were measured via ELISA. Fibronectin (Fn), matrix metalloproteinase-2 (MMP-2) and MMP-9 mRNA and protein expression levels were measured via q-PCR and Western blotting, respectively. Changes in Akt/Erk phosphorylation induced by BK and HOE-140 were evaluated via Western blotting. TGF-β1 stimulated ARPE-19 cell proliferation, which was inhibited by BK, whose effects were inhibited by HOE-140. BK inhibited TGF-β1-induced collagen I, Fn and MMP-2 secretion in RPE cells, and these effects were inhibited by HOE-140. BK also inhibited TGF-β1-induced Akt phosphorylation in RPE cells, and these effects were blocked by HOE-140. BK had no significant effect on Erk-mediated signaling. The findings from this study indicate that BK could be novel therapeutic targets for the treatment of PVR.

  13. Reversible effect of dextran sodium sulfate on mucus secreting intestinal epithelial cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, V

    2016-01-01

    Development of animal models of inflammatory bowel disease (IBD) is important to provide insights into the pathogenesis of IBD and to evaluate modalities to prevent or ameliorate inflammation or enhance mucosal healing. However, the use of in vitro models of the inflamed gastrointestinal tract can...... investigated effects of increasing doses of DSS on viability and integrity of these intestinal epithelial cells. For cell viability studies, cells were treated with DSS solutions for 24 or 48 h and viability was measured fluorometrically by PicoGreen double-stranded DNA quantitation. HT29-MTX-E12 cells were...

  14. Green tea extract and its major constituent, epigallocatechin-3-gallate, induce epithelial beta-defensin secretion and prevent beta-defensin degradation by Porphyromonas gingivalis.

    Science.gov (United States)

    Lombardo Bedran, T B; Feghali, K; Zhao, L; Palomari Spolidorio, D M; Grenier, D

    2014-10-01

    Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis. Gingival epithelial cells were treated with various amounts (25-200 μg/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA. The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis. Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Vesicular targeting and the control of ion secretion in epithelial cells: implications for cystic fibrosis.

    Science.gov (United States)

    Cunningham, S A; Frizzell, R A; Morris, A P

    1995-01-01

    Non-polarized HT-29 colonic epithelial cells fail to respond to cyclic AMP-generating agonists with increases in plasma membrane anion conduction. Radio-isotopic efflux and patch-clamp experiments revealed that both undifferentiated and differentiated HT-29 colonocytes possess volume- and Ca(2+)-activated Cl- channels. However, only within the apical plasma membranes of the latter were cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels found. CFTR was expressed equally well in both non-polarized and polarized colonocytes. Lack of CFTR-dependent anion conduction was shown to be the result of CFTR retention within a peripheral intracellular compartment. We demonstrate that upon polarization, CFTR moves to the apical plasma membrane via a Brefeldin A (BFA)-sensitive intracellular trafficking pathway. PMID:7730972

  16. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Benjamin M Hariri

    Full Text Available Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious.

  17. Up-Regulation of ENO1 by HIF-1α in Retinal Pigment Epithelial Cells after Hypoxic Challenge Is Not Involved in the Regulation of VEGF Secretion.

    Directory of Open Access Journals (Sweden)

    Feihui Zheng

    Full Text Available Alpha-enolase (ENO1, a major glycolytic enzyme, is reported to be over-expressed in various cancer tissues. It has been demonstrated to be regulated by the Hypoxia-inducible factor 1-α (HIF-1α, a crucial transcriptional factor implicated in tumor progression and cancer angiogenesis. Choroidal neovascularization (CNV, which is a leading cause of severe vision loss caused by newly formed blood vessels in the choroid, is also engendered by hypoxic stress. In this report, we investigated the expression of ENO1 and the effects of its down-regulation upon cobalt (II chloride-induced hypoxia in retinal pigment epithelial cells, identified as the primary source of ocular angiogenic factors.HIF-1α-diminished retinal pigment epithelial cells were generated by small interfering RNA (siRNA technology in ARPE-19 cells, a human retinal pigment epithelial cell line. Both normal and HIF-1α-diminished ARPE-19 cells were then subjected to hypoxic challenge using cobalt (II chloride (CoCl2 or anaerobic chamber. The relation between ENO1 expression and vascular endothelial growth factor (VEGF secretion by retinal pigment epithelial cells were examined. Protein levels of HIF-1α and ENO1 were analyzed using Western Blot, while VEGF secretion was essayed by enzyme-linked immunosorbent assay (ELISA. Cytotoxicity after hypoxia was detected by Lactate Dehydrogenase (LDH Assay.Upon 24 hr of CoCl2-induced hypoxia, the expression levels of ENO1 and VEGF were increased along with HIF-1α in ARPE-19 cells, both of which can in turn be down-regulated by HIF-1α siRNA application. However, knockdown of ENO1 alone or together with HIF-1α did not help suppress VEGF secretion in hypoxic ARPE-19 cells.ENO1 was demonstrated to be up-regulated by HIF-1α in retinal pigment epithelial cells in response to hypoxia, without influencing VEGF secretion.

  18. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells.

    Science.gov (United States)

    Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B

    2016-02-16

    Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.

  19. Cadherin-6B stimulates an epithelial mesenchymal transition and the delamination of cells from the neural ectoderm via LIMK/cofilin mediated non-canonical BMP receptor signaling

    Science.gov (United States)

    Park, Ki-Sook; Gumbiner, Barry M.

    2012-01-01

    We previously provided evidence that cadherin-6B induces de-epithelialization of the neural crest prior to delamination and is required for the overall epithelial mesenchymal transition (EMT). Furthermore, de-epithelialization induced by cadherin-6B was found to be mediated by BMP receptor signaling independent of BMP. We now find that de-epithelialization is mediated by non-canonical BMP signaling through the BMP type II receptor (BMPRII) and not by canonical Smad dependent signaling through BMP Type I receptor. The LIM kinase/cofilin pathway mediates non-canonical BMPRII induced de-epithelialization, in response to either cadherin-6B or BMP. LIMK1 induces de-epithelialization in the neural tube and dominant negative LIMK1 decreases de-epithelialization induced by either cadherin-6B or BMP. Cofilin is the major known LIMK1 target and a S3A phosphorylation deficient mutated cofilin inhibits de-epithelialization induced by cadherin-6B as well as LIMK1. Importantly, LIMK1 as well as cadherin-6B can trigger ectopic delamination when co-expressed with the competence factor SOX9, showing that this cadherin-6B stimulated signaling pathway can mediate the full EMT in the appropriate context. These findings suggest that the de-epithelialization step of the neural crest EMT by cadherin-6B/BMPRII involves regulation of actin dynamics via LIMK/cofilin. PMID:22537493

  20. Regulation of Monocyte Chemotactic Protein-1 secretion by the Two-Pore-Domain Potassium (K2P) channel TREK-1 in human alveolar epithelial cells.

    Science.gov (United States)

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; Waters, Christopher M

    2013-01-01

    We recently proposed a role for the 2-pore-domain K(+) (K2P) channel TREK-1 in the regulation of cytokine release from alveolar epithelial cells (AECs) by demonstrating decreased IL-6 secretion from TREK-1 deficient cells, but the effects of altered TREK-1 expression on other inflammatory mediators remain poorly understood. We now examined the role of TREK-1 in TNF-α-induced MCP-1 release from human A549 cells. We hypothesized that TREK-1 regulates TNF-α-induced MCP-1 secretion via c-Jun N-terminal kinases (JNK)- and protein kinase-C (PKC)-dependent pathways. In contrast to IL-6 secretion, we found that TREK-1 deficiency resulted in increased MCP-1 production and secretion, although baseline MCP-1 gene expression was unchanged in TREK-1 deficient cells. In contrast to TREK-1 deficient AECs, overexpression of MCP-1 had no effect on MCP-1 secretion. Phosphorylation of JNK1/2/3 was increased in TREK-1 deficient cells upon TNF-α stimulation, but pharmacological inhibition of JNK1/2/3 decreased MCP-1 release from both control and TREK-1 deficient cells. Similarly, pharmacological inhibition of PKC decreased MCP-1 secretion from control and TREK-1 deficient cells, suggesting that alterations in JNK and PKC signaling pathways were unlikely the cause for the increased MCP-1 secretion from TREK-1 deficient cells. Furthermore, MCP-1 secretion from control and TREK-1 deficient cells was independent of extracellular Ca(2+) but sensitive to inhibition of intracellular Ca(2+) reuptake mechanisms. In summary, we report for the first time that TREK-1 deficiency in human AECs resulted in increased MCP-1 production and secretion, and this effect appeared unrelated to alterations in JNK-, PKC- or Ca(2+)-mediated signaling pathways in TREK-1 deficient cells.

  1. A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images.

    Science.gov (United States)

    Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant

    2016-05-26

    Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions.

  2. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin.

    Science.gov (United States)

    Rada, B; Gardina, P; Myers, T G; Leto, T L

    2011-03-01

    Despite the long-appreciated in vivo role of the redox-active virulence factor pyocyanin in Pseudomonas airway infections and the importance of airway epithelial cells in combating bacterial pathogens, little is known about pyocyanin's effect on airway epithelial cells. We find that exposure of bronchiolar epithelial cells to pyocyanin results in MUC2/MUC5AC induction and mucin secretion through release of inflammatory cytokines and growth factors (interleukin (IL)-1β, IL-6, heparin-bound epidermal growth factor, tissue growth factor-α, tumor necrosis factor-α) that activate the epidermal growth factor receptor pathway. These changes are mediated by reactive oxygen species produced by pyocyanin. Microarray analysis identified 286 pyocyanin-induced genes in airway epithelial cells, including many inflammatory mediators elevated in cystic fibrosis (granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte CSF, chemokine (C-X-C motif) ligand 1 (CXCL1), serum amyloid, IL-23) and several novel pyocyanin-responsive genes of potential importance in the infection process (IL-24, CXCL2, CXCL3, CCL20, CXCR4). This comprehensive study uncovers numerous details of pyocyanin's proinflammatory action and establishes airway epithelial cells as key responders to this microbial toxin.

  3. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    Science.gov (United States)

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. © 2016. Published by The Company of Biologists Ltd.

  4. Intracellular Osteopontin Induced by CagA-positive Helicobacter pylori Promotes Beta-catenin Accumulation and Interleukin-8 Secretion in Gastric Epithelial cells.

    Science.gov (United States)

    Chang, Wei-Lun; Yang, Hsiao-Bai; Cheng, Hsiu-Chi; Yeh, Yi-Chun; Kao, Cheng-Yen; Wu, Jiunn-Jong; Lu, Cheng-Chan; Sheu, Bor-Shyang

    2015-12-01

    Osteopontin, an important immune modulator and oncogenic promoter, is upregulated in H. pylori-infected gastric mucosa. However, the underlying mechanisms and biological significance are poorly understood. We investigated whether osteopontin was upregulated in gastric epithelial cells by H. pylori and the virulence factors involved. Moreover, cellular component changes caused by osteopontin were also investigated. The gastric epithelial cell line MKN45 was cocultured with wild-type and mutant H. pylori to analyze osteopontin expression. Beta-catenin levels in cell lysate and interleukin-8 levels in supernatant were analyzed. The difference in osteopontin expression levels in both gastric epithelium and plasma was compared between H. pylori-infected patients and uninfected controls. H. pylori induced intracellular, but not secretory, osteopontin expression in MKN45 cells. Accordingly, osteopontin expression intensity in gastric epithelium was higher in H. pylori-infected patients than in controls, but osteopontin levels in plasma were similar between both patient groups. H. pylori virulence factor CagA delivered via the type IV secretion system was essential for intracellular osteopontin upregulation. H. pylori induced β-catenin accumulation and interleukin-8 secretion, whereas osteopontin knockdown completely abrogated these effects, in MKN45 cells. TLR2 antagonist abolished iOPN expression induced by H. pylori gastritis strain, but not by H. pylori cancer strain. H. pylori is dependent on CagA translocation via the type IV secretion system to induce intracellular osteopontin expression in gastric epithelial cells. Upregulated intracellular osteopontin may promote gastric carcinogenesis via increased β-catenin accumulation and interleukin-8 secretion. © 2015 John Wiley & Sons Ltd.

  5. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    Science.gov (United States)

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  6. Puerarin protects against Staphylococcus aureus-induced injury of human alveolar epithelial A549 cells via downregulating alpha-hemolysin secretion.

    Science.gov (United States)

    Tang, Feng; Li, Wen-Hua; Zhou, Xuan; Liu, Yong-Hua; Li, Zhe; Tang, Yu-Shun; Kou, Xu; Wang, Shu-De; Bao, Min; Qu, Lian-Da; Li, Min; Li, Bing

    2014-08-01

    Alpha-hemolysin, a secreted pore-forming toxin, plays an indispensable role in the pathogenicity of Staphylococcus aureus. In this study, the antimicrobial activity of puerarin against S. aureus was investigated; as a result, puerarin showed no influence on the growth of this organism. However, hemolysis and western blotting assays showed that puerarin concentration dependently inhibited the secretion of alpha-hemolysin at low concentrations. Real-time RT-PCR assay was further employed to evaluate the transcriptional level of hla, the gene encoding alpha-hemolysin, and RNAIII, an effector molecule of the agr system. The results indicated that the RNAIII expression and subsequent hla transcription were also inhibited by puerarin in a dose-dependent manner. Furthermore, puerarin significantly prevented human alveolar epithelial A549 cells from S. aureus-induced injury. Thereby, puerarin may be considered as a potential candidate for the development of antivirulence drugs in the treatment of S. aureus-mediated infections.

  7. The effect of DDT and its metabolite (DDE) on prostaglandin secretion from epithelial cells and on contractions of the smooth muscle of the bovine oviduct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, Michal H.; Mlynarczuk, Jaroslaw; Kotwica, Jan, E-mail: janko@pan.olsztyn.pl

    2012-03-01

    The insecticide DDT and its metabolite (DDE), due to their lipolytic nature and resistance to biodegradation, are accumulated in the living tissues. In cows, DDT and DDE were found to affect prostaglandin (PG) secretion from the endometrium and contractions of the myometrium. In this study, the impact of both xenobiotics (0.1, 1, 10 or 100 ng/ml) on the function of epithelial cells and muscle strips of bovine oviducts from 1 to 5 day of the oestrous cycle was examined. Therefore the concentration of PGE2 and PGFM (a metabolite of PGF2α) in culture media, mRNA expression of genes involved in PGs synthesis in epithelial cells and the force and amplitude of strips contractions were measured after 2 and 24 or 48 h of incubation. Neither DDT nor DDE affected the viability of cells after 48 h (P > 0.05). Both DDT and DDE increased the concentrations of PGFM in culture medium and secretion of PGE2 after only 2 h of cell culture (P < 0.05). Similar effects were seen for the influence of DDE on amount of PGFM after 48 h, while DDT decreased secretion of PGE2 (P < 0.05). DDT after 2 h increased (P < 0.05) mRNA expression of PGF2α synthase (PGFS), while both xenobiotics decreased (P < 0.05) mRNA expression of cyclooxygenase-2 (COX-2) after 24 h. DTT also increased the force of isthmus contractions after 2 h, as did both xenobiotics after 48 h (P < 0.05). Moreover, after 2 and 48 h, DDE stimulated the amplitude of contractions of the isthmus as well as the ampulla, (P < 0.05). The effect of both compounds on oviduct contractions was diminished by indomethacin, which blocks PG synthesis. We conclude that oviductal secretion of prostaglandins is affected, by DDT and DDE. The influence of these xenobiotics on PGF2α and PGE2 secretion and ratio may be part of the mechanism by which both DDT and its metabolite disturb the contractions of oviductal muscle. -- Highlights: ► DDT and its metabolite – DDE are accumulated in the living tissues. ► The insecticides affected PGF2

  8. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    Science.gov (United States)

    Baldassano, Sara; Liu, Sumei; Qu, Mei-Hu; Mulè, Flavia; Wood, Jackie D

    2009-10-01

    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1-100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline I(sc) and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in I(sc), with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons.

  9. Impact of plasmids, including those encodingVirB4/D4 type IV secretion systems, on Salmonella enterica serovar Heidelberg virulence in macrophages and epithelial cells.

    Science.gov (United States)

    Gokulan, Kuppan; Khare, Sangeeta; Rooney, Anthony W; Han, Jing; Lynne, Aaron M; Foley, Steven L

    2013-01-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) can cause foodborne illness in humans following the consumption of contaminated meat and poultry products. Recent studies from our laboratory have demonstrated that certain S. Heidelberg isolated from food-animal sources harbor multiple transmissible plasmids with genes that encode antimicrobial resistance, virulence and a VirB4/D4 type-IV secretion system. This study examines the potential role of these transmissible plasmids in bacterial uptake and survival in intestinal epithelial cells and macrophages, and the molecular basis of host immune system modulation that may be associated with disease progression. A series of transconjugant and transformant strains were developed with different combinations of the plasmids to determine the roles of the individual and combinations of plasmids on virulence. Overall the Salmonella strains containing the VirB/D4 T4SS plasmids entered and survived in epithelial cells and macrophages to a greater degree than those without the plasmid, even though they carried other plasmid types. During entry in macrophages, the VirB/D4 T4SS encoding genes are up-regulated in a time-dependent fashion. When the potential mechanisms for increased virulence were examined using an antibacterial Response PCR Array, the strain containing the T4SS down regulated several host innate immune response genes which likely contributed to the increased uptake and survival within macrophages and epithelial cells.

  10. P2X7 receptor mediates NLRP3-dependent IL-1β secretion and parasite proliferation in Toxoplasma gondii-infected human small intestinal epithelial cells.

    Science.gov (United States)

    Quan, Juan-Hua; Huang, Rui; Wang, Zhuang; Huang, Shuai; Choi, In-Wook; Zhou, Yu; Lee, Young-Ha; Chu, Jia-Qi

    2018-01-02

    Toxoplasma gondii can invade and replicate in all nucleated cells in a wide range of host species, and infection induces IL-1β production. IL-1β plays central roles in the stimulation of the innate immune system and inflammation. However, little is known of the innate immune responses in human fetal small intestinal epithelial cells (FHs 74 Int cells) after T. gondii infection. FHs 74 Int cells were infected with the T. gondii GFP-RH strain. Then, IL-1β production and its mechanisms of action were evaluated using ELISA, MTT cell viability assays, Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), and gene-specific small interfering RNA (siRNA) transfection. Infection of FHs 74 Int cells by T. gondii triggered significant time- and dose-dependent IL-1β production. Although T. gondii activated NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in FHs 74 Int cells, NLRP3 levels were consistently and significantly time-dependently increased, while the other inflammasomes were not. Transfection with siRNA targeting NLRP3, cleaved caspase-1 (Casp-1) or ASC significantly reduced T. gondii-induced IL-1β production, whereas T. gondii proliferation was markedly increased. Toxoplasma gondii infection activated P2X7 receptor (P2X7R) levels in FHs 74 Int cells in a time-dependent manner; however, transfection with siRNA targeting P2X7R significantly reduced T. gondii-induced IL-1β secretion and substantially increased T. gondii proliferation, which is mediated by decreased protein expression levels of NLRP3, cleaved Casp-1 and ASC. Collectively, NLRP3-dependent IL-1β secretion is mediated by P2X7R in small intestinal epithelial cells in response to T. gondii infection, thereby controlling parasite proliferation. This study revealed that the P2X7R/NLRP3 pathway plays important roles in IL-1β secretion and inhibition of T. gondii proliferation in small intestinal epithelial cells. These results not only contribute to our

  11. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother...

  12. Cultures of human colonic epithelial cells isolated from endoscopical biopsies from patients with inflammatory bowel disease. Effect of IFNgamma, TNFalpha and IL-1beta on viability, butyrate oxidation and IL-8 secretion

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Bendtzen, K

    2000-01-01

    Cytokine-mediated impairment of viability and metabolic function of epithelial cells has been suggested as a possible early pathogenic event in the development of inflammatory bowel disease (IBD). It is currently unknown whether pro-inflammatory cytokines have a direct effect on human...... nontransformed colonic epithelial cells. We investigated the effects of TNFalpha, IFNgamma and IL-1beta on viability, short chain fatty acid (butyrate) oxidation and IL-8 secretion in human colonic epithelial cell cultures in vitro obtained from macroscopically normal mucosa from IBD patients and controls...... decreased to median 68% of unexposed cultures (P Cells from IBD patients were significantly less sensitive...

  13. Inhibition of the DHT-induced PSA secretion by Verbascum xanthophoeniceum and Serenoa repens extracts in human LNCaP prostate epithelial cells.

    Science.gov (United States)

    Marcoccia, D; Georgiev, M I; Alipieva, K I; Lorenzetti, S

    2014-08-08

    Verbascum xanthophoeniceum is a mullein plant, typical of Balkan region and some parts of Turkey, traditionally used as phytotherapeutic agent due to its anti-inflammatory properties. It is rich in phenylethanoid and iridoid metabolites whose anti-inflammatory properties are under characterization. The role of Verbascum xanthophoeniceum crude methanolic extract and its isolated phenylethanoid glycoside verbascoside have been evaluated, in comparison to a saw palmetto extract, on a human in vitro model of androgen-regulated prostate epithelium, the LNCaP cell line. Cytotoxicity and DHT-induced free and total PSA secretion have been thoroughly studied. We have found that similar to saw palmetto, Verbascum xanthophoeniceum extract and its isolated phenylethanoid glycoside verbascoside have no cytotoxicity in human LNCaP prostate epithelial cells, whereas an inhibitory effect on the DHT-induced free and total PSA secretion, a recognized anti-androgen like activity, has been shown in case of both Verbascum xanthophoeniceum extract and pure verbascoside. Furthermore, in the absence of the endogenous androgen DHT, an androgen-like activity in Verbascum xanthophoeniceum is detectable as it is for saw palmetto, suggesting that a mixed androgen-antiandrogen activity is present. For the first time, Serenoa repens and Verbascum xanthophoeniceum extracts have shown an absence of cytotoxicity and an inhibitory effect on DHT-induced PSA secretion in an in vitro model of human prostate epithelium, whereas the phenylethanoid glycoside verbascoside appeared to explain only part of the Verbascum xanthophoeniceum inhibitory activity on PSA secretion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Neonatal human retinal pigment epithelial cells secrete limited trophic factors in vitro and in vivo following striatal implantation in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2015-01-01

    -hydroxydopamine-lesioned rats. The results demonstrate short-lived BDNF and FGF2 concentrations in vitro from hRPE cells grown alone or attached to gelatin microcarriers (GM)s as well as limited trophic factor concentration differences in vivo following striatal implantation of hRPE-GM in 6-hydroxydopamine......Human retinal pigment epithelial (hRPE) cell implants into the striatum have been investigated as a potential cell-based treatment for Parkinson's disease in a Phase II clinical trial that recently failed. We hypothesize that the trophic factor potential of the hRPE cells could potentially...... influence the function and/or survival of the implants and may be involved in an alternative mechanism of action. However, it is unclear if hRPE cells secreted trophic factors when handled in the manner used in the clinical Phase II trial. To address these questions, we investigated two neonatal hRPE cell...

  15. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties.

    Directory of Open Access Journals (Sweden)

    G Bhuvanalakshmi

    Full Text Available The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs. We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4, in modulating epithelial to mesenchymal transition (EMT in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ, by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin to epithelial (E-cadherin. sFRP4 treatment elicited activation of the Wnt-Ca2(+ pathway, which antagonizes the Wnt/ß-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/ß-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs.

  16. Secretion of collagen types I and II by epithelial and endothelial cells in the developing chick cornea demonstrated by in situ hybridization and immunohistochemistry.

    Science.gov (United States)

    Hayashi, M; Ninomiya, Y; Hayashi, K; Linsenmayer, T F; Olsen, B R; Trelstad, R L

    1988-05-01

    Cells involved in the synthesis of collagen types I and II in the cornea of developing chick embryos have been studied by using in situ hybridization and immunohistochemistry. Corneas processed for in situ hybridization with the type I and II collagen probes demonstrated specific mRNAs in the epithelium of embryos at stage 18 with an increase at stages between 26 and 31, and then gradual decrease to the background level in the next several days. In the endothelium, a small amount of specific mRNA was recognized through these stages. In the stroma, only sections hybridized with the type I probe demonstrated mRNA in fibroblasts. Immunostaining demonstrated specific collagen types in the stroma at sites which were closely associated with cells containing specific mRNAs. Both collagens type I and II were present beneath the epithelium as narrow bands at stage 18; as the thicker primary stroma at stages 20 and 26; and as subepithelial, subendothelial and stromal staining at stage 31. Thereafter, type I collagen was increased in the stroma but it was also noted in the subepithelial and, to a lesser degree, subendothelial regions, whereas type II collagen was gradually confined to the subendothelial matrix. Electron microscopic examination of sections from 5-day-old (stage-27) embryo corneas using antibodies against the carboxyl propeptides of type I and II procollagens revealed the presence of these procollagens within the cisternae of the endoplasmic reticulum and Golgi vesicles in both epithelial and endothelial cells. In the epithelial cells both the periderm and basal cells contained these procollagens within the cytoplasmic organelles. These results indicate that not only the epithelial cells, but also the endothelial cells secrete collagen types I and II during the formation of the primary corneal stroma and for several days after invasion of fibroblasts.

  17. Examining the Role of Actin-Plasma Membrane Association in Pseudomonas aeruginosa Infection and Type III Secretion Translocation in Migratory T24 Epithelial Cells

    Science.gov (United States)

    Bridge, Dacie R.; Martin, Karen H.; Moore, Elizabeth R.; Lee, Wendy M.; Carroll, James A.; Rocha, Claudia L.

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa targets wounded epithelial barriers, but the cellular alteration that increases susceptibility to P. aeruginosa infection remains unclear. This study examined how cell migration contributes to the establishment of P. aeruginosa infections using (i) highly migratory T24 epithelial cells as a cell culture model, (ii) mutations in the type III secretion (T3S) effector ExoS to manipulate P. aeruginosa infection, and (iii) high-resolution immunofluorescent microscopy to monitor ExoS translocation. ExoS includes both GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities, and P. aeruginosa cells expressing wild-type ExoS preferentially bound to the leading edge of T24 cells, where ExoS altered leading-edge architecture and actin anchoring in conjunction with interrupting T3S translocation. Inactivation of ExoS GAP activity allowed P. aeruginosa to be internalized and secrete ExoS within T24 cells, but as with wild-type ExoS, translocation was limited in association with disruption of actin anchoring. Inactivation of ExoS ADPRT activity resulted in significantly enhanced T3S translocation by P. aeruginosa cells that remained extracellular and in conjunction with maintenance of actin-plasma membrane association. Infection with P. aeruginosa expressing ExoS lacking both GAP and ADPRT activities resulted in the highest level of T3S translocation, and this occurred in conjunction with the entry and alignment of P. aeruginosa and ExoS along actin filaments. Collectively, in using ExoS mutants to modulate and visualize T3S translocation, we were able to (i) confirm effector secretion by internalized P. aeruginosa, (ii) differentiate the mechanisms underlying the effects of ExoS GAP and ADPRT activities on P. aeruginosa internalization and T3S translocation, (iii) confirm that ExoS ADPRT activity targeted a cellular substrate that interrupted T3S translocation, (iv) visualize the ability of P. aeruginosa and Exo

  18. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner.

    Science.gov (United States)

    Perret, Magali; Badiou, Cédric; Lina, Gérard; Burbaud, Sophie; Benito, Yvonne; Bes, Michèle; Cottin, Vincent; Couzon, Florence; Juruj, Carole; Dauwalder, Olivier; Goutagny, Nadège; Diep, Binh An; Vandenesch, François; Henry, Thomas

    2012-07-01

    Staphylococcus aureus is a major pathogen responsible for both nosocomial and community-acquired infections. Central to its virulence is its ability to secrete haemolysins, pore-forming toxins and cytolytic peptides. The large number of membrane-damaging toxins and peptides produced during S. aureus infections has hindered a precise understanding of their specific roles in diseases. Here, we used comprehensive libraries of recombinant toxins and synthetic cytolytic peptides, of S. aureus mutants and clinical strains to investigate the role of these virulence factors in targeting human macrophages and triggering IL-1β release. We found that the Panton Valentine leukocidin (PVL) is the major trigger of IL-1β release and inflammasome activation in primary human macrophages. The cytolytic peptides, δ-haemolysin and PSMα3; the pore-forming toxins, γ-haemolysin and LukDE; and β-haemolysin synergize with PVL to amplify IL-1β release, indicating that these factors cooperate with PVL to trigger inflammation. PVL(+) S. aureus causes necrotizing pneumonia in children and young adults. The severity of this disease is due to the massive recruitment of neutrophils that cause lung damage. Importantly, we demonstrate that PVL triggers IL-1β release in human alveolar macrophages. Furthermore, IL-1β released by PVL-intoxicated macrophages stimulates the secretion of the neutrophil attracting chemokines, IL-8 and monocyte chemotactic protein-1, by lung epithelial cells. Finally, we show that PVL-induced IL-8/monocyte chemotactic protein-1 release is abolished by the inclusion of IL-1 receptor antagonist (IL-1Ra) in a mixed culture of lung epithelial cells and macrophages. Together, our results identify PVL as the predominant S. aureus secreted factor for triggering inflammasome activation in human macrophages and demonstrate how PVL-intoxicated macrophages orchestrate inflammation in the lung. Finally, our work suggests that anakinra, a synthetic IL-1Ra, may be an effective

  19. Examining the role of actin-plasma membrane association in Pseudomonas aeruginosa infection and type III secretion translocation in migratory T24 epithelial cells.

    Science.gov (United States)

    Bridge, Dacie R; Martin, Karen H; Moore, Elizabeth R; Lee, Wendy M; Carroll, James A; Rocha, Claudia L; Olson, Joan C

    2012-09-01

    The opportunistic pathogen Pseudomonas aeruginosa targets wounded epithelial barriers, but the cellular alteration that increases susceptibility to P. aeruginosa infection remains unclear. This study examined how cell migration contributes to the establishment of P. aeruginosa infections using (i) highly migratory T24 epithelial cells as a cell culture model, (ii) mutations in the type III secretion (T3S) effector ExoS to manipulate P. aeruginosa infection, and (iii) high-resolution immunofluorescent microscopy to monitor ExoS translocation. ExoS includes both GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities, and P. aeruginosa cells expressing wild-type ExoS preferentially bound to the leading edge of T24 cells, where ExoS altered leading-edge architecture and actin anchoring in conjunction with interrupting T3S translocation. Inactivation of ExoS GAP activity allowed P. aeruginosa to be internalized and secrete ExoS within T24 cells, but as with wild-type ExoS, translocation was limited in association with disruption of actin anchoring. Inactivation of ExoS ADPRT activity resulted in significantly enhanced T3S translocation by P. aeruginosa cells that remained extracellular and in conjunction with maintenance of actin-plasma membrane association. Infection with P. aeruginosa expressing ExoS lacking both GAP and ADPRT activities resulted in the highest level of T3S translocation, and this occurred in conjunction with the entry and alignment of P. aeruginosa and ExoS along actin filaments. Collectively, in using ExoS mutants to modulate and visualize T3S translocation, we were able to (i) confirm effector secretion by internalized P. aeruginosa, (ii) differentiate the mechanisms underlying the effects of ExoS GAP and ADPRT activities on P. aeruginosa internalization and T3S translocation, (iii) confirm that ExoS ADPRT activity targeted a cellular substrate that interrupted T3S translocation, (iv) visualize the ability of P. aeruginosa and Exo

  20. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana

    2016-01-01

    − channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte...... antagonist, PSB 603, inhibited the response of Isc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl− currents in guinea pig duct cells...

  1. Expression and secretion of the Giardia duodenalis variant surface protein 9B10A by transfected trophozoites causes damage to epithelial cell monolayers mediated by protease activity.

    Science.gov (United States)

    Cabrera-Licona, Ariana; Solano-González, Eduardo; Fonseca-Liñán, Rocío; Bazán-Tejeda, Ma Luisa; Raúl Argüello-García; Bermúdez-Cruz, Rosa Ma; Ortega-Pierres, Guadalupe

    2017-08-01

    Giardia duodenalis is the protozoan parasite responsible for most cases of parasitic diarrhea worldwide. The pathogenic mechanisms of giardiasis have not yet been fully characterized. In this context parasite's excretory/secretory products have been related to the damage induced by the parasite on enterocytes. Among these is the Variable Surface Proteins (VSPs) family involved in antigenic variation and in the induction of protective response. In proteomic analyses carried out to identify the proteases with high molecular weight secreted by Giardia trophozoites during the initial phase of interaction with IEC-6 cell monolayers we identified the VSP9B10A protein. In silico bioinformatics analyses predicted a central region in residues 324-684 displaying the catalytic triad and the substrate binding pocket of cysteine proteases. The analysis of the effect of the VSP9B10A protein on epithelial cell monolayers using trophozoites that were transfected with a plasmid carrying the vsp9b10a gene sequence under the control of a constitutive promoter showed that transfected trophozoites expressing the VSP9B10A protein caused cytotoxic damages on IEC-6 and MDCK cell monolayers. This was characterized by loss of cell-cell contacts and cell detachment from the substrate while no damage was observed with trophozoites that did not express the VSP9B10A protein. The same cytotoxic effect was detected when IEC-6 cell monolayers were incubated only with supernatants from co-cultures of IEC-6 cell monolayers with VSP9B10A transfected trophozoites and this effect was not observed when transfected trophozoites were incubated with a monospecific polyclonal antibody anti-VSP9B10A previous to interaction with IEC-6 monolayers. These results demonstrate that the VSP9B10A protein secreted upon interaction with epithelial cells caused damage in these cells. Thus this protein might be considered as a conditional virulence factor candidate. To our knowledge this is the first report on the

  2. Echinacea extracts modulate the pattern of chemokine and cytokine secretion in rhinovirus-infected and uninfected epithelial cells.

    Science.gov (United States)

    Sharma, M; Arnason, J T; Burt, A; Hudson, J B

    2006-02-01

    Extracts of Echinacea purpurea are among the most widely used herbal medicines throughout Europe and North America for the prevention or treatment of common cold, coughs, bronchitis and other upper respiratory infections. Popular preparations include expressed juice from the aerial parts of the plant (which contain polysaccharides) and alcoholic tinctures from roots (containing caffeic acid derivatives and alkylamides). Since immune modulation has been reported for similar extracts, cytokine antibody arrays were used to investigate the changes in the pro-inflammatory cytokines and chemokines released from a cultured line of human bronchial epithelial cells exposed to Rhinovirus 14 and two different chemically characterized Echinacea extracts. Virus infection stimulated the release of at least 31 cytokine-related molecules, including several important chemokines known to attract inflammatory cells. Most of these effects were reversed by simultaneous exposure to either of the two Echinacea extracts, although the patterns of response were different for the two extracts. These results could explain the antiinflammatory properties of Echinacea extracts. Furthermore, a number of these cytokines were stimulated by the same Echinacea preparations in uninfected cells. These observations therefore provide support for the alleged beneficial uses of Echinacea extracts. Copyright 2006 John Wiley & Sons, Ltd.

  3. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells.

    Science.gov (United States)

    Guyer, Debra M; Radulovic, Suzana; Jones, Faye-Ellen; Mobley, Harry L T

    2002-08-01

    The secreted autotransporter toxin (Sat) of uropathogenic Escherichia coli exhibits cytopathic activity upon incubation with HEp-2 cells. We further investigated the effects of Sat on cell lines more relevant to the urinary tract, namely, those derived from bladder and kidney epithelium. Sat elicited elongation of cells and apparent loosening of cellular junctions upon incubation with Vero kidney cells. Additionally, incubation with Sat triggered significant vacuolation within the cytoplasm of both human bladder (CRL-1749) and kidney (CRL-1573) cell lines. This activity has been associated with only a few other known toxins. Following transurethral infection of CBA mice with a sat mutant, no reduction of CFU in urine, bladder, or kidney tissue was seen compared to that in mice infected with wild-type E. coli CFT073. However, significant histological changes were observed within the kidneys of mice infected with wild-type E. coli CFT073, including dissolution of the glomerular membrane and vacuolation of proximal tubule cells. Such damage was not observed in kidney sections of mice infected with a Sat-deficient mutant. These results indicate that Sat, a vacuolating cytotoxin expressed by uropathogenic E. coli CFT073, elicits defined damage to kidney epithelium during upper urinary tract infection and thus contributes to pathogenesis of urinary tract infection.

  4. Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF-α Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions

    Directory of Open Access Journals (Sweden)

    Denise Kviatcovsky

    2017-01-01

    Full Text Available M strain, the most prevalent multidrug-resistant strain of Mycobacterium tuberculosis (Mtb in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in Mtb infection remains unknown as well as its crosstalk with neutrophils (PMN. In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM derived from infected cells alter PMN responses. We demonstrated that M infects and survives within Calu-6 without promoting death. CM from M-infected Calu-6 (M-CM did not attract PMN in correlation with its low IL-8 content compared to H37Rv-CM. Also, PMN activation and ROS production in response to irradiated H37Rv were impaired after treatment with M-CM due to the lack of TNF-α. Interestingly, M-CM increased H37Rv replication in PMN which would allow the spreading of mycobacteria upon PMN death and sustain IL-8 release. Thus, our results indicate that even at low invasion/replication rate within Calu-6, M induces the secretion of factors altering the crosstalk between these nonphagocytic cells and PMN, representing an evasion mechanism developed by M strain to persist in the host. These data provide new insights on the role of bronchial epithelium upon M infection.

  5. Helicobacter pylori antigen HP0986 (TieA) interacts with cultured gastric epithelial cells and induces IL8 secretion via NF-κB mediated pathway.

    Science.gov (United States)

    Devi, Savita; Ansari, Suhail A; Vadivelu, Jamuna; Mégraud, Francis; Tenguria, Shivendra; Ahmed, Niyaz

    2014-02-01

    The envisaged roles and partly understood functional properties of Helicobacter pylori protein HP0986 are significant in the context of proinflammatory and or proapoptotic activities, the two important facilitators of pathogen survival and persistence. In addition, sequence analysis of this gene predicts a restriction endonuclease function which remained unknown thus far. To evaluate the role of HP0986 in gastric inflammation, we studied its expression profile using a large number of clinical isolates but a limited number of biopsies and patient sera. Also, we studied antigenic role of HP0986 in altering cytokine responses of human gastric epithelial (AGS) cells including its interaction with and localization within the AGS cells. For in vitro expression study of HP0986, 110 H. pylori clinical isolates were cultured from patients with functional dyspepsia. For expression analysis by qRT PCR of HP0986, 10 gastric biopsy specimens were studied. HP0986 was also used to detect antibodies in patient sera. AGS cells were incubated with recombinant HP0986 to determine cytokine response and NF-κB activation. Transient transfection with HP0986 cloned in pEGFPN1 was used to study its subcellular localization or homing in AGS cells. Out of 110 cultured H. pylori strains, 34 (31%) were positive for HP0986 and this observation was correlated with in vitro expression profiles. HP0986 mRNA was detected in 7 of the 10 biopsy specimens. Further, HP0986 induced IL-8 secretion in gastric epithelial cells in a dose and time-dependent manner via NF-κB pathway. Serum antibodies against HP0986 were positively associated with H. pylori positive patients. Transient transfection of AGS cells revealed both cytoplasmic and nuclear localization of HP0986. HP0986 was moderately prevalent in clinical isolates and its expression profile in cultures and gastric biopsies points to its being naturally expressed. Collective observations including the induction of IL-8 via TNFR1 and NF

  6. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    Science.gov (United States)

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation. © 2015 AlphaMed Press.

  7. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?

    OpenAIRE

    Mugnier, Sylvie; Kervella, Morgane; Douet, C?cile; Canepa, Sylvie; Pascal, G?raldine; Deleuze, Stefan; Duchamp, Guy; Monget, Philippe; Goudet, Ghyl?ne

    2009-01-01

    Abstract Background Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertiliza...

  8. A novel TMEM16A splice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells.

    Science.gov (United States)

    Ertongur-Fauth, Torsten; Hochheimer, Andreas; Buescher, Joerg Martin; Rapprich, Stefan; Krohn, Michael

    2014-11-01

    Sweating is an important physiological process to regulate body temperature in humans, and various disorders are associated with dysregulated sweat formation. Primary sweat secretion in human eccrine sweat glands involves Ca(2+) -activated Cl(-) channels (CaCC). Recently, members of the TMEM16 family were identified as CaCCs in various secretory epithelia; however, their molecular identity in sweat glands remained elusive. Here, we investigated the function of TMEM16A in sweat glands. Gene expression analysis revealed that TMEM16A is expressed in human NCL-SG3 sweat gland cells as well as in isolated human eccrine sweat gland biopsy samples. Sweat gland cells express several previously described TMEM16A splice variants, as well as one novel splice variant, TMEM16A(acΔe3) lacking the TMEM16A-dimerization domain. Chloride flux assays using halide-sensitive YFP revealed that TMEM16A is functionally involved in Ca(2+) -dependent Cl(-) secretion in NCL-SG3 cells. Recombinant expression in NCL-SG3 cells showed that TMEM16A(acΔe3) is forming a functional CaCC, with basal and Ca(2+) -activated Cl(-) permeability distinct from canonical TMEM16A(ac). Our results suggest that various TMEM16A isoforms contribute to sweat gland-specific Cl(-) secretion providing opportunities to develop sweat gland-specific therapeutics for treatment of sweating disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  10. Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats.

    Science.gov (United States)

    Fan, Wei-Li; Liu, Peng; Wang, Guan; Pu, Jung-Ang; Xue, Xin; Zhao, Jian-Hua

    2017-09-08

    Spinal cord injury (SCI) is a debilitating, costly, and common pathological condition that affects the function of central nervous system (CNS). To date, there are few promising therapeutic strategies available for SCI. To look for a suitable therapeutic strategy, we have developed a sublethal hypoxic preconditioning procedure using Fluorescence-activated cell sorting (FACS) analysis, LDH releasing and cell viability assays in vitro. Meanwhile, we have examined the benefits of neural stem cells (NSCs) transplantation prior to hypoxic preconditioning on functional recovery and potential mechanism via MRI screening, H&E and Nissl staining, immunofluorescence staining and Elisa assays. Our data showed that transplantation of hypoxic prconditioned NSCs could enhance neuronal survival, especially 5-TH(+) and ChAT(+) neurons, in the injured spinal cord to reinforce functional benefits. The hypoxia exposure upregulated HIF-1α, neurotrophic and growth factors including neurotrophin-3 (NT-3), glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in vitro and in vivo. Furthermore, functional recovery, including locomotor and hypersensitivities to mechanical and thermal stimulation assessed via behavioral and sensory tests, improved significantly in rats with engraftment of NSCs after hypoxia exposure from day 14 post-SCI, compared with the control and N-NSCs groups. In short, the approach employed in this study could result in functional recovery via upregulating neurotrophic and growth factors, which implies that hypoxic preconditioning strategy could serve as an effective and feasible strategy for cell-based therapy in the treatment of SCI in rats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway

    Science.gov (United States)

    Li, Jie; Yu, Zhenjia; Wang, Xiaofeng; Li, Jiaanfang; Li, Chen; Yan, Min; Zhu, Zhenggang; Liu, Bingya; Su, Liping

    2017-01-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. However, the molecular mechanisms underlying the tumor-promoting properties of CAFs in gastric cancer remain unclear. Here, we show that CAFs isolated from gastric cancer produce significant amounts of interleukin-6 (IL-6). CAFs enhances the migration and EMT of gastric cancer cells through the secretion of IL-6 that activates Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in gastric cancer cells, while deprivation of IL-6 using a neutralizing antibody or inhibition of JAK/STAT3 pathway with specific inhibitor AG490 markedly attenuates these phenotypes in gastric cancer cells induced by CAFs. Moreover, silencing IL-6 expression in CAFs or inhibiting JAK2/STAT3 pathway in gastric cancer cells impairs tumor peritoneal metastasis induced by CAFs in vivo. Taken together, these results suggest that CAFs in the tumor microenvironment promote the progression of gastric cancer through IL-6/JAK2/STAT3 signaling, and IL-6 targeted therapy could be a complementary approach against gastric cancer by exerting their action on stromal fibroblasts. PMID:28186964

  12. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?

    Science.gov (United States)

    Mugnier, Sylvie; Kervella, Morgane; Douet, Cécile; Canepa, Sylvie; Pascal, Géraldine; Deleuze, Stefan; Duchamp, Guy; Monget, Philippe; Goudet, Ghylène

    2009-11-19

    Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates. Our study

  13. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?

    Directory of Open Access Journals (Sweden)

    Canepa Sylvie

    2009-11-01

    Full Text Available Abstract Background Oviduct epithelial cells (OEC co-culture promotes in vitro fertilization (IVF in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. Methods & results In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1 gametes co-incubated with equine vs porcine OEC, 2 intact cumulus-oocyte complexes vs denuded oocytes, 3 OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4 in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though

  14. Intracellular Mycoplasma genitalium infection of human vaginal and cervical epithelial cells elicits distinct patterns of inflammatory cytokine secretion and provides a possible survival niche against macrophage-mediated killing

    Directory of Open Access Journals (Sweden)

    Pyles Richard B

    2009-07-01

    Full Text Available Abstract Background Mycoplasma genitalium is an emerging sexually transmitted pathogen that has been associated with significant reproductive tract inflammatory syndromes in women. In addition, the strong association between severity of M. genitalium infection and Human Immunodeficiency Virus type 1 (HIV-1 shedding from the cervix suggests that innate responses to M. genitalium may influence pathogenesis of other sexually transmitted infections. Epithelial cells (ECs of the reproductive mucosa are the first cells contacted by sexually transmitted pathogens. Therefore, we first characterized the dynamics of intracellular and extracellular localization and resultant innate immune responses from human vaginal, ecto- and endocervical ECs to M. genitalium type strain G37 and a low-pass contemporary isolate, M2300. Results Both M. genitalium strains rapidly attached to vaginal and cervical ECs by 2 h post-infection (PI. By 3 h PI, M. genitalium organisms also were found in intracellular membrane-bound vacuoles of which approximately 60% were adjacent to the nucleus. Egress of M. genitalium from infected ECs into the culture supernatant was observed but, after invasion, viable intracellular titers were significantly higher than extracellular titers at 24 and 48 h PI. All of the tested cell types responded by secreting significant levels of pro-inflammatory cytokines and chemokines in a pattern consistent with recruitment and stimulation of monocytes and macrophages. Based on the elaborated cytokines, we next investigated the cellular interaction of M. genitalium with human monocyte-derived macrophages and characterized the resultant cytokine responses. Macrophages rapidly phagocytosed M. genitalium resulting in a loss of bacterial viability and a potent pro-inflammatory response that included significant secretion of IL-6 and other cytokines associated with enhanced HIV-1 replication. The macrophage-stimulating capacity of M. genitalium was independent

  15. Secrets Law

    Directory of Open Access Journals (Sweden)

    Luz Helena Guamanzara Torres

    2013-01-01

    Full Text Available This paper provides a review of the book The Law of Secrets, of the author Juan Carlos Martínez-Villalba Riofrío studying the secrets and how law does protect. To this end, the author has analyzed the general theory of secrecy, secrets and methodology, its overall rating, essential elements and their different legal dimensions, the secret as a subjective right. It also establishes that professional secrecy is protected by constitutional principles such as the right to privacy.

  16. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    LENUS (Irish Health Repository)

    Toumi, F

    2011-02-01

    Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function.

  17. Secretion of Insulinotropic Proteins by Commensal Bacteria: Rewiring the Gut To Treat Diabetes▿ †

    OpenAIRE

    Duan, Faping; Curtis, Katherine L.; March, John C.

    2008-01-01

    Here, we show that commensal bacteria can stimulate intestinal epithelial cells to secrete insulin in response to glucose. Commensal strains were engineered to secrete the insulinotropic proteins GLP-1 and PDX-1. Epithelia stimulated by engineered strains and glucose secreted up to 1 ng ml−1 of insulin with no significant background secretion.

  18. Gastric Epithelial Stem Cells

    Science.gov (United States)

    MILLS, JASON C.; SHIVDASANI, RAMESH A.

    2013-01-01

    Advances in our understanding of stem cells in the gastrointestinal tract include the identification of molecular markers of stem and early progenitor cells in the small intestine. Although gastric epithelial stem cells have been localized, little is known about their molecular biology. Recent reports describe the use of inducible Cre recombinase activity to indelibly label candidate stem cells and their progeny in the distal stomach, (ie, the antrum and pylorus). No such lineage labeling of epithelial stem cells has been reported in the gastric body (corpus). Among stem cells in the alimentary canal, those of the adult corpus are unique in that they lie close to the lumen and increase proliferation following loss of a single mature progeny lineage, the acid-secreting parietal cell. They are also unique in that they neither depend on Wnt signaling nor express the surface marker Lgr5. Because pathogenesis of gastric adenocarcinoma has been associated with abnormal patterns of gastric differentiation and with chronic tissue injury, there has been much research on the response of stomach epithelial stem cells to inflammation. Chronic inflammation, as induced by infection with Helicobacter pylori, affects differentiation and promotes metaplasias. Several studies have identified cellular and molecular mechanisms in spasmolytic polypeptide–expressing (pseudopyloric) metaplasia. Researchers have also begun to identify signaling pathways and events that take place during embryonic development that eventually establish the adult stem cells to maintain the specific features and functions of the stomach mucosa. We review the cytologic, molecular, functional, and developmental properties of gastric epithelial stem cells. PMID:21144849

  19. File list: ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    release for clearance from neural cells.

  1. Role of CFTR in epithelial physiology.

    Science.gov (United States)

    Saint-Criq, Vinciane; Gray, Michael A

    2017-01-01

    Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.

  2. The effect of calprotectin on TSLP and IL-25 production from airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Tomohisa Kato

    2017-04-01

    Conclusions: These results indicate that calprotectin enhances the allergen-induced Th2-type inflammatory responses in airway epithelial cells via the secretion of TSLP and IL-25, and that calprotectin secreted by the epithelial cells may be involved in the pathogenesis of ECRS.

  3. Transepithelial Bicarbonate Secretion: Lessons from the Pancreas

    Science.gov (United States)

    Park, Hyun Woo; Lee, Min Goo

    2012-01-01

    Many cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelia secrete bicarbonate (HCO3−)-containing fluids. Recent evidence suggests that defects in epithelial bicarbonate secretion are directly involved in the pathogenesis of cystic fibrosis, in particular by building up hyperviscous mucus in the ductal structures of the lung and pancreas. Pancreatic juice is one of the representative fluids that contain a very high concentration of bicarbonate among bodily fluids that are secreted from CFTR-expressing epithelia. We introduce up-to-date knowledge on the basic principles of transepithelial bicarbonate transport by showing the mechanisms involved in pancreatic bicarbonate secretion. The model of pancreatic bicarbonate secretion described herein may also apply to other exocrine epithelia. As a central regulator of bicarbonate transport at the apical membrane, CFTR plays an essential role in both direct and indirect bicarbonate secretion. The major role of CFTR in bicarbonate secretion would be variable depending on the tissue and cell type. For example, in epithelial cells that produce a low concentration of bicarbonate-containing fluid (up to 80 mm), either CFTR-dependent Cl−/HCO3− exchange or CFTR anion channel with low bicarbonate permeability would be sufficient to generate such fluid. However, in cells that secrete high-bicarbonate-containing fluids, a highly selective CFTR bicarbonate channel activity is required. Therefore, understanding the molecular mechanism of transepithelial bicarbonate transport and the role of CFTR in each specific epithelium will provide therapeutic strategies to recover from epithelial defects induced by hyposecretion of bicarbonate in cystic fibrosis. PMID:23028131

  4. Google Secrets

    CERN Document Server

    Davis, Yvette

    2011-01-01

    Become a Google guru with these effective tips, tricks, and techniques Sure, you use Google. But do you really use Google-and everything it has to offer-in the most effective way possible? Wish you could just sit down with a Google expert who would show you how to take your Google savviness to the next level? With Google Secrets, you can! Tech expert Jerri Ledford reveals the ins, outs, and little-known facts about Google to show you how to sharpen your skills so you can get more done, more efficiently. You may already be familiar with Google's most popular applications, but this indispensable

  5. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  6. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  7. Gastrin and gastric epithelial physiology

    Science.gov (United States)

    Dockray, G J

    1999-01-01

    Transepithelial transducing cells, particularly the gastrin (G) cell, co-ordinate gastric acid secretion with the arrival of food in the stomach. Recent work suggests that multiple active products are generated from the gastrin precursor, and that there are multiple control points in gastrin biosynthesis. Biosynthetic precursors and intermediates (progastrin and Gly-gastrins) are putative growth factors; their products, the amidated gastrins, regulate epithelial cell proliferation, the differentiation of acid-producing parietal cells and histamine-secreting enterochromaffin-like (ECL) cells, and the expression of genes associated with histamine synthesis and storage in ECL cells, as well as acutely stimulating acid secretion. Gastrin also stimulates the production of members of the epidermal growth factor (EGF) family, which in turn inhibit parietal cell function but stimulate the growth of surface epithelial cells. Plasma gastrin concentrations are elevated in subjects with Helicobacter pylori, who are known to have increased risk of duodenal ulcer disease and gastric cancer. Studies of the physiology of gastrin may therefore contribute to an understanding of the mechanisms relevant to major upper gastrointestinal tract disease. PMID:10381581

  8. Cl−secretion in ATP-treated renal epithelial C7–MDCK cells is mediated by activation of P2Y1 receptors, phospholipase A2 and protein kinase A

    Science.gov (United States)

    Akimova, A Olga; Bourcier, Nathalie; Taurin, Sebastien; Bundey, Richard A; Grygorczyk, Konrad; Gekle, Michael; Insel, Paul A; Dulin, Nickolai O; Orlov, Sergei N

    2005-01-01

    This study examines the mechanism of P2Y-induced Cl− secretion in monolayers of C7–Madin–Darby canine kidney (MDCK) cells triggered by basolateral application of ATP and measured as transcellular short current (ISC). Both ATP-induced arachidonic acid (AA) synthesis and ISC in ATP-treated cells were abolished by the phosholipase A2 (PLA2) inhibitor, AACOCF3. The cyclo-oxygenase inhibitor indomethacin decreased ISC and cAMP production in ATP-treated cells with an IC50 of ∼0.3 μm. ATP led to rapid activation of cAMP-dependent protein kinase A (PKA), as estimated by phosphorylation of a vasodilator-stimulated phosphoprotein. PKA activity and ISC evoked by ATP, as well as by prostaglandin E1 (PGE1), were diminished in the presence of the PKA inhibitor H-89 or an adenovirus-mediated expression of PKA-inhibitor protein, PKI. In contrast, indomethacin completely blocked the increment of PKA and ISC triggered by ATP and AA, but did not affect PKA activation and ISC detected with PGE1. The kinetics of [Ca2+]i elevation in ATP- and thapsigargin-treated cells were similar and suppressed by the Cai2+ chelator BAPTA. Neither baseline nor maximal increment of ATP-induced ISC was affected by thapsigargin and BAPTA. Real-time PCR showed that C7 cells express more mRNA for P2Y1 and P2Y2 than for other P2Y receptor subtypes. The rank order of potency (2MeSATP > ATP > ADP ≫ UTP) indicates that P2Y1 rather than P2Y2 receptors contribute to PKA and ISC activation. Viewed collectively, these data show that Cl− secretion in C7–MDCK monolayers treated with basolateral ATP is triggered by P2Y1 receptors and is mediated by subsequent [Ca2+]i-independent activation of PLA2 and PKA. PMID:16109726

  9. Cl- secretion in ATP-treated renal epithelial C7-MDCK cells is mediated by activation of P 2Y1 receptors, phospholipase A2 and protein kinase A.

    Science.gov (United States)

    Akimova, A Olga; Bourcier, Nathalie; Taurin, Sebastien; Bundey, Richard A; Grygorczyk, Konrad; Gekle, Michael; Insel, Paul A; Dulin, Nickolai O; Orlov, Sergei N

    2005-11-01

    This study examines the mechanism of P 2Y-induced Cl- secretion in monolayers of C7-Madin-Darby canine kidney (MDCK) cells triggered by basolateral application of ATP and measured as transcellular short current (I(SC)). Both ATP-induced arachidonic acid (AA) synthesis and I(SC) in ATP-treated cells were abolished by the phosholipase A2 (PLA2) inhibitor, AACOCF3. The cyclo-oxygenase inhibitor indomethacin decreased I(SC) and cAMP production in ATP-treated cells with an IC50 of approximately 0.3 microm. ATP led to rapid activation of cAMP-dependent protein kinase A (PKA), as estimated by phosphorylation of a vasodilator-stimulated phosphoprotein. PKA activity and I(SC) evoked by ATP, as well as by prostaglandin E1 (PGE1), were diminished in the presence of the PKA inhibitor H-89 or an adenovirus-mediated expression of PKA-inhibitor protein, PKI. In contrast, indomethacin completely blocked the increment of PKA and I(SC) triggered by ATP and AA, but did not affect PKA activation and I(SC) detected with PGE1. The kinetics of [Ca2+]i elevation in ATP- and thapsigargin-treated cells were similar and suppressed by the Ca(2+)i chelator BAPTA. Neither baseline nor maximal increment of ATP-induced I(SC) was affected by thapsigargin and BAPTA. Real-time PCR showed that C7 cells express more mRNA for P 2Y1 and P 2Y2 than for other P 2Y receptor subtypes. The rank order of potency (2MeSATP > ATP > ADP > UTP) indicates that P 2Y1 rather than P 2Y2 receptors contribute to PKA and I(SC) activation. Viewed collectively, these data show that Cl- secretion in C7-MDCK monolayers treated with basolateral ATP is triggered by P 2Y1 receptors and is mediated by subsequent [Ca2+]i-independent activation of PLA2 and PKA.

  10. Regulation of interleukin-6 secretion in murine pituicytes

    DEFF Research Database (Denmark)

    Thorn, Anders; Tuxen, Mikkel; Moesby, Lise

    2005-01-01

    Pituicytes, the astrocytic glial cells of the neural lobe, are known to secrete interleukin-6 and nitric oxide upon stimulation with various inflammatory mediators, i.e. interleukin-1beta. Nitric oxide is described to modulate the secretion of interleukin-6 in various cell types. The aim...... of the present study was to investigate the effect of nitric oxide on interleukin-1beta induced interleukin-6 secretion. Furthermore the effect of interferon-gamma on interleukin-6 and nitric oxide release was investigated. Cultures of pituicytes were prepared of neural lobes from male mice. The effect...... of interleukin-1beta and interferon-gamma on interleukin-6 and nitric oxide secretion was investigated in pituicytes cultured for 14 days. The secretion of interleukin-6 and nitric oxide was determined after 24 h of stimulation. Pituicytes secrete interleukin-6 upon stimulation with interleukin-1beta dose...

  11. Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion

    Science.gov (United States)

    Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel

    2013-01-01

    Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651

  12. File list: Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  13. File list: Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  14. File list: NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  15. File list: DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  16. File list: Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  17. File list: Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  18. File list: DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  19. File list: Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. File list: DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  6. Uteroglobin, an apically secreted protein of the uterine epithelium, is secreted non-polarized form MDCK cells and mainly basolaterally from Caco-2 cells

    DEFF Research Database (Denmark)

    Vogel, L K; Suske, G; Beato, M

    1993-01-01

    and Caco-2 cells thus secrete uteroglobin in a non-sorted manner. It has, however, previously been shown that uteroglobin is secreted exclusively at the apical membrane in primary cell culture of endometrial epithelial cells [S.K. Mani et al. (1991) Endocrinology 128, 1563-1573]. This suggests that either...

  7. Non-classical protein secretion in bacteria

    Directory of Open Access Journals (Sweden)

    Fausbøll Anders

    2005-10-01

    Full Text Available Abstract Background We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function. Results A thorough literature search was conducted to compile a list of currently known bacterial non-classically secreted proteins. Pattern finding methods were applied to the sequences in order to identify putative signal sequences or motifs responsible for their secretion. We have found no signal or motif characteristic to any majority of the proteins in the compiled list of non-classically secreted proteins, and conclude that these proteins, indeed, seem to be secreted in a novel fashion. However, we also show that the apparently non-classically secreted proteins are still distinguished from cellular proteins by properties such as amino acid composition, secondary structure and disordered regions. Specifically, prediction of disorder reveals that bacterial secretory proteins are more structurally disordered than their cytoplasmic counterparts. Finally, artificial neural networks were used to construct protein feature based methods for identification of non-classically secreted proteins in both Gram-positive and Gram-negative bacteria. Conclusion We present a publicly available prediction method capable of discriminating between this group of proteins and other proteins, thus allowing for the identification of novel non-classically secreted proteins. We suggest candidates for non-classically secreted proteins in Escherichia coli and Bacillus subtilis. The prediction method is available online.

  8. The effect of caffeine on renal epithelial cells from patients with autosomal dominant polycystic kidney disease

    National Research Council Canada - National Science Library

    Belibi, Franck A; Wallace, Darren P; Yamaguchi, Tamio; Christensen, Marcy; Reif, Gail; Grantham, Jared J

    2002-01-01

    ...':5'-cyclic monophosphate (cAMP). This study examined the extent to which caffeine may stimulate the production of cAMP by cyst epithelial cells, thereby adversely increasing proliferation and fluid secretion...

  9. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    Directory of Open Access Journals (Sweden)

    Anna Sommansson

    Full Text Available Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v. did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v. but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  10. Choroid plexus epithelial monolayers ? a cell culture model from porcine brain

    OpenAIRE

    Reichel Valeska; Baehr Carsten; Fricker Gert

    2006-01-01

    Abstract Background The goal of the present study was to develop an in vitro choroid plexus (CP) epithelial cell culture model for studying transport of protein-mediated drug secretion from blood to cerebrospinal fluid (CSF) and vice versa. Methods Cells were isolated by mechanical and enzymatic treatment of freshly isolated porcine plexus tissue. Epithelial cell monolayers were grown and CSF secretion and transepithelial resistance were determined. The expression of f-actin as well as the ch...

  11. Secreted Isoform of Human Lynx1 (SLURP-2)

    DEFF Research Database (Denmark)

    Lyukmanova, E N; Shulepko, M A; Shenkarev, Z O

    2016-01-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we...

  12. QUANTITATIVE STUDIES OF PROSTATIC SECRETION

    Science.gov (United States)

    Huggins, Charles; Clark, Philip Johnson

    1940-01-01

    Cystic hyperplasia of the prostate occurs spontaneously in senile dogs only when they possess physiologically effective amounts of androgenic hormone. The cysts are closely grouped and radially arranged in a conical manner with the base of the cone at the periphery of the gland. Flattened and columnar epithelium, varying from about 5 to 25µ are seen in each cyst. The cysts communicate with the urethra by way of ducts. Both normal and cystic prostates undergo marked atrophy when the testes are removed, the chief difference 3 months after orchiectomy being the persistence of slightly dilated clefts and spaces at the site of the former cysts in the senile state. In the castrate dog whose prostate gland is being reconstructed as result of the influence of daily injections of androgen, certain doses of estrogen prevent increase of secretion and still larger doses greatly depress the output of the gland. In dogs so treated by daily injections of testosterone propionate, 10 mg., the amount of secretion is maintained from day to day at a level by daily injections of stilbestrol, 0.4 to 0.6 mg. and greatly depressed by doses of 1 to 1.5 mg. When the larger amounts of estrogen are used, together with androgen, squamous metaplasia occurs in the posterior lobe of the prostate while the epithelium of the acini decreases in height to cuboidal or low columnar form; these histological signs of activity of both androgen and estrogen on the prostate show that inhibition of the male hormone by stilbestrol is incomplete at these ratios. In dogs with either normal or cystic prostate glands, the prostate decreases in size when estrogen is injected in amounts to depress prostatic secretion profoundly. The gland is maintained in an atrophic state and overdosage avoided by controlled periodic injections of stilbestrol until secretion is reduced to the minimum, followed by free intervals, the estrogen being again administered when secretion measurably increases. The shrinkage is related to

  13. sizzled function and secreted factor network dynamics

    Directory of Open Access Journals (Sweden)

    Jianli Shi

    2012-02-01

    Studies on the role of the E-box binding transcription factor Snail2 (Slug in the induction of neural crest by mesoderm (Shi et al., 2011 revealed an unexpected increase in the level of sizzled RNA in the dorsolateral mesodermal zone (DMLZ of morphant Xenopus embryos. sizzled encodes a secreted protein with both Wnt and BMP inhibitor activities. Morpholino-mediated down-regulation of sizzled expression in one cell of two cell embryos or the C2/C3 blastomeres of 32-cell embryos, which give rise to the DLMZ, revealed decreased expression of the mesodermal marker brachyury and subsequent defects in neural crest induction, pronephros formation, and muscle patterning. Loss of sizzled expression led to decreases in RNAs encoding the secreted Wnt inhibitor SFRP2 and the secreted BMP inhibitor Noggin; the sizzled morphant phenotype could be rescued by co-injection of RNAs encoding Noggin and either SFRP2 or Dickkopf (a mechanistically distinct Wnt inhibitor. Together, these observations reveal that sizzled, in addition to its established role in dorsal-ventral patterning, is also part of a dynamic BMP and Wnt signaling network involved in both mesodermal patterning and neural crest induction.

  14. Ultrastructure and oil secretion in Hiptage sericea Hook

    Directory of Open Access Journals (Sweden)

    K. Arumugasamy

    2014-01-01

    Full Text Available The oil secreting glands of Hiptage sericea Hook. consist of three regions: epithelial, sub-epithelial and sub-glandular. In early stages, the oil secreting cells are characterized by the presence of plastids with starch grains and electron translucent vesicles, mitochondria, rER, polysomes, small vacuoles, numerous lipid bodies and well-defined nucleus with nucleolus. Later, the accumulation of plastoglobuli and inclusion bodies occur in the matrix of the plastid. Tubular, smooth endoplasmic reticulum begins to appear in the cytoplasm. With the onset of secretion, the osmiophilic contents of plastids which appear as electron dense, round droplets move-into cytoplasm and often occur in the region of the plasmalemma invaginations. However, in matured glands the lipid bodies disappear from the cytoplasm. The size of the vacuoles increases and are filled with electron opaque substance. Similar substances are also found in the sub-cuticular spaces as well as outside the cuticle.

  15. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-11-06

    Nov 6, 2013 ... Selleslag D, Shah PM, Stevens DA, Walsh TJ (2002). I.F.I.C.G.o.t.E.O.f. Research, T.o. Cancer, M.S.G.o.t.N.I.o.. Allergy, and I. Diseases. Defining Opportunistic Invasive Fungal. Infections in Immunocompromised Patients with Cancer and. Hematopoietic Stem Cell Transplants: An International. Consensus.

  16. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-11-06

    Nov 6, 2013 ... (Weiss, 1947; Angeletti et al., 1992; Rosner, 1992) and scientists are increasingly exploring the use of meta- bolites from animals for antimicrobial activity. ..... Angeletti L, Agrimi U, Curia C, French D, Mariani-Costantini R. (1992). Healing rituals and sacred serpents. Lancet 340:223-225. Ascioglu S, Rex JH, ...

  17. Homeostatic Imbalance in Epithelial Ducts and Its Role in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Rejniak

    2012-01-01

    Full Text Available An epithelial duct is a well-defined multicellular structure composed of tightly packed cells separating and protecting body compartments that are used for enzyme secretion and its transport across the internal. The structural and functional integrity (homeostasis of such ducts is vital in carrying many life functions (breathing, lactation, production of hormones. However, the processes involved in maintaining the homeostatic balance are not yet fully understood. On the other hand, the loss of epithelial tissue architecture, such as filled lumens or ductal disorganization, are among the first symptoms of the emerging epithelial tumors (carcinomas. Using the previously developed biomechanical model of epithelial ducts: IBCell, we investigated how different signals and mechanical stimuli imposed on individual epithelial cells can impact the homeostatic (imbalance and integrity of the whole epithelial tissue. We provide a link between erroneous responses of individual epithelial cells to specific signals and the emerging ductal morphologies characteristic for preinvasive cancers observed in pathology specimens, or characteristic for multicellular structures arising from mutated cells cultured in vitro. We summarize our finding in terms of altered properties of epithelial cell polarization, and discuss the relative importance of various polarization signals on the formation of tumor-like multicellular structures.

  18. Authentication Without Secrets

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Lyndon G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This work examines a new approach to authentication, which is the most fundamental security primitive that underpins all cyber security protections. Current Internet authentication techniques require the protection of one or more secret keys along with the integrity protection of the algorithms/computations designed to prove possession of the secret without actually revealing it. Protecting a secret requires physical barriers or encryption with yet another secret key. The reason to strive for "Authentication without Secret Keys" is that protecting secrets (even small ones only kept in a small corner of a component or device) is much harder than protecting the integrity of information that is not secret. Promising methods are examined for authentication of components, data, programs, network transactions, and/or individuals. The successful development of authentication without secret keys will enable far more tractable system security engineering for high exposure, high consequence systems by eliminating the need for brittle protection mechanisms to protect secret keys (such as are now protected in smart cards, etc.). This paper is a re-release of SAND2009-7032 with new figures numerous edits.

  19. Cigarette smoke extract induces the release of extracellular vesicles by airway epithelial cells via cellular carbonyl stress

    NARCIS (Netherlands)

    Benedikter, B.J.; Volgers, C.; Haenen, G.R.M.M.; Savelkoul, P.H.M.; Wouters, E.F.M.; Rohde, G.G.U.; Weseler, A.R.; Stassen, F.R.M.

    2015-01-01

    Introduction: Secreted extracellular vesicles (EVs) participate in multiple processes by transferring proteins and RNA between cells. Yet, their contribution to chronic inflammation in the lungs is largely unexplored. We determined if exposure of airway epithelial cells (AEC) to cigarette smoke

  20. Incretin secretion: direct mechanisms

    DEFF Research Database (Denmark)

    Balk-Møller, Emilie; Holst, Jens Juul; Kuhre, Rune Ehrenreich

    2014-01-01

    enzyme responsible for incretin degradation (dipeptidyl peptidase-4) is inhibited (drugs are already on the market) while the secretion of endogenous GLP-1 secretion is stimulated at the same time may prove particularly rewarding. In this section we review current knowledge on the mechanisms for direct......The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are secreted from gastro-intestinal K- and L-cells, respectively, and play an important role in post-prandial blood glucose regulation. They do this by direct stimulation of the pancreatic β...

  1. Immunoglobins in mammary secretions

    DEFF Research Database (Denmark)

    Hurley, W L; Theil, Peter Kappel

    2013-01-01

    Immunoglobulins secreted in colostrum and milk by the lactating mammal are major factors providing immune protection to the newborn. Immunoglobulins in mammary secretions represent the cumulative immune response of the lactating animal to exposure to antigenic stimulation that occurs through...... interaction with the environment. Extensive species variability exists in how and when maternal immunoglobulins are transferred to the neonate. In addition, there is a range of mechanisms by which the transferred immunoglobulins may play a protective role in the neonate. This chapter reviews...... the immunoglobulins found in mammary secretions in the context of their diversity of structure, origin, mechanisms of transfer, and function....

  2. Traffic Noise Exposure Increases Gastric Pepsin Secretion in Rat

    Directory of Open Access Journals (Sweden)

    Azam Moslehi

    2016-04-01

    Full Text Available Noise is considered as one of the most severe sources of environmental and workplace constraints. Many noise effects are well known on immune function, hormonal levels, cardiovascular and respiratory systems. In this study, our aim is to evaluate the effects of traffic noise exposure on basal and stimulated gastric pepsin secretion. 48 male rats were exposed to traffic noise (86 dB for a short term of (8h/ day for 1 day and a long term of (8h/ day for 7, 14, 21 and 28 days as well as a control group. The gastric contents were collected by the wash-out technique. Pepsin secretion was measured by employing the Anson method. Histological studies were carried out on the epithelial layer. The corticosteroid hormone was measured in the serum for the stress augmentation. The present finding indicated no changes in pepsin secretion content in the short term, but in the 14 and 21 days traffic noise exposure, basal gastric pepsin secretion increased markedly compared to the control group. Histological results showed that the number of oxyntic glands and cell nuclei decreased in comparison with the control group while the thickness of the epithelial layer increases. In addition, the corticosterone levels increase in all groups in comparison with the control. It seems that the increase of gastric pepsin secretion is due to the description and translation processes in the peptic cells and needs enough time for completion.

  3. Traffic Noise Exposure Increases Gastric Pepsin Secretion in Rat.

    Science.gov (United States)

    Moslehi, Azam; Nabavizadeh, Fatemeh; Keshavarz, Mansoor; Rouhbakhsh, Nematollah; Sotudeh, Masoud; Salimi, Ehsan; Barzegar Behrooz, Amir

    2016-03-01

    Noise is considered as one of the most severe sources of environmental and workplace constraints. Many noise effects are well known on immune function, hormonal levels, cardiovascular and respiratory systems. In this study, our aim is to evaluate the effects of traffic noise exposure on basal and stimulated gastric pepsin secretion. 48 male rats were exposed to traffic noise (86 dB) for a short term of (8h/day for 1 day) and a long term of (8h/day for 7, 14, 21 and 28 days) as well as a control group. The gastric contents were collected by the wash-out technique. Pepsin secretion was measured by employing the Anson method. Histological studies were carried out on the epithelial layer. The corticosteroid hormone was measured in the serum for the stress augmentation. The present finding indicated no changes in pepsin secretion content in the short term, but in the 14 and 21 days traffic noise exposure, basal gastric pepsin secretion increased markedly compared to the control group. Histological results showed that the number of oxyntic glands and cell nuclei decreased in comparison with the control group while the thickness of the epithelial layer increases. In addition, the corticosterone levels increase in all groups in comparison with the control. It seems that the increase of gastric pepsin secretion is due to the description and translation processes in the peptic cells and needs enough time for completion.

  4. File list: His.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2681,SRX1002688 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. File list: His.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2689,SRX1002688 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: His.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2688,SRX1002689 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. File list: InP.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Input control Uterus Fallopian tube secret...iencedbc.jp/kyushu-u/hg19/assembled/InP.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  8. File list: His.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2680,SRX1002681 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  9. File list: InP.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Input control Uterus Fallopian tube secret...iencedbc.jp/kyushu-u/hg19/assembled/InP.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  10. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: Estelle.boyaka@osumc.edu [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  11. Secreted proteases from dermatophytes.

    Science.gov (United States)

    Monod, Michel

    2008-01-01

    Dermatophytes are highly specialized pathogenic fungi that exclusively infect the stratum corneum, nails or hair, and it is evident that secreted proteolytic activity is important for their virulence. Endo- and exoproteases-secreted by dermatophytes are similar to those of species of the genus Aspergillus. However, in contrast to Aspergillus spp., dermatophyte-secreted endoproteases are multiple and are members of two large protein families, the subtilisins (serine proteases) and the fungalysins (metalloproteases). In addition, dermatophytes excrete sulphite as a reducing agent. In the presence of sulphite, disulphide bounds of the keratin substrate are directly cleaved to cysteine and S-sulphocysteine, and reduced proteins become accessible for further digestion by various endo- and exoproteases secreted by the fungi. Sulphitolysis is likely to be an essential step in the digestion of compact keratinized tissues which precedes the action of all proteases.

  12. The evolution of mutualism in gut microbiota via host epithelial selection.

    Directory of Open Access Journals (Sweden)

    Jonas Schluter

    Full Text Available The human gut harbours a large and genetically diverse population of symbiotic microbes that both feed and protect the host. Evolutionary theory, however, predicts that such genetic diversity can destabilise mutualistic partnerships. How then can the mutualism of the human microbiota be explained? Here we develop an individual-based model of host-associated microbial communities. We first demonstrate the fundamental problem faced by a host: The presence of a genetically diverse microbiota leads to the dominance of the fastest growing microbes instead of the microbes that are most beneficial to the host. We next investigate the potential for host secretions to influence the microbiota. This reveals that the epithelium-microbiota interface acts as a selectivity amplifier: Modest amounts of moderately selective epithelial secretions cause a complete shift in the strains growing at the epithelial surface. This occurs because of the physical structure of the epithelium-microbiota interface: Epithelial secretions have effects that permeate upwards through the whole microbial community, while lumen compounds preferentially affect cells that are soon to slough off. Finally, our model predicts that while antimicrobial secretion can promote host epithelial selection, epithelial nutrient secretion will often be key to host selection. Our findings are consistent with a growing number of empirical papers that indicate an influence of host factors upon microbiota, including growth-promoting glycoconjugates. We argue that host selection is likely to be a key mechanism in the stabilisation of the mutualism between a host and its microbiota.

  13. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  14. Leukocyte-epithelial interactions.

    Science.gov (United States)

    Zen, Ke; Parkos, Charles A

    2003-10-01

    As a 'double-edged sword', neutrophil (polymorphonuclear leukocyte) migration across epithelial-lined organs is an important component of host defense, but it also results in epithelial pathophysiology and disease symptoms. There have been significant advances in better understanding the mechanisms of how leukocytes cross the vascular endothelium to exit the bloodstream; however, many of the mechanisms that govern polymorphonuclear leukocyte transepithelial migration are different and we are only just beginning to understand them. Recent findings include new junctional adhesion molecules and carbohydrate moieties as receptors for migrating neutrophils. In addition, new insights into leukocyte-epithelial signaling events have emerged that are beginning to shed light on the role of SIRP-CD47 interactions in regulating the rate of neutrophil transepithelial migration and how neutrophils modulate epithelial barrier function.

  15. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  16. Computing on quantum shared secrets

    Science.gov (United States)

    Ouyang, Yingkai; Tan, Si-Hui; Zhao, Liming; Fitzsimons, Joseph F.

    2017-11-01

    A (k ,n )-threshold secret-sharing scheme allows for a string to be split into n shares in such a way that any subset of at least k shares suffices to recover the secret string, but such that any subset of at most k -1 shares contains no information about the secret. Quantum secret-sharing schemes extend this idea to the sharing of quantum states. Here we propose a method of performing computation securely on quantum shared secrets. We introduce a (n ,n )-quantum secret sharing scheme together with a set of algorithms that allow quantum circuits to be evaluated securely on the shared secret without the need to decode the secret. We consider a multipartite setting, with each participant holding a share of the secret. We show that if there exists at least one honest participant, no group of dishonest participants can recover any information about the shared secret, independent of their deviations from the algorithm.

  17. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    Science.gov (United States)

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  18. Trafficking of chlamydial antigens to the endoplasmic reticulum of infected epithelial cells

    OpenAIRE

    Giles, David K.; Wyrick, Priscilla B.

    2008-01-01

    Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major out...

  19. Metformin inhibits the proliferation of benign prostatic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Zongwei Wang

    Full Text Available Benign prostatic hyperplasia (BPH is the most common proliferative abnormality of the prostate affecting elderly men throughout the world. Epidemiologic studies have shown that diabetes significantly increases the risk of developing BPH, although whether anti-diabetic medications preventing the development of BPH remains to be defined. We have previously found that stromally expressed insulin-like growth factor 1 (IGF-1 promotes benign prostatic epithelial cell proliferation through paracrine mechanisms. Here, we seek to understand if metformin, a first line medication for the treatment of type 2 diabetes, inhibits the proliferation of benign prostatic epithelial cells through reducing the expression of IGF-1 receptor (IGF-1R and regulating cell cycle.BPE cell lines BPH-1 and P69, murine fibroblasts3T3 and primary human prostatic fibroblasts were cultured and tested in this study. Cell proliferation and the cell cycle were analyzed by MTS assay and flow cytometry, respectively. The expression of IGF-1R was determined by western-blot and immunocytochemistry. The level of IGF-1 secretion in culture medium was measured by ELISA.Metformin (0.5-10mM, 6-48h significantly inhibited the proliferation of BPH-1 and P69 cells in a dose-dependent and time-dependent manner. Treatment with metformin for 24 hours lowered the G2/M cell population by 43.24% in P69 cells and 24.22% in BPH-1 cells. On the other hand, IGF-1 (100ng/mL, 24h stimulated the cell proliferation (increased by 28.81% in P69 cells and 20.95% in BPH-1 cells and significantly enhanced the expression of IGF-1R in benign prostatic epithelial cells. Metformin (5mM abrogated the proliferation of benign prostatic epithelial cells induced by IGF-1. In 3T3 cells, the secretion of IGF-1 was significantly inhibited by metformin from 574.31pg/ml to 197.61pg/ml. The conditioned media of 3T3 cells and human prostatic fibroblasts promoted the proliferation of epithelial cells and the expression of IGF-1R

  20. Salivary Gland Secretion.

    Science.gov (United States)

    Dorman, H. L.; And Others

    1981-01-01

    Describes materials and procedures for an experiment utilizing a live dog to demonstrate: (1) physiology of the salivary gland; (2) parasympathetic control of the salivary gland; (3) influence of varying salivary flow rates on sodium and potassium ions, osmolarity and pH; and (4) salivary secretion as an active process. (DS)

  1. A Public Secret

    DEFF Research Database (Denmark)

    Bregnbæk, Susanne

    2011-01-01

    This article is based on anthropological fieldwork undertaken at two elite universities in Beijing. It addresses the paradoxical situation of the many instances of suicide among Chinese elite university students in Beijing, which constitute a public secret. The pressure of education weighs heavily...

  2. Secrets of Successful Homeschooling

    Science.gov (United States)

    Rivero, Lisa

    2011-01-01

    Parents who homeschool gifted children often find the daily practice of home education very different from what they had imagined. Gifted children are complex in both personality and learning styles. Parents who say that homeschooling works well for their gifted children have learned from others or discovered on their own several secrets that make…

  3. Effects of quinoa hull meal on piglet performance and intestinal epithelial physiology

    DEFF Research Database (Denmark)

    Carlson, Dorthe; Fernandez, J.A.; Poulsen, H.D.

    2012-01-01

    added. Epithelial permeability, Na+-dependent glucose transport and serotonin (5-HT) and theophylline- induced secretion were measured. The results showed that QHM had no influence on piglet’s growth (p = 0.41) or feed intake (p = 0.17). In spite of a large difference in saponin content between SA...... that consumed 100 or 300 mg/kg SA-QHM. The secretory response to 5-HT was not affected (p = 0.59) by dietary treatments, but the theophylline-induced secretion decreased (p = 0.02) with increasing dietary SA-QHM. The changes in epithelial physiology mea...

  4. Cryptococcus–Epithelial Interactions

    Directory of Open Access Journals (Sweden)

    Leanne M. Taylor-Smith

    2017-10-01

    Full Text Available The fungal pathogen, Cryptococcus neoformans, causes devastating levels of morbidity and mortality. Infections with this fungus tend to be predominantly in immunocompromised individuals, such as those with HIV. Infections initiate with inhalation of cryptococcal cells and entry of the pathogen into the lungs. The bronchial epithelial cells of the upper airway and the alveolar epithelial cells of the lower airway are likely to be the first host cells that Cryptococcus engage with. Thus the interaction of cryptococci and the respiratory epithelia will be the focus of this review. C. neoformans has been shown to adhere to respiratory epithelial cells, although if the role of the capsule is in aiding or hindering this adhesion is debatable. The epithelia are also able to react to cryptococci with the release of cytokines and chemokines to start the immune response to this invading pathogen. The activity of surfactant components that line this mucosal barrier towards Cryptococcus and the metabolic and transcriptional reaction of cryptococci when encountering epithelial cells will also be discussed.

  5. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  6. Wrapped up in Covers: Preschoolers' Secrets and Secret Hiding Places

    Science.gov (United States)

    Corson, Kimberly; Colwell, Malinda J.; Bell, Nancy J.; Trejos-Castillo, Elizabeth

    2014-01-01

    In this qualitative study, interviews about children's secret hiding places were conducted with 3-5-year-olds (n?=?17) in a university sponsored preschool programme using art narratives. Since prior studies indicate that children understand the concept of a secret as early as five and that they associate secrets with hiding places, the purpose of…

  7. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome

    Science.gov (United States)

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.

    2012-01-01

    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  8. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  9. Bucarest, Strictement Secret

    Directory of Open Access Journals (Sweden)

    Ionela Mihai

    2010-07-01

    Full Text Available L’émission Bucarest, strictement secret représente un documentaire organisésous la forme d’une série télé, qui dépeint le Bucarest à partir de deux perspectives: de l’histoire, de la conte et du lieu. La valeur d’une cité réside dans l’existence d’une mystique, d’un romantisme abscons, à part et des caractères empruntés de drames de Shakespeare, mystérieux, serrés d’angoisse et des secrets qui assombrissent leur existence. Par conséquence, le rôle du metteur en scène est de dévoiler leur vraie identité et de remettre en place, autant que possible, la vérité.

  10. Bile Formation and Secretion

    Science.gov (United States)

    Boyer, James L.

    2014-01-01

    Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (~1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions. PMID:23897680

  11. The Secret Suburb

    DEFF Research Database (Denmark)

    Bech-Danielsen, Claus

    2015-01-01

    The ability to be ‘invisible’ seems to be an important quality in relation to a summerhouse. In fact, summerhouses can be said to be ‘invisible’ in a double sense. As I will explore in this chapter, summerhouses are neglected in planning and partly forgotten in Danish building regulations, at the......, at the same time as their owners like to see summerhouses as hidden places where they can live secret lives, hidden away from the modern world....

  12. Polarity in Mammalian Epithelial Morphogenesis

    Science.gov (United States)

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture models has brought new insights into the mechanisms underlying the establishment and maintenance of higher-order epithelial tissue architecture, and in the dynamic remodeling of cell polarity that often occurs during development of epithelial organs. Here we discuss some important aspects of mammalian epithelial morphogenesis, from the establishment of cell polarity to epithelial tissue generation. PMID:23378592

  13. Mir-29b Mediates the Neural Tube versus Neural Crest Fate Decision during Embryonic Stem Cell Neural Differentiation.

    Science.gov (United States)

    Xi, Jiajie; Wu, Yukang; Li, Guoping; Ma, Li; Feng, Ke; Guo, Xudong; Jia, Wenwen; Wang, Guiying; Yang, Guang; Li, Ping; Kang, Jiuhong

    2017-08-08

    During gastrulation, the neuroectoderm cells form the neural tube and neural crest. The nervous system contains significantly more microRNAs than other tissues, but the role of microRNAs in controlling the differentiation of neuroectodermal cells into neural tube epithelial (NTE) cells and neural crest cells (NCCs) remains unknown. Using embryonic stem cell (ESC) neural differentiation systems, we found that miR-29b was upregulated in NTE cells and downregulated in NCCs. MiR-29b promoted the differentiation of ESCs into NTE cells and inhibited their differentiation into NCCs. Accordingly, the inhibition of miR-29b significantly inhibited the differentiation of NTE cells. A mechanistic study revealed that miR-29b targets DNA methyltransferase 3a (Dnmt3a) to regulate neural differentiation. Moreover, miR-29b mediated the function of Pou3f1, a critical neural transcription factor. Therefore, our study showed that the Pou3f1-miR-29b-Dnmt3a regulatory axis was active at the initial stage of neural differentiation and regulated the determination of cell fate. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes

    OpenAIRE

    Duan, Franklin F.; Liu, Joy H.; March, John C.

    2015-01-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats f...

  15. Dynamic secrets in communication security

    CERN Document Server

    Xiao, Sheng; Towsley, Donald

    2013-01-01

    Dynamic secrets are constantly generated and updated from messages exchanged between two communication users. When dynamic secrets are used as a complement to existing secure communication systems, a stolen key or password can be quickly and automatically reverted to its secret status without disrupting communication. 'Dynamic Secrets in Communication Security' presents unique security properties and application studies for this technology. Password theft and key theft no longer pose serious security threats when parties frequently use dynamic secrets. This book also illustrates that a dynamic

  16. Androecia in two Clusia species: development, structure and resin secretion.

    Science.gov (United States)

    Sá-Haiad, B; Silva, C P; Paula, R C V; Rocha, J F; Machado, S R

    2015-07-01

    Clusia fluminensis and C. lanceolata are dioecious shrubs having resiniferous flowers with strongly distinct androecia. The aim of this study was to investigate the development and anatomy of their androecia and the ultrastructure, histochemistry and secretory process of their androecium resin glands, examining whether the cellular aspects of resin secretion differed between these two morphologically distinct androecia. Stamens differ, being free in C. fluminensis and clustered in a synandrium in C. lanceolata. Staminode sterility is due to the undifferentiated nature of the anthers in C. lanceolata and degeneration of meiocytes and anther indehiscence in C. fluminensis. Resin is produced in subepidermal cavities and canals with wide lumens. In the secretory stage, epithelial cells present sinuous walls, voluminous nuclei, polymorphic plastids associated with periplastidial reticulum, mitochondria, oil bodies, multivesicular bodies, endoplasmic reticulum and dictyosomes. The resin is released through rupture points on the distal surface of stamens and staminodes, associated with disrupted cavities and canals. Our results show morphological diversity associated with functional similarity. Also, a secretion pattern shared by the two species includes initiation of the secretory process in young floral buds, compartmentalisation of the secretion in pre-anthesis buds and release of secretions at anthesis. Cellular aspects of resin secretion in these species are quite similar, as are the chemical identities of the main components of the floral resins of the genus. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. On Cheating Immune Secret Sharing

    Directory of Open Access Journals (Sweden)

    Josef Pieprzyk

    2004-12-01

    Full Text Available The paper addresses the cheating prevention in secret sharing. We consider secret sharing with binary shares. The secret also is binary. This model allows us to use results and constructions from the well developed theory of cryptographically strong boolean functions. In particular, we prove that for given secret sharing, the average cheating probability over all cheating vectors and all original vectors, i.e., 1/n 2 n ∑ c=1...n ∑ α∈V n ρ c,α, denoted by ρ, satisfies ρ ≥ ½, and the equality holds if and only if ρ c,α satisfies ρ c,α = ½ for every cheating vector δ c and every original vector α. In this case the secret sharing is said to be cheating immune. We further establish a relationship between cheating-immune secret sharing and cryptographic criteria of boolean functions.This enables us to construct cheating-immune secret sharing.

  19. Calcifying epithelial odontogenic tumor.

    Science.gov (United States)

    Pereira, Olavo Hoston Gonçalves; de Carvalho, Laura Priscila Barboza; Lacerda Brasileiro Junior, Vilson; de Figueiredo, Cláudia Roberta Leite Vieira

    2013-01-01

    The calcifying epithelial odontogenic tumor (CEOT) is a rare benign epithelial odontogenic neoplasm of slow growth that is locally aggressive and tends to invade bone and adjacent soft tissue. Here is reported the case of a 21-year-old female patient with a CEOT in the left mandibular posterior region. The computerized tomography in coronal plane revealed a hypodense lesion in the posterior region of the left mandibular body with hyperdense areas inside and was associated with element 37. An incisional biopsy of the lesion was performed and the histopathological analysis revealed the presence of layers of epithelial odontogenic cells that formed prominent intercellular bridges. A large quantity of extracellular, eosinophilic, and amyloid-like material and an occasional formation of concentric calcifications (Liesegang rings) were also found. The histopathological diagnosis was a Pindborg tumor. Resection of the tumor with a safety margin was performed and after 6 months of follow-up there has been no sign of recurrence of the lesion.

  20. Calcifying Epithelial Odontogenic Tumor

    Directory of Open Access Journals (Sweden)

    Olavo Hoston Gonçalves Pereira

    2013-01-01

    Full Text Available The calcifying epithelial odontogenic tumor (CEOT is a rare benign epithelial odontogenic neoplasm of slow growth that is locally aggressive and tends to invade bone and adjacent soft tissue. Here is reported the case of a 21-year-old female patient with a CEOT in the left mandibular posterior region. The computerized tomography in coronal plane revealed a hypodense lesion in the posterior region of the left mandibular body with hyperdense areas inside and was associated with element 37. An incisional biopsy of the lesion was performed and the histopathological analysis revealed the presence of layers of epithelial odontogenic cells that formed prominent intercellular bridges. A large quantity of extracellular, eosinophilic, and amyloid-like material and an occasional formation of concentric calcifications (Liesegang rings were also found. The histopathological diagnosis was a Pindborg tumor. Resection of the tumor with a safety margin was performed and after 6 months of follow-up there has been no sign of recurrence of the lesion.

  1. Prostate secretions from men with chronic pelvic pain syndrome inhibit proinflammatory mediators.

    Science.gov (United States)

    Thumbikat, Praveen; Shahrara, Shiva; Sobkoviak, Rudina; Done, Joseph; Pope, Richard M; Schaeffer, Anthony J

    2010-10-01

    In the past numerous chemokines have been noted in the expressed prostatic secretions of patients with chronic prostatitis/chronic pelvic pain syndrome. We examined the functional effects of chemokines in expressed prostatic secretions of patients with chronic pelvic pain syndrome. We studied the functional effects of expressed prostatic secretions on human monocytes by examining monocyte chemotaxis in response to monocyte chemoattractant protein-1, a major chemoattractant previously identified in chronic prostatitis/chronic pelvic pain syndrome cases. We determined effects on cellular signaling by quantifying intracellular calcium increase in monocytes and nuclear factor-κB activation in normal prostate epithelial cells. Results show that the monocyte chemoattractant protein-1 in expressed prostatic secretions is nonfunctional with an inability to mediate human monocyte chemotaxis, or mediate signaling in monocytes or prostate epithelial cells. This lack of functionality could be extended to other proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, when incubated with expressed prostatic secretions from patients with chronic pelvic pain syndrome. The mechanism underlying this apparent ability to modulate proinflammatory cytokines involves heat labile extracellular proteases that mediate the inhibition of immune and prostate epithelial cell function. These results may have implications for the design of specific diagnostic and therapeutic methods targeted toward the complete resolution of prostate inflammatory insults. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. What do we know about the secretion and degradation of incretin hormones?

    DEFF Research Database (Denmark)

    Deacon, Carolyn F

    2005-01-01

    -1 and GIP secretion indirectly via other mechanisms. Incretin hormone secretion can be modulated neurally, with cholinergic muscarinic, beta-adrenergic and peptidergic (gastrin-releasing peptide, GRP) fibres generally having positive effects, while secretion is restrained by alpha......The incretin hormones, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from endocrine cells located in the intestinal mucosa, and act to enhance meal-induced insulin secretion. GIP and GLP-1 concentrations in the plasma rise rapidly after food...... ingestion, and the presence of unabsorbed nutrients in the intestinal lumen is a strong stimulus for their secretion. Nutrients can stimulate release of both hormones by direct contact with the K-cell (GIP) and L-cell (GLP-1), and this may be the most important signal. However, nutrients also stimulate GLP...

  3. Human amniotic epithelial cells inhibit growth of epithelial ovarian cancer cells via TGF‑β1-mediated cell cycle arrest.

    Science.gov (United States)

    Bu, Shixia; Zhang, Qiuwan; Wang, Qian; Lai, Dongmei

    2017-11-01

    It is reported that human amniotic epithelial cells (hAECs) endow intrinsic antitumor effects on certain kinds of cancer. This research was designed to evaluate whether hAECs endowed potential anticancer properties on epithelial ovarian cancer (EOC) cells in vivo and in vitro, which has not been reported before. In this study, we established a xenografted BALB/c nude mouse model by subcutaneously co-injecting ovarian cancer cell line, SK-OV-3, and hAECs for 28 days. In ex vivo experiments, CCK‑8 cell viability assay, real-time PCR, cell counting assay, cell cycle analysis and immunohistochemistry (IHC) assay were used to detect the effects of hAEC‑secreted factors on the proliferation and cell cycle progression of EOC cells. A cytokine array was conducted to detect anticancer-related cytokines released from hAECs. Human recombinant TGF‑β1 and TGF‑β1 antibody were used to treat EOC cells and analyzed whether TGF‑β1 contributed to the cell cycle arrest. Results from in vivo and ex vivo experiments showed that hAEC-secreted factors and rhTGF‑β1 decreased proliferation of EOC cells and induced G0/G1 cell cycle arrest in cancer cells, which could be partially reversed by excess TGF‑β1 antibody. These data indicate that hAECs endow potential anticancer properties on epithelial ovarian cancer in vivo and in vitro which is partially mediated by hAEC‑secreted TGF‑β1-induced cell cycle arrest. This study suggests a potential application of hAEC‑based therapy against epithelial ovarian cancer.

  4. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  5. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology.

    Science.gov (United States)

    Lasalvia, Maria; Castellani, Stefano; D'Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of TGF-β on ocular surface epithelial cells.

    Science.gov (United States)

    Benito, Maria Jesús; Calder, Virginia; Corrales, Rosa M; García-Vázquez, Carmen; Narayanan, Srihari; Herreras, José M; Stern, Michael E; Calonge, Margarita; Enríquez-de-Salamanca, Amalia

    2013-02-01

    A role for transforming growth factor (TGF)-β in the pathogenesis of some ocular surface diseases has been proposed. We determined if secretion of TGF-β and expression of TGF-β receptors RI, RII, and RIII by human ocular surface epithelial cells were modified under inflammatory conditions. We also determined how these cells responded to TGF-β. A human corneal epithelial (HCE) cell line and a conjunctival epithelial cell line (IOBA-NHC) were exposed to TGF-β1 and -β2 and to proinflammatory cytokines. TGF-β receptor mRNAs were analyzed by real time reverse transcription polymerase chain reaction (RT-PCR) in both cell lines, and in conjunctival, limbal, and corneal epithelial cells from post-mortem human specimens. Expression of TGF-β receptors and pSMAD2/SMAD2 were determined by Western blot and immunofluorescence assays. Secretion of TGF-β isoforms, cytokine/chemokine, and metalloproteinases (MMPs) were analyzed in cell supernatants by immunobead-based assays. Secretory leukocyte proteinase inhibitor (SLPI) secretion was analyzed by enzyme-linked immunosorbent assay. TGF-β isoform and receptor gene expression was determined by RT-PCR in conjunctival epithelium of dry eye (DE) patients and healthy subjects. Our results showed that TGF-β RI expression was down-regulated with IL-4 exposure, whereas TGF-β RII and TGF-β2 were upregulated by TNF-α in HCE cells. TGF-β RIII receptor expression was upregulated in IOBA-NHC cells by TNF-α and IFN-γ. SMAD2 phosphorylation occurred in HCE and IOBA-NHC cells after TGF-β treatment. TGF-β significantly up- and down-regulated secretion of several cytokines/chemokines by both cell lines and MMP by HCE cells. TGF-β2 and TGF-β3 were upregulated and TGF-β RIII mRNA was down-regulated in DE conjunctival epithelium. These results show that TGF-β plays an important role in directing local inflammatory responses in ocular surface epithelial cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  8. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    Science.gov (United States)

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  9. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    Science.gov (United States)

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  10. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  11. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Overman

    Full Text Available Psychological stress is a predisposing factor in the onset and exacerbation of important gastrointestinal diseases including irritable bowel syndrome (IBS and the inflammatory bowel diseases (IBD. The pathophysiology of stress-induced intestinal disturbances is known to be mediated by corticotropin releasing factor (CRF but the precise signaling pathways remain poorly understood. Utilizing a porcine ex vivo intestinal model, the aim of this study was to investigate the mechanisms by which CRF mediates intestinal epithelial barrier disturbances.Ileum was harvested from 6-8 week-old pigs, mounted on Ussing Chambers, and exposed to CRF in the presence or absence of various pharmacologic inhibitors of CRF-mediated signaling pathways. Mucosal-to-serosal flux of 4 kDa-FITC dextran (FD4 and transepithelial electrical resistance (TER were recorded as indices of intestinal epithelial barrier function.Exposure of porcine ileum to 0.05-0.5 µM CRF increased (p<0.05 paracellular flux compared with vehicle controls. CRF treatment had no deleterious effects on ileal TER. The effects of CRF on FD4 flux were inhibited with pre-treatment of tissue with the non-selective CRF(1/2 receptor antagonist Astressin B and the mast cell stabilizer sodium cromolyn (10(-4 M. Furthermore, anti-TNF-α neutralizing antibody (p<0.01, protease inhibitors (p<0.01 and the neural blocker tetrodotoxin (TTX inhibited CRF-mediated intestinal barrier dysfunction.These data demonstrate that CRF triggers increases in intestinal paracellular permeability via mast cell dependent release of TNF-α and proteases. Furthermore, CRF-mast cell signaling pathways and increases in intestinal permeability require critical input from the enteric nervous system. Therefore, blocking the deleterious effects of CRF may address the enteric signaling of mast cell degranulation, TNFα release, and protease secretion, hallmarks of IBS and IBD.

  12. Protecting Trade Secrets in Canada.

    Science.gov (United States)

    Courage, Noel; Calzavara, Janice

    2015-05-18

    Patents in the life sciences industries are a key form of intellectual property (IP), particularly for products such as brand-name drugs and medical devices. However, trade secrets can also be a useful tool for many types of innovations. In appropriate cases, trade secrets can offer long-term protection of IP for a lower financial cost than patenting. This type of protection must be approached with caution as there is little room for error when protecting a trade secret. Strong agreements and scrupulous security can help to protect the secret. Once a trade secret is disclosed to the public, it cannot be restored as the owner's property; however, if the information is kept from the public domain, the owner can have a property right of unlimited duration in the information. In some situations patents and trade secrets may be used cooperatively to protect innovation, particularly for manufacturing processes. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  14. Role of macrophage secretions on rat polycystic ovary: Its effect on apoptosis

    OpenAIRE

    Figueroa, Maria Florencia; Motta, Alicia Beatriz; Acosta, Mariano; Mohamed, Fabian Heber; Oliveros, Liliana Beatriz; Forneris, Myriam Liliana

    2016-01-01

    Polycystic ovarian syndrome is the most common endocrine disorder among women of reproductive age. Little is known about its etiology, although the evidence suggests an intrinsic ovarian abnormality in which endocrine, metabolic, neural and immune factors would be involved. In this work, the effects of macrophage (MO) secretion on ovarian apoptosis in a polycystic ovary syndrome rat model (PCO rat) induced by estradiol valerate are studied. Spleen MO secretions were used to stimulate ovaries ...

  15. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  16. Catecholamine Secretion from Individual Cells

    National Research Council Canada - National Science Library

    Wightman, R

    1998-01-01

    .... Many cells, including neurons, communicate by secretion of chemical substances by exocytosis where substances are extruded into the extracellular space following fusion of the vesicle and plasma membranes...

  17. Secret and research

    Directory of Open Access Journals (Sweden)

    André PETITAT

    2013-12-01

    Full Text Available The postures of secrecy and revelation maintain our common relational dynamics between sharing and not sharing. Science, which has become the dominant form of knowledge, is a rational and empirical knowledge sharing. For this purpose, the knowledge articulates languages, if possible unambiguous, spaces of rational deliberation, technical devices and resources of the imagination. This activity meets other logics called power, prestige, status, profit, customer, blind adherence and revealed truth, in which the postures of secret invite themselves massively. The codes of ethics attempt to regulate this mix of contradictory logics by setting standards of scientific exchanges, recalling the person rights and particularly the subjects observed rights, protecting the working conditions of the researcher, preserving its autonomy from funders and policy makers, and ensuring the dissemination of its results.

  18. Normal morphogenesis of epithelial tissues and progression of epithelial tumors.

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A

    2012-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. Copyright © 2011 John Wiley & Sons, Inc.

  19. Increased Immunostaining of Fibulin-1, an Estrogen-Regulated Protein in the Stroma of Human Ovarian Epithelial Tumors

    OpenAIRE

    Roger, Pascal; Pujol, Pascal; Lucas, Annick; Baldet, Pierre; Rochefort, Henri

    1998-01-01

    Fibulin-1, an extracellular matrix protein, is secreted by human ovarian metastatic cancer cell lines under estrogen stimulation. Fibulin-1 expression was quantified by immunohistochemistry and computer-aided image analysis in 44 human ovarian epithelial tumors and 14 normal ovaries. The fibulin-1 staining intensity in proximal stroma, close to the surface of epithelial cells and tumor cells, progressively increased from normal ovaries to serous carcinomas. In all lesions, excluding cystadeno...

  20. Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium.

    Science.gov (United States)

    Kang, Ju Wan; Lee, Yong Hyuk; Kang, Min Jeong; Lee, Hyun Jae; Oh, Ryung; Min, Hyun Jin; Namkung, Wan; Choi, Jae Young; Lee, Sang Nam; Kim, Chang-Hoon; Yoon, Joo-Heon; Cho, Hyung-Ju

    2017-09-01

    Histamine is an important mediator of allergic reactions, and mucus hypersecretion is a major allergic symptom. However, the direct effect of histamine on mucus secretion from airway mucosal epithelia has not been clearly demonstrated. TMEM16A is a Ca2+-activated chloride channel, and it is closely related to fluid secretion in airway mucosal epithelia. We investigated whether histamine directly induces fluid secretion from epithelial cells or submucosal glands (SMG) and mechanisms related, therewith, in allergic airway diseases. In pig airway tissues from the nose or trachea, histamine was a potent secretagogue that directly induced strong responses. However, gland secretion from human nasal tissue was not induced by histamine, even in allergic rhinitis patients. Histamine type 1 receptor (H1R) and histamine type 2 receptor (H2R) were not noted in SMG by in situ hybridization. Cultured primary human nasal epithelial (NHE) cells were used for the measurement of short-circuit current changes with the Ussing chamber. Histamine-induced slight responses of anion secretions under normal conditions. The response was enhanced by IL-4 stimulation through TMEM16A, which might be related to fluid hypersecretion in allergic rhinitis. Pretreatment with IL-4 augmented the histamine response that was suppressed by a TMEM16A inhibitor. TMEM16A expression was enhanced by 24-h treatment of IL-4 in human nasal epithelial cells. The expression of TMEM16A was significantly elevated in an allergic rhinitis group, compared with a control group. We elucidated histamine-induced fluid secretions in synergy with IL-4 through TMEM16A in the human airway epithelium. In addition, we observed species differences between pigs and humans in terms of gland secretion of histamine. Copyright © 2017 the American Physiological Society.

  1. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates.

    Directory of Open Access Journals (Sweden)

    Jonida Toska

    Full Text Available Pseudomonas aeruginosa is a frequent cause of acute infections. The primary virulence factor that has been linked to clinical disease is the type III secretion system, a molecular syringe that delivers effector proteins directly into host cells. Despite the importance of type III secretion in dictating clinical outcomes and promoting disease in animal models of infections, clinical isolates often do not express the type III secretion system in vitro. Here we screened 81 clinical P. aeruginosa isolates for secretion of type III secretion system substrates by western blot. Non-expressing strains were also subjected to a functional test assaying the ability to intoxicate epithelial cells in vitro, and to survive and cause disease in a murine model of corneal infection. 26 of 81 clinical isolates were found to be type III secretion negative by western blot. 17 of these 26 non-expressing strains were tested for their ability to cause epithelial cell rounding. Of these, three isolates caused epithelial cell rounding in a type III secretion system dependent manner, and one strain was cytotoxic in a T3SS-independent manner. Five T3SS-negative isolates were also tested for their ability to cause disease in a murine model of corneal infection. Of these isolates, two strains caused severe corneal disease in a T3SS-independent manner. Interestingly, one of these strains caused significant disease (inflammation despite being cleared. Our data therefore show that P. aeruginosa clinical isolates can cause disease in a T3SS-independent manner, demonstrating the existence of novel modifiers of clinical disease.

  2. Disruption of epithelial cell migration as a potential mechanism of cleft palate induction

    Science.gov (United States)

    Cleft palate occurs in about one in seven hundred births per year, making it the most prevalent craniofacial birth defect in the world. During embryonic development, tissue fusion is a critical step in the formation of the palate, cornea, urethra, and neural tube. Epithelial cell...

  3. Gut microbiota, epithelial function and derangements in obesity.

    Science.gov (United States)

    Raybould, Helen E

    2012-02-01

    The gut epithelium is a barrier between the 'outside' and 'inside' world. The major function of the epithelium is to absorb nutrients, ions and water, yet it must balance these functions with that of protecting the 'inside' world from potentially harmful toxins, irritants, bacteria and other pathogens that also exist in the gut lumen. The health of an individual depends upon the efficient digestion and absorption of all required nutrients from the diet. This requires sensing of meal components by gut enteroendocrine cells, activation of neural and humoral pathways to regulate gastrointestinal motor, secretory and absorptive functions, and also to regulate food intake and plasma levels of glucose. In this way, there is a balance between the delivery of food and the digestive and absorptive capacity of the intestine. Maintenance of the mucosal barrier likewise requires sensory detection of pathogens, toxins and irritants; breakdown of the epithelial barrier is associated with gut inflammation and may ultimately lead to inflammatory bowel disease. However, disruption of the barrier alone is not sufficient to cause frank inflammatory bowel disease. Several recent studies have provided compelling new evidence to suggest that changes in epithelial barrier function and inflammation are associated with and may even lead to altered regulation of body weight and glucose homeostasis. This article provides a brief review of some recent evidence to support the hypothesis that changes in the gut microbiota and alteration of gut epithelial function will perturb the homeostatic humoral and neural pathways controlling food intake and body weight.

  4. Ovarian enzymatically active stromal cells can be a promoter of ovarian surface epithelial tumor.

    Science.gov (United States)

    Song, Zhangjuan

    2011-09-01

    Surface epithelial tumors (SETs) are the most common neoplasms of the ovary. They are traditionally thought derived from the ovarian surface or, as a recent hypothesis suggests, from various sources outside of ovary. Enzymatically active stromal cells (EASCs) are scattered in stroma of ovary, and characterized by their steroid-producing ability. With my observation of the increased EASCs near the epithelial cells of SETs, I hypothesize the epithelial cells of SETs can cause the increase of EASCs by converse adjacent stromal cells to EASCs; and EASCs, as a positive feedback, can prompt the proliferation of their neighbouring epithelial cells of SETs by secreting steroid hormone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Secret-key certificates (continued)

    NARCIS (Netherlands)

    S.A. Brands (Stefan)

    1995-01-01

    textabstractA new construction is described for designing secret-key certificate schemes based on signature schemes other than of the Fiat-Shamir type. Also described are practical secret-key certificate issuing protocols that enable the Certification Authority to certify public keys, without being

  6. Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN.

    Science.gov (United States)

    Redzic, Jasmina S; Kendrick, Agnieszka A; Bahmed, Karim; Dahl, Kristin D; Pearson, Chad G; Robinson, William A; Robinson, Steven E; Graner, Michael W; Eisenmesser, Elan Z

    2013-01-01

    Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.

  7. Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN.

    Directory of Open Access Journals (Sweden)

    Jasmina S Redzic

    Full Text Available Extracellular vesicles (EVs are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.

  8. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  9. Pheochromocytomas and secreting paragangliomas

    Directory of Open Access Journals (Sweden)

    Gimenez-Roqueplo Anne-Paule

    2006-12-01

    Full Text Available Abstract Catecholamine-producing tumors may arise in the adrenal medulla (pheochromocytomas or in extraadrenal chromaffin cells (secreting paragangliomas. Their prevalence is about 0.1% in patients with hypertension and 4% in patients with a fortuitously discovered adrenal mass. An increase in the production of catecholamines causes symptoms (mainly headaches, palpitations and excess sweating and signs (mainly hypertension, weight loss and diabetes reflecting the effects of epinephrine and norepinephrine on α- and β-adrenergic receptors. Catecholamine-producing tumors mimic paroxysmal conditions with hypertension and/or cardiac rhythm disorders, including panic attacks, in which sympathetic activation linked to anxiety reproduces the same signs and symptoms. These tumors may be sporadic or part of any of several genetic diseases: familial pheochromocytoma-paraganglioma syndromes, multiple endocrine neoplasia type 2, neurofibromatosis 1 and von Hippel-Lindau disease. Familial cases are diagnosed earlier and are more frequently bilateral and recurring than sporadic cases. The most specific and sensitive diagnostic test for the tumor is the determination of plasma or urinary metanephrines. The tumor can be located by computed tomography, magnetic resonance imaging and metaiodobenzylguanidine scintigraphy. Treatment requires resection of the tumor, generally by laparoscopic surgery. About 10% of tumors are malignant either at first operation or during follow-up, malignancy being diagnosed by the presence of lymph node, visceral or bone metastases. Recurrences and malignancy are more frequent in cases with large or extraadrenal tumors. Patients, especially those with familial or extraadrenal tumors, should be followed-up indefinitely.

  10. Crosstalk between epithelial and mesenchymal tissues in tumorigenesis and imaginal disc development.

    Science.gov (United States)

    Herranz, Héctor; Weng, Ruifen; Cohen, Stephen M

    2014-07-07

    Cancers develop in a complex mutational landscape. Interaction of genetically abnormal cancer cells with normal stromal cells can modify the local microenvironment to promote disease progression for some tumor types. Genetic models of tumorigenesis provide the opportunity to explore how combinations of cancer driver mutations confer distinct properties on tumors. Previous Drosophila models of EGFR-driven cancer have focused on epithelial neoplasia. Here, we report a Drosophila genetic model of EGFR-driven tumorigenesis in which the neoplastic transformation depends on interaction between epithelial and mesenchymal cells. We provide evidence that the secreted proteoglycan Perlecan can act as a context-dependent oncogene cooperating with EGFR to promote tumorigenesis. Coexpression of Perlecan in the EGFR-expressing epithelial cells potentiates endogenous Wg/Wnt and Dpp/BMP signals from the epithelial cells to support expansion of a mesenchymal compartment. Wg activity is required in the epithelial compartment, whereas Dpp activity is required in the mesenchymal compartment. This genetically normal mesenchymal compartment is required to support growth and neoplastic transformation of the genetically modified epithelial population. We report a genetic model of tumor formation that depends on crosstalk between a genetically modified epithelial cell population and normal host mesenchymal cells. Tumorigenesis in this model co-opts a regulatory mechanism that is normally involved in controlling growth of the imaginal disc during development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    Science.gov (United States)

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  12. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  13. The Influence of Oral Bacteria on Epithelial Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Alexa M. G. A. Laheij

    2013-01-01

    Full Text Available Oral ulcerations often arise as a side effect from chemo- and radiation therapy. In a previous clinical study, Porphyromonas gingivalis was identified as a positive predictor for oral ulcerations after hematopoetic stem cell transplantation, possibly incriminating P. gingivalis in delayed healing of the ulcerations. Therefore, it was tested whether P. gingivalis and its secreted products could inhibit the migration of oral epithelial cells in an in vitro scratch assay. To compare, the oral bacteria Prevotella nigrescens, Prevotella intermedia, Tannerella forsythia, and Streptococcus mitis were included. A standardized scratch was made in a confluent layer of human oral epithelial cells. The epithelial cells were challenged with bacterial cells and with medium containing secretions of these bacteria. Closure of the scratch was measured after 17 h using a phase contrast microscope. P. gingivalis, P. nigrescens, and secretions of P. gingivalis strongly inhibited cell migration. A challenge with 1000 heat-killed bacteria versus 1 epithelial cell resulted in a relative closure of the scratch of 25% for P. gingivalis and 20% for P. nigrescens. Weaker inhibitory effects were found for the other bacteria. The results confirmed our hypothesis that the oral bacteria may be involved in delayed wound healing.

  14. Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels

    Science.gov (United States)

    Sørensen, Mads V; Sausbier, Matthias; Ruth, Peter; Seidler, Ursula; Riederer, Brigitte; Praetorius, Helle A; Leipziger, Jens

    2010-01-01

    Colonic epithelial K+ secretion is a two-step transport process with initial K+ uptake over the basolateral membrane followed by K+ channel-dependent exit into the lumen. In this process the large-conductance, Ca2+-activated KCa1.1 (BK) channel has been identified as the only apparent secretory K+ channel in the apical membrane of the murine distal colon. The BK channel is responsible for both resting and Ca2+-activated colonic K+ secretion and is up-regulated by aldosterone. Agonists (e.g. adrenaline) that elevate cAMP are potent activators of distal colonic K+ secretion. However, the secretory K+ channel responsible for cAMP-induced K+ secretion remains to be defined. In this study we used the Ussing chamber to identify adrenaline-induced electrogenic K+ secretion. We found that the adrenaline-induced electrogenic ion secretion is a compound effect dominated by anion secretion and a smaller electrically opposing K+ secretion. Using tissue from (i) BK wildtype (BK+/+) and knockout (BK−/−) and (ii) cystic fibrosis transmembrane regulator (CFTR) wildtype (CFTR+/+) and knockout (CFTR−/−) mice we were able to isolate the adrenaline-induced K+ secretion. We found that adrenaline-induced K+ secretion: (1) is absent in colonic epithelia from BK−/− mice, (2) is greatly up-regulated in mice on a high K+ diet and (3) is present as sustained positive current in colonic epithelia from CFTR−/− mice. We identified two known C-terminal BK α-subunit splice variants in colonic enterocytes (STREX and ZERO). Importantly, the ZERO variant known to be activated by cAMP is differentially up-regulated in enterocytes from animals on a high K+ diet. In summary, these results strongly suggest that the adrenaline-induced distal colonic K+ secretion is mediated by the BK channel and probably involves aldosterone-induced ZERO splice variant up-regulation. PMID:20351045

  15. Engineering human renal epithelial cells for transplantation in regenerative medicine.

    Science.gov (United States)

    Manzoli, Vita; Colter, David C; Dhanaraj, Sridevi; Fornoni, Alessia; Ricordi, Camillo; Pileggi, Antonello; Tomei, Alice A

    2017-10-01

    Cellular transplantation may treat several human diseases by replacing damaged cells and/or providing a local source of trophic factors promoting regeneration. We utilized human renal epithelial cells (hRECs) isolated from cadaveric donors as a cell model. For efficacious implementation of hRECs for treatment of kidney diseases, we evaluated a novel encapsulation strategy for immunoisolation of hRECs and lentiviral transduction of the Green Fluorescent Protein (GFP) as model gene for genetic engineering of hRECs to secrete desired trophic factors. In specific, we determined whether encapsulation through conformal coating and/or GFP transduction of hRECs allowed preservation of cell viability and of their trophic factor secretion. To that end, we optimized cultures of hRECs and showed that aggregation in three-dimensional spheroids significantly preserved cell viability, proliferation, and trophic factor secretion. We also showed that both wild type and GFP-engineered hRECs could be efficiently encapsulated within conformal hydrogel coatings through our fluid dynamic platform and that this resulted in further improvement of cell viability and trophic factors secretion. Our findings may lay the groundwork for future therapeutics based on transplantation of genetically engineered human primary cells for treatment of diseases affecting kidneys and potentially other tissues. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yasukawa

    Full Text Available Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  17. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells.

    Science.gov (United States)

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; West, Alina Nico; Makena, Patrudu; Gorantla, Vijay; Sinclair, Scott E; Waters, Christopher M

    2012-01-01

    Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K(+) channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this study we hypothesized that hyperoxia affects expression of Trek-1 in alveolar epithelial cells and that Trek-1 is involved in regulation of cell proliferation and cytokine secretion. We found gene expression of several K2P channels in mouse alveolar epithelial cells (MLE-12), and expression of Trek-1 was significantly downregulated in cultured cells and lungs of mice exposed to hyperoxia. Similarly, proliferation cell nuclear antigen (PCNA) and Cyclin D1 expression were downregulated by exposure to hyperoxia. We developed an MLE-12 cell line deficient in Trek-1 expression using shRNA and found that Trek-1 deficiency resulted in increased cell proliferation and upregulation of PCNA but not Cyclin D1. Furthermore, IL-6 and regulated on activation normal T-expressed and presumably secreted (RANTES) secretion was decreased in Trek-1-deficient cells, whereas release of monocyte chemoattractant protein-1 was increased. Release of KC/IL-8 was not affected by Trek-1 deficiency. Overall, deficiency of Trek-1 had a more pronounced effect on mediator secretion than exposure to hyperoxia. This is the first report suggesting that the K(+) channel Trek-1 could be involved in regulation of alveolar epithelial cell proliferation and cytokine secretion, but a direct association with hyperoxia-induced changes in Trek-1 levels remains elusive.

  18. Neural crest specification: tissues, signals, and transcription factors.

    Science.gov (United States)

    Rogers, C D; Jayasena, C S; Nie, S; Bronner, M E

    2012-01-01

    The neural crest is a transient population of multipotent and migratory cells unique to vertebrate embryos. Initially derived from the borders of the neural plate, these cells undergo an epithelial to mesenchymal transition to leave the central nervous system, migrate extensively in the periphery, and differentiate into numerous diverse derivatives. These include but are not limited to craniofacial cartilage, pigment cells, and peripheral neurons and glia. Attractive for their similarities to stem cells and metastatic cancer cells, neural crest cells are a popular model system for studying cell/tissue interactions and signaling factors that influence cell fate decisions and lineage transitions. In this review, we discuss the mechanisms required for neural crest formation in various vertebrate species, focusing on the importance of signaling factors from adjacent tissues and conserved gene regulatory interactions, which are required for induction and specification of the ectodermal tissue that will become neural crest. Copyright © 2011 Wiley Periodicals, Inc.

  19. Oral epithelial dysplasia classification systems

    DEFF Research Database (Denmark)

    Warnakulasuriya, S; Reibel, J; Bouquot, J

    2008-01-01

    At a workshop coordinated by the WHO Collaborating Centre for Oral Cancer and Precancer in the United Kingdom issues related to potentially malignant disorders of the oral cavity were discussed by an expert group. The consensus views of the Working Group are presented in a series of papers....... In this report, we review the oral epithelial dysplasia classification systems. The three classification schemes [oral epithelial dysplasia scoring system, squamous intraepithelial neoplasia and Ljubljana classification] were presented and the Working Group recommended epithelial dysplasia grading for routine...... use. Although most oral pathologists possibly recognize and accept the criteria for grading epithelial dysplasia, firstly based on architectural features and then of cytology, there is great variability in their interpretation of the presence, degree and significance of the individual criteria...

  20. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  1. Adrenal gland hormone secretion (image)

    Science.gov (United States)

    The adrenal gland secretes steroid hormones such as cortisol and aldosterone. It also makes precursors that can be converted ... steroids (androgen, estrogen). A different part of the adrenal gland makes adrenaline (epinephrine). When the glands produce ...

  2. VICTORIA'S SECRET Prepares for Growth

    National Research Council Canada - National Science Library

    Jordan K Speer

    2007-01-01

      After the upcoming holiday season, Victoria's Secret will take the first steps toward launching its e-commerce business on a cross-channel on-demand platform from partner n2N Commerce, a company...

  3. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  4. Leptin regulates gallbladder genes related to absorption and secretion.

    Science.gov (United States)

    Swartz-Basile, Deborah A; Lu, Debao; Basile, David P; Graewin, Shannon J; Al-Azzawi, Hayder; Kiely, James M; Mathur, Abhishek; Yancey, Kyle; Pitt, Henry A

    2007-07-01

    Dysregulation of gallbladder ion and water absorption and/or secretion has been linked to cholesterol crystal and gallstone formation. We have recently demonstrated that obese, leptin-deficient (Lep(ob)) mice have enlarged gallbladder volumes and decreased gallbladder contractility and that leptin administration to these mice normalizes gallbladder function. However, the effect of leptin on gallbladder absorption/secretion is not known. Therefore, we sought to determine whether leptin would alter the expression of genes involved in water and ion transport across the gallbladder epithelium. Affymetrix oligonucleotide microarrays representing 39,000 transcripts were used to compare gallbladder gene-expression profiles from 12-wk-old control saline-treated Lep(ob) and from leptin-treated Lep(ob) female mice. Leptin administration to Lep(ob) mice decreased gallbladder volume, bile sodium concentration, and pH. Leptin repletion upregulated the expression of aquaporin 1 water channel by 1.3-fold and downregulated aquaporin 4 by 2.3-fold. A number of genes involved in sodium transport were also influenced by leptin replacement. Epithelial sodium channel-alpha and sodium hydrogen exchangers 1 and 3 were moderately downregulated by 2.0-, 1.6-, and 1.3-fold, respectively. Carbonic anhydrase-IV, which plays a role in the acidification of bile, was upregulated 3.7-fold. In addition, a number of inflammatory cytokines that are known to influence gallbladder epithelial cell absorption and secretion were upregulated. Thus leptin, an adipocyte-derived cytokine involved with satiety and energy balance, influences gallbladder bile volume, sodium, and pH as well as multiple inflammatory cytokine genes and genes related to water, sodium, chloride, and bicarbonate transport.

  5. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  6. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  7. A secreted antibacterial neuropeptide shapes the microbiome of Hydra.

    Science.gov (United States)

    Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G

    2017-09-26

    Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.

  8. [Neural repair].

    Science.gov (United States)

    Kitada, Masaaki; Dezawa, Mari

    2008-05-01

    Recent progress of stem cell biology gives us the hope for neural repair. We have established methods to specifically induce functional Schwann cells and neurons from bone marrow stromal cells (MSCs). The effectiveness of these induced cells was evaluated by grafting them either into peripheral nerve injury, spinal cord injury, or Parkinson' s disease animal models. MSCs-derived Schwann cells supported axonal regeneration and re-constructed myelin to facilitate the functional recovery in peripheral and spinal cord injury. MSCs-derived dopaminergic neurons integrated into host striatum and contributed to behavioral repair. In this review, we introduce the differentiation potential of MSCs and finally discuss about their benefits and drawbacks of these induction systems for cell-based therapy in neuro-traumatic and neuro-degenerative diseases.

  9. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    Directory of Open Access Journals (Sweden)

    Asma Yaghi

    2016-11-01

    Full Text Available Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.

  10. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  11. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    Full Text Available BACKGROUND: The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. PRINCIPAL FINDINGS: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. CONCLUSION: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  12. Enteric glial cells and their role in the intestinal epithelial barrier.

    Science.gov (United States)

    Yu, Yan-Bo; Li, Yan-Qing

    2014-08-28

    The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population of astrocyte-like cells that are known as enteric glia. The morphological characteristics and expression markers of these enteric glia cells were identical to the astrocytes of the central nervous system. In the past few years, enteric glia have been demonstrated to have a trophic and supporting relationship with intestinal epithelial cells. Enteric glia lesions and/or functional defects can be involved in the barrier dysfunction. Besides, factors secreted by enteric glia are important for the regulation of gut barrier function. Moreover, enteric glia have an important impact on epithelial cell transcriptome and induce a shift in epithelial cell phenotype towards increased cell adhesion and cell differentiation. Enteric glia can also preserve epithelial barrier against intestinal bacteria insult. In this review, we will describe the current body of evidence supporting functional roles of enteric glia on intestinal barrier.

  13. Autotaxin induces lung epithelial cell migration through lysoPLD activity-dependent and -independent pathways

    Science.gov (United States)

    Zhao, Jing; He, Donghong; Berdyshev, Evgeny; Zhong, Mintao; Salgia, Ravi; Morris, Andrew J.; Smyth, Susan S.; Natarajan, Viswanathan; Zhao, Yutong

    2013-01-01

    SYNOPSIS Lung cell migration is a crucial step for re-epithelialization that in turn is essential for remodeling and repair after lung injury. We hypothesize that secreted autotaxin (ATX), which exhibits lysophospholipase D (lysoPLD) activity, stimulates lung epithelial cell migration through lysophosphatidic acid (LPA) generation-dependent and -independent pathways. Release of endogenous ATX protein and activity was detected in lung epithelial cell culture medium. ATX with V5 tag (ATX-V5) overexpressed conditional medium had higher LPA levels compared to control medium and stimulated cell migration through Gαi-coupled LPA receptors, cytoskeleton rearrangement, phosphorylation of PKCδ and cortactin at the leading edge of migrating cells. Inhibition of PKCδ attenuated ATX-V5 overexpressed conditional medium-mediated phosphorylation of cortactin. In addition, a recombinant ATX mutant, lacking lysoPLD activity, or heat-inactived ATX also induced lung epithelial cell migration. Extracelluar ATX bound to LPA receptor and integrin β4 complex on A549 cell surface. Finally, intratracheal administration of lipopolysaccharide into mouse airway induced ATX release and LPA production in bronchoalveolar lavage fluid. These results suggested a significant role for ATX in lung epithelial cell migration and remodeling through its ability to induce LPA production-mediated phosphorylation of PKCδ and cortactin. In addition we also demonstrated assocation of ATX with epithelial cell surface LPA receptor and integrin β4. PMID:21696367

  14. Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells.

    Science.gov (United States)

    Murai, Hiroki; Okazaki, Shintaro; Hayashi, Hisako; Kawakita, Akiko; Hosoki, Koa; Yasutomi, Motoko; Sur, Sanjiv; Ohshima, Yusei

    2015-09-04

    Alternaria alternata is a major outdoor allergen that causes allergic airway diseases. Alternaria extract (ALT-E) has been shown to induce airway epithelial cells to release IL-18 and thereby initiate Th2-type responses. We investigated the underlying mechanisms involved in IL-18 release from ALT-E-stimulated airway epithelial cells. Normal human bronchial epithelial cells and A549 human lung adenocarcinoma cells were stimulated with ALT-E in the presence of different inhibitors of autophagy or caspases. IL-18 levels in culture supernatants were measured by ELISA. The numbers of autophagosomes, an LC3-I to LC3-II conversion, and p62 degradation were determined by immunofluorescence staining and immunoblotting. 3-methyladenine and bafilomycin, which inhibit the formation of preautophagosomal structures and autolysosomes, respectively, suppressed ALT-E-induced IL-18 release by cells, whereas caspase 1 and 8 inhibitors did not. ALT-E-stimulation increased autophagosome formation, LC-3 conversion, and p62 degradation in airway epithelial cells. LPS-stimulation induced the LC3 conversion in A549 cells, but did not induce IL-18 release or p62 degradation. Unlike LPS, ALT-E induced airway epithelial cells to release IL-18 via an autophagy dependent, caspase 1 and 8 independent pathway. Although autophagy has been shown to negatively regulate canonical inflammasome activity in TLR-stimulated macrophages, our data indicates that this process is an unconventional mechanism of IL-18 secretion by airway epithelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration.

    Science.gov (United States)

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-10-13

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway.

  16. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.

    Science.gov (United States)

    Pickert, Geethanjali; Neufert, Clemens; Leppkes, Moritz; Zheng, Yan; Wittkopf, Nadine; Warntjen, Moritz; Lehr, Hans-Anton; Hirth, Sebastian; Weigmann, Benno; Wirtz, Stefan; Ouyang, Wenjun; Neurath, Markus F; Becker, Christoph

    2009-07-06

    Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

  17. Campylobacter jejuni infection suppressed Cl⁻ secretion induced by CFTR activation in T-84 cells.

    Science.gov (United States)

    Negoro, Sachie; Shimohata, Takaaki; Hatayama, Syo; Sato, Yuri; Matsumoto, Mari; Iba, Hitomi; Aihara, Mutsumi; Uebanso, Takashi; Hamada, Yasuhiro; Nishikawa, Yoshikazu; Yamasaki, Shinji; Mawatari, Kazuaki; Takahashi, Akira

    2014-11-01

    Campylobacter jejuni causes foodborne disease associated with abdominal pain, gastroenteritis, and diarrhea. These symptoms are induced by bacterial adherence and invasion of host epithelial cells. C. jejuni infection can occur with a low infective dose, suggesting that C. jejuni may have evolved strategies to cope with the bacterial clearance system in the gastrointestinal tract. The mucosa layer is the first line of defense against bacteria. Mucus conditions are maintained by water and anion (especially Cl(-)) movement. Cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl(-) channel transporting Cl(-) to the lumen. Mutations in CFTR result in dehydrated secreted mucus and bacterial accumulation in the lungs, and recent studies suggest that closely related pathogenic bacteria also may survive in the intestine. However, the relationship between C. jejuni infection and CFTR has been little studied. Here, we used an (125)I(-) efflux assay and measurement of short-circuit current to measure Cl(-) secretion in C. jejuni-infected T-84 human intestinal epithelial cells. The basic state of Cl(-) secretion was unchanged by C. jejuni infection, but CFTR activator was observed to induce Cl(-) secretion suppressed in C. jejuni-infected T-84 cells. The suppression of activated Cl(-) secretion was bacterial dose-dependent and duration-dependent. A similar result was observed during infection with other C. jejuni strains. The mechanism of suppression may occur by affecting water movement or mucus condition in the intestinal tract. A failure of mucus barrier function may promote bacterial adhesion or invasion of host intestinal epithelial cells, thereby causing bacterial preservation in the host intestinal tract. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice.

    Science.gov (United States)

    Giordano, Antonio; Perugini, Jessica; Kristensen, David M; Sartini, Loris; Frontini, Andrea; Kajimura, Shingo; Kristiansen, Karsten; Cinti, Saverio

    2017-11-01

    During pregnancy and lactation, subcutaneous white adipocytes in the mouse mammary gland transdifferentiate reversibly to milk-secreting epithelial cells. In this study, we demonstrate by transmission electron microscopy that in the post-lactating mammary gland interscapular multilocular adipocytes found close to the mammary alveoli contain milk protein granules. Use of the Cre-loxP recombination system allowed showing that the involuting mammary gland of whey acidic protein-Cre/R26R mice, whose secretory alveolar cells express the lacZ gene during pregnancy, contains some X-Gal-stained and uncoupling protein 1-positive interscapular multilocular adipocytes. These data suggest that during mammary gland involution some milk-secreting epithelial cells in the anterior subcutaneous depot may transdifferentiate to brown adipocytes, highlighting a hitherto unappreciated feature of mouse adipose organ plasticity. © 2017 Wiley Periodicals, Inc.

  19. Boston keratoprosthesis in epithelial downgrowth

    Science.gov (United States)

    Sa-ngiampornpanit, Tarinee; Thiagalingam, Sureka; Dohlman, Claes H.

    2009-01-01

    Introduction To report a case of histologically proven epithelial downgrowth after multiple failed penetrating keratoplasties and glaucoma filtering surgeries that was successfully treated with Boston keratoprosthesis implantation. Materials and Methods A 61-year-old monocular patient had severe congenital ocular syphilis with secondary glaucoma. He had undergone many intraocular surgeries with a history of epithelial downgrowth, and he presented with a failed graft after 7 penetrating keratoplasties. Implantation of a corneal graft with an aphakic type of Boston keratoprosthesis was performed, combined with anterior vitrectomy. The main outcome measures were visual acuity, ocular inflammation and media clarity. Results Media clarity was restored and revealed severe retinal scarring and a pale optic nerve. Best corrected visual acuity of 20/400 was maintained without any further surgical intervention during 6 years follow up. No retroprosthesis membrane or epithelial growth behind the keratoprosthesis was observed. Discussion This is, to our knowledge, the first case of long-term successful treatment of epithelial downgrowth with a Boston keratoprosthesis. This approach might be considered a suitable treatment of epithelial downgrowth. PMID:29276452

  20. Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB)

    DEFF Research Database (Denmark)

    van der Post, Sjoerd; Subramani, Durai B; Bäckström, Malin

    2013-01-01

    The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there ar......The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether...

  1. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    Directory of Open Access Journals (Sweden)

    Paige Snider

    2007-01-01

    secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.

  2. Of Plants, and Other Secrets

    Directory of Open Access Journals (Sweden)

    Michael Marder

    2012-12-01

    Full Text Available In this article, I inquire into the reasons for the all-too-frequent association of plants and secrets. Among various hypotheses explaining this connection from the standpoint of plant morphology and physiology, the one that stands out is the idea that plants are not only objects in the natural environment, but also subjects with a peculiar mode of accessing the world. The core of the “plant enigma” is, therefore, onto-phenomenological. Positively understood, the secret of their subjectivity leaves just enough space for the self-expression and the self-interpretation of vegetal life.

  3. Flagellar activation of epithelial signaling.

    Science.gov (United States)

    Prince, Alice

    2006-05-01

    Mucosal epithelial cells are an important component of the innate immune system forming a physical and immunologic barrier to inhaled bacteria. As polarized cells with tight junctions, the immunologic signaling functions of airway epithelial cells differ from those of professional immune cells. While many bacterial gene products activate airway mucosal cells, flagella are especially immunostimulatory. The motility function provided by flagella is essential for the initial stages of respiratory infection associated with opportunists such as Pseudomonas aeruginosa. Apically presented toll-like receptor 5 responds specifically to bacterial flagellin transducing a number of epithelial proinflammatory signaling cascades, including the induction of Ca2+ fluxes; activation of NF-kappaB, IL-8, and matrilysin; and mucin expression. The complexities of flagella and flagellin structures, how these bacterial components initiate host signaling and their potential as a vaccine target are reviewed.

  4. H. pylori acutely inhibits gastric secretion by activating CGRP sensory neurons coupled to stimulation of somatostatin and inhibition of histamine secretion.

    Science.gov (United States)

    Zaki, Muhammad; Coudron, Philip E; McCuen, Robert W; Harrington, Leslie; Chu, Shijian; Schubert, Mitchell L

    2013-04-15

    Acute Helicobacter pylori infection produces hypochlorhydria. The decrease in acid facilitates survival of the bacterium and its colonization of the stomach. The present study was designed to identify the pathways in oxyntic mucosa by which acute H. pylori infection inhibits acid secretion. In rat fundic sheets in an Ussing chamber, perfusion of the luminal surface with H. pylori in spent broth (10(3)-10(8) cfu/ml) or spent broth alone (1:10(5) to 1:10(0) final dilution) caused a concentration-dependent increase in somatostatin (SST; maximal: 200 ± 20 and 194 ± 9% above basal; P < 0.001) and decrease in histamine secretion (maximal: 45 ± 5 and 48 ± 2% below basal; P < 0.001); the latter was abolished by SST antibody, implying that changes in histamine secretion reflected changes in SST secretion. Both responses were abolished by the axonal blocker tetrodotoxin (TTX), the sensory neurotoxin capsaicin, or the CGRP antagonist CGRP8-37, implying that the reciprocal changes in SST and histamine secretion were due to release of CGRP from sensory neurons. In isolated rabbit oxyntic glands, H. pylori inhibited basal and histamine-stimulated acid secretion in a concentration-dependent manner; the responses were not affected by TTX or SST antibody, implying that H. pylori can directly inhibit parietal cell function. In conclusion, acute administration of H. pylori is capable of inhibiting acid secretion directly as well as indirectly by activating intramural CGRP sensory neurons coupled to stimulation of SST and inhibition of histamine secretion. Activation of neural pathways provides one explanation as to how initial patchy colonization of the superficial gastric mucosa by H. pylori can acutely inhibit acid secretion.

  5. Tracheobronchial epithelium of the sheep: IV. Lectin histochemical characterization of secretory epithelial cells.

    Science.gov (United States)

    Mariassy, A T; Plopper, C G; St George, J A; Wilson, D W

    1988-09-01

    Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins--DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus)--for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of less than 10% of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions.

  6. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    2010-02-01

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  7. Polarization Affects Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria

    2015-01-01

    Airway epithelial cells (AECs) form polarized barriers that interact with inhaled allergens and are involved in immune homeostasis. We examined how monocyte-derived dendritic cells (MDDCs) are affected by contact with the airway epithelium. In traditional setups, bronchial epithelial cell lines...... were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs...... to sample allergens administered to the apical side. Allergen uptake depended on both polarization and the nature of the allergen. AEC conditioning led to decreased birch allergen-specific proliferation of autologous T cells and a trend toward decreased secretion of the Th2-specific cytokines IL-5 and IL-13...

  8. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  9. Modulation of epithelial sodium channel in human alveolar epithelial ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of lipoxin A4 (LXA4) on the expressions of protein and mRNA of alveolar epithelial sodium channel (ENaC) in normal and lipopolysaccharide (LPS)-stimulated A549 cells. Methods: A549 cell-lines were randomized into 11 groups (N = 8) and treated. EnaC level was evaluated by Western ...

  10. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Winnie Y. Zou

    2018-01-01

    Full Text Available Intestinal stem cells (ISCs maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.

  11. Colleters in Rubiaceae from forest and savanna: the link between secretion and environment

    Science.gov (United States)

    Tresmondi, Fernanda; Canaveze, Yve; Guimarães, Elza; Machado, Silvia Rodrigues

    2017-04-01

    This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.

  12. Histaminergic regulation of prolactin secretion

    DEFF Research Database (Denmark)

    Knigge, U P

    1990-01-01

    Histamine (HA), which acts as a neurotransmitter in the central nervous system, participates in the neuroendocrine regulation of prolactin (PRL) secretion. HA has a predominant stimulatory effect which is mediated via H2-receptors following central administration and via H1-receptors following...

  13. Raspberry Pi for secret agents

    CERN Document Server

    Sjogelid, Stefan

    2015-01-01

    This book is an easy-to-follow guide with practical examples in each chapter. Suitable for the novice and expert alike, each topic provides a fast and easy way to get started with exciting applications and also guides you through setting up the Raspberry Pi as a secret agent toolbox.

  14. Evidence That Endogenous Somatostatin Inhibits Episodic, but Not Surge, Secretion of LH in Female Sheep.

    Science.gov (United States)

    McCosh, Richard B; Szeligo, Brett M; Bedenbaugh, Michelle N; Lopez, Justin A; Hardy, Steven L; Hileman, Stanley M; Lehman, Michael N; Goodman, Robert L

    2017-06-01

    Two modes of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion are necessary for female fertility: surge and episodic secretion. However, the neural systems that regulate these GnRH secretion patterns are still under investigation. The neuropeptide somatostatin (SST) inhibits episodic LH secretion in humans and sheep, and several lines of evidence suggest SST may regulate secretion during the LH surge. In this study, we examined whether SST alters the LH surge in ewes by administering a SST receptor (SSTR) 2 agonist (octreotide) or antagonist [CYN154806 (CYN)] into the third ventricle during an estrogen-induced LH surge and whether endogenous SST alters episodic LH secretion. Neither octreotide nor CYN altered the amplitude or timing of the LH surge. Administration of CYN to intact ewes during the breeding season or anestrus increased LH secretion and increased c-Fos in a subset GnRH and kisspeptin cells during anestrus. To determine if these stimulatory effects are steroid dependent or independent, we administered CYN to ovariectomized ewes. This SSTR2 antagonist increased LH pulse frequency in ovariectomized ewes during anestrus but not during the breeding season. This study provides evidence that endogenous SST contributes to the control of LH secretion. The results demonstrate that SST, acting through SSTR2, inhibits episodic LH secretion, likely acting in the mediobasal hypothalamus, but action at this receptor does not alter surge secretion. Additionally, these data provide evidence that SST contributes to the steroid-independent suppression of LH pulse frequency during anestrus. Copyright © 2017 Endocrine Society.

  15. Computational modeling of epithelial tissues.

    Science.gov (United States)

    Smallwood, Rod

    2009-01-01

    There is an extensive literature on the computational modeling of epithelial tissues at all levels from subcellular to whole tissue. This review concentrates on behavior at the individual cell to whole tissue level, and particularly on organizational aspects, and provides an indication of where information from other areas, such as the modeling of angiogenesis, is relevant. The skin, and the lining of all of the body cavities (lung, gut, cervix, bladder etc) are epithelial tissues, which in a topological sense are the boundary between inside and outside the body. They are thin sheets of cells (usually of the order of 0.5 mm thick) without extracellular matrix, have a relatively simple structure, and contain few types of cells. They have important barrier, secretory and transport functions, which are essential for the maintenance of life, so homeostasis and wound healing are important aspects of the behavior of epithelial tissues. Carcinomas originate in epithelial tissues.There are essentially two approaches to modeling tissues--to start at the level of the tissue (i.e., a length scale of the order of 1 mm) and develop generalized equations for behavior (a continuum approach); or to start at the level of the cell (i.e., a length scale of the order of 10 µm) and develop tissue behavior as an emergent property of cellular behavior (an individual-based approach). As will be seen, these are not mutually exclusive approaches, and they come in a variety of flavors.

  16. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores.

    Directory of Open Access Journals (Sweden)

    Yunxiang Zhu

    Full Text Available Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS. In human bronchial epithelial cell cultures (HBECCs, maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h, to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5-2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist

  17. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  18. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  19. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve.

    Directory of Open Access Journals (Sweden)

    Jia-Xin Xie

    Full Text Available Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs with basic fibroblast growth factor (bFGF gene, preliminarily investigating its effect on transected optic nerve.A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs were observed and counted by employing biotin dextran amine (BDA and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43 within the injury site was examined with immunohistochemical staining.The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group.AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.

  20. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC-1 epithelial cells.

    Science.gov (United States)

    Mukura, Lucy Rudo; Hickey, Danica K; Rodriguez-Garcia, Marta; Fahey, John V; Wira, Charles R

    2017-12-01

    Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection worldwide and known to increase the risk for HIV acquisition. Few studies have investigated how infection of epithelial cells compromises barrier integrity and antimicrobial response. ECC-1 cells, a human uterine epithelial cell line, were treated with live and heat-killed C. trachomatis. Epithelial barrier integrity measured as transepithelial resistance (TER), chemokines antimicrobial levels, and antimicrobial mRNA expression was measured by ELISA and Real-time RT-PCR. Epithelial barrier integrity was compromised when cells were infected with live, but not with heat-killed, C. trachomatis. IL-8 secretion by ECC-1 cells increased in response to live and heat-killed C. trachomatis, while MCP-1, HBD2 and trappin2/elafin secretion decreased with live C. trachomatis. Live C. trachomatis suppresses ECC-1 innate immune responses by compromising the barrier integrity, inhibiting secretion of MCP-1, HBD2, and trappin-2/elafin. Differential responses between live and heat-killed Chlamydia indicate which immune responses are dependent on ECC-1 infection rather than the extracellular presence of Chlamydia. © 2017 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.

  1. Stimulation of incretin secreting cells.

    Science.gov (United States)

    Pais, Ramona; Gribble, Fiona M; Reimann, Frank

    2016-02-01

    The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system through transporters and G-protein coupled receptors (GPCRs) present on their surface to ultimately culminate in hormone release. Some of the molecules described below such as sodium coupled glucose transporter 1 (SGLT1), G-protein coupled receptor (GPR) 119 and GPR40 are targets of novel therapeutics designed to enhance endogenous gut hormone release. Synthetic ligands at these receptors aimed at treating obesity and type 2 diabetes are currently under investigation.

  2. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage

    OpenAIRE

    Jackson, Steven A.; Zachariah P.G. Olufs; Tran, Khoa A.; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-01-01

    Summary During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expres...

  3. [Insulin secretion: mechanisms of regulation].

    Science.gov (United States)

    Radosavljević, Tatjana; Todorović, Vera; Sikić, Branka

    2004-01-01

    REGULATION OF INSULIN SECRETION: Beta cells are unique endocrine cells. They respond positively, in terms of insulin secretion, not only to changes in the extracellular glucose concentration, but also to activators of the phospholipase C (cholecystokinin or acetylcholine), and to activators of adenylate cyclase (glucagon, glucagon-like peptide-1, or gastric inhibitory polypeptide). Major messengers which mediate glucose action for insulin release are Ca2+, adenosine triphosphate (ATP) and diacylglycerol (DAG). MAJOR PATHWAYS OF INSULIN RELEASE STIMULATION: There are four major pathways involved in stimulation of insulin release. The first pathway is KATP channel-dependent pathway in which increased blood glucose concentrations and increased b-cell metabolism result in a change in intracellular ATP/ADP ratio. This is a contributory factor in closure of ATP-dependent K+ channels, depolarization of b-cell membrane, in increased voltage-dependent L-type Ca2+ channel activity. Increased Ca2+ influx results in increased intracellular Ca2+ and stimulated insulin release. KATP channel-independent pathway augments Ca(2+) -stimulated insulin secretion of KATP channel-dependent pathway. Major potentiation of release results from hormonal and peptidergic activation of receptors linked to adenylyl cyclase. Adenylyl cyclase activity is stimulated by hormones such as vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), and so on. These hormones, acting via G protein, stimulate adenylyl cyclase, thus causing a rise in cyclic adenosine monophosphate (cAMP) and activation of protein kinase A (PKA). Increased activity of PKA results in potentiation of insulin secretion.

  4. Partager ses secrets en public

    OpenAIRE

    Merzeau, Louise

    2013-01-01

    National audience; We can be tempted to interpret the evolution of the Web and especially of social networks as a victory of an ideology of visibility, denying the right to withhold, withdraw and disconnect. Does this dictatorship of transparency, which is threatening even State secrets, means the end opacities, gray areas and moving frontiers between what is shown et whant is hidden ? We want to show that the digital environment is characterized instead by a regime of ambivalent visibility, ...

  5. Sec-mediated secretion by Coxiella burnetii

    Science.gov (United States)

    2013-01-01

    Background Coxiella burnetii is a Gram-negative intracellular bacterial pathogen that replicates within a phagolysosome-like parasitophorous vacuole (PV) of macrophages. PV formation requires delivery of effector proteins directly into the host cell cytoplasm by a type IVB secretion system. However, additional secretion systems are likely responsible for modification of the PV lumen microenvironment that promote pathogen replication. Results To assess the potential of C. burnetii to secrete proteins into the PV, we analyzed the protein content of modified acidified citrate cysteine medium for the presence of C. burnetii proteins following axenic (host cell-free) growth. Mass spectrometry generated a list of 105 C. burnetii proteins that could be secreted. Based on bioinformatic analysis, 55 proteins were selected for further study by expressing them in C. burnetii with a C-terminal 3xFLAG-tag. Secretion of 27 proteins by C. burnetii transformants was confirmed by immunoblotting culture supernatants. Tagged proteins expressed by C. burnetii transformants were also found in the soluble fraction of infected Vero cells, indicating secretion occurs ex vivo. All secreted proteins contained a signal sequence, and deletion of this sequence from selected proteins abolished secretion. These data indicate protein secretion initially requires translocation across the inner-membrane into the periplasm via the activity of the Sec translocase. Conclusions C. burnetii secretes multiple proteins, in vitro and ex vivo, in a Sec-dependent manner. Possible roles for secreted proteins and secretion mechanisms are discussed. PMID:24093460

  6. Culture of airway epithelial cells from neonates sampled within 48-hours of birth.

    Directory of Open Access Journals (Sweden)

    David Miller

    Full Text Available Little is known about how neonatal airway epithelial cell phenotype impacts on respiratory disease in later life. This study aimed to establish a methodology to culture and characterise neonatal nasal epithelial cells sampled from healthy, non-sedated infants within 48 hours of delivery.Nasal epithelial cells were sampled by brushing both nostrils with an interdental brush, grown to confluence and sub-cultured. Cultured cells were characterised morphologically by light and electron microscopy and by immunocytochemistry. As an exemplar pro-inflammatory chemokine, IL-8 concentrations were measured in supernatants from unstimulated monolayers and after exposure to IL-1β/TNF-α or house dust mite extract.Primary cultures were successfully established in 135 (91% of 149 neonatal samples seeded, with 79% (n  =  117 successfully cultured to passage 3. The epithelial lineage of the cells was confirmed by morphological analysis and immunostaining. Constitutive IL-8 secretion was observed and was upregulated by IL-1β/TNF-α or house dust mite extract in a dose dependent manner.We describe a safe, minimally invasive method of culturing nasal epithelial cells from neonates suitable for functional cell analysis offering an opportunity to study "naïve" cells that may prove useful in elucidating the role of the epithelium in the early origins of asthma and/or allergic rhinitis.

  7. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo.

    Science.gov (United States)

    Lehmann, Mareike; Korfei, Martina; Mutze, Kathrin; Klee, Stephan; Skronska-Wasek, Wioletta; Alsafadi, Hani N; Ota, Chiharu; Costa, Rita; Schiller, Herbert B; Lindner, Michael; Wagner, Darcy E; Günther, Andreas; Königshoff, Melanie

    2017-08-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and primary cells.Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers.These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF. Copyright ©ERS 2017.

  8. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  9. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  10. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  11. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  12. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  13. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  14. Mouse double minute homologue 2 (MDM2) downregulation by miR-661 impairs human endometrial epithelial cell adhesive capacity.

    Science.gov (United States)

    Winship, Amy; Ton, Amanda; Van Sinderen, Michelle; Menkhorst, Ellen; Rainczuk, Katarzyna; Griffiths, Meaghan; Cuman, Carly; Dimitriadis, Evdokia

    2017-08-29

    Human blastocysts that fail to implant following IVF secrete elevated levels of miR-661, which is taken up by primary human endometrial epithelial cells (HEECs) and impairs their adhesive capability. MicroRNA miR-661 downregulates mouse double minute homologue 2 (MDM2) and MDM4 in other epithelial cell types to activate p53; however, this has not been examined in the endometrium. In this study MDM2 protein was detected in the luminal epithelium of the endometrium, the site of blastocyst attachment, during the mid secretory receptive phase of the menstrual cycle. The effects of miR-661 on gene expression in and adhesion of endometrial cells was also examined. MiR-661 overexpression consistently downregulated MDM2 but not MDM4 or p53 gene expression in the Ishikawa endometrial epithelial cell line and primary HEEC. Adhesion assays were performed on the real-time monitoring xCELLigence system and by co-culture using Ishikawa cells and HEECs with HTR8/SVneo trophoblast spheroids. Targeted siRNA-mediated knockdown of MDM2 in endometrial epithelial cells reduced Ishikawa cell adhesion (Phuman blastocyst-secreted miR-661 reduces endometrial epithelial cell adhesion; via downregulation of MDM2. These findings suggest that MDM2 contributes to endometrial-blastocyst adhesion, implantation and infertility in women.

  15. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

    Science.gov (United States)

    Bai, Jianwu; Smock, Steven L; Jackson, George R; MacIsaac, Kenzie D; Huang, Yongsheng; Mankus, Courtney; Oldach, Jonathan; Roberts, Brian; Ma, Yu-Lu; Klappenbach, Joel A; Crackower, Michael A; Alves, Stephen E; Hayden, Patrick J

    2015-01-01

    Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model. Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively. ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1). ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

  16. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

    Directory of Open Access Journals (Sweden)

    Jianwu Bai

    Full Text Available Human airway epithelial cells are the principal target of human rhinovirus (HRV, a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1 to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2 to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.Air-liquid interface (ALI human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3, and novel ones that were identified for the first time in this study (e.g. CCRL1.ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

  17. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    Science.gov (United States)

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  18. Mechanocellular models of epithelial morphogenesis.

    Science.gov (United States)

    Fletcher, Alexander G; Cooper, Fergus; Baker, Ruth E

    2017-05-19

    Embryonic epithelia achieve complex morphogenetic movements, including in-plane reshaping, bending and folding, through the coordinated action and rearrangement of individual cells. Technical advances in molecular and live-imaging studies of epithelial dynamics provide a very real opportunity to understand how cell-level processes facilitate these large-scale tissue rearrangements. However, the large datasets that we are now able to generate require careful interpretation. In combination with experimental approaches, computational modelling allows us to challenge and refine our current understanding of epithelial morphogenesis and to explore experimentally intractable questions. To this end, a variety of cell-based modelling approaches have been developed to describe cell-cell mechanical interactions, ranging from vertex and 'finite-element' models that approximate each cell geometrically by a polygon representing the cell's membrane, to immersed boundary and subcellular element models that allow for more arbitrary cell shapes. Here, we review how these models have been used to provide insights into epithelial morphogenesis and describe how such models could help future efforts to decipher the forces and mechanical and biochemical feedbacks that guide cell and tissue-level behaviour. In addition, we discuss current challenges associated with using computational models of morphogenetic processes in a quantitative and predictive way.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Author(s).

  19. Role of Oral Mucosal Fluid and Electrolyte Absorption and Secretion in Dry Mouth.

    Science.gov (United States)

    Zhang, Guo H; Castro, Robert

    2015-09-01

    Dry mouth is induced by dehydration of the oral mucosa, resulting from an imbalance of fluid supply and clearance within the oral cavity. Saliva is the major source of oral mucosal fluid, whereas oral fluid clearance includes evaporation and swallowing. Oral mucosal fluid absorption has been suggested to play a critical role in oral fluid clearance; over-absorption of water and ions across the oral mucosa under certain conditions may be a major component for oral fluid imbalance, leading to mucosal dehydration. While numerous studies have confirmed that the oral mucosa absorbs fluid and electrolytes, the pathways and mechanisms mediating the absorption remain undefined. The transcellular pathway regulating oral mucosal epithelial absorption includes aquaporins, epithelial Na+ channel and/or Na+/H+ exchanger, whereas the paracellular transport is likely to be mediated by tight junctions. The regulatory mechanisms of these pathways require further elucidation. It remains unclear whether the oral mucosa also secretes fluid and ions into the oral cavity. Although intercellular lipids secreted by epithelial cells form the major barrier to paracellular water and ion transport, the role and regulation of these lipids in oral mucosal hydration in physiological and pathological conditions need further investigation. Delineation of these mechanisms will be conducive to the development of preventive and therapeutic interventions for dry mouth.

  20. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme

    Science.gov (United States)

    Lee, Raymond Teck Ho; Nagai, Hiroki; Nakaya, Yukiko; Sheng, Guojun; Trainor, Paul A.; Weston, James A.; Thiery, Jean Paul

    2013-01-01

    The neural crest is a transient structure unique to vertebrate embryos that gives rise to multiple lineages along the rostrocaudal axis. In cranial regions, neural crest cells are thought to differentiate into chondrocytes, osteocytes, pericytes and stromal cells, which are collectively termed ectomesenchyme derivatives, as well as pigment and neuronal derivatives. There is still no consensus as to whether the neural crest can be classified as a homogenous multipotent population of cells. This unresolved controversy has important implications for the formation of ectomesenchyme and for confirmation of whether the neural fold is compartmentalized into distinct domains, each with a different repertoire of derivatives. Here we report in mouse and chicken that cells in the neural fold delaminate over an extended period from different regions of the cranial neural fold to give rise to cells with distinct fates. Importantly, cells that give rise to ectomesenchyme undergo epithelial-mesenchymal transition from a lateral neural fold domain that does not express definitive neural markers, such as Sox1 and N-cadherin. Additionally, the inference that cells originating from the cranial neural ectoderm have a common origin and cell fate with trunk neural crest cells prompted us to revisit the issue of what defines the neural crest and the origin of the ectomesenchyme. PMID:24198279

  1. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    Science.gov (United States)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    low LET radiation showed a dose-dependent increase in migration of epithelial cells when exposed to conditioned media from irradiated vs. non-irradiated fibroblasts. We also observed enhanced invasion through a basement membrane simulant. To identify chemotactic proteins secreted by irradiated stromal fibroblasts, we used antibody capture cytokine arrays and have identified several proteins as candidates. Increased secretion of these factors by irradiated fibroblasts was confirmed using ELISA. We are currently analyzing the contribution of these individual factors on epithelial migration and invasion, as well as their influence on cell survival and DNA repair. Studies using high-LET radiation will help determine radiation quality effects on these processes. These results should further our understanding of the mechanisms by which radiation impacts the tissue microenvironment and how it influences cancer development processes.

  2. Incretin hormone secretion over the day

    DEFF Research Database (Denmark)

    Ahren, B; Carr, RD; Deacon, Carolyn F.

    2010-01-01

    . Regulation of incretin hormone secretion is less well characterized. The main stimulus for incretin hormone secretion is presence of nutrients in the intestinal lumen, and carbohydrate, fat as well as protein all have the capacity to stimulate GIP and GLP-1 secretion. More recently, it has been established...... that a diurnal regulation exists with incretin hormone secretion to an identical meal being greater when the meal is served in the morning compared to in the afternoon. Finally, whether incretin hormone secretion is altered in disease states is an area with, so far, controversial results in different studies......, although some studies have demonstrated reduced incretin hormone secretion in type 2 diabetes. This review summarizes our knowledge on regulation of incretin hormone secretion and its potential changes in disease states....

  3. Neurogenic effects of β-amyloid in the choroid plexus epithelial cells in Alzheimer's disease.

    Science.gov (United States)

    Bolos, Marta; Spuch, Carlos; Ordoñez-Gutierrez, Lara; Wandosell, Francisco; Ferrer, Isidro; Carro, Eva

    2013-08-01

    β-amyloid (Aβ) can promote neurogenesis, both in vitro and in vivo, by inducing neural progenitor cells to differentiate into neurons. The choroid plexus in Alzheimer's disease (AD) is burdened with amyloid deposits and hosts neuronal progenitor cells. However, neurogenesis in this brain tissue is not firmly established. To investigate this issue further, we examined the effect of Aβ on the neuronal differentiation of choroid plexus epithelial cells in several experimental models of AD. Here we show that Aβ regulates neurogenesis in vitro in cultured choroid plexus epithelial cells as well as in vivo in the choroid plexus of APP/Ps1 mice. Treatment with oligomeric Aβ increased proliferation and differentiation of neuronal progenitor cells in cultured choroid plexus epithelial cells, but decreased survival of newly born neurons. These Aβ-induced neurogenic effects were also observed in choroid plexus of APP/PS1 mice, and detected also in autopsy tissue from AD patients. Analysis of signaling pathways revealed that pre-treating the choroid plexus epithelial cells with specific inhibitors of TyrK or MAPK diminished Aβ-induced neuronal proliferation. Taken together, our results support a role of Aβ in proliferation and differentiation in the choroid plexus epithelial cells in Alzheimer's disease.

  4. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    Science.gov (United States)

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Helicobacter pylori virulence factors affecting gastric proton pump expression and acid secretion.

    Science.gov (United States)

    Hammond, Charles E; Beeson, Craig; Suarez, Giovanni; Peek, Richard M; Backert, Steffen; Smolka, Adam J

    2015-08-01

    Acute Helicobacter pylori infection of gastric epithelial cells and human gastric biopsies represses H,K-ATPase α subunit (HKα) gene expression and inhibits acid secretion, causing transient hypochlorhydria and supporting gastric H. pylori colonization. Infection by H. pylori strains deficient in the cag pathogenicity island (cag PAI) genes cagL, cagE, or cagM, which do not transfer CagA into host cells or induce interleukin-8 secretion, does not inhibit HKα expression, nor does a cagA-deficient strain that induces IL-8. To test the hypothesis that virulence factors other than those mediating CagA translocation or IL-8 induction participate in HKα repression by activating NF-κB, AGS cells transfected with HKα promoter-Luc reporter constructs containing an intact or mutated NF-κB binding site were infected with wild-type H. pylori strain 7.13, isogenic mutants lacking cag PAI genes responsible for CagA translocation and/or IL-8 induction (cagA, cagζ, cagε, cagZ, and cagβ), or deficient in genes encoding two peptidoglycan hydrolases (slt and cagγ). H. pylori-induced AGS cell HKα promoter activities, translocated CagA, and IL-8 secretion were measured by luminometry, immunoblotting, and ELISA, respectively. Human gastric biopsy acid secretion was measured by microphysiometry. Taken together, the data showed that HKα repression is independent of IL-8 expression, and that CagA translocation together with H. pylori transglycosylases encoded by slt and cagγ participate in NF-κB-dependent HKα repression and acid inhibition. The findings are significant because H. pylori factors other than CagA and IL-8 secretion are now implicated in transient hypochlorhydria which facilitates gastric colonization and potential triggering of epithelial progression to neoplasia. Copyright © 2015 the American Physiological Society.

  6. LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Matson Jyl S

    2008-02-01

    Full Text Available Abstract Background LcrG, a negative regulator of the Yersinia type III secretion apparatus has been shown to be primarily a cytoplasmic protein, but is secreted at least in Y. pestis. LcrG secretion has not been functionally analyzed and the relevance of LcrG secretion on LcrG function is unknown. Results An LcrG-GAL4AD chimera, originally constructed for two-hybrid analyses to analyze LcrG protein interactions, appeared to be not secreted but the LcrG-GAL4AD chimera retained the ability to regulate Yops secretion. This result led to further investigation to determine the significance of LcrG secretion on LcrG function. Additional analyses including deletion and substitution mutations of amino acids 2–6 in the N-terminus of LcrG were constructed to analyze LcrG secretion and LcrG's ability to control secretion. Some changes to the N-terminus of LcrG were found to not affect LcrG's secretion or LcrG's secretion-controlling activity. However, substitution of poly-isoleucine in the N-terminus of LcrG did eliminate LcrG secretion but did not affect LcrG's secretion controlling activity. Conclusion These results indicate that secretion of LcrG, while observable and T3SS mediated, is not relevant for LcrG's ability to control secretion.

  7. Protein secretion is required for pregnancy-associated plasma protein-A to promote lung cancer growth in vivo.

    Directory of Open Access Journals (Sweden)

    Hong Pan

    Full Text Available Pregnancy-associated plasma protein-A (PAPPA has been reported to regulate the activity of insulin-like growth factor (IGF signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression.

  8. Characterization of mesenchymal progenitor cell populations from non-epithelial oral mucosa.

    Science.gov (United States)

    Matsumura, S; Higa, K; Igarashi, T; Takaichi, S; Tonogi, M; Shinozaki, N; Shimazaki, J; Yamane, G-y

    2015-04-01

    The characteristics of cell populations extracted from oral mucosal non-epithelial tissues and their ability to differentiate were evaluated in vitro as a potential source of cells for mandibular and corneal regeneration. Oral mucosal non-epithelial cells (OMNECs) were extracted from tissue samples and were studied by flow cytometry and RT-PCR. Cells differentiating into osteoblasts, adipocytes, chondrocytes, neurocytes, or keratocytes were characterized by RT-PCR and cell staining. OMNECs expressed CD44, CD90, CD105, CD166, and STRO-1 antigens, which are markers for mesenchymal stem cells. In addition, Oct3/4, c-Myc, Nanog, KLF4, and Rex, which are expressed by embryonic or pluripotent stem cells, were detected by RT-PCR. Expression of CD49d, CD56, and PDGFRα, proteins closely associated with the neural crest, was observed in OMNECs, as was expression of Twist1, Sox9, Snail1 and Snail2, which are early neural crest and neural markers. Specific differentiation markers were expressed in OMNECs after differentiation into osteoblasts, adipocytes, chondrocytes, or keratocytes. Populations of OMNECs may contain both mesenchymal stem cells and neural crest origin cells and are a potential cell source for autologous regeneration of mandibular or corneal stroma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Variations in basement membrane mechanics are linked to epithelial morphogenesis.

    Science.gov (United States)

    Chlasta, Julien; Milani, Pascale; Runel, Gaël; Duteyrat, Jean-Luc; Arias, Leticia; Lamiré, Laurie-Anne; Boudaoud, Arezki; Grammont, Muriel

    2017-12-01

    The regulation of morphogenesis by the basement membrane (BM) may rely on changes in its mechanical properties. To test this, we developed an atomic force microscopy-based method to measure BM mechanical stiffness during two key processes in Drosophila ovarian follicle development. First, follicle elongation depends on epithelial cells that collectively migrate, secreting BM fibrils perpendicularly to the anteroposterior axis. Our data show that BM stiffness increases during this migration and that fibril incorporation enhances BM stiffness. In addition, stiffness heterogeneity, due to oriented fibrils, is important for egg elongation. Second, epithelial cells change their shape from cuboidal to either squamous or columnar. We prove that BM softens around the squamous cells and that this softening depends on the TGFβ pathway. We also demonstrate that interactions between BM constituents are necessary for cell flattening. Altogether, these results show that BM mechanical properties are modified during development and that, in turn, such mechanical modifications influence both cell and tissue shapes. © 2017. Published by The Company of Biologists Ltd.

  10. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  11. Feedback amplification loop drives malignant growth in epithelial tissues.

    Science.gov (United States)

    Muzzopappa, Mariana; Murcia, Lada; Milán, Marco

    2017-08-29

    Interactions between cells bearing oncogenic mutations and the surrounding microenvironment, and cooperation between clonally distinct cell populations, can contribute to the growth and malignancy of epithelial tumors. The genetic techniques available in Drosophila have contributed to identify important roles of the TNF-α ligand Eiger and mitogenic molecules in mediating these interactions during the early steps of tumor formation. Here we unravel the existence of a tumor-intrinsic-and microenvironment-independent-self-reinforcement mechanism that drives tumor initiation and growth in an Eiger-independent manner. This mechanism relies on cell interactions between two functionally distinct cell populations, and we present evidence that these cell populations are not necessarily genetically different. Tumor-specific and cell-autonomous activation of the tumorigenic JNK stress-activated pathway drives the expression of secreted signaling molecules and growth factors to delaminating cells, which nonautonomously promote proliferative growth of the partially transformed epithelial tissue. We present evidence that cross-feeding interactions between delaminating and nondelaminating cells increase each other's sizes and that these interactions can explain the unlimited growth potential of these tumors. Our results will open avenues toward our molecular understanding of those social cell interactions with a relevant function in tumor initiation in humans.

  12. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  13. Bile duct epithelial tight junctions and barrier function

    Science.gov (United States)

    Rao, R.K.; Samak, G.

    2013-01-01

    Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411

  14. Potassium secretion in mammalian distal colon

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby

    2009-01-01

    Epithelial organs adjust the „inner milieu“ of the body and are crucial for all homeostatic processes. Epithelial transport of different solutes and water is regulated phenomena. The regulation processes include both long term hormonal regulation and short term local agonist mediated regulation. ...

  15. Weegee’s City Secrets

    Directory of Open Access Journals (Sweden)

    Alan TRACHTENBERG

    2010-03-01

    Full Text Available En tant que photographe indépendant de meurtres, d’accidents, d’incendies, mais aussi de moments de loisirs dans la ville — de scènes de violence et de plaisir — Weegee travaillait essentiellement la nuit et utilisait un flash puissant associé à son appareil-photo de presse. Ses « secrets pour réaliser des photographies avec un flash » consistent à donner des conseils pratiques et techniques pour débutants. Mais au cœur de la rhétorique de ses « secrets » se trouvent des réflexions subtiles et convaincantes révélant la relation entre la lumière et l’obscurité, et plus particulièrement la manière dont la lumière du flash permet de rendre visible l’obscurité. Dans le récit de Weegee, le flash confère à la photographie le pouvoir d’écrire — d’écrire avec la lumière, un mode de représentation singulièrement approprié pour enregistrer des instants de vie dans les rues nocturnes de la ville.As a freelance photographer of crime, accidents, fires, and also of the recreational life of the city—scenes of violence and of pleasure—Weegee worked mainly at night and employed a powerful photoflash attachment to his press camera. His "secrets of shooting with photoflash" consist of practical technical advice for beginners. But within the rhetoric of his "secrets" there lie cogent and subtle reflections on the relation of light to darkness, especially on the way the flash of light makes darkness visible. In Weegee’s account, the photoflash gives photography the power of writing—writing with light, a mode of picturing uniquely suited to recording instants of life on city streets at night.

  16. Britain's nuclear secrets: inside Sellafield

    Science.gov (United States)

    Marino, Antigone

    2017-11-01

    Lying on the remote north west coast of England, Sellafield is one of the most secret places in UK, and even one of the most controversial nuclear fuel reprocessing and nuclear decommissioning sites in Britain. The film director Tim Usborne let us enter into the world's first nuclear power station, revealing Britain's attempts to harness the almost limitless power of the atom. It is precisely the simplicity and the scientific rigor used in the film to speak of nuclear, which led this documentary to win the Physics Prize supported by the European Physical Society at the European Science TV and New Media Festival and Awards 2016.

  17. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection.

    OpenAIRE

    Reiterer Veronika; Grossniklaus Lars; Tschon Therese; Kasper Christoph Alexander; Sorg Isabel; Arrieumerlou Cécile

    2011-01-01

    Shigella flexneri type III secreted effector OspF harbors a phosphothreonine lyase activity that irreversibly dephosphorylates MAP kinases (MAPKs) p38 and ERK in infected epithelial cells and thereby dampens innate immunity. Whereas this activity has been well characterized the impact of OspF on other host signaling pathways that control inflammation was unknown. Here we report that OspF potentiates the activation of the MAPK JNK and the transcription factor NF ?B during S. flexneri infection...

  18. Secretion management in the mechanically ventilated patient.

    Science.gov (United States)

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  19. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells

    National Research Council Canada - National Science Library

    Choi, Chul Hee; Lee, Jun Sik; Lee, Yoo Chul; Park, Tae In; Lee, Je Chul

    2008-01-01

    ... of A. baumannii outer membrane protein A (AbOmpA) in interactions with epithelial cells. A. baumannii invaded epithelial cells by a zipper-like mechanism, which is associated with microfilament- and microtubule-dependent uptake mechanisms...

  20. Isolation and culture of biliary epithelial cells.

    OpenAIRE

    Joplin, R

    1994-01-01

    At one time it was thought that biliary epithelial cells simply formed the lining to the tubular conduits which constitute the biliary tract. Development of in vitro systems for culturing biliary epithelial cells has enabled functional studies which increasingly show that this is far from true, and that biliary epithelial cells do have important functional roles. Disruption of these functions may be involved in the generation of pathology. Most functional studies to date have utilised cells i...

  1. Simvastatin Treatment Modulates Mechanically-Induced Injury and Inflammation in Respiratory Epithelial Cells.

    Science.gov (United States)

    Higuita-Castro, N; Shukla, V C; Mihai, C; Ghadiali, S N

    2016-12-01

    Mechanical forces in the respiratory system, including surface tension forces during airway reopening and high transmural pressures, can result in epithelial cell injury, barrier disruption and inflammation. In this study, we investigated if a clinically relevant pharmaceutical agent, Simvastatin, could mitigate mechanically induced injury and inflammation in respiratory epithelia. Pulmonary alveolar epithelial cells (A549) were exposed to either cyclic airway reopening forces or oscillatory transmural pressure in vitro and treated with a wide range of Simvastatin concentrations. Simvastatin induced reversible depolymerization of the actin cytoskeleton and a statistically significant reduction the cell's elastic modulus. However, Simvastatin treatment did not result in an appreciable change in the cell's viscoelastic properties. Simvastatin treated cells did exhibit a reduced height-to-width aspect ratio and these changes in cell morphology resulted in a significant decrease in epithelial cell injury during airway reopening. Interestingly, although very high concentrations (25-50 µM) of Simvastatin resulted in dramatically less IL-6 and IL-8 pro-inflammatory cytokine secretion, 2.5 µM Simvastatin did not reduce the total amount of pro-inflammatory cytokines secreted during mechanical stimulation. These results indicate that although Simvastatin treatment may be useful in reducing cell injury during airway reopening, elevated local concentrations of Simvastatin might be needed to reduce mechanically-induced injury and inflammation in respiratory epithelia.

  2. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication.

    Directory of Open Access Journals (Sweden)

    Rebecca A Brockman-Schneider

    Full Text Available Vitamin D has been linked to reduced risk of viral respiratory illness. We hypothesized that vitamin D could directly reduce rhinovirus (RV replication in airway epithelium. Primary human bronchial epithelial cells (hBEC were treated with vitamin D, and RV replication and gene expression were evaluated by quantitative PCR. Cytokine/chemokine secretion was measured by ELISA, and transepithelial resistance (TER was determined using a voltohmmeter. Morphology was examined using immunohistochemistry. Vitamin D supplementation had no significant effects on RV replication, but potentiated secretion of CXCL8 and CXCL10 from infected or uninfected cells. Treatment with vitamin D in the form of 1,25(OH2D caused significant changes in cell morphology, including thickening of the cell layers (median of 46.5 µm [35.0-69.0] vs. 30 µm [24.5-34.2], p<0.01 and proliferation of cytokeratin-5-expressing cells, as demonstrated by immunohistochemical analysis. Similar effects were seen for 25(OHD. In addition to altering morphology, higher concentrations of vitamin D significantly upregulated small proline-rich protein (SPRR1β expression (6.3 fold-induction, p<0.01, suggestive of squamous metaplasia. Vitamin D treatment of hBECs did not alter repair of mechanically induced wounds. Collectively, these findings indicate that vitamin D does not directly affect RV replication in airway epithelial cells, but can influence chemokine synthesis and alters the growth and differentiation of airway epithelial cells.

  3. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  4. Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Cohen Noam A

    2009-11-01

    Full Text Available Abstract Secondhand smoke (SHS exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure.

  5. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems.

    Directory of Open Access Journals (Sweden)

    Ram Samudrala

    2009-04-01

    Full Text Available The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates--effector proteins--are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  6. A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Michal Shoshkes Carmel

    Full Text Available VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3 proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT. Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos.Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity.

  7. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  8. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers.

    Directory of Open Access Journals (Sweden)

    Takuya Akiyama

    Full Text Available Endoplasmic reticulum (ER stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon.

  9. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers.

    Science.gov (United States)

    Akiyama, Takuya; Oishi, Kenji; Wullaert, Andy

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon.

  10. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  11. Force transmission in epithelial tissues.

    Science.gov (United States)

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  12. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  13. ACAM, a novel member of the neural IgCAM family, mediates anterior neural tube closure in a primitive chordate.

    Science.gov (United States)

    Morales Diaz, Heidi; Mejares, Emil; Newman-Smith, Erin; Smith, William C

    2016-01-01

    The neural IgCAM family of cell adhesion molecules, which includes NCAM and related molecules, has evolved via gene duplication and alternative splicing to allow for a wide range of isoforms with distinct functions and homophilic binding properties. A search for neural IgCAMs in ascidians (Ciona intestinalis, Ciona savignyi, and Phallusia mammillata) has identified a novel set of truncated family members that, unlike the known members, lack fibronectin III domains and consist of only repeated Ig domains. Within the tunicates this form appears to be unique to the ascidians, and it was designated ACAM, for Ascidian Cell Adhesion Molecule. In C. intestinalis ACAM is expressed in the developing neural plate and neural tube, with strongest expression in the anterior sensory vesicle precursor. Unlike the two other conventional neural IgCAMs in C. intestinalis, which are expressed maternally and throughout the morula and blastula stages, ACAM expression initiates at the gastrula stage. Moreover, C. intestinalis ACAM is a target of the homeodomain transcription factor OTX, which plays an essential role in the development of the anterior central nervous system. Morpholino (MO) knockdown shows that ACAM is required for neural tube closure. In MO-injected embryos neural tube closure was normal caudally, but the anterior neuropore remained open. A similar phenotype was seen with overexpression of a secreted version of ACAM. The presence of ACAM in ascidians highlights the diversity of this gene family in morphogenesis and neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    Science.gov (United States)

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  15. Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells.

    Science.gov (United States)

    Schwarzer, Christian; Fischer, Horst; Kim, Eun-Jin; Barber, Katharine J; Mills, Aaron D; Kurth, Mark J; Gruenert, Dieter C; Suh, Jung H; Machen, Terry E; Illek, Beate

    2008-12-15

    Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.

  16. Oxidative Stress By Pyocyanin Impairs CFTR Cl- Transport In Human Bronchial Epithelial Cells

    Science.gov (United States)

    Schwarzer, Christian; Fischer, Horst; Kim, Eun-Jin; Barber, Katharine J.; Mills, Aaron D.; Kurth, Mark J.; Gruenert, Dieter C.; Suh, Jung H.; Machen, Terry E.; Illek, Beate

    2008-01-01

    Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H2O2 3-fold above the endogenous H2O2 production. Real-time measurements of the redox-potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 μM) oxidized the cytosol from a resting value of -318 ± 5 mV by 48.0 ± 4.6 mV within 2 hours; a comparable oxidation was induced by 100 μM H2O2. While resting Cl- secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl- secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). CF bronchial epithelial cells homozygous for ΔF508 CFTR failed to secrete Cl- in response to pyocyanin or H2O2 indicating that these oxidants specifically target CFTR and not other Cl- conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 hours. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H2O2, depletes glutathione and ATP, and impairs CFTR function in Pseudomonas infected lungs. PMID:18845244

  17. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures.

    Directory of Open Access Journals (Sweden)

    William A Rose

    Full Text Available The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives.

  18. Effect of epithelium ATP release on cyclic pressure-induced airway mucus secretion.

    Science.gov (United States)

    Tong, Jin; Zhou, Xiang-Dong; Perelman, Juliy M; Kolosov, Victor P

    2014-02-01

    The cyclic mechanical effect of airflow during breathing creates the optimal airway hydration state. MUC (mucin) 5AC is an important component of the airway mucus. The formation of MUC5AC is related to ATP and intracellular calcium in the epithelial cells. In this study, we evaluated the effect of ATP release from intracellular calcium in epithelial cells on cyclic pressure-induced mucus secretion in the airway. 16HBE (human bronchial epithelial cells) were cultured in vitro on cyclically tilted cultured plates and divided into five groups: control, tilt, tilt and BAPTA-AM (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-acetoxymethyl ester), tilt and EGTA and tilt and RB-2 (reactive blue-2). The shear stress and compressive stress were induced by the surface tension of the liquid, atmospheric pressure and liquid gravity. Cell activity, MUC5AC mRNA expression level, MUC5AC protein expression level and ATP release and intracellular calcium changes were measured with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay, RT-PCR (reverse transcription-PCR), HPLC and inverted fluorescence microscope, respectively. We detected that cyclic pressure significantly increased MUC5AC secretion and ATP release. The enhanced ATP release could be inhibited by both BAPTA-AM and RB-2, while EGTA did not have a suppressive effect. BAPTA-AM, EGTA and RB-2 did not obviously inhibit MUC5AC mRNA expression. Cyclic pressure did not induce MUC5AC secretion in the airway mucus epithelium via Ca(2+)-dependent ATP release, and nearly all Ca(2+) was provided by stored intracellular Ca(2). © 2014 The author(s).

  19. Effect of epithelium ATP release on cyclic pressure-induced airway mucus secretion

    Science.gov (United States)

    Tong, Jin; Zhou, Xiang-dong; Perelman, Juliy M.; Kolosov, Victor P.

    2013-01-01

    The cyclic mechanical effect of airflow during breathing creates the optimal airway hydration state. MUC (mucin) 5AC is an important component of the airway mucus. The formation of MUC5AC is related to ATP and intracellular calcium in the epithelial cells. In this study, we evaluated the effect of ATP release from intracellular calcium in epithelial cells on cyclic pressure-induced mucus secretion in the airway. 16HBE (human bronchial epithelial cells) were cultured in vitro on cyclically tilted cultured plates and divided into five groups: control, tilt, tilt and BAPTA–AM (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid–acetoxymethyl ester), tilt and EGTA and tilt and RB-2 (reactive blue-2). The shear stress and compressive stress were induced by the surface tension of the liquid, atmospheric pressure and liquid gravity. Cell activity, MUC5AC mRNA expression level, MUC5AC protein expression level and ATP release and intracellular calcium changes were measured with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay, RT–PCR (reverse transcription–PCR), HPLC and inverted fluorescence microscope, respectively. We detected that cyclic pressure significantly increased MUC5AC secretion and ATP release. The enhanced ATP release could be inhibited by both BAPTA–AM and RB-2, while EGTA did not have a suppressive effect. BAPTA–AM, EGTA and RB-2 did not obviously inhibit MUC5AC mRNA expression. Cyclic pressure did not induce MUC5AC secretion in the airway mucus epithelium via Ca2+-dependent ATP release, and nearly all Ca2+ was provided by stored intracellular Ca2+. PMID:27919041

  20. Secreted Reporters for Monitoring Multiple Promoter Function.

    Science.gov (United States)

    Lashgari, Ghazal; Kantar, Rami S; Tannous, Bakhos A

    2017-01-01

    Secreted reporter proteins are reliable modalities for monitoring of different biological processes, which can be measured longitudinally in conditioned medium of cultured cells or body fluids such as blood and urine, ex vivo. In this chapter, we will explore established secreted reporters and their applications and limitations for monitoring of promoter function. We will also describe both cell-based and blood-based assays for detecting three commonly used reporters: secreted alkaline phosphatase (SEAP ), Gaussia luciferase (Gluc), and Vargula luciferase (Vluc).

  1. Secreted HSP Vaccine for Malaria Prophylaxis

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Natasa Strbo CONTRACTING...1. REPORT DATE October 2017 2. REPORT TYPE Annual 3. DATES COVERED 09/30/16-09/29/17 4. TITLE AND SUBTITLE Secreted HSP Vaccine for Malaria ...thereby stimulating an avid, antigen specific, cytotoxic CD8 T cell response. Here we developed malaria vaccine that relies on secreted gp96-Ig

  2. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... a dynamic entity, which physical structure changes according to its use and environment. This change may take the form of growth of new neurons, the creation of new networks and structures, and change within network structures, that is, changes in synaptic strengths. Plasticity raises questions about...

  3. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    OpenAIRE

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin; Oskarsson, Agneta

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters a...

  4. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure.

    Science.gov (United States)

    Haigo, Saori L; Hildebrand, Jeffrey D; Harland, Richard M; Wallingford, John B

    2003-12-16

    The morphogenetic events of early vertebrate development generally involve the combined actions of several populations of cells, each engaged in a distinct behavior. Neural tube closure, for instance, involves apicobasal cell heightening, apical constriction at hingepoints, convergent extension of the midline, and pushing by the epidermis. Although a large number of genes are known to be required for neural tube closure, in only a very few cases has the affected cell behavior been identified. For example, neural tube closure requires the actin binding protein Shroom, but the cellular basis of Shroom function and how it influences neural tube closure remain to be elucidated. We show here that expression of Shroom is sufficient to organize apical constriction in transcriptionally quiescent, naive epithelial cells but not in non-polarized cells. Shroom-induced apical constriction was associated with enrichment of apically localized actin filaments and required the small GTPase Rap1 but not Rho. Endogenous Xenopus shroom was found to be expressed in cells engaged in apical constriction. Consistent with a role for Shroom in organizing apical constriction, disrupting Shroom function resulted in a specific failure of hingepoint formation, defective neuroepithelial sheet-bending, and failure of neural tube closure. These data demonstrate that Shroom is an essential regulator of apical constriction during neurulation. The finding that a single protein can initiate this process in epithelial cells establishes that bending of epithelial sheets may be patterned during development by the regulation of expression of single genes.

  5. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    Science.gov (United States)

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  6. Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows.

    Directory of Open Access Journals (Sweden)

    Theresa Casey

    Full Text Available Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17. Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID and Ingenuity Pathways Analysis (IPA showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production.

  7. Alcoholic beverages and gastric epithelial cell viability: effect on oxidative stress-induced damage.

    Science.gov (United States)

    Loguercio, C; Tuccillo, C; Federico, A; Fogliano, V; Del Vecchio Blanco, C; Romano, M

    2009-12-01

    Alcohol is known to cause damage to the gastric epithelium independently of gastric acid secretion. Different alcoholic beverages exert different damaging effects in the stomach. However, this has not been systematically evaluated. Moreover, it is not known whether the non-alcoholic components of alcoholic beverages also play a role in the pathogenesis of gastric epithelial cell damage. Therefore, this study was designed to evaluate whether different alcoholic beverages, at a similar ethanol concentration, exerted different damaging effect in gastric epithelial cells in vitro. Moreover, we evaluated whether pre-treatment of gastric epithelial cells with alcoholic beverages prevented oxidative stress-induced damage to gastric cells. Cell damage was assessed, in MKN-28 gastric epithelial cells, by MTT assay. Oxidative stress was induced by incubating cells with xanthine and xanthine oxidase. Gastric cell viability was assessed following 30, 60, and 120 minutes incubation with ethanol 17.5-125 mg/ml(-1) or different alcoholic beverages (i.e., beer, white wine, red wine, spirits) at comparable ethanol concentration. Finally, we assessed whether pre-incubation with red wine (with or without ethanol) prevented oxidative stress-induced cell damage. Red wine caused less damage to gastric epithelial cells in vitro compared with other alcoholic beverages at comparable ethanol concentration. Pre-treatment with red wine, but not with dealcoholate red wine, significantly and time-dependently prevented oxidative stress-induced cell damage. 1) red wine is less harmful to gastric epithelial cells than other alcoholic beverages; 2) this seems related to the non-alcoholic components of red wine, because other alcoholic beverages with comparable ethanol concentration exerted more damage than red wine; 3) red wine prevents oxidative stress-induced cell damage and this seems to be related to its ethanol content.

  8. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Directory of Open Access Journals (Sweden)

    Nagai Atsushi

    2011-06-01

    inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation. Conclusions Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.

  9. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  10. IL-8 secretion in primary cultures of prostate cells is associated with prostate cancer aggressiveness

    Directory of Open Access Journals (Sweden)

    Neveu B

    2014-05-01

    Full Text Available Bertrand Neveu*, Xavier Moreel*, Marie-Pier Deschênes-Rompré, Alain Bergeron, Hélène LaRue, Cherifa Ayari, Yves Fradet, Vincent FradetDepartment of Surgery, Laval University Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC, Canada *These authors contributed equally to this workBackground: Chronic inflammation is believed to be a major factor in prostate cancer initiation and promotion and has been studied using prostate cancer cells and immortalized cell lines. However, little is known about the contribution of normal cells to the prostatic microenvironment and inflammation. We aim to study the contribution of normal prostate epithelial cells to prostate inflammation and to link the inflammatory status of normal cells to prostate cancer aggressiveness.Materials and methods: Short-term primary cell cultures of normal epithelial prostate cells were derived from prostate biopsies from 25 men undergoing radical prostatectomy, cystoprostatectomy, or organ donation. Cells were treated with polyinosinic:polycytidylic acid, a mimic of double-stranded viral RNA and a potent inducer of the inflammatory response. Secretion of interleukin (IL-8 in the cell culture medium by untreated and treated cells was measured and we determined the association between IL-8 levels in these primary cell cultures and prostate cancer characteristics. The Fligner–Policello test was used to compare the groups.Results: Baseline and induced IL-8 secretion were highly variable between cultured cells from different patients. This variation was not related to drug use, past medical history, age, or preoperative prostate-specific antigen value. Nonetheless, an elevated secretion of IL-8 from normal cultured epithelial cells was associated with prostate cancer aggressiveness (P=0.0005.Conclusion: The baseline secretion of IL-8 from normal prostate epithelial cells in culture is strongly correlated with cancer aggressiveness and may drive prostate cancer

  11. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  12. Engineering stromal-epithelial interactions in vitro for toxicology assessment

    Science.gov (United States)

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...

  13. What Is Neural Plasticity?

    Science.gov (United States)

    von Bernhardi, Rommy; Bernhardi, Laura Eugenín-von; Eugenín, Jaime

    2017-01-01

    "Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.

  14. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  15. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V......This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...

  16. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  17. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown.

  18. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity

    Science.gov (United States)

    Cantara, Shraddha I.; Soscia, David A.; Sequeira, Sharon; Jean-Gilles, Riffard; Castracane, James; Larsen, Melinda

    2012-01-01

    Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types. PMID:22938763

  19. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling.

    Science.gov (United States)

    Quiros, Miguel; Nishio, Hikaru; Neumann, Philipp A; Siuda, Dorothee; Brazil, Jennifer C; Azcutia, Veronica; Hilgarth, Roland; O'Leary, Monique N; Garcia-Hernandez, Vicky; Leoni, Giovanna; Feng, Mingli; Bernal, Gabriela; Williams, Holly; Dedhia, Priya H; Gerner-Smidt, Christian; Spence, Jason; Parkos, Charles A; Denning, Timothy L; Nusrat, Asma

    2017-09-01

    In response to injury, epithelial cells migrate and proliferate to cover denuded mucosal surfaces and repair the barrier defect. This process is orchestrated by dynamic crosstalk between immune cells and the epithelium; however, the mechanisms involved remain incompletely understood. Here, we report that IL-10 was rapidly induced following intestinal mucosal injury and was required for optimal intestinal mucosal wound closure. Conditional deletion of IL-10 specifically in CD11c-expressing cells in vivo implicated macrophages as a critical innate immune contributor to IL-10-induced wound closure. Consistent with these findings, wound closure in T cell- and B cell-deficient Rag1-/- mice was unimpaired, demonstrating that adaptive immune cells are not absolutely required for this process. Further, following mucosal injury, macrophage-derived IL-10 resulted in epithelial cAMP response element-binding protein (CREB) activation and subsequent synthesis and secretion of the pro-repair WNT1-inducible signaling protein 1 (WISP-1). WISP-1 induced epithelial cell proliferation and wound closure by activating epithelial pro-proliferative pathways. These findings define the involvement of macrophages in regulating an IL-10/CREB/WISP-1 signaling axis, with broad implications in linking innate immune activation to mucosal wound repair.

  20. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  1. The function of TLR4 in interferon gamma or interleukin-13 exposed and lipopolysaccharide stimulated gingival epithelial cell cultures.

    Science.gov (United States)

    Beklen, A; Sarp, A S; Uckan, D; Tsaous Memet, G

    2014-10-01

    Gingival epithelial cells are part of the first line of host defense against infection. Toll-like receptors (TLRs) serve important immune and nonimmune functions. We investigated how interferon gamma (INF-γ) and interleukin 13 (IL-13) are involved in the TLR4 ligand-induced regulation of interleukin-8 (IL-8) effects on gingival epithelial cells. We used immunohistochemistry to localize TLR4 in ten healthy and ten periodontitis tissue specimens. Gingival epithelial cells then were primed with Th1 cytokine (INF-γ) or Th2 cytokine (IL-13) before stimulation with Escherichia coli-derived lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) was performed to detect the level of IL-8 secretion in cell culture supernatants. Although both healthy and periodontitis gingival tissue samples expressed TLR4, the periodontitis samples showed more intense expression on gingival epithelial cells. Gingival epithelial cell cultures were primed with either INF-γ or IL-13 before stimulation with TLR4 ligand. Supernatants from co-stimulated epithelial cells exhibited IL-8 production in opposite directions, i.e., as one stimulates the release, the other reduces the release. INF-γ significantly increased TLR4 function, whereas IL-13 significantly decreased TLR4 function, i.e., production of IL-8. Pathogen associated molecular pattern-LPS, shared by many different periodonto-pathogenic bacteria, activates the gingival epithelial cells in a TLR-dependent manner. Diminished or increased TLR function in gingival epithelial cells under the influence of different Th cell types may protect or be harmful due to the altered TLR signaling.

  2. Role of central and peripheral chemoreceptors in vasopressin secretion control.

    Science.gov (United States)

    Iovino, Michele; Guastamacchia, Edoardo; Giagulli, Vito Angelo; Fiore, Giorgio; Licchelli, Brunella; Iovino, Emanuela; Triggiani, Vincenzo

    2013-09-01

    In this review, we analyzed the role played by central and peripheral chemoreceptors (CHRs) in vasopressin (AVP) secretion control. Central neural pathways subserving osmotic and non-osmotic control of AVP secretion are strictly correlated to brain areas participating in chemoreception mechanisms. Among the different brain areas involved in central chemoreception, the most important site has been localized in the retrotrapezoid nucleus of the rostral ventrolateral medulla. These central CHRs are able to detect very small pH/CO2 fluctuations, participating in brain blood flow regulation, acid-base balance and blood pressure control. Decreases in arterial pH and increases in arterial pCO2 stimulate AVP release by the Supraoptic and Paraventricular Nuclei. Carotid CHRs transduce low arterial O2 tension into increased action potential activity, leading to bradycardia and coronary vasodilatation via vagal stimulation, and systemic vasoconstriction via catecholaminergic stimulation. Stimulation of carotid CHRs by hypoxia increases neurohypophyseal blood flow and AVP release, an effect inhibited by CHRs denervation. Two renal CHRs have been identified: Type R1 CHRs do not have a resting discharge but are activated by renal ischemia and hypotension; Type R2 CHRs have a resting discharge and respond to backflow of urine into the renal pelvis. Signals arising from renal CHRs modulate the activity of hypothalamic AVPergic neurons: activation of R1 and R2 CHRs, following increased intrapelvic pressure with solutions of mannitol, NaCl and KCl, produces a significant increase of AVP secretion and the same effect has been obtained by the intrarenal infusion of bradykinin, which excites afferent renal nerves, as well as by the electrical stimulation of these nerves.

  3. Epithelial Remodeling as Basis for Machine-Based Identification of Keratoconus

    Science.gov (United States)

    Silverman, Ronald H.; Urs, Raksha; RoyChoudhury, Arindam; Archer, Timothy J.; Gobbe, Marine; Reinstein, Dan Z.

    2014-01-01

    Purpose. To develop and evaluate automated computerized algorithms for differentiation of normal and keratoconus corneas based solely on epithelial and stromal thickness data. Methods. Maps of the corneal epithelial and stromal thickness were generated from Artemis-1 very high-frequency ultrasound arc-scans of 130 normal and 74 keratoconic subjects diagnosed by combined topography and tomography examination. Keratoconus severity was graded based on anterior curvature, minimum corneal thickness, and refractive error. Computer analysis of maps produced 161 features for one randomly selected eye per subject. Stepwise linear discriminant analysis (LDA) and neural network (NN) analysis were then performed to develop multivariate models based on combinations of selected features to correctly classify cases. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were determined for each classifier. Results. Stepwise LDA resulted in a six-variable model that provided an AUC of 100%, indicative of complete separation of keratoconic from normal corneas. Leave-one-out analysis resulted in 99.2% specificity and 94.6% sensitivity. Neural network analysis using the same six variables resulted in an AUC of 100% for the training set. Test set performance averaged over 10 trials gave a specificity of 99.5 ± 1.5% and sensitivity of 98.9 ± 1.9%. The LDA function values correlated with keratoconus severity grade. Conclusions. The results demonstrate that epithelial remodeling in keratoconus represents an independent means for differentiation of normal from advanced keratoconus corneas. PMID:24557351

  4. The emerging role of exosomes in Epithelial-Mesenchymal-Transition in cancer.

    Directory of Open Access Journals (Sweden)

    Laura Jayne Vella

    2014-12-01

    Full Text Available Metastasis in cancer consists of multiple steps, including Epithelial-Mesenchymal-Transition (EMT, which is characterized by the loss of Epithelial-like characteristics and the gain of Mesenchymal-like attributes including cell migration and invasion. It is clear that the tumour microenvironment can promote the metastatic cascade and that intercellular communication is necessary for this to occur. Exosomes are small membranous vesicles secreted by most cell types into the extracellular environment and they are important communicators in the tumour microenvironment. They promote angiogenesis, invasion and proliferation in recipient cells to support tumour growth and a prometastatic phenotype. Although it is clear that exosomes contribute to cancer cell plasticity, experimental evidence to define exosome induced plasticity as EMT is only just coming to light. This review will discuss recent research on exosomal regulation of the EMT process in the tumour microenvironment.

  5. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells

    Science.gov (United States)

    Liu, Tao; Wang, Chun-You; Yu, Feng; Gou, Shan-Miao; Wu, He-Shui; Xiong, Jiong-Xin; Zhou, Feng

    2007-01-01

    AIM: To observe whether pancreatic and duodenal homeobox factor-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells in vitro. METHODS: Rat pancreatic tissue was submitted to digestion by collagenase, ductal epithelial cells were separated by density gradient centrifugation and then cultured in RPMI1640 medium with 10% fetal bovine serum. After 3-5 passages, the cells were incubated in a six-well plate for 24 h before transfection of recombination plasmid XlHbox8VP16. Lightcycler quantitative real-time RT-PCR was used to detect the expression of PDX-1 and insulin mRNA in pancreatic epithelial cells. The expression of PDX-1 and insulin protein was analyzed by Western blotting. Insulin secretion was detected by radioimmunoassay. Insulin-producing cells were detected by dithizone-staining. RESULTS: XlHbox8 mRNA was expressed in pancreatic ductal epithelial cells. PDX-1 and insulin mRNA as well as PDX-1 and insulin protein were significantly increased in the transfected group. The production and insulin secretion of insulin-producing cells differentiated from pancreatic ductal epithelial cells were higher than those of the untransfected cells in vitro with a significant difference (1.32 ± 0.43 vs 3.48 ± 0.81, P < 0.01 at 5.6 mmol/L; 4.86 ± 1.15 vs 10.25 ± 1.32, P < 0.01 at 16.7 mmol/L). CONCLUSION: PDX-1 can differentiate rat pancreatic ductal epithelial cells into insulin-producing cells in vitro. In vitro PDX-1 transfection is a valuable strategy for increasing the source of insulin-producing cells. PMID:17876894

  6. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  7. Activation of the Epithelial Sodium Channel (ENaC) by the Alkaline Protease from Pseudomonas aeruginosa*

    Science.gov (United States)

    Butterworth, Michael B.; Zhang, Liang; Heidrich, Elisa M.; Myerburg, Michael M.; Thibodeau, Patrick H.

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that significantly contributes to the mortality of patients with cystic fibrosis. Chronic infection by Pseudomonas induces sustained immune and inflammatory responses and damage to the airway. The ability of Pseudomonas to resist host defenses is aided, in part, by secreted proteases, which act as virulence factors in multiple modes of infection. Recent studies suggest that misregulation of protease activity in the cystic fibrosis lung may alter fluid secretion and pathogen clearance by proteolytic activation of the epithelial sodium channel (ENaC). To evaluate the possibility that proteolytic activation of ENaC may contribute to the virulence of Pseudomonas, primary human bronchial epithelial cells were exposed to P. aeruginosa and ENaC function was assessed by short circuit current measurements. Apical treatment with a strain known to express high levels of alkaline protease (AP) resulted in an increase in basal ENaC current and a loss of trypsin-inducible ENaC current, consistent with sustained activation of ENaC. To further characterize this AP-induced ENaC activation, AP was purified, and its folding, activity, and ability to activate ENaC were assessed. AP folding was efficient under pH and calcium conditions thought to exist in the airway surface liquid of normal and cystic fibrosis (CF) lungs. Short circuit measurements of ENaC in polarized monolayers indicated that AP activated ENaC in immortalized cell lines as well as post-transplant, primary human bronchial epithelial cells from both CF and non-CF patients. This activation was mapped to the γ-subunit of ENaC. Based on these data, patho-mechanisms associated with AP in the CF lung are proposed wherein secretion of AP leads to decreased airway surface liquid volume and a corresponding decrease in mucocilliary clearance of pulmonary pathogens. PMID:22859302

  8. Activating prostaglandin E2 receptor subtype EP4 increases secreted mucin from airway goblet cells.

    Science.gov (United States)

    Akaba, Tomohiro; Komiya, Kosaku; Suzaki, Isao; Kozaki, Yuji; Tamaoki, Jun; Rubin, Bruce K

    2017-11-09

    Prostaglandin E2 (PGE2) is a ligand of the E-type prostanoid receptors, EP1-4. PGE2 secretion is increased in the airways of patients with asthma by secretory phospholipases A2, which also increases MUC5AC mucin in goblet cells. We hypothesized that PGE2 would also increase MUC5AC mRNA and secreted protein through specific EP receptor activation. We sought to assess the effect of specific EP receptor activation on MUC5AC secretion from ciliated-enriched cells or goblet-enriched cells induced by IL-13. We develop an enriched goblet cell epithelium by growing normal human bronchial epithelial cells at air liquid interface for 14 days in the presence of IL-13. We examined exposure to 4 specific EP receptor agonists at 24 h and 14 days in cells grown with or without IL-13 exposure, and measured MUC5AC mRNA and secreted protein, as well as airway culture morphology, and EP receptor expression. In ciliated-enriched cells grown in the absence of IL-13, the EP4 receptor agonist modestly increased both MUC5AC mRNA and secretion (p receptor agonist greatly increased both MUC5AC mRNA and protein (p receptor had no effect on secreted mucin. EP4 receptor mRNA and protein were significantly increased in goblet-enriched cells, while the other receptor mRNA were decreased. We conclude that PGE2 stimulates airway mucin production predominantly by EP4 receptor activation in association with increased EP4 receptor expression. This may contribute to mucus hypersecretion as seen in severe asthma. Copyright © 2017. Published by Elsevier Ltd.

  9. Possible function of carbohydrate on glycoproteins secreted by the pig uterus during pregnancy.

    Science.gov (United States)

    Roberts, R M; Baumbach, G A; Saunders, P T; Raub, T J; Renegar, R H; Bazer, F W

    1986-01-01

    Uteroferrin is a purple iron-containing acid phosphatase secreted by the porcine uterus under the influence of the hormone, progesterone. It is synthesized by the glandular epithelial cells of the uterine endometrium and during pregnancy is taken up by specialized structures (areolae) opposite each uterine gland. Uteroferrin is then released into the fetal circulation and cleared by the liver or fetal kidney. A major role in iron transport to the fetus has been proposed. Uteroferrin, as purified from uterine secretions of pigs, possesses mainly high mannose (predominantly Man5 and Man6) chains. These oligosaccharide chains of uteroferrin appear to be responsible for its binding and uptake by reticuloendothelial cells of the fetal liver which is the major site of erythropoiesis of the fetus. Uteroferrin, although implicated in transplantal iron transport, also possesses many of the properties of a lysosomal enzyme and, when newly synthesized, carries the so-called lysosomal recognition marker, mannose 6-phosphate. The phosphate group is masked by a covering N-acetylglucosamine residue, a feature which may account for its secretion rather than retention within lysosomes. Evidence is also presented that the oligosaccharide chains of newly synthesized uteroferrin are larger than those of the mature form and are trimmed after secretion. The phosphate group is also removed. It is not clear whether uteroferrin carbohydrate is implicated in the movement of the glycoprotein across the placenta as well as its uptake by the fetal liver.

  10. On Secret Sharing with Nonlinear Product Reconstruction

    DEFF Research Database (Denmark)

    Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego

    2015-01-01

    Multiplicative linear secret sharing is a fundamental notion in the area of secure multiparty computation and, since recently, in the area of two-party cryptography as well. In a nutshell, this notion guarantees that the product of two secrets is obtained as a linear function of the vector consis...

  11. Primary endocrine-secreting pancreatic tumors.

    Science.gov (United States)

    Macaron, C

    1980-04-01

    Insulinoma, glucagonoma, gastrinoma (Zollinger-Ellison syndrome), vipoma, somatostatinoma and a tumor that secretes human pancreatic polypeptide are the primary endocrine-secreting tumors of the pancreas. hormones are produced by specific tumor cell types and cause a variety of dramatic clinical pictures. Diagnosis often requires hormone assays. Computerized tomography may be helpful. Definitive surgical treatment is possible, but metastases may be present.

  12. Family Secrets: The Bioethics of Genetic Testing

    Science.gov (United States)

    Markowitz, Dina G.; DuPre, Michael J.; Holt, Susan; Chen, Shaw-Ree; Wischnowski, Michael

    2006-01-01

    This article discusses "Family Secrets," a problem-based learning (PBL) curriculum module that focuses on the bioethical implications of genetic testing. In high school biology classrooms throughout New York State, students are using "Family Secrets" to learn about DNA testing; Huntington's disease (HD); and the ethical, legal,…

  13. The Secret in the Information Society

    NARCIS (Netherlands)

    D.W.J. Broeders (Dennis)

    2016-01-01

    textabstractWho can still keep a secret in a world in which everyone and everything are connected by technology aimed at charting and cross-referencing people, objects, movements, behaviour, relationships, tastes and preferences? The possibilities to keep a secret have come under severe pressure in

  14. Analysis of Secreted Proteins Using SILAC

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Blagoev, Blagoy; Kratchmarova, Irina

    2014-01-01

    Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues...

  15. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Mark Verway

    Full Text Available Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D. We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans.

  16. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  17. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  18. Characterization of a secreted Chlamydia protease

    DEFF Research Database (Denmark)

    Shaw, Allan C; Vandahl, Brian; Larsen, Martin Røssel

    2002-01-01

    Chlamydiae are obligate intracellular bacteria that are important human pathogens. The Chlamydia genomes contain orthologues to secretion apparatus proteins from other intracellular bacteria, but only a few secreted proteins have been identified. Most likely, effector proteins are secreted in order...... to promote infection. Effector proteins cannot be identified by motif or similarity searches. As a new strategy for identification of secreted proteins we have compared 2D-PAGE profiles of [35S]-labelled Chlamydia proteins from whole lysates of infected cells to 2D-PAGE profiles of proteins from purified...... Chlamydia. Several secretion candidates from Chlamydia trachomatis D and Chlamydia pneumoniae were detected by this method. Two protein spots were identified among the candidates. These represent fragments of the 'chlamydial protease- or proteasome-like activity factor' (CPAF) and were clearly present in 2D...

  19. Current Therapies That Modify Glucagon Secretion

    DEFF Research Database (Denmark)

    Grøndahl, Magnus F; Keating, Damien J; Vilsbøll, Tina

    2017-01-01

    and provide insights into how antidiabetic drugs influence glucagon secretion as well as a perspective on the future of glucagon-targeting drugs. RECENT FINDINGS: Several older as well as recent investigations have evaluated the effect of antidiabetic agents on glucagon secretion to understand how glucagon...... may be involved in the drugs' efficacy and safety profiles. Based on these findings, modulation of glucagon secretion seems to play a hitherto underestimated role in the efficacy and safety of several glucose-lowering drugs. Numerous drugs currently available to diabetologists are capable of altering...... glucagon secretion: metformin, sulfonylurea compounds, insulin, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter 2 inhibitors and amylin mimetics. Their diverse effects on glucagon secretion are of importance for their individual efficacy and safety...

  20. Toxins and Secretion Systems of Photorhabdus luminescens

    Directory of Open Access Journals (Sweden)

    Athina Rodou

    2010-06-01

    Full Text Available Photorhabdus luminescens is a nematode-symbiotic, gram negative, bioluminescent bacterium, belonging to the family of Enterobacteriaceae.Recent studies show the importance of this bacterium as an alternative source of insecticides, as well as an emerging human pathogen. Various toxins have been identified and characterized in this bacterium. These toxins are classified into four major groups: the toxin complexes (Tcs, the Photorhabdus insect related (Pir proteins, the “makes caterpillars floppy” (Mcf toxins and the Photorhabdus virulence cassettes (PVC; the mechanisms however of toxin secretion are not fully elucidated. Using bioinformatics analysis and comparison against the components of known secretion systems, multiple copies of components of all known secretion systems, except the ones composing a type IV secretion system, were identified throughout the entire genome of the bacterium. This indicates that Photorhabdus luminescens has all the necessary means for the secretion of virulence factors, thus it is capable of establishing a microbial infection.

  1. Toxins and secretion systems of Photorhabdus luminescens.

    Science.gov (United States)

    Rodou, Athina; Ankrah, Dennis O; Stathopoulos, Christos

    2010-06-01

    Photorhabdus luminescens is a nematode-symbiotic, gram negative, bioluminescent bacterium, belonging to the family of Enterobacteriaceae. Recent studies show the importance of this bacterium as an alternative source of insecticides, as well as an emerging human pathogen. Various toxins have been identified and characterized in this bacterium. These toxins are classified into four major groups: the toxin complexes (Tcs), the Photorhabdus insect related (Pir) proteins, the "makes caterpillars floppy" (Mcf) toxins and the Photorhabdus virulence cassettes (PVC); the mechanisms however of toxin secretion are not fully elucidated. Using bioinformatics analysis and comparison against the components of known secretion systems, multiple copies of components of all known secretion systems, except the ones composing a type IV secretion system, were identified throughout the entire genome of the bacterium. This indicates that Photorhabdus luminescens has all the necessary means for the secretion of virulence factors, thus it is capable of establishing a microbial infection.

  2. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice

    DEFF Research Database (Denmark)

    Giordano, Antonio; Perugini, Jessica; Kristensen, David Møbjerg

    2017-01-01

    During pregnancy and lactation, subcutaneous white adipocytes in the mouse mammary gland transdifferentiate reversibly to milk-secreting epithelial cells. In this study, we demonstrate by transmission electron microscopy that in the post-lactating mammary gland interscapular multilocular adipocytes...... found close to the mammary alveoli contain milk protein granules. Use of the Cre-loxP recombination system allowed showing that the involuting mammary gland of whey acidic protein-Cre/R26R mice, whose secretory alveolar cells express the lacZ gene during pregnancy, contains some X...

  3. Redox warfare between airway epithelial cells and Pseudomonas: dual oxidase versus pyocyanin.

    Science.gov (United States)

    Rada, Balázs; Leto, Thomas L

    2009-01-01

    The importance of reactive oxygen species-dependent microbial killing by the phagocytic cell NADPH oxidase has been appreciated for some time, although only recently has an appreciation developed for the partnership of lactoperoxidase with related dual oxidases (Duox) within secretions of the airway surface layer. This system produces mild oxidants designed for extracellular killing that are effective against several airway pathogens, including Staphylococcus aureus, Burkholderia cepacia, and Pseudomonas aeruginosa. Establishment of chronic pseudomonas infections involves adaptations to resist oxidant-dependent killing by expression of a redox-active virulence factor, pyocyanin, that competitively inhibits epithelial Duox activity by consuming intracellular NADPH and producing superoxide, thereby inflicting oxidative stress on the host.

  4. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Koji Kitazawa

    2016-05-01

    Full Text Available In development, embryonic ectoderm differentiates into neuroectoderm and surface ectoderm using poorly understood mechanisms. Here, we show that the transcription factor OVOL2 maintains the transcriptional program of human corneal epithelium cells (CECs, a derivative of the surface ectoderm, and that OVOL2 may regulate the differential transcriptional programs of the two lineages. A functional screen identified OVOL2 as a repressor of mesenchymal genes to maintain CECs. Transduction of OVOL2 with several other transcription factors induced the transcriptional program of CECs in fibroblasts. Moreover, neuroectoderm derivatives were found to express mesenchymal genes, and OVOL2 alone could induce the transcriptional program of CECs in neural progenitors by repressing these genes while activating epithelial genes. Our data suggest that the difference between the transcriptional programs of some neuroectoderm- and surface ectoderm-derivative cells may be regulated in part by a reciprocally repressive mechanism between epithelial and mesenchymal genes, as seen in epithelial-to-mesenchymal transition.

  5. Bile salts secretion in cirrhosis.

    Science.gov (United States)

    Correia, J P; Areias, E; Meneses, L; Tiago, E

    1977-02-01

    The bile salts secretion was studied in ten normal subjects and sixteen patients with alcoholic cirrhosis, in a basal period and during 60 minutes after Secretin injection. Total bile salts were measured by a modification of the enzymatic method of Iwata and Yamasaki and the individual bile salts were separated by silica gel thin-layer chromatography. During the 60 minutes after Secretin the mean concentration was 2.88 +/- 2.58 muM/ml in normals and 1.96 +/- 1.25 muM/ml in cirrhotics. The difference is not significant. During the first 20 minutes however the concentration was higher than 3 muM/ml in 8 out of 10 normals and lower than 2 muM/ml in 10 out 16 cirrhotics. The ratios of tri-to dihydroxy bile salts was similar in both groups. The ratios between bile salts conjugated with glycine and with taurine was higher in normals, and the ratio between free to conjugated bile salts was higher in cirrhotics. The lower concentration of total bile salts immediatly after Secretin, the higher proportion of taurin conjugates and of free bile salts could be important factors in the difficulties of fact digestion and absorption frequently found in patients with alcoholic cirrhosis.

  6. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  7. Identification of epithelial cells in bronchoalveolar lavage.

    Science.gov (United States)

    Finotto, S; Rado, V; Dal Vecchio, A; Milani, G; Fabbri, L M; Maestrelli, P

    1993-01-01

    1. Damage to the bronchial epithelium occurs after the inhalation of toxic substances and allergens, and through virus infections and it may lead to increased desquamation of epithelial cells in bronchoalveolar lavage (BAL). 2. In this study we compared two methods of staining the epithelial cells of BAL, the conventional cytochemical May Grunwald-Giemsa stain (MGG) and an immunocytochemical technique using a monoclonal antibody anti-human cytokeratin (CK) detected with APAAP immuno-alkaline phosphatase. BAL was obtained from 13 subjects and the epithelial cells were cytocentrifuged either immediately after collection (fraction A) or after washing (fraction B). 3. Higher percentages of epithelial cells were identified in fraction A with CK (20.0 +/- 5.1%) than in fraction A with MGG (11.2 +/- 2.3%), which recognized only ciliated epithelial cells. In fact a proportion of CK-positive cells (34%) in fraction A were not ciliated. Underestimation of epithelial cells by MGG compared to CK was more pronounced in fraction B (8.0 +/- 2.9% and 22.9 +/- 3.0%, respectively) as there was a relative loss of ciliated CK+ cells after washings. 4. These results suggest that immunocytochemical staining with an anti-cytokeratin monoclonal antibody is more sensitive than using the MGG stain in detecting epithelial cells in BAL.

  8. Mycobacteria bypass mucosal NF-kB signalling to induce an epithelial anti-inflammatory IL-22 and IL-10 response.

    Directory of Open Access Journals (Sweden)

    Nataliya Lutay

    Full Text Available The mechanisms by which mycobacteria subvert the inflammatory defence to establish chronic infection remain an unresolved question in the pathogenesis of tuberculosis. Using primary epithelial cells, we have analysed mycobacteria induced epithelial signalling pathways from activation of TLRs to cytokine secretion. Mycobacterium bovis bacilli Calmette-Guerin induced phosphorylation of glycogen synthase kinase (GSK3 by PI3K-Akt in the signalling pathway downstream of TLR2 and TLR4. Mycobacteria did not suppress NF-κB by activating the peroxisome proliferator-activated receptor γ. Instead the pro-inflammatory NF-κB was bypassed by mycobacteria induced GSK3 inhibition that promoted the anti-inflammatory transcription factor CREB. Mycobacterial infection did not thus induce mucosal pro-inflammatory response as measured by TNFα and IFNγ secretion, but led to an anti-inflammatory IL-10 and IL-22 production. Apart from CREB, MAP3Ks p38 and ERK1/2 activated the transcription factor AP-1 leading to IL-6 production. Interestingly, blocking of TLR4 before infection decreased epithelial IL-6 secretion, but increased the CREB-activated IL-10 production. Our data indicate that mycobacteria suppress epithelial pro-inflammatory production by suppressing NF-κB activation thereby shifting the infection towards an anti-inflammatory state. This balance between the host immune response and the pathogen could determine the outcome of infection.

  9. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  10. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae

    Directory of Open Access Journals (Sweden)

    Krehenbrink Martin

    2008-01-01

    Full Text Available Abstract Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP, a twin-arginine translocase (TAT secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP were generated, but only mutations affecting the PrsDE (Type I and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V is required for establishing the symbiosis with legumes. The PrsDE (Type I system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to

  11. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Krehenbrink, Martin; Downie, J Allan

    2008-01-29

    Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the secretion system itself.

  12. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    Science.gov (United States)

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  13. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.

    Science.gov (United States)

    Browning, Kirsteen N; Travagli, R Alberto

    2014-10-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

  14. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  15. Epithelial Inclusion Cyst in Conjunctival Melanoma.

    Science.gov (United States)

    Esposito, Evangelina; Zoroquiain, Pablo; Mastromonaco, Christina; Morales, Melina C; Belfort Neto, Rubens; Burnier, Miguel

    2016-09-01

    Conjunctival melanoma is the second most common conjunctival malignancy. Its differential diagnosis with other conjunctival melanocytic neoplasms is inherently difficult. The presence of epithelial cysts is a useful feature in conjunctival tumors and favors a benign lesion. Herein 2 cases of conjunctival melanoma with cysts are presented. To the best of our knowledge, this is the first series of conjunctival melanoma with epithelial inclusion cysts. This series emphasizes the importance of considering several malignant features when reviewing conjunctival melanocytic lesions, as malignancy can exist even in the presence of epithelial inclusion cysts. © The Author(s) 2016.

  16. Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein.

    Directory of Open Access Journals (Sweden)

    Hadi Zarkoob

    Full Text Available In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme.

  17. Concentrations of ceftibuten in bronchial secretions.

    Science.gov (United States)

    Scaglione, F; Triscari, F; Demartini, G; Arcidiacono, M; Cocuzza, C; Fraschini, F

    1995-01-01

    Ceftibuten is a broad-spectrum oral cephalosporin exhibiting antimicrobial activity against a wide range of gram-negative and some gram-positive pathogens. Pharmacokinetic studies have shown that the molecule has an oral bioavailability higher than 90% of the administered dose (reaching peak serum concentrations of 5-19 mg/l after a single dose of 200 and 400 mg). Moreover, ceftibuten has been shown to be useful in the treatment of acute lower respiratory tract infections. This study was performed to determine the distribution of ceftibuten in bronchial secretions from patients affected by the exacerbation of chronic bronchitis. Patients were treated with a single 400-mg oral dose of ceftibuten. Blood and bronchial-secretion samples were obtained just before, and at 0.5, 1, 2, 4, 8, 12, 16 and 24 h after dosing. Cells were separated from bronchial secretions by centrifugation. Ceftibuten in duplicate samples of both serum and bronchial secretion was quantified by HPLC. Ceftibuten reached peak levels 2 and 4 h after oral administration in serum and in bronchial secretions, respectively (18.12 +/- 2.13 and 9.19 +/- 3.1 mg/l, respectively). Falling curves after the peaks showed a monoexponential decay. The absorption was very rapid both in serum and bronchial secretions, but elimination was slower in bronchial secretions than in serum.

  18. Lycaenid Caterpillar Secretions Manipulate Attendant Ant Behavior.

    Science.gov (United States)

    Hojo, Masaru K; Pierce, Naomi E; Tsuji, Kazuki

    2015-08-31

    Mutualistic interactions typically involve the exchange of different commodities between species. Nutritious secretions are produced by a number of insects and plants in exchange for services such as defense. These rewards are valuable metabolically and can be used to reinforce the behavior of symbiotic partners that can learn and remember them effectively. We show here novel effects of insect exocrine secretions produced by caterpillars in modulating the behavior of attendant ants in the food-for-defense interaction between lycaenid butterflies and ants. Reward secretions from the dorsal nectary organ (DNO) of Narathura japonica caterpillars function to reduce the locomotory activities of their attendant ants, Pristomyrmex punctatus workers. Moreover, workers that feed from caterpillar secretions are significantly more likely to show aggressive responses to eversion of the tentacle organs of the caterpillars. Analysis of the neurogenic amines in the brains of workers that consumed caterpillar secretions showed a significant decrease in levels of dopamine compared with controls. Experimental treatments in which reserpine, a known inhibitor of dopamine in Drosophila, was fed to workers similarly reduced their locomotory activity. We conclude that DNO secretions of lycaenid caterpillars can manipulate attendant ant behavior by altering dopaminergic regulation and increasing partner fidelity. Unless manipulated ants also receive a net nutritional benefit from DNO secretions, this suggests that similar reward-for-defense interactions that have been traditionally considered to be mutualisms may in fact be parasitic in nature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  20. Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jiyun [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: yangjy@cqu.edu.cn; Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Optoelectric Technology and Systems, Ministry of Education (China); Yu Wenwu [Department of Mathematics, Southeast University, Nanjing 210096 (China); Wong Kwokwo [Department of Computer Engineering and Information Technology, City University of Hong Kong (Hong Kong); Wei Jun [Zhunyi Medical College, Zhunyi 563000, Guizhou (China)

    2009-04-30

    Recently, Yu et al. presented a new cryptographic scheme based on delayed chaotic neural networks. In this letter, a fundamental flaw in Yu's scheme is described. By means of chosen plaintext attack, the secret keystream used can easily be obtained.

  1. FOXO responses to Porphyromonas gingivalis in epithelial cells

    Science.gov (United States)

    Wang, Qian; Sztukowska, Maryta; Ojo, Akintunde; Scott, David A.; Wang, Huizhi; Lamont, Richard J.

    2015-01-01

    Summary Porphyromonas gingivalis is a prominent periodontal, and emerging systemic, pathogen that redirects host cell signalling pathways and modulates innate immune responses. In this study, we show that P. gingivalis infection induces the dephosphorylation and activation of forkhead box-O (FOXO)1, 3 and 4 in gingival epithelial cells. In addition, immunofluorescence showed that FOXO1 accumulated in the nucleus of P. gingivalis-infected cells. Quantitative reverse transcription PCR demonstrated that transcription of genes involved in protection against oxidative stress (Cat, Sod2, Prdx3), inflammatory responses (IL1β) and anti-apoptosis (Bcl-6) was induced by P. gingivalis, while small-interfering RNA (siRNA)-mediated knockdown of FOXO1 suppressed the transcriptional activation of these genes. P. gingivalis-induced secretion of interleukin (IL)-1β and inhibition of apoptosis were also impeded by FOXO1 knockdown. Neutralization of reactive oxygen species (ROS) by N-acetyl-l-cysteine blocked the activation of FOXO1 by P. gingivalis and concomitantly suppressed the activation of oxidative stress responses, anti-apoptosis programmes and IL-β production. Inhibition of c-Jun-N-terminal kinase (JNK) either pharmacologically or by siRNA, reduced FOXO1 activation and downstream FOXO1-dependent gene regulation in response to P. gingivalis. The results indicate that P. gingivalis-induced ROS activate FOXO transcription factors through JNK signalling, and that FOXO1 controls oxidative stress responses, inflammatory cytokine production and cell survival. These data position FOXO as an important signalling node in the epithelial cell–P. gingivalis interaction, with particular relevance to cell fate and dysbiotic host responses. PMID:25958948

  2. [Mechanism of alcohol action on gastric secretion].

    Science.gov (United States)

    Vasilevskaia, L S; Skurikhin, I M; Guliev, R R

    2001-01-01

    In chronic experiment on dogs (3 dogs with Pavlov's miniature stomach, 3 dogs with Heidenhain's miniature stomach) the mechanism of action of alcohol (8%-150 ml) on gastric secretion was clarified. For this purpose the new inhibitor of gastric secretion--glycopeptide was utilized, which action was preset in laboratory of G.K. Shlygin. Was shown, that in effect of alcohol on gastric secretion take place the complicated mechanism including as a nervous regulation (vagus nerves), and humoral: participation of gastrin and histamine in secretory effect of a stomach, and also immediate effect of ethanol on acid glands.

  3. Regulation of glucagon secretion by incretins

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Christensen, M; Lund, A

    2011-01-01

    Glucagon secretion plays an essential role in the regulation of hepatic glucose production, and elevated fasting and postprandial plasma glucagon concentrations in patients with type 2 diabetes (T2DM) contribute to their hyperglycaemia. The reason for the hyperglucagonaemia is unclear, but recent...... that endogenous GLP-1 plays an important role in regulation of glucagon secretion during fasting as well as postprandially. The mechanisms whereby GLP-1 regulates glucagon secretion are debated, but studies in isolated perfused rat pancreas point to an important role for a paracrine regulation by somatostatin...

  4. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease.

    Directory of Open Access Journals (Sweden)

    Gangwei Ou

    Full Text Available BACKGROUND: Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s to induce interleukin-8 (IL-8 production by human intestinal epithelial cells. The aim was to identify the secreted component(s of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV. METHODOLOGY/PRINCIPAL FINDINGS: Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-alpha (TNF-alpha secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-alpha in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.

  5. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  6. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphi...

  7. Thrombomodulin promotes corneal epithelial wound healing

    National Research Council Canada - National Science Library

    Huang, Yi-Hsun; I, Ching-Chang; Kuo, Cheng-Hsiang; Hsu, Yun-Yan; Lee, Fang-Tzu; Shi, Guey-Yueh; Tseng, Sung-Huei; Wu, Hua-Lin

    2015-01-01

    To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23...

  8. Tolvaptan inhibits ERK-dependent cell proliferation, Cl− secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin

    Science.gov (United States)

    Reif, Gail A.; Yamaguchi, Tamio; Nivens, Emily; Fujiki, Hiroyuki; Pinto, Cibele S.

    2011-01-01

    In autosomal dominant polycystic kidney disease (ADPKD), arginine vasopressin (AVP) accelerates cyst growth by stimulating cAMP-dependent ERK activity and epithelial cell proliferation and by promoting Cl−-dependent fluid secretion. Tolvaptan, a V2 receptor antagonist, inhibits the renal effects of AVP and slows cyst growth in PKD animals. Here, we determined the effect of graded concentrations of tolvaptan on intracellular cAMP, ERK activity, cell proliferation, and transcellular Cl− secretion using human ADPKD cyst epithelial cells. Incubation of ADPKD cells with 10−9 M AVP increased intracellular cAMP and stimulated ERK and cell proliferation. Tolvaptan caused a concentration-dependent inhibition of AVP-induced cAMP production with an apparent IC50 of ∼10−10 M. Correspondingly, tolvaptan inhibited AVP-induced ERK signaling and cell proliferation. Basolateral application of AVP to ADPKD cell monolayers grown on permeable supports caused a sustained increase in short-circuit current that was completely blocked by the Cl− channel blocker CFTRinh-172, consistent with AVP-induced transepithelial Cl− secretion. Tolvaptan inhibited AVP-induced Cl− secretion and decreased in vitro cyst growth of ADPKD cells cultured within a three-dimensional collagen matrix. These data demonstrate that relatively low concentrations of tolvaptan inhibit AVP-stimulated cell proliferation and Cl−-dependent fluid secretion by human ADPKD cystic cells. PMID:21816754

  9. Multifocal calcifying epithelial odontogenic tumor.

    Science.gov (United States)

    Sedghizadeh, Parish P; Wong, Derek; Shuler, Charles F; Linz, Vincent; Kalmar, John R; Allen, Carl M

    2007-08-01

    The calcifying epithelial odontogenic tumor (CEOT), or Pindborg tumor, is a rare and benign odontogenic neoplasm that affects the jaw. The most common manifestation of CEOT is a unifocal or localized lesion of the involved jaw, which may appear clinically as a hard tissue swelling and radiographically as a mixed radiolucent-radiopaque mass. In this article, we present a unique case of CEOT affecting multiple sites in the maxilla and mandible of a 51-year-old white man. Though biopsy samples from all involved sites revealed similar histopathologic features consistent with CEOT, the fact that there was a multifocal presentation is an unusual phenomenon for CEOT and has never been reported. Multifocal odontogenic lesions are not typical but have been observed in conditions associated with known genetic mutations. For example, multiple odontogenic keratocysts are the most common feature of the inherited condition known as nevoid basal cell carcinoma syndrome. This case, however, is the first one to demonstrate that there may be a multifocal variant of CEOT that has not been previously recognized.

  10. Prolactin regulates luminal bicarbonate secretion in the intestine of the sea bream (Sparus aurata L.).

    Science.gov (United States)

    Ferlazzo, A; Carvalho, E S M; Gregorio, S F; Power, D M; Canario, A V M; Trischitta, F; Fuentes, J

    2012-11-01

    The pituitary hormone prolactin is a pleiotropic endocrine factor that plays a major role in the regulation of ion balance in fish, with demonstrated actions mainly in the gills and kidney. The role of prolactin in intestinal ion transport remains little studied. In marine fish, which have high drinking rates, epithelial bicarbonate secretion in the intestine produces luminal carbonate aggregates believed to play a key role in water and ion homeostasis. The present study was designed to establish the putative role of prolactin in the regulation of intestinal bicarbonate secretion in a marine fish. Basolateral addition of prolactin to the anterior intestine of sea bream mounted in Ussing chambers caused a rapid (bicarbonate secretion measured by pH-stat. A clear inhibitory dose-response curve was obtained, with a maximal inhibition of 60-65% of basal bicarbonate secretion. The threshold concentration of prolactin for a significant effect on bicarbonate secretion was 10 ng ml(-1), which is comparable with putative plasma levels in seawater fish. The effect of prolactin on apical bicarbonate secretion was independent of the generation route for bicarbonate, as shown in a preparation devoid of basolateral HCO(3)(-)/CO(2) buffer. Specific inhibitors of JAK2 (AG-490, 50 μmol l(-1)), PI3K (LY-294002, 75 μmol l(-1)) or MEK (U-012610, 10 μmol l(-1)) caused a 50-70% reduction in the effect of prolactin on bicarbonate secretion, and demonstrated the involvement of prolactin receptors. In addition to rapid effects, prolactin has actions at the genomic level. Incubation of intestinal explants of anterior intestine of the sea bream in vitro for 3 h demonstrated a specific effect of prolactin on the expression of the Slc4a4A Na(+)-HCO(3)(-) co-transporter, but not on the Slc26a6A or Slc26a3B Cl(-)/HCO(3)(-) exchanger. We propose a new role for prolactin in the regulation of bicarbonate secretion, an essential function for ion/water homeostasis in the intestine of marine fish.

  11. Early Secretory Antigenic Target-6 Drives Matrix Metalloproteinase-10 Gene Expression and Secretion in Tuberculosis.

    Science.gov (United States)

    Brilha, Sara; Sathyamoorthy, Tarangini; Stuttaford, Laura H; Walker, Naomi F; Wilkinson, Robert J; Singh, Shivani; Moores, Rachel C; Elkington, Paul T; Friedland, Jon S

    2017-02-01

    Tuberculosis (TB) causes disease worldwide, and multidrug resistance is an increasing problem. Matrix metalloproteinases (MMPs), particularly the collagenase MMP-1, cause lung extracellular matrix destruction, which drives disease transmission and morbidity. The role in such tissue damage of the stromelysin MMP-10, a key activator of the collagenase MMP-1, was investigated in direct Mycobacterium tuberculosis (Mtb)-infected macrophages and in conditioned medium from Mtb-infected monocyte-stimulated cells. Mtb infection increased MMP-10 secretion from primary human macrophages 29-fold, whereas Mtb-infected monocytes increased secretion by 4.5-fold from pulmonary epithelial cells and 10.5-fold from fibroblasts. Inhibition of MMP-10 activity decreased collagen breakdown. In two independent cohorts of patients with TB from different continents, MMP-10 was increased in both induced sputum and bronchoalveolar lavage fluid compared with control subjects and patients with other respiratory diseases (both P < 0.05). Mtb drove 3.5-fold greater MMP-10 secretion from human macrophages than the vaccine strain bacillus Calmette-Guerin (P < 0.001), whereas both mycobacteria up-regulated TNF-α secretion equally. Using overlapping, short, linear peptides covering the sequence of early secretory antigenic target-6, a virulence factor secreted by Mtb, but not bacillus Calmette-Guerin, we found that stimulation of human macrophages with a single specific 15-amino acid peptide sequence drove threefold greater MMP-10 secretion than any other peptide (P < 0.001). Mtb-driven MMP-10 secretion was inhibited in a dose-dependent manner by p38 and extracellular signal-related kinase mitogen-activated protein kinase blockade (P < 0.001 and P < 0.01 respectively), but it was not affected by inhibition of NF-κB. In summary, Mtb activates inflammatory and stromal cells to secrete MMP-10, and this is partly driven by the virulence factor early secretory antigenic target-6

  12. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  13. Switching of G-protein Usage by the Calcium-sensing Receptor Reverses Its Effect on Parathyroid Hormone-related Protein Secretion in Normal Versus Malignant Breast Cells*

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Zawalich, Walter; Wysolmerski, John

    2008-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to s...

  14. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  15. [Neural codes for perception].

    Science.gov (United States)

    Romo, R; Salinas, E; Hernández, A; Zainos, A; Lemus, L; de Lafuente, V; Luna, R

    This article describes experiments designed to show the neural codes associated with the perception and processing of tactile information. The results of these experiments have shown the neural activity correlated with tactile perception. The neurones of the primary somatosensory cortex (S1) represent the physical attributes of tactile perception. We found that these representations correlated with tactile perception. By means of intracortical microstimulation we demonstrated the causal relationship between S1 activity and tactile perception. In the motor areas of the frontal lobe is to be found the connection between sensorial and motor representation whilst decisions are being taken. S1 generates neural representations of the somatosensory stimuli which seen to be sufficient for tactile perception. These neural representations are subsequently processed by central areas to S1 and seem useful in perception, memory and decision making.

  16. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  17. Lycaenid Caterpillar Secretions Manipulate Attendant Ant Behavior

    National Research Council Canada - National Science Library

    Hojo, Masaru K; Pierce, Naomi E; Tsuji, Kazuki

    2015-01-01

    .... We show here novel effects of insect exocrine secretions produced by caterpillars in modulating the behavior of attendant ants in the food-for-defense interaction between lycaenid butterflies and ants...

  18. Acetylcholine regulates ghrelin secretion in humans

    NARCIS (Netherlands)

    F. Broglio (Fabio); E. Ghigo (Ezio); C. Gottero; F. Prodam (Flavia); S. Destefanis; A. Benso; C. Gauna (Carlotta); L.J. Hofland (Leo); E. Arvat; A-J. van der Lely (Aart-Jan); P.M. van Koetsveld (Peter)

    2004-01-01

    textabstractGhrelin secretion has been reportedly increased by fasting and energy restriction but decreased by food intake, glucose, insulin, and somatostatin. However, its regulation is still far from clarified. The cholinergic system mediates some ghrelin actions, e.g.

  19. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  20. Microbial cell surfaces and secretion systems

    NARCIS (Netherlands)

    Tommassen, J.P.M.|info:eu-repo/dai/nl/069127077; Wosten, H.A.B.|info:eu-repo/dai/nl/120693186

    2015-01-01

    Microbial cell surfaces, surface-exposed organelles, and secreted proteins are important for the interaction with the environment, including adhesion to hosts, protection against host defense mechanisms, nutrient acquisition, and intermicrobial competition. Here, we describe the structures of the

  1. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR regulates the mucus cell metaplasia in vitro and in vivo. METHODOLOGY/FINDINGS: Metaplasia in primary human small airway epithelial cells (SAEC was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. CONCLUSIONS: The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors

  2. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Aguilera-Aguirre, Leopoldo; Ramana, Kota V; Boldogh, Istvan; Srivastava, Satish K

    2010-12-28

    Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR) regulates the mucus cell metaplasia in vitro and in vivo. Metaplasia in primary human small airway epithelial cells (SAEC) was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS)-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE)-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors such as fidarestat could be developed as therapeutic agents to

  3. YBX1/YB-1 induces partial EMT and tumourigenicity through secretion of angiogenic factors into the extracellular microenvironment

    Science.gov (United States)

    Gopal, Shashi K.; Greening, David W.; Mathias, Rommel A.; Ji, Hong; Rai, Alin; Chen, Maoshan; Zhu, Hong-Jian; Simpson, Richard J.

    2015-01-01

    Epithelial-mesenchymal transition (EMT) describes a morphogenetic program which confers mesenchymal cell properties, such as reduced cell-cell contact and increased cell migration and invasion, to epithelial cells. Here we investigate the role of the pleiotropic transcription/splicing factor and RNA-binding protein nuclease-sensitive element-binding protein 1 (YBX1/YB-1) in increasing the oncogenic potential of epithelial MDCK cells. Characterization of MDCK cells expressing YBX1 (MDCKYBX1 cells) revealed a partial EMT phenotype, including cytosolic relocalization of E-cadherin, increased cell scattering, and anchorage-independent growth. Subcutaneous injection of parental MDCK cells into NOD/SCID mice did not form tumours. Critically, MDCKYBX1 cells established viable tumour xenografts, and immuno-histochemical staining indicated murine vascularization by CD31+ endothelial cells. We analysed the total secretome (containing soluble and extracellular vesicles) of MDCKYBX1 cells to investigate regulation of the tumour microenvironment. YBX1 expression elevated release of secreted factors known to enhance angiogenesis (TGF-β, CSF-1, NGF, VGF, ADAM9 and ADAM17), compared to MDCK cells. Importantly, treatment with MDCKYBX1 cell-derived secretome increased recipient 2F-2B endothelial cell motility. This defines YBX1 as an oncogenic enhancer that can regulate tumour angiogenesis via release of secreted modulators into the extracellular microenvironment. PMID:25980435

  4. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  5. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  6. NEMEFO: NEural MEteorological FOrecast

    Energy Technology Data Exchange (ETDEWEB)

    Pasero, E.; Moniaci, W.; Meindl, T.; Montuori, A. [Polytechnic of Turin (Italy). Dept. of Electronics

    2004-07-01

    Artificial Neural Systems are a well-known technique used to classify and recognize objects. Introducing the time dimension they can be used to forecast numerical series. NEMEFO is a ''nowcasting'' tool, which uses both statistical and neural systems to forecast meteorological data in a restricted area close to a meteorological weather station in a short time range (3 hours). Ice, fog, rain are typical events which can be anticipated by NEMEFO. (orig.)

  7. Protein Secretion and the Endoplasmic Reticulum

    OpenAIRE

    Benham, Adam M.

    2012-01-01

    In a complex multicellular organism, different cell types engage in specialist functions, and as a result, the secretory output of cells and tissues varies widely. Whereas some quiescent cell types secrete minor amounts of proteins, tissues like the pancreas, producing insulin and other hormones, and mature B cells, producing antibodies, place a great demand on their endoplasmic reticulum (ER). Our understanding of how protein secretion in general is controlled in the ER is now quite sophisti...

  8. Peptides and neurotransmitters that affect renin secretion

    Science.gov (United States)

    Ganong, W. F.; Porter, J. P.; Bahnson, T. D.; Said, S. I.

    1984-01-01

    Substance P inhibits renin secretion. This polypeptide is a transmitter in primary afferent neurons and is released from the peripheral as well as the central portions of these neurons. It is present in afferent nerves from the kidneys. Neuropeptide Y, which is a cotransmitter with norepinephrine and epinephrine, is found in sympathetic neurons that are closely associated with and presumably innervate the juxtagolmerular cells. Its effect on renin secretion is unknown, but it produces renal vasoconstriction and natriuresis. Vasoactive intestinal polypeptide (VIP) is a cotransmitter with acetylocholine in cholinergic neurons, and this polypeptide stimulates renin secretion. We cannot find any evidence for its occurence in neurons in the kidneys, but various stimuli increase plasma VIP to levels comparable to those produced by doses of exogenous VIP which stimulated renin secretion. Neostigmine increases plasma VIP and plasma renin activity, and the VIP appears to be responsible for the increase in renin secretion, since the increase is not blocked by renal denervation or propranolol. Stimulation of various areas in the brain produces sympathetically mediated increases in plasma renin activity associated with increases in blood pressure. However, there is pharmacological evidence that the renin response can be separated from the blood pressure response. In anaesthetized dogs, drugs that increase central serotonergic discharge increase renin secretion without increasing blood pressure. In rats, activation of sertonergic neurons in the dorsal raphe nucleus increases renin secretion by a pathway that projects from this nucleus to the ventral hypothalamus, and from there to the kidneys via the sympathetic nervous system. The serotonin releasing drug parachloramphetamine also increases plasma VIP, but VIP does not appear to be the primary mediator of the renin response. There is preliminary evidence that the serotonergic neurons in the dorsal raphe nucleus are part of the

  9. Cholecystokinin inhibits gastrin secretion independently of paracrine somatostatin secretion in the pig

    DEFF Research Database (Denmark)

    Schmidt, P T; Hansen, L; Hilsted, L

    2004-01-01

    BACKGROUND: Cholecystokinin inhibits the secretion of gastrin from antral G cells, an effect that is speculated to be mediated by D cells secreting somatostatin. The aim of the study was to test directly whether cholecystokinin inhibition of antral gastrin secretion is mediated by somatostatin....... METHODS: The effects of CCK on gastrin and somatostatin secretion were studied in isolated vascularly perfused preparations of pig antrum before and after immunoneutralization brought about by infusion of large amounts of a high affinity monoclonal antibody against somatostatin. RESULTS: CCK infusion...... at 10(-9) M and 10(-8) M decreased gastrin output to 70.5% +/- 7.6% (n = 8) and 76.3% +/- 3.6% (n = 7) of basal output, respectively. CCK at 10(-10) M had no effect (n = 6). Somatostatin secretion was dose-dependently increased by CCK infusion and increased to 268 +/- 38.2% (n = 7) of basal secretion...

  10. The pathogenic potential of Helicobacter pullorum: possible role for the type VI secretion system.

    Science.gov (United States)

    Sirianni, Andrea; Kaakoush, Nadeem O; Raftery, Mark J; Mitchell, Hazel M

    2013-04-01

    Helicobacter pullorum is a putative enterohepatic pathogen that has been associated with hepatobiliary and gastrointestinal diseases in chickens and in humans. The pathogenic potential of H. pullorum NCTC 12826 was investigated. Adherence and gentamicin protection assays and scanning electron microscopy were performed to quantitate and visualise H. pullorum adherence and invasion. Proteomics coupled with mass spectrometry was employed to characterise the secretome of H. pullorum. Helicobacter pullorum was able to adhere to the Caco-2 intestinal epithelial cell line with a mean attachment value of 1.98 ± 0.16% and invade Caco-2 cells with a mean invasion value of 0.25 ± 0.02%. The in vitro adherence and invasion assays were confirmed with scanning electron microscopy, which showed that H. pullorum can adhere to host cells through flagellum-microvillus interaction and invade causing a membrane-ruffling effect. One hundred and thirty-seven proteins were identified, of which 33 were bioinformatically predicted to be secreted. Further functional classifications revealed six putative virulence and colonisation factors, which included cell-binding factor 2, flagellin, secreted protein Hcp, valine-glycine repeat protein G, a type VI secretion protein, and a protease. Protein threading of H. pullorum Hcp and subsequent 3D-Blast searches revealed structural similarities between Hcp and endocytic vesicle coat proteins, suggesting the type VI secretion system of H. pullorum may interact with endocytic vesicles. This study has shown that H. pullorum has the ability to adhere to and invade human cells and secrete factors that may contribute to the pathogenic potential of H. pullorum. © 2012 Blackwell Publishing Ltd.

  11. Leaf blade structure of Verbesina macrophylla (Cass.) F. S. Blake (Asteraceae): ontogeny, duct secretion mechanism and essential oil composition.

    Science.gov (United States)

    Bezerra, L D A; Mangabeira, P A O; de Oliveira, R A; Costa, L C D B; Da Cunha, M

    2018-02-02

    Secretory structures are common in Asteraceae, where they exhibit a high degree of morphological diversity. The species Verbesina macrophylla, popularly known as assa-peixe, is native to Brazil where it is widely used for medicinal purposes. Despite its potential medical importance, there have been no studies of the anatomy of this species, especially its secretory structures and secreted compounds. This study examined leaves of V. macrophylla with emphasis on secretory structures and secreted secondary metabolites. Development of secretory ducts and the mechanism of secretion production are described for V. macrophylla using ultrastructure, yield and chemical composition of its essential oils. Verbesina macrophylla has a hypostomatic leaf blade with dorsiventral mesophyll and secretory ducts associated with vascular bundles of schizogenous origin. Histochemistry identified the presence of lipids, terpenes, alkaloids and mucopolysaccharides. Ultrastructure suggests that the secretion released into the duct lumen is produced in plastids of transfer cells, parenchymal sheath cells and stored in vacuoles in these cells and duct epithelial cells. The essential oil content was 0.8%, and its major components were germacrene D, germacrene D-4-ol, β-caryophyllene, bicyclogermacrene and α-cadinol. Secretory ducts of V. macrophylla are squizogenous. Substances identified in tissues suggest that both secretions stored in the ducts and in adjacent parenchyma cells are involved in chemical defence. The essential oil is rich in sesquiterpenes, with germacrene D and its derivatives being notable components. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Development of secreted proteins as biotherapeutic agents.

    Science.gov (United States)

    Bonin-Debs, Angelika L; Boche, Irene; Gille, Hendrik; Brinkmann, Ulrich

    2004-04-01

    As one of the most important classes of proteins, secreted factors account for about one-tenth of the human genome, 3000 - 4000 in total, including factors of signalling pathways, blood coagulation and immune defence, as well as digestive enzymes and components of the extracellular matrix. Secreted proteins are a rich source of new therapeutics and drug targets, and are currently the focus of major drug discovery programmes throughout the industry. Many of the most important novel drugs developed in biotechnology have resulted from the application of secreted proteins as therapeutics. Secreted proteins often circulate throughout the body and, therefore, have access to most organs and tissues. Because of that, many of the factors are themselves therapeutic agents. This paper gives an overview on the features and functions of human secreted proteins and peptides, as well as strategies by which to discover additional therapeutic proteins from the human 'secretome'. Furthermore, a variety of examples are provided for the therapeutic use of recombinant secreted proteins as 'biologicals', including features and applications of recombinant antibodies, erythropoietin, insulin, interferon, plasminogen activators, growth hormone and colony-stimulating factors.

  13. Substrate adaptation of Trichophyton rubrum secreted endoproteases.

    Science.gov (United States)

    Chen, Jian; Yi, Jinling; Liu, Li; Yin, Songchao; Chen, Rongzhang; Li, Meirong; Ye, Congxiu; Zhang, Yu-qing; Lai, Wei

    2010-02-01

    Trichophyton rubrum is the most common pathogen caused the dermatophytosis of nail and skin in human. The secreted proteases were considered to be the most important virulence factors. However, the substrates adaptation of T. rubrum secreted proteases is largely unknown. For the first time, we use the keratins from human nail and skin stratum corneum as the growth medium to investigate the different expression patterns of T. rubrum secreted endoproteases genes. During grow in both keratin-containing media SUB7 and MEP2 were the highest expressed gene in each family. These results indicated that SUB7 and MEP2 may be the dominant endoproteases secreted by T. rubrum during host infection and the other proteases may play a supplementary role. The direct comparison of T. rubrum grown on skin and nail medium showed different substrate favorite of secreted endoproteases. The genes MEP2, SUB5, SUB2 and SUB3 were more active during growth in skin medium, possibly these proteases have a higher affinity for skin original keratins. While the structures of SUB1, SUB4, and MEP4 maybe more suitable for the degradation of nail original keratins. This work presents useful molecular details for further understanding the pathogenesis of secreted proteases and the wide adaptation of T. rubrum.

  14. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells.

    Science.gov (United States)

    Hiramatsu, Yukihiro; Yamamoto, Masatatsu; Satho, Tomomitsu; Irie, Keiichi; Kai, Akiko; Uyeda, Saori; Fukumitsu, Yuki; Toda, Akihisa; Miyata, Takeshi; Miake, Fumio; Arakawa, Takeshi; Kashige, Nobuhiro

    2014-05-10

    Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB-YVAD). YVAD is a tetrapeptide (tyrosine-valine-alanine-aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1β, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB-YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs. We constructed the rCTB-YVAD secretion vector pSCTB-YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB-YVAD was generated by transformation with pSCTB-YVAD. Both the culture supernatant of pSCTB-YVAD-transformed L. casei and purified rCTB-YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB-YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB-YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1β secretion in Caco-2 cells, without affecting cell viability. The rCTB protein fused to a functional peptide secreted by L. casei can bind to GM1 ganglioside, like rCTB, and recombinant

  15. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available De novo hair follicle formation in embryonic skin and new hair growth in adult skin are initiated when specialized mesenchymal dermal papilla (DP cells send cues to multipotent epithelial stem cells. Subsequently, DP cells are enveloped by epithelial stem cell progeny and other cell types to form a niche orchestrating hair growth. Understanding the general biological principles that govern the mesenchymal-epithelial interactions within the DP niche, however, has been hampered so far by the lack of systematic approaches to dissect the complete molecular make-up of this complex tissue. Here, we take a novel multicolor labeling approach, using cell type-specific transgenic expression of red and green fluorescent proteins in combination with immunolabeling of specific antigens, to isolate pure populations of DP and four of its surrounding cell types: dermal fibroblasts, melanocytes, and two different populations of epithelial progenitors (matrix and outer root sheath cells. By defining their transcriptional profiles, we develop molecular signatures characteristic for the DP and its niche. Validating the functional importance of these signatures is a group of genes linked to hair disorders that have been largely unexplored. Additionally, the DP signature reveals novel signaling and transcription regulators that distinguish them from other cell types. The mesenchymal-epithelial signatures include key factors previously implicated in ectodermal-neural fate determination, as well as a myriad of regulators of bone morphogenetic protein signaling. These findings establish a foundation for future functional analyses of the roles of these genes in hair development. Overall, our strategy illustrates how knowledge of the genes uniquely expressed by each cell type residing in a complex niche can reveal important new insights into the biology of the tissue and its associated disease states.

  16. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    Science.gov (United States)

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  17. Immunomodulatory Effects of Lactobacillus plantarum Lp62 on Intestinal Epithelial and Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Thalis Ferreira dos Santos

    2016-01-01

    Full Text Available Probiotic lactic acid bacteria are known for their ability to modulate the immune system. They have been shown to inhibit inflammation in experiments with animal models, cell culture, and clinical trials. The objective of this study was to elucidate the anti-inflammatory potential of Lactobacillus plantarum Lp62, isolated from cocoa fermentation, in a cell culture model. Lp62 inhibited IL-8 production by Salmonella Typhi-stimulated HT-29 cells and prevented the adhesion of pathogens to these epithelial cells. The probiotic strain was able to modulate TNF-α, IL1-β, and IL-17 secretion by J774 macrophages. J774 activation was reduced by coincubation with Lp62. PBMC culture showed significantly higher levels of CD4+CD25+ T lymphocytes following treatment with Lp62. Probiotics also induced increased IL-10 secretion by mononuclear cells. L. plantarum Lp62 was able to inhibit inflammatory stimulation in epithelial cells and macrophages and activated a tolerogenic profile in mononuclear cells of healthy donors. These results indicate this strain for a possible application in the treatment or prevention of inflammatory diseases.

  18. Differential cytopathogenesis of respiratory syncytial virus prototypic and clinical isolates in primary pediatric bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Coyle Peter V

    2011-01-01

    Full Text Available Abstract Background Human respiratory syncytial virus (RSV causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs. Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.

  19. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity.

    Science.gov (United States)

    Wang, Ping; Yang, Hai-Peng; Tian, Shujun; Wang, Liwei; Wang, Stephani C; Zhang, Fengmin; Wang, Yu-Feng

    2015-12-15

    Interactions between the nervous system and immune system have been studied extensively. However, the mechanisms underlying the neural regulation of immune activity, particularly the neuroendocrine regulation of immunologic functions, remain elusive. In this review, we provide a comprehensive examination of current evidence on interactions between the immune system and hypothalamic oxytocin-secreting system. We highlight the fact that oxytocin may have significant effects in the body, beyond its classical functions in lactation and parturition. Similar to the hypothalamo-pituitary-adrenal axis, the oxytocin-secreting system closely interacts with classical immune system, integrating both neurochemical and immunologic signals in the central nervous system and in turn affects immunologic defense, homeostasis, and surveillance. Lastly, this review explores therapeutic potentials of oxytocin in treating immunologic disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure.

    Science.gov (United States)

    Ossipova, Olga; Kim, Kyeongmi; Lake, Blue B; Itoh, Keiji; Ioannou, Andriani; Sokol, Sergei Y

    2014-05-13

    Epithelial folding is a critical process underlying many morphogenetic events including vertebrate neural tube closure, however, its spatial regulation is largely unknown. Here we show that during neural tube formation Rab11-positive recycling endosomes acquire bilaterally symmetric distribution in the Xenopus neural plate, being enriched at medial apical cell junctions. This mediolateral polarization was under the control of planar cell polarity (PCP) signalling, was necessary for neural plate folding and was accompanied by the polarization of the exocyst component Sec15. Our further experiments demonstrate that similar PCP-dependent polarization of Rab11 is essential for ectopic apical constriction driven by the actin-binding protein Shroom and during embryonic wound repair. We propose that anisotropic membrane trafficking has key roles in diverse morphogenetic behaviours of individual cells and propagates in a tissue by a common mechanism that involves PCP.

  1. Increased secretion of granulocyte-macrophage colony-stimulating factor in mucosal lesions of inflammatory bowel disease.

    Science.gov (United States)

    Noguchi, M; Hiwatashi, N; Liu, Z X; Toyota, T

    2001-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 transmit a same signal needed for growth and activation in granulocytes and macrophages, because these receptors utilize a common beta chain. Little is known about growth factors for intestinal myeloid cells in lesions of inflammatory bowel disease (IBD). To find out whether GM-CSF is produced by the intestinal cells in IBD patients and controls. We measured levels of GM-CSF, tumor necrosis factor (TNF), and IL-3 in the media of organ culture and lamina propria mononuclear cells (LPMCs) culture of colonic mucosa from the patients with IBD. Next, we have investigated GM-CSF production of colonic epithelial cell lines. Spontaneous secretion of GM-CSF was increased in inflamed mucosa, while secretion of IL-3 was not detected. Release of GM-CSF was enhanced in LPMCs from inflamed mucosa. Mucosal GM-CSF production was correlated to TNF-alpha production. Colonic epithelial cell line and T cell produced GM-CSF with superantigen stimulation. We revealed pivotal production of GM-CSF but not IL-3 in intestinal lesion of IBD. Increased secretion of GM-CSF might lead to chronic gut inflammation. Copyright 2001 S. Karger AG, Basel

  2. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Directory of Open Access Journals (Sweden)

    Kieran A Brune

    Full Text Available Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD. We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1 and activated extracellular signal-regulated kinase (ERK. We demonstrate that HIV

  3. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers.

    Science.gov (United States)

    Aksoy, Mark O; Kim, Victor; Cornwell, William D; Rogers, Thomas J; Kosmider, Beata; Bahmed, Karim; Barrero, Carlos; Merali, Salim; Shetty, Neena; Kelsen, Steven G

    2017-05-02

    Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e., GRP78), a multi-functional protein which mediates cell responses to oxidant stress, is increased in the lungs of cigarette smokers and in the serum of subjects with COPD. We have suggested that secretion of GRP78 by lung cells may explain the increase in serum GRP78 in COPD. To assess GRP78 secretion by the lung, we assayed GRP78 in bronchoalveolar lavage fluid (BALF) in chronic smokers and non-smokers. We also directly assessed the acute effect of cigarette smoke material on GRP78 secretion in isolated human airway epithelial cells (HAEC). GRP78 was measured in BALF of smokers (S; n = 13) and non-smokers (NS; n = 11) by Western blotting. GRP78 secretion by HAEC was assessed by comparing its concentration in cell culture medium and cell lysates. Cells were treated for 24 h with either the volatile phase of cigarette smoke (cigarette smoke extract (CSE) or the particulate phase (cigarette smoke condensate (CSC)). GRP78 was present in the BALF of both NS and S but levels were significantly greater in S (p = 0.04). GRP78 was secreted constitutively in HAEC. CSE 15% X 24 h increased GRP78 in cell-conditioned medium without affecting its intracellular concentration. In contrast, CSC X 24 h increased intracellular GRP78 expression but did not affect GRP78 secretion. Brefeldin A, an inhibitor of classical Golgi secretion pathways, did not inhibit GRP78 secretion indicating that non-classical pathways were involved. The present study indicates that GRP78 is increased in BALF in cigarette smokers; that HAEC secrete GRP78; and that GRP78 secretion by HAEC is augmented by cigarette smoke particulates. Enhanced secretion of GRP78 by lung cells makes it a potential biomarker of cigarette smoke-induced lung injury.

  4. Microbiota-host interplay at the gut epithelial level, health and nutrition

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lallès

    2016-11-01

    Full Text Available Abstract Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP and inducible heat shock proteins (iHSPs. Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs, metabolites (e.g. n-butyrate or secreted signal molecules (e.g., toxins, various peptides, polyphosphate. IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber, and specific minerals (e.g. calcium and vitamins (e.g. vitamins K1 and K2. Some food components (e.g. lectins, soybean proteins, various polyphenols may inhibit or disturb these systems

  5. Type VI Secretion System in Pseudomonas aeruginosa

    Science.gov (United States)

    Hachani, Abderrahman; Lossi, Nadine S.; Hamilton, Alexander; Jones, Cerith; Bleves, Sophie; Albesa-Jové, David; Filloux, Alain

    2011-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA+ ATPase, ClpV. The T6SS secretes two categories of proteins, VgrG and Hcp. Hcp is structurally similar to a phage tail tube component, whereas VgrG proteins show similarity to the puncturing device at the tip of the phage tube. In P. aeruginosa, three T6SSs are known. The expression of H1-T6SS genes is controlled by the RetS sensor. Here, 10 vgrG genes were identified in the PAO1 genome, among which three are co-regulated with H1-T6SS, namely vgrG1a/b/c. Whereas VgrG1a and VgrG1c were secreted in a ClpV1-dependent manner, secretion of VgrG1b was ClpV1-independent. We show that VgrG1a and VgrG1c form multimers, which confirmed the VgrG model predicting trimers similar to the tail spike. We demonstrate that Hcp1 secretion requires either VgrG1a or VgrG1c, which may act independently to puncture the bacterial envelope and give Hcp1 access to the surface. VgrG1b is not required for Hcp1 secretion. Thus, VgrG1b does not require H1-T6SS for secretion nor does H1-T6SS require VgrG1b for its function. Finally, we show that VgrG proteins are required for secretion of a genuine H1-T6SS substrate, Tse3. Our results demonstrate that VgrG proteins are not only secreted components but are essential for secretion of other T6SS substrates. Overall, we emphasize variability in behavior of three P. aeruginosa VgrGs, suggesting that, although very similar, distinct VgrGs achieve specific functions. PMID:21325275

  6. Epithelial Ovarian Cancer Experimental Models

    Science.gov (United States)

    Lengyel, E; Burdette, JE; Kenny, HA; Matei, D; Pilrose, J; Haluska, P.; Nephew, KP; Hales, DB; Stack, MS

    2014-01-01

    Epithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase, and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge and many approaches used to study other solid tumors (lung, colon, and breast, for example) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment. This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients, and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis, and chemoresistance. As these new approaches more accurately recapitulate the complex tumor microenvironment, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge. PMID:23934194

  7. Intestinal epithelial dysplasia (tufting enteropathy

    Directory of Open Access Journals (Sweden)

    de Serres Natacha

    2007-04-01

    Full Text Available Abstract Intestinal epithelial dysplasia (IED, also known as tufting enteropathy, is a congenital enteropathy presenting with early-onset severe intractable diarrhea causing sometimes irreversible intestinal failure. To date, no epidemiological data are available, however, the prevalence can be estimated at around 1/50,000–100,000 live births in Western Europe. The prevalence seems higher in areas with high degree of consanguinity and in patients of Arabic origin. Infants develop within the first days after birth a watery diarrhea persistent in spite of bowel rest and parenteral nutrition. Some infants are reported to have associated choanal rectal or esophageal atresia. IED is thought to be related to abnormal enterocytes development and/or differentiation. Nonspecific punctuated keratitis was reported in more than 60% of patients. Histology shows various degree of villous atrophy, with low or without mononuclear cell infiltration of the lamina propria but specific histological abnormalities involving the epithelium with disorganization of surface enterocytes with focal crowding, resembling tufts. Several associated specific features were reported, including abnormal deposition of laminin and heparan sulfate proteoglycan (HSPG in the basement membrane, increased expression of desmoglein and ultrastructural changes in the desmosomes, and abnormal distribution of α2β1 integrin adhesion molecules. One model of transgenic mice in which the gene encoding the transcription factor Elf3 is disrupted have morphologic features resembling IED. Parental consanguinity and/or affected siblings suggest an autosomal recessive transmission but the causative gene(s have not been yet identified making prenatal diagnosis unavailable. Some infants have a milder phenotype than others but in most patients, the severity of the intestinal malabsorption even with enteral feeding make them totally dependent on daily long-term parenteral nutrition with a subsequent

  8. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants co...

  9. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme.

    Science.gov (United States)

    Sarkar, Anjali A; Zohn, Irene E

    2012-03-19

    Hectd1 mutant mouse embryos exhibit the neural tube defect exencephaly associated with abnormal cranial mesenchyme. Cellular rearrangements in cranial mesenchyme are essential during neurulation for elevation of the neural folds. Here we investigate the molecular basis of the abnormal behavior of Hectd1 mutant cranial mesenchyme. We demonstrate that Hectd1 is a functional ubiquitin ligase and that one of its substrates is Hsp90, a chaperone protein with both intra- and extracellular clients. Extracellular Hsp90 enhances migration of multiple cell types. In mutant cranial mesenchyme cells, both secretion of Hsp90 and emigration of cells from cranial mesenchyme explants were enhanced. Importantly, we show that this enhanced emigration was highly dependent on the excess Hsp90 secreted from mutant cells. Together, our data set forth a model whereby increased secretion of Hsp90 in the cranial mesenchyme of Hectd1 mutants is responsible, at least in part, for the altered organization and behavior of these cells and provides a potential molecular mechanism underlying the neural tube defect.

  10. Exocytosis and protein secretion in Trypanosoma

    Directory of Open Access Journals (Sweden)

    Rossignol Michel

    2010-01-01

    Full Text Available Abstract Background Human African trypanosomiasis is a lethal disease caused by the extracellular parasite Trypanosoma brucei. The proteins secreted by T. brucei inhibit the maturation of dendritic cells and their ability to induce lymphocytic allogenic responses. To better understand the pathogenic process, we combined different approaches to characterize these secreted proteins. Results Overall, 444 proteins were identified using mass spectrometry, the largest parasite secretome described to date. Functional analysis of these proteins revealed a strong bias toward folding and degradation processes and to a lesser extent toward nucleotide metabolism. These features were shared by different strains of T. brucei, but distinguished the secretome from published T. brucei whole proteome or glycosome. In addition, several proteins had not been previously described in Trypanosoma and some constitute novel potential therapeutic targets or diagnostic markers. Interestingly, a high proportion of these secreted proteins are known to have alternative roles once secreted. Furthermore, bioinformatic analysis showed that a significant proportion of proteins in the secretome lack transit peptide and are probably not secreted through the classical sorting pathway. Membrane vesicles from secretion buffer and infested rat serum were purified on sucrose gradient and electron microscopy pictures have shown 50- to 100-nm vesicles budding from the coated plasma membrane. Mass spectrometry confirmed the presence of Trypanosoma proteins in these microvesicles, showing that an active exocytosis might occur beyond the flagellar pocket. Conclusions This study brings out several unexpected features of the secreted proteins and opens novel perspectives concerning the survival strategy of Trypanosoma as well as possible ways to control the disease. In addition, concordant lines of evidence support the original hypothesis of the involvement of microvesicle-like bodies in the

  11. Sagnac secret sharing over telecom fiber networks.

    Science.gov (United States)

    Bogdanski, Jan; Ahrens, Johan; Bourennane, Mohamed

    2009-01-19

    We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number micro?= 0.1 and 1.7-2.1% for micro= 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number micro= 0.1 and 1.8-3.0% for micro?= 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.

  12. Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling.

    Science.gov (United States)

    Sotgia, Federica; Schubert, William; Pestell, Richard G; Lisanti, Michael P

    2006-03-01

    Caveolin-1 (Cav-1) is the main structural protein of caveolae, plasma membrane invaginations that have been implicated in vesicular transport, cholesterol homeostasis, and the regulation of signal transduction. Previous in vivo studies have established a correlation between Cav-1 expression levels and milk production. In the normal mouse mammary gland, Cav-1 levels were shown to be downregulated during late pregnancy and lactation, via a Ras-p42/44-MAPK- dependent mechanism. Conversely, mammary glands from Cav-1 null-/- mice exhibit premature lactation, with augmented development of the lobulo-alveolar compartment and hyper-activation of the Jak-2/STAT5a signaling cascade. However, it remains unknown whether these phenotypes are cell-autonomous, i.e., intrinsic to the alveolar mammary epithelial cells, or whether stromal or adipocyte-secreted factors contribute. To directly address this issue, we have isolated primary mammary epithelial cells from wild-type (WT) and Cav-1 null-/- mammary glands. We cultured them either in a 2D model (monolayers of mammary epithelial cells) or in a 3D system on exogenous basement membrane (Matrigel; to reconstitute the minimal lactating unit, i.e., the mammary acinus). We show here that Cav-1 deficient mammary epithelial cells display the ability to spontaneously generate milk droplets, and to secrete them into the acinar lumen. Interestingly, such milk production occurs in the absence of lactogenic stimulation. Our results show that monolayers of Cav-1 null mammary epithelial cells are enriched in milk droplets, as judged by both (1) phase contrast microscopy and (2) immunofluorescence analysis with an antiserum directed against mouse milk proteins. Consistently, Cav-1 deficient mammary acini display increased milk production and secretion, as evaluated by Western blot analysis and electron microscopic examination. Mechanistically, we show that loss of Cav-1 in mammary epithelial cells induces the baseline constitutive hyper

  13. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  14. Bicarbonate availability for vocal fold epithelial defense to acidic challenge.

    Science.gov (United States)

    Durkes, Abigail; Sivasankar, M Preeti

    2014-01-01

    Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Ion transport was measured in viable porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, 32 vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. The vocal fold transepithelial resistance was greater than 300 Ω*cm(2), suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes.

  15. The mycotoxin patulin increases colonic epithelial permeability in vitro.

    Science.gov (United States)

    Mohan, H M; Collins, D; Maher, S; Walsh, E G; Winter, D C; O'Brien, P J; Brayden, D J; Baird, A W

    2012-11-01

    The gastrointestinal lumen is directly exposed to dietary contaminants, including patulin, a mycotoxin produced by moulds. Patulin is known to increase permeability across intestinal Caco-2 monolayers. This study aimed to determine the effect of patulin on permeability, ion transport and morphology in isolated rat colonic mucosae. Mucosal sheets were mounted in Ussing chambers and voltage clamped. Apical addition of patulin (100-500 μM) rapidly reduced transepithelial electrical resistance (TEER) and increased permeability to [(14)C] mannitol (2.9-fold). Patulin also inhibited carbachol-induced electrogenic chloride secretion and histological evidence of mucosal damage was observed. To examine potential mechanisms of action of patulin on colonic epithelial cells, high-content analysis of Caco-2 cells was performed and this novel, quantitative fluorescence-based approach confirmed its cytotoxic effects. With regard to time course, the cytotoxicity determined by high content analysis took longer than the almost immediate reduction of electrical resistance in isolated mucosal sheets. These data indicate patulin is not only cytotoxic to enterocytes but also has the capacity to directly alter permeability and ion transport in intact intestinal mucosae. These data corroborate and extend findings in intestinal cell culture monolayers, and further suggest that safety limits on consumption of patulin may be warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis

    Science.gov (United States)

    Humphreys, Benjamin D.; Xu, Fengfeng; Sabbisetti, Venkata; Grgic, Ivica; Naini, Said Movahedi; Wang, Ningning; Chen, Guochun; Xiao, Sheng; Patel, Dhruti; Henderson, Joel M.; Ichimura, Takaharu; Mou, Shan; Soeung, Savuth; McMahon, Andrew P.; Kuchroo, Vijay K.; Bonventre, Joseph V.

    2013-01-01

    Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1RECtg) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1RECtg mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1RECtg kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1–dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease. PMID:23979159

  17. Modular GAG-matrices to promote mammary epithelial morphogenesis in vitro.

    Science.gov (United States)

    Nowak, Mirko; Freudenberg, Uwe; Tsurkan, Mikhail V; Werner, Carsten; Levental, Kandice R

    2017-01-01

    Matrix systems used to study complex three-dimensional (3D) cellular processes like mammary epithelial tissue morphogenesis and tumorigenesis ex vivo often require ill-defined biological components, which lead to poor reproducibility and a lack of control over physical parameters. In this study, a well-defined, tunable synthetic biohybrid hydrogel composed of the glycosaminoglycan heparin, star-shaped poly(ethylene glycol) (starPEG), and matrix metalloproteinase- (MMP-) cleavable crosslinkers was applied to dissect the biophysical and biochemical signals promoting human mammary epithelial cell (MEC) morphogenesis. We show that compliant starPEG-heparin matrices promote the development of polarized MEC acini. Both the presence of heparin and MMP-cleavable crosslinks are essential in facilitating MEC morphogenesis without supplementation of exogenous adhesion ligands. In this system, MECs secrete and organize laminin in basement membrane-like assemblies to promote integrin signaling and drive acinar development. Therefore, starPEG-heparin hydrogels provide a versatile platform to study mammary epithelial tissue morphogenesis in a chemically defined and precisely tunable 3D in vitro microenvironment. The system allows investigation of biophysical and biochemical aspects of mammary gland biology and potentially a variety of other organoid culture studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Commensal-derived OMVs elicit a mild proinflammatory response in intestinal epithelial cells.

    Science.gov (United States)

    Patten, Daniel A; Hussein, Enas; Davies, Scott P; Humphreys, Paul N; Collett, Andrew

    2017-05-01

    Under normal physiological conditions, the intestinal immunity remains largely hyporesponsive to the commensal microbiota, yet also retains the inherent ability to rapidly respond to pathogenic antigens. However, immunomodulatory activities of extracellular products from commensal bacteria have been little studied, with previous investigations generally utilizing the live bacterium to study microbiota-epithelial interactions. In this study, we demonstrate that extracellular products of a commensal bacterium, Escherichia coli C25, elicit a moderate release of proinflammatory IL-8 and stimulate transcriptional up-regulation of Toll-like receptors (TLRs) in intestinal epithelial cell lines HT29-19A and Caco-2. Additionally, we show that removal of outer membrane vesicles (OMVs) reduces the proinflammatory effect of secreted products from E. coli C25. Furthermore, we show that isolated OMVs have a dose-dependent proinflammatory effect on intestinal epithelial cells (IECs). Interestingly, a relatively high concentration (40 µg ml-1 protein) of OMVs had no significant regulatory effects on TLR mRNA expression in both cell lines. Finally, we also demonstrate that pre-incubation with E. coli C25-derived OMVs subsequently inhibited the internalization of the bacterium itself in both cell lines. Taken together, our results suggest that commensal-derived extracellular products, in particular OMVs, could significantly contribute to intestinal homeostasis. We also demonstrate a unique interaction between commensal-derived OMVs and host cells.

  19. BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor

    Science.gov (United States)

    Kyrylkova, Kateryna; Kyryachenko, Sergiy; Biehs, Brian; Klein, Ophir; Kioussi, Chrissa; Leid, Mark

    2012-01-01

    Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BCL11B hereafter) exhibit severely disrupted ameloblast formation in the developing incisor. We now report that BCL11B is a key factor controlling epithelial proliferation and overall developmental asymmetry of the mouse incisor: BCL11B is necessary for proliferation of the labial epithelium and development of the epithelial stem cell niche, which gives rise to ameloblasts; conversely, BCL11B suppresses epithelial proliferation, and development of stem cells and ameloblasts on the inner, or lingual, side of the incisor. This bidirectional action of BCL11B in the incisor epithelia appears responsible for the asymmetry of ameloblast localization in developing incisor. Underlying these spatio-specific functions of BCL11B in incisor development is the regulation of a large gene network comprised of genes encoding several members of the FGF and TGFβ superfamilies, Sprouty proteins, and Sonic hedgehog. Our data integrate BCL11B into these pathways during incisor development and reveal the molecular mechanisms that underlie phenotypes of both Bcl11b−/− and Sprouty mutant mice. PMID:22629441

  20. BCL11B regulates epithelial proliferation and asymmetric development of the mouse mandibular incisor.

    Directory of Open Access Journals (Sweden)

    Kateryna Kyrylkova

    Full Text Available Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BCL11B hereafter exhibit severely disrupted ameloblast formation in the developing incisor. We now report that BCL11B is a key factor controlling epithelial proliferation and overall developmental asymmetry of the mouse incisor: BCL11B is necessary for proliferation of the labial epithelium and development of the epithelial stem cell niche, which gives rise to ameloblasts; conversely, BCL11B suppresses epithelial proliferation, and development of stem cells and ameloblasts on the inner, or lingual, side of the incisor. This bidirectional action of BCL11B in the incisor epithelia appears responsible for the asymmetry of ameloblast localization in developing incisor. Underlying these spatio-specific functions of BCL11B in incisor development is the regulation of a large gene network comprised of genes encoding several members of the FGF and TGFβ superfamilies, Sprouty proteins, and Sonic hedgehog. Our data integrate BCL11B into these pathways during incisor development and reveal the molecular mechanisms that underlie phenotypes of both Bcl11b(-/- and Sprouty mutant mice.

  1. Effect of mebeverine hydrochloride on jejunal motility and epithelial transport in the anesthetized ferret.

    Science.gov (United States)

    Greenwood, B; Mandel, K G

    1992-02-11

    Previous in vitro and in vivo studies demonstrate that mebeverine, administered to isolated smooth muscle preparations or given intravenously, (i.v.), acts as an antispasmodic agent and may be useful in treating intestinal hypermotility. Whether mebeverine affects intestinal mucosal transport is, however, unknown. The aim of the present study was to characterize the effect of mebeverine on both small intestinal motor activity and electrogenic epithelial transport in the urethane anesthetized ferret. The effects of mebeverine were compared following i.v. and intrajejunal (i.j.) administration. Following both routes of drug administration mebeverine dose dependently inhibited jejunal motility, with the i.j. route being more potent. However, when administered i.v. but not i.j., the doses of mebeverine that inhibited jejunal motility also significantly reduced heart rate and arterial blood pressure. Mebeverine (0.1-10 mg/kg) administered i.v. had no significant effect on epithelial transport as measured by a change in transmural potential difference. However, when dosed i.j., mebeverine (0.1-10 mg/kg) induced a decrease in potential difference towards lower lumen negativity, which was suggestive of a decrease in fluid secretion or enhancement of absorption. In conclusion, the results confirm in vivo the antispasmodic effect of mebeverine and suggested that mebeverine can influence epithelial transport, probably in the direction of enhanced intestinal absorption.

  2. An integrative model on the role of DMBT1 in epithelial cancer

    DEFF Research Database (Denmark)

    Mollenhauer, Jan; Helmke, Burkhard; Müller, Hanna

    2002-01-01

    The gene, deleted in malignant brain tumors 1 (DMBT1), has been proposed to play a role in brain and epithelial cancer, but shows unusual features for a classical tumor suppressor gene. We have proposed that its presumptive dual function in protection and differentiation is of importance to under......The gene, deleted in malignant brain tumors 1 (DMBT1), has been proposed to play a role in brain and epithelial cancer, but shows unusual features for a classical tumor suppressor gene. We have proposed that its presumptive dual function in protection and differentiation is of importance...... displayed presumable mutations. However, none of the alterations would be predicted to lead to a complete inactivation of the gene. DMBT1 is mucin-like and shows tissue-specific expression and secretion, pointing to a function in the protection of monolayered epithelia and to an additional function...... in the differentiation of multilayered epithelia. The expression patterns in carcinomas arising from the respective structures support this view. Accepting this functional dualism gives rise to an initial model on the role of DMBT1 in epithelial cancer....

  3. In vivo administration of dental epithelial stem cells at the apical end of the mouse incisor

    Directory of Open Access Journals (Sweden)

    Giovanna eOrsini

    2015-04-01

    Full Text Available Cell-based tissue regeneration is an attractive approach that complements traditional surgical techniques for replacement of injured and lost tissues. The continuously growing rodent incisor provides an excellent model system for investigating cellular and molecular mechanisms that underlie tooth renewal and regeneration. An active population of dental epithelial progenitor/stem cells located at the posterior part of the incisor, commonly called cervical loop area, ensures the continuous supply of cells that are responsible for the secretion of enamel matrix. To explore the potential of these epithelial cells in therapeutic approaches dealing with enamel defects, we have developed a new method for their in vivo administration in the posterior part of the incisor. Here we provide the step-by-step protocol for the isolation of dental epithelial stem cells and their delivery at targeted areas of the jaw. This simple and yet powerful protocol, consisting in drilling a hole in the mandibular bone, in close proximity to the cervical loop area of the incisor, followed up by injection of stem cells, is feasible, reliable, and effective. This in vivo approach opens new horizons and possibilities for cellular therapies involving pathological and injured dental tissues.

  4. Malignant transformation of human benign prostate epithelial cells by high linear energy transfer alpha-particles.

    Science.gov (United States)

    Li, Hongzhen; Gu, Yongpeng; Miki, Jun; Hukku, Bharati; McLeod, David G; Hei, Tom K; Rhim, Johng S

    2007-09-01

    Although epidemiological studies have suggested a positive correlation between environmental radon exposure and prostate cancer, the mechanism involved is not clear. In the present study, we examined the oncogenic transforming potency of alpha-particles using non-tumorigenic, telomerase-immortalized human benign prostate epithelial cells. We report the malignant transformation of human benign prostate epithelial cells after a single exposure to 0.6 Gy dose of alpha-particles. Transformed cells showed anchorage-independent growth in soft agar and induced progressively growing tumors when transplanted into SCID mice. The tumors were characterized histologically as poorly differentiated adenocarcinomas. The cell line derived from tumor (SCID 5015), like the unirradiated cells, expressed cytokeratin 5, 8 and 18, NKX3.1 and AMACR. The malignant cells showed increased secretion of MMP2. Stepwise chromosomal changes in the progression to tumorigenicity were observed. Chromosome abnormalities were identified in both irradiated and tumorigenic cells relative to the non-irradiated control cells. Prominent changes in chromosomes 6, 11 and 16, as well as mutations and deletions of the p53 gene were observed in the tumor outgrowth and tumor cells. These findings provide the first evidence of malignant transformation of human benign prostate epithelial cells exposed to a single dose of alpha-particles. This model provides an opportunity to study the cellular and molecular alterations that occur in radiation carcinogenesis in human prostate cells.

  5. A new role for P2X4 receptors as modulators of lung surfactant secretion

    Directory of Open Access Journals (Sweden)

    Pika eMiklavc

    2013-10-01

    Full Text Available In recent years P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types P2X receptors have been found to stimulate vesicle exocytosis directly via Ca2+ influx and elevation of the intracellular Ca2+ concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs, large storage organelles for lung surfactant, results in a local, fusion-activated Ca2+ entry (FACE in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca2+ influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air-liquid interphase thereby activating it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.

  6. Carbon fiber amperometry in the study of ion channels and secretion.

    Science.gov (United States)

    Koh, Duk-Su

    2006-01-01

    Activation of Ca2+ channels in the plasma membrane or on internal Ca2+ stores raises cytosolic Ca2+ concentration ([Ca2+]c). Among diverse functions of Ca2+ signals, the induction of exocytosis-the process in which the contents of secretory vesicles are released by their fusion to the plasma membrane-is one of the most important. For example, in neurons and endocrine cells, it allows intercellular communication and secretion of biomolecules. Exocytosis can be detected by several physical and chemical means. By chemically oxidizing the released secretory products at a fixed electrode potential, carbon fiber amperometry provides excellent temporal and spatial resolution in detecting exocytosis. This method, together with other biophysical techniques such as patch clamp and Ca2+ microphotometry, has greatly contributed to our understanding of the molecular mechanisms involved in the stimulus-secretion coupling. However, amperometry can be performed only on cells that secrete oxidizable molecules. To overcome this limit, we have developed a protocol of loading cells with exogenous neurotransmitters that readily oxidize on a carbon electrode. Several cell types have been successfully loaded, exocytosis of secretory vesicles has been demonstrated, and in pancreatic duct epithelial cells, the modulatory signals of exocytosis have been studied in detail.

  7. Cortactin mediates elevated shear stress-induced mucin hypersecretion via actin polymerization in human airway epithelial cells.

    Science.gov (United States)

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P; Perelman, Juliy M

    2013-12-01

    Mucus hypersecretion is a remarkable pathophysiological manifestation in airway obstructive diseases. These diseases are usually accompanied with elevated shear stress due to bronchoconstriction. Previous studies have reported that shear stress induces mucin5AC (MUC5AC) secretion via actin polymerization in cultured nasal epithelial cells. Furthermore, it is well known that cortactin, an actin binding protein, is a central mediator of actin polymerization. Therefore, we hypothesized that cortactin participates in MUC5AC hypersecretion induced by elevated shear stress via actin polymerization in cultured human airway epithelial cells. Compared with the relevant control groups, Src phosphorylation, cortactin phosphorylation, actin polymerization and MUC5AC secretion were significantly increased after exposure to elevated shear stress. Similar effects were found when pretreating the cells with jasplakinolide, and transfecting with wild-type cortactin. However, these effects were significantly attenuated by pretreating with Src inhibitor, cytochalasin D or transfecting cells with the specific small interfering RNA of cortactin. Collectively, these results suggest that elevated shear stress induces MUC5AC hypersecretion via tyrosine-phosphorylated cortactin-associated actin polymerization in cultured human airway epithelial cells. Copyright © 2013. Published by Elsevier Ltd.

  8. A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Silja Wessler

    2017-12-01

    Full Text Available Intercellular junctions are crucial structural elements for the formation and maintenance of epithelial barrier functions to control homeostasis or protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of numerous cancers as well as multiple infectious diseases. Many bacterial pathogens harbor type IV secretion systems (T4SSs, which translocate virulence factors into host cells to hijack cellular processes. The pathology of the gastric pathogen and type-I carcinogen Helicobacter pylori strongly depends on a T4SS encoded by the cag pathogenicity island (cagPAI. This T4SS forms a needle-like pilus and its activity is accomplished by the pilus-associated factors CagL, CagI and CagY which target the host integrin-β1 receptor followed by injection of the CagA oncoprotein into non-polarized AGS gastric epithelial cells. The finding of a T4SS receptor, however, suggested the presence of a sophisticated control mechanism for the injection of CagA. In fact, integrins constitute a group of basolateral receptors, which are normally absent at apical surfaces of the polarized epithelium in vivo. Our new results demonstrate that T4SS-pilus formation during H. pylori infection of polarized epithelial cells occurs preferentially at basolateral sites, and not at apical membranes (Tegtmeyer et al., 2017. We propose a stepwise process how H. pylori interacts with components of intercellular tight junctions (TJs and adherens junctions (AJs, followed by contacting integrin-based focal adhesions to disrupt and transform the epithelial cell layer in the human stomach. The possible impact of this novel signaling cascade on pathogenesis during infection is reviewed.

  9. Enterotoxigenic Escherichia coli infection and intestinal thiamin uptake: studies with intestinal epithelial Caco-2 monolayers.

    Science.gov (United States)

    Ghosal, Abhisek; Chatterjee, Nabendu S; Chou, Tristan; Said, Hamid M

    2013-12-01

    Infections with enteric pathogens like enterotoxigenic Escherichia coli (ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.

  10. Transcriptional profiling of gastric epithelial cells infected with wild type or arginase-deficient Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Kim Songhee H

    2012-08-01

    Full Text Available Abstract Background Helicobacter pylori causes acute and chronic gastric inflammation induced by proinflammatory cytokines and chemokines secreted by cells of the gastric mucosa, including gastric epithelial cells. Previous studies have demonstrated that the bacterial arginase, RocF, is involved in inhibiting T cell proliferation and CD3ζ expression, suggesting that arginase could be involved in a more general dampening of the immune response, perhaps by down-regulation of certain pro-inflammatory mediators. Results Global transcriptome analysis was performed on AGS gastric epithelial cells infected for 16 hours with a wild type Helicobacter pylori strain 26695, an arginase mutant (rocF- or a rocF+ complemented strain. H. pylori infection triggered altered host gene expression in genes involved in cell movement, death/growth/proliferation, and cellular function and maintenance. While the wild type strain stimulates host inflammatory pathways, the rocF- mutant induced significantly more expression of IL-8. The results of the microarray were verified using real-time PCR, and the differential levels of protein expression were confirmed by ELISA and Bioplex analysis. MIP-1B was also significantly secreted by AGS cells after H. pylori rocF- mutant infection, as determined by Bioplex. Even though not explored in this manuscript, the impact that the results presented here may have on the development of gastritis, warrant further research to understand the underlying mechanisms of the relationship between H. pylori RocF and IL-8 induction. Conclusions We conclude that H. pylori arginase modulates multiple host signaling and metabolic pathways of infected gastric epithelial cells. Arginase may play a critical role in anti-inflammatory host responses that could contribute to the ability of H. pylori to establish chronic infections.

  11. Celiac Disease: Role of the Epithelial Barrier.

    Science.gov (United States)

    Schumann, Michael; Siegmund, Britta; Schulzke, Jörg D; Fromm, Michael

    2017-03-01

    In celiac disease (CD) a T-cell-mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed.

  12. Effects of endothelin family on ANP secretion.

    Science.gov (United States)

    Yuan, Kuichang; Park, Byung Mun; Choi, Young Tae; Kim, Jong Hun; Cho, Kyung Woo; Kim, Suhn Hee

    2016-08-01

    The endothelins (ET) peptide family consists of ET-1, ET-2, ET-3, and sarafotoxin (s6C, a snake venom) and their actions appears to be different among isoforms. The aim of this study was to compare the secretagogue effect of ET-1 on atrial natriuretic peptide (ANP) secretion with ET-3 and evaluate its physiological meaning. Isolated nonbeating atria from male Sprague-Dawley rats were used to evaluate stretch-activated ANP secretion in response to ET-1, ET-2, ET-3, and s6C. Changes in mean blood pressure (MAP) were measured during acute injection of ET-1 and ET-3 with and without natriuretic peptide receptor-A antagonist (A71915) in anesthetized rats. Changes in atrial volume induced by increased atrial pressure from o to 1, 2, 4, or 6cm H2O caused proportional increases in mechanically-stimulated extracellular fluid (ECF) translocation and stretch-activated ANP secretion. ET-1 (10nM) augmented basal and stretch-activated ANP secretion in terms of ECF translocation, which was blocked by the pretreatment with ETA receptor antagonist (BQ123, 1μM) but not by ETB receptor antagonist (BQ788, 1μM). ETA receptor antagonist itself suppressed stretch-activated ANP secretion. As compared to ET-1- induced ANP secretion (3.2-fold by 10nM), the secretagogue effects of ANP secretion by ET-2 was similar (2.8-fold by 10nM) and ET-3 and s6C were less potent (1.7-fold and 1.5-fold by 100nM, respectively). Acute injection of ET-1 or ET-3 increased mean blood pressure (MAP), which was augmented in the presence of natriuretic peptide receptor-A antagonist. Therefore, we suggest that the order of secretagogue effect of ET family on ANP secretion was ET-1≥ET-2>ET-3>s6C and ET-1-induced ANP secretion negatively regulates the pressor effect of ET-1. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Type VI Secretion System in Pseudomonas aeruginosa SECRETION AND MULTIMERIZATION OF VgrG PROTEINS

    NARCIS (Netherlands)

    Hachani, Abderrahman; Lossi, Nadine S.; Hamilton, Alexander; Jones, Cerith; Bleves, Sophie; Albesa-Jove, David; Filloux, Alain

    2011-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA(+) ATPase, ClpV. The T6SS secretes two

  14. Meaningful Share Generation for Increased Number of Secrets in Visual Secret-Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Mustafa Ulutas

    2010-01-01

    Full Text Available This paper presents a new scheme for hiding two halftone secret images into two meaningful shares created from halftone cover images. Meaningful shares are more desirable than noise-like (meaningless shares in Visual Secret Sharing because they look natural and do not attract eavesdroppers' attention. Previous works in the field focus on either increasing number of secrets or creating meaningful shares for one secret image. The method outlined in this paper both increases the number of secrets and creates meaningful shares at the same time. While the contrast ratio of shares is equal to that of Extended Visual Cryptography, two secrets are encoded into two shares as opposed to one secret in the Extended Visual Cryptography. Any two natural-looking images can be used as cover unlike the Halftone Visual Cryptography method where one cover should be the negative of the other cover image and can only encode one secret. Effectiveness of the proposed method is verified by an experiment.

  15. Shared Secrets versus Secrets Kept Private Are Linked to Better Adolescent Adjustment

    Science.gov (United States)

    Frijns, Tom; Finkenauer, Catrin; Keijsers, Loes

    2013-01-01

    It is a household notion that secrecy is bad while sharing is good. But what about shared secrets? The present research adopts a functional analysis of sharing secrets, arguing that it should negate harmful consequences generally associated with secrecy and serves important interpersonal functions in adolescence. A survey study among 790 Dutch…

  16. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234.

    Science.gov (United States)

    Marie, Corinne; Deakin, William J; Viprey, Virginie; Kopciñska, Joanna; Golinowski, Wladyslaw; Krishnan, Hari B; Perret, Xavier; Broughton, William J

    2003-09-01

    The nitrogen-fixing symbiotic bacterium Rhizobium species NGR234 secretes, via a type III secretion system (TTSS), proteins called Nops (nodulation outer proteins). Abolition of TTSS-dependent protein secretion has either no effect or leads to a change in the number of nodules on selected plants. More dramatically, Nops impair nodule development on Crotalaria juncea roots, resulting in the formation of nonfixing pseudonodules. A double mutation of nopX and nopL, which code for two previously identified secreted proteins, leads to a phenotype on Pachyrhizus tuberosus differing from that of a mutant in which the TTSS is not functional. Use of antibodies and a modification of the purification protocol revealed that NGR234 secretes additional proteins in a TTSS-dependent manner. One of them was identified as NopA, a small 7-kDa protein. Single mutations in nopX and nopL were also generated to assess the involvement of each Nop in protein secretion and nodule formation. Mutation of nopX had little effect on NopL and NopA secretion but greatly affected the interaction of NGR234 with many plant hosts tested. NopL was not necessary for the secretion of any Nops but was required for efficient nodulation of some plant species. NopL may thus act as an effector protein whose recognition is dependent upon the hosts' genetic background.

  17. Functional anatomy and physiology of gastric secretion.

    Science.gov (United States)

    Schubert, Mitchell L

    2015-11-01

    This review summarizes the past year's literature regarding the neuroendocrine and intracellular regulation of gastric acid secretion, discussing both basic and clinical aspects. Gastric acid facilitates the digestion of protein as well as the absorption of iron, calcium, vitamin B12, and certain medications. High acidity kills ingested microorganisms and limits bacterial overgrowth, enteric infection, and possibly spontaneous bacterial peritonitis. The main stimulants of acid secretion are gastrin, released from antral gastrin cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Ghrelin and coffee also stimulate acid secretion whereas somatostatin, cholecystokinin, glucagon-like peptide-1, and atrial natriuretic peptide inhibit acid secretion. Although 95% of parietal cells are contained within the oxyntic mucosa (fundus and body), 50% of human antral glands contain parietal cells. Proton pump inhibitors are considered well tolerated drugs, but concerns have been raised regarding dysbiosis, atrophic gastritis, hypergastrinemia, hypomagnesemia, and enteritis/colitis. Our understanding of the functional anatomy and physiology of gastric secretion continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders, prevention and management of neoplasia, and the development of novel medications.

  18. Fast-weighted secret image sharing

    Science.gov (United States)

    Lin, Sian-Jheng; Chen, Lee Shu-Teng; Lin, Ja-Chen

    2009-07-01

    Thien and Lin [Comput. and Graphics 26(5), 765-770 (2002)] proposed a threshold scheme to share a secret image among n shadows: any t of the n shadows can recover the secret, whereas t-1 or fewer shadows cannot. However, in real life, certain managers probably play key roles to run a company and thus need special authority to recover the secret in managers' meeting. (Each manager's shadow should be more powerful than an ordinary employee's shadow.) In Thien and Lin's scheme, if a company has less than t managers, then manager's meeting cannot recover the secret, unless some managers were given multiple shadows in advance. But this compromise causes managers inconvenience because too many shadows were to be kept daily and carried to the meeting. To solve this dilemma, a weighted sharing method is proposed: each of the shadows has a weight. The secret is recovered if and only if the total weights (rather than the number) of received shadows is at least t. The properties of GF(2r) are utilized to accelerate sharing speed. Besides, the method is also a more general approach to polynomial-based sharing. Moreover, for convenience, each person keeps only one shadow and only one shadow index.

  19. Melatonin Secretion Pattern in Critically Ill Patients

    DEFF Research Database (Denmark)

    Boyko, Yuliya; Holst, René; Jennum, Poul

    2017-01-01

    Critically ill patients have abnormal circadian and sleep homeostasis. This may be associated with higher morbidity and mortality. The aims of this pilot study were (1) to describe melatonin secretion in conscious critically ill mechanically ventilated patients and (2) to describe whether melaton...... secretion in these patients. Remifentanil did not affect melatonin secretion but was associated with lower risk of atypical sleep pattern. REM sleep was only registered during the period of nonsedation.......Critically ill patients have abnormal circadian and sleep homeostasis. This may be associated with higher morbidity and mortality. The aims of this pilot study were (1) to describe melatonin secretion in conscious critically ill mechanically ventilated patients and (2) to describe whether melatonin...... secretion and sleep patterns differed in these patients with and without remifentanil infusion. Eight patients were included. Blood-melatonin was taken every 4th hour, and polysomnography was carried out continually during a 48-hour period. American Academy of Sleep Medicine criteria were used for sleep...

  20. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    Science.gov (United States)

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  1. The effect of caffeine on renal epithelial cells from patients with autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Belibi, Franck A; Wallace, Darren P; Yamaguchi, Tamio; Christensen, Marcy; Reif, Gail; Grantham, Jared J

    2002-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder characterized by the progressive enlargement of cysts derived from tubules. Tubule cell proliferation and chloride-dependent fluid accumulation, mechanisms underlying cyst expansion, are accelerated by adenosine 3':5'-cyclic monophosphate (cAMP). This study examined the extent to which caffeine may stimulate the production of cAMP by cyst epithelial cells, thereby adversely increasing proliferation and fluid secretion. Mural epithelial cells from ADPKD cysts and normal human kidney cortex cells (HKC) were cultured, and cAMP levels were determined in response to caffeine and receptor-mediated agonists linked to adenylyl cyclase. Caffeine, a methylxanthine, slightly increased basal levels of cAMP, as did other nonselective phosphodiesterase (PDE) inhibitors, 1-methyl-3- isobutyl xanthine and theophylline and rolipram, a specific PDE IV inhibitor. More importantly, clinically relevant concentrations of caffeine (10 to 50 micro M) potentiated the effects of desmopressin (DDAVP), prostaglandin E(2) (PGE(2)), and isoproterenol to increase cAMP levels in both ADPKD and HKC cells. By contrast, at concentrations that augmented the DDAVP response, caffeine attenuated cAMP accumulation by adenosine, implicating an action apart from the inhibition of PDE. Caffeine enhanced the effect of DDAVP to stimulate transepithelial short-circuit current of polarized ADPKD monolayers, reflecting an increase in chloride secretion. Caffeine potentiated the effect of DDAVP and PGE(2) to increase the levels of phosphorylated extracellular signal-regulated kinase (P-ERK). By contrast, P-ERK levels in HKC cells were not raised by increased intracellular concentrations of cAMP. It is concluded that PDE inhibition by caffeine increases the accumulation of cAMP, and through this mechanism activates the ERK pathway to cellular proliferation and increases transepithelial fluid secretion in ADPKD cystic epithelium. Caffeine

  2. Mammary Adipose Tissue-Derived Lysophospholipids Promote Estrogen Receptor-Negative Mammary Epithelial Cell Proliferation.

    Science.gov (United States)

    Volden, Paul A; Skor, Maxwell N; Johnson, Marianna B; Singh, Puneet; Patel, Feenalie N; McClintock, Martha K; Brady, Matthew J; Conzen, Suzanne D

    2016-05-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiologic and pathologic processes, including cancer. LPA is converted from lysophosphatidylcholine (LPC) by the secreted phospholipase autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA levels. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA axis) signaling to breast cancer is poorly understood. Using murine mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. Cancer Prev Res; 9(5); 367-78. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Profiles of cytokines secreted by isolated human endometrial cells under the influence of chorionic gonadotropin during the window of embryo implantation

    Science.gov (United States)

    2013-01-01

    Background Several studies have indicated that human pre-implantation embryo-derived chorionic gonadotropin (hCG) may influence the implantation process by its action on human endometrial epithelial and stromal cells. Despite reports indicating that hCG acts on these cells to affect the production of several cytokines and growth factors (e.g., MIF, IGF-I, VEGF, LIF, IL-11, GMCSF, CXL10 and FGF2), our understanding of the integral influence of hCG on paracrine interactions between endometrial stromal and epithelial cells during implantation is very limited. Methods In the present study, we examined the profile of 48 cytokines in the conditioned media of primary cell cultures of human implantation stage endometrium. Endometrial epithelial cells (group 1; n = 20), stromal cells (group 2; n = 20), and epithelial plus stromal cells (group 3; n = 20) obtained from mid-secretory stage endometrial samples (n = 60) were grown on collagen and exposed to different doses (0, 1, 10 and 100 IU/ml) of rhCG for 24 h in vitro. Immunochemical and qRT-PCR methods were used to determine cytokine profiles. Enrichment and process networks analyses were implemented using a list of cytokines showing differential secretion in response to hCG. Results Under basal conditions, endometrial epithelial and stromal cells exhibited cell type-specific profiles of secreted cytokines. Administration of hCG (100 IU) resulted in significantly (P endometrial epithelial and stromal cells. CG may also affect complex paracrine processes in the different endometrial cell types. PMID:24345207

  4. Hyperbolic Hopfield neural networks.

    Science.gov (United States)

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  5. Neural Semantic Encoders.

    Science.gov (United States)

    Munkhdalai, Tsendsuren; Yu, Hong

    2017-04-01

    We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.

  6. [Study on the production of IgG derived from vaginal epithelial cells and the effect of anti-Candida albicans].

    Science.gov (United States)

    Niu, X X; Li, T; Liu, Z H

    2016-10-25

    Objective: To investigate the function of IgG secreted by vaginal epithelial cells in natural resistance to vulvovaginal candidiasis. Methods: (1)Immunohistochemical method was used to determine the expression of IgG secreted by normal vaginal epithelial cells VK2/E6E7.(2)Samples were divided into three groups by different proportions of VK2/E6E7 cells to Candida albicans ,including Candida albicans: VK2/E6E7 cells were 1∶10, 1∶1[yeast+ cells(1∶10)group and yeast+ cells(1∶1)group]and VK2/E6E7 cells as blank control group. The growth status of 3 groups were observed under inverted microscope after 24 hours. ELISA method was used to detect the production of IgG in 3 groups after 0, 3, 6, 12, 24, 48 hours. Results: (1)Immunohistochemical method showed normal vaginal epithelial cells were polygonal with pale blue nucleus and cytoplasm were distributed by brown granules, which indicated that IgG were strongly positive. While negative control group just had light blue nuclei.(2)Inverted microscope observation represented that control group had a clear outline, strong refraction and large nuclei with cobblestone-like appearance. After yeast+cells(1∶10)group co-cultured for 24 hours, Candida albicans begin to sprout and transformed to hyphae. VK2/E6E7 cells and Candida albicans were close to each other with vacuoles and small black granules in the cytoplasm. The morphology of cells were complete. Yeast+ cells(1∶1)group showed obvious invasion effect of Candida albicans to VK2/E6E7 cells with vigorous growth of hyphae, the decreased number and incomplete morphology of cells. Moreover, the connection of cells were loose. ELISA assay showed that there were statistically significant difference of IgG secretions between the 3 groups after 0, 3, 6, 12, 24, 48 hours(PCandida albicans, secretion of IgG was significantly lower than that in the control group. The statistical difference of IgG secretions between yeast+ cells(1∶10)group and yeast+ cells(1∶1)group after

  7. Epithelial-Mesenchymal Transition and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yanyuan Wu

    2016-01-01

    Full Text Available Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges.

  8. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  9. Studying cytokinesis in Drosophila epithelial tissues.

    Science.gov (United States)

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    Directory of Open Access Journals (Sweden)

    Florian Geisler

    2016-06-01

    Full Text Available Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.

  11. Melatonin Secretion Pattern in Critically Ill Patients

    DEFF Research Database (Denmark)

    Boyko, Yuliya; Holst, René; Jennum, Poul

    2017-01-01

    Critically ill patients have abnormal circadian and sleep homeostasis. This may be associated with higher morbidity and mortality. The aims of this pilot study were (1) to describe melatonin secretion in conscious critically ill mechanically ventilated patients and (2) to describe whether melatonin...... secretion and sleep patterns differed in these patients with and without remifentanil infusion. Eight patients were included. Blood-melatonin was taken every 4th hour, and polysomnography was carried out continually during a 48-hour period. American Academy of Sleep Medicine criteria were used for sleep...... scoring if sleep patterns were identified; otherwise, Watson's classification was applied. As remifentanil was periodically administered during the study, its effect on melatonin and sleep was assessed. Melatonin secretion in these patients followed a phase-delayed diurnal curve. We did not observe any...

  12. Standpoints and protection of business secrets

    Directory of Open Access Journals (Sweden)

    Brane Bertoncelj

    2001-06-01

    Full Text Available The human impact on an information system where data bases, containing business secretes, are stored is one of the most unreliable and unforeseeable factors. For this reason, it must not be underestimated. The results of this study indicate a correlation between behavioural intention and protection of business secretes. There is a statistically significant correlation between behavioural intention and behavioural supervision. This means that an increased level of perceived supervision over one's own behaviour is related to behavioural intention. A great majority of participants would not divulge a business secret due to internal moral factors, i.e., they possess the appropriate capabilities to determine the advantages of social moral values over personal values.

  13. Targeted Secretion Inhibitors—Innovative Protein Therapeutics

    Directory of Open Access Journals (Sweden)

    Foster Keith

    2010-12-01

    Full Text Available Botulinum neurotoxins are highly effective therapeutic products. Their therapeutic success results from highly specific and potent inhibition of neurotransmitter release with a duration of action measured in months. These same properties, however, make the botulinum neurotoxins the most potent acute lethal toxins known. Their toxicity and restricted target cell activity severely limits their clinical utility. Understanding the structure-function relationship of the neurotoxins has enabled the development of recombinant proteins selectively incorporating specific aspects of their pharmacology. The resulting proteins are not neurotoxins, but a new class of biopharmaceuticals, Targeted Secretion Inhibitors (TSI, suitable for the treatment of a wide range of diseases where secretion plays a major role. TSI proteins inhibit secretion for a prolonged period following a single application, making them particularly suited to the treatment of chronic diseases. A TSI for the treatment of chronic pain is in clinical development.

  14. Hiding secret data into a carrier image

    Directory of Open Access Journals (Sweden)

    Ovidiu COSMA

    2012-06-01

    Full Text Available The object of steganography is embedding hidden information in an appropriate multimedia carrier, e.g., image, audio, or video. There are several known methods of solving this problem, which operate either in the space domain or in the frequency domain, and are distinguished by the following characteristics: payload, robustness and strength. The payload is the amount of secret data that can be embedded in the carrier without inducing suspicious artefacts, robustness indicates the degree in which the secret data is affected by the normal processing of the carrier e.g., compression, and the strength indicate how easy the presence of hidden data can be detected by steganalysis techniques. This paper presents a new method of hiding secret data into a digital image compressed by a technique based on the Discrete Wavelet Transform (DWT [2] and the Set Partitioning In Hierarchical Trees (SPIHT subband coding algorithm [6]. The proposed method admits huge payloads and has considerable strength.

  15. The neural crest and neural crest cells: discovery and significance ...

    Indian Academy of Sciences (India)

    In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of ...

  16. Anterior Hox Genes Interact with Components of the Neural Crest Specification Network to Induce Neural Crest Fates

    Science.gov (United States)

    Gouti, Mina; Briscoe, James; Gavalas, Anthony

    2011-01-01

    Hox genes play a central role in neural crest (NC) patterning particularly in the cranial region of the body. Despite evidence that simultaneous loss of Hoxa1 and Hoxb1 function resulted in NC specification defects, the role of Hox genes in NC specification has remained unclear due to extended genetic redundancy among Hox genes. To circumvent this problem, we expressed anterior Hox genes in the trunk neural tube of the developing chick embryo. This demonstrated that anterior Hox genes play a central role in NC cell specification by rapidly inducing the key transcription factors Snail2 and Msx1/2 and a neural progenitor to NC cell fate switch characterized by cell adhesion changes and an epithelial-to-mesenchymal transition (EMT). Cells delaminated from dorsal and medial neural tube levels and generated ectopic neurons, glia progenitors, and melanocytes. The mobilization of the NC genetic cascade was dependent upon bone morphogenetic protein signaling and optimal levels of Notch signaling. Therefore, anterior Hox patterning genes participate in NC specification and EMT by interacting with NC-inducing signaling pathways and regulating the expression of key genes involved in these processes. Stem Cells 2011;29:858–870 PMID:21433221

  17. Novel application of artificial dermis plus autologous vital epithelial cells: improved wound epithelialization.

    Science.gov (United States)

    Lee, Li-Tzu; Kwan, Po-Cheung; Wong, Yong-Kie

    2010-02-01

    The purpose of this study was to evaluate artificial dermis with the simultaneous addition of autologous epithelial cells for oral lesion defect reconstruction. Surgical wounds reconstructed with artificial dermis plus scraped epithelial cells were evaluated in 5 patients with oral benign lesions or squamous cell carcinoma. Clinical follow-up indices included scar formation and tissue surface texture observation. The neomucosal layers were analyzed histologically to establish the degree of epithelialization. Clinical observation showed that the oral mucosal texture was smoother in artificial dermis with added epithelial cells at 4 weeks postoperation compared with artificial dermis alone. The wound contraction and scar formation processes were slow. Viable epithelial cells with flat rete ridges remained in the artificial dermis, and a neoepithelial layer was present in the histological findings. We showed that healthy granulation tissue and neoepithelial formation in artificial dermis with epithelial cells was beneficial for the repair of oral defects. Scraping oral epithelial cells and applying them to artificial dermis assisted in the early preparation of composite grafts and minimized requirement for donor sites. This technique may improve the treatment of patients with oral benign tumors and early-stage squamous cell carcinoma. Copyright 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  18. Roles of neural stem cells in the repair of peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2017-01-01

    Full Text Available Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  19. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  20. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  1. Lubiprostone Stimulates Duodenal Bicarbonate Secretion in Rats

    OpenAIRE

    Mizumori, Misa; Akiba, Yasutada; Kaunitz, Jonathan D

    2009-01-01

    Background Lubiprostone, a bicyclic fatty acid, is used for the treatment of chronic constipation. No published study has addressed the effect of lubiprostone on intestinal ion secretion in vivo. Aim The aim of this study was to test the hypothesis that lubiprostone augments duodenal HCO3 ? secretion (DBS). Methods Rat proximal duodenal loops were perfused with pH 7.0 Krebs, control vehicle (medium-chain triglycerides), or lubiprostone (0.1?10??M). We measured DBS with flow-through pH and CO2...

  2. REM sleep: tear secretion and dreams.

    Science.gov (United States)

    Murube, Juan

    2008-01-01

    Although a number of hypotheses exist to explain the reasons for the rapid eye movement (REM) phase of sleep, the physical movements themselves have not been explained or interpreted in the literature. The author theorizes that REM during sleep serves not only to increase the lacrimal secretion and to humidify and lubricate the ocular surface, but also to redistribute the secretion on the ocular surface and to inform the conjunctiva-associated lymphoid tissue (CALT) system. He hypothesizes that when eyes move in REM periods to humidify the ocular surface, they indirectly release phenomena of the visual activity, producing dreams.

  3. Calcifying epithelial odontogenic tumor (Pindborg tumor).

    Science.gov (United States)

    Singh, Neeraj; Sahai, Sharad; Singh, Sourav; Singh, Smita

    2011-07-01

    The calcifying epithelial odontogenic tumor (CEOT) is a rare entity and represents less than 1% of all odontogenic tumors. Dr. J J Pindborg (1958) first described four cases of this unusual lesion; subsequently Shafer et al coined the term Pindborg tumor. This lesion is a locally aggressive benign odontogenic neoplasm arising from epithelial tissue. It occurs most commonly in 4(th)-5(th)-6(th) decade of life and bears no gender predilection. A case of CEOT in a 50-year-old male arising in the left body region is described.

  4. Targeted Therapies in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Nicanor I. Barrena Medel

    2010-01-01

    Full Text Available Epithelial ovarian cancer remains a major women's health problem due to its high lethality. Despite great efforts to develop effective prevention and early detection strategies, most patients are still diagnosed at advanced stages of disease. This pattern of late presentation has resulted in significant challenges in terms of designing effective therapies to achieve long-term cure. One potential promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. This review examines three of the most provocative targeted therapies with current or future applicability in epithelial ovarian cancer.

  5. Segmentation and Quantitative Analysis of Epithelial Tissues.

    Science.gov (United States)

    Aigouy, Benoit; Umetsu, Daiki; Eaton, Suzanne

    2016-01-01

    Epithelia are tissues that regulate exchanges with the environment. They are very dynamic and can acquire virtually any shape; at the cellular level, they are composed of cells tightly connected by junctions. Most often epithelia are amenable to live imaging; however, the large number of cells composing an epithelium and the absence of informatics tools dedicated to epithelial analysis largely prevented tissue scale studies. Here we present Tissue Analyzer, a free tool that can be used to segment and analyze epithelial cells and monitor tissue dynamics.

  6. Epithelial-Mesenchymal Transition in Pancreatic Carcinoma

    Directory of Open Access Journals (Sweden)

    Thomas Wirth

    2010-12-01

    Full Text Available Pancreatic carcinoma is the fourth-leading cause of cancer death and is characterized by early invasion and metastasis. The developmental program of epithelial-mesenchymal transition (EMT is of potential importance for this rapid tumor progression. During EMT, tumor cells lose their epithelial characteristics and gain properties of mesenchymal cells, such as enhanced motility and invasive features. This review will discuss recent findings pertinent to EMT in pancreatic carcinoma. Evidence for and molecular characteristics of EMT in pancreatic carcinoma will be outlined, as well as the connection of EMT to related topics, e.g., cancer stem cells and drug resistance.

  7. Growth Hormone Is Secreted by Normal Breast Epithelium upon Progesterone Stimulation and Increases Proliferation of Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Lombardi

    2014-06-01

    Full Text Available Using in vitro and in vivo experimental systems and in situ analysis, we show that growth hormone (GH is secreted locally by normal human mammary epithelial cells upon progesterone stimulation. GH increases proliferation of a subset of cells that express growth hormone receptor (GHR and have functional properties of stem and early progenitor cells. In 72% of ductal carcinoma in situ lesions, an expansion of the cell population that expresses GHR was observed, suggesting that GH signaling may contribute to breast cancer development.

  8. How Helicobacter pylori infection controls gastric acid secretion.

    Science.gov (United States)

    Smolka, Adam J; Backert, Steffen

    2012-06-01

    Infection of the human stomach mucosa by Helicobacter pylori induces strong inflammatory responses and a transitory hypochlorhydria which can progress in ~2 % of patients to atrophic gastritis, dysplasia, or gastric adenocarcinoma. H. pylori infection of gastric biopsies or cultured gastric epithelial cells in vitro represses the activity of endogenous or transfected promoter of the alpha-subunit (HKα) of gastric H,K-adenosine triphosphatase (H,K-ATPase), the parietal cell enzyme mediating acid secretion. Some mechanistic details of H. pylori-mediated repression of HKα and ensuing hypochlorhydria have been recently elucidated. H. pylori strains expressing a type IV secretion system (T4SS) encoded by the cag pathogenicity island are known to upregulate the transcription factor nuclear factor (NF)-κB. The NF-κB-binding regions in the HKα promoter were identified and shown to repress its transcriptional activity. Interaction studies have indicated that although active phosphorylated NF-κB p65 is present in infected cells, an NF-κB p50/p65 heterodimeric complex fails to bind to the HKα promoter. Point mutations at -159 and -161 bp in the HKα promoter NF-κB binding sequence prevent the binding of NF-κB p50 and prevent H. pylori repression of point-mutated HKα promoter activity. The T4SS factors CagL, CagE, CagM, and possibly CagA and the lytic transglycosylase Slt, are mechanistically involved in NF-κB activation and repression of HKα transcription. CagL, a T4SS pilus component, binds to the integrin α(5)β(1) to mediate translocation of virulence factors into the host cell and initiate signaling. During acute H. pylori infection, CagL dissociates ADAM 17 (a disintegrin and a metalloprotease 17) from the integrin α(5)β(1) complex and stimulates ADAM17-dependent release of heparin-binding epidermal growth factor (HB-EGF), EGF receptor (EGFR) stimulation, ERK1/2 kinase activation, and NF-κB-mediated repression of HKα. These studies suggest that H

  9. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Kumutha Malar Vellasamy

    2016-07-01

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS and its secreted proteins (CCMS.We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms or to escape potential sensing by macrophages.Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

  10. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis

    Science.gov (United States)

    Chung, H; Vilaysane, A; Lau, A; Stahl, M; Morampudi, V; Bondzi-Simpson, A; Platnich, J M; Bracey, N A; French, M-C; Beck, P L; Chun, J; Vallance, B A; Muruve, D A

    2016-01-01

    Nod-like receptor, pyrin containing 3 (NLRP3) is characterized primarily as a canonical caspase-1 activating inflammasome in macrophages. NLRP3 is also expressed in the epithelium of the kidney and gut; however, its function remains largely undefined. Primary mouse tubular epithelial cells (TEC) lacking Nlrp3 displayed reduced apoptosis downstream of the tumor necrosis factor (TNF) receptor and CD95. TECs were identified as type II apoptotic cells that activated caspase-8, tBid and mitochondrial apoptosis via caspase-9, responses that were reduced in Nlrp3−/− cells. The activation of caspase-8 during extrinsic apoptosis induced by TNFα/cycloheximide (TNFα/CHX) was dependent on adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and completely independent of caspase-1 or caspase-11. TECs and primary human proximal tubular epithelial cells (HPTC) did not activate a canonical inflammasome, caspase-1, or IL-1β secretion in response to TNFα/CHX or NLRP3-dependent triggers, such as ATP or nigericin. In cell fractionation studies and by confocal microscopy, NLRP3 colocalized with ASC and caspase-8 in speck-like complexes at the mitochondria during apoptosis. The formation of NLRP3/ASC/caspase-8 specks in response to TNFα/CHX was downstream of TNFR signaling and dependent on potassium efflux. Epithelial ASC specks were present in enteroids undergoing apoptosis and in the injured tubules of wild-type but not Nlrp3−/− or ASC−/− mice following ureteric unilateral obstruction in vivo. These data show that NLRP3 and ASC form a conserved non-canonical platform for caspase-8 activation, independent of the inflammasome that regulates apoptosis within epithelial cells. PMID:26891693

  11. Silica induces NLRP3 inflammasome activation in human lung epithelial cells.

    Science.gov (United States)

    Peeters, Paul M; Perkins, Timothy N; Wouters, Emiel F M; Mossman, Brooke T; Reynaert, Niki L

    2013-02-12

    In myeloid cells the inflammasome plays a crucial role in innate immune defenses against pathogen- and danger-associated patterns such as crystalline silica. Respirable mineral particles impinge upon the lung epithelium causing irreversible damage, sustained inflammation and silicosis. In this study we investigated lung epithelial cells as a target for silica-induced inflammasome activation. A human bronchial epithelial cell line (BEAS-2B) and primary normal human bronchial epithelial cells (NHBE) were exposed to toxic but nonlethal doses of crystalline silica over time to perform functional characterization of NLRP3, caspase-1, IL-1β, bFGF and HMGB1. Quantitative RT-PCR, caspase-1 enzyme activity assay, Western blot techniques, cytokine-specific ELISA and fibroblast (MRC-5 cells) proliferation assays were performed. We were able to show transcriptional and translational upregulation of the components of the NLRP3 intracellular platform, as well as activation of caspase-1. NLRP3 activation led to maturation of pro-IL-1β to secreted IL-1β, and a significant increase in the unconventional release of the alarmins bFGF and HMGB1. Moreover, release of bFGF and HMGB1 was shown to be dependent on particle uptake. Small interfering RNA experiments using siNLRP3 revealed the pivotal role of the inflammasome in diminished release of pro-inflammatory cytokines, danger molecules and growth factors, and fibroblast proliferation. Our novel data indicate the presence and functional activation of the NLRP3 inflammasome by crystalline silica in human lung epithelial cells, which prolongs an inflammatory signal and affects fibroblast proliferation, mediating a cadre of lung diseases.

  12. Exogenous HIV-1 Nef Upsets the IFN-γ-Induced Impairment of Human Intestinal Epithelial Integrity

    Science.gov (United States)

    Quaranta, Maria Giovanna; Vincentini, Olimpia; Felli, Cristina; Spadaro, Francesca; Silano, Marco; Moricoli, Diego; Giordani, Luciana; Viora, Marina

    2011-01-01

    Background The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line. Methodology/Principal Findings We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade. Conclusion/Significance Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions. PMID:21858117

  13. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by